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Abstract

Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In
particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study,
we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic
sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is
expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial
cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and
myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and
secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the
development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript.
The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several
mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the
Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream
effector of the Hedgehog pathway.
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Introduction

The development of a functional vertebrate nervous system

requires elaboration of a large number of diverse cell types. At

embryonic stages, the nervous system is a complex network of

growing axons, whose growth cones navigate in response to

guidance cues. Among them, motoneuron axons migrate toward

skeletal muscles, and form synaptic contacts [1]. Zebrafish

embryos exhibit spontaneous contractions of the musculature ever

since 18–19 hours post fertilization (hpf) when removed from their

protective chorion [2]. These movements are due to the early-

developing primary motoneurons (PMNs), that innervate the

myotome with nonoverlapping arbors. In zebrafish, PMNs are

present in each somitic hemisegment and are identified by their

specific axonal pathway and soma position within the spinal cord:

caudal primary motoneurons, middle primary motoneurons and

rostral primary motoneurons (CaPs, MiPs and RoPs, respectively)

[3,4,5]. PMNs extend their axons out of the spinal cord at about

16–17 hpf, following a common pathway: their growth cones

project ventrally along the medial surface of the myotome and

pause at the horizontal myoseptum, which separates dorsal and

ventral myotomes. Here, they specifically interact with muscle

pioneers [6,7], a subset of two to six cells for each somite early

differentiating into slow muscle fibers [8,9]. CaPs are responsible

for pioneering the common pathway before projecting the axons

that innervate the ventral myotome [10]. Among PMNs, they

show the largest and most extensive branching pattern [5]. MiPs

sprout a collateral axon to innervate dorsal myotome, while the

first ventral process extending along the common pathway is

retracted by 48 hpf [7]. RoPs innervate the middle region of the

muscle segment, sprouting laterally after pausing at the myosep-

tum [6]. Therefore, muscle pioneers represent a choice point from

which motoneurons select their specific pathway, although the

ablation of this cell population leads to abnormal motor axonal

extension without altering the target choice [7]. Secondary

motoneurons (SMNs) growth cones extend later from spinal cord,

beginning at 22 hpf and following the paths pioneered by the

primary axons [11,12].

Axonal pathfinding is dependent on attractive and repulsive

stimuli coming from both nervous and non-nervous surrounding

tissues [1,13]. For instance, shh induction by notochord and

floorplate patterns both primary and secondary motoneurons [14].

Indeed, mutants lacking both the notochord and the floorplate

(cyc2;flh2) [14] or mutants in the Hedgehog pathway, such as

smoothened (smo), present disorganized, reduced or absent PMNs

and axons. [15]. Moreover, in sonic-you mutants (syu) CaPs and

MiPs axons run along the neural tube horizontally instead of

ventrally and dorsally, while axons of the secondary motoneurons

fail to branch and instead cease to extend or grow further ventrally

in an abnormal pattern [16].

Also muscular tissues can pattern axonal migration: muscular

adaxial cells are able to rescue motor axon defects in diwanka
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mutants, showing that this myotomal population plays a pivotal

role in axonal migration [17]. Furthermore, molecules expressed

in the somites such as the semaphorin proteins Z1b and Sema3A1

are involved in repelling axonal migration [10,18]. On the

contrary, netrin-1a is expressed by adaxial cells and muscle pioneers

besides ventral spinal cord, and seems to guide axonal growth

through a chemoattractive function [19]. The manipulation of the

proper expression of these molecules, both knocking-down and

inducing ectopic expression, induces axons to follow aberrant

pathways, branch excessively or stall [17,18,19].

The Coiled-Coil-Domain Containing 80 (Ccdc80) gene, also named

DRO1 in human (Down-Regulated by Oncogene 1), URB in mouse (Up-

Regulated in BRS-3 deficient mice), CL2 in rat (Clone 2), and equarin in

chicken, has been recently suggested to be involved in different

functions among vertebrates. Ccdc80 was first isolated in mice,

where it is up-regulated in adipose tissue of obese BRS-3-deficient

animals [20]. Moreover, Ccdc80 is highly expressed in mice white

adipose tissue and its silencing inhibits adipocytes differentiation

[21], suggesting a role in the regulation of body weight and energy

metabolism. Ccdc80 is also expressed in mouse developing

cartilage, suggesting a role during skeletogenesis [22]

Human CCDC80 is almost ubiquitously expressed, with the

highest levels in heart and skeletal muscles [23,24]. Furthermore,

human CCDC80 can be considered a potential tumor suppressor

gene [25]. In fact, it is strikingly down-regulated in thyroid

neoplastic cell lines and tissues, as well as in colon and pancreatic

cancer cell lines and in most colorectal cancer specimens [26],

while its ectopic expression in these cell lines results in substantial

inhibition of growth properties.

The CCDC80 protein is highly conserved among vertebrates,

and contains multiple signals of cellular compartmentalization and

post-translational modifications. In particular, it has a N-terminus

leader peptide for extracellular export and many nuclear

localization signals [25]. In different studies, the CCDC80 protein

has been identified in a N-glycosylated form and was suggested to

be secreted. Rat, mouse and human CCDC80 show three P-

DUDES domains (Procaryotes- DRO1-URB-DRS-Equarin-SRPUL)

which in human are correlated with a tumor suppressor role [27].

In silico analysis using human CCDC80 sequence as a bait, led

to the identification of three zebrafish homologs of CCDC80. Two

homologs, that we named Ccdc80 and Ccdc80-like1 (Ccdc80-l1),

showed high levels of aminoacid identity with the human

CCDC80. We performed the molecular cloning of ccdc80 and

ccdc80-l1 in zebrafish and analyzed their expression pattern during

embryonic development. During somitogenesis ccdc80 is expressed

in the notochord (manuscript in preparation), while ccdc80-l1 is

expressed in muscle pioneers and adaxial cells. Both these regions

are responsible for axon guidance, therefore we decided to

investigate the role of ccdc80 and ccdc80-l1 in this process. While

loss-of-ccdc80-function did not impair motoneurons development,

we demonstrated the ccdc80-l1 involvement in the proper axonal

pathfinding, especially in ventral axons guidance. Indeed, ccdc80-l1

knocked-down embryos exhibited motility issues although analysis

on body musculature showed that somitogenesis and myogenesis

occurred properly. Furthermore, the analysis of ccdc80-l1 up-

stream regulation revealed that the Hedgehog pathway modulates

its expression in territories involved in axonal guidance.

Materials and Methods

Zebrafish lines and maintenance
Current italian national rules: no approval needs to be given for

research on zebrafish embryos. Zebrafish were raised and

maintained according to established techniques [28], approved by

the veterinarian (OVSAC) and the animal use committee (IACUC)

at the University of Oregon, in agreement with local and national

sanitary regulations. Embryos were collected by natural spawning,

staged according to Kimmel [29], and raised at 28uC in fish water

(Instant Ocean, 0.1% methylene blue) in Petri dishes [30].

Sequence analysis
Zebrafish chromosome 6 region hosting the ccdc80-l1 gene was

identified through in silico search of the ENSEMBL zebrafish

assembly version 9 (Zv9) using human CCDC80 aminoacidic

sequence as a bait. The alignments between aminoacid sequences

were performed with the software program StrecherP. Analysis on

synteny was performed with the program Genomicus version 57.01.

RT-PCR
Total RNA from 11 samples (an average of 30 embryos per

sample) corresponding to 9 different developmental stage embryos

(2–4 cells, 64–1000 cells, 30% epiboly, 60%–70% epiboly,

somitogenesis, 24 hpf and 72 hpf) and 2 adult organs (ovary and

muscle) was extracted with the TOTALLY RNA isolation kit

(Ambion), treated with RQ1 RNase-Free DNase (Promega) and

oligo (dT)-reverse transcribed using Super- Script II RT (Invitro-

gen), according to manufacturers’ instructions. The following

primers were used for PCR reactions: ccdc80-l1_forward 59-

ACCACAATGGAGCAAACACA -39 and ccdc80-l1_reverse 59-

GGTTTAGCTCTCCCCTTTGG -39. PCR products were

loaded and resolved onto 2% agarose gels.

In situ hybridization and immunohistochemistry
Whole-mount in situ hybridization (WISH), was carried out as

described [31] on embryos fixed for 2 hours in 4% paraformalde-

hyde in PBS, then rinsed with PBS-Tween (PBT), dehydrated in

100% methanol and stored at 220uC until processed [32].

Antisense riboprobes were previously in vitro labelled with modified

nucleotides (digoxigenin, Roche). myod and myog probes were

prepared as described by Schnapp and collegues [33]. smyhc1 probe

has been kindly provided by Ingham laboratory. The following

primers were used for PCR reactions to clone the probes: ccdc80-l1

sense 59- ACCACAATGGAGCAAACACA -39 and ccdc80-l1

antisense 59- GGTTTAGCTCTCCCCTTTGG -39. For immu-

nohistochemistry, embryos were fixed in 4% paraformaldehyde

overnight at 4uC or 2 hours at RT, washed several times in PBT

and blocked in 5% BSA in PBT for 1 hour at room temperature.

Primary antibody incubation was done overnight at 4uC, followed

by several washes in PBT and incubation of secondary antibody for

1 hour at room temperature. Primary antibodies are MF20 (mouse

anti-sarcomeric) and 4D9 (mouse anti-engrailed/invected) pur-

chased from Developmental Studies Hybridoma Bank, znp1 (mouse

anti-syt2b) and zn-5 (mouse anti-alcama) purchased from Zebrafish

International Resource Center (ZIRC). Secondary antibody is

EnVision+ System- HRP Labelled Polymer anti-mouse (Dako).

Images of embryos and sections were acquired using a microscope

equipped with a digital camera with LAS Leica imaging software

(Leica, Wetzlar, Germany). Images were processed using the Adobe

Photoshop software. For histological sections, stained embryos were

re-fixed in 4% paraformaldehyde, dehydrated and stored in

methanol, wax embedded, and sectioned (5–8 mm).

Injections
Injections were carried out on 1- to 2-cell-stage embryos (with

Eppendorf FemtoJet Micromanipulator 5171); the dye tracer

rhodamine dextran was co-injected as a control. To repress ccdc80-

l1 mRNA translation we designed an ATG-targeting morpholino,

ccdc80-l1 and Axon Pathfinding in Zebrafish
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ccdc80-l1-MO: 59- TTGTACCTGTAGATTTTTCATTGCA-39

and a splice-site morpholino, ccdc80-l1-splice- 59- TGATACAATA-

CATACTATGAGGCGT -39 (Gene Tools, LLC). As a negative

control we injected a standard control morpholino oligonucleotide

(ctrl-MO). Morpholinos were injected in 16Danieau buffer (pH 7.6)

as suggested by Nasevicius and Ekker [34]. For the in vivo test of the

efficiency of ccdc80-l1-MO, 425 pg/embryo of the pCS2+-ccdc80-l1-

GFP sensor plasmid have been injected alone or co-injected with

12 ng/embryo of ccdc80-l1-MO. The presence/absence of the GFP

signal has been monitored under a fluorescent microscope starting

from somitogenesis up to 48 hpf. ccdc80-l1-MO cDNA fragments

inserted in the BamHI site were obtained using the following

complementary oligos: ccdc80-l1-MO sense 59- gatcTTGTACCTG-

TAGATTTTTCATTGCACA -39 and ccdc80-l1-MO antisense 59 –

gatcTGTGCAATGAAAAATCTACAGGTACAA- 39.

For the in vivo test of the specificity of morpholino-mediated

knockdown, the rescue of morphants phenotype was obtained co-

injecting 12 ng/embryo of ccdc80-l1-MO together with 400 pg/

embryo of ccdc80-encoding mRNA.

Over-expression of shh was obtained microinjecting 300 pg/

embryo of shh mRNA, kindly provided by Sordino laboratory.

Statistical analysis
Statistical analysis was performed with Student’s t-test using

GraphPad PRISM version 5.0 (GraphPad, San Diego, California).

A p value ,0.001 indicates a statistically significant effect.

Cyclopamine treatment
Embryos were exposed to 5 mM cyclopamine (purchased from

SIGMA-ALDRICH) from 50% epiboly stage up to fixation in

PFA at 15 somites stage. Cyclopamine was dissolved in embryo

medium and 0.5% ethanol. Controls consisted of corresponding

incubations in 0.05% ethanol in embryo medium.

Results

Identification of Ccdc80 homologs in the genome of
zebrafish

Blast analysis of the ENSEMBL zebrafish assembly version 9

(Zv9) using human CCDC80 as a bait returned three positive hits,

corresponding to three proteins encoded by genes on different

chromosomes: the first on chromosome 9 (nucleotide position:

35,060,460-35,084,513) that we named ccdc80, the second on

chromosome 6 (nucleotide position: 16,322,724-16,342,517) that

we named ccdc80-like1 (ccdc80-l1), and the third on chromosome 21

(nucleotide position: 18,662,129-18,669,986), that we named

ccdc80-like2 (ccdc80-l2). The alignment of the predicted protein

sequences in zebrafish with the human CCDC80, revealed that

Ccdc80 presented the highest degree of aminoacid identity with

human CCDC80 (51.6%), while Ccdc80-l1 and Ccdc80-l2

presented less identity (44.4% and 27% respectively) (Table 1

and Fig. S1). We then performed alignments among the three

zebrafish homologs: Ccdc80 shared the 51.4% of aminoacid

identity with Ccdc80-l1 and the 30.4% with Ccdc80-l2 while

Ccdc80-l1 and Ccdc80-l2 shared the 29.1% of identity (Table 1).

Moreover, analysis of chromosomal organization of the three

ccdc80 zebrafish homologs across vertebrates revealed that only

ccdc80 is synthenic with other vertebrates (Fig. 1).

ccdc80-l1 is expressed in muscle pioneers and adaxial
cells of the zebrafish embryo

Characterization of ccdc80-l1 expression, using RT-PCR,

revealed that ccdc80-l1 transcript is present from the first stages

of development up to 72 hpf, thus including maternal and zygotic

transcription (Fig. 2A). ccdc80-l1 is also expressed in the ovary and

muscle of the adult zebrafish (Fig. 2A). During somitogenesis, the

hybridization signal is restricted to the horizontal myoseptum

(Fig. 2B–D). From this stage, ccdc80-l1 expression is observed also

in the cranial ganglia and dorsal dermis (Fig. 2B, 2C, 2E, 2I, 2K–L

and data not shown). At 24 hpf, ccdc80-l1 is detectable in a specific

sub-population of migrating adaxial cells, that moves along the

lateral axis towards the external somite [35] (Fig. 2E–G).

Moreover, ccdc80-l1 is expressed in muscle pioneers, as shown by

the co-localization between ccdc80-l1 and engrailed [36,37]

(Fig. 2H). ccdc80-l1 expression in adaxial cells persisted at 36 hpf

and 48 hpf (Fig. 2I, 2K). At the same stages ccdc80-l1 is also

expressed in the caudal vein plexus region (Fig. 2I, 2J, 2L).

ccdc80-l1 knocked-down embryos displayed impaired
motility

To determine the functional role of ccdc80-l1 during zebrafish

development, we specifically knocked it down by means of the

injection of an antisense oligonucleotide morpholino (ccdc80-l1-MO,

Gene Tools) designed against the start site of the transcript. In all the

experiments, ccdc80-l1-MO-injected embryos (morphants) were

compared to embryos at the same developmental stage, injected

with the same amount of a control MO (ctrl-MO). For the in vivo test

of the efficiency of ccdc80-l1-MO, 425 pg/embryo of the pCS2+-

ccdc80-l1-GFP sensor plasmid has been injected alone or with

12 ng/embryo of ccdc80-l1-MO. The presence/absence of the GFP

signal has been monitored under a fluorescent microscope starting

from somitogenesis up to 48 hpf (Fig. S2). 70% of the embryos

(N = 20) injected with the sensor plasmid alone displayed fluores-

cence. This percentage decreased to 51% when the plasmid was co-

injected with ccdc80-l1-MO (N = 93), indicating that the morpholino

specifically bound to its target region. The efficiency of ccdc80-l1

Table 1. Percentages of identity and similarity among human and zebrafish Ccdc80 homologs.

Human CCDC80 Zebrafish Ccdc80 Zebrafish Ccdc80-like1 Zebrafish Ccdc80-like2

Identity Similarity Identity Similarity Identity Similarity Identity Similarity

Zebrafish Ccdc80 51,6% 65,2% / / 51,4% 64,4% 30,4% 47,4%

Zebrafish Ccdc80-
like1

44,4% 59,3% 51,4% 64,4% / / 29,1% 46,9%

Zebrafish Ccdc80-
like2

27% 44,9% 30,4% 47,4% 29,1% 46,9% / /

The table shows the scores obtained after alignments between the aminoacidic sequences of zebrafish and human CCDC80 homologs. Alignments were performed
with Stretcher-P tool.
doi:10.1371/journal.pone.0031851.t001
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loss-of-function was not so striking, as demonstated by the low

percentage of embryos with GFP decreasement and by the high

amount of morpholino we had to inject to obtain a phenotype (8

and 12 ng/embryo of ccdc80-l1-MO). Therefore, we designed a

second morpholino against the splice site (ccdc80-l1-splice-MO) to

confirm the specificity of ccdc80-l1-loss-of-function. Embryos

injected with this second morpholino, still exhibited motility issues

as ccdc80-l1-MO-injected embryos did (data not shown). In

particular, all the knocked-down embryos showed no severe body

plan alteration when observed in vivo, indicating the proper

Figure 2. Expression of ccdc80-l1 analyzed by RT-PCR and WISH. (A) RT-PCR performed on different embryonic stages and adult tissues; the
expression of ccdc80-l1 and b-actin are shown. Lanes are: ladder (lane 1), ovary (lane 2), 2–4 cells stage (lane 3), 64–1000 cells stage (lane 4), 30%
epiboly (lane 5), 60–70% epiboly (lane 6), somitogenesis (lane 7), 24 hpf (lane 8), 30 hpf (lane 9), 48 hpf (lane 10), 72 hpf (lane 11), adult muscle (lane
12) and negative control (lane 13) in the absence of cDNA. (B–J) WISH performed on zebrafish embryos at several stage of development. (B, C) During
somitogenesis ccdc80-l1 was expressed by cranial ganglia (cg), dorsal dermis (asterisk), adaxial cells and muscle pioneers at the level of the horizontal
myoseptum (arrow). (D) ccdc80-l1 expression in a transverse section of the trunk of an embryo at 12 somites stage (arrows). (E–H) At 24 hpf, the
hybridization signal was detectable in cranial ganglia (cg), dermis (asterisk), adaxial cells (arrow) and ventral somites (arrowhead). (F) Higher
magnification of the tail at 24 hpf. (G) Transversal section of an embryo at 24 hpf. (H) Transversal section showing that at 24 hpf ccdc80-l1
hydridization signal co-localized with the nuclear labeling of 4D9 antibody, corresponding to the engrailed-positive muscle pioneers population
(open arrowhead). (I, J) At 36 hpf, the signal of ccdc80-l1 probe was detected in cranial ganglia (cg), migrated adaxial cells (arrow), dorsal dermis
(asterisk) and caudal vein plexus region (cvp). (K, L) At 48 hpf, ccdc80-l1 was detected in dorsal dermis (asterisk), external adaxial cells (arrows in K) and
caudal vein plexus region (cvp in L). (B, E, F, I) Lateral views; dorsal is up, anterior is left; (C) dorsal view, anterior is left; (D,G, H, J–L) transversal sections,
dorsal is up.
doi:10.1371/journal.pone.0031851.g002

Figure 1. Analysis of chromosomal organization of the three ccdc80 zebrafish homologs across vertebrates. Each ccdc80 gene is shown
as a reference locus. Genes annotated as paralogs (no surrounding line) or orthologs (with a surrounding line) by the Ensembl database share the
same color, blue lines beneath individual tracks indicate that orientations of gene blocks and are inverted with respect to their genomic annotation.
For zebrafish ccdc80 (chr. 9), ccdc80-l1 (chr. 6) and ccdc80-l2 (chr. 21), only ccdc80 shows notable synteny with other vertebrates. The figure was
derived from the output of the Genomicus website (version 57.01).
doi:10.1371/journal.pone.0031851.g001
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progression of early developmental processes such as gastrulation

and segmentation [38,39,40,41]. Moreover, we observed that

morphants displayed physiological body contractions upon dechor-

ionation at 24 hpf [42]. However, at 48 hpf, almost 80% of the

morphant embryos (N = 37) presented abnormal escaping behavior

after tactile stimulation, often resulting in body contractions on the

spot or circling behavior (Video S2) rather than a fast escape in the

opposite direction to the stimulus (Video S1). The same phenotype

was observed also at 5 days post fertilization (5 dpf, data not shown).

These results indicated that ccdc80-l1 loss-of-function affects the

swimming behavior of zebrafish embryos and larvae. We were also

able to rescue the ccdc80-l1-loss-of-function phenotype by means of

the injection of the homolog ccdc80-full-length transcript. In fact,

despite we demonstrated that ccdc80-loss-of-function did not affect

axonal pathfinding (data not shown), the high degree of conserva-

tion between the two homologs allowed rescue of motility (only 42%

of rescued embryos presented motility issues in comparison to the

nearly 80% of ccdc80-l1-MO injected embryos, N = 63).

ccdc80-l1 loss of function does not affect somitogenesis
nor muscle pioneers and adaxial cells formation

To assess whether the phenotype displayed by morphants was

due to the impairment of musculature, we examined somitogenesis

and myogenesis markers. The expression of myod and myog [39,43]

was not altered in ccdc80-l1-MO-injected embryos (Fig. 3A–D).

Moreover, the expression of smyhc1, a marker of slow-twitch fibers

[44], was unaffected as well, notwithstanding the strong expression

of ccdc80-l1 in adaxial cells and muscle pioneers, from which slow

fibers develop [9] (Fig. S3A, S3B). In addition, at 24 hpf,

myofibers were correctly organized and distributed as shown by

the immunohistochemistry with anti-sarcomeric MF20 antibody

[45] (Fig. 3E, 3F). Also muscle pioneers, labeled with 4D9 anti-

engrailed antibody [36,37] were correctly formed in ccdc80-l1

morphants (Fig. 3G–H). These results led us to exclude that defects

of adaxial cells, muscle pioneers or body musculature formation

were responsible for motility issues observed in ccdc80-l1 knocked-

down embryos.

Figure 3. Analysis of myogenic markers expression and muscle pioneers in ccdc80-l1 morphant embryos. (A–D) The myogenic markers
myod (A, B) and myog (C, D) were correctly expressed both in control and morphants embryos at 10 s stage (A, B) and 24 hpf (C, D), respectively. (E, F)
The MF20 antibody staining showed that both slow and fast twitch fibers were correctly formed and distributed in control and in knocked-down
embryos at 24 hpf. (G, H) At the same developmental stage, muscle pioneers resulted unaffected after ccdc80-l1 loss-of-function, as shown by the
labeling with 4D9 antibody (anti-engrailed) (arrows). (A, B) Dorsal views, anterior is left; (C–H) lateral views of the tails, dorsal is up and anterior is left.
doi:10.1371/journal.pone.0031851.g003
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Proper pathfinding and branching of axons are affected
in ccdc80-l1-MO-injected embryos

Segmentally repeated motoneurons connect nervous system to

somites, as their growth cones exit the spinal cord during

embryogenesis and migrate to their appropriate muscle targets,

allowing movement [3,5]. Due to motility impairment of ccdc80-l1

morphants, we investigated the morphology of motoneurons

performing immunohistochemistry with znp1 (syt2b) antibody [46].

For all embryos, we analyzed the trunk region overhanging the

yolk extension; defects in at least three motoneurons were enough

to consider the embryo as affected. At 48 hpf, in the 84% (N = 33)

of morphants injected with 12 ng/embryo of morpholino, axonal

pathfinding resulted impaired. 60% of morphants displayed an

overall disorganization of both dorsal and ventral motoneurons,

that resulted mis-orientated and over-branched (Fig. 4A, 4B). In

the 9% of embryos, these defects were observed together with an

opposite phenomenon, axonal stalling. In the 12% of morphants

only ventral axons resulted mis-orientated and over-branched,

whereas in the 3% only the dorsal ones were affected. This

phenotype was dose-dependent: when 8 ng/embryo of morpho-

lino were used, a lower percentage of embryos resulted affected

(64%, N = 35). Interestingly, at this concentration, only 27% of the

knocked-down embryos displayed both ventral and dorsal

defective axons, whereas in the 37% of morphants the same

defects were detectable in the ventral motoneurons solely (Fig. 4C).

Dorsal axons alone were never affected (Table 2 and Fig. S4).

Thus, a striking reduction of Ccdc80-l1 protein amount led to the

affection of both ventral and dorsal motoneurons, whereas a lower

dose of morpholino is sufficient for ventral axons migration

impairment. In order to discriminate whereas loss-of-ccdc80-l1-

Figure 4. Analysis of motoneurons morphology by means of znp1- and zn-5-immunohistochemistry. (A, B) At 48 hpf, using 12 ng/
embryo of morpholino, both ventral (arrows) and dorsal axons (arrowheads) were mis-orientated and over-branched in morphants (B) in comparison
to control embryos (A). (C) Statistical analysis showing the percentages of the different phenotypes (affected ventral axons, dorsal axons or both)
occurring in control embryos and in morphants, when different doses of ccdc80-l1-MO were injected (12 ng/embryo and 8 ng/embryo). Using a lower
dose of morpholino (8 ng/embryo), we observed that in a significant percentage of embryos only ventral axons were defective. (D–G)
Immunohistochemistry performed at 26 hpf (D, E) and 30 hpf (F, G) confirmed that loss-of-ccdc80-l1-function affects both CaPs (arrows) and MiPs
(arrowheads) axonal migration. (H, I) The same analysis performed at 48 hpf using zn-5 antibody revealed that also SMNs axonal migration is impaired
in morphants (arrows in I) in comparison to control embryos (H). (A, B; D–I) Lateral flat-mount preparation was applied for a better visualization of the
motoneurons. Lateral views of the trunk region overhanging the yolk extension, dorsal is up and anterior is left.
doi:10.1371/journal.pone.0031851.g004

Table 2. The phenotype of ccdc80-l1-MO-injected embryos is dose-dependent.

Dose/type of
morpholino

Total percentage of affected
embryos (N)

Alteration of both ventral
and dorsal axons

Only defective
ventral axons

Only defective
dorsal axons

ctrl-MO 12 ng 12% (N = 25) 12% 0% 0%

ccdc80-l1-MO 12 ng 84% (N = 33) 69% 12% 3%

ccdc80-l1-MO 8 ng 64% (N = 35) 27% 37% 0%

The percentage of embryos displaying axonal defects decreased from 84% to 64% when a lower dose of morpholino was used. Both ventral and dorsal axonal
pathfinding resulted impaired in the 69% of affected embryos when 12 ng/embryo of morpholino were used. After the injection of the lower dose of ccdc80-l1-MO
(8 ng/embryo), 27% of affected embryos showed alteration of both ventral and dorsal axons, whereas the 37% displayed only ventral defective axons and dorsal axons
alone were never affected.
doi:10.1371/journal.pone.0031851.t002
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function impaired PMNs or SMNs, we analyzed the phenotype of

morphants also at 26 hpf and 30 hpf, by the time SMNs have just

begun extending axons [47], so most of znp1 labeling correspond

to PMNs. At this stages, we replicated the same phenotype

observed at 48 hpf (Fig. 4D–G and Table 3). Furthermore, by

performing an immunohistochemistry at 48 hpf using the specific

antibody for SMNs (zn-5, anti-alcama) [47], we observed that also

SMNs axons seems to be affected after loss-of-ccdc80-l1-function

(Fig. 4H, 4I). Thus, the analysis of the motoneuronal patterning in

morphant embryos revealed the lack of proper guidance toward

muscle targets, suggesting ccdc80-l1 involvement in axonal

pathfinding of both PMNs and SMNs.

ccdc80-l1 expression is positively regulated by the
Hedgehog pathway

Both muscle and motoneurons induction is finely regulated by

levels and range of shh expression [9,48,49]. Due to ccdc80-l1

expression in adaxial cells and muscle pioneers, we decided to

investigate the existence of a ccdc80-l1 up-stream regulation

Hedgehog-mediated. We modulated shh activity by exposing

embryos to cyclopamine, that inhibits the Hedgehog transducer

Smoothened (smo) [9,50]. To avoid the complete loss of the

territories in which ccdc80-l1 is expressed, we chose a concentra-

tion of cyclopamine (5 mM) by which muscle pioneers and adaxial

cells-derived slow fibers are unaffected, as already described [9]

and as we demonstrated by the proper expression of their markers

engrailed, myod and smyhc1 respectively. (Fig. S5). A striking down-

regulation of ccdc80-l1 expression was observed in 72% of the

treated embryos in comparison to controls (N = 32) (Fig. 5A, 5B).

Interestingly, this down-regulation was detectable only at the level

of myoseptum and somites, whereas the cephalic territories in

which ccdc80-l1 is expressed were not involved. A similar down-

regulation was observed in syu mutants, carriers of a deletion in the

gene sonic-you encoding for shh (Fig. 5D–F) [16]. ccdc80-l1 signal in

adaxial cells was extremely weak or absent in the 35% of mutants,

and slightly down-regulated in the 40% of observed embryos

(N = 20). Moreover, the overexpression of shh by means of the

injection of the full-length transcript (300 pg/embryo), led to the

opposite phenotype with an increasing of ccdc80-l1 expression in

the somites of the 71% of the injected embryos (N = 31) (Fig. 5C).

On the contrary, ccdc80-l1 loss-of-function did not affect shh

expression (Fig. S6). Therefore, these findings suggest that ccdc80-

l1 is a down-stream target of the Hedgehog pathway.

Discussion

The genetic program underlying axon guidance is not

completely defined. Adaxial cells and muscle pioneers are both

involved in axonal outgrowth and pathfinding [7,17], even if little

is known about the specific proteins and molecular mechanisms

acting in this process. ccdc80-l1, the novel gene we recently

identified in zebrafish, is expressed during embryonic development

in muscle pioneers and adaxial cells. Ccdc80-l1 was identified,

together with its homolog Ccdc80, on the basis of its high

aminoacid identity with human CCDC80. However, zebrafish

ccdc80 and ccdc80-l1 do not share the same expression pattern and

seems to play different roles. In fact, only ccdc80-l1-MO-injected

Table 3. Loss-of-ccdc80-l1-function impairs PMNs axonal migration.

Developmental stage/dose of
morpholino

Total percentage of
affected embryos (N)

Alteration of both
CaPs and MiPs Only CaPs affected Only MiPs affected

26 hpf/ccdc80-l1-MO 12 ng 54,5% (N = 33) 40% 11% 3,5%

30 hpf/ccdc80-l1-MO 12 ng 62% (N = 35) 33% 24,5% 4,5%

Embryos injected with 12 ng/embryo of ccdc80-l1-MO were observed also at 26 hpf and 30 hpf. At these stages, affected embryos were 54,5% and 62%, respectively.
The percentages of the different phenotypes are listed.
doi:10.1371/journal.pone.0031851.t003

Figure 5. ccdc80-l1 is positively regulated by shh. (A–C) ccdc80-l1 expression in somites and myoseptum resulted strongly inhibited in embryos
treated with 5 mM cyclopamine (asterisks in B), in comparison to control embryos at the same developmental stage (A). By converse, over-expression
of shh led to an up-regulation of ccdc80-l1 in muscular territories (C). Expression in cranial ganglia (cg) was never perturbed. (D–F) ccdc80-l1 resulted
slightly down-regulated in the muscles of heterozygous syu+/2 mutants (E) in comparison to wild type siblings (D). A strikingly down-regulation was
observed in homozygous syu2/2 mutants (F). (A–C) Dorsal flat-mount preparations, anterior is up. (D–F) Lateral views of the tails, anterior is left.
doi:10.1371/journal.pone.0031851.g005
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embryos displayed an abnormal escaping behavior after tactile

stimulation at 48 hpf. Both musculature and nervous system are

responsible for embryonic motility and touch response and are the

basis of spontaneous motor output that occurs in the developing

zebrafish embryo ever since 18 hpf [2]. Nevertheless, musculature

defects were unlikely the basis of the observed phenotype. Indeed,

there was no difference between the expression pattern of

myogenic markers in morphants and control embryos. Moreover,

muscle fibers resulted correctly formed and distributed by the end

of somitogenesis. The territories in which ccdc80-l1 is expressed

were unaffected as well: in fact, adaxial cells and muscle pioneers

showed no defects. These findings revealed that ccdc80-l1 function

is not necessary for the specification and further differentiation of

myogenic cell populations, suggesting that the motility issues

displayed by morphants at 48 hpf could be due to an impairment

of neuronal development.

The analysis of motoneuronal development in morphant

embryos revealed that ccdc80-l1 plays a role in motoneurons

axonal pathfinding. In fact, ccdc80-l1 loss-of-function did not

prevent the formation of PMNs and axon projection, but led to an

overall disorganization of PMNs. CaPs and MiPs resulted over-

branched in a high percentage of embryos, whereas a smaller

fraction of morphants displayed also the simultaneous presence of

its opposite phenomenon, axonal stalling. Axonal over-branching

and stalling were detected in the CaPs solely in a significant

percentage of embryos, especially when a lower dose of

morpholino was used. Moreover, the impairment of axonal

migration was more severe in CaPs then in MiPs, even when

both PMNs were affected simultaneously. These data suggest that

ccdc80-l1 may have a differential role as regards the development

of CaPs and MiPs. This is consistent with the asymmetric

distribution of ccdc80-l1 transcript in the somites: indeed, the

ccdc80-l1 transcript is present in the ventral portion of somites,

innervated by CaPs, and not in their dorsal portion, innervated by

MiPs. The same motility issues displayed at 48 hpf were observed

also at 5 dpf, when secondary motoneurons are already formed.

Therefore, ccdc80-l1 plays a role also in guidance of SMNs, as

shown by the mis-expression of their marker zn-5. This is not

surprising, as the growth cones of SMNs require the axons of

PMNs for proper pathfinding [6]. We concluded that the ccdc80-l1

loss-of-function prevents the proper development of the peripheral

nervous system, that lacks a proper guidance toward muscle target:

axons do not fallow a single direction-pathway but stall or extend

towards any direction, leading to an over-branched and non-

functional nervous network. Hence, embryos are able to move and

to respond to tactile stimuli, but the coordination of muscle

contractions is impaired, and motor behavior is affected.

Axon outgrowth is influenced by many factors, for instance

different molecules (netrins, semaphorins, slits) with chemotropic

functions (reviewed in [51]) and components of the extracellular

matrix (ECM) [52,53]. In fact, the growth cone shares many

features with the motile structures of migrating cells, including

actin polymerization at the leading edge, dynamic interactions

between cell-surface adhesion receptors and components of the

extracellular matrix (ECM), and generation of traction forces in

the cytoskeleton applied to ECM through adhesion sites [54,55].

In ccdc80-l1 knocked-down embryos, the growth cones are still able

to exit the spinal cord and reach the muscle pioneers along the

common pathway. Moreover, axonal extensions developed

without altering the target choice: in fact, CaPs and MiPs still

project their axons ventrally and dorsally, respectively. These data

are consistent with the proper development of muscle pioneers,

which provide a choice point for motor growth cones. However,

further defects occur during axon pathfinding. It has been recently

reported that DRO1/CCDC80 is a Golgi-associated-protein [56].

Moreover, the in silico prediction of the Ccdc80 protein structure

(String 9.0) suggests its interaction with fibronectin, a component

of the ECM. If this is the case also for its homolog ccdc80-l1, its

loss-of-function might interfere with the proper axon migration by

influencing the secretion of guidance molecules or by altering

interactions with ECM proteins such as fibronectin. Further

analysis on the predicted Ccdc80-l1 protein sequence and its

interaction with other proteins will be necessary to understand the

molecular process underlying ccdc80-l1 functioning. Moreover,

investigation on possible targets is still needed. For instance, it is to

explore the possibility of an interaction with the semaphorin and

netrin families, both involved in attracting and/or repelling

growth cones from a variety of organisms [13,19]. Nevertheless,

our results provide further insights into motoneurons develop-

ment, a complex mechanism that requires the action of several

different molecules. Moreover, we suggest that ccdc80-l1 may act as

a down-stream effector of shh. The Hedgehog family consists of

secreted morphogens fundamental for both axon guidance and

formation of adaxial cells and muscle pioneers [9,57]. The

Hedgehog signaling is known to play a pivotal role in the

specification of both primary and secondary motoneurons [14,49].

Indeed, mutants for different molecules involved in this pathway

displayed axonal defects, including random axonal migration or

stalling [15,16]. PMNs target choice was never impaired after

ccdc80-l1 loss-of-function, still axonal migration resulted aberrant.

Furthermore, ccdc80-l1 expression resulted strikingly down-regu-

lated after exposure to 5 mM of cyclopamine and up-regulated

after over-expression of shh. This modulation was observed only in

muscles and not in other territories in which s-ccc80 is expressed

(cranial ganglia and dorsal dermis). These findings strongly suggest

the existence of a specific regulation Hedgehog-mediated of

ccdc80-l1, as regards its function in motoneuronal development.

Moreover, these findings may shed light on the involvement of the

Hedgehog pathway in this process.

Supporting Information

Figure S1 Alignment among human CCDC80 and the
three zebrafish homologs. * = identical aminoacids; : = con-

servative substitution; . = non-conservative substitution.

(TIF)

Figure S2 ccdc80-l1 morpholino is capable to inhibit the
expression of the fluorescent protein GFP. This assay was

performed in order to verify the in vivo efficiency of ccdc80-l1-MO.

(A, B) In the 70% of embryos injected with the ccdc80-l1-GFP

sensor plasmid, the presence of fluorescent GFP signal was

detected (N = 20). (C, D) When the plasmid was injected together

with the morpholino, the transcription of GFP protein was

inhibited and the percentage of fluorescent embryos decreased to

51% (N = 93). In A and C embryos are visualized under normal

light, in B and D under fluorescent light.

(TIF)

Figure S3 The expression pattern of the slow-myosin
marker smyhc1 is unaffected in ccdc80-l1 knocked-down
embryos. (A, B) Loss-of-ccdc80-l1-function did not perturb the

expression of smyhc1, as morphant embryos (B) are indistinguish-

able from control embryos (A). Lateral views of the tails, dorsal is

up, anterior is left.

(TIF)

Figure S4 Statistical analysis of three distinct defects
observed after loss-of-ccdc80-l1-function. (A–C) The

graphics show the occurrence of three axonal migration defects
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in control embryos and morphants when two doses of ccdc80-l1-

MO are used: both dorsal and ventral defective axons (A), only

ventral defective axons (B) and only dorsal defective axons (C).

The last phenotype was not statistically significant. *** p,0.001 vs

ctrl-MO. * p,0.05 vs ctrl-MO.

(TIF)

Figure S5 Muscle pioneers and adaxial cells are present
after 5 mM cyclopamine treatment. (A, B) Labeling with 4D9

antibody (anti-engrailed) showed that muscle pioneers are not

missing after pharmacological inhibition of the Hedgehog pathway

(arrows). (C–F) Also adaxial cells are still present, as shown by the

expression of the markers myod (C, D) and smyhc1 (E, F). (A, B)

Lateral views, dorsal is up. (C–F) Dorsal views, anterior is left.

(TIF)

Figure S6 shh expression is not perturbed by loss-of-
ccdc80-l1-function. (A, B) shh resulted correctly expressed both

in control embryos (A) and in morphants (B). (A, B) Dorsal views,

anterior is left.

(TIF)

Video S1 Control embryos displayed standard motor
behavior. After tactile stimulation, control embryos fast escaped

in the opposite direction of the stimulus.

(AVI)

Video S2 The motility of morphant embryos is im-
paired. When morphants were stimulated, abnormal escape was

observed, also resulting in circling behavior.

(AVI)
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