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Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a
sensitised state that may lead to an exacerbated reaction later in life and contribute to increased
vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function
through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration
of immune receptors organization in neurons has not been shown. We investigated whether a single
episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of
IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI
and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and
IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total
number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly
changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who
had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These
changes were not observed immediately after the MD episode. None of the observed alterations occurred in
the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term,
sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD.
We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1b.

� 2013 Published by Elsevier Inc.
50
60

61

62

63

64

65

66

67

68
1. Introduction

Emerging evidence suggests that adverse early-life events may
cause an enduring phenotypical shift of the CNS towards an im-
mune-sensitised state (named immune priming). For example, by
increasing the expression of receptors for immune molecules on
microglia and/or peripheral immune cells, neonatal bacterial infec-
tions (Bilbo et al., 2005; Williamson et al., 2011) early life seizures
(Somera-Molina et al., 2009), maternal obesity (Bilbo and Tsang,
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2010), and pre-natal stress (Vanbesien-Mailliot et al., 2007) pro-
mote the adoption of a biochemical setting that persists into adult-
hood. As a result, adult microglia are ready to sense any
subsequent inflammatory trigger and then organise an immediate
and ‘‘at best’’ response that leads to an exaggerated production of
pro-inflammatory cytokines.

High levels of IL-1b concur to the pathogenesis of both acute
and chronic neurological disorders (Allan et al., 2005; Fogal and
Hewett, 2008; Meyer et al., 2011), by disrupting memory processes
(Avital et al., 2003; Barrientos et al., 2009), altering synaptic plas-
ticity (Ross et al., 2003; Schneider et al., 1998) and promoting neu-
ronal death (Relton and Rothwell, 1992; Viviani et al., 2003, 2006).
Indeed, bacterial neonatal infection in rats leads to HP-dependent
memory deficits in the adulthood as the result of an exaggerated
IL-1b production by primed microglia (Williamson et al., 2011).
As well, excessive cytokines production (i) increases susceptibility
to seizures and neurologic injury in adult animal that have been
terleu-
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sensitized by seizures early in life (Somera-Molina et al., 2009) and
(ii) induces marked changes in anxiety and spatial learning in the
adult offspring of obese dams (Bilbo and Tsang, 2010). These obser-
vations suggest that the phenotypic shift of CNS immune cells
towards a sensitised state acquired early in life set the stage for
programming later-life brain behaviour (Bilbo and Schwarz, 2009).

The concept of immune priming, as the acquisition of a setting
that emphasizes the immune response, has been exclusively
applied to microglia because these are the immunocompetent cells
of the CNS. Nevertheless, neuroimmune response is the result of a
delicate balance between the production of inflammatory media-
tors by immune cells and the ability of neurons to sense them
through the expression of specific receptors. Interleukin-1 (IL-1)
receptor (IL-1RI) is expressed on neurons and involved in various
functions ranging from neurotransmission to cell survival. (Allan
and Rothwell, 2001; Gadient and Otten, 1997; McAfoose and
Baune, 2009). In particular, a recent hypothesis based on the obser-
vation that high levels of IL-1 reached in pathological conditions
can induce hyper-excitability of neuronal circuits (Galic et al.,
2008; Liu et al., 2013; Rossi et al., 2012), suggest a link between
IL-1 and the glutamatergic system as a common mechanism of
dysfunction (Fogal and Hewett, 2008).

We have recently described a dynamic and functional interac-
tion between IL1-RI and the NMDA receptor (NMDAR) complex
(Gardoni et al., 2011; Viviani et al., 2003). Indeed, both recombi-
nant and glial released IL-1b potentiates NMDAR functions in pri-
mary hippocampal neurons by increasing NMDA-induced
intracellular calcium rise (Viviani et al., 2003, 2006). This effect
results in the reduction of synaptic spines and exacerbation of neu-
ronal death driven by the overactivation of the GluN2B subunit
(Viviani et al., 2003, 2006). Interleukin-1 receptor antagonist (IL-
1Ra) and ifenprodil prevent both these effects (Viviani et al.,
2003, 2006), confirming the central role of IL-1RI and NMDAR shar-
ing the GluN2B subunit. Moreover, we have found that IL-1RI
receptors co-localise with, and bind to the GluN2B subunit of the
NMDARs in a specific and highly organised compartment of the
glutamatergic synapse: the postsynaptic density (Gardoni et al.,
2011). IL-1RI interactions with NMDARs and its localisation at
the synaptic membranes is increased in primary hippocampal neu-
rons as a consequence of IL-1b or NMDA stimulation (Gardoni
et al., 2011). These results underline a functional relationship
between IL-1RI and the NMDAR through the GluN2B subunit in
primary hippocampal neurons, which can be dynamically modu-
lated. It is therefore conceivable that the expression, distribution
of IL-1RI and interaction with the NMDAR might contribute to
shape the molecular structure of the synapse and define a neuronal
‘‘immunophenotype’’. We thus hypothesised that, in the same way
that early-life adverse events prime microglia, they could also
enduringly prime neurons orchestrating IL-1RI expression, distri-
bution and interaction. To investigate this hypothesis, we adopted
a model of maternal deprivation (MD). Mother–infant interaction
is relevant for brain maturation and vulnerability to disease,
involving both the glutamatergic system (Ku et al., 2008; Rode-
nas-Ruano et al., 2012) and pro-inflammatory processes (Hennessy
et al., 2010).

The aim of this study was to verify whether this specific type of
early-life stress can enduringly change the expression and distribu-
tion of IL-1RI in the hippocampus and pre-frontal cortex, as well as
its interactions with NMDARs. As early-life development is a
critical period for functionally shaping the glutamatergic synapse
(Bellone and Nicoll, 2007; Gray et al., 2011) these endpoints were
evaluated in association with the distribution of the NMDAR and
AMPAR subunits. Finally, as sex-dependent alterations in develop-
ing brain have been described in neonatal rats exposed to MD
(Llorente et al., 2008, 2009; Viveros et al., 2009) we considered
male and female rats separately.
Please cite this article in press as: Viviani, B., et al. Early maternal deprivation
kin-1 receptor type I in a sex dependent manner. Brain Behav. Immun. (2013)
2. Materials and methods

All of the experiments described were performed in accordance
with Spanish Royal Decree 1201/2005 of 21 October 2005 (BOE no.
252) concerning the protection of experimental animals, and in
close agreement with the European Community Council Directive
of 24 November 1986 (86/609/EEC). The experimental protocol
was approved by our local Animal Ethics Committee. Every effort
was made to minimise animal suffering and distress.

2.1. Animals

The experimental animals were the offspring of albino Wistar
rats purchased from Harlan Laboratories housed in plastic Macro-
lon� III cages. The parental generation was mated (one male � two
females) in our animal facilities approximately 2 weeks after their
arrival. After 10 days, the females were singly housed and animals
monitored daily for parturition. On the day of birth (PND 0), litters
were sex-balanced and culled to eight pups per dam (four males
and four females). Except for the experimental animals (see be-
low), the dams and litters were then left undisturbed until weaning
(PND 22), when the animals were separated by sex and housed in
groups of four siblings per cage.

All of the animals were kept at a constant temperature
(22 ± 1 �C) and humidity (50 ± 1%) in a reverse 12-h dark-light
cycle (lights on at 20.00), with free access to food (commercial diet
for rodents A04/A03; SAFE, Augy, France) and water.

2.2. Early maternal deprivation

Early maternal deprivation (MD) was performed as previously
described (Llorente et al., 2007). Briefly, on PND 9, the litters
underwent 24 h of maternal deprivation: i.e. the dams were re-
moved from their home-cages at 09.00, and the pups were left
undisturbed (in the same room) until the next day (PND 10,
09.00) when the dams were returned to their home-cages. Control
animals were manipulated in the same way except for the MD epi-
sode. Six litters were used to analyse the long-term effects of MD
(3 l were assigned to the MD group and another 3 to the control
group). These animals (first batch) were sacrificed on PND 45
and were previously evaluated in diverse behavioural tests (Marco
et al., 2013). To evaluate the acute effect of MD, an additional batch
of animals (6 l:3 l were assigned to the MD group and another 3 to
the control group) was sacrificed on PND10.

For western blotting analysis, animals were sacrificed by rapid
decapitation; their brains were extracted and the frontal cortex
and hippocampi were dissected, frozen in dry ice, and stored at
�80 �C until use.

For immunohistochemical analyses, half of the animals from
the first batch (PND45) were deeply anesthetised with pentobarbi-
tal (100 mg/kg, Normon Veterany Divison) and perfused transcar-
dially with paraformaldehyde 4% (Merck, Darmstadt, Germany)
in 0.1 M phosphate buffer (PB), pH 7.4. Their brains were post-fixed
with paraformaldehyde 4% in PB and cryoprotected in 11% sucrose
in 0.1 M phosphate saline buffer (PBS), pH 7.4.

2.3. Materials and antibodies

All of the reagents were purchased from Sigma (Milan, Italy). IL-
1R, and IL-1b antibodies were purchased from Santa Cruz Biotech-
nology (CA, USA); monoclonal GluN2B and GluA2 antibodies from
NeuroMab (Davis, CA, USA); polyclonal GluA1 antibodies from Cal-
biochem (Merck, Darmstadt, Germany); monoclonal GluN2A anti-
body from Zymed (San Francisco, CA, USA); monoclonal actin and
secondary anti-mouse antibodies from Sigma Aldrich (S. Louis,
immunologically primes hippocampal synapses by redistributing interleu-
, http://dx.doi.org/10.1016/j.bbi.2013.09.008
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MO, USA); and secondary anti-rabbit antibody from Bio-Rad (Her-
cules, CA, USA).
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2.4. Subcellular fractionation

The post-synaptic Triton-insoluble fractions (TIFs) were puri-
fied from tissue as previously described (Gardoni et al., 1998,
2001). Briefly, tissues were homogenized in ice-cold sucrose
0.32 M containing Hepes 1 mM, MgCl2 1 mM, EDTA 1 mM, NaHCO3

1 mM, PMSF 0.1 mM, at pH 7.4 in presence of a complete set of pro-
teases inhibitors (Complete™, Roche Diagnostics, Basel, Switzer-
land) and phosphatases inhibitors (Sigma–Aldrich). The
homogenized tissue was centrifuged at 1,000xg for 10 min. The
resulting supernatant (S1) was centrifuged at 13,000g for 15 min
to obtain a fraction of mitochondria and synaptosomes (P2 frac-
tion). The pellet was resuspended in buffer containing 75 mM
KCl and 1% Triton-X 100 and centrifuged at 100,000g for 1 h. The
final pellet was homogenized in a glass-glass potter in 20 mM
Hepes. Then, an equal volume of glycerol was added and this frac-
tion, referred as Triton insoluble fraction (TIF), was stored at
�80 �C until processing. TIF fraction was used instead of the classi-
cal postsynaptic density (PSD) (Gardoni et al., 1998) because the
amount of the starting material was very limited. The protein com-
position of this preparation was, however, carefully tested for the
absence of presynaptic markers (Viviani et al., 2006); i.e. synapto-
physin and synaptotagmin) as well as for the enrichment in post-
synaptic proteins (Gardoni et al., 2011). Similar protein yield was
obtained in TIF purified from all experimental groups and the same
amount of TIF protein was applied to SDS–PAGE in each lane and
electroblotted for all samples.
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2.5. Immunoprecipitation and Western blotting

TIFs were immunoprecipitated with andibodies raised against
GluN2B and the presence of IL-1RI and GluN2B in the immunocom-
plex were evaluated by means of western blot as previously
reported (Gardoni et al., 2011). Briefly, TIFs (50 lg protein) were
incubated overnight at 4 �C in a RIA buffer (200 mM NaCl, 10 mM
EDTA, 10 mM Na2HPO4, 0.5% NP-40, 0.1% SDS, 10 mM NaF) with
GluN2B antibody (1:200), and then for 2 h with protein A-Sephar-
ose beads. Following this incubation, the supernatants were re-
moved, and the beads were washed five times with solubilisation
buffer. After the final wash, the beads were resuspended in sample
buffer for SDS–PAGE and briefly centrifuged; the supernatants
were loaded on 6% SDS–PAGE gels. The presence of GluN2B and
IL-1RI in the immunocomplex was evaluated by Western blotting
analysis and IL-1RI protein level was normalized for GluN2B
immunoreactivity.

Protein content of homogenate and TIF’s samples has been
quantified by using Bio-Rad (Hercules, CA, USA) protein assay.
After measuring protein concentration, all samples have been stan-
dardized at 1 lg/ul concentration and 20 lg/sample loaded in each
lane. Western blot analysis was performed using antibodies raised
against N-Methyl-D-aspartic acid (NMDA) glutamate receptor sub-
units NR2A and NR2B, a-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) glutamate receptor subunits GluR1, GluR2,
interleukin- 1 receptor type I (IL1RI) and actin. The specificity of
the IL-1RI antibody was tested by pre-absorption with the blocking
peptide. Quantification of Western blotting analysis has been per-
formed by means of computer-assisted imaging (Quantity-One�

System; Bio-Rad) after normalization on actin levels. Actin was
chosen as standard to normalize TIF, since it is highly enriched in
the post-synaptic compartment and is directly associated to the
GluN2B subunit of the NMDAR (Robison et al., 2005).
Please cite this article in press as: Viviani, B., et al. Early maternal deprivation
kin-1 receptor type I in a sex dependent manner. Brain Behav. Immun. (2013)
2.6. Immunohistochemistry

Immunohistochemistry was performed as previously described
(Llorente et al., 2008). Coronal brain sections (30 lm thick) were
cut in a LEICA CM3050 cryostat, collected onto alternate gelatin-
coated slides (four slices per slide), air dried and stored at �30 �C
until use. For the immunohistochemistry of IL-1RI or IL-1b, the
slides were incubated overnight at 4 �C with the primary anti-IL-
1RI (1:200) or anti-IL-1b antibody (1:200). After several washes
in PBS containing 0.25% Triton X-100, the slides were incubated
with a FITC-conjugated secondary antibody (1:500), washed and
mounted in an anti-fading water-based medium (Vectashield, VEC-
TOR Laboratories, Burlingame, CA) containing DNAbinding fluores-
cent dye DAPI (2 lg/mL; Sigma–Aldrich) to assure visual
observation of the nuclear morphology. Omission of the primary
antibody was used as a control. The fluorescence analysis was
made using an Axio Imager A1 microscope (Zeiss, Germany).

2.7. Quantitative evaluation of IL-1b-, IL-1RI- and DAPI-positive cells

The evaluation was made using a 10x objective in the medial
hippocampus (bregma �3.30 to �10.00 mm) and the pre-frontal
cortex (bregma 4.20 to 4.70) (Paxinos et al., 1998). Four slides
per region and per animal were randonmly selected, and three tis-
sue sections per slide were analysed. In the hippocampal forma-
tion, we focused on areas CA1 and CA3, and the dentate gyrus
(DG). For both CA subfields, we analyzed the zone corresponding
to the stratum pyramidale (SP), and the stratum oriens (SO) to-
gether with the zone corresponding to strata radiatum, lacunosum,
and moleculare (SRLM). For DG we analyzed the granular cell layer
and the polymorphic layer. In the prefrontal cortex we analyzed all
the cortical layers.

The number of IL-1b- IL-1RI- and DAPI-positive cells was esti-
mated in a total of five counting frames (width 0.215 and length
0.26 mm) per slide and for each analysed area and region (a total
of 72 tissue sections per region and per experimental group) and
all of the counts were made on coded sections. Cell nuclei from
immunoreactive cells that came into focus were counted. The data
are expressed as the ratio between the number of IL-1b- and IL-
1RI-positive cells the number of DAPI-positive nuclei in the same
frame, in order to avoid local variations between animals.

2.8. IL-1b assay

IL-1b was measured by a commercially available ELISA (Quanti-
kine, R&D Systems, Abingdon, UK) and using the soluble S1 fraction
obtained during the subcellular fractionation procedure of all the
investigated tissues.

2.9. Statistical analysis

Males and females were independently analysed, ‘‘n’’ refers to
the number of rats used. Statistical analysis between C and MD
groups was performed within each sex using an unpaired Student’s
t-test. A significance level of 95% (p < 0.05) was considered statisti-
cally significant.
3. Results

Initially all of the measurements in the male and female rats
were made on PND 45: i.e. 35 days after the single episode of
maternal deprivation (PND 9–10), to evaluate whether MD contrib-
utes to later changes of the neuronal immunophenotype. This time
point was chosen to perform all the biochemical assessments on
the basis of the observation that MD induces brain and behavioural
immunologically primes hippocampal synapses by redistributing interleu-
, http://dx.doi.org/10.1016/j.bbi.2013.09.008
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Table 1
Ratio Q2of GluN2A/GluN2B subunits of the NMDAR as in TIF of Hp and PFC of males and
females rat, control and MD. GluN2A/GluN2B ratios have been calculated on values
normalized on actin. Data are expressed as % of control and expressed as means + SEM
(n = 6 for each experimental group).

⁄⁄
p < 0.05 vs. control; Student’s t-test.

GluN2A/GluN2B (% of control)

TIFs Males Females

Control MD Control MD

Hp 100 + 3.9 54.8 + 5.8⁄⁄ 100 + 10.3 103 + 10.3
PFC 100 + 7.7 100 + 6.6 100 + 12.9 129 + 19.3
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abnormalities in adolescent and adult rats (Ellenbroek and Riva,
2003; Llorente et al., 2009).

The distribution of IL-1RI and the GluN2A and GluN2B subunits
of NMDARs was initially investigated by means of Western blotting
using the post-synaptic TIFs purified from control and MD rat hip-
pocampi (Hp). The amount of IL-1RI was significantly higher in the
males who had experienced MD (Fig. 1A; n = 6, p < 0.01 vs. control).
The levels of the GluN2A and GluN2B subunits did not significantly
change in MD males, although GluN2A shows a decreasing trend
while GluN2B slightly increase (Fig. 1A). This effect was male spe-
cific as no significant changes were observed in the females
(Fig. 1B). As the subunit composition of synaptic NMDARs can
Fig. 1. Effect of maternal deprivation (MD) on IL-1RI, GluN2A and GluN2B levels in
the hippocampus of 45-day-old male and female rats. Quantification (left) and
representative Western blots of the proteins (right) in male (a) and female TIFs (b),
and male (c) and female total homogenates (d) of control (C) and MD rats. The
specificity of the IL-1RI antibody was tested by pre-absorption with the blocking
peptide (data not shown). The data were normalised for actin immunoreactivity.
Mean values ± SE (n = 6). ⁄⁄p < 0.01 vs. control; Student’s t-test.

Fig. 2. Effect of maternal deprivation (MD) on IL-1RI, GluN2A and GluN2B levels in
the pre-frontal cortex of 45-day-old male and female rats. Quantification (left) and
representative Western blots of the proteins (right) in male (a) and female total
homogenates (c), and male (b) and female TIFs (d) of control (C) and MD rats. The
data were normalised for actin immunoreactivity. Mean values ± SE (n = 6).
⁄⁄p < 0.01 vs. control; Student’s t-test.

Please cite this article in press as: Viviani, B., et al. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleu-
kin-1 receptor type I in a sex dependent manner. Brain Behav. Immun. (2013), http://dx.doi.org/10.1016/j.bbi.2013.09.008
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quickly change at neonatal synapses, switching from the predom-
inance of GluN2B- to GluN2A-containing receptors (Bellone and
Nicoll, 2007; Paoletti et al., 2013), we also quantified the levels
of the GluN2B to GluN2A subunits in the TIFs obtained from control
and MD rats as GluN2A/GluN2B ratio Table 1). This allowed to eval-
uate whether MD interferes with the expected shift and, if so, in
which brain areas. On PND 45, the GluN2A/GluN2B ratio was re-
duced in the Hp of the MD males (Table 1;n = 6, p < 0.01 vs. control).
No significant changes were observed in females (Table 1).

In order to clarify whether the increase in IL-1RI was due to
receptor redistribution rather than a generalised increase in
expression, IL-1RI, GluN2A and GluN2B levels were evaluated in to-
tal Hp homogenates. There was no difference in total protein
expression in the control and MD groups of either sex (Fig. 1C, D).

Pre-frontal cortex (PFC) is another brain area involved in cogni-
tion and reactions to stress that is rich in IL-1RI (Plata-Salaman
et al., 2000) and undergoes important maturational changes
(Crews et al., 2007; Marco et al., 2011). PFC samples from male
Fig. 3. Effects of maternal deprivation (MD) on the number of IL-1RI positive cells (IL-1RI
of IL-1RI + cells/DAPI in the hippocampus (CA1 and CA3; a and b) and pre-frontal cortex
radiatum-lacunosum moleculare. The cells were quantified in areas CA1 and CA3, and th
Mean values ± SEM (n = 6).
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and female rats were therefore processed for TIF and Western
blotting, and assessed for IL-1RI, GluN2B and GluN2A expression.
Unlike the Hp samples, the PFC homogenates of the male rats
who had experienced MD had reduced amounts of IL-1RI (Fig. 2A;
n = 6, p < 0.05 vs. control) and GluN2B (Fig. 2A; n = 6, p < 0.01 vs.
control), whereas the levels of GluN2A were the same as those
found in the controls (Fig. 2A), although none of the considered
proteins was altered at the post-synapse. As shown in Fig. 2B,
the TIF levels of IL-1RI, GluN2B and GluN2A were not changed after
deprivation. Neither the total expression of IL-1RI, GluN2B and
GluN2A (Fig. 2C) nor their distribution to the post-synaptic fraction
(Fig. 2D) changed in the PFC of the females who had experienced
MD. Furthermore, no modification of the GluN2A/GluN2B ratio
was observed in both the male and female PFC (Table 1).

IL-1RI expression in male and female Hp and PFC was also eval-
uated by means of immunohistochemistry (Fig 3). IL-1RI showed
more intense immunoreactivity in the pyramidal cell layer of
CA1 and CA3, and the granular cell layer of the DG than in the
+ cells/DAPI) in 45-day-old male and female rats. Representative microphotographs
(d). Scale bar 150 lm. SO: stratum oriens; SP: stratum pyramidale; SRLM: stratum
e dentate gyrus of the hippocampal formation (c), and in the pre-frontal cortex (e).

immunologically primes hippocampal synapses by redistributing interleu-
, http://dx.doi.org/10.1016/j.bbi.2013.09.008
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pre-frontal cortex. No change in the IL-1RI + cells/DAPI ratio in the
MD rats of either sex were evident (Fig. 3), supporting the observa-
tion that the IL-1RI levels in the hippocampal TIFs of male MD rats
is due to changes in the receptor’s subcellular distribution.

Given the specific and dynamic association between IL-1RI and
GluN2B, (Gardoni et al., 2011; Viviani et al., 2006) we used co-
immunoprecipitation experiments to investigate whether MD
could modulate their direct interaction at synapses. TIFs from Hp
and PFC of all rats were immunoprecipitated with an antibody spe-
cific for GluN2B. Each sample was then evaluated for the presence
of IL-1RI. Figure 4A shows an increased co-precipitation of IL-1RI
together with GluN2B in the Hp (n = 6, p < 0.01 vs. control), but
not in the PFC, TIFs of the MD males. Once again no change was evi-
dent in the Hp or PFC TIFs of the MD females (Fig. 4B).

Due to the impact of MD on IL-1b signalling system in
hippocampal neurons, we used an ELISA to measure the amount
of IL-1b in the plasma, Hp and PFC of the control and MD rats.
Regardless of whether they had experienced neonatal MD or not,
IL-1b was virtually undetectable in the Hp and PFC on PND 45,
and there was no significant between-group difference in plasma
concentrations (male control and MD rats 19.3 ± 1.83 and
20.1 ± 2.5 pg/mL, n = 6, p > 0.05; female control and MD rats
20.4 ± 1.87 and 22.4 ± 2.44 pg/mL, n = 6, p > 0.05). Also there was
no difference in the immunohistochemistry for IL-1b of the Hp
(CA1, CA3 and the DG) or PFC between the-groups (Fig. 5), thus
excluding the possibility of an increase in IL-1b levels in discrete
portions of the selected brain areas.

Our findings show that MD drastically changes the biochemical
structure of male Hp post-synapses by enhancing the relationship
between IL-1RI and NMDARs and favouring the predominance of
the GluN2B subunit over GluN2A. As NMDAR subunit expression
and activity contribute to changes in AMPAR levels at the synapse
(Gray et al., 2011), we evaluated GluA1 and GluA2 levels in the Hp
and PFC TIFs of the four groups. Once again, the only substantial
difference was that the Hp of the male MD rats had significantly
lower GluA1 (Fig. 6A; n = 6, p < 0.01 vs. control) and GluA2 levels
(Fig. 6A; n = 6, p < 0.01 vs. control) than the controls.
Please cite this article in press as: Viviani, B., et al. Early maternal deprivation
kin-1 receptor type I in a sex dependent manner. Brain Behav. Immun. (2013)
We finally investigated whether the changes observed within
male Hp represent the result of the acute deprivation. Thus, Hp ob-
tained by PND10 male rats shortly after MD and by matched con-
trols were processed for TIFs and analized by Western blot to
evaluate (i) IL-1RI enrichment, (ii) levels of GluA1 and GluA2, (iii)
GluN2A/GluN2B ratio and (iiii) IL-1RI/GluN2B co-precipitation.
IL-1b levels were also evaluated by ELISA. The increased IL-1RI,
as well as the reduction of GluA1 and GluA2 levels and the
GluN2A/GluN2B unbalance at the post-synapse of MD male rats
appear to be a long-term consequence of the early events, since
no significant changes between controls (C) and MD were observed
for IL-1RI (C: 100 ± 6.32; MD: 94.4 ± 5.18, n = 6, p > 0.05), GluA1 (C:
100 ± 22.5, MD: 91 ± 8.85, n = 6, p > 0.05), GluA2 (100 ± 18.78, MD:
92 ± 9.84, n = 6, p > 0.05) and GluN2A/Glun2B ratio (C: 100 ± 10.1,
MD: 87.8 ± 9.5, n = 6, p > 0.05) at PND10. On the other hand, IL-
1RI/GluN2B co-precipitation slightly, although not significantly, in-
creased in Hp TIF of PND10 males subjected to MD (C: 100 ± 25.3;
MD: 128 ± 16.2; n = 5, p > 0.05). For what concerns IL-1b this cyto-
kine was detectable in controls (10.11 ± 1.575 pg/100 lg prot,
n = 6) while MD blunted the response (3.88 ± 1.36 pg/100 lg prot,
n = 6, p < 0.05 vs. control). Due to the sex specificity of MD induced
effects, IL-1b was then measured also in female Hp. IL-1b was
undetectable in females both in C and MD.

4. Discussion

The major finding of this study is that a single episode of MD
experienced early in life (PND 9), contributes to enhancing the dis-
tribution of IL-1RI and increasing its interactions with the GluN2B
subunit of the NMDARs at neuronal post-synapses, thus leading to
long-lasting alterations in the IL-1RI/NMDAR setting that extends
to adolescence (PND 45). The changes occur in synapses character-
ised by an unbalanced shift of the NMDAR GluN2B and GluN2A
subunits, and impoverishment of the AMPA component. They are
also highly specific in terms of anatomy and gender as they exclu-
sively affect the hippocampus of male rats. These findings may
reflect a novel mechanism by means of which early-life adverse
events determines alterations in molecular players of neuronal
response to pro-inflammatory cytokines and cellular plasticity.

The observation that early-life infections can permanently alter
stress reactivity, disease susceptibility and vulnerability to cogni-
tive and neuropsychiatric disorders (Hornig et al., 1999; Rantakal-
lio et al., 1997; Shi et al., 2003) initially suggested that the immune
response contributes to this process. It has so far been demon-
strated that perinatal exposure to both immune (i.e. Escherichia coli
(Bilbo et al., 2005), Lipopolysaccharide – LPS (Galic et al., 2008))
and non-immune triggers (i.e. convulsants (Somera-Molina et al.,
2009), pre-natal stress (Vanbesien-Mailliot et al., 2007), a high-
fat diet (Bilbo and Tsang, 2010)) promotes the adoption of an
enduring biochemical setting by microglia and/or peripheral im-
mune cells that favours an exaggerated pro-inflammatory response
upon activation with a subsequent challenge (Bilbo et al., 2005;
Bilbo and Tsang, 2010; Galic et al., 2008; Somera-Molina et al.,
2009). The observation that excessive expression of pro-inflamma-
tory cytokines such as IL-1b, IL-6 and TNF-a critically modulate
cognitive functions (McAfoose and Baune, 2009), neuronal survival
(Fogal and Hewett, 2008) and has been related to the psychiatric
disorders (Capuron and Dantzer, 2003; Meyer et al., 2011), further
strenghtens the hypothesis of a key role for the immune system in
early-life programming of later life behaviour (Bilbo and Schwarz,
2009).

Neuroimmune responses are the result of a delicate balance be-
tween the production of inflammatory mediators by immune cells
and the ability of neurons to sense them through the expression of
specific receptors. Although the impact of early-life challenge in
shaping the response of immune cells start to emerge (Bilbo and
immunologically primes hippocampal synapses by redistributing interleu-
, http://dx.doi.org/10.1016/j.bbi.2013.09.008
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Schwarz, 2009; Bilbo et al., 2012), the extent to which this specific
challenge induces long-term alteration in the organization of
immune receptors in neurons has been completely neglected. We
explored this possibility in a model of early-life stress mimiked
by maternal separation. In particular, a single 24-h period of MD
in rats on post-natal day (PND) 9–10 results in (i) behavioural
changes in adolescence and adulthood which resemble those found
in the affective disorders, including depressive-like responses (Llo-
rente et al., 2007), enhanced impulsivity (Marco et al., 2007), dis-
ruption in pre-pulse inhibition (Ellenbroek and Cools, 2002;
Ellenbroek et al., 2005) and cognitive deficits (Llorente et al.,
2011); as well as in (ii) developmental alterations in glia and neu-
rochemical changes suggestive of an altered plasticity (Ellenbroek
and Riva, 2003; Marco et al., 2013; Viveros et al., 2009).

Our observation that MD contributes to enduring changes in the
distribution of the IL-1 receptor in hippocampal neurons of young
animals provides the first evidence that the IL-1RI/NMDAR
Please cite this article in press as: Viviani, B., et al. Early maternal deprivation
kin-1 receptor type I in a sex dependent manner. Brain Behav. Immun. (2013)
relationship is modulated in vivo and opens up a new perspective.
Microglia are not solely responsible for an altered immune
response within the CNS (Frank et al., 2007), but neurons could
also participate by dynamically modulating the distribution of a
receptor central to the neuroinflammatory response. The enrich-
ment of IL-1RI at the dendritic spines of hippocampal neurons of
MD rats suggests a different susceptibility of this compartment
to IL-1 in respect to control animals.

During development, the subunit composition of synaptic
NMDARs changes from the predominance of GluN2B- to GluN2A-
containing receptors (Bellone and Nicoll, 2007), and it is thought
that this shift in the GluN2A/GluN2B ratio tightly regulates AMPAR
recruitment to form mature synapses (Gray et al., 2011). In addi-
tion to inducing the different compartmentalisation of IL-1RI, MD
contributes to re-organising the excitatory glutamatergic synapses
in the male hippocampus. We did not observe the physiological
GluN2B/GluN2A switch in the spines of our MD rats, and we found
immunologically primes hippocampal synapses by redistributing interleu-
, http://dx.doi.org/10.1016/j.bbi.2013.09.008
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a reduced number of AMPA receptor subunits. These results show
that MD interferes with the normal maturational programme of
male rat hippocampus and are in accordance with electrophysio-
logical data showing that MD rats exhibits enhanced sensitivity
to GluN2B-selective antagonists and slower excitatory postsynap-
tic currents decay kinetics (Rodenas-Ruano et al., 2012).

All the changes induced by 24 h MD and observed at PND 45 were
not evident immediately after MD at PND10, suggesting that the
reorganization of the hippocampal synapse may represent the
long-term consequence of developmental abnormalities. Neverthe-
less, the slight increase of IL-1RI/GluN2B co-precipitation and reduc-
tion of GluN2A, although not significant but consistent with what
observed in male Hp at PND45, may suggest that male Hp are any-
way setting for those changes that will be observed on PND45.
Please cite this article in press as: Viviani, B., et al. Early maternal deprivation
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In this scenario, the observation that MD increases the interac-
tion between IL-1RI and the GluN2B subunit of the NMDAR, might
have functional relevance for hippocampal neuronal excitability
and synaptic plasticity later-in life. We have previously demon-
strated that IL-1 enhances NMDAR activity in primary hippocam-
pal neurons, and therefore their sensitivity to glutamate (Viviani
et al., 2003). In vitro, this results in a reduction in number of spines
(Viviani et al., 2006) followed by neuronal death (Viviani et al.,
2003, 2006). The effect is preceded by the enrichment with both
the GluN2B subunit (Viviani et al., 2006) and the IL-1RI (Viviani
and Gardoni unpublished observation) at the post-synaptic spine
and the contribution of IL-1RI is fundamental as suggested by the
protective role of the IL-1 receptor antagonist (Viviani et al.,
2003, 2006). Beside this, IL-1b can also exert appreciable influences
on various forms of synaptic plasticity (Coogan et al., 1999; Ross
et al., 2003; Schneider et al., 1998), which are critically modulated
by both the NMDA and AMPA receptors. It is worth noting that pre-
vious results have shown that, in males, maternal separation (at
PND9) impairs emotional LTP-reinforcement in adolescent animals
(Gruss et al., 2008). Although it may be inferred that the reorgani-
zation of the hippocampal synapse in terms of re-distribution of
both IL-1RI and glutamatergic receptors in MD animals could affect
its functionality, additional studies are necessary to understand
how this setting prompted by MD can impact behavioural deficits
and pathological disorders in adolescence and adulthood Beside
the different organization of the glutamatergic synapse, another
important point emerges from our data: the sex dependence of
the effect. Sex-dependent alterations in developing brain and ado-
lescent behaviour have been described in neonatal rats experienc-
ing MD (Llorente et al., 2008, 2009), with male hippocampus
showing greater susceptibility than female hippocampus (Llorente
et al., 2009). Accordingly, MD-induced spine re-organisation of the
distribution of IL-1RI and glutamatergic receptors is restricted to
male hippocampus at PND45. It is also interesting to note a sex-
dymorphic neuroimmune response within the hippocampal for-
mation at PND10 in both control and MD rats. We observed that
IL-1b is elevated only in control males while the response is
blunted by MD. These results are in agreement with previous
observation showing that IL-1b levels are naturally elevated in
the neonatal brain, peaking around P2 and declining thereafter into
adulthood (Giulian et al., 1988). Interestingly, IL1b was undetect-
able in the Hp of both control and MD animals on PND 45. It is thus
conceivable that Il-1b might be necessary during development and
MD might interfere by reducing IL-1b in a critical period for Hp
development. Further studies are required to elucidate whether
this unbalance might play a role in the reorganization of IL-1RI at
the adolescent hippocampal synapse.

In conclusion, the present data show a dynamic regulation of IL-
1RI in vivo in a model of early-life stress that leads to long-term
receptor enrichment at synapses and increased interactions with
NMDARs in male hippocampus. Compelling data show that this
mechanism is part of a complex re-organisation of the excitatory
glutamatargic synapses. The notion explored here is that MD-in-
duced redistribution of IL-1RI in neurons might provide a novel
molecular basis contributing to the critical role of the immune re-
sponse in the early-life programming of later-life brain.
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