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Abstract

Only few small RNAs (sRNAs) have been characterized in Mycobacterium tuberculosis and their role in regulatory networks is
still poorly understood. Here we report a genome-wide characterization of sRNAs in M. tuberculosis integrating experimental
and computational analyses. Global RNA-seq analysis of exponentially growing cultures of M. tuberculosis H37Rv had
previously identified 1373 sRNA species. In the present report we show that 258 (19%) of these were also identified by
microarray expression. This set included 22 intergenic sRNAs, 84 sRNAs mapping within 59/39 UTRs, and 152 antisense
sRNAs. Analysis of promoter and terminator consensus sequences identified sigma A promoter consensus sequences for
121 sRNAs (47%), terminator consensus motifs for 22 sRNAs (8.5%), and both motifs for 35 sRNAs (14%). Additionally, 20/23
candidates were visualized by Northern blot analysis and 59 end mapping by primer extension confirmed the RNA-seq data.
We also used a computational approach utilizing functional enrichment to identify the pathways targeted by sRNA
regulation. We found that antisense sRNAs preferentially regulated transcription of membrane-bound proteins. Genes
putatively regulated by novel cis-encoded sRNAs were enriched for two-component systems and for functional pathways
involved in hydrogen transport on the membrane.
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Introduction

Regulatory RNA species can modulate transcription, trans-

lation, mRNA stability, DNA maintenance, and gene silencing.

They function through a variety of mechanisms, including changes

in RNA conformation, protein binding, base pairing with other

RNAs, and interaction with DNA [1–3]. It has been established

that small RNAs (sRNAs) are crucial elements regulating gene

expression in Gram-positive and Gram-negative bacteria [4–7].

The prototype of a bacterial sRNA is a non-coding RNA of 50–

300 nucleotides (nt) in length that acts by imperfect base pairing

with trans encoded RNA target(s). sRNAs may also be cis-encoded

and transcribe antisense (AS) to the target RNA. Recent research

has shed some light on the relevance of sRNAs in bacterial

pathogenesis, including modulation of expression of virulence

factors in response to environmental and host signals [2,8–14].

Intracellular survival of Mycobacterium tuberculosis (MTB) results

from the ability of this pathogen to sense the host environment and

to switch to a non-replicating, persistent form that is resistant to

host insult and to treatment with most antibiotics. Multiple genes

associated with persistence have been identified in MTB.

However, the complex post-transcriptional regulation underlying

the phenotypic switch to persistence remains poorly understood.

In particular, our knowledge of the regulatory networks involving

sRNAs is still in its infancy. Understanding how sRNAs control

bacterial virulence may open a new prospective in the fight against

tuberculosis (TB) and contribute to the goal of TB eradication

[15–18].

About 40 species of sRNAs have been reported so far in

mycobacteria (including MTB) by cloning approaches and

computational predictions [19,20]. Additional sRNAs have been

identified by RNA sequencing (RNA-seq) [21,22]. RNA-seq

results for sRNAs however heavily depend on threshold definition

for reads coverage and on the criteria used for transcript

annotation, thus requiring further validation [3]. Here we report

the first genome-wide expression analysis of sRNAs in MTB by

microarray followed by size determination, mapping and compu-

tational target prediction.

Results

Genome-wide Expression Profiling of sRNAs in MTB
To identify sRNAs in MTB, we performed microarray

expression analysis on small-size RNA enriched fraction extracted

from exponentially growing cultures of M. tuberculosis H37Rv. We

used a set of 1373 sRNA species previously identified by RNA-seq

(Type A candidates, [22]), which was updated to reflect changes in

annotation in the genome of MTB (type A, Table S1).
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For microarray analysis, we considered as expressed only the

candidates showing an expression mean significantly higher (p-

value ,0.05) than the positive control genes (this group included

genes expressed during exponential growth such as sigA and rrs and

the short ribosomal 5S RNA; for a complete list of control genes,

see Materials and Methods). The microarray analysis validated

258 (18.8%) species (Figure 1), about a third of which (n= 97)

showed a length below 50 nucleotides. When we calculated the

minimum free energy (MFE) associated p-value, which represents

a measure of secondary structure stability, we found that the

proportion of sRNAs showing an MFE-associated p-value ,0.05

was nearly double for ‘‘array-validated’’ candidates (37/258,

14.3%) than for the remaining ‘‘non validated’’ candidates (85/

1115, 7.6%).

Classification of MTB Putative sRNAs
A functional classification of the selected sRNAs identified was

performed based on genome location (see Materials and Methods

and Figure S1). We found 22 intergenic sRNAs, 84 candidate

sRNAs mapping within 59 or 39 UTRs, and 152 antisense sRNAs

(Table 1).

The two more represented classes identified by microarrays

were AS RNAs (60%) and 59/39 UTRs (32.6%); of the latter class,

most were 59UTRs (59UTRs: 90%). RNA species identified within

the 59 UTRs could represent cis-acting regulatory elements such as

riboswitches. Between the 59UTRs we found genes involved in cell

wall processes, intermediary metabolism, information pathways,

PE/PPE, virulence, detoxification and adaptation, and lipid

metabolism (Table S2).

Statistical Analysis of the Frequencies of Specific
Nucleotides at the 210 Region
To show that the different RNAs validated by microarray

expression analysis were transcribed, we compared the frequency

of the nucleotide’s distributions at specific positions within the210

region between sRNA candidates, annotated coding sequences

(CDSs), and random sequences. We could confirm the effective

transcription of sRNAs identified by microarrays by showing

a clear non-random distribution of nucleotides within the 210

region. In particular, we showed that our candidates show a 210

region more similar to the one of CDSs rather than to random

genomic sequences not annotated for transcripts. To achieve this

goal we used a statistical approach previously described by

Dornenburg [23]. We compared the frequency of nucleotides at

the 210 consensus hexamer between sRNA candidates, annotated

CDSs, and random sequences. The hexamer TANNNT recog-

nized by the sigma factor A was used as reference consensus. For

the set of annotated CDSs, 210 hexamers match the consensus,

on average, 1.7 times out of 3 known consensus nucleotides 210

match score). In contrast, randomly selected sequences match the

consensus only 1.5 times out of 3 (control match score) (Figure S2).

Due to the high number of terms compared for each category (see

Materials and Methods), this difference is highly significant

(P,0.0001). The 210 match score for the sRNAs is not

significantly different from that of the set of CDSs. The

comparison of Type A candidates only to the control group of

random sequences and to the consensus sequences of annotated

CDSs showed similar results. Considering microarray-validated

candidates only (score 2.0), the difference with the dataset from

CDSs increased whereas that with the random sequences slightly

decreased.

Characterization of sRNA by Northern and Identification
of the 59-end by Primer Extension
Microarray data were further validated by Northern blot

analysis. We selected 23 candidate sRNAs (Table 2) from all the

functional categories identified (see Table 1). Genomic mapping of

these sRNAs is shown in Figures S3 and S4.

The candidates chosen were:

– four intergenic (#149, 161, 224 and 1096);

– eight 59/39 UTRs of genes (#1149, 1414, 1502, 1542, 1565,

106, 189, and 193);

– ten AS (#54, 135, 1029, 540, 1080, 1556, 488, 1137, 294, and

498).

We also included candidate 1359, although it was mapped

within the Rv2165c gene, since it is highly expressed by microarray

Figure 1. Heat-map representing the expression profiles of
microarrays. As positive controls we used reference sigA, rrs and the
short ribosomal 5S RNA. Normalized control genes showed a mean
expression level of 7.1661.57. Expression level: yellow to blue (highly
expressed to lowly expressed). Statistics: red= p-value,0.05; green=p-
value .0.05.
doi:10.1371/journal.pone.0051950.g001

Table 1. Classification of validated sRNAs according to their
genomic position.

Category Number (%)

Intergenic 22 (8.5)

59/39 UTR 84 (32.6)*

AS 99 (38.4)

AS to 59/39 UTR 53 (20.5)

Total 258 (100.0)

UTR: untranslated region; AS: antisense.
*59 UTR: 51; 39 UTR: 8; both 59 and 39 UTR: 25.
doi:10.1371/journal.pone.0051950.t001

Small RNAs in M. tuberculosis
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analysis. As a negative control we used a 59UTR sRNA not

validated by microarray (#76). Since Northern blot analysis allows

relative comparison of transcript abundance, RNA was extracted

from exponential and stationary phase cultures in order to

evaluate differential expression associated with growth state. Total

RNA was extracted from the strain H37Rv. For a smaller pool

(candidates #224, 540, 1137, and 1565) we also tested the

attenuated strain H37Ra.

The results of the Northern blot showed that in most cases (20

out of 23), one or more specific bands were detected (Table 2, and

Figure 2). The Northern blot of candidate #189 showed a single

band of predicted length; in other cases (#1565) a band of the

predicted size was detected among several others. For most

candidates, however, the length observed by Northern analysis

differed from the results of the RNA-seq-based computational

mapping (for example, Figure 2, #498 and 1137). sRNAs #106,

1029 and 1414 and the negative control #76 were negative by

Northern blot analysis (data not shown). No difference was

observed between exponential and stationary phase expression for

all sRNAs cultures (Figure 2). Only candidate #224was expressed

at higher levels in M. tuberculosis H37Rv than in H37Ra.

Since computationally predicted length and that observed by

Northern blot analysis differed in almost all species, we set out to

identify the 59 ends of eight selected sRNAs (#488, 498, 1080,

1137, 1149, 1359, 1502 and 1565) by primer extension. In all

cases, we could identify one or more bands, one of which

corresponded to the predicted 59 end with +1 or 21 nt difference

(data not shown). A 210 consensus sequence for sigma factor A

(TANNNT) was identified for 7 out of 8 sRNAs mapped,

suggesting that transcription of the sRNAs is under sigA control.

Upstream of the candidate 1359 a good consensus sequence for

210 and 235 sigma B is present (NGTGG – N14–18–NNGNNG).

Identification of the 210 sigA Consensus Sequences and
Putative Terminators in sRNA Candidates
Since the 59 ends identified by primer extension well matched

those predicted by RNA-seq, the discrepancies between the length

observed by Northern blot and computational analysis might

mainly be due to inaccurate 39-end mapping. First, we performed

the analysis of all the sRNAs upstream sequences to detect the

presence of 210 consensus for sigA. We decided to search for sigA

Table 2. Validation of 23 selected candidates by Northern blot.

ID Start End Strand RNA-seq Northerna 210 Stem-loop Mapping

54 498401 498455 + 54 75 Yes AS to Rv0412cb

76d 629877 629975 + 98 Neg 59 UTR, Rv0538

106 806185 806218 + 33 Neg 39 UTR, Rv0710

135 1040645 1040938 + 293 45, 250 sigA Yes AS to Rv0932c

149 1200555 1200605 + 50 75 Intergenic

161e 1287126 1287201 + 75 180, 160 sigA Yes Intergenic

189 1453007 1453060 + 53 50 sigA Yes 39 UTR, Rv1296

193e 1476825 1476884 + 59 70, 35 39 UTR, Rvnr02 or 59 UTR, Rvnr03

224b 1735693 1735747 + 54 300, 90 Intergenic

294 2268166 2268257 + 91 70 sigA AS to 39, Rv2023A or 59, Rv2023c

488e 3557057 3557335 + 278 .300, 280, 130 sigAh Yes AS to 39 UTR, Rv3191c

498e 3597808 3598107 + 299 150 sigA Yesg AS to 39, Rv3221A or 59, Rv3221c

540 f 4025441 4025570 + 129 70 AS to 59 UTR, Rv3583c

1029 732392 732787 – 395 Neg sigA AS to Rv0636

1080e 937956 938239 – 283 230 sigA AS to 59, Rv0842

1096 1041129 1041165 – 36 300, 120, 80, 65, 60, 55 sigA Yes Intergenic

1137f 1275611 1275673 – 62 40 sigA Yes AS to 39, Rv1147

1149 1306038 1306073 – 35 80,70, 30 sigA Yes 59 UTR, Rv1174c

1359e,c 2429342 2429373 – 31 60, 30 sigB 59 UTRs, Rv2165c

1414 2641081 2641126 – 45 Neg 59 UTR, Rv2357c

1502e 3363023 3363153 – 130 100, 80, 50 sigA Yes 59 UTR, Rv3003c

1542e 3621265 3621466 – 201 280, 60 sigA 59 UTR, Rv3241c

1556e 3800005 3800091 – 86 30 sigA AS to 59, Rv3386

1565f 3837288 3837458 – 170 500, 160, 90, 60 sigA Yes 59 UTR, Rv3418c

aLength of the principal bands visualized by Northern blot analysis.
bThe presence of a 210 sigA consensus sequence about thirty-eight nucleotides upstream of the predicted 59end suggests that the sRNAs length is in accordance with
the band observed by Northern blot.
cType C candidate.
dNegative control.
eNorthern blot tested in M. tuberculosis H37Rv, exponential and stationary growth phases.
fNorthern blot tested in M. tuberculosis H37Rv and M. tuberculosis H37Ra (exponential growth phase).
gconsidering 39-end mapping according to Northern blot results (175 nucleotides downstream the predicted 39-end).
hconsidering the 59-end mapping according to the 59-end primer extension.
doi:10.1371/journal.pone.0051950.t002

Small RNAs in M. tuberculosis
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Figure 2. Northern blot results for selected candidates. The RNAs were extracted as indicated in M&M: exp: M. tuberculosis H37Rv in
exponential growth phase; stat: M. tuberculosis H37Rv in stationary growth phase; Rv: M. tuberculosis H37Rv; Ra: M. tuberculosis H37Ra. Arrows
indicate the predicted length.
doi:10.1371/journal.pone.0051950.g002

Small RNAs in M. tuberculosis
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consensus motifs because this is the primary sigma factor that

regulates gene expression during the exponential growth phase.

We searched for 210 sigma A consensus sequences (TANNNT)

within 250 and +15 nucleotides from the 59-end mapped

according to RNA-seq results. At the same time, we searched

for putative terminators downstream of the predicted sRNAs. The

39-end region (220/+270 nucleotides) was sought for intrinsic

terminators using the GeSTer algorithm [24], and for rho-

independent terminators, according to Gardner et al. [25]. In

60.5% of cases we detected a sigA promoter consensus sequence

upstream of the presumed 59-end. Terminator consensus motifs

were present in 22.1% of the regions downstream of the sRNA.

Only a minor percentage (13.6%) of sRNAs presented both

promoter and terminator sequences, whereas one third (31.0%) of

predicted candidates did not show consensus motifs either for

sigma A promoters or terminators (Table 3).

Classification of all 1373 candidates, promoter and terminator

consensus sequence analyses, and genomic annotation are

summarized in Table S1.

In silico Identification of Pathways Regulated by
Antisense sRNAs
An important question in sRNA biology is to identify the genes

that these molecules regulate. We performed an in silico analysis to

identify pathways regulated by the set of novel sRNAs discovered

in MTB. We focused on AS RNAs because the direct targets for

this class of sRNAs are known. When we performed microarray

analysis we found 152 AS sRNAs that overlap the same number of

unique target genes in the opposite strand (Table 1). Using

functional enrichment analysis, we identified molecular functions

and pathways enriched in AS-regulated genes in MTB. In

particular, hydrogen transport on the membrane (GO:0015078,

GO:0015077, GO:0006818, GO:0015992, GO:0034220) and

two-component systems (mtu02020) emerged as function poten-

tially subjected to antisense regulation. When we analyzed cellular

location, we found that membrane-bound proteins were prefer-

entially targeted (GO:0044425, GO:0005886, GO:0031224).

These results are summarized in Table 4. The corresponding

targeted genes can be found Table S3.

Discussion

Here we report on the integration of experimental and

computational methods to identify 258 novel antisense and

intergenic sRNAs in MTB. The present work derives from

a previous, genome-wide identification of candidate sRNAs by

RNA-seq [22]. Large RNA-seq dataset require accurate valida-

tion, especially for genome annotation of novel transcripts. We

considered reliable the sRNAs identified with high reads coverage

and validated these sRNAs by microarray and, for representative

species of the microarray-validated pool, by Northern blot and

primer extension analyses. This approach provided more details

on the annotation of the candidates; indeed, the particular design

strategy we adopted for microarray probes allowed acquiring

important data on the size of the sRNAs. The inclusion of probes

targeting well-known control genes permitted the collection of

expression data for these newly discovered sRNAs.

Our results lead to several conclusions. As supported by 210

region and 59 end mapping analyses, our computational approach

applied to Illumina sequencing results provided reliable detection

of sRNA transcripts. All but one of the sRNAs mapped

experimentally are preceded by a sigA promoter consensus

sequence. In addition, an initial analysis of sRNA target pathways

indicated that AS sRNAs preferentially target genes involved in

two-component systems and membrane activity. Our results

suggest that expression of the sRNAs described may be not as

part of the stress response, but are actively involved in the

regulation of basic metabolism in MTB.

Together, our study provides a comprehensive top-down

demonstration of methods whereby large sets of RNA-seq data

on sRNAs can lead to detailed sRNA mapping and identification

of target pathways. Our analytical path differs from previous

studies on sRNAs of M. tuberculosis, which reported only few

sRNAs and did not provide a prediction of putatively regulated

pathways. Indeed, despite Arnvig and colleagues performed RNA-

seq to identify novel sRNAs in MTB [21], they provided an

overview on genome-wide data and focused their attention

characterizing only few of the sRNAs detected. In the present

report we further characterized several candidates previously

identified by us (e.g. #84, #1169, #1137, #488) [22] and by

Arnvig and colleagues (MTS0479, MTS0997, MTS0903,

MTS2458, respectively) [21]. Our work provides more compre-

hensive data on recently discovered sRNAs in MTB and statistics

analysis support our experimental data: in fact, the genomic

regions where we mapped sRNA candidates showed consensus

sequences for active transcription indicating the probability to be

transcribed.

Our starting dataset included a high number of candidates

(.1000) as reported by other studies based on RNA-seq approach

[26]. By microarray expression profiling, we validated nearly 20%

of the previously identified putative sRNAs. These sRNA species

showed to be enriched in higher secondary structure stability, as

supported by MFE analysis. We found ,100 sRNAs shorter than

50 nucleotides. sRNAs are usually between 50 and 200 nt in

length; however, smaller RNAs of the size of microRNAs have

been described in bacteria [23,27]. The functional significance of

these bacterial microRNAs remains to be elucidated.

Most of the sRNAs identified are antisense. This is in agreement

with recent findings that extensive antisense transcription occurs in

bacteria, as it does in Eukarya and in Archaea [14,23,28–31]. The

target gene for AS sRNAs is likely to be the antisense CDS, whose

expression is negatively controlled either by interfering with

transcription/translation or by favoring mRNA degradation. The

analysis of pathways regulated by AS sRNAs identified enrichment

for two-component systems and cell-wall components. This

preliminary finding suggests that cis-acting RNAs may inhibit

stress-responsive modules, such as the two-component systems

[32–34], and they may also affect other critical functions such as

the metabolism of the cell wall, which is a virulence determinant of

the tubercle bacillus [35–37].

Table 3. Promoter and terminator consensus sequences
found among 258 M. tuberculosis sRNAs by bioinformatics
approach.

Consensus n (strand+; strand–) %

promoter POS; terminator POS 35 (6; 29) 13.6

promoter POS; terminator NEG 121 (60; 61) 46.9

promoter NEG; terminator POS 22 (8; 14) 8.5

promoter NEG; terminator NEG 80 (42; 38) 31.0

Total 258 (116; 142) 100.0

Sequence inspection of the 250/+15 region at the predicted 59end for sigA
consensus sequences and of the region 220/+200 at the 39 end for termination
signals. Presence (POS); Absence (NEG).
doi:10.1371/journal.pone.0051950.t003

Small RNAs in M. tuberculosis
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We have hypothesized a possible function for some of the 59/39

UTR sRNAs validated by Northern blot. Some of our sRNAs

have a role in transcription attenuation: candidate 1502, upstream

of gene ilvB (Figure S4), coincides with the previously described

mcr9-mpr14 [20]. However, while DiChiara et al. detected this

sRNA only in Mycobacterium bovis BCG, we detected mcr9-mpr14 in

MTB H37Rv. Since the ilvB gene is part of the isoleucine-valine

operon, the presence of the short peptide encoded by the

candidate 1502 (with its typical structure ‘‘3 valine, 1 isoleucine’’)

suggests that also in mycobacteria, as in most bacteria investigated

so far [38], this sRNA is part of an attenuator system for

controlling valine-isoleucine synthesis. In order to confirm the

existence of attenuation in mycobacteria, we analyzed the sRNA

candidate that was mapped upstream of leuA. This candidate

(#1938; see Table S1) was classified among class C sRNAs [22]

and was not included in our initial selection. By sequence analysis

we found a 13 amino acids long coding region, containing a stretch

of 3 consecutive leucine codons, and followed by a stem-loop

structure suggesting a possible role in the control of leuA

expression. The identification by Northern analysis of multiple

bands at 85, 65 and 45 nt, respectively (Figure S5) is in good

agreement with an attenuator role of this candidate. Interestingly,

this sRNAs is the only species tested in this work that showed

differential relative signal intensity between virulent and avirulent

M. tuberculosis strains (Figure S5), suggesting a different control of

this biosynthetic pathway in these two mycobacteria.

Our work suggests the identification of alternative RNA-based

regulatory tools such as riboswitches within the 59-end of mRNAs.

Riboswitches are part of the mRNA molecule they regulate,

usually the 59UTR, and hence act in cis. They can adopt different

conformations in response to environmental signals, including

stalled ribosomes, uncharged tRNAs, elevated temperatures, or

small molecule ligands [39]. Thus, riboswitches include the above-

mentioned attenuators. In accordance with the findings of Arnvig

et al. [21], our data suggest that in MTB this kind of regulation is

rather widespread, as it was found in other Gram-positive bacteria

like B. subtilis [40,41].

Arnvig and colleagues used the reads-coverage ratio between

the 59 UTR and the downstream CDS to better identify putative

riboswitches [21]. We performed RNA-seq only on the small-size

RNA fraction, therefore the comparison of reads-coverage

between candidates and CDSs could not be performed. However,

by combining our experimental observations and computational

analysis we could detect some putative riboswitches.

Indeed, our data suggest that candidate 1149 might be co-

transcribed with TB8.4 and could act as a riboswitch, regulating

TB8.4 expression, encoding a low molecular weight T-cell antigen

[42] The candidate 1096 could also be a riboswitch regulating

pstS2, one of the three components of the inorganic phosphate

Table 4. Functional enrichment of cis-regulated genes.

Term Description N Genes p-value

GO:0006796 phosphate metabolic process 7 0.0066

GO:0015078 hydrogen ion transmembrane transporter activity 4 0.0097

GO:0043284 biopolymer biosynthetic process 13 0.0117

GO:0019538 protein metabolic process 15 0.014

GO:0044271 nitrogen compound biosynthetic process 2 0.0153

GO:0006793 phosphorus metabolic process 7 0.0156

GO:0044425 membrane part 26 0.0178

GO:0015077 monovalent inorganic cation transmembrane transporter activity 4 0.0187

GO:0005886 plasma membrane 16 0.0194

GO:0046933 hydrogen ion transporting ATP synthase activity, rotational mechanism 3 0.0208

GO:0031224 intrinsic to membrane 25 0.022

GO:0045259 proton-transporting ATP synthase complex 3 0.0266

GO:0016020 Membrane 27 0.0308

GO:0006818 hydrogen transport 3 0.0335

GO:0015992 proton transport 3 0.0341

GO:0016310 Phosphorylation 6 0.037

GO:0044267 cellular protein metabolic process 11 0.0389

GO:0051171 regulation of nitrogen compound metabolic process 4 0.0405

GO:0015986 ATP synthesis coupled proton transport 3 0.0442

GO:0016469 proton-transporting two-sector ATPase complex 3 0.0442

GO:0015985 energy coupled proton transport, down electrochemical gradient 3 0.0449

GO:0010556 regulation of macromolecule biosynthetic process 4 0.0457

GO:0034220 ion trans-membrane transport 3 0.0491

mtu02020 two-component system 6 0.0363

mtu00230 purine metabolism 6 0.0732

Functional annotation of M. tuberculosis genes was obtained from different databases; Fisher’s exact test, P,0.05 (see Methods).
GO: gene ontology; mtu: KEGG pathway.
doi:10.1371/journal.pone.0051950.t004
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detection component of the membrane-associated phosphate-

specific transporter (Pst) [43,44]. pstS2 knockout strains showed

attenuated virulence [44]. Moreover, pstS2 and pknD genes are

encoded within the same operon, and pknD knockout strains do

not survive in inorganic phosphate poor-growing conditions [43].

Thus, candidate 1096 may have a crucial sensing role in

controlling the pstS2-pknD operon. Interestingly, the candidate

135 mapped antisense to the 59 region of the pstS2 gene (Figure

S3). Thus, the operon encoding for this gene seems to be under

tight control.

Other putative riboswitches we have identified are candidate

161, controlling expression of a nitrate reductase (narGHJI operon)

[45,46] (Figure S3) and candidate 1565, mapping within the

59UTR of groES, encoding for a co-chaperonin protein [47].

Arnvig and colleagues [21] identified the expression profile for the

59 UTR associated with the groES gene. We suggest that this sRNA

may be a thermosensor, as frequently found in other bacteria

upstream of genes with a function similar to groES.

Several predicted intergenic sRNAs have been confirmed by

Northern analysis (149, 161, 224 and 1096 in Table 2). A more

careful analysis of other sRNAs indicated that some of them were

likely to be also intergenic. This is the case for candidate 1359.

Looking at the annotated sequence we observed that this sRNA

maps within Rv2165c (mraW, S-adenosyl-methyltransferase). How-

ever, by comparing the polypeptide encoded by MTB with the

protein encoded by M. bovis BCG we found that homology starts

53 amino acids downstream of the indicated start codon, where

a GTG codon is present (nucleotide 2429447) preceded by a Shine-

Dalgarno sequence (GGGGAGG) (Figure S6). Thus, candidate

1359 is transcribed upstream of Rv2165c, in the intergenic region.

Candidate 488, previously reported by Arnvig et al. (MTS2458;

[21]), and originally classified in this work as antisense to 39UTR

of Rv3191c, may be intergenic since it was not overlapped to the

39end of the Rv3191c, as supported by the length of the transcript

visualized on Northern blot.

Candidate 498 is transcribed in opposite direction to both

neighboring genes TB7.3 and Rv3321A. Its predicted length

(300 nt) classified this sRNA as a 39UTR to Rv3321A. However,

the length observed by Northern blot, the presence of both a sigma

A consensus sequence and a possible stem-loop structure support

the hypothesis that the candidate 498 is a trans-acting sRNA,

whose targets have to be identified, rather than a sRNA over-

lapping to the Rv3321A-39 end.

Candidate 190 mapped upstream of 16S rRNA gene being

entirely contained in mcr3 sRNA gene [20]. Interestingly, upstream

of the 59 end of mcr3 no promoter consensus sequences were

present. On the contrary, upstream of the 59end of 190, which is

internal to mcr3, we found 210 and 235 sigA consensus

sequences, that can be identified with the most active rRNA

operon promoter, P3 [48–50]. Thus sRNAs such as 190, 191, and

192 mapping in the ribosomal DNA could be cis-acting regulatory

elements controlling unique MTB rRNA operon.

The candidate 193 (predicted length: 60 nucleotides) mapped

between the ribosomal RNAs 23S and 5S (rrl and rrf genes,

respectively). According to the positive signal obtained by

Northern blot, this putative sRNA might be a residual RNA

derived from ribosomal RNA processing. Additional bands at

higher and lower molecular weight observed by Northern blot

support this hypothesis. Very recently, ribosomal noncoding

RNAs have been described in eukaryotic cells [51]. Despite

similar mechanisms have not been described in bacteria, further

experiments are needed to confirm the small RNA nature of this

candidate originating by the ribosomal genomic region.

Overall, our data greatly increase the complexity of sRNA

complement in MTB and suggest that RNA-mediated regulation

in this organism may be as common and multifaceted as in other

bacteria [3,52]. Furthermore, we detected several new sRNAs and

riboswitch-like regulators, which provide new insights into the

dynamic regulation of gene expression in MTB. Indeed,

riboswitches represent a cost-effective means for genetic regulation

compared with protein synthesis and they also provide an

immediate feedback response.

Materials and Methods

Ethics Statement: N/A
RNA extraction. For analysis of sRNAs, M. tuberculosis

H37Rv was grown in Middlebrook 7H9 medium supplemented

with 10% OADC (Oleic Acid, Albumin, Dextrose, Catalase).

Exponential growth phase culture was harvested at OD600

between 0.5 and 0.8 and washed twice in PBS. The small-size

RNA (approx. ,200 nucleotides) enriched fraction was extracted

using the mirVanaTM miRNA Isolation Kit (Ambion, Austin, TX,

USA) according to manufacturer’s instruction. Both small-size

RNA enriched and total RNA (depleted sRNAs) fractions were

collected and analysed with Agilent 2100 Bioanalyzer (Agilent

Biotechnologies, Santa Clara, CA, USA).

Candidate sRNAs, Promoter and Terminator Consensus
Sequences
A custom analysis pipeline was developed for analyzing Illumina

reads (details are reported in Pellin et al. [22]): after computational

processing of reads to remove the poly-A tail, reads have been

mapped to the whole genome using SOAPv1 tool, and those

regions coding for proteins or for functional RNA molecules

(tRNAs and rRNAs) were excluded from the analysis. To identify

putative loci encoding for sRNAs a coverage map and a conser-

vation map were superimposed. Coverage value of a specific

genome base derives from RNA-seq data and corresponds to the

count of reads overlapping that specific position. The calculation

of the conservation value is based on the analysis of a BLASTN 2.0

output file, regarding the pairwise alignment of each MTB

intergenic sequences and a database containing all intergenic

sequences extracted from all the others genomes in the MTB

genus. The conservation value then corresponds to the weighted

count of genomes within the MTB genus, with at least one

pairwise alignment hit that satisfies high quality criteria.

To identify sRNA candidates the following criteria were

considered:

1- region coverage by consecutive nucleotides;

2- region length $30 and #550 nucleotides.

And at least one of the following conditions must be satisfied:

3.1 RNA-seq coverage value $50 or,

3.2 Genomic region conservation value $1.77 or,

3.3 RNA-seq coverage value $22 and genomic region

conservation value $0.97.

Coverage and conservation thresholds were established on the

empirical distribution functions and determined by means of

statistical criteria according to data characteristics.

In order to assess candidates’ reliability, many different

characteristics of each putative sRNA were analyzed. In particular,

Minimum Folding Energy (MFE) and relative p-value (MFE p-

value) were taken into account.

The application of such pipeline (fully described in [22]) to our

data resulted in the identification of 1948 sRNA candidates,

classified as Type A (based on criteria 1, 2 and 3.1; 1378

candidates), Type B (based on criteria 1,2 and 3.3; 114 candidates)
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and Type C (based on criteria 1,2 and 3.2; 456 candidates). In this

work we focused on Type A candidates only. In fact, we would

expect that the most promising candidates are included in this

category, whereas Type B and Type C could include higher

number of false positives due to the criteria used for their

identification.

For the present work, an update on the annotation of the

candidates has been performed in January 2012 to include in the

genome most recently annotated CDSs [53]. In particular, the

analysis published in Pellin et al. [22] was performed using as

reference the NC_000962.gff database; whereas for the update the

NC_000962.2.gff database was used. Candidates obtained by

RNA-seq were further analyzed for the presence of promoter and/

or terminator consensus sequences. For the analysis of the

promoter region we used the consensus sequences described by

Sachdeva and coworkers [54]. In particular, we analyzed the

region between 250 and +15 nucleotides from the predicted 59-

end of the candidates for the presence of a Sigma A (sigA) 210

consensus motif (mismatch: 0). In particular, we analyzed the

region between 250 and +15 nucleotides from the predicted 59-

end of the candidates for the presence of a Sigma A (sigA) 210

consensus motif TANNNT (with allow mismatch equal to 0) by

means of a custom script written in R and using BioConductor

package Biostrings [55].

In order to identify putative terminators, we applied both

GeSter and RNIE algorithm.

Gester analysis was performed by means of the web based

version called WebGester [56] with parameters set to default.

Results reported in this paper regards to putative terminators

satisfying DG cut-off equal to 216.98.

The RNIE algorithm was run in the ‘‘gene mode’’ that is

optimized to individually annotate the downstream regions of

genes or, more generally, putative encoding regions. We followed

the same pipeline suggested by RNIE authors in [25]. Initially we

took all the annotated coding sequences from the MTB complete

genome and extracted subsequences from 220 to +80 nt around

all annotated gene termini, according to available annotation file.

Each of these was folded using the RNAfold routine from the

Vienna package [57] and then subjected to a permutation test

where native MFEs were compared to the pooled distribution of

MFEs for 1000 permuted sequences with the same dinucleotide

content in each termini. The regions that had a P,0.001 where

subsequently fed into the alignment and folding algorithm

Cmfinder [58]. The three most significant covariance model

obtained from MTB CDS and TRIT model proposed in [25] were

deployed to annotate the downstream regions of putative

candidates.

Microarray for sRNA Candidates Expression
CombiMatrix microarray technology (Irvine, CA, USA) has

been adopted to validate putative sRNA candidates by expression

evidence. Probe sets for candidates have been designed according

to the following criteria: the probes were non-overlapping

sequences of 30 nt, spanning all the candidate length. Probes

were located at least 5 nt from each other and from the candidate

boundaries. As result, probe sets were made of one single probe

when candidates were shorter than 75 nt of length; two probes

when candidates length were between 75 and 110 nt; three probes

when candidates length were between 110 and 180 nt, and four

probes for longer candidates. To each probe, a control mismatch

probe was provided (mismatch: two bases). As positive controls,

probes targeting the following genes have been included: sigA

(Rv2703), 16S (rrs, Rvnr01), and 5S (rrf, Rvnr03). As negative

controls we considered the same number of probes of the positive

controls, made of random sequences not mapping in the M.

tuberculosis H37Rv genome. Each array contained two complete

probe sets and relative mismatches, each in duplicate. Small-size

RNA fraction and total RNA fraction depleted of small-size RNAs

were prepared using mirVana miRNA Isolation kit (Applied

Biosystems/Ambion, Austin, TX, USA). The ULS labeling kit for

CombiMatrix arrays (Kreatech Biotechnology BV, Amsterdam,

The Netherlands) was used to label RNA samples with biotin and

for hybridization on a 12K array followed by electrochemical

detection on the ElectraSense reader performed according to

manufacturer’s instructions. Two independent experiments were

carried out starting from two biological replicates each (M.

tuberculosis H37Rv grown in Middlebrook 7H9 10% OADC,

OD600 between 0.5 and 0.8). Microarray hybridization was

carried out twice (technical replicate) for each biological replicate;

every microarray was acquired at least twice. Results were

analyzed applying Robust Multichip Analysis (RMA) procedure

on the logarithm of the background (mismatches) corrected perfect

match electrical current intensities.

We compared the candidates expression with controls by means

of a t-type statistic test. P-values were computed by means of

permutations, to avoid any distributional assumption, and adjusted

for multiplicity by means of the Holm-Bonferroni method [59,60].

Candidates showing an expression mean significantly higher than

the expression of controls (p-value ,0.05) were considered as

validated. Then, a combined p-value (namely p-adj) for each

candidate was calculated with Fisher rule considering both RNA-

seq and microarray results.

Criteria for the Classification of sRNAs
We decided to consider approximately 60 nucleotides at the 59

end of a gene as putative promoter region. As reported by

Gardner and colleagues [25], the majority of termination signals

are within 80 nucleotides from the 39-end of a gene. Thus, we have

considered as intergenic those sRNAs mapping more than 80 nt

upstream or downstream of a neighboring CDSs. Candidates

mapping within #80 nucleotides from a CDS on the same strand

were considered potentially synthesized as untranslated regions

(59/39 UTRs). Candidates synthesized by the strand opposite to

a CDS or a UTR are antisense (AS) sRNAs, and can be divided in

subclasses depending on their relative position.

Northern Blot Analysis
10 mg of total RNA were separated on a 6% denaturing

polyacrilamyde gel, blotted on a positively charged membrane

(Hybond N+, GE Life Sciences), and hybridized to specific 32P-

labeled riboprobes or oligonucleotides, as described previously

[61]. Membranes were exposed to a phosphor screen and

visualized with a phosphorimager. The oligonucleotides used are

reported in Table S4 and Table S5, respectively.

Primer Extension Analysis
The oligonucleotide probes were 59 end labeled with T4

polynucleotide kinase (Promega). 59 ends were identified by primer

extension analysis, as described in Boorstein and Craig [62]: an

annealing mix (10 ml), containing 10 mg of total RNA, 1 U/ml
RNasin (Promega), 0.5 pmole radiolabeled oligo and 1X ss-

hybridization buffer (300 mM NaCl, 10 mM Tris HCl pH 7.5,

2 mM EDTA), was denatured at 80uC for 4 minutes and

incubated for 2 hours at 50uC for the annealing. Then, to the

annealing mix were added 40 ml of 1.25 X RT-buffer (1.25 mM of

each dNTP, 12.5 mM DTT, 12.5 mM Tris HCl pH 8, 7.5 mM

MgCl2), 5 U RNasin (Promega) and 10 U AMV Reverse

Transcriptase (Finnzymes) and incubated 30 min at 50uC for the
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extension. RNA was hydrolyzed with NaOH and all samples were

neutralized with HCl and then precipitated and dissolved in 6 ml
stop mix (95% formamide, 20 mM EDTA, 0.05% bromophenol

blue, 0.05% xylene cyanol FF). Reaction products were separated

on a 6% denaturing polyacrylamide gel along with sequencing

reactions made with the same labeled oligonucleotides used for the

primer extensions.

Statistical Analysis of the 210 Region
We used a statistical approach to further validate sRNA

candidates. The approach described by Dornenburg [23] was

adapted for this scope.

In summary, we compared the frequency of specific nucleotides

at fixed positions within the210 consensus region. Due to the lack

of consistent published data on 210 consensus sequences in MTB,

we considered only the TANNNT hexamer recognized by the

sigma factor sigA. Therefore, we analyzed the frequency of T in

position 213, A in position 212 and T in position 28 for our

sRNA candidates, for annotated CDSs in the genome of MTB and

for a set random sequences, all of the same sample size. Random

sequences were generated and used as control. A score of 3 was

attributed when all the 3 nucleotides TAT were found at the

expected position (213, 212, 28, respectively); a score of 2, 1 or

0 was attributed when 2, 1 or 0 nucleotides, respectively were

found at expected positions. An average of the scores was then

calculated for each of the three categories (candidates, annotated

CDSs and control sequences). A Mann-Whitney test statistic was

used to compare scores and p-values computed by permutation

methods. For comparison we considered a number of random

sequences equal to the sample size considered by the permutation.

Sample sizes were as follow: 1948 candidates (all), 1373 type A

candidates, 260 validated candidates, 4048 CDSs. All statistical

analyses were performed in R and Bioconductor environment

[55].

Functional Enrichment of Antisense Regulated Genes
We obtained functional annotation for MTB genes from three

different sources: (i) GO terms from the DAVID database [63], (ii)

metabolic pathways from the KEGG database [64], and (iii)

functional categories from the TubercuList database (http://

genolist.pasteur.fr/TubercuList). We then applied the Fisher’s

Exact Test to determine biological terms that are enriched among

antisense-regulated genes, based on the contingency table shown

in Table S6. The test was slightly modified by removing one gene

from the list of interest (i.e. a-1) before computing the Fisher exact

probability; this modification removes the effect of terms based on

single genes only [65].

Supporting Information

Figure S1 Schematic representation of sRNA candidates
classification according to their mapping position. Thick
black arrows indicate coding sequences (CDS); thin arrows

indicate sRNAs; dotted arrows the distance from the 59/39 ends

of CDS to the putative 59/39end of the sRNA; AS: antisense.

(TIF)

Figure S2 Schematic representation of the distance
between the 210 consensus hexamer in candidate
sRNAs, annotated coding region and random sequences.
Picture of the relative mean score differences among sequences

groups. To preserve as best as possible these dissimilarity, we

obtained the plot coordinates from a non-linear multidimensional

scaling of the pairwise absolute differences, taken as inter-groups

distance matrix.

(TIF)

Figure S3 Schematic representation of the mapping
position of sRNA candidates validated by Northern blot
(from 54 to 1029). Empty arrows represent coding sequences

(CDS), whereas sRNA candidates are reported as grey arrows.

Dotted arrow (candidate 1359) represents the possibly erroneous

annotation of the CDS Rv2165c. Dotted lines represent UTRs.

(TIF)

Figure S4 Schematic representation of the mapping
position of sRNA candidates validated by Northern blot
(from 1080 to 1565).

(TIF)

Figure S5 Northern blot for candidate 1938 in M.
tuberculosis H37Rv and H37Ra (exponential growth
phase).

(TIF)

Figure S6 Schematic representation for the mapping
position of the sRNA 1359 validated by Northern blot.

(TIF)

Table S1 Dataset including all the candidates (A, B, C
types) representing the starting point of the present
work.

(XLSX)

Table S2 Functional categories of genes showing RNA
species within the 59 UTR. Classification was performed

according to TubercuList.

(XLSX)

Table S3 Functional enrichment of cis-regulated genes.

(XLS)

Table S4 List of oligonucleotides used in the Northern
blot. * Oligo: 32P-labelled oligonucleotides used as probes in the

Northern blot assays; FWD or REV: primers used to amplify the

genomic regions to be used as templates in the in vitro transcription

of the riboprobes.

(XLSX)

Table S5 List of other oligonucleotides used for the
primer extension. DAVID database and TubercuList have

been used for functional annotation of MTB genes. GO: gene

onthology; mtu: KEGG pathway. TBL: TubercuList.

(XLSX)

Table S6 Contingency table for evaluating functional
enrichment of antisense-regulated genes. a = number of

AS-regulated genes annotated with term j; b = number of AS-

regulated genes not annotated with term j. The quantities c, and

d are similarly defined for the remaining genes not overlapped by

AS sRNAs. N is the total number of M. tuberculosis genes for which

annotation is available.

(XLSX)
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