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Abstract

Background: Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data
analysis of feedback-like processes may be considered.

Methods: To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was
evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using
data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial
agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a
single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/
EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions.

Results: In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was
isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast,
multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations,
displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically
significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and
negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive
and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data
classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from
non-MRSA infections.

Conclusions: More information can be extracted, from the same data, provided that data are structured, their 3D
relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such
structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include
diagnosis, error detection, and modeling.
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Introduction

The rate of undetected infections remains markedly elevated

and may be increasing [1–3].

Pathogens that develop resistance to antimicrobials pose new

challenges, such as methicillin- or multidrug-resistant Staphyloccocus

aureus (MRSA) infections which, in the USA, cause more deaths

than tuberculosis, AIDS, and viral hepatitis combined [4]. Macro-

parasite-mediated diseases are also associated with high levels of

drug resistance [5]. To enhance the detection of infectious disease-

related data patterns, new approaches are required.

To that end, systems biology (SB) and evolutionary biology (EB)

may be considered. To diminish data variability, EB focuses on

biological features well conserved in evolution [6–12]. However, in

infectious diseases, EB has not yet provided usable methods [6].

Unlike reductionist approaches, which only consider a few and

static variables, SB focuses on systems and their dynamics –a

feature that may extract more information from the same data

[13–18].

However, before SB/EB concepts are explored within the

context of infectious diseases, we need to remind ourselves that we

live in a three-dimensional (3D) environment [19]. And yet, the

data we are exposed to are mainly ‘flat’, such as anything reported

on a page or screen. Such formats are bi-dimensional: they lack

the third dimension (depth). Bi-dimensional (2D) data formats are

poor (if not also, biased) descriptions of three- (four- and/or multi-)

dimensional data structures. Only 3D plots (volumes) can express

all the combinations (points, lines, or surfaces) biological data can

generate [20]. Furthermore, rotating 3D plots could inform

whether perspective (the angle under which the data are assessed)

influences pattern detection [21].

In spite of such possibilities, 3D data analysis seems to be under-

utilized in the area of infectious diseases. In October of 2012, a

search conducted in the Web of Science� yielded .18,000 hits

when ‘three-dimensional’ and ‘data analysis’ were queried, but less

than 100 hits were retrieved when ‘infection’ was added.

While feedback is a function of interest in both SB and EB and it

has been known for at least half a century in medicine and two

millennia in physics [22–25], feedback has only marginally been

explored in infections. In October of 2012, more than 200,000

bibliographic hits could be retrieved under ‘feedback’ and ,1700

hits were yielded when ‘feedback’ and ‘definition’ were searched

for, but less than 50 hits were found when ‘infection’ was added.

Even though the precursor of feedback (‘homeostasis’) was first

proposed in 1932 [26] and, in 1956, the phrase ‘negative feedback’

was first published in biology [27], only after the concept was

introduced in engineering, feedback was fully adopted in biology.

After the emergence of system dynamics, non-linear approaches

have been applied to study feedback phases [28].

In its simplest version, feedback can be defined as the ability of a

system to adjust its output in response to monitoring itself [29]. An

expanded definition, which defines as dynamic any situation in

which some quantity increases or decreases over time [30,31],

regards feedback as a process that involves an interaction between

two or more elements (e.g., a microbe and a host), which is

designated positive when the activation or accumulation of one

component leads to the activation or accumulation of the other

component, and negative when the activation or accumulation of

one component leads to the deactivation or depletion of the other

component [29]. Positive feedback occurs when a signal induces

more of itself, or of another molecule that amplifies the initial

signal, and this serves to stabilize, amplify or prolong signaling.

Negative feedback occurs when a signal induces its own inhibition

[29].

Feedback exhibits loops or closed chains in which change in one

component is fed back to its origin [31,32]. Other feedback

structures are: (i) nodes, (ii) cyclic data patterns, (iii) directionality,

and (iv) connectivity [24,31,33]. ‘Nodes’ refer to data groups

where processes begin and end, and/or where data inflections may

occur. Thus, feedback is a deterministic process, characterized by

abrupt transitions from low to high (or high to low) activity

[24,31]. When high-level structures are assembled, feedback also

reveals emergent properties [7–9].

Feedback emergent properties (the result of combinatorial

theory and organizational complexity) can be explained with a

mundane example that involves language. When we consider any

list of letters, no meaning is obtained. However, when a few letters

are combined, words emerge – and, with them, meaning emerges.

When we combine words, sentences emerge, which elicit more

information. Information does not depend on any one letter: it

depends on combinations of letters (words). While low-level data

(letters) lack information, information is created (and increases)

when higher levels (words, sentences, paragraphs, and so forth) are

used. Typically, rich (interpretable and usable) information

emerges from the highest of such levels.

Similarly, the ability of a biological system to perform many

functions with a few resources depends on its combinatorial

potential, which is expressed as multiple structural levels [34].

Therefore, to design a method that discriminates infectious

disease-related data patterns, at least three aspects or features

should be considered: 1) multi-dimensionality, 2) combinatorial

theory, and 3) various structural levels.

However, ‘level’ is an elusive concept. On the one hand, it may

be synonymous with ‘organizational complexity’, which may be a

dimensionless concept. On the other hand, ‘level’ may be

measurable and synonymous with ‘scale’, as in the continuum

that includes molecular, cellular, multi-cellular, organ, individual,

population (group of individuals), species, groups of species (e.g.,

vertebrates), and ecological scales. Because both connotations may

apply, new methods should adopt indicators inherently combin-

able, which are applicable across biological scales and can assess

relationships, such as those created by multi-cellularity [35,36].

Such relationships, to be detected, require ‘functional data

integrity.’ By that we refer to the fact that the anti-microbial

immune system is indivisible and, consequently, no leukocyte type

ever works alone. ‘Functional data integrity’ alludes to the ability

of measuring interactions (multi-factor relationships), not just one

element [14]. Unlike ‘elementary variables’, ‘structured indicators’

can estimate functions, e.g., early anti-microbial responses.

The difference between ‘elementary variables’ and ‘structured

indicators’ has been described before. While an ‘indicator’

possesses links – which establish a temporal connectivity and, therefore,

reveal directionality and causality –, a simple variable, such as the

percentage of neutrophils, lacks such information [31]. Hence,

‘functional data integrity’ summarizes all previous concepts with

an observable set of properties: (i) it is the opposite of

‘fragmentation’– it includes data from all cells of the immune

system, i.e., it possesses ‘integrity’, (ii) it is inherently combinato-

Infectious Disease-Related Data Patterns
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Figure 1. Feedback patterns of avian longitudinal-experimental immune responses against West Nile Virus. A: Leukocyte and
microbial test results of 10 chickens (shown to be West Nile virus [WNV] negative at day 0) were inoculated with WNV and followed over two weeks
(total: 82 longitudinal observations). The 3D relationship that included the heterophil (N) %, the ratio of N per lymphocyte (N/L), and the mononuclear
cell/N (macrophage plus lymphocyte/N or MC/N) ratio showed three major data inflections: 1) a double 90-degree inflection was observed between
pre-inoculation (0 dpi) and one day post-inoculation (1 dpi) data points (green arrow), indicating that the N/L ratio increased within a 24-hour period,
and that high N/L observations were D+ (red symbols); 2) at, approximately, 5 dpi, a second data inflection was observed (red arrow), which was
associated with high MC/N and low N/L values; and 3) soon after 5 dpi, the third data inflection took place, indicating the beginning of the return to
the steady state phase (blue arrow). The third phase was characterized by the gradual decrease of MC/N values (deep blue symbols). The last phase
ended when 14-dpi observations (sky blue symbols) displayed leukocyte values similar to those of 0-dpi (D–) data (green symbols, of which 80% were
within the data range indicated by the green box). Together, a quasi-circular, closed, temporal progression was detected, in which three feedback
phases were differentiated: 1) the steady state phase (green symbols), 2) the positive phase (red symbols), and 3) the negative phase (blue symbols).
Because observations that differed less than 24 hours (0- vs. 1-dpi data) were clearly separated, these patterns could detect early inflammatory
responses, even in the absence of microbial data. These patterns distinguished two D+ classes (red and blue symbols). Because D+ observations that
revealed ‘overshooting’ (higher MC/N values than those of D– data) later approached the D– stage, D+ individuals showing high MC/N values may
have a favorable prognosis. B–D: To facilitate visual detection of patterns specific of each feedback phase, the same data displayed in A are shown
emphasizing: only the feedback steady state phase (B), only the early (positive feedback) phase (C), and only the late (negative feedback) phase (D).
Utilizing a different quantitative method, these data have been partially reported elsewhere [52].
doi:10.1371/journal.pone.0053984.g001
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rial, that is, it may generate a large number of ‘words’ and,

probably, ‘sentences’, even though its primary components (cell

types) are as few as or fewer than the letters of any language; and

(iii) such combinations may ultimately gauge critical biological

functions, such as feedback functions – which may emerge from

interactions that involve several biological scales and, to be

optimally detected, should be measured in 3D space. That

translates as measuring not the percentage of a single cell type but,

Figure 2. Reproducibility of feedback patterns across species and pathogen types. Bovines and humans exposed to either bacteria (both
sensitive and resistant to anti-microbials) or parasites showed patterns similar to those displayed by birds (A–F). A, B: Leukocyte profiles and
microbial test results of 6 dairy cows inoculated at day 0 with non-methicillin resistant (non-MRSA) Staphylococcus aureus, followed over two weeks,
are reported (total: 24 longitudinal observations, data previously reported, using a different analytical method [44]). C, D: Leukocyte profiles of 439
humans non-infected or infected by malaria, tested once, are reported, of whom five displayed high MC/N values and malaria-positive test results and
were tested twice (two weeks apart), becoming malaria-negative in the later test (total: 444 observations, data previously reported, using a different
analytical method [61]). E, F: Longitudinal profiles of bovine mammary gland leukocytes collected from a cow spontaneously infected with
methicillin-resistant S. aureus (MRSA) are shown (total: 28 longitudinal observations or 7 daily tests per mammary gland, a study previously reported,
in which a different analytical method, a different technology, and different samples were utilized [54]). G: Cross-sectional leukocyte profiles of
humans infected by either MRSA (n = 7) or non-MRSA (n = 15) bacterial isolates are described (data not previously reported). DPI: day(s) post-
inoculation with non-MRSA. DAYS: consecutive days since MRSA was isolated (day 1 = day of first isolation). Left columns show temporal data, in
longitudinal studies (A, E); or disease-positive (D+) and disease-negative (D–) malaria-related data subsets (C). Right columns display microbial test
results (B, D, F, G). Microbial-negative results that revealed high N/L values were suspected to be false negative (boxes, C-F). In the malaria study, 8
false negatives were detected (8 black circular symbols, of which one is shown within a box, C), which were associated with fever. Arrows indicate the
directionality of temporal responses (A, C, E). H: To facilitate visual detection of patterns, the same data displayed in plot C are shown again, with
emphasis on D– data (the symbols of D+ data are reduced in size). A data inflection is observed, which distinguishes two D– subsets. The high N/L
subset (black polygon, H), as indicated in the main text, was suspected (and later confirmed) to include false negatives.
doi:10.1371/journal.pone.0053984.g002
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Figure 3. Responsiveness of individuals – avian examples. The same avian data previously analyzed at the population scale (Figures 1 A–D)
were assessed at the individual scale (A-J). Even though chickens were selected through randomization, high variability was found. For instance, two
birds (# 8 and 14) were fast responders: as early as 1 day-post inoculation (dpi) with West Nile Virus, they showed leukocyte profiles typical of the late
or negative feedback phase (square boxes, A, G), In contrast, at least one bird did not display overshooting (no D+ observation of bird #10 displayed
MC/N values greater than the D– [0-dpi] data point, oval, C).
doi:10.1371/journal.pone.0053984.g003
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for instance, the ratio between lymphocytes and macrophages – a

multi-cellular interaction essential in antigen recognition [37].

To measure interactions, compositional data may be consid-

ered. Compositional data can provide relative information

(information on one factor in relation to another). Such

information is based on the use of ratios [38,39]. Leukocyte data

are compositional: their relationships can be expressed as relative

ratios [40]. Compositional data possess scale invariance: informa-

tive (interpretable and usable) data patterns can be expressed,

regardless of the (molecular/cellular/ multi-cellular/organ/popu-

lation/species/ecological) scale of the data [41–43].

Figure 4. Discrimination between bovine MRSA and non-MRSA patterns. While no leukocyte percentage discriminated between methicillin-
or multidrug-resistant S. aureus–infected (MRSA) and non-MRSA bovines (A), a three-dimensional (3D) plot that utilized SB/EB indicators distinguished
MRSA from non-MRSA patterns, e. g., MRSA observations displayed higher N/L values than non-MRSA data points, while higher MC/N values were
revealed by non-MRSA observations (B). The MRSA profile was differentiated even when compared against a large, cross-sectional bovine dataset (C).
Regardless of microbial test results, 3 MRSA data classes were detected (D). When, based on 3D patterns, the MRSA data were partitioned, each MRSA
data class (A, B, C) was distinguished by one or more indicators, and non-overlapping distributions were observed, which differed from one another
at statistically significant levels (P,0.01, Mann-Whitney test, Table 1, E). Horizontal lines indicate full discrimination (non-overlapping data
distributions) between two or more MRSA classes (E). Although utilizing a different quantitative method, bovine cross-sectional data of populations
II-VI (C) have been partially or totally reported before [55–59].
doi:10.1371/journal.pone.0053984.g004
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To complete the list of desirable criteria an informative method

should possess, data variability (‘noise’) should be reduced and

pattern recognition should be enhanced. Noise is reduced, if not

eliminated, when a single line of observations is generated. Data

patterns, if present, are likely to be detected when a single line of

data points is observed.

Informative patterns, such as data inflections, as well as a single

line of data points, can be generated when these conditions are

met: (i) functional data integrity is applied (data from all cell types

are considered), (ii) a 2D plot is created in which, on one axis, the

percentage of one cell type is expressed, and a ratio is recorded on

the second axis, and (iii) the denominator of such ratio is the same

percentage expressed on the first axis. We call such indicators

‘anchors’, e.g., the 2D set that includes the lymphocyte (L) % (axis

1) and the phagocyte (macrophage [M] and neutrophil [N])/L

ratio (axis 2). Because, in this structure, all data points are

‘anchored’ along a single line, noise is substantially reduced.

Because, to build ‘anchors’, only two axes are required, a third axis

remains available, in a 3D plot, to assess any additional variable.

Discrimination is also improved when bio-numerical properties

are considered in the design of the indicators, as when two ratios

are plotted together, and the numerator of one ratio is the

denominator of the other ratio (e.g., the neutrophil per lymphocyte

ratio [N/L ratio] vs. the mononuclear cell [MC, or L and M]/N

[MC/N ratio]). In such a structure, when one ratio increases, the

other ratio decreases. This structure acts as an ‘amplifier’: even

when changes are quantitatively small, distinct (usually orthogonal)

patterns can be revealed.

When ‘amplifiers’ are used and biological knowledge is included

in the design, temporal changes can be assessed. That can be

achieved when one ratio estimates early host-microbial responses

and the other ratio expresses late responses. For example, a 2D

plot that includes N/L and MC/N ratios indicates early responses

when the N/L ratio is high (e.g., much greater than 1), or late

responses when the MC/N ratio is .1 [44–46]. Such structure

can distinguish the temporal sequence of biological responses

regardless of chronological scales (minutes/hours/days) and is

robust to the absence (or presence) of slow (or fast) immune

responders [47].

While the cyclic nature of feedback features is useful to describe

dynamics [48–50], to detect infectious disease dynamics, logical

aspects should also be addressed. Fallacies may occur at the

Table 1. Comparisons between MRSA and non-MRSA profiles, and among MRSA subsets.

Data classes or subsets Variables P value (Mann-Whitney test)

Non-MRSA (all observations) vs. MRSA N/L ,0.01

Non-MRSA (all observations) vs. MRSA MC/N ,0.01

Non-MRSA post-challenge vs. MRSA N/L ,0.01

Non-MRSA post-challenge vs. MRSA P/L ,0.01

MRSA class A vs. MRSA class B SL/M ,0.01

MRSA class A vs. MRSA class B M/N ,0.01

MRSA class A vs. MRSA class B P/L ,0.01

MRSA class A vs. MRSA class C N/L ,0.01

MRSA class A vs. MRSA class C P/L ,0.01

MRSA class B vs. MRSA class C N/L ,0.01

MRSA class B vs. MRSA class C MC/N ,0.01

doi:10.1371/journal.pone.0053984.t001

Table 2. Cross-sectional bovine non-MRSA infections.

Population Prevalence (%) Examples of bacterial species isolated for studies I-VI

Major pathogens Minor pathogens Major pathogens Minor pathogens

CS I (n = 120) 27.5% 13.3% Staphylococcus aureus; Escherichia coli;
Streptococcus dysgalactiae; Streptococcus
uberis; Klebsiella pneumoniae

Staphylococcus chromogenes;
Staphylococcus hyicus; Corynebacterium
sp

CS II (n = 500)1 9.8% 5.2%

CS III (n = 429)2 9.9% 5.3%

CS IV (n = 80)3 2.5% 2.5%

CS V (n = 80)4 6.5% 23.8%

CS VI (n = 188)5 13.3% 11.2%

1. Raw data partially or totally reported elsewhere [55].
2. Raw data partially or totally reported elsewhere [56].
3. Raw data partially or totally reported elsewhere [57].
4. Raw data partially or totally reported elsewhere [58].
5. Raw data partially or totally reported elsewhere [59].
doi:10.1371/journal.pone.0053984.t002

Infectious Disease-Related Data Patterns

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e53984



Figure 5. The role of perspective: discrimination between early MRSA and other (MRSA and non-MRSA) patterns, in bovines and
humans. MRSA and non-MRSA induced leukocyte profiles were investigated in bovines and humans. In both species, non-MRSA individuals were
infected by methicillin-susceptible S aureus. Two 3D perspectives of the same data were analyzed in MRSA and non-MRSA bovine infections (A, B).
When the total leukocyte count (thousands of milk cells or ‘somatic cell counts’ [SCC]) was assessed together with the mononuclear cell (MC) percent
and the N/L ratio, two data subsets were differentiated: one was characterized by MRSA-only observations (red polygon), while the other data subset
included both MRSA and non-MRSA observations (A, B). The MRSA-only subset was predominantly composed of early observations (days 1–4, red
polygon, C, D). When human blood leukocyte counts (hundreds of white blood cell [WBC] counts), collected from MRSA and non-MRSA infected
individuals were investigated, a MRSA-only subset was observed, which was defined by the same parameters utilized with the bovine data: low MC%

Infectious Disease-Related Data Patterns
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earliest stage of an investigation, when a hypothesis is postulated.

For instance, when the hypothesis assumes that only two

alternatives are possible (e.g., one disease-positive [D+] and one

disease-negative [D–] data class [51]), but three or more

alternatives exist, errors will follow.

Hence, using assumption-free, structured indicators (designed to

reduce noise and possess functional data integrity), the multi-

dimensional patterns of host-microbial interactions were explored.

Two questions were asked: 1) can SB/EB indicators reveal

feedback phases? and 2) can such indicators be used to enhance

the detection of infectious disease-related data patterns?

Materials and Methods

Materials
Leukocyte data and microbial test results were collected in: 1)

bacterial infections induced by methicillin- or multidrug-resistant

Staphylococcus aureus (MRSA) and non-MRSA bacterial infections of

bovines and humans, 2) parasite (Plasmodium falciparum) infections

that affected humans; and 3) viral (West Nile virus) infections

experimentally induced in chickens. Six evaluations – three

longitudinal and three cross-sectional studies – were conducted.

Method
Leukocyte data (heterophils, granulocytes, or neutrophils [N];

macrophages or monocytes [M]; and lymphocytes [L]) were

structured as described earlier. Leukocyte and microbial proce-

dures are described in Text S1 of Supporting Information, which

includes a glossary [52-64]. Briefly, tables, generic, and goal-

related analyses were created or processed as follows:

A. Data organization and table building.

i. A table was created in which columns included primary

variables (L%, N%, M%, their counts, as well as

microbial test results).

ii. Additional columns included secondary variables, e.g.,

the percentages of (a) phagocytes (P, or N+M), (b)

mononuclear cells (MC, or L+M), and (c) the remaining

alternative, here named ‘small leukocyte’ (SL, or L+N).

iii. Later, tertiary variables were added to new columns,

which denoted interactions, such as the N/L, M/L, M/

N, P/L, MC/N, and SL/M ratios; e. g., the N/L ratio

was calculated by dividing the N% over the L%. Hence,

12 leukocyte-related variables were created from the 3

original percentages (through combinations, the number

of variables was expanded four times). However, more

combinations were generated when the analysis was

conducted.

B. Generic analysis.

i. When the goal was to produce a single line of data

points, ‘anchors’ were selected.

ii. When enhanced discrimination was pursued, ‘amplifi-

ers’ were chosen; for instance, if a 2D plot was used, the

N/L ratio was plotted on one axis and the M/N ratio

on the other.

iii. When both effects were pursued, a 3D plot was utilized

and one variable performed two roles, e. g., the set that

includes the N%, the MC/N and N/L ratios is both an

‘anchor’ (MC/N vs. N%) and an ‘amplifier’ (the N/L

vs. the MC/N).

iv. Because a ratio has two expressions (such as the L/M

and the M/L ratios), both versions of each ratio were

analyzed (a strategy that doubled the number of

possible analyses).

C. Applications or goal-oriented analysis.

i. To enhance discrimination, 3D plots were rotated until

a data inflection was displayed and one corner of the

plot displayed the zero value of all the three axes, as

shown in Figure 1.

ii. To determine directionality, temporal data were

assessed.

iii. To detect emergent properties, microbial data were

considered.

iv. To investigate the role of perspective, 3D plots were

rotated.

v. To explore robustness, different species/pathogens

were analyzed under the same angle.

vi. To distinguish different subsets of the same data class,

the 3D plot was rotated until the highest values of two

indicators were observed on opposite corners (as shown

in Figure 1). In addition, the size of symbols

representing non-relevant features was decreased, so

only the features of interest were emphasized, e.g., if the

goal was to detect false negatives, D+ symbols were

reduced; if the goal was to identify $2 D+ stages, D–

symbols were reduced.

Results

Feedback-related patterns
The use of SB/EB indicators in an experimental study of virally-

infected chickens revealed 10 properties or features: 1) functional

data integrity, 2) a single line of data points, 3) data inflections, 4) a

circular data structure, 5) directionality of the temporal responses,

6) patterns that suggested three feedback phases, 7) two distinct D+
subsets, 8) overshooting (a D+ subset with higher MC/N values

than D– observations), 9) information of prognostic value, and 10)

low data variability (Figure 1 A).

Functional data integrity was achieved because each observation

expressed values contributed by all cell types. Each data point

estimated three interactions: 1) the relationship between neutro-

phils and lymphocytes, 2) that between mononuclear cells and

neutrophils, and 3) the overall or ‘high-level’ interaction,

generated by the two interactions mentioned above.

The observed single line of observations revealed circularity, which

was characterized by three major data inflections: the first inflection

was observed within one day post-inoculation (1 dpi) with West

Nile virus (WNV, green arrow, Figure 1 A); around 5 days post-

inoculation (5 dpi), a second data inflection was observed (red

and high N/L values (red circle or rectangle, E, F). Because the number of observations found within the subset that only included MRSA observations
ranged between three (E) and five data points (F), it was demonstrated that the angle under which the data are analyzed is relevant: if perspective is
considered, greater discrimination may be achieved. Three leukocyte indicators distinguished the two human (MRSA-only vs. MRSA and non-MRSA)
subsets (P,0.01, Mann-Whitney test, G).
doi:10.1371/journal.pone.0053984.g005
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Figure 6. Detection of false negatives, prognosis, and three D+ data subsets in human malaria. The process by which false negative
results were assessed is illustrated with data collected from humans infected or not infected by malaria. Arrows indicate 8 parasite-negative results,
which were associated with high N/L values (A, also shown in Figures 2 C, D, H). Clinical data corresponding to the 8 children revealed that all of them
were febrile. Spatial data patterns facilitated the detection of the 8 false negative (FN) results: an orthogonal data inflection (sky blue line) separated
the data range in which the 8 FN points were found from the area in which D+ data predominated (A). Other spatial data patterns identified a subset
associated with a favorable prognosis: two D+ subsets (arrows, B) were separated from one another by a segment in which both D+ and D– data
points were observed, suggesting that the two D+ subsets observed at both ends of the plot could differ functionally (boxes, B). The subset with the
higher M% was suspected to be under recovery. When the 5 individuals within the high M% subset (red symbols, C) were tested again, two weeks
later, all of them were D– (green symbols, C). The change in health status, which took place within two weeks, revealed an orthogonal 3D data
inflection (D). An additional set of indicators (the L%, P/L and L/M ratios) detected a third D+ subset, which showed high L/M values and differed from
all other subsets (purple triangles vs. other symbols, E). Based on spatial patterns (shown in Figure 2 and here), the data were partitioned into subsets,
which differed from one another at statistical significant levels (all comparisons with P,0.03, Mann-Whitney test). The degree of non-overlapping
data distributions between two or more subsets (discrimination) was 1/336 (arrow indicates the overlapping point, F) when the 3 D+ stages
(characterized by high MC/N or under recovery [n = 5], medium L/M [n = 314], or high L/M [n = 17]) were assessed. Total discrimination (no
overlapping or 0/130) was seen when 3 D+ data classes (under recovery [n = 5], high L/M [n = 17], and FN [n = 8]) were assessed vs. the 3 D– classes
[n = 100]) and the set that included the N/L, MC/N, and M/N ratios was utilized (G).
doi:10.1371/journal.pone.0053984.g006
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arrow, Figure 1 A); which was followed, almost immediately, by

the last inflection (blue arrow, Figure 1 A). Because temporal

observations displayed directionality, three data ranges were

distinguished in Figure 1 A: 1) that of the steady feedback phase (0

dpi or D– data [green symbols, of which 80% were within the

range indicated by the green box]); 2) away from the steady state

phase (between 1 and 5 dpi), in which D+ data predominated

(positive feedback phase [red symbols]); and 3) the negative feedback

phase (after 5 dpi), in which, over time, D+ data (blue symbols)

approached the data range of the steady state phase. The end of

the feedback function was signaled when the latest (14-dpi)

observations reached values similar to those they started with (sky

blue symbols).

Hence, two D+ subsets (early D+ and late D+ observations) were

distinguished. The late D+ subset was characterized by high MC/

N values –observed around 5 dpi–, which displayed overshooting,

that is, greater MC/N values than those of D– data points.

Because the latest (14- dpi) D+ data points did not differ from D–

values, it was concluded that high MC/N, D+ individuals had a

favorable prognosis: such pattern indicated the beginning of the

return to the steady state phase. Because most early and late

observations were located on opposite sides of the plot analyzed,

both low variability and enhanced discrimination were documented

(Figure 1 A). To facilitate visualization, each feedback phase is

emphasized in Figures 1B–D.

Reproducibility of feedback-like patterns
The reproducibility of feedback patterns was investigated across

species and diseases (Figures 2 A–H). Longitudinal bovine

leukocyte profiles, assessed together with bacteriological test results

(Figures 2 A, B), showed patterns similar to those observed in

birds, such as a single line of data points, circularity and

directionality (arrows, Figure 2 A). While the, predominantly,

cross-sectional nature of the human data prevented the full

determination of temporal features (Figures 2 C, D), a subset of 5

D+ children, who were tested twice, also revealed, partially, the

directionality shown by birds and cows: a group of high MC/N,

D+ children, when tested two weeks later, was D– (blue arrow,

Figure 2 C). The fact that 5 children (D+ at their first test) were D–

two weeks later, suggested, again, that leukocyte-microbial profiles

(high MC/N, D+ data) can have prognostic applications. Even

though the spontaneous nature of bovine MRSA infections could

not show a D– profile (no ‘day 0’ data were available, Figures 2 E,

F), the bovine MRSA data revealed the same (early vs. late)

temporal patterns observed in other studies (arrows, Figure 2 E).

Although longitudinal data were not available in the study in

which humans were infected by bacteria, a distinct pattern was

observed: MRSA observations did not express overshooting (no

MRSA infection displayed high MC/N values), while non-MRSA

data did (Figure 2 G). False negative results were suggested by

human and bovine data profiles: some hHHigh N/L values were

associated with microbial-negative results (black boxes, Figures 2

C–F). The false negative hypothesis was confirmed in humans: 8

microbial-test negative, high N/L children were febrile (8 black

circular symbols, one within a black box, Figures 2 C, D, H).

From no discrimination to discrimination of host-
microbial interactions

Discrimination of health status was lost when individuals, not

populations, were analyzed (Figures 3 A–J). Some birds were fast

responders –they showed patterns typical of late D+ responses as

early as one day after challenge (boxes, Figures 3 A, G), while one

bird did not display high MC/N values at any time (oval, Figure 3

C). Such differences in responsiveness were observed even though

the birds included in this study were randomly selected.

Discrimination was also lost when ‘functional data integrity’ was

not considered (when each leukocyte type was assessed alone).

When only the percentage of neutrophils (lymphocytes, or

macrophages) was assessed, bovine MRSA and non-MRSA data

overlapped (Figure 4 A).

In contrast, SB/EB indicators distinguished non-MRSA from

MRSA data: while non-MRSA data displayed ‘left overshooting’ –

higher MC/N values than those of MRSA data points–, all four

mammary glands of the MRSA cow showed ‘right overshooting’

(higher N/L values than those of non-MRSA infections, Figure 4

B). The MRSA profile was detected even when compared against

a large, cross-sectional, non-MRSA dataset (Figure 4 C, Table 1;

see Table 2 for further details on the non-MRSA, cross-sectional

data). Even though no MRSA was isolated in three bovine

mammary glands, all four mammary glands of the MRSA cow

showed similar leukocyte profiles, which revealed 3 data classes (A,

B, and C). Figure 4 D shows that the distributions of classes A–C

did not overlap. All three MRSA data subsets were statistically

differentiated by, at least, one indicator (P,0.01, Mann-Whitney

test, Table 1; and Figure 4 E).

To determine whether perspective influences pattern detection,

both human and bovine S. aureus-positive data were analyzed

under different angles. The set that included leukocyte counts

(human white blood cells or WBC, and bovine somatic cells or

SCC [milk cells mainly composed of leukocytes]), the percentage

of mononuclear cells (MC %) and the N/L ratio revealed a subset

of data points that was only or mainly composed by MRSA

Table 3. Differentiation of malaria classes.

Data classes D– (n = 83)
D– NIFNI
(n = 12)

D– (recovered,
n = 5)

False D–(febrile,
n = 8)

D+ high MCN/N
(n = 5)

D+ low SL/M
(n = 314)

D– NIFNI (n = 12) NS

D– recovered (n = 5) NS NS

False D– (febrile, n = 8) ,0.01 ,0.01 ,0.01

D+ high MC/N (n = 5) ,0.01 ,0.01 ,0.01* ,0.01

D+ medium L/M (n = 314) ,0.01 ,0.01 ,0.03# ,0.01 ,0.01

D+ high L/M) (n = 17) ,0.01 ,0.01 ,0.01 ,0.01* ,0.01 ,0.01

The statistical results of human data reported in Figures 6 E-G (n = 444) are shown, where pairs of data classes are compared. The P values of analysis of medians (Mann-
Whitney test) were determined by the MC/N ratio, the SL/M ratio (*), or the P/L ratio (#). NS: not significant at P = 0.05. The D– NIFNI group (neither infected, febrile, nor
inflamed) is not a separate class, it is a reference for the overall D– class. See legend of Figures 6 E-G for further details.
doi:10.1371/journal.pone.0053984.t003
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Figure 7. Assessment of ratios, counts, percentages, and hypothesis-related assumptions. When the SB/EB approach was not applied,
the percentage of lymphocytes, neutrophils, or macrophages did not distinguish, in any study, D– from D+ data (A–D). Indicators that, together,
detected patterns (the N%, the N/L and MC/N ratios), did not discriminate D– from D+ data when assessed individually (E–H). Total leukocyte counts
also failed to distinguish health status: neither the human white blood cell count (WBC) nor the bovine milk total cell count (‘somatic cell count’ or
SCC) differentiated D– from D+ data (I, J). Hence, findings supported several Systems Biology principles: 1) data integrity is necessary (because the
immune system is indivisible, discrimination is lost when any leukocyte type is measured alone, A–D), 2) the format utilized is relevant: to detect
‘high-level’ interactions (those involving at least two interactions), 2D or 3D plots are required (as Figures 1, 2, 3, 4, 5, 6 show); and 3) emergence was
demonstrated: while, individually, no indicator distinguished D– from D+ data (A–H), when 3D structures were assembled, D– and D+ data were
distinguished (as shown, for instance, in Figure 2 H). Findings also demonstrated that statistical significance is not synonymous with discrimination:
the median WBC count of human MRSA infections differed from the median WBC count of non-MRSA individuals (P,0.03, Mann-Whitney test), even
though D– and D+ data overlapping was observed (I). However, when the data were structured as SB/EB indicators, both statistical significance and
discrimination were achieved (as shown, for instance, in Figures 4, 5, 6). SCC: somatic cell counts (thousands)/ml. WBC: white blood cells (hundreds)/
ml.
doi:10.1371/journal.pone.0053984.g007
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observations (red polygons or circles, Figures 5 A–F). This subset

did not overlap with the remaining (MRSA and non-MRSA) data

points. When the data were analyzed under two different angles,

between three and five data points were found within the human

MRSA-only cluster (Figures 5 E, F). Hence, perspective may

indeed alter the number of observations detected with a particular

feature.

Because the human and bovine MRSA-only clusters revealed

similar values (Figures 5 C-F) and the bovine cluster included the

earliest observations (days 1–4, Figures 5 C, D), the MRSA-only

cluster was suspected to express early infections. The early

(MRSA-only) cluster differed statistically from the remaining data

points (P,0.01, Mann-Whitney test, Figure 5 G).

Other indicators (that possessed functional data integrity but did

not meet ‘anchoring’ criteria) confirmed the patterns shown by the

indicators described above. For instance, in the malaria study, the

indicator set that measured the M/N (not the MC/N) ratio

identified the same 8 data points regarded to be false negatives

(arrows, Figure 6A; data also shown in Figure 2 H).

When a different ‘anchor’ (composed of the SL/M ratio and the

M%) was used to analyze the malaria data, two D+ subsets were

distinguished (Figure 6 B). Because the D+ subset with the highest

M % and lowest SL/M values indicated a recovery profile,

children in that subset were examined 14 days later. At that time

point, all previously D+ children were D– and showed a distinct,

non-overlapping leukocyte profile (Figure 6 C). The changing

pattern observed over two weeks, which supported a favorable

prognosis, displayed a 3D data inflection (Figure 6 D).

A third D+ subset was found in the malaria data with a ‘hybrid’

set that included both ‘anchor’ (the P/L ratio vs. the L%) and

‘amplifier’ features (the P/L and L/M ratios, Figure 6 E). Such

structure facilitated data partitioning into subsets. Statistically

significant differences were found: 1) between FN and all D–

observations, 2) between every D+ subset and every D– subset,

and 3) among the 3 D+ subsets (P#0.03, Mann-Whitney test,

Table 3).

Because statistical significance may be found even in the

absence of discrimination (D+ and D– data overlapping may

occur, even when median D+ and D– values differ statistically), the

SB/EB approach was also assessed spatially. No data overlapping

was found among: 1) the three D+ subsets (Figure 6 F); and 2) all

three D– and two D+ (and FN) stages (Figure 6 G). The

overlapping rate (percentage of observations assigned to one

disease stage which showed values typical of another disease class)

ranged between 0 (Figure 6 G) and 0.002 (1/336, one medium L/

M D+ data point was found within the range of 336 high MC/N

D+ data points, arrow, Figure 6 F). While spatial patterns did not

distinguish some D+ (low or medium L/M) data points from D–

data, such classes were differentiated on the basis of parasite test

results (Figures 6 F, G).

Assessment of percentages, ratios, counts, and
hypothesis-related assumptions

When SB/EB concepts were not applied, neither the L%, the

N%, nor the M%, alone, differentiated, in any study conducted,

D+ from D– data (Figures 7 A–D). When SB/EB concepts were

not applied, neither log-transformations nor ratios distinguished

data classes (Figures 7 E–H). In two species, cell counts did not

distinguish MRSA from non-MRSA subjects (Figures 7 I, J).

Hence, without the SB/EB approach, no primary variable, per se,

could discriminate.

The validity of the ‘gold standard’ (the assumption that there is

an ideal microbial test) was not supported in the human study on

malaria: 8 children regarded as D– by the tests used were febrile

(false negatives or FN, Figure 2 C). In the bovine MRSA study,

only two out of 7 tests (performed with milk collected from the

same mammary gland) yielded MRSA, that is, the ‘gold standard’

hypothesis failed 5 out of 7 times (a 71.3% false negative rate, see

Figures 2 E, F). In contrast, in humans, SB/EB spatial patterns

identified data points suspected to be FN: they were spatially

distant from D– observations (Figures 2 C, H; and 6 E).

Discussion

Major findings
The SB/EB approach revealed similarities across vertebrate

species (e.g., data circularity, Figures 1 and 2). Such approach also

demonstrated differences within the same species and disease. For

instance, high L/M values distinguished one malaria-positive

subset [65] from other D+ subsets (Figure 6 E). Findings rejected:

1) the ‘gold standard’ hypothesis; 2) the binary hypothesis (only

two, one D+ and one D–, data classes); and 3) the hypothesis that

postulates randomization reduces variability. To interpret the

findings, biological, statistical and methodological aspects are

considered and their influence on theory is outlined.

Biological and statistical considerations
In agreement with the theory that predicates the immune

system is indivisible [66], no cell type, alone, discriminated D+
from D– subsets (Figure 7). It was also confirmed that

dichotomizing approaches (which attempt to convert data

inherently continuous into discontinuous data classes) are associ-

ated with D+ and D– data overlapping [67].

In contrast, discrimination was enhanced when interactions

among all leukocytes were explored in a 3D space. Such approach

measured or revealed hierarchy, feedback, and emergence [66].

‘Hierarchy’ was assessed by focusing on the trans-vertebrate species

set that also included several pathogen types. Such system revealed

feedback loops. ‘Emergence’ was not revealed by any one primary

component. Emergent properties, such as false negative patterns,

were only detected when several levels of the biological system

were assembled.

While SB/EB properties have been regarded to reveal low

variability [12], avian data seemed to contradict such expectation.

In spite of randomization [68], high data variability was shown by

the fact that both low and fast responders were observed (Figure 3).

High variability co-existed with low variability, as Figure 1 reveals.

To explain such an apparent contradiction, we could pose the

following question: ‘how old are you: 44 million years old, or four

years old?’ The answer is not ‘neither’ but, probably, ‘both.’ All

vertebrates are ‘44 million years old’ because many of their critical

structures are that old, if not older, such as mitochondria and the

complement system [69–71]. Yet, a particular species (and an

individual of a particular species) is much ‘younger’, e.g., the first

chickens (Gallus domesticus) and hominids emerged in the last 3.6

million years [72,73]. That means that individuals express

biological functions that precede their own species and their

own birth.

On the other hand, because the responsiveness of an individual

can be shaped by unique experiences and pathogens can undergo

mutations (such as MRSA), ‘new’ situations may arise. Because

methicillin was introduced in 1960 [4], MRSA infections are

recent evolutionary phenomena. Because vertebrates have not yet

had enough time to adapt to MRSA, it is not surprising that the

immune response against MRSA differs from that against well-

conserved (non-MRSA) pathogens (as observed, here, in two

species). Because vertebrates participate in both ‘old’ and ‘new’

interactions, there is no contradiction between the variability
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shown by individual birds and the similarity displayed by well-

conserved functions, such as feedback.

Because MRSA pathogens, in addition to be resistant to anti-

microbials, also induce immune failure, such pathogens may elicit

abnormally high –although ineffective– N/L ratios [74–79], as

found in bovines and humans. The highest values of such

dysfunctional relationships were observed at the earliest observa-

tions (Figures 5 A–F). Because a high immune response can only

be sustained for a limited time, such pattern could be used to

distinguish early MRSA from late (MRSA and non-MRSA)

responses.

Methodological considerations
Methodological issues were also evaluated [80]. Because false

negatives were documented, the hypothesis that there is an ideal

test (‘gold standard’) was rejected [81,82]. Because two or more

D+ stages were distinguished, both the binary hypothesis (‘only

two data classes’) and the assumption that all D+ data points have

similar meaning were negated (Figures 1 and 6 B–E). One possible

reason why those hypotheses were not empirically supported is

that they do not account for dynamics and/or data circularity

[83,84].

Findings also addressed a problem, described as follows: in

order to identify an infecting microbe, a specific test is needed;

however, in order to choose such test, the identity of the pathogen

should be known in advance. While the ‘gold standard’ could not

solve this conundrum, the SB/EB approach provided an

alternative for its solution [85].

Consequences on theory
Findings may be used to rectify a concept previously espoused.

Feedback loops do not differ in directionality, as suggested before

[24]. The apparent change in directionality is an artifact due to

earlier analyses, which did not consider 3D interactions: in 3D

space, feedback loops reveal a single (circular) directionality.

Because feedback loops expressed temporal changes, causality

was supported [24]. Thus, the 3D feedback-oriented analysis

provided both descriptive and explanatory information.

Unlike approaches that dichotomize continuous data and

generate D+ and D– data overlapping [62], the 3D analysis of

feedback loops displayed data inflections, which resulted in

minimal D+ and D– data overlapping. Such feature could be

used to facilitate data partitioning.

Data structured to express feedback dynamics overcame the

limitations of static approaches, as when Principal Component

Analysis is used to assess compositional data [86]. Unlike

prevalence – a static index [87]–, the proportion of subjects

within early vs. late responses (information on dynamics) could

distinguish populations with similar prevalence levels. Findings

also showed that SB models can be applied across scales [88].

Replications and applications
Across species, the SB/EB approach helped to recognize

infectious disease data patterns. Because this study did not focus

on the pathogenesis of any disease, the reproducibility of the

findings should be investigated in future studies. Potential

applications include: 1) early diagnosis, 2) error detection, 3)

differentiation of D+ classes, 4) prognosis, 5) evaluation of

interventions, and 6) modeling.

For instance, two or more D+ classes may be distinguished

[89,90]. High MC/N values (‘left overshooting’) could be used to

predict recovery. When ‘right overshooting’ is observed (high N/L

or P/L values) but no microbe is isolated, an infection cannot be

ruled out (a false negative result may be suspected). To prevent

delayed detection of MRSA cases [91], the SB/EB approach,

which seemed to reveal early MRSA data patterns, could be

considered.

The SB/EB approach may also be used to evaluate interven-

tions and support modeling. For instance, the evaluation of

interventions may distinguish the influence of feedback from the

responsiveness of individuals: when an intervention seems to be a

‘success’, it could be asked whether such outcome is due to fast

responders (a ‘false positive’ result), or, when a ‘failure’ appears to

occur, whether it is due to slow responders (a ‘false negative’

result). In mathematical modeling, analyses that focus on MRSA-

like infections could be optimized if the cyclic nature and

directionality of feedback processes were addressed [92–94].

Conclusions

More information related to infectious diseases can be

extracted, using the same data, when some conditions are met.

Findings document the influence of data structure on the amount

and explanatory content of infectious disease-related information.

Feedback-related patterns of 3D leukocyte structures may have

broad applications, including earlier diagnosis and detection of

errors.

Supporting Information

Text S1 Description on institutional approvals; descrip-
tions on avian, bovine, and human studies; glossary; and
data analysis.

(DOC)

Acknowledgments

The assistance of Jonathan Berkowitz, Brett Basler, and Kelly Montenero

is appreciated.

Author Contributions

Assisted in the graphic presentation of data structures: PK. Conceived and

designed the experiments: ALR ALH. Performed the experiments: MDJ R.

Piccinini GL DS KLA WW SB TW SNK JMO USD R. Pilla. Analyzed

the data: ALR JMH JBH. Contributed reagents/materials/analysis tools:

JMF MC C-PC. Wrote the paper: ALR DJP.

References

1. McBryde ES, Brett J, Russo PL, Worth LJ, Bull AL, et al. (2009) Validation of

statewide surveillance system data on central line – associated bloodstream

infection in intensive care units in Australia. Infect Control Hosp Epidemiol

30:1045–1049. DOI: 10.1086/606168.

2. Rerknimitr R, Limmathurotsakul D, Bhokaisawan N, Kongkam P, Treeprasert-

suk S, et al. (2010) A comparison of diagnostic efficacies among different reagent

strips and automated cell count in spontaneous bacterial peritonitis.

J Gastroenterol Hepatol 25: 946–950. DOI: 10.1111/j.1440-1746.2009.06153.x.

3. Tárnok A, Pierzchalski A, Valet G (2010) Potential of a cytomics top-down

strategy for drug discovery. Curr Med Chem 17:1719–1729.

4. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylo-

coccus aureus Clin Inf Dis 46:S344–S349. DOI: 10.1086/533590.

5. Goldberg DE, Siliciano RF, William R. Jacobs WR Jr (2012) Outwitting

Evolution: fighting drug-resistant TB, Malaria, and HIV. Cell 148: 1271–1283.

DOI 10.1016/j.cell.2012.02.021.

Infectious Disease-Related Data Patterns

PLOS ONE | www.plosone.org 14 February 2013 | Volume 8 | Issue 2 | e53984



6. Nesse RM, Stearns SC (2008) The great opportunity: evolutionary applications

to medicine and public health. Evol Appl 1:28–48. DOI:10.1111/j.1752-

4571.2007.00006.x.

7. Johnson BR (2010) Eliminating the mystery from the concept of emergence. Biol
Philos 25:843–849. DOI: 10.1007/s10539-010-9230-6.

8. Macklem PT (2008) Emergent phenomena and the secrets of life. J Appl Physiol

104:1844–1846. DOI: 10.1152/japplphysiol.00942.2007.

9. Zak DE, Aderem A (2009) Systems Biology of innate immunity. Immunol Rev

227:264–282. DOI: 10.1111/j.1600-065X.2008.00721.x.

10. Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Phil
Trans R Soc B 364:1483–1489. DOI: 10.1098/rstb.2009.0027.

11. Boshra H, Li J, Peters R, Hansen J, Matlapudi A, et al. (2004) Cloning,

expression, cellular distribution, and role in chemotaxis of a C5a receptor in
rainbow trout: the first identification of a C5a receptor in a nonmammalian

species. J Immunol 172: 4381–4390.

12. Luni C, Shoemaker JE, Sanft KR, Petzold LR, Doyle FJ (2010) Confidence from

uncertainty – A multi-target drug screening method from robust control theory.
BMC Syst Biol 4:161. DOI:10.1186/1752-0509-4-161.

13. Kitano H (2002) Computational systems biology. Nature 420:206–210. DOI:

10.1038/nature01254.

14. Villoslada P, Steinman L, Baranzini SE (2009) Biology and its application to the

understanding of neurological diseases. Ann Neurol 65:124–139. DOI: 10.1002/
ana.21634.

15. Kitano H (2002) Systems Biology: A brief overview. Science 295:1662–1664.

DOI: 10.1126/science.1069492.

16. Drack M, Wolkenhauer O (2011) System approaches of Weiss and Bertalanffy
and their relevance for systems biology today. Semin Cancer Biol 21:150–155.

DOI: 10.1016/j.semcancer.2011.05.001.

17. Pritchard L, Birch P (2011) A systems biology perspective on plant–microbe

interactions: biochemical and structural targets of pathogen effectors. Plant Sci
180:584–603. DOI: 10.1016/j.plantsci.2010.12.008.

18. Cedersund G, Roll J (2009) Systems biology: model based evaluation and

comparison of potential explanations for given biological data. FEBS J 276: 903–
922. DOI: 10.1111/j.1742-4658.2008.06845.x.

19. Schindler M, Nur EKA, Ahmed I, Kamal J, Liu HY et al. (2006) Living in three

dimensions: 3D nanostructured environments for cell culture and regenerative

medicine. Cell Biochem Biophys 45:215–227. DOI: 10.1385/CBB:45:2:215.

20. Noble D (2010) Biophysics and systems biology. Phil Trans R Soc 368:1125–
1139. DOI: 10.1098/rsta.2009.0245.

21. Song Z, Chung CKR (2010) Determining both surface position and orientation

in structured-light-based sensing. IEEE Trans. Pattern Anal Mach Intell

32:17701780. DOI: 10.1109/TPAMI.2009.192.

22. Way CF, Silver PA (2007) Systems engineering without an engineer: why we
need Systems Biology. Complexity 13: 22–29. DOI 10.1002/cplx.20198.

23. Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief

Bioinform 8: 220–225. DOI: 10.1093/bib/bbm028.

24. Mitrophanov AY, Groisman EA (2008) Positive feedback in cellular control
systems. Bioessays 30:542–555. DOI: 10.1002/bies.20769.

25. Zeron ES (2008) Positive and negative feedback in engineering and biology.

Math Model Nat Phenom 3:67–84. DOI: 10.1051/mmnp:2008055.

26. Cannon WB (1932) The wisdom of the body. W. W. Norton, New York.

27. Umbarger HE (1956) Evidence for a negative-feedback mechanism in the

biosynthesis of isoleucine. Science 123:848.

28. Forrester JW (1961) Industrial Dynamics. MIT Press: Cambridge, MA.

29. Freeman M (2000) Feedback control of intercellular signalling in development.
Nature 408:313–319.

30. Senge PM (1990) The Fifth Discipline: The Art and Practice of the Learning
Organization. Currency Doubleday, New York.

31. Groesser SN, Schaffernicht M (2012) Mental models of dynamic systems: taking

stock and looking ahead. Sys Dyn Rev 28:46–68. DOI: 10.1002/sdr.476.

32. Shiraishi T, Matsuyama S, Kitano H (2010) Large-scale analysis of network
bistability for human cancers. PLoS Comp Biol 6: e1000851. DOI: 10.1371/

journal.pcbi.1000851.

33. Goldbeter A, Gérard C, Gonze D, Leloup J-C, Dupont G (2012) Systems

biology of cellular rhythms. FEBS Letters 586:2955–2965. DOI: 1016/
j.febslet.2012.07.041.

34. Crofts AR (2007) Life, information, entropy, and time. Complexity 13:14–50.

DOI: 10.1002/cplx.20180.

35. Noble D (2011) The aims of Systems Biology: between molecules and organisms.
Pharmacopsychiatry 44 Suppl. 1: S9-S14. DOI: 10.1055/s-0031-1271703.

36. Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM (2006) Life-history
evolution and the origin of multicellularity. J Theor Biol 239:257–272. DOI:

10.1016/j.jtbi.2005.08.043.

37. Dustin ML (2009) The cellular context of T cell signaling. Immunity 30:482–
492. DOI 10.1016/j.immuni.2009.03.010.

38. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall,

London.

39. Baxter MJ, Freestone IC (2006) Log-ratio compositional data analysis in

archaeometry. Archaeometry 48: 511–531. DOI: 10.1111/j.1475-
4754.2006.00270.x.

40. Katz JN, King G (1999) A statistical model for multiparty electoral data. Amer

Pol Sci Rev 93:15–32. DOI: 10.2307/2585758.

41. Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a
universal mechanism? Biol Rev 76: 161–209.

42. Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and

where should we be heading? Math Geol 37: 829–850. DOI: 10.1007/s11004-

005-7383-7.

43. Auffray C, Nottale L (2008) Scale relativity theory and integrative systems

biology: 1 Founding principles and scale laws. Progr Biophys Mol Biol 97: 79–

114. DOI: 10.1016/j.pbiomolbio.2007.09.002.

44. Rivas AL, Quimby FW, Coksaygan O, Alba A, Arina A, et al. (2001) Expression

of CD3 and CD11b antigens on blood and mammary gland leukocytes and

bacterial survival in milk of cows with experimentally induced Staphylococcus aureus

mastitis. Am J Vet Res 62: 1840–1851. DOI: 10.2460/ajvr.2001.62.1840.

45. Rivas AL, Quimby FW, Blue J, Coksaygan O (2001) Longitudinal evaluation of

bovine mammary gland health status by somatic cell counting, flow cytometry,

and cytology. J Vet Diagn Invest 13:399–407. DOI: 10.1016/j.jinf.2008.02.007.

46. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, et al. (2005)

Molecular circuits of resolution: formation and actions of resolvins and

protectins. J Immunol 174:4345–4355.

47. Siawaya JFD, Bapela NB, Ronacher K, Veenstra H, Kidd M, et al. (2008)

Immune parameters as markers of tuberculosis extent of disease and early

prediction of anti-tuberculosis chemotherapy response. J Infect 56: 340–347.

DOI: 10.1016/j.jinf.2008.02.007.

48. Aubel D, Fussenegger M (2010) Watch the clock—engineering biological

systems to be on time. Curr Opin Genet Devel 20:634–643. DOI: 10.1016/

j.gde.2010.09.003.

49. Stark J, Chan C, George AJT (2007) Oscillations in the immune system.

Immunol Rev 216: 213–231.

50. Mehr R (2006) Feedback loops, reversals and nonlinearities in lymphocyte

development. Bull Math Biol 68: 1073–1094. DOI: 10.1007/s11538-006-9124-

6.

51. Laking G, Lord J, Fischer A (2006) The economics of diagnosis. Health Econ 15:

1109–1120. DOI:10.1002/hec.1114.

52. Jankowski MD, Franson JC, Mostl E, Porter WP, Hofmeister EK (2010) Testing

independent and interactive effects of corticosterone and synergized resmethrin

on the immune response to West Nile virus in chickens. Toxicology 269: 81–88.

DOI: 10.1016/j.tox.2010.01.010.

53. Schmidt NJ, Emmons RW, Association APH (1989) Diagnostic procedures for

viral, rickettsial, and chlamydial infections: American Public Health Association

Washington, DC.

54. Pilla R, Castiglioni V, Gelain ME, Scanziani E, Lorenzi V, et al. (2012) Long-

term study of MRSA ST1, t127 mastitis in a dairy cow. Vet Rec 170: 312. DOI:

10.1136/vr.100510.

55. Anderson KL, Correa MT, Allen A, Rodriguez RR (2010) Fresh cow mastitis

monitoring on day 3 postpartum and its relationship to subsequent milk

production. J Dairy Sci 9: 5673–5683. DOI: 10.3168/jds.2009–2885.

56. Leitner G, Shoshani E, Krifucks O, Chaffer M, Saran A (2000) Milk leucocyte

population patterns in bovine udder infection of different aetiology. J Vet Med B

47:581–589. DOI: 10.1046/j.1439-0450.2000.00388.x.

57. Schwarz D, Diesterbeck US, Koenig S, Bruegemann K, Schlez K, et al. (2011)

Microscopic differential cell counts in milk for the evaluation of inflammatory

reactions in clinically healthy and subclinically infected bovine mammary glands.

J Dairy Res 78: 448–455. DOI 10.1017/S0022029911000574.

58. Schwarz D, Diesterbeck US, Koenig S, Bruegemann K, Schlez K, et al. (2011)

Flow cytometric differential cell counts in milk for the evaluation of

inflammatory reactions in clinically healthy and subclinically infected bovine

mammary glands. J Dairy Sci 94: 5033–5044. DOI: 10.3168/jds.2011–4348.

59. Pilla R, Schwarz D, Koenig S, Piccinini R (2012) Microscopic differential cell

counting to identify inflammatory reactions in dairy cow quarter milk samples.

J Dairy Sci 95:4410–4420. DOI: 10.3168/jds.2012–5331.

60. Anderson KL, Lyman RL, Bodeis-Jones S M, White DG (2006). Genetic

diversity and antimicrobial susceptibility profiles among mastitis-causing

Staphylococcus aureus isolated from bovine milk samples. Amer J Vet Res

67:1185–1191. DOI: 10.2460/ajvr.67.7.1185.

61. Novelli EM, Hittner JB, Davenport GC, Ouma C, Were T, et al. (2010) Clinical

predictors of severe malarial anaemia in a holoendemic Plasmodium falciparum

transmission area. Br J Haematol 149: 711–721. DOI:10.1111/j.1365-

2141.2010.08147.x.

62. Ong’echa JM, Keller CC, Were T, Ouma C, Otieno RO, et al. (2006)

Parasitemia, anemia, and malarial anemia in infants and young children in a

rural holoendemic Plasmodium falciparum transmission area. Am J Trop Med Hyg

74:376–385.

63. Were T, Davenport GC, Hittner JB, Ouma C, Vulule JM, et al. (2011)

Bacteremia in Kenyan children presenting with malaria. J Clin Microbiol

49:671–676. DOI: 10.1128/JCM.01864-10.

64. Wikler MA (2009) Clinical and Laboratory Standards Institute. Performance standards for

antimicrobial disk susceptibility tests: approved standard. 10th ed. Wayne, Pa.: Clinical

and Laboratory Standards Institute.

65. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, et al. (2010) Impact of

Plasmodium falciparum infection on haematological parameters in children living in

Western Kenya. Malar J 9 (Suppl 3):S4. DOI: 10.1186/1475-2875-9-S3-S4.

66. Kurakin A (2009) Scale-free flow of life: on the biology, economics, and physics

of the cell. Theor Biol Med Model 6:6. DOI: 10.1186/1742-4682-6-6.

67. Altman DG, Royston P (2006) The cost of dichotomising continuous variables.

BMJ 332:1080. DOI: 10.1136/bmj.332.7549.1080.

Infectious Disease-Related Data Patterns

PLOS ONE | www.plosone.org 15 February 2013 | Volume 8 | Issue 2 | e53984



68. Hernán MA, Robins JM (2006) Estimating causal effects from epidemiological

data. J Epidemiol Community Health 60: 578–586. DOI: 10.1136/

jech.2004.029496.

69. Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and

compartments. Photosynth Res 95:11–21. DOI: 10.1007/s11120-007-9236-3.

70. Smith LC, Clow LA, Terwilliger DP (2001) The ancestral complement in sea

urchins. Immunol Rev 180:16–34. DOI: 10.1034/j.1600-065X.2001.1800102.x.

71. Schmitz J, Piskurek O, Zischler H (2005) Forty million years of independent

evolution: a mitochondrial gene and its corresponding nuclear pseudogene in

primates. J Mol Evol 61:1–11. DOI: 10.1007/s00239-004-0293-3.

72. Sawai H, Kim HL, Kuno K, Suzuki S, Gotoh H (2010) The origin and genetic

variation of domestic chickens with special reference to junglefowls Gallus g. and

G. varius. PLoS ONE 5: e10639. DOI: 10.1371/journal.pone.0010639.

73. Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine

and pelvis. Gait Posture 21: 95–112. DOI: 10.1016/j.gaitpost.2004.01.001.
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