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SUMMARY

Introduction. The individual response to vitamin K antagonists (VKA) is highly variable, being
influenced by clinical factors and genetic variants of enzymes that are involved in the
metabolism of VKA (CYP2C)) and vitamin K (VKORC1). Currently, the dose of VKA is adjusted
based on measurements of the prothrombin time. In the last years, mathematical algorithms
were developed for estimating the appropriate VKA dose, based on different mathematical
approaches working on clinical and genetic data. Artificial Neural Networks (ANN) are
computerized algorithms resembling interactive processes of the human brain, which allow to
study very complex non-linear phenomena like biological systems. Aim. To evaluate the
performance of new generation ANN on a large data base of patients on chronic VKA
treatment. Methods. Clinical and genetic data from 377 patients (186 m; 191 f) treated with a
VKA (warfarin) average weekly maintenance dose (WMD) of 23.7 mg (11.5 SD) were used to
create a dose algorithm. Forty-eight variables, including demographic, clinical and genetic
data (5 CYP2C9 and 3 VKORC1 genetic variants) were entered into Twist® system, which can
select fundamental variables during their evolution in search for the best predictive model.
The final model, based on 23 variables expressed a functional approximation of the actual
dose within a validation protocol based on a tripartite division of the data set (training,

testing, validation). Results. In the validation cohort, the pharmacogenetic algorithm reached

high accuracy, with an average absolute error of 5.7 mg WMD. In the subset of patients
requiring <21 mg (45 % of the cohort) and 21-49 mg (51 % of the cohort) the absolute error
was 3.86 mg and 5.45 with a high percentage of subjects being correctly identified (72%, 74%
respectively). Conclusion. ANN can be applied successfully for VKA maintenance dose
prediction and represent a robust basis for a prospective multicentre clinical trial of the

efficacy of genetically informed dose estimation for patients who require VKA.



INTRODUCTION

Vitamin K antagonists (VKA) are widely used in primary and secondary prophylaxis of
venous thromboembolism and cardioembolism (Ansell ], 2008). The use of VKA in clinical
practice is challenging because VKAs: i) have a narrow therapeutic window ii) have a
pronounced inter-individual variability in dose requirement due to demographic and clinical
factors, such as age, weight, height, comorbid medical conditions, concurrent medications,
diet, ethnicity (Hirsh ], 2003), and genetic factors (Loebstein R, 2001). Among the latter,
which are responsible for approximately 30-50% of response variability (Lubitz SA, 2010),
polymorphisms of two enzymes are strongly associated with dose requirements of VKAs:
isoform CYP2C9 of cytochrome P450 (CYP) and vitamin K epoxide reductase complex subunit
1 (VKORC1). CYP2C9 is the major enzyme involved in the clearance of warfarin, while
VKORC1 is essential for the regeneration of reduced vitamin K, which catalyzes the y-
carboxylation of coagulation factors I, VII, IX and X, and other proteins. For the above
reasons, treatment with VKA is routinely monitored by the prothrombin time, expressed as
International Normalized Ratio (INR), with the aim of constantly maintaining the degree of
inhibition of coagulation within the therapeutic range. Due to the many variables that are
involved, it is difficult to predict the daily maintenance dose of warfarin, which varies by a
factor of 10 among patients (Takahashi H, 2001). The consequences of incorrect dosing can
be dramatic, contributing to the development of thromboembolic events, in case of under-
dosing, or bleeding complications, in case of over-dosing (Wysowski DK, 2007). It has been
reported that warfarin is the most common drug implicated in emergency room visits for
adverse drug events in older adults in the United States (U.S. FDA, 2008). Although new oral
anticoagulants (NOA) with favourable risk-to-benefit ratios and no need for laboratory

moniroring (Tripodi A, 2013), are being gradually introduced in the clinical practice, they will



probably never completely replace VKA. Therefore, there still is a need to improve our ability
to predict the effective dose of VKA in each individual patient.

Among Caucasians, the most frequent CYP2C9 variant genotypes are CYP2C9*2 (12-27%) and
CYP2C9*3 (8-29%)(Margaglione M, 2000; Scordo MG, 2001; Sanderson S, 2005; Spreafico M,
2008; Sipeky C 2009; Jorgensen AL, 2012), which are associated with reduced clearance of
warfarin and explain 17-30% of warfarin dose variability (McClain MR, 2008; Wadelius M,
2009, Jorgensen AL, 2012). VKORC1 variant genotypes are also common among Caucasians
and are associated with increased sensitivity to warfarin (Geisen C, 2005), accounting for
approximately 23% of warfarin dose variability (Geisen C 2005; McClain MR, 2012,). Warfarin
dosing algorithms have been developed to improve our ability to predict the effective
warfarin dose in each individual patient. Genotype-based dosing algorithms predict 37-55%
of the variation in warfarin dose requirements; neither the addition of race, number of
concurrent medications nor the number of concurrent medications interacting with warfarin
enhanced algorithm performance (Lubitz SA, 2010).

Artificial neural network (ANN) are computerized algorithms resembling interactive
processes of human brain, which allow studying very complex non-linear phenomena like
biological systems. ANNs can learn experiential knowledge expressed through internal
connections in a similar way as neurons in the brain and this knowledge can be made
available for clinical decision-making (Cross SS, 1995; Dayhoff JE, 2001). Given the complexity
of multiple factors interplay behind optimal warfarin response these tool might offer a
substantial advantage over other statistical approaches. The aim of this study was to evaluate
the performance of new generation ANNs to predict the maintenance dose of warfarin, using a

large database of patients on chronic warfarin treatment



METHODS

Patient characteristics

Data from patients who were treated with warfarin between December 2008 and February
2009 were included in the analysis after having obtained written informed consent. The
patients were recruited at the Ospedale San Paolo, Universita degli Studi di Milano, Milan,
[taly. Written informed consent was obtained from all patients and the study was approved by
the Ethics Committee of Ospedale San Paolo. The study was conducted in accordance with the
Helsenki Declaration.

Patients were enrolled in the study if they were Caucasians, 218 years of age, treated with
warfarin for any clinical indication, and if their INR values had been in the therapeutic INR
range at the last two consecutive laboratory controls. Exclusion criteria were severe liver
disease and renal failure. The warfarin maintenance dose in each patient had been identified
by specialized medical doctors with the help of a computerized algorithm (Parma 4.1,
Instrumentation Laboratory Company, MA, USA) (Manotti C, 2001), which is based on a
regression model that considers the weekly variations of INR. Several studies showed that
Parma 4.1 significantly improves the quality of treatment, compared to the doctor-prescribed

method (Ageno W, 1998; Manotti C, 2001; Poller L, 2004).

Data collection

Demographic data (age, gender, height, weight, body mass index), indication for anticoagulant
therapy, concomitant diseases, co-medications, INR target range, warfarin maintenance dose
were collected. Concomitant medications were: antihypertensives (ACE-inhibitors,
Angiotensin Il receptor antagonists, alpha-blockers, vasodilators and dihydropyridines
calcium channel blockers), diuretics (loop, thiazide and potassium-sparing diuretics:

diuretics), antithrombotic drugs (P2Y12 antagonists and aspirin), proton pump inhibitors,



statins, oral glucose lowering agents, allopurinol, antibiotics, carbamazepine, tapazole,
antiarrhythmic drugs (Class [, II, III except amiodarone, IV and V), amiodarone and other
drugs (i.e. antidepressant, antipsychotic, anticonvulsant except carbamazepine, L-thyroxin

and analgesic).

Laboratory methods

Venous blood was collected in 0.109 M sodium citrate (9:1 vol:vol) and in K3-EDTA tubes.
Plasma and cells were separated after centrifugation at 4000 g for 30 min. DNA was isolated
from leukocytes using an automated extraction system (Abbott m2000sp, Abbott Molecular
Inc,, IL, USA) following the manufacturer’s recommendations. The DNA samples were eluted
in 100 pl water and stored at —-20°C until processed.

The DNA concentration in the samples ranged between 25 and 40 ng/ul, with a purity
(measured by the 269/280 ratio) ranging between 1.4 and 1.7, which was considered
adequate for further analysis. PT was measured using the human recombinant
thromboplastin RecombiPlasTin (HemosILTM, Instrumentation Laboratory, USA), and an
Electra 1600 coagulometer (MA, USA). The laboratory performed regular external quality
control exercises.

Five common CYP2C9 (*2, *3, *5, *6, *11) and 3 common VKORC1 (3673G—A, 6484C-T,
6853G—C) single nucleotide polymorphisms (SNPs) were assessed through allele specific
primer extension PCR. CYP2CO allele designations refer to those defined by the Cyto-chrome
P450 Allele Nomenclature Committee (http://www.cypalleles.ki.se). Genotype analysis was
performed using INFINITI™ Analyzer, which is an automated, multiplexing, continuous flow,

random access microarray platform (Autogenomics, CA, USA).

Input variables




A total of 48 clinical and genetic variables, known to influence the pharmacological response
to warfarin, were available for mathematical modelling (Table 1).

Statistical analysis

Data are shown as means and standard deviations (SD) or medians and interquartile ranges
(IQR), according to their distribution, which was evaluated using the Kolmogorov-Smirnov
test. The Spearman's correlation test was used to analyse the data. P values <0.05 were
considered statistically significant.

The sample selected for the analysis (n = 377) is relatively large, as it is required by the nature
of the research question, to allow enough variability to make meaningful inferences as to the
predictive capacity of the single variables. Multivariate analysis was carried out with
supervised ANN, according to the method already adopted (Penco S, 2008). The choice of a
relatively unusual and sophisticated inferential technique such as ANN is motivated by the
fact that the underlying relation to be estimated among our independent sample variables and
the dependent variable (the optimal dose of warfarin) is extremely complex and there is no
reliable a-priori statistical model to refer to. ANNs self-adjust their structure as they learn
from their own errors, are able to handle a very high number of variables simultaneously,
irrespective of their underlying degree of non-linearity, and lead to structurally robust results
even when the underlying statistical process is not well understood, thereby allowing to deal
with many sources of inferential trouble such as outliers, collinear interactions among
variables and hidden variables (Buscema M, 1998).

In particular, we work with the family of Supervised ANNs, that is to say, with ANN that tackle
problems where an external, objective target output can be fixed, so that they learn by
examples (the training set, that is, a suitable sub-sample of the whole database), calculating an
error function during the training phase, and adjusting the connection strengths in order to

minimize the error function until a satisfactory and stable level of accuracy in the



prediction/classification task is reached. This type of ANNs thus computes a function of the
form: y = f(x,w*), where x is the input, y is the output and w* is the set of ANN weights (the
function parameters) that encode the ANN's approximate reconstruction of the structure of
the function.

In order to cut down of the number of irrelevant variables in the database (i.e., the variables
that do not carry any meaningful information for the prediction task), which cause a loss in
the power of our inferences, we have employed a special ‘artificial organism’ called TWIST
(Buscema M, 2005), suitably designed for sorting out the most relevant variables for the sake
of prediction/classification. It consists of a combination of two already known systems: T&T
and IS. The T&T system is a robust data re-sampling technique that is able to arrange the
source sample into sub-samples, all of which possessing a similar probability density function.
In this way, the database is split into two or more sub-samples in order to train, test and
validate the ANN models as effectively as possible on the basis of the available data. The IS
system is an evolutionary 'wrapper' system that selects variables in order to minimize their
number while preserving the actual amount of task-relevant information contained in the
data-set. The combined action of these two systems allows us to increase substantially the
inferential power of our ANN system, while circumventing at the same time a few major
technical issues. Both systems are based on a Genetic Algorithm, the Genetic Doping
Algorithm (GenD) developed at Semeion Research Centre (Rome, Italy) (Buscema M, 2004).
The TWIST system is described in detail in the appendix, and Figure 1 below is a snapshot of
TWIST at work during the variables selection task.

The TWIST pre-processing singles out the variables that prove to be most significant for the
prediction/classification task, while producing at the same time the training set and the
testing set, which are extracted from a probability distribution very close to the one that

provided the best performance in the task. As to the prediction/classification task, it is carried



out by means of a supervised, Multi Layer Perceptron, with four hidden units (Haykin, 1998).
The protocol scheme is reported in figure 1. The patient population was divided into three
groups according to weekly maintenance warfarin dose: < 21 mg, 21-49 mg and 249 mg.

The warfarin dose that was predicted by ANN was compared with the actual doses by
univariate linear regression. The mean absolute error (MAE), the mean of the absolute
difference between the predicted and actual dose, and the coefficient of determination (R?)
were used to measure the predictive accuracy of ANN . Analysis were performed using SPSS

18.0 (Inc., IL, USA).



RESULTS

Patients’ characteristics

A total of 377 patients met the inclusion criteria and were included in the analysis. The most
relevant clinical characteristics of the enrolled patients are described in table 2. The most
frequent clinical indication for anticoagulation was atrial fibrillation (69%); other indications
included heart valve prosthesis (10%) and pulmonary embolism (8%). The large majority of
patients, 325, 86%) were on concurrent drug treatment: on average, they were taking 3 (IQR
1-4) medications potentially interacting with warfarin. The median weekly maintenance dose
(WMD) of warfarin was 22.5 mg (IQR 16.3-28.8mg). Thirteen patients whose INR values were
not within the therapeutic range were erroneously included in the analysis: their median
weekly maintenance dose was 21.4 mg (IQR 12.2-30.0 mg), the INR was higher than 3.0 (INR
3.7 and 4.3) in 2, and lower than 2.0 in 11 (median INR 1.5, IQR 1.5-1.7). We believe that this
mistake cannot modify the results of the study: the difference between the warfarin weekly
dose determining the target INR and the wrong one was low: 1.7 mg (21.4 mg vs 19.7 mg).
The frequencies of CYP2C9 and VKORC1 genotypes are reported in table 3. Variant VKORC1
genotypes were present in about 70% of patients, while variant CYP2C9 genotypes were
present in 38%.

Effect of variables on warfarin maintenance dose

Age and atrial fibrillation were inversely associated with the average therapeutic dose of
warfarin, while weight, height, BMI, deep vein thrombosis and other clinical indications for
treatment were directly associated with it (Table 4)

The average WMD of warfarin was positively associated with the wilde type genotype of
CYP2C9 (*1/*1) and negatively associated with genotypes *1/*3 and *2/*3. Our results are in

line with a recent meta-analysis that showed that, compared with subjects with wild



genotype (*1/*1), WMD of warfarin is 22%, 36%, 43%, 53%, and 76% lower among
individuals with *1/*2, *1/*3, *2/*2, *2/*3, and *3 /*3 genotypes (McClain MR, 2008).
Wilde-type VKORC1 genotypes (3673GG, 6484CC, 6853GG) were posively associated with the
maintenance dose of warfarin, while genotype variants 3673AA, 6484TT and 6853CC were
inversely associated with it. Our results are consistent with previous reports (Geisen C, 2005;
McClain AR, 2008; Spreafico M, 2008; Wadelius M, 2009; Jorgensen AL, 2012). No statistically
significant associations with warfarin dose and concomitant medications were found.

Artificial neural network analysis

Forty-eight variables, including demographic, clinical and genetic data (5 CYP2C9 and 3
VKORC1 genetic variants) were entered into the Twist® system, which can select
fundamental variables during their evolution in search for the best predictive model. The
twist system selected 23 variables (table 5) carrying the maximal amount of information to
build up a predictive model. The final model, based on these 23 variables, expressed a
functional approximation of the actual dose of warfarin within a validation protocol based on
a tripartite division of the data set (training, testing, validation). In this procedure the study
sample was randomly divided into two main sub-samples: the tuning set sub-sample and the
prediction sub-sample, which accounted for about 50% of the tuning sample. The tuning data
set was in turn subdivided in two halves, the training sample and the testing sample. This was
done five times. During the training phase, the ANN learned a model of data distribution and
then, on the basis of such a model, blindly made a functional approximation of dependent
variable in the testing set. Training and testing sets were then reversed and consequently 10
analyses for every model employed were conducted. The best performing model was then
selected and used to predict the warfarin dose in the prediction set, which had been taken

apart during all the procedure. Also in this case the prediction was done blindly.



Finally, the pharmacogenetic algorithm obtained by the average of four independent ANN
reached an average absolute error of 5.7 mg with a R2 =478 (table 6). In the subsets of
patients requiring <21 mg (45 % of the cohort), 21-49 mg (51 % of the cohort) and 249 mg
warfarin(4 % of the cohort) the absolute error was 3.86 mg, 5.45 mg and 24.2 mg and the

percentage of subjects being correctly identified was 72%, 74% and 0% respectively.



DISCUSSION

The number of patients on oral anticoagulant therapy continues to increase worldwide.
Warfarin remains the most frequently prescribed oral anticoagulant drug because of its low
cost, proven efficacy and the availability of antidotes to treat patients with bleeding
complications. Because genetic variation contributes to the observed high inter-individual
variability in dose-requirements, which can potentially increase the risk of thrombosis or
bleeding, the US Food and Drug Administration (FDA) supported the use of genotyping to
guide warfarin dosing

(http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm08337

8.htm). In the present study, we tested the efficacy of warfarin dosing during maintenance
treatment, based on a large number of genetic and clinical factors that were analyzed by
artificial neural networks (ANN), which are effective tools for clinical decision-making. In the
validation cohort, our model displayed high accuracy and explained an average absolute error
of 5.7 mg/week and from 50% to 71% of weekly warfarin dose variability. The dose
prediction was particularly accurate for the subset of patients requiring weekly doses of
warfarin €21 mg (correct dose identification in 72% of patients) or 22-48 mg (74%). In the
subset of patients requiring higher weekly warfarin doses (249 mg), the algorithm did not
perform successfully, most likely because only 15 patients belonged to this subgroup.
Previous studies reported on the peformance of pharmacogenetic algorithms in warfarin
dosing (Lenzini P, 2010; IVPC 2009, Gong 1Y, 2011; Zambon CF, 2011). Table 7 shows that the
performance of our algorithm appears to be superior to those of the 2 published studies that
mostly enrolled Caucasian patients (Table 7) (IVPC 2009, Zambon CF, 2011). The results of
the other published studies can be hardly compared to ours, because they mostly enrolled
non-Caucasian patients, who have different prevalences of CYP2C9 and VKORC1

polymorphisms (Jorgensen AL, 2012). The higher performance of our model may be explained



by the high accuracy of ANN to identify complex, non-linear relationships among genetic and
clinical variables in a global analysis and by the much higher number of variables (23) that
were retained in our final model, compared to other models (Moreno L, 1995).

Considering the promising results of our study, we believe that the performance of the ANN
model should be tested a prospective study assessing: i) the time within therapeutic INR
range during VKA therapy, ii) the number of thromboembolic and bleeding events and, iii)
cost effectiveness, compared to the best care. A randomized trial compared standard dosing
regimen with two genotype-guided algorithms, based on the IWPC (IWPC 2009) and Gage
algorithms (Gage BF, 2008) that incorporate both clinical and genetic factors. Primary
outcomes were percentage of out-of-range INR at 1 and 3 months and percentage of time in
therapeutic range. The combined genotype-guided prescription cohort demonstrated
superior outcomes with respect to both primary end points at 3 months (30% vs 42% for out-
of-range and 71% vs 59% for therapeutic range). Moreover, serious events were significantly
less frequent in the genotype-guided cohort (4.5% vs 9.4% of patients; p < 0.001). It should be
noted that there was no difference in the primary outcome between the two genotype-based
algorithms.

In the last years, new oral direct anticoagulants (NOA) have been developed as alternatives to
warfarin, with at least equal efficacy and safety, wider therapeutic range, less complex
pharmacodynamics, and no need for laboratory monitoring. However, there are patients, like
those with severe renal function impairment, who cannot be treated with NOA. Moreover,
NOA are very expensive and no specific antidotes to treat patients with bleeding
complications have been developed yet. Therefore, it can be easily predicted that
replacement of warfarin by NOA will be a slow and partial process. As a consequence, efforts

are still needed to improve our ability to predict the correct dose of warfarin.



Our study has several limitations: (i) being a retrospective study, we were only able to
compare the predicted dose with the really administered dose; moreover the study
methodology do not allow to consider clinical outcomes like adverse events; (ii) it was
conducted in a single centre and the small sample size and the homogeneous characteristics of
this population limit the external validity; (iii) the induction period of warfarin therapy was
not evaluated.

In conclusion, the ANN model that was used in this study appears to be an accurate tolls for
the identification of the warfarin maintenance dose, at least for Caucasians patients. Thus our
results suggest that ANN can be applied successfully for VKA maintenance dose prediction
and represent a robust basis for a prospective multicentre clinical trial of the efficacy of

genetically informed dose estimation for patients who require VKA.
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Table 1: Variables that have been considered in our analysis

TABLES

1 |Male gender 18 |CYP2C9*2*3 35 |Antihypertensive drugs

2 |Female gender 19 |CYP2C9*3*3 36 |Antiarrhythmic drugs

3 |Age 20 |CYP2C9*1*5 37 Diuretics

4 |Weight 21 |CYP2C9*5*5 38 |Amiodarone

5 [Height 22 |CYP2C9*1*6 39 |Antithrombotic drugs

6 |Body Mass Index 23 |CYP2C9*6*6 40 |Proton pump inhibitors

7 |Deep vein thrombosis 24 |CYP2C9*1*11 41 |Statins

8 |Pulmunary embolism 25 ICYP2C9*11*11 42 |Oral glucose lowering agents

9 |Atrial fibrillation 26 VKORC1 3673 GG 43 |Allopurinol

10 [Heart Valve 27 [VKORC1 3673 GA 44 |Antibiotics

11 |Cardiomyopathy 28 [VKORC1 3673 AA 45 |Carbamazepine

12 |Stroke 29 [VKORC1 6484 CC 46 [Tapazole

13 |Other indications 30 [VKORC1 6484 CT 47 |Other drugs

14 |CYP2C9*1*1 31 VKORC1 6484 TT 48 Warfarin weekly
maintenance dose

15 |CYP2C9*1*2 32 VKORC1 6853 GG

16 |CYP2C9*2*2 33 VKORC1 6853 GC

17 |CYP2C9*1*3 34 VKORC1 6853 CC
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Table 2: Patients’ characteristics

\Variables

IAge(years), median (IQR) 76 (70-80)
Men, n (%) 186 (49%)
Body mass index, median (IQR) 18.0 (16-20)

[ndication for anticoagulation, n (%)

- Atrial fibrillation

261 (69%)

- Artificial heart valves 39 (10%)
- Pulmonary embolism 30 (8%)
- Deep vein thrombosis 21 (6%)
- Cardiomyopathy 15 (4%)
- Stroke 13 (3%)
- Other indications 14 (4%)
Number of concomitant medications per patient, 3(1-4)
median (IQR)
Patients with no concomitant medications, n (%) 53 (14%)

Numebr (%) of patients on concomitant medication

with, :

- Antihypertensive drugs

209 (55%)

- Antiarrhythmic drugs

192 (51%)

- Diuretics 133 (35%)
- Amiodarone 69 (18%)
- Antithrombotic drugs 68 (18%)

- Proton pump inhibitors 58 (15%)
- Statins 50 (13%)
- Oral glucose lowering agents 32 (9%)

- Allopurinol 18 (5%)

- Antibiotics 13 (3%)

- Carbamazepine 1 (0.3%)

- Tapazole 1(0.3%)

- Other drugs 123 (32%)

Weekly mean therapeutic warfarin dose, mg per

week (£SD)

23.7 mg (£11.5)

Weekly median therapeutic warfarin dose, mg per

week (IQR)

22.5 mg (15.6-29.4)

SD= standard deviation; IQR= interquartile range.
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Table 3

Prevalences of genetic CYP2C9 and VKORC1 genotypes, and allele frequency of CYP2C9

Gene Genotype n (%) Gene Genotype n (%)
CYP2C9 *1/*1 235(62.3%) |[VKORC1 3673GG 111 (29%)
*1/*2 85 (22.5%) 3673GA 189 (50%)
*1/*3 44 (11.7%) 3673AA 77 (20%)
*2/*2 4 (1.1%) 6484CC 107 (28%)
*2 /%3 7 (1.8%) 6484CT 195 (52%)
*3/*3 1 (0.3%) 6484TT 75 (20%)
*11/*11 1(0.3%) 6853GG 101 (27%)
6853GC 195 (51%)
6853CC 81 (22%)
CYP2CO  |Allele n (%)
*1 599 (79.4%)
2 100 (13.3%)
*3 53 (7%)
11 2 (0.3%)
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Table 4
Correlation between the weekly therapeutic warfarin dose with clinical and genetic variables.

Variables r p

VKORC1 6484TT -0.31 <0.01
VKORC1 6853 CC -0.31 <0.01
VKORC1 3673 AA -029 <0.01
Age -0.21 <0.01
CYP2C9*1/*3 -0.14 <0.01
CYP2C9*2/*3 -0.14 <0.01
Atrial fibrillation -0.14 0.006
VKORC1 6484 CC 0.33 <0.01
VKORC1 3673 GG 0.33 <0.01
VKORC1 6853 GG 0.30 <0.01
Body Mass Index 0.21 <0.01
Weight 0.21 <0.01
Height 0.15 <0.05
Deep vein thrombosis 0.15 <0.05
CYP2C9*1/1 0.13 <0.05
Other indications for Warfarin 0.12 <0.05

Spearman test
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Table 5. Variables that were selected by the TWIST system

1 |Male gender 13 |C9*3/*3

2 |Female gender 14 |C9*2/*3

3 [Height 15 [VKR3673 AA
4 BMI 16 [VKR6484 CT
5 |Deep venous thrombosis (17 VKR6853 GC
6 |Pulmunary embolism 18 [VKR6853 CC
7 |Cardiomyopathy 19 |Amiodarone
8 [Stroke 20 |Diuretics

9 |C9*1/*1 21 [Statins

10 |C9*1/*2 22 [Tapazole

11 |C9*1/*6 23 |Other drugs
12 |C9*1/*11
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Table 6
Results obtained by ANN on the validation cohort

* 0,
o | g [ [
<21 mg/week 170 (45) 3.86(0.92) 0.67 72
22-48 mg/week 193 (51) 5.45 (1.02) 0.51 74
>49 mg/week 14 (4) 24.2 (6.3) 0.15 0
Total 377 (100) 5.72 (0.94) 0.48 70

MAE: mean absolute error; R? is the coefficient of determination; %= percentage of patients
predicted dose within 20% of the actual dose; ANN: artificial network analysis; *mean (SD)

28



Table 7. Comparison of the performances of different pharmacogenetic algorithms

% of patients

Caucasians MAE who were
Study n (%) R2 (mg) correctly
classified
This study 377 100 0.48 5.72 70
[WPC
(IWPC, 2009) 1009 56 0.43 8.5 ~45
Zambon 97 100 0.56 7.0 52

(Zambon, 2011)

n: number of subjects included; MAE: mean absolute error; R? is the coefficient of
determination; %= percentage of patients for whom the predicted dose within 20% of the

actual dose
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FIGURE

Figure 1: validation protocol employed for neural network analysis of the 377 patients
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APPENDIX

The TWIST methodology

TWIST (Buscema M, 2005) is an ensemble of two distinct algorithms: T&T and L.S.

A1 T&T

The “Training and Testing” algorithm (T&T) is based on a population of n ANNs,
managed by an evolutionary system. In its simplest form, this algorithm reproduces several

distribution models of the complete dataset DI" (one for every ANN of the population) in two

(] (15
subsets (dF , the Training Set and dr” | the Testing Set). During the learning process each

[rr]
dr

ANN, according to its own data distribution model, is trained on the subsample and

blind-validated on the subsample d;" .

The performance score reached by each ANN in the testing phase represents its “fitness”
value (i.e., the individual probability of evolution). The genome of each “ANN-individual” thus
codifies a data distribution model with an associated validation strategy. The n data
distribution models are combined according to their fitness criteria using an evolutionary
algorithm. The fitness-based selection of “ANN-individuals” determines the evolution of the
population; that is, the progressive improvement of performance of each network until the
optimal performance is reached, which is equivalent to the optimal splitting of the global
dataset into subsets. The evolutionary algorithm ruling this process, named “Genetic Doping
Algorithm” (GenD) (Buscema M, 2004), is similar to a genetic algorithm (i.e. it works by
crossover and mutation genetic operators), but maintains a constitutional instability across

31



the evolutionary process, thereby sustaining a natural proliferation of biodiversity and a
continuous meta-evolution of the population.

The working of T&T is organized into two phases:

1) Preliminary phase: in this phase an evaluation of the parameters of the fitness

function that will be used on the global dataset is performed. During this phase, an inductor

DAz ¥ is set up, which consists of an Artificial Neural Network equipped with a standard

Back Propagation algorithm. For this inductor, the optimal configuration is determined at the

end of different training trials on the global dataset Dt In this way, the configuration that
most “suits” the available dataset is determined: The number of layers and hidden units, and
some possible generalizations of the standard learning law. The parameters thus determined
define the configuration and the initialization of all the ANN-individuals of the population, and
will subsequently stay fixed in the following computational phase. Basically, during this
preliminary phase there is a fine-tuning of the inductor that defines the fitness values of the
population’s individuals during evolution.

The accuracy of the ANN performance upon the testing set will be the fitness of that
individual (that is, of the trial-specific tentative distribution into two halves of the whole

dataset).

2) Computational phase: The system extracts from the global dataset the best training
and testing sets. During this phase, the ANN-individuals carry out their computational task,
based upon the established configuration and the initialization parameters. From the
evolution of the population, managed by the GenD algorithm, the best distribution of the

global dataset DI into two subsets is generated, starting from the initial population of possible

: = (o', D) . : : :
solutions * (DF D). Preliminary experimental sessions are performed using several
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different ANN initializations and configurations, in order to achieve the best partition of the

global dataset.

A2.1S.

Parallel to T&T, TWIST runs LS. (Input Selection), an adaptive system which is also
based on the evolutionary algorithm GenD, and that is able to evaluate the relevance of the
different variables of the dataset in a sophisticated way. Therefore, it can be considered on the
same level as a feature selection technique.

From a formal point of view, LS. is an artificial organism based on the GenD algorithm
and consists of a population of ANNs, in which each one carries out a selection of the
independent variables on the available database. The elaboration of LS. as for T&T, is

developed in two phases:

Q .,
1) Preliminary phase: An inductor 2" - 7

is configured to evaluate the parameters
of the fitness function. This inductor is a standard Back-Propagation ANN. The parameters

configuration and the initialization of the ANNs are carried out with particular care to avoid

possible over-fitting problems that can be present when the database is characterized by a

large number of variables that describe a small quantity of data. The number of epochs E,

necessary to train the inductor is determined through preliminary experimental tests.

2) Computational phase: The inductor carries out its computational task, with the

configuration determined in the previous phase and the fixed initialization parameters, to

33



extract the most relevant variables of the training and testing subsets. Each ANN-individual of
the population is trained on the training set D'y and tested on the testing set D'y .

The evolution of ANN-individuals in the population is again based on GenD. In the LS.
approach, the GenD genome consists of n binary values, where n is the cardinality of the
original input space. Every gene indicates whether the corresponding input variable is active
or not in that particular selection of variables. For each genome, the relevant fitness value is
computed as usual. Through the evolutionary algorithm, the different “hypotheses” of variable
selection, generated by each ANNs within the population, change over time, at each
generation: This leads to the selection of the best combination of input variables. As in T&T,
the crossover and mutation genetic operators are applied on the ANNs population; the rates
of occurrence for both operators are adaptively self-determined by the system at each
generation.

When the evolutionary algorithm no longer improves its performance, the process stops,
and the best selection of the input variables is employed on the testing subset. In order to
improve the speed and the quality of the solutions that have to be optimized with respect to
standard evolutionary algorithms, GenD does not breed best-performing ANN-individuals, but
rather most representative ones. The selection criterion is therefore not that of picking up
momentarily brilliant but possibly unreliable outliers, but rather reinforcing those

characteristics that are stably well performing.
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