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Preface

Counterparty Credit Risk and Funding Costs have recently become very urgent top-
ics in derivatives pricing, stimulating new research fields within banks and corpo-
rates.

On one side, in fact, the risk of default has reached financial institutions that
were previously thought to be default immune, channeling enormous stress on credit
spreads.

On the other hand, and to a certain extent consequently, the access to liquidity has
become more difficult and quite expensive for all market participants, especially for
those with a lower credit quality. The fundamental reason for rising cost of liquidity
along with the increase in credit spreads, lies in the fact that funding provisions are
not performed at the risk-free rate, but they are linked to the creditworthiness of the
party itself.

The financial framework for Counterparty Credit Risk is that of a bilateral con-
tract, where one or both parties may have the right to receive a payment, or con-
versely may have the obligation to make a payment, during the life of the transac-
tion or at maturity. In IRS pricing, where it is not possible to know in advance the
sign of the mark-to-market of the derivative during the life of the transaction, both
parties may eventually have the right or the obligation to make a payment. When
dealing with bilateral contracts such as swaps, it is therefore advisable to consider
the risk of default of both parties, as it is not possible to know in advance which one
will be the surviving or defaulting party, and for whom the mark-to-market shall be
negative or positive at time of default.

In order to assess Counterparty Credit Risk it is necessary to assume the point
of view of one of the two parties, and consequently make all evaluations from the
reference party’s perspective.

Counterparty Credit Risk therefore represents the risk for one party that the coun-
terparty in a OTC transaction defaults prior to maturity, thus not fulfilling all its
payment obligations.

The relevance of this risk has increased after 2007 credit crisis, which showed
that counterparties could indeed default, especially big financial institutions that
were previously considered almost risk-free.

ix
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Market players converged in the search for an indicator that could include in the
pricing of a transaction the relevant counterparty risk they were implicitly bearing
when entering a deal. This search led to the identification of the so called ”CVA”,
i.e. Credit Value Adjustment.

This risk factor indicator must be therefore intended as the adjustment that has
to be included when pricing OTC derivatives, in order to properly account for the
probability of default of one’s counterparty. Counterparty Credit Risk is therefore
relevant when the mark-to-market of the derivative is negative for the defaulting
party. In this case, in fact, the surviving party will only receive a portion of its
positive mark-to-market and will consequently incur a loss, that has to be priced in
advance and charged accordingly.

When dealing with bilateral contracts, though, where the mark-to-market may
be positive or negative to both parties, also the counterparty may be exposed to
the risk of default of the reference party, and in order to proper account for this
eventuality, also the ”DVA”, i.e. Debt Value Adjustment, is introduced. For this
reason, Counterparty Credit Risk will be addressed in the form of Bilateral Credit
Value Adjustment (BCVA), in order to properly account for the risk of default of
both parties.

Relevant literature concerning pricing techniques for Counterparty Credit Risk
includes, among all, Burgar and Kjaer [20], Morini and Prampolini [44], Gregory
[33] and [34], Brigo [8], Brigo et. al. [10], Brigo and Capponi [11], Brigo and Morini
[16] and [17].

The increasing importance of risk of default of a party has also led to a signifi-
cant impact on the cost of funding for any liquidity disbursement. In fact, as the cost
of funding on the bond primary market depends on the credit spread of the party
itself, the higher the credit riskiness of a party perceived by the market, the more
expensive the cost of funding the market would require to that party. As a conse-
quence, the cost for funding any cashflow expected to be paid during the life of the
underlying transaction, has recently started to be relevant and worth be priced in the
overall value of the underlying contract in the context of credit risk. Literature is
only at dawn in developing a coherent pricing framework for Funding Costs to be
charged in a OTC derivative, see on this regard Brigo et. al. [19] and Crepey [24].
This is the reason why a computation methodology for Funding Costs pricing and
accountancy is developed and proposed in the current work. Again Funding Costs
are priced from the point of view of a reference party, as the funding spread to be
added to the risk-free rate depends on the credit quality of the reference party. Dif-
ferent assumptions may be performed on the proper funding spread to apply in the
funding transaction, either simply considering the credit spread observable in the
market or adding a liquidity premium to it in order to account for a friction between
primary and secondary market. The concept of ”credit riskiness” has overflowed the
computation of Funding Costs too, as the borrowing party in the funding transaction
may not be able to fulfill its obligation in case of own default. When pricing Fund-
ing Costs, a sort of cost reduction may therefore be conceived in order to properly
account for the possibility of own risk of default.
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Another important topic to consider when addressing Counterparty Credit Risk
is the correlation between default risks of the two parties. When computing Credit
Value Adjustment, the approach of the current work was to introduce correlation
between default risks of two parties through common jumps in the intensity process
for default intensities. This choice was quite innovative with respect to previous
literature. Another approach, in fact, may have been that of considering copulas on
default triggers. We decided not to follow this path for two main reasons. First of
all, because the classical copula approach would lead to an unrealistic behavior of
default events. Secondly, correlation between default triggers is not observable in
the market, while instead correlation between the intensity process and jumps is
observable in the CDS behavior.

We may summarize the objectives of the current work in the following points.

1. Bilateral Credit Value Adjustment. Study the importance and size the impact of
Counterparty Credit Risk in derivatives pricing, accounting not only for risk of
default of the counterparty but also of own risk of default.

2. Funding Costs in the contest of a credit risky funding. Introduce Funding Costs
when liquidity disbursements are due to the counterparty during the life of the
transaction, and the funding spread is different from the risk-free rate, because
of own risk of default to be priced in. Find an appropriate setup to model and
quantify the concept of a ”credit-risky” funding, and to account for own risk of
default when computing Funding Costs. In order to fulfill this objective, ”Fund-
ing Cost Adjustment” and ”Adjustment for Default Risk” within ”Funding Cost
Adjustment” are introduced.

3. Correlation in default events through common jumps. Verify the impact of corre-
lation between default risks of two parties when computing Credit Value Adjust-
ment.

We will here briefly present the structure of the current work.
In Chapter 1 an introduction to the Counterparty Credit Risk setting is given, with

a description of all relevant measures, including above all Credit Value Adjustment
(CVA), Debt Value Adjustment (DVA), Bilateral Credit Value Adjustment (BCVA),
Expected Exposure (EE) and Negative Expected Exposure (NEE). An overview of
market practice is provided, concerning risk-free or replacement closeout, collateral,
netting and re-hypothecation. To conclude, the newly born topic of Funding Costs
is introduced.

In Chapter 2 and Chapter 3 a model comparison for Bilateral Conterparty Credit
Risk and Funding Costs is provided.

In particular, Chapter 2 examines the Black&Scholes approach followed by Bur-
gard and Kjaer (2010), with detailed mathematical passages followed by the au-
thors in order to obtain their pricing formulas. Chapter 3, instead, investigates the
approach proposed by Morini and Prampolini (2010), where a pure liquidity basis is
introduced when pricing Funding Costs, in the framework of Bilateral Counterparty
Credit Risk. A compared analysis of both models is proposed.

Chapter 4 can be regarded as the most important one, as it presents the approach
developed in the current work, and a comprehensive formula for derivatives pricing



xii Preface

is given, in order to account for Bilateral Credit Value Adjustment (BCVA) and for
Funding Cost Adjustment (FCA).

Chapter 5 describes the pricing setup followed, and it can be considered a tech-
nical support to understand the stochastic intensity modeling approach adopted in
order to perform numerical tests.

Chapter 6 presents all numerical tests performed and it provides an overview of
results obtained. This chapter can be intended as a comprehensive journey through
the overall work, as the complexity and the meaning of tests evolve along with the
presentation of the chapter itself.

Finally, in Chapter 7 we find the conclusions to the current work.



Chapter 1
Counterparty Credit Risk: introducing Credit
and Debt Value Adjustments

Abstract We derive a pricing formula for a derivative with Bilateral Counterparty
Credit Risk and Funding Costs. In particular, we compute the relevant pricing ad-
justments to the risk-free value that need to be considered when including the risk
of default of both parties in a bilateral contract, and the cost for the access to liq-
uidity in a credit risky funding environment. Bilateral Credit Value Adjustment is
built through the concepts of Adjusted CVA and Adjusted DVA, meaning that the
probability of default of one party at a certain point in time is always weighted
by the survival probability of the other party up to that moment. A fundamental
assumption is that, at time of default, the credit riskless value of the derivative is
considered, in case with an haircut applied in order to account for a proper recovery
rate. This work innovates on the existing literature in two directions. First of all, a
computation methodology for Funding Costs is provided, given that the search for
a comprehensive pricing formula is still at dawn either within practitioners and aca-
demics. Secondly, correlation between default risks of the two parties is included in
bilateral counterparty risk pricing not through the imposition of a gaussian copula
but through the introduction of common jumps in the process for default intensities.

1.1 Introducing Counterparty Credit Risk

The specification of CVA as an instrument for pricing, and not for capital require-
ments (see for instance Credit VaR to this purpose), brings CVA in the risk-neutral
pricing world under the risk-neutral pricing measure Q, as opposed to the real world
probability measure P. Risk-neutral probabilities can be extrapolated from the mar-
ket, via calibration of the pricing model to market observable CDS quotes.

Setting the scene, we may usefully resort to the distinction between a ”borrower”
and a ”lender”.

In literature, the borrower is assumed to be the party with lower credit quality, as
it is the party that is asking to be financed at inception and is expected to repay its
own debt at the final date, for example in a zero-coupon bond. Eventually payments

1



2 1 Counterparty Credit Risk: introducing Credit and Debt Value Adjustments

may be planned to be paid also during the life of the transaction, if for instance
we think of periodical coupon payments for a coupon-bearing bond, or periodical
instalments for loans and mortgages.

The lender, instead, is assumed to be the party with higher credit quality, as it has
the possibilty to fund in cash the other counterparty at start date. This is of course a
simplistic approach for explanatory purpose.

As a matter of fact, the lender is the one conceptually bearing the Counterparty
Credit Risk, as it may not receive back its initial disbursement, partially or totally,
subject to any default occurrences of the borrower. It flows almost automatic that the
lender should ask for a credit premium over risk-free interest rate for the anticipated
amount, in order to properly account for CVA.

Analogously, in an option framework, the option buyer would be the Counter-
party Credit Risk bearer, as cashing a premium at inception and buying the right
to receive a certain payoff at the option expiry. As a consequence, the option buyer
should deduce from the risk-free premium a CVA adjustment for the option seller’s
credit quality risk.

A further step was to introduce the risk of default for both parties, assigning a
risk of default also to the lending counterparty, leading to the introduction of the
”DVA”, i.e. Debt Value Adjustment. Equivalently, in the option context, a default
risk was assigned also to the option seller.

This passage is linked to the idea that both parties may be supposed to exchange
payments and naturally converges in the concept of Bilateral Counterparty Value
Adjustment, referred to as ”BCVA”.

A more detailed investigation of these concepts and their implications will be the
object of next chapters, where we will review some relevant literature, see [20] and
[44].

In this chapter, instead, we will further explore all other relevant aspects con-
nected with Counterparty Ccredit Risk, as some mechanisms have been disciplined
in order to minimize this risk factor. CSA agreements between market counterpar-
ties, in fact, allow for collateral exchange and margining procedures.

1.2 Relevant risk measures for Counterparty Credit Risk

In order to deal with Counterparty Credit Risk we shall resort to a set of relevant
risk metrics, that will guide us through our calculations.

As also illustrated in [34] and [8], these measures refer to the concept of future
exposure for counterparty risk, intended as the present expectation, under a certain
probability measure, of future exposure to a counterparty, if any positive is expected
and zero otherwise. The probability measure shall be the real world one P, for risk
management purposes, and the risk-neutral one Q, for pricing purposes.

In particular, finance literature presents us with Expected Exposure (EE), Poten-
tial Future Exposure (PFE) and Expected Positive Exposure (EPE).
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What is common to all these measures is that default is given for granted, and
they attempt to quantify the loss expected to be suffered in this event. These metrics
do not include any assumption or pricing of default probability, contrary to Credit
VaR.

PFE and EE refer to a single point in time, whereas EPE characterizes an evo-
lution in time.

• PFE

Potential Future Exposure brings along the concept of confidence level, quite
similarly to VaR.

PFEβ at a certain confidence level β , in fact, represents the exposure that will
only be exceeded with a probability smaller than (1−β ). So one can be β% confi-
dent that an exposure of amount bigger than PFEβ will not be exceeded.

As an example, if the mark-to-market of a derivative X is distributed according to
a normal distribution X ∼ N(µ,σ2), then the PFEβ will be given by the following:

PFEβ = µ +σΦ
−1(β )

In fact, if X ∼ N(µ,σ2), one can standardize the random variable X and get
Z ∼ N(0,1):

Z =
X−µ

σ

One can then assign a value β to the probability of X being equal or smaller than
a certain initially unknown amount PFEβ , and obtain the value of PFEβ associated
to β .

P
(
X ≤ PFEβ

)
= β

P
(

X−µ

σ
≤

PFEβ −µ

σ

)
= β

P
(

Z ≤
PFEβ −µ

σ

)
= β

from which, through the inverse of the cumulative distribution function of a stan-
dard normal distribution calculated in β , one gets:

PFEβ = µ +σΦ
−1(β )

Risk management would normally set β = 99%.
One can remark that, unlike VaR that is usually referred to as a measure of a

loss, PFEβ indeed deals with the concept of a gain, in that it represents the potential
future exposure, meaning a positive amount one counterparty will be expecting to



4 1 Counterparty Credit Risk: introducing Credit and Debt Value Adjustments

receive from the other counterparty. It is nonetheless an amount at risk, because if
the counterparty defaults, the amount will not be received, in whole or in part (if a
recovery rate is applicable).

PFE for a derivative is usually calculated with reference to a given future time,
and it does not describe the evolution of exposure through time.

If one wants to characterise the PFE through time, one can simulate the price
of a derivative at each future time until a desired time horizon, and then take the
β−percentile of the distribution of exposures as the PFE within the desired time
horizon. This will be an approximation and a ”representative” value of the exposure
that will be exceeded only with a probability of maximum β%, within the chosen
time horizon.

• EE and EPE

Expected Exposure represents the average exposure at a future date, under the
probability measure P, where the definition of EE as ”exposure at a future date”
embeds the concept of ”expectation” and ”positivity”.

The exposure, in fact, must be intended as a positive quantity, given that we are
interested in knowing our gain at risk in case of default of the counterparty.

As a result, EE shall be the average of only expected positive values at a given
future date.

If the expected value of a derivative is given by its mark-to-market, the EE shall
be the average of only positive mark-to-market at a future date.

The curve of EE in time, represents the expected exposure profile of a derivative.
This brings along the metric of EPE, i.e. Expected Positive Exposure, which is

the average of positive expected values up to a certain time.
This definition means that one has to integrate the EE over time in order to obtain

the EPE.
One shall resort to compute the EE as the average of only positive discounted

expected values under the risk-neutral measure Q, instead of the real probability
measure P, when dealing with pricing tasks rather than risk management problems.
It is in fact the no-arbitrage pricing that brings the requirement of a risk-neutral
probability measure.

As an example for the EE, if the mark-to-market of a derivative X is distributed
according to a normal distribution X ∼ N(µ,σ2), we have that the Exposure E is
given by:

E = X+

= max(X ;0)
= max(µ +σZ;0)

with Z = X−µσ and Z ∼ N(0,1).
The expected value of a continuous random variable X with probability density

function f (x) is given by:
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E(X) =
∫ +∞

−∞

x f (x)dx

and X ≥ 0 implies µ +σZ ≥ 0 and therefore Z ≥−µ/σ .
The Expected Exposure EE being the average of only positive mark-to-market

values at a future date, will be given through the following [34]:

EE =
∫ +∞

− µ

σ

(µ +σx)φ(x)dx

= µΦ(
µ

σ
)+σφ(

µ

σ
)

where φ(x) is the probability density function of a standard normal distribution
and Φ(x) is the cumulative distribution function of a standard normal distribution.

As anticipated, EPE is defined as the average of the EE profile through time up
to a given point in the future.

Important useful approximations for the coming chapters are the following:∫ T

t
EE(u,T )du≈ T − t

n

n

∑
i=1

EE(ti,T ) (1.1)

if the time interval [t,T ] is divided in n time intervals with i = 0,1, ..,n and t0 = t
and tn = T .

EPE =

∫ T
t EE(u,T )du

T − t
≈ 1

n

n

∑
i=1

EE(t, ti) (1.2)

• NEE and ENE

For future use, we shall introduce corresponding measures for the negative case,
when we may be interested in considering only negative expected values of mark-
to-market. In particular we have Negative Exposure NE:

NE = X−

= min(X ;0)

with resulting Negative Expected Exposure NEE, opposite to Expected Exposure
EE, as the average of expected values, only if negative.

NEE can be approximated as:∫ T

t
NEE(u,T )du≈ T − t

n

n

∑
i=1

NEE(ti,T ) (1.3)

Correspondently, Expected Negative Exposure ENE, is equal to the average of
the NEE profile through time up to a given point in the future.
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ENE =

∫ T
t NEE(u,T )du

T − t
≈ 1

n

n

∑
i=1

NEE(t, ti) (1.4)

1.3 Introduction to pricing formulas for CVA, DVA and BCVA

• Unilateral CVA

CVA refers to the case where there is one defaultable counterparty and a risk-
free counterparty, or to the case when obligations are structured as one-sided, and
the party that has the obligation to pay may default.

As CVA deals with the concept of exposure, the formula for CVA is intuitively
given by the expected amount that is at risk in case of default of the counter-
party (EE), multiplied by the probability of default of the defaultable counterparty,
and adjusted by the recovery rate the surviving party is likely to obtain in the un-
favourable event of default of the counterparty. As explained in [8], CVA is basically
an option on the residual value of a portfolio at default of the counterparty.

The CVA being an option to be priced, the expectation has to be taken under the
risk-neutral measure Q, rather than P.

As a matter of fact, the recourse to the probability measure Q for pricing purposes
derives from an hedging argument, and the choice of Q may thus be arguable in case
CVA was not indeed hedged [34].

Leaving aside this consideration, and pricing CVA as an option under Q, the price
for CVA is calculated in t for a derivative X with final maturity T :

CVA(t,T ) = EQ [(1−δ )I(τ ≤ T )X(τ,T )+
]

(1.5)

where δ is the recovery rate the surviving party will receive in case of default of
the obligor.

The recovery fraction δ will be applied to the residual value of the derivative
from the moment of default τ until maturity T , and only in case this residual value
is positive: X(τ,T )+. Approximating the above formula we get the following more
practical one (details of the derivation will be given in coming chapters):

CVA(t,T )≈ (1−δ )
n

∑
i=1

DF(t, ti)EE(t, ti)q(ti−1, ti) (1.6)

where DF(t, ti) is the discount factor for time ti calculated in t, EE(t, ti) is the ex-
posure at time ti, and q(ti−1, ti) is the marginal default probability of the counterparty
in the time interval (ti−1, ti].

This formulation of CVA is unilateral.

• Adjusted CVA

In literature we also find a formulation for the Adjusted CVA, which is equal to
the unilateral CVA, multiplied by the survival probability of the receiving party, the
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one previously assumed to be risk-free. The Adjusted CVA will of course be smaller
than unilateral CVA.

Ad jCVA(t,T )≈ (1−δ )
n

∑
i=1

DF(t, ti)EE(t, ti)SA(ti)qB(ti−1, ti) (1.7)

Here SA(ti) represents the survival probability of the creditor, named A, up to
time ti, and qB(ti−1, ti) is the marginal default probability of the obligor, here named
B, in the time interval (ti−1, ti].

• DVA and Bilateral CVA

Bilateral CVA considers the possibility that both counterparties can default, un-
like unilateral CVA, and the case where the exposure for the original creditor, may
also be negative, meaning that payment obligations may be expected on both sides
of the deal. This may seem a more simmetric situation, if it were not for the fact that,
in general, creditor and obligor do not bear the same credit risk. As a consequence,
survival and default probabilities are not simmetric.

A first formula for Bilateral CVA is given by:

BCVA(t,T ) ≈ (1−δ )
n

∑
i=1

DF(t, ti)EE(t, ti)SA(ti)qB(ti−1, ti)

+(1−δA)
n

∑
i=1

DF(t, ti)NEE(t, ti)SB(ti)qA(ti−1, ti) (1.8)

where δA is the recovery rate for counterparty A. The portion (1−δA) of the NEE
represents the obligations party A was expected to meet before his own default, but
that will not be respected because of own default. In this setting, the second term
on the r.h.s. of the expression is the adjusted Debt Value Adjustment (DVA), which
reduces the amount of Counterparty Credit Risk when including a counterparty’s
own credit risk.

A counterparty, in fact, at his own default, will honor only a recovery fraction of
his debt, but will receive the whole positive credit.

As we can see, if the adjusted CVA term of BCVA is positive, and it is a cost
that will be subtracted from the risk-free value of a derivative, the adjusted DVA
term will be a negative component, thus a gain that will decrease the amount of
counterparty credit risk to charge for a transaction.

A more detailed derivation of these formula is given in following chapters.
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1.4 Risk-free or Replacement Closeout

Closeout defines the valuation procedure for the residual of a deal, in case one party
exercises the right to terminate the transaction, upon default of the other, or upon
other specific agreed events. This termination right must be intended as unilateral,
and enables the surviving party to immediately come out of a transaction freezing
his position. The advantage of the closeout right lies in the possibility to fully re-
hedge with another counterparty just upon default (or specific event), without further
exposure to market movements.

In case the surviving party has a net creditor position, the exposure loss incurred
will be claimed for, but the position will be hedged straight after default and the
mark-to-market of the original transaction frozen at default time.

There are two possible alternatives in the valuation approach. One may choose
to calculate the residual value of the contract according to its risk-free value, or still
considering the risk-adjusted value.

In particular, considering the case of a one-sided transaction, where only one
party bears the obligation to pay, at default of the creditor, the obligor may choose
to evaluate its liability as risk-free (”risk free closeout”), or still considering his own
default risk (”replacement closeout”).

The problem with the choice of a risk-free valuation approach upon creditor’s
default, lies in the sudden value increase of the liability just after creditor’s default.

On the contrary, a ”replacement closeout”, based on the potential charge of uni-
lateral DVA in case the defaulted counterpart was to be replaced, ensures continuity
and consistency in the valuation approach to one’s own liabilities.

On the other hand, a ”risk free closeout” may be preferred by a creditor position
upon default of the debtor, especially in case of high correlation among market
players.

Contagion effect due to high correlation, may result in a decrease in value of
defaulted party’s assets, due to a deterioration in the credit quality of other market
participants (assets supposed to be on correlated names). In this sense, a creditor
would rather choose a risk-free closeout approach, in order not to see his assets
dramatically diminished in value because of a contagion effect. See on the topic
[16].

1.5 Collateral, Netting and Re-hypothecation

Collateral has been introduced as a guarantee to limit Counterparty Credit Risk, and,
as a consequence, to reduce CVA charges and facilitate market transactions.

Collateral can be designed as a one-way or as a two-way clause, that basically
imposes to the counterparty for which the mark-to-market of the transaction is neg-
ative, to provide a guarantee in cash or liquid securities, such as bonds, to the other
counterparty to reduce his exposure. The ”posting” of cash, or other eligible secu-
rities, ensures protection to the surviving party from the default of his obligor with
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respect to the outstanding exposure. In case of a two-way collateral agreement, both
parties may in turn have the obligation to post collateral, depending on the sign of
the mark-to-market.

As the mark-to-market of a deal fluctuates in time according to market move-
ments of the underlying risk factors, a crucial point is that of monitoring it as often
as possible, and exchanging collateral accordingly. The purpose, of course, is to
minimize any potential mismatch between the underlying asset value and the corre-
sponding collateral position.

Netting is a practice that allows for compensation between positive and negative
values of the portfolio of contracts in place with a defaultable counterparty.

It is possible to agree on the posting of collateral on the netted portfolio position
with respect to a counterparty.

In case of a counterparty’s default that had previously posted collateral against
his negative net position, the surviving party, with positive net mark-to-market, will
not be required to return the collateral. As a matter of fact, collateral will serve as an
exposure compensation. Considering that, in most cases, it is under direct control
of the collateral taker, in case of default of the collateral provider, collateral may
be liquidated immediately to the collateral taker, without requiring all legal actions
needed for other creditors.

Collateral posting may indeed not sufficiently mitigate Counterparty Credit Risk,
and it may be affected by two major drawbacks: i) the frequency of margining and
ii) the practice of re-hypothecation.

The first point i) was already anticipated, and it mainly substantiates in the fact
that, in order to have collateral always in line with underlying mark-to-market, one
should recur to collateral checking with a high frequency, with resulting high op-
erational costs and risks. Moreover, even accepting the costs of a high frequency
of collateral exchange, full exposure protection is not ensured. The bias of time
discretization for observation dates can not be totally eliminated.

The second point ii), instead, refers to the practice of re-investing the collateral
received, and gain interests on it. This process is stimulated by the necessity to
remunerate the collateral provider. When a collateral taker re-invests it, collateral
itself is at risk and the probability of easily mobilizing it, in the event of a switch in
the mark-to-market of the underlying derivative, decreases. This is the reason why
re-hypotecation may be not favoured or allowed by regulators.

On the other hand, without re-hypotecation, collateral posting may be too ex-
pensive and therefore avoided by market participants. As a matter of fact, whenever
possible, counterparties are likely to prefer collateralized trades rather than uncollat-
eralized ones. The cost of uncollateralization is essentially represented by the charge
of CVA or BCVA, depending on the approach. It is possible to infer that, in order
to decide whether to prefer collateralized over uncollateralized trades, one should
confront remuneration required on collateral (case of collateralization) against CVA
charges (case of uncollateralization).

Of course this is a simplistic approach, and reality may offer a combination of
solutions, such as posting of collateral, according to predefined rules, in order to
diminish CVA charges.
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1.6 Introducing Funding Costs

The liquidity crisis following the credit crisis induced by major defaults of 2008
(Lehman Brothers, Freddie Mac, Fannie Mae, etc), brought to the attention of mar-
ket players the importance of liquidity, and the impact of debtors’ creditworthiness
in the definition of a price, if any, for giving liquidity. The cost of liquidity raised
continuously along with the credit crisis.

This led to a significant introduction of funding costs in financial contracts pric-
ing. Funding costs in pricing represent the necessity to fund any liquidity esbourse-
ment that a party has to face. A liquidity esboursement can be identified as the net
negative cash flow at a certain point in time. The assumption is to have any liquidity
esboursement financed , from the moment it occurs until the end of the correspond-
ing transaction. The interest rate a counterparty has to pay is usually referred to as
”funding rate”, which of course depends on the credit quality of the counterparty
itself. One may also assume net positive cash flows at certain points in time. For
these occurrences, we shall introduce interest rates to be earned, from the moment
positive cash flows happen until maturity of the related contract.

Funding costs consistent inclusion in the framework of Counterparty Credit Risk
is still at dawn.

This is the reason why funding costs pricing will be analysed in this work. In
existing literature the topic is addressed in [20], [44], [19], [24].



Chapter 2
The Black & Scholes approach to Bilateral
Counterparty Credit Risk modeling with
Funding Costs

Abstract This chapter will try to illustrate previous literature findings for continuous
time modeling of Bilateral Counterparty Credit Risk together with Funding Costs.
Important reference on this regard is represented by Burgard K. and Kjaer M. in
[20]. An overview of the main model assumptions and financial results will be given,
together with detailed mathematical passages leading from initial model setting and
problem proposition to final formulas suggested by the authors.

2.1 Describing a possible Black & Scholes model setting

In the Black & Scholes setting of [20], an economy consisting of two parties B
and C and four traded assets is assumed, where these are one default-free zero-
coupon bond PR, two risky zero-coupon bonds respectively bearing the risk of the
two parties in the market PB and PC, and an asset with no default risk S.

The credit risky zero-coupon bonds PB and PC are supposed to pay 1 at maturity
T if the respective issuing party does not prematurely default.

The processes for the four traded assets have the following dynamics under the
hystorical probability measure:

dPR
PR

= r(t)dt
dPB
PB

= rB(t)dt−dJB
dPC
PC

= rC(t)dt−dJC
dS
S = µ(t)dt +σ(t)dW

The two parties B and C are then assumed to enter a derivative on the asset S,
with S≥ 0, where B pays a given payoff H(S) to C at maturity T , where H(S) ∈ R.

As a matter of fact, party C buys an option from party B. The value of this option,
from the point of view of C, is denoted by V̂ (t,S,JB,JC), which is therefore the value
of a risky derivative that depends on time t, on the underlying S, and on the jump
states JB and JC of the two parties B and C.

11
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At the same time, the value of a derivative on the same underlying, but between
default-free parties, is indicated by V (t,S).

In both cases the value of the derivative is given by its mark-to-market M.
Mark-to-market M can be either positive or negative, and it can be represented

alternatively by M+ or M−.
Embracing a shared assumption in financial literature, in case of default of one

of the two parties, the surving party always receives the recovery rate of a positive
mark-to-market, and pays the full amount of a negative mark-to-market, at time of
default of the other party.

This approach is represented in [20] through M+, i.e. the positive mark-to-market
for the surviving party, and M−, i.e. the negative mark-to-market for the surviving
party.

Assuming as said that V̂ is the value of the derivative from the point of view of
C, meaning the party who has to receive H(S) in T , with V̂ = M, we would have the
following.

If party B defaults first, denoted by JB = 1 and JC = 0:

V̂ (t,S,1,0) = M−(t,S)+RBM+(t,S) (2.1)

and instead if party C defaults first, denoted by JB = 0 and JC = 1:

V̂ (t,S,0,1) = RCM−(t,S)+M+(t,S) (2.2)

RB and RC are the recovery rates of party B and C respectively, and they represent
the percentage of mark-to-market that would be recovered by the other party in case
of default of party B and C respectively.

If B defaults first, as in V̂ (t,S,1,0) with JB = 1, as we are considering the value
of the risky derivative from the point of view of C:

• if the mark-to-market is negative for C, C will pay to B the full negative mark-to-
market M−(t,S)

• if the mark-to-market is positive for C, C will receive only party B’s recovery rate
RB times the mark-to-market itself, RBM+(t,S).

If C defaults first, as in V̂ (t,S,0,1) with JC = 1, instead:

• if the mark-to-market is negative for C, C will only pay its recovery rate RC times
the mark-to-market, RCM−(t,S)

• if the mark-to-market is positive for C, C will receive the full mark-to-market
from B given by M+(t,S).

2.2 Find dV̂ as replicating self-financing portfolio

The classic idea is to build a portfolio that replicates the derivative by reproducing
all its risk factors, so that the replicating portfolio mirrors any infinitesimal change
in the value of the derivative by an identical change in its value.
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A portfolio Π(t) is built and it is made up of convenient amounts of S, PB,PC and
β (t), where β is the cash amount that will be specified here below. So we have:

V̂ (t) = Π(t) = δ (t)S(t)+αB(t)PB(t)+αC(t)PC(t)+β (t) (2.3)

The strategy Π(t) is put in place by party B, as it is the party expected to pay the
payoff H(S) to party C in T .

In this context, a funding rate rF(t) is associated to party B, to represent the costs
that party B may pay on the negative cash positions deriving from the replicating
strategy. Party B is therefore referred to as the issuer as well.

The self-financing property is then imposed to the replicating portfolio:

dV̂ (t) = dΠ(t) = δ (t)dS(t)+αB(t)dPB(t)+αC(t)dPC(t)+dβ (t) (2.4)

Always with reference to [20], the change in cash is described as it follows:

dβ (t) = dβS(t)+dβF(t)+dβC(t) (2.5)

• dβS(t) :
dβS(t) = δ (t)(γS(t)−qS(t))S(t)dt (2.6)

The share position earns a dividend income of γS(t) and has a financing cost of
qS(t).

• dβF(t) :

dβF(t) =
{

r(t)(V̂ −αBPB)
++ rF(t)(V̂ −αBPB)

−
}

dt (2.7)

=
{

r(t)(V̂ −αBPB)
++(r(t)+ sF)(V̂ −αBPB)

−
}

dt

=
{

r(t)(V̂ −αBPB)+ sF(V̂ −αBPB)
−
}

dt

where rF(t) = r(t)+ sF .
Here, the extra positive positive cash balance remaining after own bonds have

been purchased is represented by (V̂ −αBPB)
+, and it must earn the risk-free rate

r(t).
On negative cash balances, represented by (V̂ −αBPB)

−, the issuer has to pay
rF(t), which is equal to the risk-free rate r(t) plus the funding spread sF .

The funding spread sF is equal to zero if V̂ can be used as collateral, while it is
equal to (1−RB)λB if V̂ cannot be used as collateral.

As funding spread for the case of uncollateralization, we use (1−RB)λB which
is the yield on unsecured issuer bonds with recovery rate RB.

• dβC(t) :
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dβC(t) =−αC(t)r(t)PC(t)dt (2.8)

The issuer will short a portion αC(t) of counterparty bonds through a repurchase
agreement and have financing cost as in dβC(t).

Therefore we have the following expression for dβ (t) :

dβ (t)= δ (t)(γS(t)−qS(t))S(t)dt+
{

r(t)(V̂ −αBPB)+ sF(V̂ −αBPB)
−
}

dt−αC(t)r(t)PC(t)dt

which, by omitting the time indicator, brings to:

dV̂ = δdS+αBdPB +αCdPC +dβ (2.9)
= δdS+αBPB(rBdt−dJB)+αCPC(rCdt−dJC)

+
{

r(V̂ −αBPB)+ sF(V̂ −αBPB)
−−αCrPC−δ (qS− γS)S

}
dt

=
{

rV̂ + sF(V̂ −αBPB)
−+δ (γS−qS)S+αBPB(rB− r)+αCPC(rC− r)

}
dt

+δdS−αBPBdJB−αCPCdJC

It is here important to recall that:

δdS = δ (µSdt +σSdW )

= δ µSdt +δσSdW

2.3 Finding dV̂ through Ito’s Lemma

dV̂ =
∂

∂ t
V̂ dt +

∂

∂S
V̂ dS+

1
2

∂ 2

∂S2 V̂ σ
2S2dt +∆V̂BdJB +∆V̂CdJC (2.10)

with:

∆V̂B = V̂ (t,S,1,0)−V̂ (t,S,0,0) (2.11)

and
∆V̂C = V̂ (t,S,0,1)−V̂ (t,S,0,0) (2.12)

It is here important to recall that:

∂

∂S
V̂ dS =

∂

∂S
V̂ (µSdt +σSdW )
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=
∂

∂S
V̂ µSdt +

∂

∂S
V̂ σSdW

2.4 Eliminating all risk sources

Now we eliminate all risk sources: dW,dJB and dJC.

• dW :

The Brownian motion dW is present in the process for the asset S, in both repre-
sentation of dV̂ , both in the one deriving from the self-financing replicating strategy
and in the one coming from the derivation of Itô’s Lemma.

We must therefore equate both terms in dW and get:

δσS =
∂

∂S
V̂ σS

δ =
∂

∂S
V̂ (2.13)

• dJB :

We equate the terms containing the jump state associated with the default of party
B, dJB, which are present in both derivations of dV̂ :

−αBPBdJB = ∆V̂BdJB

αB = −∆V̂B

PB

=
V̂ − (M−+RBM+)

PB
(2.14)

recalling that:

∆V̂B = V̂ (t,S,1,0)−V̂ (t,S,0,0)
= (M−+RBM+)−V̂

• dJC :

We now equate the terms containing the jump state associated with the default of
party C, dJC, which are present in both derivations of dV̂ :
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−αCPCdJC = ∆V̂CdJC

αC = −∆V̂C

PC

=
V̂ − (M++RCM−)

PC
(2.15)

recalling that:

∆V̂C = V̂ (t,S,0,1)−V̂ (t,S,0,0)
= (M++RCM−)−V̂

Then we see that from the expression for dV̂ as a self-financing replicating strat-
egy, after eliminating the risk factors, we have:

dV̂ =
{

rV̂ + sF(V̂ −αBPB)
−+δ (γS−qS)S+αBPB(rB− r)+αCPC(rC− r)+δSµ

}
dt

where we substitute the recent findings for αB, αC and δ , and we recall that:

rB− r = λB

rC− r = λC

therefore obtaining:

dV̂ =

{
rV̂ + sF(V̂ +∆V̂B)

−+(γS−qS)
∂

∂S
V̂ S−λB∆V̂B−λC∆V̂C +

∂

∂S
V̂ Sµ

}
dt

(2.16)
From the expression for dV̂ derived through Itô’s Lemma, after eliminating all

risk factors, instead, we get:

dV̂ =

{
∂

∂ t
V̂ +

∂

∂S
V̂ µS+

1
2

∂ 2

∂S2 V̂ σ
2S2
}

dt (2.17)

2.5 Finding the general solution

Equating the two findings we obtain:

rV̂ + sF(V̂ +∆V̂B)
−+(γS−qS)

∂

∂S
V̂ S−λB∆V̂B−λC∆V̂C =

∂

∂ t
V̂ +

1
2

∂ 2

∂S2 V̂ σ
2S2
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Now we introduce the elliptic differential operator At defined as:

AtV ≡
1
2

σ
2S2 ∂ 2

∂S2 V +(qS− γS)S
∂

∂S
V

we recognize it in the equating PDE and obtain:{
∂

∂ t V̂ +AtV̂ − rV̂ = sF(V̂ +∆V̂B)
−−λB∆V̂B−λC∆V̂C

V̂ (T,S) = H(S)
(2.18)

We now insert the boundary condition for ∆V̂B:

∆V̂B = V̂ (t,S,1,0)−V̂ (t,S,0,0)
= (M−+RBM+)−V̂

and ∆V̂C:

∆V̂C = V̂ (t,S,0,1)−V̂ (t,S,0,0)
= (M++RCM−)−V̂

and we see that:{
∂

∂ t V̂ +AtV̂ − rV̂ = sF(V̂ +M−+RBM+−V̂ )−−λB(M−+RBM+−V̂ )−λC(M++RCM−−V̂ )

V̂ (T,S) = H(S)

where the negative part of the term multiplying sF is simply M−, therefore re-
sulting in:{

∂

∂ t V̂ +AtV̂ − rV̂ = sF M−−λB(M−+RBM+)+λBV̂ −λC(M++RCM−)+λCV̂
V̂ (T,S) = H(S)

{
∂

∂ t V̂ +AtV̂ − rV̂ = (λB +λC)V̂ + sF M−−λB(M−+RBM+)−λC(M++RCM−)
V̂ (T,S) = H(S)

It can be recognized that, in case of the non-risky derivative V , the regular B&S
PDE would be satisfied: {

∂

∂ t V +AtV − rV = 0
V (T,S) = H(S)

(2.19)
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2.6 The solution when M(t,S) = V̂ (t,S)

The authors in [20] then proceed with two different assumptions on the value of the
mark-to-market M, which can be either equal to V or V̂ . As introduced in Chapter 1,
in fact, it is possible to adopt either a risk-free or a replacement closeout procedure,
for the valuation of the residual of a deal in case of early termination of a transaction.

For the purpose of this work we are interested in the analysis of the case when
M(t,S) = V̂ (t,S), which leads to:{

∂

∂ t V̂ +AtV̂ − rV̂ = (λB +λC)V̂ + sF(V̂ )−−λB((V̂ )−+RB(V̂ )+)−λC((V̂ )++RC(V̂ )−)

V̂ (T,S) = H(S)

In order to solve this PDE we split the case where V̂ ≥ 0 and V̂ ≤ 0. The two
cases describe respectively the purchase and the sale of an option.

More specifically, in our setting where V̂ is the value of the derivative from the
point of view of C, when V̂ ≥ 0 party C buys an option from party B, while when
V̂ ≤ 0 party C sells an option to party B. The replicating strategy is put in place by
the party that is expected to fulfill the payment at expiry.

• V̂ ≥ 0

Where V̂ ≥ 0 we can assume that we have only the positive component of the
mark-to-market of the derivative, and therefore we can eliminate all the terms where
the assumed value of V̂ is negative.{

∂

∂ t V̂ +AtV̂ − rV̂ = λB((V̂ )+−RB(V̂ )+)+λC((V̂ )+− (V̂ )+)

V̂ (T,S) = H(S){
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )+

V̂ (T,S) = H(S)
(2.20)

• V̂ ≤ 0 :

Where V̂ ≤ 0 we can eliminate the terms where the mark-to-market would be
positive.{

∂

∂ t V̂ +AtV̂ − rV̂ = λB((V̂ )−− (V̂ )−)−λC((V̂ )−−RC(V̂ )−)+ sF(V̂ )−

V̂ (T,S) = H(S){
∂

∂ t V̂ +AtV̂ − rV̂ = λC(1−RC)(V̂ )−+ sF(V̂ )−

V̂ (T,S) = H(S)
(2.21)

and if we merge the two solutions we found, we get:

{
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )++λC(1−RC)(V̂ )−+ sF(V̂ )−

V̂ (T,S) = H(S)
(2.22)
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We can now introdude the so called Credit Value Adjustment, CVA= Û , which
allows us to decompose V̂ in the following form:

V̂ =V +Û (2.23)

The meaning of this decomposition is to see the value of the credit risky deriva-
tive V̂ as the sum of the credit risk-free value of the derivative V and an adjustment
for the credit risk Û , which can be separately calculated.

In this way we can re-write the PDE as it follows:{
∂

∂ t (V +Û)+At(V +Û)− r(V +Û) = λB(1−RB)(V +Û)++λC(1−RC)(V +Û)−+ sF(V +Û)−

(V +Û)(T,S) = H(S)

We can here remember that V satisfies the regular B&S PDE, so that the terms
in V sum up to zero in the left hand side and the same V has a terminal value equal
to H(S), which means that, at maturity dateT , V̂ and V must converge to the same
value of H(S). Given V as known, we can see that the remaining terms in Û must
satisfy the following:{

∂

∂ t Û +AtÛ− rÛ = λB(1−RB)(V +Û)++λC(1−RC)(V +Û)−+ sF(V +Û)−

U(T,S) = 0

The solution of this general case when M = V̂ can be found by either applying
the Feyman-Kač theorem (and the Fubini theorem) and solving the resulting integral
equation, or by solving the above non-linear PDE.

First we adopt the formal solution provided by the authors in [20], where the
Feyman-Kač theorem is applied. We will then analyse the two separate cases when:

• M = V̂ and rF = r
• M = V̂ and rF = r+ sF

The calculation of the value of V̂ (t,s), of Û0(t,s) (if sF = 0) and of Û(t,s) (if
sF 6= 0) will necessarily be done by separating the two cases when V̂ ≥ 0 and V̂ ≤ 0.

Û0(t,s) is the value of Û(t,s) when sF = 0.
To sum up, we will find results for Û0(t,s) or Û(t,s) in four different cases, and

we will then try to see how they can be summarized in the formal general solution
provided by the authors.

The formal solution provided by the authors in [20] is the following:

Û(t,s) = −(1−RB)
∫ T

t
λB(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))+

]
du

−(1−RC)
∫ T

t
λC(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du

−
∫ T

t
sF(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du (2.24)
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2.6.1 The solution when M = V̂ and rF = r

When rF = r it is because the funding spread sF is equal to zero. In this case the
PDE reduces to:{

∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )++λC(1−RC)(V̂ )−

V̂ (T,S) = H(S)

This non-linear PDE has to be solved numerically, unless we distinguish the two
cases where V̂ ≥ 0 and V̂ ≤ 0, which allow us to apply the Feyman-Kač.

• V̂ ≥ 0 :

When V̂ ≥ 0, we have:{
∂

∂ t V̂ +AtV̂ − rV̂ −λB(1−RB)V̂ = 0
V̂ (T,S) = H(S)

(2.25)

and the Feyman-Kač representation gives:

V̂ (t,s) = Et
[
Dr+(1−RB)λB(t,T )H(S(T ))

]
(2.26)

where:

Dy(t,T ) = exp
(
−
∫ T

t
y(s)ds

)
We can work in order to write the Feyman-Kač representation as:

V̂ (t,s) = Et
[
Dr+(1−RB)λB(t,T )H(S(T ))

]
= D(1−RB)λB(t,T )Et [Dr(t,T )H(S(T ))]

= D(1−RB)λB(t,T )V (t,s)

given that V (t,s) = Et [Dr(t,T )H(S(T ))].
If we now consider the specification that V̂ =V +U , we can also see that:

U(t,s) = V̂ (t,s)−V (t,s)

= D(1−RB)λB(t,T )V (t,s)−V (t,s)

= V (t,s)[D(1−RB)λB(t,T )−1]
= V (t,s)[Dx(t,T )−1]

if we call (1−RB)λB(t) = x(t), with:

Dx(t,T )−1 = exp
(
−
∫ T

t
x(s)ds)

)
−1 := exp(− f (T ))−1

We can now apply the Fundamental Theorem of Integral Calculus:
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f (x) =
∫ x

a

∂ f (x)
∂x

dx

to exp(− f (T )) so that:

exp(− f (T ))−1 =
∫ T

t

∂ (exp(− f (u))−1)
∂u

du

= −
∫ T

t
exp(− f (u))

∂ f (u)
∂u

du

= −
∫ T

t
exp
(
−
∫ u

t
x(s)ds

)
∂ (
∫ u

t x(s)ds)
∂u

du

= −
∫ T

t
exp
(
−
∫ u

t
x(s)ds

)
x(u)du

= −
∫ T

t
Dx(t,u)x(u)du

= −
∫ T

t
D(1−RB)λB(t,u)(1−RB)λB(u)du

so that:

U0(t,s) =−V (t,s)
∫ T

t
D(1−RB)λB(t,u)(1−RB)λB(u)du (2.27)

• V̂ ≤ 0 :

If V̂ ≤ 0, instead, we have:{
∂

∂ t V̂ +AtV̂ − rV̂ −λC(1−RC)V̂ = 0
V̂ (T,S) = H(S)

(2.28)

and the Feyman-Kač representation is:

V̂ (t,s) = Et
[
Dr+(1−RC)λC

(t,T )H(S(T ))
]

= D(1−RC)λC
(t,T )Et [Dr(t,T )H(S(T ))]

= D(1−RC)λC
(t,T )V (t,s)

If we now consider the specification that V̂ =V +U , we can also see that:

U(t,s) = V̂ (t,s)−V (t,s)

= D(1−RC)λC
(t,T )V (t,s)−V (t,s)

= V (t,s)[D(1−RC)λC
(t,T )−1]
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= V (t,s)[Dx(t,T )−1]

and, if we call (1−RC)λC(t) = x(t), again with:

Dx(t,T )−1 = exp
(
−
∫ T

t
x(s)ds)

)
−1 := exp(− f (T ))−1

we can obtain, through the same process as in the case of V ≥ 0, the following
result for U0(t,s), when V ≤ 0 :

U0(t,s) =−V (t,s)
∫ T

t
D(1−RC)λC

(t,u)(1−RC)λC(u)du (2.29)

2.6.2 The solution when M = V̂ and rF = r+(1−RB)λB

We can here assume that the funding spread sF is not equal to zero, but to (1−
RB)λB.

In this hypothesis, the PDE stays:

{
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )++λC(1−RC)(V̂ )−+ sF(V̂ )−

V̂ (T,S) = H(S)
(2.30)

Again we have to split the two cases where V̂ ≥ 0 and V̂ ≤ 0.We can easily see
that the first case when V̂ ≥ 0 simplifies to the same PDE with sF = 0, and therefore
we do not need to deduce again what the Feyman-Kač representation is and what
value of U0(t,s) we obtain.

• V̂ ≤ 0 :

When V̂ ≤ 0, the PDE reduces to:{
∂

∂ t V̂ +AtV̂ − rV̂ −λC(1−RC)V̂ − sFV̂ = 0
V̂ (T,S) = H(S)

and since sF = (1−RB)λB:{
∂

∂ t V̂ +AtV̂ − rV̂ −λC(1−RC)V̂ −λB(1−RB)V̂ = 0
V̂ (T,S) = H(S)

(2.31)

which leads to:
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V̂ (t,s) = Et
[
Dr+λC(1−RC)+λB(1−RB)(t,T )H(S(T ))

]
= DλC(1−RC)+λB(1−RB)(t,T )Et [Dr(t,T )H(S(T ))]

= Dk(t,T )V (t,s)

with k = λC(1−RC)+λB(1−RB).
In this case, when looking for U(t,s), we find:

U(t,s) = V̂ (t,s)−V (t,s)

= Dk(t,T )V (t,s)−V (t,s)

= V (t,s) [Dk(t,T )−1]

We now assume k(t) = x(t), with Dk(t,T ) = Dx(t,T )

Dx(t,T )−1 = exp
(
−
∫ T

t
x(s)ds)

)
−1 := exp(− f (T ))−1

and again:

exp(− f (T ))−1 =
∫ T

t

∂ (exp(− f (u))−1)
∂u

du

= −
∫ T

t
exp(− f (u))

∂ f (u)
∂u

du

= −
∫ T

t
exp
(
−
∫ u

t
x(s)ds

)
∂ (
∫ u

t x(s)ds)
∂u

du

= −
∫ T

t
exp
(
−
∫ u

t
x(s)ds

)
x(u)du

= −
∫ T

t
Dx(t,u)x(u)du

= −
∫ T

t
Dk(t,u)k(u)du

= −
∫ T

t
DλC(1−RC)+λB(1−RB)(t,u) [λC(u)(1−RC)+λB(u)(1−RB)]du

so that:

U(t,s) = −V (t,s)
∫ T

t
DλC(1−RC)+λB(1−RB)(t,u) [λC(u)(1−RC)+λB(u)(1−RB)]du

= −V (t,s)
∫ T

t
Dk(t,u)k(u)du (2.32)
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2.7 Verifying the general formal PDE integral solution

The general PDE for V̂ found by Burgar and Kjaer cannot be solved analitically as
it is non-linear. We saw that it is possible to transform the PDE in V̂ in a PDE in Û
by assuming that V satisfies the regular B&S PDE and therefore acting as a known
parameter.

Analogously, the PDE in Û cannot be solved analitically but only numerically,
unless we assume and separately analyse the two different scenarios of V̂ ≥ 0 and
V̂ ≤ 0.

This is the reason why we applied the Feyman-Kač theorem to V̂ either for V̂ ≥ 0
and for V̂ ≤ 0.

Indeed, we applied the Feyman-Kač theorem four times, as we specified the out-
comes for V̂ (t,S), Û0(t,S) (if sF = 0) and Û(t,S) (if sF 6= 0), also on the basis of the
presence of the funding spread. Therefore we investigated the following four cases:

• V̂ ≥ 0 and sF = 0
• V̂ ≤ 0 and sF = 0
• V̂ ≥ 0 and sF 6= 0
• V̂ ≤ 0 and sF 6= 0

As we anticipated in the previous section, we want to show how the different re-
sults we have just found can be summarized in the general formal solution provided
by the authors.

More specifically we will first separately investigate the cases where V̂ ≥ 0 and
V̂ ≤ 0, and we will then merge the findings.

• V̂ ≥ 0

Given the PDE we found in the previous section:{
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )++λC(1−RC)(V̂ )−+ sF(V̂ )−

V̂ (T,S) = H(S(T ))

we saw that, the in case of V̂ ≥ 0, it reduces to:{
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)V̂
V̂ (T,S) = H(S(T ))

and the Feyman-Kač representation of V̂ (t,s) is:

V̂ (t,s) = Et
[
Dr+(1−RB)λB(t,T )H(S(T ))

]
= D(1−RB)λB(t,T )V (t,s)

We also saw that the CVA, here indicated by Û(t,s), is in this case given by:
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Û(t,s) = V̂ (t,s)−V (t,s)

= D(1−RB)λB(t,T )V (t,s)−V (t,s)

= V (t,s)
[
D(1−RB)λB(t,T )−1

]
We already proved either for rF = r and for rF = r+sF that when V̂ ≥ 0 we have:

Û(t,s) =−V (t,s)
∫ T

t
(1−RB)λB(u)D(1−RB)λB(t,u)du

At this point we can further elaborate this integral solution for Û(t,s) and see
that, through V (t,s) = Et [Dr(t,T )V (T,S)]:

Û(t,s) = −
∫ T

t
(1−RB)λB(u)D(1−RB)λB(t,u)Et [Dr(t,u)V (u,S(u))]du

= −(1−RB)
∫ T

t
λB(u)Dr(t,u)Et

[
D(1−RB)λB(t,u)V (u,S(u))

]
du

= −(1−RB)
∫ T

t
λB(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))+

]
du

where we recognized that D(1−RB)λB(t,u)V (u,S(u)) = V̂ (u,S(u)) when V̂ ≥ 0,
and where we applied the positive sign to indicate we are in the case when V̂ ≥ 0.

• V̂ ≤ 0

Given the same PDE we found in the previous section:{
∂

∂ t V̂ +AtV̂ − rV̂ = λB(1−RB)(V̂ )++λC(1−RC)(V̂ )−+ sF(V̂ )−

V̂ (T,S) = H(S(T ))

we saw that, the in case of V̂ ≤ 0, it reduces to:{
∂

∂ t V̂ +AtV̂ − rV̂ = λC(1−RC)V̂ + sFV̂
V̂ (T,S) = H(S(T ))

and the Feyman-Kač representation of V̂ (t,s) is:

V̂ (t,s) = Et
[
Dr+(1−RB)λB+(1−RC)λC

(t,T )H(S(T ))
]

= D(1−RB)λB+(1−RC)λC
(t,T )V (t,s)

We also saw that the CVA, here indicated by Û(t,s), is in this case given by:

Û(t,s) = V̂ (t,s)−V (t,s)
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= D(1−RB)λB+(1−RC)λC
(t,T )V (t,s)−V (t,s)

= V (t,s)
[
D(1−RB)λB+(1−RC)λC

(t,T )−1
]

As we are managing the general case for V̂ ≤ 0, without specifying if sF 6= 0, the
rate sF actually appears in our representation of Û(t,s) , and we can therefore use
the solution we found in the case when sF 6= 0, which is:

Û(t,s) = −V (t,s)
∫ T

t
DλC(1−RC)+λB(1−RB)(t,u) [λC(u)(1−RC)+λB(u)(1−RB)]du

= −V (t,s)
∫ T

t
(1−RC)λC(u)DλC(1−RC)+λB(1−RB)(t,u)du

−V (t,s)
∫ T

t
(1−RB)λB(u)DλC(1−RC)+λB(1−RB)(t,u)du

= −(1−RC)
∫ T

t
λC(u)DλC(1−RC)+λB(1−RB)(t,u)Et [Dr(t,u)V (u,S(u))]du

−
∫ T

t
(1−RB)λB(u)DλC(1−RC)+λB(1−RB)(t,u)Et [Dr(t,u)V (u,S(u))]du

= −(1−RC)
∫ T

t
λC(u)Dr(t,u)Et

[
DλC(1−RC)+λB(1−RB)(t,u)V (u,S(u))

]
du

−
∫ T

t
sF(u)Dr(t,u)Et

[
DλC(1−RC)+λB(1−RB)(t,u)V (u,S(u))

]
du

= −(1−RC)
∫ T

t
λC(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du

−
∫ T

t
sF(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du

by recognizing that (1−RB)λB(u)= sF(u) and DλC(1−RC)+λB(1−RB)(t,u)V (u,S(u))=
V̂ (u,S(u)) when V̂ ≤ 0. Moreover we added the negative sign to indicate we are in-
deed in the case when V̂ ≤ 0.

Basically we can see that this solution summarizes the two cases when V̂ ≤ 0,
when sF = 0 and when sF = (1−RB)λB.

If we put together the solution we found for V̂ ≥ 0 and the solution for V̂ ≤ 0, we
can see that the general formal solution provided by the authors is verified.

Û(t,s) = −(1−RB)
∫ T

t
λB(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))+

]
du

−(1−RC)
∫ T

t
λC(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du

−
∫ T

t
sF(u)Dr(t,u)Et

[
(V (u,S(u))+Û(u,S(u)))−

]
du



Chapter 3
Introducing a pure Liquidity Cost in the
framework of Bilateral Counterparty Credit
Risk with Funding Costs

Abstract In this chapter we describe the approach followed by Morini and Pram-
polini in [44], for the calculation of Bilateral Counterparty Credit Risk charges in
association with Funding Costs. A comparison between formulas obtained in [44]
and the Black & Scholes results of [20] is then proposed. We show that the two
approaches rejoin in the same result, when considering a vanilla payoff, where only
one of the two parties commits itself to pay a predetermined amount of money to the
other party, at a fixed date in the future. Nevertheless, both parties are yet subject to
risk of default.

3.1 CVA and DVA

The approach followed in [44] consists in the calculation of the expected value of
a transaction in an economy where a party B commits to pay a fixed amount K to
party C, at a given time T in the future. This is a single period model with a given
payoff at expiry T and with deterministic interest rate r. The time interval is defined
by t, with t ∈ [0;T ].

The only source of uncertainty is introduced in the model through the probability
of default of the two parties. The risk of default is developed through the intensity
model approach that will be deeply investigated also in the following chapters. Of
course the most relevant impact of a default event would verify in case of default of
the borrowing party B, the one expected to pay the agreed amount K at time T . This
is the reason why the amount K is weighted by the probability of default of B, also
referred to as the ”borrower” or the”issuer”.

As in [20], also in [44] the probability of default of the two parties is introduced
along with the concept of CVA and DVA, which are respectively ”Credit Value
Adjustment” and ”Debt Value Adjustment”, as explained in Chapter 1.

In [44] the value VB for the borrower B of this transaction is given by:

VB = P+DVAB−Ke−rT (3.1)

27
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where DVAB is the ”Debt Value Adjustment” deriving from the fact that B will
pay the amount K at expiry date T only upon its survival until that moment. The
amount P is the premium that party B receives at start date.

Specifically, considering τB the time of default of party B with τB ∈ [0;T ], we
have that the formula for it is given by:

DVAB = E
[
e−rT K1{τB ≤ T}

]
= Ke−rT Pr{τB ≤ T} (3.2)

If we look at DVAB, it is the expected value of the amount K that B may not
pay in T , weighted by its own probability of default. In fact, B will only pay K at
maturity if it does not default in advance.

Substituting the expression for DVAB in the formula for VB in t = 0 we obtain the
following:

VB = P+DVAB−Ke−rT

= P+Ke−rT Pr{τB ≤ T}−Ke−rT

= P−Ke−rT (1−Pr{τB ≤ T})
= P−Ke−rT Pr{τB > T}
= P−Ke−rT e−πBT

where the intensity model approach gives us:

Pr{τB > T}= e−πBT

with πB being the deterministic and instantaneous default probability of party
B. In credit structuring and pricing, πB is set equal to the CDS spread of party B,
which is observable in the market. The spread πB is intended to be πB = λBLGDB =
λB(1−RB), where λB is the instantaneous default intensity of B, LGDB is the ”loss
given default” of B, and RB is the recovery rate of B.

In [44] πB is therefore correctly addressed to as the ”risk-adjusted instantaneous
default probability”.

Going back to the formula for VB we just found in [44], it is very intuitive to
describe the flows for the borrower as the cashing of the premium at inception minus
the discounted value of the capital reimbursement weighted by its own probability
of survival until maturity. This effect is indeed obtained through the DVAB.

Solving for the value of P that gives a breakeven level for B we obtain, by putting
VB = 0:

P = Ke−rT e−πBT (3.3)
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The borrower will enter this transaction if the premium received at inception
will be at least equal to the net present value of the amount K weighted by its own
probability of survival.

Analogously, in [44] Morini and Prampolini compute the value VL of the same
transaction from the point of view of L, the ”lender”, who has to receive the amount
K at time T , upon survival of the borrower until that moment:

VL =−P−CVAL +Ke−rT (3.4)

The component CVAL is the ”Credit Value Adjustment” that the lender L is bear-
ing for the fact that he will receive the amount K at maturity T only if the borrower
does not default before that moment. It is therefore equal to the same DVAB:

CVAL = E
[
e−rT K1{τB ≤ T}

]
= Ke−rT Pr{τB ≤ T} (3.5)

Inserting it in the expression for VL it gives:

VL = −P−CVAL +Ke−rT

= −P−Ke−rT Pr{τB ≤ T}+Ke−rT

= −P+Ke−rT (1−Pr{τB ≤ T})
= −P+Ke−rT Pr{τB > T}
= −P+Ke−rT e−πBT

and solving for the breakeven value for the lender through VL = 0:

P = Ke−rT e−πBT

Therefore the lender L should enter this transaction by paying a premium P equal
to or smaller than the discounted value of K, times the survival probability of the
borrower.

Indeed we can see that the equilibrium price P for both the borrower B and the
lender L coincides.

3.2 Introducing Funding Cost and Funding Benefit

The authors in [44] try to understand if they should also make some further consid-
erations regarding the premium P paid at the start date t = 0.

On the lender side, they ask themselves if a funding cost for financing the pre-
mium should be accounted for. Whereas, on the borrower side, they investigate if a
funding benefit from receiving the same premium should be considered.
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They verify that introducing these elements is not indeed necessary because the
introduction of DVA already allows for a proper comprehension of these funding
effects.

3.2.1 Does the Borrower have to consider a Funding Benefit by
receiving P in t = 0?

From the point of view of the borrower B, one can argue that funding an amount P, if
not provided by the lender L through this transaction, would have anyway generated
a negative cashflow at maturity T equal to −PerT esBT 1{τB > T}, where sB is here
introduced and it is the funding spread for the borrower B.

The funding spread sB in [44] is assumed to be equal to sB = πB + γB, where πB
is the CDS spread for B, and γB is a pure ”liquidity basis”.

In the context of our deal, it is therefore possible to say that receiving the pre-
mium P in t = 0 is equivalent to receiving PerT esBT 1{τB > T} in T , to be added to
what B has to pay in T , that is K1{τB > T} . We therefore investigate if a ”Funding
Benefit” should be accounted for, when computing the ”fair” premium P from the
point of view of the borrower B.

We indicate with ṼB the ”new” total payoff for B at time t = T , and we see that
it becomes consequently equal to:

ṼB = PerT esBT 1{τB > T}−K1{τB > T} (3.6)

and, discounting it to t = 0, the payoff ṼB transforms in the following ”new” VB:

VB = PesBT 1{τB > T}−Ke−rT 1{τB > T}
= PeπBT eγBT 1{τB > T}−Ke−rT 1{τB > T}
= PeπBT eγBT e−πBT −Ke−rT e−πBT

= PeγBT −Ke−rT e−πBT

As a matter of fact, apart from a pure liquidity basis γB, the price P for the bor-
rower B would be equal to the one previously found when no Funding Benefit was
accounted for:

P = Ke−rT e−πBT e−γBT

and by putting γB = 0:

P = Ke−rT e−πBT

So, considering the own probability of default eliminates any Funding Benefit,
apart from a pure liquidity basis if γB > 0.
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3.2.2 Does the Lender have to consider a Funding Cost by
anticipating P in t = 0?

From the lender’s perspective, instead, one can point out that cashing the premium
P at inception in t = 0 may generate a ”Funding Cost”, arising when the lender L
has to be financed for the amount of the premium P until maturity t = T .

Anticipating the amount P until time T can generate in t = T a negative cashflow
equal to −PerT esLT 1{τL > T}, which is paid only if the lender L survives until
expiry date t = T . Here sL is the funding spread of the lender L, and it is given by
sL = πL + γL, where πL is the CDS spread of party L observable in the market, and
γL is the liquidity basis for party L.

This negative cashflow, deriving from the funding deal, has to be added to the
amount that L receives at time T if the borrower does not default until that moment,
equal to K1{τB > T}, resulting in the following ”new” payoff ṼL for L in t = T :

ṼL =−PerT esLT 1{τL > T}+K1{τB > T} (3.7)

and, discounting it to t = 0, ṼL results in the following ”new” VL:

VL = −PesLT 1{τL > T}+Ke−rT 1{τB > T}
= −PeπLT eγLT e−πLT +Ke−rT e−πBT

= −PeγLT +Ke−rT e−πBT

with the following ”new” value for the equilibrium P for L:

P = Ke−rT e−πBT e−γLT

and by putting γL = 0:

P = Ke−rT e−πBT

Apart from a pure liquidity basis γL, the price P for the lender L is again equal to
the one already calculated when no Funding Cost was accounted for.

In fact, including the lender’s own probability of default, eliminates the necessity
to include any Funding Cost deriving from financing the premium, apart from a pure
liquidity basis.

As a general finding, we may say that considering a ”risky” funding, where one
also takes into account its own probability of not surviving, compensates any further
effect of Funding Cost or Funding Benefit, apart from a pure liquidity basis.
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3.3 Assimilating different approaches

It is possible to see that the approach developed by Morini and Prampolini in [44]
can be assimilated to the one presented by Burgard and Kjaer in [20], through the
following adjustments.

• Funding rate: rF = r+ sF in Burgard and Kjaer (see [20]) equal to rB = r+ sB in
Morini and Prampolini (see [44]).

Morini and Prampolini assume that the funding rate is always for a ”risky” fund-
ing, and therefore they add the funding spread of the borrowing party to the risk-free
rate. Their model can therefore be assimilated to the hypothesis of Burgar and Kjaer
where they assume that rF = r+ sF .

• Funding spread: sF = (1−RB)λB in Burgard and Kjaer (see [20]) equal to sB =
πB = LGDBλB = (1−RB)λB, with γB = 0 in Morini and Prampolini (see [20]).

Morini and Prampolini assume the funding spread is equal to the CDS spread
from intensity models literature plus a pure liquidity basis spread, resulting in sF =
πB+γB. If we assume in the Morini and Prampolini model that γB = 0, and therefore
the funding spread for the borrower is only given by its CDS spread, then we are
working under the same assumption in both models.

• The payoff at maturity: H(S(T )) = K

In order to assimilate the two approaches, the Burgar and Kjaer’s payoff that the
borrowing party has to pay at maturity, has to be assumed to be strictly positive and
equal to K, as in the Morini and Prampolini’s model.

This last assumption brings the Burgar and Kjaer model in the eventuality of
always generating a positive value of the derivative itself, thus eliminating the case
when V̂ ≤ 0.

Given this adaptation, we can see how the Burgar and Kjaer’s case of M = V̂ ,
V̂ ≥ 0 and rF = r+ sF with sF = (1−RB)λB, by putting H(S(T )) = K, becomes:

V̂ (t,s) = Et
[
Dr+(1−RB)λB(t,T )H(S(T ))

]
= Et

[
Dr+(1−RB)λB(t,T )K

]
= exp(−

∫ T

t
(r(s)+(1−RB)λB(s))ds)K

= exp(−
∫ T

t
r(s)ds)exp(−

∫ T

t
(1−RB)λB(s)ds)K

and it is equal to the continuous time version of the following Morini and Pram-
polini case:
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P = e−rT e−πBT K

= e−rT e−(1−RB)λBT K

Here below you can find a more appropriate proof of this.
We shall remember findings from Chapter 2.
If B defaults first:

V̂ (t,s,1,0) = M−+RBM+

If C defaults first:

V̂ (t,s,0,1) = RCM−+M+

where M− is the negative mtm for the surviving party, and M+ is the positive
mtm for the surving party. In this case the negative part of the mark to market does
not exist, and therefore we obtain the following modified conditions.

If B defaults first:

V̂ (t,s,1,0) = RBM+

If C defaults first:

V̂ (t,s,0,1) = M+

Recalling that:{
∂

∂ t V̂ +AtV̂ − rV̂ = sF(V̂ +∆V̂B)
−−λB∆V̂B−λC∆V̂C

V̂ (T,S) = H(S)

with boundary condition for ∆V̂B:

∆V̂B = V̂ (t,S,1,0)−V̂ (t,S,0,0)
= (M−+RBM+)−V̂

and ∆V̂C:

∆V̂C = V̂ (t,S,0,1)−V̂ (t,S,0,0)
= (M++RCM−)−V̂

we see that in our case the boundary conditions modify to:

∆V̂B = V̂ (t,S,1,0)−V̂ (t,S,0,0)
= RBM+−V̂
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and

∆V̂C = V̂ (t,S,0,1)−V̂ (t,S,0,0)
= M+−V̂

Plugging them into the PDE:{
∂

∂ t V̂ +AtV̂ − rV̂ = sF(V̂ +RBM+−V̂ )−−λB(RBM+−V̂ )−λC(M+−V̂ )

V̂ (T,S) = K

{
∂

∂ t V̂ +AtV̂ − rV̂ =−λBRBM++λBV̂ −λCM++λCV̂
V̂ (T,S) = K

{
∂

∂ t V̂ +AtV̂ − rV̂ = (λB +λC)V̂ −λBRBM+−λCM+

V̂ (T,S) = K

Substituting M+ = (V̂ )+ and considering that we are in the case where V̂ > 0
always: {

∂

∂ t V̂ +AtV̂ − rV̂ = (λB +λC)V̂ −λBRBV̂ −λCV̂
V̂ (T,S) = K

{
∂

∂ t V̂ +AtV̂ − rV̂ = λBV̂ −λBRBV̂
V̂ (T,S) = K

{
∂

∂ t V̂ +AtV̂ − rV̂ = (1−RB)λBV̂
V̂ (T,S) = K

V̂ (t,s) = Et
[
Dr+(1−RB)λB(t,T )K

]
What can be seen in both the approaches we examined is that, in the hypothesis

of sB = πB with no liquidity basis, when there is only one defaultable party that has
the obligation to pay at expiry, a ”Unilateral Credit Counterparty Risk” has been
considered.

To give a better explanation of the point, we can identify two aspects of the
overall financial operation, being the ”transaction deal”, where one of the two parties
commits to pay a payoff at expiry, and the ”funding deal”, where the other party may
enter a financing transaction to cash the premium at inception.
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In both models, in the ”transaction deal” it is only the probability of default of the
party obliged to pay at expiry that is taken into account. In other terms, the ”debtor-
risky” payoff is not weighted by the survival probability of the creditor, until we
introduce Funding Costs and a pure liquidity basis component is then included. In
fact, it is only through the introduction of Funding Costs for the ”funding deal” that
we introduce also the probability of default of the ”creditor” party in the ”transaction
deal”, i.e. the lender L, otherwise in the ”transaction deal” we would only see the
default risk of the party expected to pay at expiry.

In the approach that will be developed in the following chapters, instead, both
positive and negative payoffs will be weighted by the creditworthiness of both par-
ties at the same time.





Chapter 4
Bilateral Counterparty Risk with Funding
Costs: a discretized approach

Abstract In this chapter we will try to gather all the information learnt so far and de-
velop a systematic approach to price a two-sided payoff, considering both Bilateral
Counterparty Credit Risk and Funding Costs. In order to implement the outcoming
approach, the theoretical model will be discretized, which will also allow us to make
numerical tests. Basic assumption of no wrong-way risk is in place, meaning that
there is not a direct link between the default risk of the counterparty and a possible
increase in the exposure of the other party in the underlying transaction. Moreover,
default probabilities of the two parties are not correlated.

4.1 Funding Cost Adjustment in the framework of Bilateral
Credit Value Adjustment

We will assume that we have two parties, namely party A and party B, where party A
may be thought of as being the ”financial institution”, while party B may be regarded
as the ”counterparty”. As far as now, no consideration on the credit quality of either
parties has been done.

As also discussed in previous chapters, we will assume that if one of the two
parties defaults, then the other party will receive only a portion of the present value
of its positive exposure towards the defaulting party, namely the recovery rate times
the positive exposure. On the other hand, if at default the surviving party owes any
amount to the defaulting party, then the surviving party will pay the full negative
exposure to its counterparty. This is standard market practice.

We will study the value of a ”credit risky” derivative from the point of view of
party A. From a funding perspective, we will assume that positive exposures do not
generate any specific revenue, but, on the other side, we will consider that negative
cash positions need to be funded from the moment they take place until maturity of
the transaction. Positive or negative positions must be intended as ”net” negative or
positive positions at a certain moment in time. This is the point where Funding Costs
are indeed introduced in our model. As we are analyzing the value of the derivative

37
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from the point of view of party A, we will of course consider Funding Costs from
the point of view of A. The inclusion of Funding Costs may be explained as the ne-
cessity to fund any liquidity disbursement that a party will have to face. Assuming
that a party has no liquidity reserves implies recognizing that the party will have to
go into the market, in case through the Treasury department, and fund itself at its
current funding spread for the relevant maturity. As proposed also in [44], the fund-
ing spread can be set to be equal to the credit spread, plus a liquidity basis which
can be explained as a friction between the primary and the secondary market. On
the other hand, if the party had the liquidity to face the negative future cashflows,
one should consider the opportunity cost of not investing that liquidity in the market
rather than facing directly the cash outflows resulting from the derivative position.
If we assume that the party could go at least in the market and buy back its own
bonds with the excess liquidity, we may again come to the conclusion that the cost
of a negative exposure is equal to its cost of funding, because this is what a party
is giving up when not buying back its own bonds. As the buyback of own bonds
in the secondary market would be done at a liquidity premium with respect to the
funding spread used in the primary market, we can say that Funding Costs to fund
negative positions must be at least equal to the opportunity cost of not extinguishing
outstanding debt, i.e. the sum of the credit spread - where the credit spread is as-
sumed to be the cost for issuances in the primary market - plus a liquidity premium
specific of the secondary market.

We assume the time interval to be [0,T ], with ti=0 = 0 < ti < ... < ti=n = T and
i ∈ N.

Moreover we assume a possible default time at τ1, with τ1 ∈ (0,T ), where it may
be either τ1 = τA if party A defaults first or τ1 = τB if party B defaults first instead.

X̃(0,T ) is the payoff valued at time ti=0 = 0 with maturity T . The value X̃(0,T )
of the derivative must be intended as X̃(0,T ) = X̃+(0,T ) + X̃−(0,T ), as we are
thinking of a derivative where it is not possible to know in advance whether the
mark-to-market X̃(0,T ) will be positive or negative at any time ti for our reference
party. This would be for instance the case of an interest rate swap prior to any fixing
date, where one of the two parties is paying a floating rate, like Euribor.

In order to proceed with the setup of a model able to properly account for Funding
Costs, we will introduce the concept of net negative expected cash flows.

Net negative expected cash flows, in fact, will be the quantities to be funded from
the moment they are actually due in the underlying transaction, until its maturity.

Each single net negative expected cash flow known in ti−1 - applicable for the
period (ti−1, ti] and occurring in ti - will be funded from ti until final maturity T .

It is not the whole negative mark-to-market to be funded at each period until
maturity date, but only the single net cash flow if negative.

For this reason we introduce Negative Expected Cash Flow quantity ECF−(ti−1, ti).
Basically we have that:

• ti−1 is the point in time where party A knows the net negative cash flow ECF−(ti−1, ti)
(e.g. when there is the fixing of relevant Euribor);

• ti is the point in time where party A actually pays the cash flow ECF−(ti−1, ti);
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• Party A will pay funding on ECF−(ti−1, ti) from ti+1 until T , so total funding on
it will be ECF−(ti−1, ti)FA(ti, tn), with FA(ti, tn) = Floating Leg(ti, tn) + Spread
Leg(ti, tn)

• Floating Leg(ti, tn) = B(0,0)−B(ti, tn)

• Spread Leg(ti, tn) = Funding Spread ∗
n
∑
j=i

B(ti, t j)

• B(ti, t j) is the discount factor valued in ti with maturity t j with CIR bonds formula
• Introduce proper risk-free discount factors.

We will here analyze separate cases according to different possible times of de-
fault of both parties.

In our approach we separate the derivation of BCVA and FCA, and we start from
BCVA.

We consider the risk-free discouted payoff X̃(0,T ).

• If neither party A nor party B defaults before maturity T , the discounted payoff
in ti=0 = 0 shall be:

1
{

τ1 > T
}[

X̃(0,T )
]

• If both party A and party B default before T , the discounted payoff before τ1 is
given by:

1
{

τ1 ≤ T
}[

X̃(0,τ1)
]

• If party A defaults before T , with δA being the ”recovery rate” of party A, the
discounted payoff at time τ1 is:

1
{

τ1 ≤ T,τ1 = τA
}[

δAX̃−(τ1,T )+ X̃+(τ1,T )
]

• If party B defaults before T , with δB being the ”recovery rate” of party B, the
discounted payoff at time τ1 is:

1
{

τ1 ≤ T,τ1 = τB
}[

X̃−(τ1,T )+δBX̃+(τ1,T )
]

Merging all the components, we obtain the following formula for the discounted
risky derivative under the risk neutral probability measure Q:

X̂(0,T ) = EQ


1
{

τ1 > T
}[

X̃(0,T )
]
+

1
{

τ1 ≤ T
}[

X̃(0,τ1)
]
+

1
{

τ1 ≤ T,τ1 = τA
}[

δAX̃−(τ1,T )+ X̃+(τ1,T )
]
+

1
{

τ1 ≤ T,τ1 = τB
}[

X̃−(τ1,T )+δBX̃+(τ1,T )
]


and since X̃+(τ1,T ) = X̃(τ1,T )− X̃−(τ1,T ) on the third line, and X̃−(τ1,T ) =

X̃(τ1,T )− X̃+(τ1,T ) on the fourth line, we get:
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X̂(0,T ) = EQ


1
{

τ1 > T
}[

X̃(0,T )
]
+

1
{

τ1 ≤ T
}[

X̃(0,τ1)
]
+

1
{

τ1 ≤ T,τ1 = τA
}[

δAX̃−(τ1,T )+ X̃(τ1,T )− X̃−(τ1,T )
]
+

1
{

τ1 ≤ T,τ1 = τB
}[

X̃(τ1,T )− X̃+(τ1,T )+δBX̃+(τ1,T )
]


At this point we recognize the risk-free value of the derivative X̃(0,T ) :

1
{

τ
1 > T

}
X̃(0,T )+1

{
τ

1 ≤ T
}

X̃(0,τ1)+

1
{

τ
1 ≤ T,τ1 = τA

}
X̃(τ1,T )+1

{
τ

1 ≤ T,τ1 = τB
}

X̃(τ1,T )

= X̃(0,T )

which leads to:

X̂(0,T ) = X̃(0,T )+EQ

1
{

τ1 ≤ T,τ1 = τA
}[

δAX̃−(τ1,T )− X̃−(τ1,T )
]
+

1
{

τ1 ≤ T,τ1 = τB
}[
−X̃+(τ1,T )+δBX̃+(τ1,T )

] 
Here we recognize the pricing adjustment that we were looking for, namely the

Bilateral Credit Value Adjustment (BCVA). Specifically, rearranging terms we can
find a new formula for the ”credit-risky” value of the derivative X̂(0,T ):

X̂(0,T ) = X̃(0,T )−EQ

[
1
{

τ1 ≤ T,τ1 = τB
}
(1−δB)X̃+(τ1,T )+

1
{

τ1 ≤ T,τ1 = τA
}
(1−δA)X̃−(τ1,T )

]
We can in fact extrapolate the Bilateral Credit Value Adjustment (BCVA), given

by:
BCVA=EQ

[
1
{

τ1 ≤ T,τ1 = τB
}
(1−δB)X̃+(τ1,T )+1

{
τ1 ≤ T,τ1 = τA

}
(1−δA)X̃−(τ1,T )

]
We now turn to the derivation of a ”Funding Cost Adjustment” (FCA) following

the same procedure.
We consider funding for party A. Funding spread is equal to party A’s credit

spread, as we refer to party A as the ”pricing party”.

• If neither party A nor party B defaults before maturity T , funding in ti=0 = 0 shall
be:

1
{

τ1 > T
}[n−1

∑
i=1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]
]

• If both party A and party B default before T , funding before τ1 is given by:

1
{

τ1 ≤ T
}[τ1−1

∑
i=1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tτ1)]

]

• If party A defaults before T , funding at time τ1 is:
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1
{

τ1 ≤ T,τ1 = τA
}[

δA
n−1
∑

i=τ1
[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]

]
• If party B defaults before T , funding at time τ1 is:

1
{

τ1 ≤ T,τ1 = τB
}[n−1

∑
i=τ1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]
]

Merging all the components, we get for FCA under the risk neutral probability
measure Q:

FCA=EQ



1
{

τ1 > T
}[n−1

∑
i=1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]
]
+

1
{

τ1 ≤ T
}[τ1−1

∑
i=1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tτ1)]

]
+

1
{

τ1 ≤ T,τ1 = τA
}[

δA
n−1
∑

i=τ1
[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]

]
+

1
{

τ1 ≤ T,τ1 = τB
}[n−1

∑
i=τ1

[D(t, ti)ECF−(ti−1, ti)FA(ti, tn)]
]


which simplifies to:

FCA =
n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

EQ

[
1
{

τ
1 ≤ T,τ1 = τA

}
(1−δA)

[
n−1

∑
i=τ1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]]]

We see that BCVA and FCA can both be regarded as net costs, in that:

• BCVA is a cost equal to Adjusted CVA diminuished by Adjusted DVA, where a
party reduces charges for Counterparty Credit Risk by a component related to its
own default probability

• FCA is a cost equal to the funding of the entire profile of net Negative Expected
Cash Flows, reduced by the amount of Funding Costs that will not be due in case
of own default.

4.2 Bilateral Credit Value Adjustment: a discretized approach

We now want to discretize the expressions for BCVA and FCA. We assume the time
interval to be [0,T ], with ti=0 = 0 < ti=1 < ... < ti=n = T.

Specifically, from the general definition for default and survival probabilities
built through the expected value of the Indicator function:

EQ
[
1
{

τ1 ≤ T
}]

= 1−EQ
[
1
{

τ1 > T
}]
⇒ Pr

{
τ1 ≤ T

}
= 1−Pr

{
τ1 > T

}
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considering the infinitesimal change of the above expression, and then integrating
over the time interval [0,T ]:

dPr
{

τ1 ≤ T
}
=−d Pr

{
τ1 > T

}
⇒
∫ T

0 d Pr
{

τ1 ≤ T
}
=−

∫ T
0 d Pr

{
τ1 > T

}
and by calling S(0,y) the survival probability in the time interval [0,y], and thus

having −
∫ T

0 d Pr
{

τ1 > T
}
=−

∫ T
0 dS(0,y), we have that:

∫ T
0 d Pr

{
τ1 ≤ T

}
=−

∫ T
0 dS(0,y)

From the formula we found for BCVA:

BCVA=EQ

[
1
{

τ1 ≤ T,τ1 = τB
}
(1−δB)X̃+(τ1,T )

+1
{

τ1 ≤ T,τ1 = τA
}
(1−δA)X̃−(τ1,T )

]
we can obtain the following discounted and continuous version of the formula

for BCVA, with X̃(0,T ) = D(0,T )X(0,T ) and D(0,T ) being the risk-free discount
factor in ti=0 = 0 for maturity T.

BCVA = −(1−δB)EQ

[∫ T

0
D(0,y)X+(y,T )SA(0,y)dSB(t,y)

]
−(1−δA)EQ

[∫ T

0
D(0,y)X−(y,T )SB(0,y)dSA(t,y)

]
with SA(0,y) equal to the cumulative probability distribution of party A, SB(0,y)

the cumulative probability distribution of party B and D(0,y) a risk-free discount
factor.

As the expected value of X+ under the risk neutral measure Q is equal to the
Expected Exposure EE , i.e. the average of only expected positive values at a certain
point in time:

EQ [X+(y,T )] = EQ [max(0,X(y,T ))] = EE(y,T )

whereas the expected value of X− under the risk neutral measure Q is equal to
the Negative Expected Exposure NEE, i.e. the average of only expected negative
values at a certain point in time:

EQ [X−(y,T )] = EQ [min(0,X(y,T )]) = NEE(y,T )

discretizing the expression for BCVA we have:
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BCVA ≈ (1−δB)
n

∑
i=1

D(t, ti)EE(ti)SA(ti) [SB(ti−1)−SB(ti)]

+(1−δA)
n

∑
i=1

D(t, ti)NEE(ti)SB(ti) [SA(ti−1)−SA(ti)]

where each EE(ti) is the Expected Exposure that would occur in ti in case party
A was to unwind the entire position in the derivative. This means that D(t, ti)EE(ti)
does not represent the discounted value for the single period [ti−1, ti] but the entire
positive exposure deriving from the position in ti, considering all future cash flows
discounted up to t. The same applies to NEE(ti). SA(ti) is the survival probability
of party A up to time ti, while [SB(ti−1)−SB(ti)] is the default probability of party
B in the time interval (ti−1, ti]. At the same time SB(ti) is the survival probability of
party B up to time ti, while [SA(ti−1)−SA(ti)] is the default probability of party A in
the time interval (ti−1, ti].

4.3 Adjustment for Default Risk in FCA

For what is concerned with FCA, instead, we can rearrange the formula as indicated
here below.

From the above formula:

FCA =
n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

EQ

[
1
{

τ
1 ≤ T,τ1 = τA

}
(1−δA)

[
n−1

∑
i=τ1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]]]

specifying EQ
[
1
{

τ1 ≤ T,τ1 = τA
}]

, we obtain:

FCA =
n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

(1−δA)
n−1

∑
i=1

[
Pr(τB > ti)Pr(τA ≤ ti)D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
The value of the ”credit-risky” and ”funding-adjusted” value of the derivative

X̂(0,T ) shall then be:

X̂(0,T ) = X̃(0,T )−BCVA+FCA

≈ X̃(0,T )+
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(1−δB)
n

∑
i=1

D(t, ti)EE(ti)SA(ti) [SB(ti−1)−SB(ti)]+

(1−δA)
n

∑
i=1

D(t, ti)NEE(ti)SB(ti) [SA(ti−1)−SA(ti)]+

n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

(1−δA)
n−1

∑
i=1

[
Pr(τB > ti)Pr(τA ≤ ti)D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
For the purpose of further numerical tests, we notice that also for FCA we may

adopt the following notations for Pr(τB > ti) and for Pr(τA ≤ ti) respectively.
In particular, we can indicate Pr(τB > ti) = SB(ti), where this is the survival prob-

ability of party B from ti=0 = 0 to ti.
We can notice two important differences between BCVA and FCA.
First of all, while for BCVA what matters is always the whole Expected Expo-

sure, or Negative Expected Exposure, of the derivative, in case with some haircuts
applied, for FCA, instead, one has to consider a single net cash flow at a time.

In fact, in case of default, the surviving party will suffer a loss - in case partially
recovered - on the entire position, from the moment of default of its counterparty
until maturity.

On the other hand, Funding Costs are applied to any single net Negative Ex-
pected Cash Flow due at each payment date, not to the whole mark-to-market of the
derivative.

It would not make sense indeed to fund the entire mark-to-market of the deriva-
tive from start date until maturity. It is instead more meaningful to fund any net
negative cash flow from the moment it has to be paid until maturity of the transac-
tion.

As a second point, it is important to note that, while for BCVA we refer to differ-
ential default probability from ti to ti−1, to be applied to the exposure at ti, for FCA,
instead, we need to consider the entire default probability from ti=0 = 0 to ti to be
applied to the net cash flow ECF−(ti−1, ti).



Chapter 5
Stochastic intensity modeling

Abstract When dealing with Credit Counterparty Risk and Funding Costs it is nec-
essary to model both interest rates and default intensities. Both variables can be
modeled either constant, deterministic and stochastic. In finance literature the most
sophisticated approach is that of modeling stochastic interest rates and this is the
path we shall follow in the remaining of this work. Interest Rates will be modeled
according to a Cox-Ingersoll-Ross process, from now on CIR process, and rele-
vant properties and simulation techniques will be investigated. For more details on
CIR term structure model see [23]. Also for default intensities, their modeling shall
represent a stochastic behaviour in time, rather than assuming default intensities
as some constants or deterministic functions. To this purpose we shall see that the
CIR process can be adopted as a suitable process also for default intensities. As
a consequence, we shall have both interest rates and default intensities evolving
stochastically according to their respective CIR process.

5.1 A setting for deterministic intensity model: a Poisson
distribution for default events

Before moving to the stochastic setting, we shall go through a review of the deter-
mistic model for default intensities.

As illustrated also in [39], when modeling default intensities, it is possible to de-
fine a random variable Yt representing the number of ”arrivals” in the time interval,
distributed according to a Poisson distribution. ”Arrivals” shall be ”defaults” in our
environment. Specifically:

• Yt : ”number of arrivals in t” is a discrete random variable
• Yt ∼ P(γt) where γ is the average number of arrivals in the time unit

The probability function of Yt will be given by the following:

45
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Pr(Yt = y) =

{
(γt)y exp(−γt)

y! i f y = 0,1, ...,N
0 otherwise

with t ∈ (0,+∞) continuous values, and therefore the probability function is itself
a continuous function of time.

The behaviour of Yt evolves according to the following three hypotesis:

• Uniformity.

Pr(Yt = y) is constant, with y number of arrivals in a time interval of lenght t.
The probability of arrivals Pr(Yt = y) in a time interval t is always constant,

regardless of the specific time interval of lenght t.
This implies that Pr(Yt = y) [ti; ti+1] = Pr(Yt = y) [ti+1; ti+2] with ti+1− ti = ti+2−

ti+1 = t.

• Absense of memory.

The number of arrivals in a time interval of lenght t does not depend on the
number of arrivals in preceding disjointed time intervals.

• Impossibility of simultaneous arrivals.

In a small time interval ∆ t, either no arrivals take place (Y∆ t = 0) or only one
arrival verifies (Y∆ t = 1).

One can summarize the above hypotesis as following:
=⇒ Pr1(∆ t) = γ∆ t. (The probability of one arrival in ∆ t is proportional to γ

arrivals in the time unit multiplied by the time fraction ∆ t);
=⇒ Pr0(∆ t) = 1−λ∆ t. (The probability of zero arrivals in ∆ t is complementary

to the probability of one arrival in ∆ t);
=⇒ Pr>1(∆ t) = 0. (In ∆ t the probability of more than one arrival is zero);
and show that the only random variable satisfying all three conditions is a random

variable distributed according to the Poisson distribution.

5.1.1 First passage time in a Poisson process for the first default

A Poisson process is a family of Poisson random variables Yt ∼ P(γt) with t ∈ R+,
satisfying the following properties [21]:

1. Y0 = 0
2. ∀ t1 < t2 < t3 < t4 ∈ R+ : Y (t4)−Y (t3) is independent of Y (t2)−Y (t1) =⇒ Yt

has independent increments
3. ∀ t1 < t2 < t3 < t4 ∈ R+ : Y (t4)−Y (t3)∼Y (t2)−Y (t1) =⇒Yt has a distribution

with stationary increments
4.∀ t1 < t2 ∈ R+ : Y (t2)−Y (t1) ∼ P(γ(t2− t1)) =⇒ Increments of Yt distribute

according to a Poisson distribution
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In order to assess the waiting time for the first ”default” in a Poisson process, we
can recur to a new continuous random variable τ1 and study its behaviour.

The continuous random variable τ1 shall therefore be the ”waiting time for the
first default” in the Poisson process Yt .

Its cumulative distribution function Fτ1(t), representing the time we have to wait
before we see the first ”passage” or ”arrival” or ”default”, will be:

Fτ1(t) = Pr(τ1 ≤ t)

= 1−Pr(τ1 > t)

= 1−Pr(Yt = 0)
= 1− exp(−γt)

As a matter of fact, the probability that the first default event happens in τ1 with
τ1 ≤ t, is equal to the probability of zero ”defaults” for the random variable Yt until
t, distributed according to the Poisson distribtion Yt ∼ P(γt). As a consequence, the
probability of the first default event happening in τ1 prior to t, is the complement to
1 of the probability of zero ”defaults” for the random variable Yt until t.

The density function fτ1(t)of τ1 will be given by fτ1(t) = F
′
τ1
(t) :

fτ1(t) =
{

γ exp(−γt) i f t > 0
0 otherwise

which is indeed the probability density function of an exponential random vari-
able. Therefore we have the following important result for the distribution of the
first default time:

τ1 ∼ exp(γ)

To recap, the default time τ1 is the first jump-time of a time-inhomogeneous
Poisson process with strictly increasing, continuous, invertible hazard function Γ

and hazard rate (deterministic intensity) γ , with
∫ t

0 γ(t)dt = Γ (T ), as mentioned
also by Brigo and Alfonsi [9].

For the purpose of our work, we shall place ourselves under the risk-neutral mea-
sure Q, so that all expected values and probabilities shall be calculated accordingly.

Therefore, as found before, the risk-neutral probability of the first default time
occurring before a certain moment t is:

Q(τ1 ≤ t) = 1− exp(−γt) (5.1)

Default intensities may also be assumed to evolve according to a stochastic
model, and this shall indeed be the purpose of the remaining of this work.

Furthermore, when in this work interest rates are introduced, we shall model
a stochastic behaviour for this variable as well, eventually according to the well
known CIR processes.
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5.2 A CIR model for the Stochastic intensity

In this section we will investigate how to model and simulate stochastic default
intensity.

In general, stochastic intensity is referred to as λ and the respective intensity
process as Λ(T ) =

∫ T
0 λ (t)dt.

When modeling stochastic λ , it is nonetheless necessary to grant that intensity
stay always positive over time. From a financial point of view, in fact, negative
intensities do not make any sense. On the contrary, allowing for negative interest
rates, may still find a financial justification.

Moreover we may want to incorporate a mean reversion behaviour.
Summarizing all these features:

• Stochastic behaviour in time
• Independency of interest rates
• Mean reverting process
• Always non-negative values

a suitable model for stochastic default intensities has been identified in the CIR
model. Specifically, the behaviour of stochastic default intensity λt may be described
by the following SDE:

dλ (t) = θ(η−λ (t))dt +σλ

√
λ (t)dW (t) (5.2)

where θ and η are two mean reversion parameters, both positive constants, re-
spectively θ is the speed of adjustment and η is the mean reversion level.

The volatility of the process for λ is here assumed to be a constant parameter
σλ as well, but it may eventually be transformed in a function of time σ(t) , or be
modeled as stochastic variable.

W (t) is a Brownian motion and dW (t)∼ N(0,1)
√

dt.
In this setting we shall further investigate the case when this process for λ (t) is

actually ensuring to obtain positive values. To this purpose we will make reference
to the so called Feller condition.

As suggested by J. Gregory [34], another interesting feature of default intensities
behaviour in time may be that of representing sudden and discrete jumps, as a result
of an unexpected shock in the credit quality of a counterparty, that either being an
upgrade or a downgrade. This could be done by the introduction of some Poisson
jumps, thus modifying the above SDE as it follows:

dλ (t) = θ(η−λ (t))dt +σλ

√
λ (t)dW (t)+ jdN

where N is a Poisson process with jump size j.
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5.3 The conditional probability distribution of the CIR model

The properties of the CIR model as a mean-reverting square-root process have long
been investigated in [28] and as referenced by Andersen, Jackel and Kahl (2009)
[1] and by Lord (2008) [40]. The same approach was followed also in [48] when
analyzing different simulation approaches for the CIR process.

It was studied that, if the random variable λ (t) follows a CIR process, the process
for λ (t) can then be simulated exactly from the conditional probability distribution
of λ (T ) |λ (t) , with ∆ t = T − t and T > t.

Specifically, it was studied [28] that the conditional probability distribution of
λ (t +∆ t) |λ (t) follows a non-central chi-squared distribution, times some certain
parameter that will be discussed shortly.

Starting from the CIR process for λ (t) given by:

dλ (t) = θ(η−λ (t))dt +σλ

√
λ (t)dW (t)

we shall set the following constant parameter d, being the degree of freedom of
a non-central chi-square distribution:

d =
4θη

σ2
λ

(5.3)

and the parameter ncp(t, t+∆ t), being the non-central parameter of a non-central
chi-square distribution:

ncp(t, t +∆ t) =
4θe−θ(∆ t)

σ2
λ
(1− e−θ∆ t)

(5.4)

Conditional on λ (t), λ (T ) has a non-central chi-square distribution with degree
of freedom d and non-central parameter λ (t)ncp(t, t+∆ t), times e−θ(∆ t)/ncp(t, t+
∆ t).

Given a certain value λ , the above results in:

Pr [λ (T )< λ |λ (t) ] = Fχ2

d,λ (t)ncp(t,t+∆ t)

(
λ

ncp(t, t +∆ t)
e−θ(∆ t)

)
(5.5)

where, as said, Fχ2

d,λ (t)ncp(t,t+∆ t) is the cumulative distribution function of a non-

central chi-square distribution χ2(d,λ (t)ncp(t, t +∆ t)), with degree of freedom d
and non-central parameter λ (t)ncp(t, t +∆ t). The above can be further rearranged
substituting ncp(t, t +∆ t):

Pr [λ (T )< λ |λ (t) ] = Fχ2

d,λ (t)ncp(t,t+∆ t)

(
λ

4θe−θ(∆ t)

σ2
λ
(1− e−θ∆ t)e−θ(∆ t)

)
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= Fχ2

d,λ (t)ncp(t,t+∆ t)

(
λ

4θ

σ2
λ
(1− e−θ∆ t)

)

For ease of reading, in the following we shall set a new parameter k, equal to the
multiplicative factor of the distribution:

k =
e−θ(∆ t)

ncp(t, t +∆ t)

=
e−θ(∆ t)σ2

λ
(1− e−θ∆ t)

4θe−θ(∆ t)

=
σ2

λ
(1− e−θ∆ t)

4θ

Thus eventually leading to:

Pr [λ (T )< λ |λ (t) ] = Fχ2

d,λ (t)ncp(t,t+∆ t)

(
λ

k

)

5.3.1 The non-central Chi-square distribution χ2(d,ncp)

The Gamma Family

It is known that the Non-central Chi-square distribution χ2(d,ncp) belongs to
the Gamma family of probability distribution functions.

In particular a random variable X distributes following a Gamma distribution
when

X ∼ Γ

(
α;

1
λ

)
with α,λ > 0.

The probability density function is then given by:

f (x) =

{
1

Γ (α)e−λxλ α xα−1 i f x > 0
0 i f x≤ 0

The cumulative distribution function is instead given by:

FX (x) =
∫ +∞

−∞

f (x)dx

=
∫ +∞

0
f (x)dx
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=
∫ +∞

0

1
Γ (α)

e−λx
λ

α xα−1dx

and Γ (α) is such that
∫ +∞

0 f (x)dx = 1 and therefore:∫ +∞

0

1
Γ (α)

e−λx
λ

α xα−1 dx = 1

resulting in:

Γ (α) =
∫ +∞

0
e−λx

λ
α xα−1 dx

The Chi-square as a Gamma distribution

A Chi-square distribution χ2(v) is a sum of v squared standard normal distribu-
tions Xi ∼ N(0,1), specifically:

χ
2(v)∼

v

∑
i=1

(Xi)
2 = X2

1 +X2
2 + ...+X2

v

where v is called the degree of freedom of χ2(v).
A random variable following a Chi-square distribution with v degrees of freedom,

can be also recognized as being distributed according to a Gamma distribution, with
parameters α = v/2 and λ = 1/2, so that if X ∼ χ2(v) then it is also true that:

X ∼ Γ

(
α =

v
2

;
1
λ

= 2
)

As a consequence, the probability density function and the cumulative distribu-
tion functions can be derived accordingly.

The probability density function of X ∼ χ2(v) for x > 0, recalling that for a
generic X ∼ Γ

(
α; 1

λ

)
is

f (x) =
1

Γ (α)
e−λx

λ
α xα−1

with α = v/2 and 1/λ = 2,or equivalently λ = 1/2, will be given by:

fχ2
v
(x) =

1
Γ
( v

2

)e−x/2
(

1
2

)v/2

x(v/2−1)

=
1

2v/2Γ
( v

2

)e−x/2x(v/2−1)

where we have the known Gamma solution for positive half-integers:
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Γ

( v
2

)
=
√

π
(v−2)!!
2(v−1)/2

The cumulative distribution function for X ∼ χ2(v), will be given by:

Fχ2
v
(x) =

∫ +∞

0
fχ2

v
(x)dx

=
∫ +∞

0

1
2v/2Γ

( v
2

)e−x/2x(v/2−1)dx

or if we only want to integrate up to a certain value of z and get:

Pr(X < z)
∣∣X ∼ χ

2(v)

Fχ2
v
(x;z) =

∫ z

0

1
2v/2Γ

( v
2

)e−x/2x(v/2−1)dx (5.6)

The Non-central Chi-square distribution derived χ2(d,ncp)

The Non-central Chi-square distribution χ2(d,ncp) can be derived as a sum of
d squared non standard normal distributions Xi ∼ N(µi,σi), where σi may also be
equal to some constant parameter σi or to 1. In particular we have that:

χ
2(d,ncp)∼

d

∑
i=1

(Xi)
2 = X2

1 +X2
2 + ...+X2

d

with ncp =
d
∑

i=1

(
µi
σi

)2
, being the non-central parameter of the χ2(d,ncp) distri-

bution. The distribution depends only on the ncp and not on the single
(

µi
σi

)2
.

A random variable distributed according to a Non-central Chi-square distribution
is called a mixture of distributions, in that it is a random variable whose probability
density function is a weighted average of others random variables density functions.

5.3.2 The probability density function of a non-central chi-square
distribution χ2(d,ncp)

Specifically, the probability density function fχ2(x;d,ncp) of a Non-central Chi-
square distribution χ2(d,ncp) is a weighted average of probability density functions
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fχ2(x;d+2 j) of Chi-square distributions χ2
j (x;d+2 j), where the weights are given

by Poisson distributed degrees of freedom J ∼ P( ncp
2 ).

The degree of freedom of the each central Chi-square distribution χ2
j (x;d + 2 j)

is indeed d + 2 j, with ( j1, j2, ..., jN) = J being a random variable with a Poisson
distribution J ∼ P( ncp

2 ) of parameter ( ncp
2 ).

The probability density function fχ2(x;d,ncp) of the Non-central Chi-square dis-
tribution χ2(d,ncp), with degree of freedom d and non-central parameter ncp, is
therefore given by:

fχ2(x;d,ncp) =
∞

∑
j=0

e−ncp/2( ncp
2 ) j

j!
fχ2(x;d +2 j)

5.3.3 The cumulative distribution function of a non-central
chi-square distribution χ2(d,ncp)

The cumulative distribution function Fχ2(z;d,ncp) up to a certain value z,of a Non-
central Chi-square distribution χ2(d,ncp) shall be equal to the weighted average
of the cumulative distribution functions of Fχ2(z;d+2 j) of Chi-square distributions
χ2

j (z;d+2 j), where the weights are given by Poisson distributed degrees of freedom
J ∼ P( ncp

2 ).

Fχ2(z;d,ncp) =
∞

∑
j=0

e−ncp/2( ncp
2 ) j

j!
Fχ2(z;d +2 j) (5.7)

= e−ncp/2
∞

∑
j=0

( ncp
2 ) j

j!2(d/2+ j)Γ
( d

2 + j
) ∫ z

0
e−x/2x(d/2−1+ j)dx

5.3.4 The Non-central Chi-square distribution χ2(d,ncp) when
d > 1

Recalling that the Non-central Chi-square distribution χ2(d,ncp) can be derived as
a sum of d squared non standard normal distributions Xi ∼ N(µi,σi),

χ
2(d,ncp)∼

d

∑
i=1

(Xi)
2 = X2

1 +X2
2 + ...+X2

d

when d > 1, it is useful to see the distribution χ2 as a sum of a Central Chi-
square distribution with (d-1) degrees of freedom χ2(d−1), and a Non-central Chi-
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Square distribution with one degree of freedom and non-centrality parameter ncp =
d
∑

i=1

(
µi
σi

)2
.

χ
2(d,ncp)∼ χ

2(d−1)+χ
2(1,ncp)

with, given Z ∼ N(0,1):

χ
2(1,ncp)∼ (Z +

√
ncp)2

As a consequence, when d > 1, the χ2(d,ncp) can be seen as:

χ
2(d,ncp)∼ χ

2(d−1)+(Z +
√

ncp)2 (5.8)

where χ2(d−1) is a central Chi-square distribution with (d−1) degrees of free-
dom, Z ∼ N(0,1) is a standard normal distribution, and ncp is the non-centrality
parameter of the original χ2(d,ncp) distribution.

5.3.5 The Non-central Chi-square distribution χ2(d,ncp) when
d ≤ 1

On the other hand, when d ≤ 1, we shall recall that χ2(d,ncp) is equal to a central
Chi-square distribution χ2(d+2J) with Poisson distributed degrees of freedom J ∼
P( ncp

2 ).

χ
2(d,ncp)∼ χ

2(d +2J) (5.9)

5.4 The Non-central Chi-square results for the CIR process

We can now apply the results for the Non-central Chi-square distribution to the CIR
process, as it has been proved that if a random variable λ (t) evolves according to a
CIR process SDE:

dλ (t) = θ(η−λ (t))dt +σλ

√
λ (t)dW (t)

then the distribution of λ (t) is a Non-central Chi-square one.
In particular, recalling that λ (T ) |λ (t) ∼ χ2(d,λ (t)ncp(t, t+∆ t)) times e−θ(∆ t)/ncp(t, t+

∆ t), with degree of freedom d :

d =
4θη

σ2
λ
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and non-centrality parameter ncp(t, t +∆ t) :

ncp(t, t +∆ t) =
4θe−θ(∆ t)

σ2
λ
(1− e−θ∆ t)

The cumulative distribution function being represented by:

Pr [λ (T )< λ |λ (t) ] = Fχ2

d,λ (t)ncp(t,t+∆ t)

(
λ

k

)
with

k =
e−θ(∆ t)

ncp(t, t +∆ t)

=
σ2

λ
(1− e−θ∆ t)

4θ

for d > 1, we shall have that:

λ (t +∆ t) = k
(

χ
2(d−1)+(Z +

√
ncp(t +∆ t))

)
(5.10)

and for d ≤ 1, instead:

λ (t +∆ t) = k
(
χ

2(d +2J)
)

(5.11)

with J ∼ P
(

ncp(t+∆ t)
2

)
.

The above specification means that one should proceed as following:

1. Generate J as J ∼ P
(

ncp(t+∆ t)
2

)
and find the outcome J = j ∈ N

2. Generate a Central Chi-Square χ2(d + 2 j), with degrees of freedom (d + 2 j)
where j is the outcome of the previously generated Poisson distribution.

3. Simulate the Central Chi-Square distribution χ2 as a Gamma distribution Γ , so
that now d must not be necessarily an integer.

χ
2(d +2 j)∼ Γ

(
d +2 j

2
;2
)

5.5 The CIR process: a discretized approach

As we saw in the previous section, the CIR process has a known distribution and,
as a consequence, it can be simulated exactly. One can argue, though, that exact
simulation may be slow and therefore may be willing to recur to some approximat-
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ing techniques, as it was reported also in Andersen, Jackel and Kahl [1], in Lord,
Koekkoek and Van Dijk [40], and in Webber [48].

One possible alternative that we have is to recur to approximating schemes based
on Itô-Taylor expansions. References for Itô-Taylor based techniques are Kloeden
and Platen (1995), Glasserman (2004), Jäckel (2002) and Gatheral (2006).

In particular, we will investigate Itô-Taylor approximating schemes in 1-dimension.
As it is known, for a 1-dimensional process with SDE:

dXt = αXtdt +βXtdWt

the Euler discretization scheme is given by:

∆E X̃t = αX̃t∆ t +β X̃t∆Wt

whereas the Milstein discretization scheme is given by:

∆MX̃t = αX̃t∆ t +β X̃t
√

∆ tεt +
1
2

β X̃tβ
′
X̃t(∆W 2

t −∆ t)

where β
′
Xt = ∂β/∂Xt , ∆Wt ∼

√
∆ tεt with εt ∼N(0,1). As a consequence ∆Wt ∼

N(0,∆ t).
For the CIR process with the following SDE:

dXt = α(µ−Xt)dt +η
√

XtdWt

the Euler discretization scheme for X̃t results in:

∆E X̃t = α(µ− X̃t)∆ t +η

√
X̃t∆Wt (5.12)

and the Milstein discretization scheme in:

∆MX̃t =

(
α(µ− X̃t)−

1
4

η
2
)

∆ t +η

√
X̃t∆Wt +

1
4

η
2
∆W 2

t (5.13)

One can notice that the Euler approximation is of order ∆ t only in the drift term,
and
√

∆ t in the volatility term.
The Milstein approximation is, instead, of order ∆ t in both drift and volatility

term.
As a matter of fact, both these discretization schemes, if directly applied to a

CIR process, may return negative values for discretized X̃t , leading to impossibility
of tractability of the discretized term for

√
X̃t .

In order to prevent negative values for discretized X̃t , one may resort to impos-
ing boundary conditions, and, for example, using a rectification function, or, as an
alternative, one may think of using a transformed variable.

As for the Euler scheme, what can be found in literature, in order to prevent
discretized X̃t to assume negative values, is the recourse to a rectification function
of the type X̃+

t = max(X̃t ;0), as reported also in [1]. This was indeed the work
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of Lord, Koekkoek and Van Dijk [40] who referred to this method as to the ”full
truncation” scheme.

A previous similar approach had been the one developped by Kloeden and Platen

[38], who suggested to replace the
√

X̃t term with the
√∣∣∣X̃t

∣∣∣ term instead.

The ”corrected” version of the Euler discretization scheme for the CIR process
thus becomes:

∆E X̃t = α(µ− X̃+
t )∆ t +η

√
X̃+

t ∆Wt (5.14)

where X̃+
t =max(X̃t ;0). The result is that the process for X̃t is allowed to become

negative, and, whenever this happens, the process becomes deterministic with drift
αµ .

As we will show afterwards, the Euler scheme has first-order weak convergence,
meaning that expectations of functions of X̃twill approach their true values as O(∆ t).

The above recourse to a rectification function of the type X̃+
t = max(X̃t ;0), may

also be pursued for the Milstein scheme, leading to:

∆MX̃t =

(
α(µ− X̃+

t )− 1
4

η
2
)

∆ t +η

√
X̃+

t ∆Wt +
1
4

η
2
∆W 2

t (5.15)

The Milstein scheme should be caracterized by second-order convergence, though
the outcome strictly depends on the choice of parameters.

Other positivity preserving techniques suggest the use of a Euler implicit scheme,
see Brigo and Alfonsi [9], or of a Mistein implicit scheme, see Andersen, Jäckel and
Kahl [1].

In literature it is possible to find other techniques to discretize the CIR process
X̃t , such as moment freezing, log-euler approximation, log-normal approximation,
normal approximation, etc.

5.6 Stochastic Interest Rates: a CIR model for the Interest Rates

As anticipated in the introductory section to this chapter, in order to model Credit
Counterparty Risk and Funding Costs, we are both required to model interest rates
and default intensities. As we already investigated the modeling and simulation tech-
niques for stochastic intensities, we shall now focus our attention on interest rates.

As already suggested, we shall model interest rates thorugh a stochastic process
as well, evolving according to the following SDE of the CIR model, which is the
same we introduced for default intensities, except for the specific parametes:

dr(t) = α(µ− r(t))dt +σr
√

r(t)dZ(t) (5.16)
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where α , µ and σr are positive constants and, specifically, α is the mean rever-
sion rate, µ is the equilibrium level, σr is the volatility of the short rate and dZ(t) is
a Brownian motion dZt ∼ N(0,1)

√
dt.

As it was already stated when analysing the CIR process for stochastic default
intensities, also for interest rates the condition:

2αµ > σ
2
r

guarantees that the process r(t) remains positive (Feller condition).
As it is well known in literature, see for instance Björk [4], the CIR model for

interest rates belongs to the family of term structure affine models for short rates,
and the term structure for pure disount bonds is given by:

Bt(T |rt ) = exp(A(T − t)−B(T − t)rt) (5.17)

with:

B(x) =
2(exp(γx)−1)

(γ +a)(exp(γx)−1)+2γ

A(x) =
[

2γ exp((a+ γ)(x/2))
(γ +a)(exp(γx)−1)+2γ

]2ab/σ2

and:

γ =
√

a2 +2σ2

5.7 Correlation between interest rates and default intensities

So far we have assumed independency between interest rates and default intensity
stochastic processes.

In this section we will release this assumption, and assume the two Brownian
motions dWt and dZt are instantaneously correlated by means of a correlation pa-
rameter ρ .

dWtdZt = ρdt

This topic is approached also in Lando [39], Brigo and Alfonsi (2004) [9], Brigo
and Pallavicini (2006) [18].

Recalling our SDE for interest rates:

dr(t) = α(µ− r(t))dt +σr
√

r(t)dZ(t)

and our SDE for default intensities:
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dλ (t) = θ(η−λ (t))dt +σλ

√
λ (t)dW (t)

we shall set correlation between the two Brownian motions as following:

W (t) = ρZ(t)+
√

1−ρ2Z
′
(t)

where Z(t)∼N(0,1)
√

dt and Z
′
(t)∼ N(0,1)

√
dt are two independent Brownian

motions (Cholesky decomposition).
As a consequence:

dW (t) = ρdZ(t)+
√

1−ρ2dZ
′
(t) (5.18)

5.7.1 Discretizing correlated interest rate and default intensity CIR
processes

In the previous sections we approached the discretization of CIR processes for the
interest rate and default intensity through Euler and Milstein techniques.

We can therefore try to discretize the new set of SDEs through the Euler scheme
again.

In particular, we shall discretize the time interval [0,T ], with t0 = 0 < t1 < ... <
tn = T and simulate discrete increments ∆Z(t) = Z(ti+1−ti) and ∆W (t) =W (ti+1−
ti) for the two Brownian motions Z(t) and W (t).

In order to simulate all increments ∆W (t) for W (t), we shall of course simulate
increments ∆Z(t) and ∆Z

′
(t) for Z(t) and Z

′
(t), so as to get:

∆W (t) = ρ∆Z(t)+
√

1−ρ2∆Z
′
(t)

Once the time interval has been discretized and the Brownian motions increments
generated as above, one can apply the following Euler discretization scheme to the
CIR SDEs for the interest rate and default intensity respectively.

Specifically, the increment ∆E r̃t for the Euler discretized interest rate shall be
given by the following, as above:

∆E r̃t = α(µ− r̃t)∆ t +σr
√

r̃t∆Z(t)

and, with ∆ t = ti+1− ti, and ∆Z(t) = Z(ti+1)−Z(ti):

r̃(ti+1) = r̃(ti)+∆E r̃(ti, ti+1)

= r̃(ti)+α(µ− r̃(ti))(ti+1− ti)+σr
√

r̃(ti)(Z(ti+1)−Z(ti))
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The Euler discretized increment ∆E λ̃t for the default intensity, correlated to in-
terest rate, shall instead be given by:

∆E λ̃t = θ(η− λ̃t)∆ t +σλ

√
λ̃t∆W (t)

and, with ∆ t = ti+1− ti, and ∆W (t) =W (ti+1)−W (ti):

λ̃ (ti+1) = λ̃ (ti)+∆E λ̃ (ti, ti+1)

= λ̃ (ti)+θ(η− λ̃ (ti))(ti+1− ti)+σλ

√
λ̃ (ti)(W (ti+1)−W (ti))

where in this case we remember:

W (ti+1)−W (ti) = ρ (Z(ti+1)−Z(ti))+
√

1−ρ2
(

Z
′
(ti+1)−Z

′
(ti)
)

As in the previous case when no correlation was assumed, in order to prevent neg-
ative interest rates and negative default intensities, we shall recur to a rectification
function of the type r̃+t =max(r̃t ;0) and λ̃

+
t =max(λ̃t ;0), thus our discretized SDEs

become:

r̃(ti+1) = r̃(ti)+α(µ− r̃+(ti))(ti+1− ti)+σr
√

r̃+ (Z(ti+1)−Z(ti))

and

λ̃ (ti+1) = λ̃ (ti)+θ(η− λ̃
+(ti))(ti+1− ti)+σλ

√
λ̃+(ti)(W (ti+1)−W (ti))

This discretization scheme is applicable for the case of only one defaultable
counterparty, with intensity correlated to payment obligations underlying risk fac-
tors (i.e. interest rates). In case of two defaultable counterparties, one should most
likely assume correlation of both default intensities with interest rates, and eventu-
ally correlation between both default intensities.

5.8 Correlation between default intensities for bilateral contracts

In this section we will release the assumption of correlation between interest rates
and default intensity of a counterparty, and focus the attention on correlation be-
tween default intensities of two counterparties A and B. This will be applicable for
the case of a bilateral contract with both defaultable parties.

As a matter of fact we may reproduce the discretization scheme introduced in the
above section, for correlated interest rates and default intensity.

To this purpose, we will assume two Brownian motions dWA(t) and dWB(t) are
instantaneously correlated by means of a correlation parameter ρA,B.
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dWA(t)dWB(t) = ρA,Bdt (5.19)

The SDE for default intensity of party A shall be:

dλA(t) = θA(ηA−λA(t))dt +σλA

√
λA(t)dWA(t) (5.20)

the SDE for default intensity of party B shall be:

dλB(t) = θB(ηB−λB(t))dt +σλB

√
λB(t)dWB(t) (5.21)

and we shall set correlation between the two Brownian motions as following:

WB(t) = ρA,BWA(t)+
√

1−ρ2
A,BW

′
A(t) (5.22)

where WA(t)∼ N(0,1)
√

dt and W
′
A(t)∼ N(0,1)

√
dt are two independent Brow-

nian motions (Cholesky decomposition).
As a consequence the noise term correlation shall be defined by:

dWB(t) = ρA,BdWA(t)+
√

1−ρ2
A,BdW

′
A(t) (5.23)

5.8.1 Discretizing correlated CIR processes of default intensities

As already suggested in the previous case, we can discretize default intensities SDEs
through the Euler scheme.

In particular, we shall discretize the time interval [0,T ], with t0 = 0 < t1 < ... <
tn = T and simulate discrete increments ∆WA(t) = WA(ti+1− ti) and ∆WB(t) = WB
(ti+1− ti) for the two Brownian motions WA(t) and WB(t).

To simulate all increments ∆WB(t) for WB(t), we shall of course simulate incre-
ments ∆WA(t) and ∆W

′
A(t) for WA(t) and W

′
A(t), so as to get:

∆WB(t) = ρA,B∆WA(t)+
√

1−ρ2
A,B∆W

′
A(t) (5.24)

Again, once the time interval has been discretized and the Brownian motions
increments generated as above, one can apply the Euler discretization scheme to the
CIR SDEs for both default intensities.

Specifically, the increment ∆E λ̃A(ti, ti+1) for the Euler discretized default inten-
sity for party A shall be given by the following:

∆E λ̃A(ti, ti+1) = θA(ηA− λ̃A(ti))∆ t +σλA

√
λ̃A(ti)∆WA(t) (5.25)

and, with ∆ t = ti+1− ti, and ∆WA(t) =WA(ti+1− ti):

λ̃A(ti+1) = λ̃A(ti)+∆E λ̃A(ti, ti+1)
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= λ̃A(ti)+θA(ηA− λ̃A(ti))(ti+1− ti)+σλA

√
λ̃A(ti)(WA(ti+1)−WA(ti))

The Euler discretized increment ∆E λ̃B(ti, ti+1) for the default intensity of party
B, correlated to default intensity of party A, shall instead be given by:

∆E λ̃B(ti, ti+1) = θB(ηB− λ̃B(ti))∆ t +σλB

√
λ̃B(ti)∆WB(t) (5.26)

and, with ∆ t = ti+1− ti, and ∆WB(t) =WB(ti+1)−WB(ti):

λ̃B(ti+1) = λ̃B(ti)+∆E λ̃B(ti, ti+1)

= λ̃B(ti)+θB(ηB− λ̃B(ti))(ti+1− ti)+σλB

√
λ̃B(ti)(WB(ti+1)−WB(ti))

where in this case we remember:

WB(ti+1)−WB(ti) = ρA,B (WA(ti+1)−WA(ti))+
√

1−ρ2
A,B

(
W
′
A(ti+1)−W

′
A(ti)

)
As in the previous case when no correlation was assumed, in order to prevent
negative default intensities, we shall recur to a rectification function of the type
λ̃
+
A (t) = max(λ̃A(t);0) and λ̃

+
B (t) = max(λ̃B(t);0) , thus discretized SDEs become:

λ̃A(ti+1) = λ̃A(ti)+θA(ηA− λ̃
+
A (ti))(ti+1− ti)+σλA

√
λ̃
+
A (ti)(WA(ti+1)−WA(ti))

and

λ̃B(ti+1) = λ̃B(ti)+θB(ηB− λ̃
+
B (ti))(ti+1− ti)+σλB

√
λ̃
+
B (ti)(WB(ti+1)−WB(ti))

5.9 Introducing jump defaults for stochastic default intensities

As anticipated in preceding sections, it is possible to introduce jump defaults in the
CIR process for stochastic intensity.

Considering intensities λA(t) and λB(t), we obtain:

dλA(t) = θA(ηA−λA(t))dt +σλA

√
λA(t)dWA(t)+dJA(α1,γ1) (5.27)

see [13], [26] for references, and:

dλB(t) = θB(ηB−λB(t))dt +σλB

√
λB(t)dWB(t)+dJB(α2,γ2) (5.28)

where the jump component for λA(t) is given by:
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JA(α1,γ1) =
Nt

∑
i=1

Yi (5.29)

with Nt a pure jump process with mean jump arrival rate (or intensity) α1, and
Yi ∼ Exp(1/γ1), where γ1 is the expected (mean) jump size.

Jump times are therefore independent and distributed according to a pure Poisson
process.

At the same time, jump sizes Yi are independent and exponentially distributed.
The increment dJA(α1,γ1) is the jump, if any, that occurs at time t according to

the pure jump process Nt .
We shall therefore simulate a pure jump process Nt , with intensity α1, which

returns the number of random variables, exponentially distributed with parameter γ1
to add up, in order to define the jump component for λA(t).

At the same time, the jump component for λB(t) is given by:

JB(α2,γ2) =
Mt

∑
i=1

Xi (5.30)

with Mt a pure jump process with mean jump arrival rate α2, and Xi∼Exp(1/γ2),
where γ2 is the mean jump size.

Parameters α1,γ1,α2,γ2 shall all be positive.
Jump processes JA(α1,γ1) and JB(α2,γ2) are independent of Brownian motions

WA(t) and WB(t).

5.10 Survival probabilities for default intensities

In the beginning of this chapter, we introduced that survival probabilities can be
modeled through the exponential distribution of the default intensity γ , if determin-
istic, or λ if stochastic. As we are dealing with pricing, we placed ourselves in the
risk-neutral world, and all assets are priced as the expected discounted value under
the risk-neutral measure Q.

Q(τ > t) = exp(−γt) (5.31)

We will give here a more formal definition of survival probabilities. To this pur-
pose we consider the probability space (Ω ,Ft ,Q).

All the information available is represented by the filtration Ft .
The intensity λ (Xt) is built as a function λ of a state variable Xt , and λ (Xt) is the

intensity of a Poisson process Yt . The filtration for Yt is Ht .
The filtration generated by Xt is Gt . We then consider an exponential random

variable with parameter 1, ε1, independent of Gt .
So we have information on the state variable:

Gt = σ {Xs;0≤ s≤ t}
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and on the jump process:

Ht = σ {Ys;0≤ s≤ t}

and the filtration Ft = Gt ∨Ht collects both information sets.
The filtration Gt = σ {Xs;0≤ s≤ t} carries information on default time occur-

rences. It says, in fact, if default has occurred up to time t, and if yes, it specifies
default time τ .

The filtration Ht =σ {Ys;0≤ s≤ t}, instead, relates to information on the magni-
tude of the jump process itself. This is an attempt to separate information on default-
free quantities, and information on default itself.

In the remaing of this work, the stochastic intensity process will simply be re-
ferred to as λ (t), instead of λ (Xt).

In this setting, default time τ is usually defined through an exponential random
variable ε1, with mean 1.

The first jump is, in fact, built as the first time the integral of the stochastic inten-
sity is equal to, or bigger than, an exponential random variable with mean 1.

τ = inf
{

t :
∫ t

0
λ (s)ds≥ ε1

}
(5.32)

Conditional survival probability after time t, given filtration Gt , is the probabil-
ity that the integral of the default intensity is smaller than the exponential random
variable.

When Gt is known, also
∫ t

0 λ (s)ds is known, so that, given Gt , one can compute
the integral of the path for λ (s) up to t, and separately get the exponential distribu-
tion ε1 in order to confront both the integral and ε1.

Q(τ > t |Gt ) = Q
(∫ t

0
λ (s)ds < ε1 |Gt

)
(5.33)

= Q
(

ε1 ≥
∫ t

0
λ (s)ds |Gt

)
= 1−FExp

µ=1

(∫ t

0
λ (s)ds

)
= 1−

[
1− exp

(
−
∫ t

0
λ (s)ds

)]
= exp

(
−
∫ t

0
λ (s)ds

)
the FExp

µ=1

(∫ t
0 λ (s)ds

)
being the C.D.F.of the exponential distribution with mean

1, calculated for the realization
∫ t

0 λ (s)ds.
We know that if X ∼ Exp(µ), then C.D.F. FExp

µ = P(x≤ X) = 1− e−µX for
x≥ 0.
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In static models, in case we take the expectation, the survival probability is no
longer conditional on the specific filtration and we have:

Q(τ > t) = EQ
[

exp
(
−
∫ t

0
λ (s)ds

)]
(5.34)

As seen also in [39] and [26], when dealing with dynamic survival probabilities,
instead, we have to consider the following result:

Q(τ > T |Ft ) = 1{τ > t}EQ
[

exp
(
−
∫ T

t
λ (s)ds

)
|Gt

]
(5.35)

In case of dynamic models, all the information up to present time, represented
by the filtration Ft , must be considered. Survival probability for the following time
step will depend upon survival up to present time.

• Case of no Jump defaults

The solution to the above expression, when λ (s) evolves according to a CIR
process, is the pure discount bonds formula for the CIR model. Considering CIR
SDE for intensity λA(t):

dλA(t) = θA(ηA−λA(t))dt +σλA

√
λA(t)dWA(t)

survival probability from t until T, given information up to t, i.e. conditional on
Gt , is Q [(t,T ) |Gt ] for (t,T ](see [26]):

Q [(t,T ) |Gt ] = EQ
[

exp
(
−
∫ T

t
λA(s)ds

)
|Gt

]
= exp [A(T − t)−B(T − t)λ (t)]

(5.36)
where:

B(x) =
2(exp(γAx)−1)

(γA +θA)(exp(γAx)−1)+2γA

A(x) =
[

2γA exp((θA + γA)(x/2))
(γA +θA)(exp(γAx)−1)+2γA

]2θAηA/σ2
λA

γA =
√

θ 2
A +2σ2

λA

Survival probability Q [(t,T ) |Ft ] for (t,T ], conditional on Ft ,instead, will be:

Q(τ > T |Ft ) = 1{τ > t}Q [(t,T ) |Gt ]

= 1{τ > t}EQ
[

exp
(
−
∫ T

t
λ (s)ds

)
|Gt

]
(5.37)
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As a matter of fact, Q [(t,T ) |Gt ] gives the survival probability in the interval
(t,T ] knowing we are past time t. Q [(t,T ) |Ft ] gives the survival probability condi-
tional on no default up to time t.

Same formulas can be obtained for survival probability of party B, with stochastic
intensity λB(t).

• Case of Jump defaults

We can obtain a survival probability formula also for the case of a CIR process

with the jump component JA(α1,γ1) =
Nt
∑

i=1
Yi. The SDE being:

dλA(t) = θA(ηA−λA(t))dt +σλA

√
λA(t)dWA(t)+dJA(α1,γ1)

the jump-adjusted survival probability formula is, see [13] and [26]:

Q [(t,T ) |Gt ] = EQ
[

exp
(
−
∫ T

t
λA(s)ds

)
|Gt

]
= exp

[
Ã(T − t)− B̃(T − t)λ (t)

]
(5.38)

with:

Ã(x) = A(x)

 2γA exp
(

θA+γA+2γ1
2 (T − t)

)
2γA +(θA + γA +2γ1)exp [γA(T − t)−1]


2α1γ1

σ2
λA
−2θAγ1−2γ2

1

B̃(x) = B(x)

γA =
√

θ 2
A +2σ2

λA

Same formulas can be obtained for survival probability of party B, with stochastic
intensity λB(t).



Chapter 6
Numerical Tests

Abstract In this chapter we will expose a comprehensive set of numerical examples,
regarding the calculation of BCVA and Funding Costs for the case of an Interest Rate
Swap. Relevant underlying variables to analyze will be interest rates and default
intensities. The set of examples will depend on different criteria, specifically:

• model for stochastic interest rates and default intensities: CIR for stochastic in-
terest rates, CIR for stochastic default intensities

• generation path approach for interest rates: exact method or approximated method,
through Euler discretization approach

• choice of default intensities variable type: constant and stochastic default inten-
sities

• allowance of jump defaults in the stochastic process for default intensities
• correlation between default intensities
• model parameters values for interest rates and default intensities

The combination of different choices on the above criteria, will lead to a set of
numerical results that will be discussed in the course of the present chapter. The
derivative instrument priced will be an Interest Rate Swap, where we have two de-
faultable parties, with different associated credit risk, measured by the relative CDS
spread. Party A will be the one with higher credit quality, implied by a lower CDS
spread, and party B will be the one with lower credit quality, and a corresponding
higher CDS spread.

6.1 Case of stochastic interest rates and constant default
intensities

In this section we give numerical example for the case of stochastic interest rates and
constant default intensities, calculated on the basis of CDS spread quotes, assumed
to be constant over time. No correlation and no jump defaults are allowed.

• Interest Rates and Discount Factors

67
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We make the hypothesis of a 5 year IRS, where party A receives a fixed rate from
party B, and party B receives a floating rate from party A, with 3 months tenor. Cash
flows are exchanged quarterly.

We perform several simulations for the path of interest rate in order to build
the Expected Exposure EE and the Negative Expected Exposure NEE profiles, as
described in Chapter 1. We perform simulations because EE and NEE are built as
options on mark-to-market X(ti), namely:

EE(ti) =
1
m

m

∑
k=1

[max(X(ti);0)]

and

NEE(ti) =
1
m

m

∑
k=1

[min(X(ti);0)]

where k, with k = [1, ...,m] is the number of simulations we perform and over
which we want to compute the average of results for each observation date ti, and
where X(ti) is the mark-to-market of the derivative at the observation date ti in which
we are calculating the EE(ti) and NEE(ti) respectively. The time interval is [0,T ],
with ti=0 = 0 < ti=1 < ... < ti=n = T.

We then have that overall results are EE =
n
∑

i=1
EE(ti) and NEE =

n
∑

i=1
NEE(ti).

Formulas for EE and NEE at each observation period (we choose 3 months
lenght for each observation period) are built as max and min functions in turn, with
respect to the mark-to-market of an interest rate swap.

We have that for each simulation k, with k = [1, ...,m], the market value of fixed
leg payments Xk( f ix, t) of an IRS is given by:

Xk( f ix, t) = y
n

∑
i=1

Bk(t, ti)

where y is the fixed rate paid in the swap, Bk(t, ti) is the market value at time t of
discount bond with maturity ti, which means all Bk(t, ti) are discount factors from
date t of valuation to the various maturities ti, for i = [1, ...,n], of cashflows.

The market value of floating leg payments Xk( f lo, t) of an IRS, instead, is given
by:

Xk( f lo, t) = Bk(0,0)−Bk(t,n)

As a consequence, total market value of a payer swap contract will be given by:

Xk(t)payer = Xk( f lo, t)−Xk( f ix, t)

and the total market value of a receiver swap contract by:
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Xk(t)receiver = Xk( f ix, t)−Xk( f lo, t)

As said, EE and NEE are built as options on mark-to-market, and, in order to
calculate the values of these options on the mark-to-market we perform simulations
of the path for the interest rate.

Each path for the spot interest rate is obtained according to the exact method for
the CIR process, as described in Chapter 5.

In fact, as said in Chapter 5, when a random variable r(t) evolves according to
the CIR SDE:

dr(t) = α(µ− r(t))dt +σr
√

r(t)dZ(t)

then the distribution of r(t) is a Non-central Chi-square one.
In particular, r(T ) |r(t) ∼ χ2(d,r(t)ncp(t, t +∆ t)) times e−µ(∆ t)/ncp(t, t +∆ t),

with degree of freedom d :

d =
4αµ

σ2
r

and non-centrality parameter r(t)ncp(t, t +∆ t) :

ncp(t, t +∆ t) =
4αe−α(∆ t)

σ2
r (1− e−α∆ t)

The cumulative distribution function being represented by:

Pr [r(T )< r |r(t) ] = Fχ2

d,r(t)ncp(t,t+∆ t)

( r
k

)
with

k =
e−α(∆ t)

ncp(t, t +∆ t)

=
σ2

r (1− e−α∆ t)

4α

It is possible to exactly obtain r(ti+1), given r(ti), from the distribution of r(t).
Of course each path will be calculated according to discretization of the time grid,
and the time increment shall be ∆ t.

For d > 1, we shall have that:

r(t +∆ t) = k
(

χ
2(d−1)+(Z +

√
r(t)ncp(t +∆ t))

)
and for d ≤ 1, instead:

r(t +∆ t) = k
(
χ

2(d +2J)
)
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with J ∼ P
(

ncp(t+∆ t)
2

)
.

As explained in Chapter 5, one should proceed as following:

1. Generate J as J ∼ P
(

ncp(t+∆ t)
2

)
and find the outcome J = j ∈ N

2. Generate a Central Chi-Square χ2(d + 2 j), with degrees of freedom (d + 2 j)
where j is the outcome of the previously generated Poisson distribution.

3. Simulate the Central Chi-Square distribution χ2 as a Gamma distribution Γ , so
that now d must not be necessarily an integer.

χ
2(d +2 j)∼ Γ

(
d +2 j

2
;2
)

Given each path for the spot interest rate, the term structure of discount factors is
calculated through the closed formula for CIR process, as seen in Chapter 5.

Bt(T |rt ) = exp(A(T − t)−B(T − t)rt)

where Bt(T |rt ) is the discount factor for maturity T calculated in t, with:

B(x) =
2(exp(γx)−1)

(γ +α)(exp(γx)−1)+2γ

A(x) =
[

2γ exp((α + γ)(x/2))
(γ +α)(exp(γx)−1)+2γ

]2αµ/σ2

and:

γ =
√

α2 +2σ2

always with 2αµ > σ2
r .

• Default Intensities

In this case default intensities for party A e party B shall be considered as con-
stants, γA and γB, calculated from CDS quote CDSA and CDSB, according to the
formula:

γA =
CDSA

(1−δA)

γB =
CDSB

(1−δB)

Survival probabilities later used in BCVA and FCA formulas for constant default
intensities are given by:
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QA
(
τ > ti

∣∣Fti−1

)
= SA(ti)

∣∣Fti−1 = 1{τ > ti−1}exp− [γA(ti− ti−1)]

Recovery rates δA and δB are assumed at a level of 40%.

• Bilateral Credit Value Adjustment and Funding Cost Adjustment Formulas

We assume to be valuing the IRS from the point of view of party A. As a conse-
quence, Funding Costs will depend upon party A’s funding rate and recovery rate.
The terms FA(ti, ti+1) will be used to build the FCA from ti to ti+1.

Formulas used for Bilateral Credit Value Adjustment and Funding Cost Adjust-
ment are those of Chapter 4. Recalling them, we have BCVA:

BCVA ≈ (1−δB)
n

∑
i=1

D(t, ti)EE(ti)SA(ti) [SB(ti−1)−SB(ti)]

+(1−δA)
n

∑
i=1

D(t, ti)NEE(ti)SB(ti) [SA(ti−1)−SA(ti)]

and FCA:

FCA =
n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

(1−δA)
n−1

∑
i=1

[
Pr(τB > ti)Pr(τA ≤ ti)D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
• Results

We give here an overview of results obtained.
Parameters for interest rate are α = 0.2, µ = 0.05, σr = 0.1 with rt=0 = 0.05 and

T = 5 years.
Fig. 6.1 represents the EE and NEE profile for a receiver IRS at 5% fixed rate

against payer 3m-tenor floating rate, with 200 simulations for interest rates as de-
scribed above.

In the first set of tables represented by Fig. 6.2 and Fig. 6.3, survival and de-
fault probabilities are calculated assuming constant default intensities with CDSA =
300bps and CDSB = 500bps.

γA =
CDSA

(1−δA)
=

0.03
(1−0.4)

= 0.05

γB =
CDSB

(1−δB)
=

0.05
(1−0.4)

= 0.0833

BCVA and FCA Results
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Fig. 6.1 EE and NEE profile for an IRS

FCA is calculated assuming a funding spread for party A equal to its CDSA =
300bps. We are here saying that the funding spread is equal to the CDS spread,
and assuming a liquidity premium equal to zero, as if there was no bid/offer spread
between primary and secondary market. It is therefore a ”credit-risky” funding.

As per the ”Adjustment for Default Risk” in FCA, given:

FCA =
n−1

∑
i=1

[
D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
−

(1−δA)
n−1

∑
i=1

[
Pr(τB > ti)Pr(τA ≤ ti)D(t, ti)ECF−(ti−1, ti)FA(ti, tn)

]
we consider k, with k = [1, ...,m], the number of simulations used to build EE

and NEE profiles, and time interval [0,T ], with ti=0 = 0 < ti=1 < ... < ti=n = T , so
that ti,k shall be time period ti in simulation k.

6.2 Case of stochastic interest rates and stochastic default
intensities

Interest rate modeling through the CIR process, discount factors, BCVA and FCA
formulas are still as in the previous section case.

We now introduce stochastic default intensities, under the assumption of no cor-
relation and no jump defaults allowed.

• Default Intensities
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Fig. 6.2 BCVA for Constant Intensity

In this second set of tables, survival and default probabilities are calculated con-
sidering a stochastic intensity behaviour, evolving through a CIR process.

Given the CIR SDEs for stochastic default intensities of party A and party B, with
independent Brownian Motions:

dλA(t) = θA(ηA−λA(t))dt +σλA

√
λA(t)dWA(t)

dλB(t) = θB(ηB−λB(t))dt +σλB

√
λB(t)dWB(t)

parameters for stochastic intensities are θA = 0.3, ηA = 0.02, σλA = 0.01 and
λA(t = 0) = 0.05 for party A, and θB = 0.3, ηB = 0.06, σλB = 0.01 and λB(t =
0) = 0.0833 for party B. Initial values are therefore equal to those of the constant
intensity case, but evolve thereafter according to CIR parameters. The CIR process
for λA and λB is here calculated just once through the exact method.
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Fig. 6.3 FCA for Constant Intensity

Survival probabilities are calculated as indicated in Chapter 5, using pure dis-
count bond formulas for the CIR process, for the case of no jumps.

Q [(t,T ) |Gt ] = EQ
[

exp
(
−
∫ T

t
λA(s)ds

)
|Gt

]
= exp [A(T − t)−B(T − t)λ (t)]

where:

B(x) =
2(exp(γAx)−1)

(γA +θA)(exp(γAx)−1)+2γA

A(x) =
[

2γA exp((θA + γA)(x/2))
(γA +θA)(exp(γAx)−1)+2γA

]2θAηA/σ2
λA
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γA =
√

θ 2
A +2σ2

λA

The same applies for survival probabilities of party B.
The EE and NEE profiles are left unchanged with respect to the previous case,

as the only varying component is represented by stochastic intensities.
Results are given below.

BCVA Results

Fig. 6.4 BCVA for Stochastic Intensity

We will refer to DVA and CVA for simplicity, but we shall remember that we are
here indeed referring to ”Adjusted DVA” and ”Adjusted CVA”. With respect to the
constant case, with γA = 0.05 and γB = 0.0833, in this stochastic case, the process for
λA has a mean reversion trend towards ηA = 0.02, and therefore the adjustment for
DVA shall be lower. In fact, credit quality of party A will be on average higher over
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the life of the transaction, with respect to the constant case, given that the process
for λA will tend to a level of ηA = 0.02, against the constant value of γA = 0.05
for the case of constant intensity. We observe a DVA value of −0.098% instead of
−0.1302%.

At the same time, CVA will be lower in the stochastic case, because a mean
reversion trend to a lower long run average value is assumed also for party B. The
mean reversion level for ηB = 0.06, compared to the constant case with γB = 0.0833,
brings along a reduction of CVA contribution to a value of 0.2710% instead of
0.2978%.

When we input mean reversion levels equal to initial values in the processes
ΛA and ΛB respectively, we obtain values for CVA and DVA equal to the constant
intensity case.

As a consequence, a financial institution should introduce stochastic intensities
predominantly when willing to account for a certain mean reversion trend in the
credit quality of a counterparty, and/or its own creditworthiness. This trend will
derive from credit model calibration to CDS curve observable in the market.

One of these cases may be, for example, if the actual level of a counterparty’s
CDS is due to an exceptional market situation, that brings along an increase in the
CDS level that will not likely hold in the near future. This may happen if the CDS
increase can be mostly ascribed to systemic risk the market is pricing in, but it is not
supported by effectively deteriorated financial figures of the counterparty itself.

FCA Results

In the same way as for BCVA, we see that the introduction of ηA = 0.02, lower
than λA(t = 0) = 0.05, results in a decrease in the ”Adjustment for Default Risk” in
overall funding costs with respect to the constant case.

Moreover we should notice that the original component of ”Funding with no
Default Risk” is always calculated assuming a constant funding spread for party A
equal to CDSA = 300bps, to be applied to the floating rate. It is only in the ”Adjust-
ment for Default Risk” that we introduce the stochasticity of the intensity process
for λA, in order to properly account for our assumptions on non deterministic dy-
namics for the creditworthiness for party A (i.e. mean reverting trend, volatility, etc).
This choice can indeed be supported by a financial argument, provided that party A
should enter in t = 0 in a financing contract in order to fund its expected negative
cash flows, thus the cost of funding to be applied would be fixed in t = 0.

In the following table, instead, keeping previous intensity parameters fo default
intensity of party B, we study the impact of a change in the equilibrium level of
party A’s intensity. The equilibrium level ηA is allowed to change from 0.02 to 0.07,
given initial value λA(t = 0) = 0.05.

With the equilibrium level moving upwards, we see that BCVA decreases, as the
contribution of DVA increases, thus reducing the charge for Counterparty Credit
Risk required. At the same time we see that FCA decreases, because as the equi-
librium level increases there is a corresponding increase in the funding amount ”at
risk”, meaning a higher ”Adjustment for Default Risk”.
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Fig. 6.5 FCA for Stochastic Intensity

As expected, the value for DVA with ηA = λA(t = 0) = 0.05 is almost ex-
actly equal to the constant case, as we have DVA for the stochastic case equal to
−0.1322% and DVA for the constant case equal to −0.1302%.

CVA for this stochastic case, instead, is not equal to the constant case because
ηB = 0.06 with λB(t = 0) = 0.0833.

We see that, as the mean reversion level of the process for λA increases, there is
also a slight effect on CVA which decreases, because we have to account for a lower
survival probability of party A in the calculation of CVA. We are in fact talking
about ”Adjusted CVA”.

Intuitively, if the credit quality of a party is deteriorating, this party should be
less concerned about the CDS level of its counterparty and more about its own
creditworthiness. We can say that, if the default intensity of one party increases in
the long run, this party will see the relative importance of its own exposure towards



78 6 Numerical Tests

Fig. 6.6 Table Increasing Equilibrium Level

the other counterparty decreasing, because the probability of falling in own financial
distress will be predominant.

Moreover, we recognize that the value for FCA with stochastic intensity better
approximates the value for FCA with constant default intensities, when the equilib-
rium level is set equal to the initial value.
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6.3 Correlation between stochastic default intensities

In this section we introduce correlation between stochastic default intensities, with
no jump defaults allowed. We will study the impact of correlation between default
intensities in the computation of BCVA.

In order to model correlation between default intensities, we shall resort to Mon-
teCarlo simulations for default events, because no closed formula for survival prob-
abilities is applicable for the case of correlation.

• Expected Exposure and Negative Expected Exposure

Also in the case of correlation between default intensities, values for EE and
NEE are calculated as in the preceding set of numerical tests. This means that EE
and NEE are obtained assuming stochastic interest rates, evolving through the above
CIR SDEs, and are calculated through the exact method.

• Default simulation

When willing to simulate default through MC simulations, instead of directly
computing survival and default probabilities with closed formulas, one needs to
resort to the definition of ”first default” itself. Given the definition of τ we provided
in Chapter 5:

τ = inf
{

t :
∫ t

0
λ (s)ds≥ ε1

}
simulation should proceed as following:

1. Simulate an exponential distribution ε1 with parameter 1
2. Simulate the path for stochastic intensity λA(t), in this case through Euler dis-

cretization scheme
3. Integrate the path for stochastic intensity λA(t) with respect to time
4. Confront the exponential distribution with the integral of the path, according to

the following Q(τ > t |Gt ) = Q
(∫ t

0 λ (s)ds < ε1 |Gt
)

5. If ε1 is smaller than, or equal to, the integral of the path before final point in time
T , then first default τ1 occurs at that moment, otherwise no default happens

6. Compute BCVA given τ1

7. Repeat the above steps for stochastic intensity λB(t), generating another expo-
nential distribution ε2 with parameter 1. In this case λB(t) shall be correlated to
λA(t), through the diffusive noise term, as described in Chapter 5

8. Perform k times the above steps for λA(t) and λB(t), where k is the number of
MC simulations, and then average results

In particular, in order to compute BCVA component, if any, we proceed as fol-
lowing:

1. At each simulation we see if default τ1 happens, and, if yes, we see if it is party
A or party B who defaults first, i.e. we see if τ1 = τA or τ1 = τB.
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2. If τ1 = τA, we take the NEE(τ1) component corresponding to the point in time
τ1 , weighted for (1− δA), that would not be recovered by party B in case of
default of party A. We then apply the appropriate discount factor up to present
time and obtain NEE(τ1) (1− δA)D(t,τ1), where D(t,τ1) is the risk-free dis-
count factor calculated in t = 0 for maturity τ1 . We are in fact intereste in the
contribution to DVA in case of A defaulting first.

3. If τ1 = τB, we take the EE(τ1) component corresponding to the point in time τ1 ,
weighted for (1−δB), that would not be recovered by party A in case of default
of party B. We then apply the appropriate discount factor up o present time and
obtain EE(τ1) (1− δB)D(t,τ1), where D(t,τ1) is the risk-free discount factor
calculated in t = 0 for maturity τ1 . We are in fact intereste in the contribution to
CVA in case of B defaulting first.

4. We calculate the average of all CVA and DVA contributions, over all simulations.

6.3.1 BCVA for the case of no jumps

Here are results for BCVA with k = 5000 simulations for default events, with pa-
rameters for stochastic intensities respectively θA = 0.3, ηA = 0.02, σλA = 0.01
and λA(t = 0) = 0.05 for party A, and θB = 0.3, ηB = 0.06, σλB = 0.01 and
λB(t = 0) = 0.0833 for party B. Recovery rates δA and δB are assumed at a level
of 40%.

These simulations, as a matter of facts, are done assuming low volatility (σλA =
σλB = 0.01), high speed of mean reversion (θA = θB = 0.3), different levels of initial
default intensities between party A and party B ( λA(t = 0) = 0.05 and λB(t = 0) =
0.0833), and different levels for default intensities between initial and average levels
(λA(t = 0) = 0.05 with ηA = 0.02 and λB(t = 0) = 0.0833 with ηB = 0.06).

Correlation is assumed to vary from -1 to +1.
When we perform BCVA calculations for k = 5000 simulations we see that the

results tend to converge to the case of ρ = 0, where we had BCVA = 0.1712%, for
same stochastic parameters. The following table summarizes results for k = 5000.

BCVA Results

From this numerical test performed through MC simulations we can extrapolate
two main findings.

The first result we should notice is that CVA and DVA levels we obtain through
MC simulations are coherent with those obtained when applying closed formula
solutions. This coherence result validates both methods applied.

The second result we should consider is that, over a sufficiently large number of
simulations, CVA and DVA values do not depend upon the correlation parameter
we apply between Brownian Motions of default intensities processes for λA and λB.
This is not intuitively the result we would expect from a financial point of view at
first. In fact, it can be argued that, if there is correlation between party A and party B,
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Fig. 6.7 BCVA with Correlation between Stochastic Intensities

the former should reduce CVA charges for Counterparty Credit Risk, given that high
default probability of party B should be associated with high default probability of
party A.

Nonetheless, this expected result fails to realize when modeling correlation. The
technical reason for this will be explored in the next section, when introducing com-
mon jumps.

From a financial point of view, though, one should further think and understand
that default events are not necessarily anticipated by a deterioration in the credit
quality of a counterparty, here represented through the dynamics for the stochastic
intensity. In general, defaults are more frequently sudden and unpredictable events,
that may not be associated with a long run upward trend of the CDS spread.

For k = 5000 in the following table, instead, parameters for party A’s stochastic
intensity are left unchanged, θA = 0.3, ηA = 0.02, σλA = 0.01 and λA(t = 0) = 0.05
while for party B the equilibrium level is set higher so that λB has un upward trend,
θB = 0.3, ηB = 0.10, σλB = 0.01 and λB(t = 0) = 0.0833. Recovery rates δA and
δB are assumed at a level of 40%. Basic assumptions on model parameters are the
same as above, in particular low volatility and high speed of mean reversion for both
processes.

We see that absolute level of BCVA increases, as the contribution of CVA in-
creases. This is a result of the higher level for the average value of λB process, as
we have ηB = 0.10. This, in fact, may represent a deterioration in the credit quality
for party B, with respect to the previous numerical test with ηB = 0.06.

The level of DVA instead remains almost unchanged with respect to the previous
case, because parameters for λA are not modified.
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Fig. 6.8 BCVA with correlation between stochastic intensities and higher mean reversion level

6.3.2 BCVA for the case of jump defaults

Here below we give results for BCVA calculations for the case of correlation be-
tween default intensities, when also jump defaults are allowed in the CIR SDEs for
λA and λB.

Simulation is done according to the procedure explained in the previous section,
i.e. thorugh the simulation of default events, as we are in the case of correlation
between default events. Parameters for party A’s stochastic intensity are left un-
changed, θA = 0.3, ηA = 0.02, σλA = 0.01 and λA(t = 0) = 0.05, and θB = 0.3,
ηB = 0.06, σλB = 0.01 and λB(t = 0) = 0.0833. Recovery rates δA and δB are as-
sumed at a level of 40%.

The difference lies in the introduction of jump defaults.
Jump processes JA(α1,γ1) and JB(α2,γ2) are independent of Brownian motions

WA(t) and WB(t), while WA(t) and WB(t) are correlated between themselves as in
the previuous numerical test. Parameters α1,γ1,α2,γ2 shall all be set positive, and
specifically jump arrival rates are set to α1 = 0.15 and α2 = 0.15, while expected
jump sizes are set to γ1 = 0.03 and γ2 = 0.05. We shall see that correlation between
default intensities does not really affect the level of BCVA one party should charge,
as what really matters is the equilibrium level for λA and λB.

BCVA Results

For k = 5000, we see that BCVA values stabilize and converge to one level, across
different values for the correlation parameter.

It can be observed that the contribution of DVA increases significantly when jump
defaults are included, both for λA and λB.

In particular, the following effects are tested:

• Increase of expected jump size for λB, as we set γ2 = 0.10 (with γ1 = 0.03 as in
the original case)
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Fig. 6.9 BCVA with Correlation and Jumps in the Stochastic Intensity processes

• Increase of expected jump size for λA, as we set γ1 = 0.10 (with γ2 = 0.03 as in
the original case)

Increase of expected jump size for λB

Here we see the impact of an increase of jump size for λB as we set γ2 = 0.10,
with k = 5000.

Other jump parameters remain unchanged from previuos test, γ1 = 0.03, α1 =
0.15 and α2 = 0.15. Other stochastic parameters are set at θA = 0.3, ηA = 0.02,
σλA = 0.01 and λA(t = 0) = 0.05, and θB = 0.3, ηB = 0.06, σλB = 0.01 and λB(t =
0) = 0.0833. Recovery rates δA and δB are assumed at a level of 40%.

Again final values for BCVA are not affected by correlation, but raising γ2 to
γ2 = 0.10 results in higher BCVA level, as CVA increases along with γ2 while DVA
remains unchanged.

Increase of expected jump size for λA

Here we see the impact of an increase of jump size for λA as we set γ1 = 0.10,
with k = 5000.

Other jump parameters remain unchanged from original test, γ2 = 0.03, α1 =
0.15 and α2 = 0.15. Other stochastic parameters are still set at θA = 0.3, ηA = 0.02,
σλA = 0.01 and λA(t = 0) = 0.05, and θB = 0.3, ηB = 0.06, σλB = 0.01 and λB(t =
0) = 0.0833. Recovery rates δA and δB are assumed at a level of 40%.

Final values for BCVA do not change following the variation of correlation ρ .
Absolute value for BCVA, though, reduces significantly, as DVA increases close to
the level of CVA.
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Fig. 6.10 BCVA with Correlation, Jumps and higher mean reversion level in the Stochastic Inten-
sity process for B

Fig. 6.11 BCVA with Correlation, Jumps and higher mean reversion level in the Stochastic Inten-
sity process for A

6.3.3 Common jumps

In all preceding numerical tests we experienced a low or null impact of correlation
between λA and λB processes in the computation of BCVA.

We remember, from the beginning of this work, that the intensity process for
stochastic intensity λA is referred to as ΛA(T ) =

∫ T
0 λA(t)dt, and that τ1

A =Λ
−1
A (ε1).

The same applies of course for λB.
If we want to include in our model correlation of default times between party A

and party B, we need to understand the following.
As also explained in Morini (2011) [45], the stochasticity of τ1

A and τ1
B can either

derive from the stochasticity of the the processes ΛA(T ) and ΛB(T ), or from the
stochasticity of ε1, ε2. This means that, one can either choose to:
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• simulate correlated processes for λA and λB, and keep ε1, ε2 independent respec-
tively;

• simulate independent processes for λA and λB, and correlate ε1, ε2.

The choice of this work was to follow the first approach, introducing correla-
tion in the stochastic processes for default intensities, leaving ε1, ε2 independent
respectively. Unfortunately, as reported in Morini (2011),see [45], when simulating
diffusive intensities, this approach is not able to provide sufficient effect of correla-
tion in the results. The main reason for this failure appears to be the low dependance
between the stochastic process for a generic λi and the respective first default time
τ1

i . As suggested in [45], in order to see a stronger correlation effect in our results,
a possible solution should be that of increasing the dependency between the process
for λi and τ1

i .
This objective can be fulfilled by introducing jumps in the SDEs for λA and λB.

In particular, we try to introduce a common jump in the dynamics for λA and λB, so
that jumps happen at the same time in both processes.

Moreover, in these simulations, we decide to increase volatility level and de-
crease speed of mean reversion for both intensity processes.

Here below we provide some examples of paths and new results.
The following graph represents the dynamics of the CIR process for λA, where

parameters are set as θA = 0.03, ηA = 0.03, σλA = 0.1 and λA(t = 0) = 0.03. This
implies low speed of mean reversion and relatively high volatility, with initial value
equal to mean value. Parameters for jumps are set as jump arrival rate α1 = 0.003
and expected jump size γ1 = 0.02.

Fig. 6.12 Stochastic Intensity Jumps

Here below (see Fig. 6.13) we can see the same CIR process for λA, compared
with the CIR process for λB, with θB = 0.03, ηB = 0.05, σλB = 0.1 and λB(t = 0) =
0.05.
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The speed of mean reversion of both paths is the same, low, as well as the volatil-
ity level, high. We show that when correlation is set at ρ = 1, stochastic intensities
follow the same path, adjstusted for different parameter values. Moreover, we adopt
here common jumps in both paths. Parameters for jumps are set as jump arrival rate
α1 = 0.005 and expected jump size γ1 = 0.02.

Fig. 6.13 CIR Jump Processes with Correlation 1

In Fig. 6.14 we present instead graphical results for correlation close to zero, with
ρ = 0.1. Parameters for jumps are set as jump arrival rate α1 = 0.005 and expected
jump size γ1 = 0.02.

Fig. 6.14 CIR Jump Processes with Correlation 0.1
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We see that, diminuishing the value of ρ to ρ = 0.1, paths tend to be non-
correlated. Nonetheless, both paths are subject to the same jumps, arriving at the
same time and of the same magnitude.

At last, in Fig. 6.15 we show the impact of ρ = −1. Dynamics of the two paths
are almost exactly opposite to one another, though subject to the same jumps. Here
again jump parameters are set as jump arrival rate α1 = 0.005 and expected jump
size γ1 = 0.02.

Fig. 6.15 CIR Jump Processes with Correlation -1

6.3.4 Common and independent jumps compared

Here below we present another set of results from numerical tests, where we com-
pare results for CVA, DVA and BCVA in case of common or independent jumps,
and in case of equal or different counterparties’ names.

Case of different counterparties’ names

In this case we assume that one party has a higher credit quality with respect
to the other party, and we represent this feature through different CIR parameters.
Specifically we have θA = 0.03, ηA = 0.03, σλA = 0.2 and λA(t = 0) = 0.03, and
θB = 0.03, ηB = 0.05, σλB = 0.2 and λB(t = 0) = 0.05, so that party A has a higher
credit quality compared to party B. BCVA is calculated from the point of view of
party A.

For the case of different names, we then compare the case of common and inde-
pendent jumps.
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In Fig. 6.16 we first present numerical results for the case of independent jumps
between party A and party B. Jumps are therefore simulated independently at each
run for party A and party B, but with equal parameters, i.e. arrival rate α1 = α2 =
0.005 and expected jump size γ1 = γ2 = 0.02.

Fig. 6.16 Independent Jumps Different Names

In Fig. 6.17 instead we then present numerical results for the case of common
jumps, meaning that jumps are simulated only once for both parties, leaving all
parameters unchanged.

So we still have θA = 0.03, ηA = 0.03, σλA = 0.2 and λA(t = 0) = 0.03, and
θB = 0.03, ηB = 0.05, σλB = 0.2 and λB(t = 0) = 0.05, with arrival rate α = 0.005
and expected jump size γ = 0.02.

Fig. 6.17 Common Jumps Different Names

In this compared analysis we prefer to exclude the case of negative correlation, as
we do not regard that eventuality as too meaningful from a financial point of view.

The case of maximum independence between default risks of the two parties can
be identified in the case of independent jumps and zero correlation, where CVA
(ρ = 0) = 0.292%.

The case of maximum dependence, instead, can be retraced in the case of com-
mon jumps and correlation equal to 1, where CVA (ρ = 1) = 0.267%.
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As a matter of facts, we see that as we increase the links between default risks
of the parties, either through correlation in the path dynamics and/or through the
introduction of common jumps, the magnitude of CVA tends to reduce.

Case of equal counterparties’ names

In this case we assume that both parties have the same credit quality, and we still
represent this feature through equal CIR parameters. Specifically we have θA = 0.03,
ηA = 0.03, σλA = 0.2 and λA(t = 0) = 0.03, and θB = 0.03, ηB = 0.03, σλB = 0.2
and λB(t = 0) = 0.03. BCVA is still calculated from the point of view of party A.

Also for the case of equal counterparties’ names, we compare the case of com-
mon and independent jumps.

In Fig. 6.18 we first present numerical results for the case of independent jumps
between party A and party B, simulated independently at each run for party A and
party B, but with equal parameters, i.e. arrival rate α1 = α2 = 0.005 and expected
jump size γ1 = γ2 = 0.02.

Fig. 6.18 Independent Jumps Same Names

In Fig. 6.19 we then present numerical results for the case of common jumps,
meaning that jumps are simulated only once for both parties, leaving all parameters
unchanged.

So we still have θA = 0.03, ηA = 0.03, σλA = 0.2 and λA(t = 0) = 0.03, and
θB = 0.03, ηB = 0.03, σλB = 0.2 and λB(t = 0) = 0.03, with arrival rate α = 0.005
and expected jump size γ = 0.02.

The case of maximum independence between default risks of the two parties can
be identified in the case of independent jumps and zero correlation, where CVA
(ρ = 0) = 0.239%.

The case of maximum dependence, instead, can be recognized in the case of
common jumps and correlation equal to 1, where CVA (ρ = 1) = 0.229%. For this
case of equal names, we still see that CVA charges have to be reduced in case of
maximum dependence between the two parties’ default risks. Nonetheless, we no-
tice that the difference in CVA values between the case of maximum dependence
and maximum independence is less sensible, with respect to the case of different
names.



90 6 Numerical Tests

Fig. 6.19 Common Jumps Same Names



Chapter 7
Conclusions

The main results of the current work are synthesized in the following paragraphs.

Bilateral Credit Value Adjustment

The impact of Counterparty Credit Risk is not negligible and it must be accounted
for when pricing financial derivatives, through the introduction of Adjusted CVA
for Counterparty Credit Risk, and through Adjusted DVA for own risk of default,
leading to the so called BCVA for bilateral contracts.

Numerical evidence of stochastic intensity pricing shows that Adjusted CVA
varies as following:

• Adjusted CVA increases as we set higher levels of long-term average for the
counterparty intensity process.

• Adjusted CVA that party A would charge to party B decreases as we set higher
levels of mean-reversion of the intensity process for party A. In fact, with increas-
ing long-run average values for party A’s default intensity, one should account for
a lower survival probability of party A in the calculation of Adjusted CVA. As a
matter of facts, as the default intensity of a counterparty is increasing, this coun-
terparty should consider the relative importance of its positive exposure towards
the other counterparty decreasing, and concentrate on the eventuality of falling
first into financial distress.

• Adjusted CVA increases as jump defaults are present in the intensity process for
the counterparty.

When both parties may be subject to default, accountancy of (Adjusted) DVA
should be pursued as well, reducing even significantly the impact of (Adjusted)
CVA. The resulting BCVA level of credit charges will be positive or negative de-
pending upon the relative levels of default intensities between the two parties.

Funding Costs in the contest of a credit risky funding

Funding Costs must be introduced when the cost of financing liquidity disburse-
ments is significant. We assume that a party can finance itself at its funding spread
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to be added to the floating rate, entering into a funding transaction with maturity
equivalent to that of the underlying contract, that is generating the net negative cash
flows to be funded.

The funding spread of a party can be set to be equal to the credit spread, in
case increased of a liquidity basis which can be explained as a friction between the
primary and the secondary market for bonds.

If a party had the liquidity to face the negative future cashflows, one should con-
sider the opportunity cost of not investing that liquidity in the market rather than
facing directly the cash outflows resulting from the derivative position. If we as-
sume that the party could go at least in the market and buy back its own bonds with
the excess liquidity, we may again come to the conclusion that the cost of negative
cashflows is equal to its cost of funding, i.e. spreads for bond issues, because this
is what a party is giving up when not buying back its own bonds. As the buyback
of own bonds in the secondary market would be done at a liquidity premium with
respect to the funding spread used in the primary market, we can say that Funding
Costs to fund negative positions must be at least equal to the opportunity cost of not
extinguishing outstanding debt, i.e. the sum of the credit spread - where the credit
spread is assumed to be the cost for issuances in the primary market - plus a liquidity
premium specific of the secondary market.

When pricing Funding Costs, own risk of default has to be considered in order to
reduce the overall amount of Funding Costs by a portion equivalent to the amount
that would not be recovered by the counterparty in the funding deal in case of de-
fault.

In the approach of the current work, the computation of Funding Costs is fulfilled
through the modelling of a ”Funding Cost Adjustment” (FCA) for the risk-free value
of the derivative. Moreover an ”Adjustment for Default Risk” within ”Funding Cost
Adjustment” is introduced, in order to properly account for the necessity of a ”risky”
funding.

The calculation of ”Funding Cost Adjustment” and of its ”Adjustment for De-
fault Risk” is based on the concept of Negative Expected Cash Flows, meaning the
sequence of net cash flows that would translate into liquidity disbursements during
the life of the transaction. In the setup of this work, we assume to fund these net
Negative Expected Cash Flows from the moment they are due until maturity of the
underlying transaction, at the relevant funding rate applicable to the debtor of the
negative cashflows, to be added to the floating rate.

In the numerical tests that we performed, the funding spread was fixed as the
relevant CDS spread at the start date of the contract, with a tenor equivalent to the
maturity of the underlying transaction.

In order to calculate the ”Adjustment for Default Risk”, where the risk of default
is accounted for, we assumed a default intensity calculated through the current level
of CDS spread in case of constant intensity, or following the dynamics of the CIR
SDE in case of stochastic intensity. This is financially consistent with the fact that a
counterparty would enter into the funding transaction at the start date of the under-
lying contract, but the adjustment in Funding Costs for its own default risk would
depend upon the dynamics of its survival probability over the life of the transaction.
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Correlation in default events through common jumps

Under the hypothesis that links between default risks of the two parties are visi-
ble in the market, we investigate to what extent this dependency can impact Coun-
terparty Credit Risk pricing. Dependency between default risks of two parties can
be introduced setting a copula between the two default triggers, but this has some
unpleasant implications. First, such dependency is not observable before a default
event, since it has no effect on pre-default spread movements, so that the value for
dependency parameters is undetermined. Second, the use of a copula like the gaus-
sian one creates a predictable ordering of defaults that is unrealistic, see Morini
(2011) [45] and Brigo and Chourdakis (2008) [12]. An alternative for creating de-
pendency between defaults is assuming correlation between default intensities, and
/ or assuming common jumps in the path for default intensities. In such a case the
default correlation is observable and we do not have predictable ordering of defaults.

We followed the latter path and verified in our numerical tests that, when pricing
Counterparty Credit Risk, correlation between default intensities can have a limited
impact, while a stronger impact is obtained when correlation is coupled with high
levels of volatility and when we introduce common jumps in the paths for default
intensities, as reported in our numerical tests.

This confirms numerically our analysis of the linkage between the default inten-
sity representing the creditworthiness of a counterparty and the default event, which
is not indeed so strong because the default trigger is not directly observable in the
market, but it is rather unpredictable. This phenomenon leads to a situation where
correlation between the credit quality of two counterparties, which is observable,
may not indeed translate in correlated default events. This effect of weak correlation
between default events of two counterparties when modeling diffusive intensities, is
reflected in the fact that CVA charges do not vary upon the imposition of high or
low correlation, until we introduce common jumps, strenghtening the dependency
effect between default riskiness.

In order to amplify the impact of default risks dependency, in fact, we introduced
common jumps in the process for default intensities. The situation of highest depen-
dency in default risks can be identified when correlation is maximum and common
jumps are introduced in the paths for default intensities. In the test we considered,
we verified that in this case a minimum charge for Adjusted CVA has to be ac-
counted for.

On the contrary, the situation of maximum independency between default risks
verifies in case of null correlation and independent jumps in the paths for default
intensities. As expected, in this case Adjusted CVA charges are maximum. This
pattern for Counterparty Credit Risk charges is more visible for the case of two
parties with different creditworthiness, with respect to the case of two equal names.
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