The accurate description of quantum properties in real molecules is a major computational task, due to the growing efforts required as the number of degrees of freedom of the system increases. Different semiclassical methods have been adopted in the attempt to gather quantum properties from computationally cheap classical-trajectories simulations. However, issues related to possible chaotic behavior and classical integrator instability at long simulation times, together with large number of classical trajectories required, often limit the success of basic semiclassical approaches to model systems. In the present work, we demonstrate that the multidimensional double well full vibrational spectrum, including tunnel splitting, can be described quite accurately by generating only 8 classical trajectories if Multi Coherent States Time Averaging SemiClassical Initial Value Representation (MC-TA-SCIVR) is used [1-3]. The first promising results are obtained on a 1D double-well potential aimed at describing the umbrella motion in ammonia; then, the full-dimensional vibrational spectrum of ammonia; then, the full-dimensional vibrational spectrum of ammonia is presented. For the first time in classical-trajectories based methods, both tunnel splitting amplitudes and quantum vibrational frequencies are simultaneously reported. Moreover, the exiguous number of trajectories based methods, both tunnel splitting amplitudes and quantum vibrational frequencies are simultaneously reported. multidimensional PES calculations.

Theoretical definition of the quantum vibrational spectrum Vibrational spectral density

$$I(E) = \langle \chi | \delta(\hat{H} - E) | \chi \rangle = \sum_{n} | \langle \chi | \psi_n \rangle |^2 \delta(E - E_n)$$

$$I(E) = \frac{Re}{\pi\hbar} \int_0^\infty \langle \chi | e^{-i\hat{H}t/\hbar} | \chi \rangle e^{iEt/\hbar} dt$$

The SemiClassical Initial Value Representation (SC-IVR) approximates the quantum propagator by running classical trajectories from sampled initial conditions in phase space and calculating related quantities.

Semiclassical approximation to the propagator

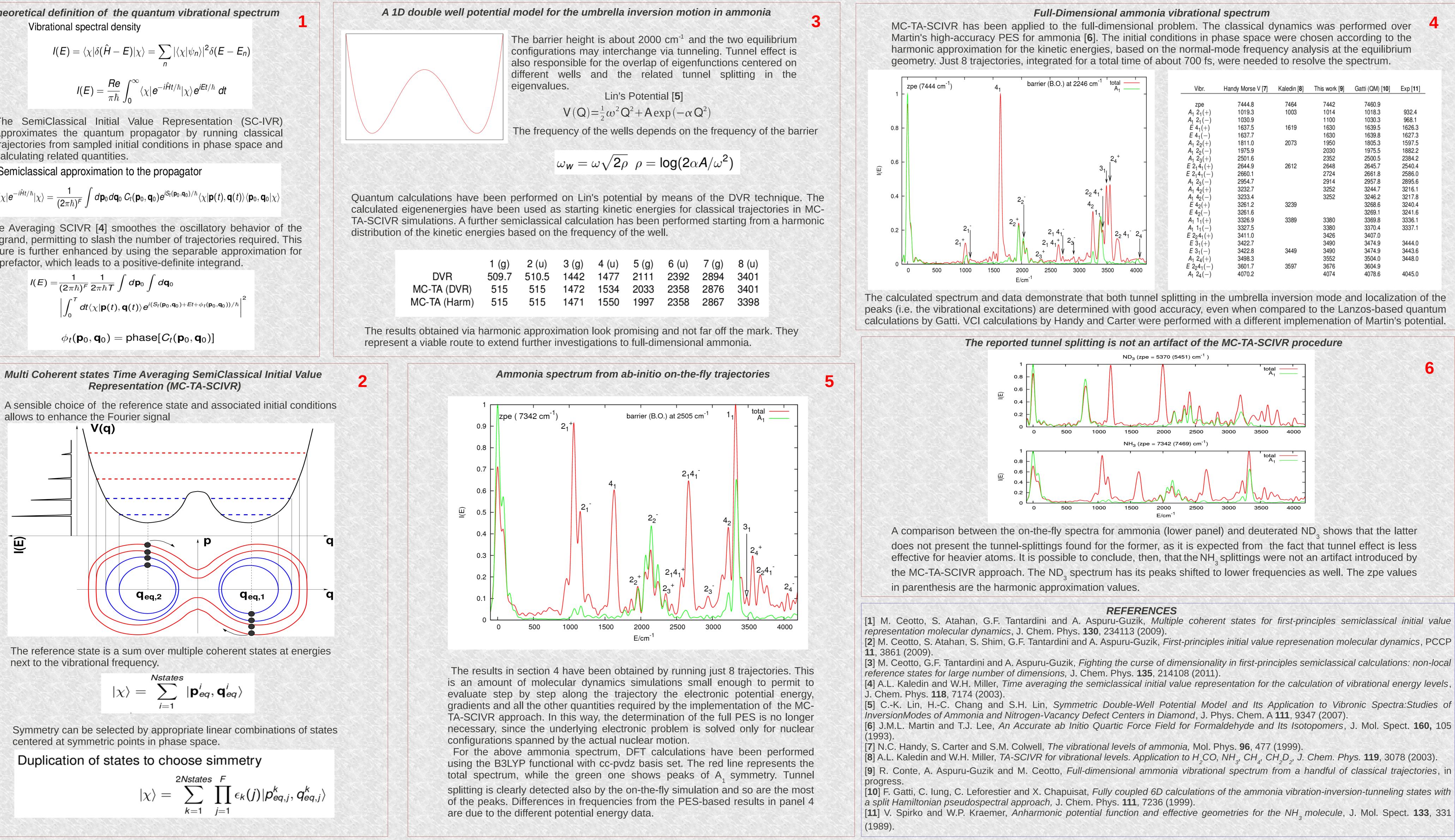
$$\langle \chi | e^{-i\hat{H}t/\hbar} | \chi
angle = rac{1}{(2\pi\hbar)^F} \int d\mathbf{p}_0 d\mathbf{q}_0 \ C_t(\mathbf{p}_0, \mathbf{q}_0) e^{iS_t(\mathbf{p}_0, \mathbf{q}_0)/\hbar} \langle \chi | \mathbf{p}(t), \mathbf{q}(t)
angle \langle \mathbf{p}_0, \mathbf{q}_0 | \chi
angle$$

Time Averaging SCIVR [4] smoothes the oscillatory behavior of the integrand, permitting to slash the number of trajectories required. This feature is further enhanced by using the separable approximation for the prefactor, which leads to a positive-definite integrand.

$$I(E) = \frac{1}{(2\pi\hbar)^{F}} \frac{1}{2\pi\hbar} \int d\mathbf{p}_{0} \int d\mathbf{q}_{0}$$
$$\left| \int_{0}^{T} dt \langle \chi | \mathbf{p}(t), \mathbf{q}(t) \rangle e^{i(S_{t}(\mathbf{p}_{0}, \mathbf{q}_{0}) + Et + \phi_{t}(\mathbf{p}_{0}, \mathbf{q}_{0}))/\hbar} \right|^{2}$$

Representation (MC-TA-SCIVR)

A sensible choice of the reference state and associated initial conditions allows to enhance the Fourier signal



$$|\chi\rangle = \sum_{i=1}^{Nstates} |\mathbf{p}_{eq}^{i}, \mathbf{q}_{eq}^{i}\rangle$$

$$\chi \rangle = \sum_{k=1}^{2N \text{states}} \prod_{j=1}^{F} \epsilon_k(j) | p_{eq,j}^k, q_{eq,j}^k \rangle$$

FULL-DIMENSIONAL AMMONIA VIBRATIONAL SPECTRUM FROM A HANDFUL OF CLASSICAL TRAJECTORIES <u>Riccardo Conte¹, Alán Aspuru-Guzik² and Michele Ceotto³</u>

¹Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States. ²Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States. ³Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy. Email: riccardo.conte@emory.edu alan@aspuru.com michele.ceotto@unimi.it

	1 (g)	2 (u)	3 (g)	4 (u)	5 (g)	6 (u)	7 (g)	8 (u)
DVR	509.7	510.5	1442	1477	2111	2392	2894	3401
MC-TA (DVR)	515	515	1472	1534	2033	2358	2876	3401
MC-TA (Harm)	515	515	1471	1550	1997	2358	2867	3398

Vibr.	Handy Morse V [7]	Kaledin [8]	This work [9]	Gatti (QM) [10]	Exp [11]
zpe	7444.8	7464	7442	7460.9	
$A_1 2_1(+)$	1019.3	1003	1014	1018.3	932.4
$A_1 2_1(-)$	1030.9		1100	1030.3	968.1
$E 4_1(+)$	1637.5	1619	1630	1639.5	1626.3
$E 4_1(-)$	1637.7		1630	1639.8	1627.3
$A_1 2_2(+)$	1811.0	2073	1950	1805.3	1597.5
$A_1 2_2(-)$	1975.9		2030	1975.5	1882.2
$A_{1} 2_{3}(+)$	2501.6		2352	2500.5	2384.2
$E 2_1 4_1(+)$	2644.9	2612	2648	2645.7	2540.4
$E 2_1 4_1(-)$	2660.1		2724	2661.8	2586.0
$A_1 2_3(-)$	2954.7		2914	2957.8	2895.6
$A_1 4_2(+)$	3232.7		3252	3244.7	3216.1
$A_1 4_2(-)$	3233.4		3252	3246.2	3217.8
$\dot{E} 4_2(+)$	3261.2	3239		3268.6	3240.4
$E 4_2(-)$	3261.6			3269.1	3241.6
$A_1 \bar{1_1}(+)$	3326.9	3389	3380	3369.8	3336.1
$A_1 \ 1_1(-)$	3327.5		3380	3370.4	3337.1
$E_{2_24_1(+)}$	3411.0		3426	3407.0	
$E\bar{3}_{1}(+)$	3422.7		3490	3474.9	3444.0
$E 3_1(-)$	3422.8	3449	3490	3474.9	3443.6
$A_1 2_4(+)$	3498.3		3552	3504.0	3448.0
$E 2_2 4_1(-)$	3601.7	3597	3676	3604.9	
$A_1 2_4(-)$	4070.2		4074	4078.6	4045.0

total -ˈ total — A₁ — 2500 3000