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1. ABSTRACT 

Human complex diseases are caused by genetic and 

environmental factors. Genome-wide association studies (gwas) 

are aimed to identify common variants predisposing to those 

disorders. However, till date, the data generated from such studies 

have not been extensively explored to identify the molecular and 

functional framework hosting the susceptibility genes. We 

reconstructed the multiple sclerosis-MS genetic interactome and 

searched for their interactions with genes predisposing to either 

neurodegenerative or autoimmune diseases such as Parkinson's 

disease-PD, Alzheimer's disease-AD, multiple sclerosis-MS, 

rheumatoid arthritis-RA and Type 1 diabetes-T1D. It was 

observed that several genes predisposing to the other autoimmune 

or neurodegenerative disorders may come into contact with MS 

interactome, suggesting that susceptibility to distinct diseases 

may converge towards common molecular and biological 

networks. In order to test this hypothesis, we performed pathway 

enrichment analyses on each disease interactome independently. 

Several issues related to immune function and growth factor 

signaling pathways appeared in all autoimmune diseases. Further, 

the paired analyses of disease interactomes revealed significant 

molecular and functional relatedness among the diseases. 

Therefore, the shift from single genes to molecular frameworks 

via systems biology approach highlighted several known 

pathogenic processes, indicating that changes in these functions 

might be driven or sustained by the framework linked to genetic 

susceptibility. Notably, MS is a complex disease of the central 
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nervous system (CNS), but many of the susceptibility genes play 

a role in immune system. Interestingly, the most widely used 

therapeutic drugs in MS are either immunosuppressive or 

immunomodulatory agents, indicating that targeting peripheral 

immune system is beneficial to patients with this CNS disorder. 

Next, we measured the global gene expression in peripheral blood 

mono nuclear cells (PBMCs) from MS and healthy subjects to 

discover disease genes, molecular biomarkers and drug targets. 

Extending the bioinformatics analysis of the transcriptome data to 

network-biology level enabled us to identify few crucial 

transcriptional regulators in MS. Further, as a first step towards 

translational research, studies were conducted in the animal 

model of MS, based on the outcomes of the bioinformatics 

analysis. Significant amelioration of disease activity was 

observed in diseased animals treated with drug targeting SP1 

transcription factor, compared to the untreated group. Hence, 

disease transcriptomics combined with network-biology analysis 

provided a powerful platform for the identification of functional 

networks and molecular targets in MS.  
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2.1 HUMAN COMPLEX DISORDERS 

 

Complex diseases arise from (unfavorable) multifaceted interaction 

of genetic and environmental factors. A genetic predisposition 

means that an individual has a genetic susceptibility to developing 

a certain disease. However, different from monogenic disorders, 

where mutations in a single gene/genetic component is sufficient to 

produce the clinical phenotype, complex diseases do not obey the 

single-gene dominant or recessive Mendelian pattern of 

inheritance, rather they arise from the action of environmental and 

life-style factors (cigarette smoking, sunlight, obesity, viruses etc) 

in individuals carrying numerous susceptibility variants, each 

conferring only limited risk 1. The diseases falling into this 

category are numerous; here we focus our attention on Alzheimer’s 

disease, diabetes, multiple sclerosis, Parkinson's disease, 

rheumatoid arthritis. 

 

 
2.1.1 Parkinson's disease  

Parkinson’s disease (Park) is the second most common 

neurodegenerative disorder with a prevalence of 0.3% prevalence in 

industrialized countries, which rises to more than 1% over 60 years 

of age and above 4% at the threshold of 80 years of age 1, 2. The 

mean age of onset is approximately 60 years. However, 10% of 

cases are classified as young onset, occurring between 20 and 50 

years of age, which may represent a distinct disease group. Park is 

more prevalent in men than in women by upto 3:1 male to female 
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ratio 3. Approximately 20% of patients with Park report a family 

history of the disease and monogenic forms of Park are relatively 

rare. Like any other complex disease, Park is multifactorial 

disorder, likely to be arising from a combination of polygenic 

inheritance, environmental exposures, and gene-environment 

interactions.  

2.1.1.1 Symptoms and Diagnosis 

Impaired motor function is the hallmark symptom of Park, which 

may be featured with bradykinesia, rigidity, tremor, and postural 

instability with an asymmetric onset spreading to become bilateral 

with time. Other motor features include gait and posture changes 

that manifest as festination (rapid shuffling steps with a forward-

flexed posture when walking), speech and swallowing difficulties, 

and a masklike facial expression and micrographia 4. Further, a 

good response to these symptoms with dopaminergic treatment is 

confirmatory of the diagnosis. However, in recent years non motor 

symptoms (NMS) such as depression, sleep disturbance, sensory 

abnormalities, autonomic dysfunction, and cognitive decline are 

also recognized as symptoms of Park.  Whereas the causes of motor 

dysfunction in Park are reasonably well understood, the cause of 

NMS in Park remains poorly researched and they may largely relate 

to pathology outside of the basal ganglia 5. 
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2.1.1.2 Risk factors for developing Parkinson's disease 

Even though age represents the biggest predisposing factor for 

Park, it remains unknown whether it is chronological age or the 

aging process that is 6. In women, loss of estrogen production with 

age may remove a protective effect 7.  More importantly, genetic 

causes may account for up to 40% of risk in the population 8. On 

the other hand, environmental causes include exposure to certain 

solvents (eg: n-hexane, methanol), carbon monoxide poisoning and 

hydrogen sulfide intoxication 2. In addition, it has been shown that 

pesticides such as Paraquat (C12H14Cl2N2) and Rotenone (C23H22O6) 

are able to destroy dopaminergic cells in rodents, and they may 

contribute to the increased risk of developing Parkinson’s disease 
2.  

2.1.1.3 Genetics and pathogenesis of Parkinson's disease 

Investigation of familial Park patients has revealed several 

autosomal dominant and autosomal recessive gene mutations 

responsible for variants of the disease 9. These include α-synuclein 

mutations and triplication, parkin, ubiquitin carboxyl-terminal 

hydrolase L1 (UCH-L1), DJ-1, phosphatase and tensin homolog-

inducible kinase 1 (PINK1), leucine-rich repeat kinase 2 (LRRK2), 

and glucocerebrosidase (GBA). Among these, Parkin and LRRK2 

are probably the most common genetic link to young-onset and 

late-onset Park respectively. The α-synuclein is identified as a 

major component of Lewy bodies and Lewy neurites, and the 

labeling of Park as a synucleinopathy, underpinning much of the 

consensus on the final stages of neuronal loss in Parkinson’s 
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disease being related to altered protein aggregation 10, 11. LRRK2 

interacts with Parkin, and mutant LRRK2 induces apoptotic cell 

death in cultured neurons. Autosomal loss of function mutations 

include those in the ubiquitin E3 ligase Parkin, which in 

combination with the ubiquitin-conjugating enzyme causes the 

attachment of ubiquitin as a marker on proteins destined for 

destruction by the proteasome. Additionally mutations in the 

mitochondrial PINK1 protect cells from mitochondrial 

stress/dysfunction, and the rarest mutation in the redox-sensitive 

chaperone DJ-1, protects cells against oxidative stress 12, 13. The 

International PD Genomics Consortium, has recently revealed 14 

“risk gene” loci for PARK, including α-synuclein, LRRK2, human 

leukocyte antigen (HLA), and tau 14, 15.  

Familial forms of Parkinson’s disease and the associated gene 

mutations currently account for approximately 10% of cases and 

they have distinct clinical and pathological phenotypes. Notably, 

mechanisms such as mitochondrial dysfunction, oxidative stress, 

and altered protein handling are common to both familial and 

sporadic Park (Fig. 1) 9. More recently, the role of mitochondria in 

familial Parkinson’s disease is widely investigated and reported that 

the mutations in α-synuclein, parkin, PINK1, and DJ-1 and perhaps 

LRRK2 have been associated with altered mitochondrial function 

(Fig. 1).  16 These mutations can lead to altered protein localization 

in mitochondria in Park, abnormalities in mitochondrial structure 

and function, and a decrease in complex I assembly and activity. 

Loss of function of DJ-1, Parkin and PINK1 genes decreases 
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mitochondrial protection against oxidative stress, which in turn 

increases mitochondrial dysfunction. Another important role for 

Parkin and PINK1 is in the turnover of mitochondria by autophagy, 

specifically mitophagy; they act in tandem to regulate this process. 

This may be very important in Park, where autophagy seems 

impaired and thus reducing the ability of the cell to remove the 

damaged mitochondria. 

 

Figure 1. Molecular mechanisms in Parkinson’s disease from a 

genetic point of view. Mutations in key genes contribute to the 

neurodegenerative process in dopaminergic neurons in the 

substantia nigra. Double-headed arrows (blue) indicate molecular 

mechanisms that may not only be toxic in their own right but may 

also influence other molecular mechanisms known to be features in 

Parkinson’s disease. Double helix structures identify some of the 
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common gene mutations found in familial Parkinson’s disease and 

brown arrows indicate where the altered protein may interfere with 

cell function and leads to cell death. (Derived from 1, 2 ).Even 

though, our understanding of the nature and causes of Parkinson’s 

disease is improving, there are several fundamental gaps in the 

present knowledge, which hinders the ability to develop effective 

neuroprotective strategies for the disease. The mechanisms 

currently used to explain pathogenesis in Parkinson’s disease may 

just be the downstream consequence of a so far unknown trigger. 

Importantly, we still do not understand the molecular mechanisms 

that account for the spreading pathology of the disease. Further 

advances in the understanding of the pathology will enable the 

discovery of therapeutics for Park patients. 
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2.1.2 Alzheimer's disease  

Alzheimer’s disease (Alz) is the most common neurodegenerative 

disease and a common cause of dementia in the elderly. Dementia is 

recognized with use of the criteria of the Diagnostic and Statistical 

Manual of Mental Disorders, fourth edition (DSM-IV), American 

Psychiatric Association In the UK, over 700,000 people have 

dementia 17 .In the United States, Alzheimer’s disease is the seventh 

leading cause of all deaths, which has increased to 46.1 % between 

2000 and 2006.  

2.1.2.1 Symptoms and Diagnosis 

The classic clinical features of Alzheimer’s disease are memory 

impairment, deterioration of language, and visuospatial 

disability18. Motor and sensory abnormalities, gait disturbances, 

and seizures are uncommon until the late phases of the disease 19. 

The diagnosis of Alzheimer’s disease was developed by the 

National Institute of Neurologic and Communicative Disorders and 

Stroke–Alzheimer’s Disease and Related Disorders Association 

(NINCDS–ADRDA)19. This was later updated with more reliable 

diagnosis tools such as through structural MRI, molecular 

neuroimaging with PET, and cerebrospinal fluid analyses 20.   

 

2.1.2.2 Risk factors for developing Alzheimer’s disease 

There is a clear genetic influence in the manifestation of Alz. 

Being a first-order relative of Alz patient increases the risk by two 

times in one’s life. Alz can be thought of as 2 separate entities: a 



 11

rare early-onset form (early-onset familial Alzheimer disease) 

before 65 years of age and a common late-onset form (late-onset 

Alzheimer disease), which manifests at divergent ages. Each 

involves a different set of genes. Three autosomal dominant causal 

genes have been reliably associated with early-onset familial 

Alzheimer disease: presenilin 1(PSEN1), presenilin 2 (PSEN2), 

and amyloid precursor protein (APP). Mutations of these 3 genes 

make up approximately 70% cases of early-onset familial 

Alzheimer disease, in which a mutation in PSEN1 is most common 

and PSEN2 is the rarest 21. Further, mutations apolipoprotein E 

gene provides a greater risk for developing early-onset or late-

onset of the disease, based on the location of the mutations. . 

Finally, trisomy 21 may also led to Alz 22. 

 

Diet is a major non-genetic risk factor for developing Alz.  Dietary 

fats, and total energy intake (in terms of calories) were found to be 

significant risk factors for the development of Alz. Interestingly, 

consumption of fish reduces Alz risk  23. Aluminum may cause 

neurological damage and a number of studies have linked 

aluminum to an increased risk for developing Alzheimer’s disease.  

 

2.1.2.3 Genetics and pathogenesis in Alzheimer’s disease 

 

Although the mechanisms involved in the pathogenesis of Alz 

largely remain unknown, the accumulation of A  (a product of 

APP gene) is a common observation in the disease. In the 

amyloidogenic pathway, APP is initially cleaved by -secretase, 
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followed by -secretase, resulting in products that include A  24. 

An imbalance between A  production and clearance is thought to 

leAlz to the accumulation of amyloid in senile plaques, which 

results in disease progression 25, 26 (Fig.2).  

The brain pathology of Alz is characterized by neuronal loss, tau-

positive neurofibrillary tangles and amyloid plaques, consisting 

mainly of Aβ40/42 peptides generated by cleavage of the β-

amyloid precursor protein (Fig.2). The finding that mutations in 

the tau gene are responsible for frontotemporal dementia proved 

that the formation of neurofibrillary tangles has neurotoxic 

consequences. The combination of genetic and biochemical data 

led to the amyloid cascade hypothesis which suggested that A

deposition is the primary event in disease pathogenesis. 

 

Figure 2. The path of neurodegeneration in Azheimer's disease 
(Derived from http://tanz.med.utoronto.ca/page/science-alzheimer) 
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2.1.2.4 Recently discovered GWAS genes 
 
In the past five years, large collaborative efforts significantly 

contributed to the discovery of novel susceptibility genes in 

Alzheimer's disease, with the discovery of at least nine novel risk 

loci were uncovered 27. Strikingly, the gene CLU was detected 

simultaneously in two independent studies 28, 29. Additionally, 

genome-wide association and replication have been noted for 

single nucleotide polymorphisms in or near CR1, PICALM, and 

BIN1. Finally, association with single nucleotide polymorphisms in 

MS4A cluster, CD2AP, CD33, EPHA1, and ABCA7 further  

increased the pace of genetic discovery in Alzheimer's disease 27.
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2.1.3 Type 1 diabetes  

Type 1 diabetes (T1D) represents one of more than 80 diseases 

considered to have an autoimmune aetiology, which affects millions 

of people worldwide. The disease occurs as a consequence of the 

organ-specific immune destruction of the insulin-producing β-cells 

in the islets of Langerhans within the pancreas 30. Once they are 

destroyed, patients with type1 diabetes lose modulation of blood 

glucose, which can result in both acute conditions (for example, 

ketoacidosis and severe hypoglycaemia) and secondary 

complications (including heart disease, blindness and kidney 

failure) 31. As a complex disorder, T1D develops as a consequence 

of a combination of genetic predisposition and environmental 

factors. Interestingly, unlike most other autoimmune diseases where 

risk is greatest in females, type 1 diabetes is the only major organ-

specific autoimmune disorder that does not to show a strong female 

bias 32.  

2.1.3.1 Symptoms and diagnosis 

Type 1 diabetes symptoms include: increased thirst and frequent 

urination, extreme hunger, weight loss,  fatigue,  blurred vision 

[source: http://www.mayoclinic.com] . In diagnostics, diabetes-

related autoantibodies are used to predict the appearance of T1D 

before any hyperglycemia arises 33. Further, the presence of ketones 

(byproduct from the breakdown of fat) in urine is suggestive for 

type 1 rather than type 2 diabetes [source: 

http://www.mayoclinic.com]. 
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2.1.3.2 Risk factors for developing Type 1 diabetes 

Environmental factors have a major weight in the incidence of type 

1 diabetes. Studies in identical twins showed that the co-incidence 

percentages range from 30-50% 33. A study reported that there is 

10-fold increased risk in occurrence of T1D among Caucasians 

living in different areas of Europe, and a tendency to acquire the 

incidence of the disease of the destination country for people who 

migrate 33. Karjalainen and colleagues reported autoimmune 

response in T1D is influenced by antibodies against cow's milk 

proteins 34. However, it has been shown that breastfeeding 

decreases the risk in later life 35.  

 

2.1.3.3 Genetics and pathology of Type 1 diabetes 

The hallmark of T1D is the progressive loss of β-cell function over 

a period of years. The precise immunologic, genetic and 

physiologic events that control disease initiation and progression is 

still to be uncovered 36. However, studies in animal models of T1D  

have demonstrated that the pathology is consequence of a 

breakdown in immune regulation, resulting in the expansion of 

autoreactive CD4+ and CD8+ T cells, autoantibody-producing B 

lymphocytes, and thereby activation of the innate immune system 

that work together to destroy the insulin-producing β-cells 36. Both 

genetic and gene-environmental interactions have an important 

role in T1D. As common among  autoimmune disorders, the 
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highest risk alleles from HLA- DR2, DR3, DR4  etc. 37. In the 

animal model it has been shown that the HLA class II molecules 

present peptide to CD4 cells and HLA class I molecules present 

peptides to cytotoxic CD8+ T cells, which infiltrates to pancreas 32. 

The second susceptibility locus is in the variable number tandem 

repeat (VNTR) region consisting of a 14 to 15 bp consensus 

sequence upstream of the INS gene which regulates transcription 

rates of insulin and its precursors 38, 39. Another gene linked to T1D 

is CTLA-4 40, which is found on activated T cells that produces a 

negative signal by inhibiting the T cell receptor signaling complex 

ligand interactions (blocks binding of CD80 and CD86). It is 

thought that inherited changes in CTLA-4 gene expression can 

increase T cell self-reactivity and therefore play an important role 

in T1D 41.  More   recently, PTPN22 susceptibility has been 

reported in various autoimmune disorders including T1D. The 

protein product lymphoid protein tyrosine phosphatase (LYP) is 

responsible for preventing spontaneous T cell activation and they 

have the ability to prevent the response to antigen by 

dephosphorylating and inactivating T cell receptors pancreas 32. It 

has been demonstrated that PTPN22 susceptibility leads to the 

decrease in negative regulation of hyper-reactive T cells 42. In 

addition to T cells, LYP is expressed in natural killer (NK) cells, B 

cells, macrophages and dendritic cells (DCs). So, alterations in 

PTPN22 can deregulate functions of several immune cells 32. In 

2005, the IL2RA region on chromosome 10p15 was found to be 

associated with T1D 43. IL2RA encodes the α-chain of the IL-2 

receptor complex (also called as CD25) which is responsible for 
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binding IL-2 and helps the proliferation of regulatory T cells. Two 

IL-2R SNPs associated with the increased risk of T1D have been 

reported (with rs52580101 the most closely associated 44. A recent 

study measuring expression of IL-2R in individuals homozygous 

for susceptible and protective SNPs associated with T1D 

demonstrated that on stimulation, higher percentages of CD69+ 

CD4+ memory T cells secreted IL-2 from individuals with the 

protective SNP compared to individuals with the susceptible SNP 
45. There are several other susceptibility genes reported recently 

from the gwas studies, which include: CCR5, UBASH3A, IFIH1, 

TLR7, PDCA1 etc.   

From the numerous susceptibility genes identified by gwas, it 

appears that a global problem of immune regulation may underlie 

disease susceptibility. For instance, mutations of genes encoded in 

several of the susceptibility loci including IL2A (CD25), CTLA-4, 

PTPN22, and PDCA1 (PD-1) in multiple animal models lead to the 

development of a diverse array of autoimmune diseases, including 

T1D. It has been shown that the number and function of the Treg 

cells (especially the stable CD25+ subset) in the pancreas is 

significantly reduced in the inflamed islet tissue, which may be due 

to lack of  IL-2 production 46. Further, it has been demonstrated that 

a significant increase in the number of IFNγ-producing Foxp3+ cells 

in the new-onset T1D patients, occuring with slightly reduced 

Foxp3 expression in the circulating Treg cell subset 47. With these 

evidences, a T1D disease progression model has been proposed 
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which considers T1D as direct consequence of the imbalance of Treg 

cell to effector T cells 36 as shown in Fig.3. 

 

Figure 3. This schematic illustrates the fine balance of immune 
regulation versus pathogenesis, highlighting a number of genes that 
are likely to influence the balance through effects on central and 
peripheral tolerance and the environmental factors that control 
immunity. The key cell types that affect the balance locally during 
immune responses are listed (derived from: 36) 

On the other hand, T1D researchers are trying to understand the 

complex gene–environment interaction: for instance, relationship 

between cow's milk and PTPN22 and INS or IFIH1 and enterovirus 
48. Further investigations are needed in this direction48.  
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2.1.4 Rheumatoid Arthritis (RA) 

Rheumatoid arthritis is an autoimmune, chronic, systemic 

inflammatory disorder that principally attacks synovial joints. It can 

be a disabling and painful condition, which can lead to substantial 

loss of functioning and mobility. RA afflicts up to 1% of the 

general population worldwide. It is clinically heterogeneous, with 

particular disease phenotypes defined according to a complex 

interplay of genes and the environment 49. 

 

2.1.4.1 Symptoms and diagnosis 

Inflammation on the affected joints is the primary sign of RA, 

which causes swelling, warmness, pain and stiffness. Increased 

stiffness early in the morning is often a prominent feature of the 

disease and typically lasts for more than an hour. In arthritis of non-

inflammatory causes, signs of inflammation and early morning 

stiffness are less prominent with stiffness typically less than 1 hour, 

and movements induce pain caused by mechanical arthritis. In RA, 

the joints are often affected in a fairly symmetrical fashion, 

although this is not specific, and the initial presentation may be 

asymmetrical. The diagnosis of rheumatoid arthritis is primarily 

based on clinical symptoms. Typical examination findings include 

swelling, bogginess, tenderness and warmth of, with atrophy of 

muscles near, the involved joints 50.  
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2.1.4.2 Risk factors for developing Rheumatoid Arthritis 

As a complex disorder RA risk factors include both genetic and 

environmental factors. It has been shown that RA clusters in 

families: the risk of a first-degree relative of a patient is upto 10 

times more than that of the general prevalence of the disease 51. The 

genetic basis of such clustering is confirmed by observations that 

RA concordance amongst monozygotic twins is approximately 

15%, which is up to 5 times greater than in dizygotic twins. 

Through twin studies, RA heritability of is reported to be upto 60% 
52. 

Smoking is the most strongly linked environmental/life style risk 

factor of RA 53. Investigations showed that smoking leads to the 

over production of rheumatoid factor (RF), which in turn 

contributes to the disease process 54. Another factor is the influence 

of microflora: it has been shown that patients with early RA have 

different intestinal microflora than non-RA patients 55. Notably, the 

intestinal microbes P. gingivalis has been shown to be linked with 

the development of immunity against citrullinated proteins due to 

their ability to produce citrullinated epitopes and its presence in an 

environment highly analogous to RA 56. 

 

2.1.4.3 Genetics and pathogenesis in Rheumatoid Arthritis 

The genetic components of RA susceptibility have been only been 

partially elaborated in terms of functional implications in the 

pathogenesis 57. The fine-mapping of MHC polymorphisms 
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associates RA with HLA-B and HLA-DPB1. However, the most 

studied polymorphism in RA is the PTPN22, which is a non-

synonymous Arg620Trp SNP rs2476601 57. Interestingly, PTPN22 

downregulates TCR signalling by dephosphorylating Src family 

kinases, such as Lck or Fyn (Fig. 4). It has been shown that the 

PTPN22 risk allele affects the enzymatic activity of the encoded 

phosphatase and the reduced levels of the protein correlate with 

increased number, activation and thymic positive selection of T 

cells, and with dendritic-cell and B-cell activation 57. Another 

suseptibility gene is PADI4, which mediates post-translational 

conversion of arginine residues to citrulline. Citrullinated peptides 

bind with higher affinity to HLA-DRβ1 shared epitope molecules, 

are naturally processed and are immunogenic 58. Thus, it seems 

that increased translation of variant PADI4 mRNA boosts 

production of citrullinated peptides, which act as autoantigens and 

elicit profound adaptive immune responses activation 57. Another 

gene, CCR6 encodes a chemokine receptor expressed by CD4+ 

type 17 T helper (TH17) cells. A polymorphism in CCR6 is 

correlated with the expression level of CCR6 mRNA and with the 

presence of IL-17 in the sera of patients with RA, highlighting the 

importance of the TH17 pathway in RA pathogenesis 59. IL2RA is 

another susceptibility gene in RA, which has been shown to be 

exclusively expressed in monocytes, CD4+ naive T cells and 

memory T cells 45. Notably, according to the quantal theory of 

immunity (proposed by Smith and colleagues in 2008), T-cell 

responses depend on a critical number of stimuli mediated by TCR 

and IL2R 60. Another important gene is TNFAIP3, an ubiquitin-
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modifying enzyme that is a key regulator of nuclear factor κB 

activity (Fig. 4). Within the TNFAIP3 locus, three SNPs are 

independently associated with RA susceptibility 61. Like other 

susceptibility genes, TNFAIP3 has also been describes in other 

diseases. But interestingly, it has been shown that mice with 

conditional knockout of Tnfaip3 expression in dendritic cells 

develop an SLE-like phenotype, whereas mice lacking Tnfaip3 in 

myeloid cells develop a RA-like phenotype 62-65.  
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Figure 4. Mapping of  RA susceptibility loci to pathways involved 
in the T cell–dendritic cell interaction. The RA susceptibility genes 
(blue) are implicated in TCR, TNF and CD40 signaling pathways 
(derived from: 57). 
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2.1.5 Multiple Sclerosis (MS) 

 

So far we have seen complex diseases which are either 

autoimmune or neurodegenerative. In MS, the complexity increases 

as it is presumably an autoimmune disease targeting the CNS. MS 

affects around 2 million individuals and is the leading cause of 

neurological disability in young adults, and there is no effective 

cure till date.  

 

 

2.1.5.1 Historical notes on MS 
 

The recorded history of multiple sclerosis begins with Robert 

Carswell (1793–1857) - a British professor of pathology, and Jean 

Cruveilhier (1791–1873) - a French professor of pathologic 

anatomy, have described and illustrated many of the disease's 

clinical details. However, they did not identify MS as a separate 

disease. It was a French neurologist named Jean-Martin Charcot 

(1825–1893) who recognized MS (sclerose en plaques) as a 

distinct disease in 1868, summarizing previous reports and adding 

his own clinical and pathological observations. Charcot also 

observed cognition changes, describing his patients as having a 

marked enfeeblement of the memory and conceptions that formed 

slowly 66. He also formulated the first diagnosis criteria for MS, 

known as Charcot's triad: nystagmus, intention tremor, and 

scanning speech. The discovery of MS, along with other 

neurological diseases made Charcot to be remembered as the 
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Founder of modern neurology. 67.  The first major case reports on 

MS (reported as insular sclerosis) appeared on The Lancet journal 

on 15 February 1873 and 3-17 April / 1 May 1875.  

 

 

2.1.5.2 Clinical classificaiton of MS 
 
In the year 1996, the National Multiple Sclerosis Society (NMSS, 

USA) has classified MS into four clinical classes (Fig. 5). The 

relapsing-remitting form (RR-MS) affects approximately 85% of 

patients 68. RR-MS typically starts in the early adulthood (20's or 

30's) and has a female prevalence of approximately 2:1 69. RR-MS 

begins with a clinically isolated syndrome (CIS), in which a person 

may have experienced an attack, but does not fulfill the criteria for 

multiple sclerosis. However, 70% of persons experiencing CIS 

later will develop RR-MS. RR-MS is characterized by recurrent 

acute episodes of dysfunction (called relapses), followed by a 

partial recovery (remissions) phase 68, 69. In approximately 70% of 

cases, RR-MS converts to a secondary progressive form (SP-MS) 

in later stages of disease 69, 69 Early symptoms in RR-MS include 

sensory disturbances, unilateral optic neuritis, limb weakness, gait 

ataxia, trunk and limb paraesthesia on neck flexion 70. 
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Figure 5. Clinical classification of MS 

 

About 10% of total MS patients start the disease with a 

progressive course, which is called as primary-progressive form 

(PP-MS), which is characterized by progression of disability 

from onset, with no clear remissions and improvements. 

Notably, unlike other forms there is no gender bias in the 

incidence of PP-MS 68. In addition, the damage is more often 

the spinal cord than the brain or optic nerve. PP-MS often 

presents with an upper-motor neuron syndrome of the legs and 

gradually worsens leading to cognitive impairment, 

quadriparesis, visual loss, bladder and sexual dysfunction 68, 69.  

Finally, approximately 5% of patients experience a progressive-

relapsing form of disease (PR-MS), which is characterized by a 

progressive onset but later associated to one or more relapses 68. 
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2.1.5.3 Epidemiology and diagnosis of MS 
 
According to the prevalence of MS, world can divided into three 

regions. High prevalence regions comprise northern Europe, 

northern USA, Canada, New Zealand and southern Australia. 

Medium prevalence areas include southern Europe, southern USA 

and northern Australia. Low prevalence zones include Asia and 

South America 71. Migration studies have shown that people 

migrating from a low prevalence region to a high prevalence 

region retains the low risk of their area of origin. However, the 

children of those immigrants acquire increased risk for MS 72. It 

was also shown that the age of migration could influence the MS 

risk 72, 73. As a complex disease, the prevalence and incidence of 

MS in different regions of the world are determined by genetic and 

environmental factors. 

 

Diagnosis of MS takes advantage of both magnetic resonance 

imaging (MRI) and clinical observations. After the first clinical 

attack, dissemination of lesions in space and time can be 

demonstrated by the evaluation of subsequent MRI abnormalities, 

according to specific criteria 74. Three types of MRI scans are 

commonly used to investigate MS: namely T1-weighted, T2-

weighted, and proton density scans, which are obtained by 

manipulating the radiowave of MRI. Each provides 

complementary information to the neurologist about the nature of 

MS. For instance, T1-weighted scans along with a contrast agent 

(eg: gadolinium) can highlight any areas of recent inflammation 

that indicate active disease and areas of breakdown of blood-brain 
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barrier (BBB) 75. T2-weighted scans shows both new and old 

lesions, and is often used when diagnosing MS. T2-weighted scans 

can be repeated regularly over time (snapshots over time) to 

understand disease progression 75. Proton density scan can identify 

both old and new lesions, but they are particularly used to identify 

lesions near the ventricles of brain 75 . 

 

  

2.1.5.4 Risk factors for developing MS 
 

2.1.5.4.1  Genetic Factors 

The genetic basis of MS has been widely accounted by the familial 

aggregations and incidence of disease in specific ethnics 76. 

Monozygotic twins show concordance rate between 20 and 35% 77.  

Some ethnic groups have the higher risk of MS such as North 

America, Scandinavian countries, Iceland and British Isles 68. Like 

other autoimmune diseases, the major histocompatibility complex 

(MHC) locus is described as an important genetic factor, which 

accounts for 10%-60% of the genetic risk for MS 78. Particularly, 

HLA-DR15 haplotype in Caucasian population (DRB1*1501, 

DRB5*0101, DQA1*0102, DQB1*0602) is considered the 

strongest risk allele for MS 79. Other risk genes include tumour 

necrosis factor (TNF) cluster, transforming growth factor (TGF)- 

family members, CTLA-4, IL1RA, IL-1 and ESR 77. More 

recently, genome-wide association studies have discovered number 

susceptibility genes in MS; including IL7RA, IL2RA, TNFRSF1A, 

CLEC16A, IRF8, CD58 and CD6 80. The functional mapping of 
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GWAS genes in MS is still in an early stage. Although fine 

mapping and functional studies will be required to define the 

functionally relevant variants responsible for determining 

susceptibility to MS, the over-representation of immunological 

genes near associated SNPs is already evident. For instance, CD40, 

IL12A, IL2RA, STAT3 and TNFRSF1A, CBLB , CD6, CD58, 

CD226, SH2B3 and TNFAIP3 are involved in T-cell activation 

and IL7 signalling 81. It is believed that the associations identified 

so far are likely to represent only the tip of the iceberg, with 

available evidence suggesting that possibly hundreds of other 

variants are also involved 82. Application of systems biology may 

help to overcome the limited outcomes from gwas studies. 

Notably, Baranzini and collegues have analyzed nominally 

significant SNPs (P-value< 0.05) from two MS GWAS using a 

network approach based on experimental annotations of protein–

protein interactions and found immunological networks, neural 

pathways such as those related to axon guidance and synaptic 

potentiation, which were significantly associated with these 

variants 83. Similar approaches are within the scope of this thesis 

and can be found in the results section. 

 

2.1.5.4.2  Environmental Factors 

The medium-low concordance of MS in identical twins suggests a 

strong contribution from environmental factors in triggering MS 77. 

Even though several environmental agents have been investigated 

as potential causative factors in MS pathogenesis, sunlight (in the 

context of vitamin D production) and viruses are the most widely 
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investigated and documented. It has been shown that the risk of 

MS among whites significantly decreased with increasing serum 

levels of 25-hydroxyvitamin D 84. Among the viruses, Epstein-Barr 

virus (EBV) is hypothesized to be associated with MS. This virus 

leads to a latent lifelong infection of B cells. EBV affects almost 

100% of MS patients in comparison to 94% of age-matched 

controls 85. More recently, recent report has showed that there is an 

abnormal accumulation of EBV-infected B cells in MS brains 86. 

However, research in this area needs to be developed to have more 

strong evidences. Other environmental risk factors include: severe 

stress, smoking, exposures to toxins, diet and hormone intake 72, 85, 

87. Notably, the fact that MS incidence is about 2-fold higher in 

women is suggestive of the role of gender-specific hormones in 

MS76.  

 

 

2.1.5.5 MS pathogenesis 

2.1.5.5.1  Peripheral immune response in MS 

Generally, inflammation in the CNS is considered to be the cause 

of neurodegeneration. But, recently, the independence of 

neurodegeneration and inflammation is highly debated, especially 

in progressive forms of MS 88. Unfortunately, the specific elements 

that trigger inflammation are still unknown. There are two general 

types of immune responses: namely, innate and adaptive immune 

responses. The innate immune response, also known as first line of 

defense, is basically initiated by an infection by other organisms 

(eg: microbes) that activate specific receptors, mainly toll-like 
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receptors (TLRs) in an antigen nonspecific manner. Activation of 

specific subsets of TLR is done by pathogen products that are 

unique for different groups of pathogens and binding of these 

molecules to TLRs results in the production of cytokines that 

modulate the adaptive immune response 89. It has been shown that 

this mechanism plays an important role in MS by influencing the 

effector function of T and B cells response 89. For instance, when 

activated through TLRs, dendritic cells (DCs) become semi- 

mature and induce regulatory T cells to produce inhibitory 

cytokines such as IL-10 or TGF-β 90. The maturation of dendritic 

cells makes them to polarize CD4+ T cells to differentiate into Th1, 

Th2 phenotypes or Th17 phenotypes 91. Importantly, when T cells 

differentiate to a Th1 phenotype, inflammation is promoted. 

Interestingly, in recent studies of the animal model of MS, the 

Experimental autoimmune encephalomyelitis (EAE)., it has been 

shown that glatiramer acetate (GA, a drug used in MS) may induce 

type II monocytes which promote Th2 cell production and 

development of regulatory T cells, which then decrease 

inflammation 92.  

On the other hand, the adaptive response (or acquired immune 

system) is initiated by the presentation of a specific antigen to T 

lymphocytes by antigen presenting cells (APCs). APCs include B 

cells, dendritic cells, microglia and macrophages. The interaction 

between the APC and T cell is a central point of initiation the 

adaptive immune response, and T cell subsets such as CD4+ and 

CD8+ phenotype can be activated by APCs. Th1, Th2 cells and 
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Th17 are CD4+ effector cells that are polarized in response to 

exposure to specific interleukins 91. Once polarized to Th1, Th2 or 

Th17, these effector T cells secrete specific cytokines. The 

cytokines produced by Th1 cells are proinflammatory cytokines 

(eg: interferon gamma), but Th2 cells secrete anti-inflammatory 

cytokines (eg: IL-4, IL-13). On the other hand, Th17 produces IL-

17, IL-21, IL-22 and IL-26. Like Th1 cells, Th17 cells promote 

inflammation in MS. IL-17 receptors are seen in acute and chronic 

MS plaques 91. It has been shown that in IL-17 deficient mice, 

there is a reduction of clinical severity 93. Th1 cells and Th17 cells 

migrate to the central nervous system from periphery and causes 

demyelination and axonal loss 89. 

In addition, the role of regulatory T cells (T reg) has been also 

studied in the pathogenesis of MS 94. T reg cells regulate effector 

Th1, Th2 and Th17 cells. The number of T reg cells is the same 

between MS patients and controls, however, it has been shown that 

patients with MS have reduced T reg function 94and that GA can 

increase regulatory T cell function by increasing the expression of 

naive CD4+CD25+FoxP3+CD31+ T cells 95. 

 

Besides CD4+ T cells, studies have shown that CD8+ T cells are 

present in MS lesions and may have regulatory function in the 

progression of disease. CD8+ cells mediate suppression of CD4+ 

T cell proliferation through the secretion of perforin, which is 

cytotoxic on CD4+ T cells, leading to their inactivation 90, 96. 

Moreover, CD8+ T cells is capable of transecting axons, 
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promote vascular permeability and activate oligodendrocyte 

death 90.  

 

Finally, role of B cells in the pathogenesis of MS is also 

documented. B cells are important for the production of antibodies 

against myelin antigens. It has to be noted that B cells produce 

proinflammatory and anti-inflammatory cytokines 97.. In addition,  

it has been shown that B cell follicles are found in the brains of MS 

patients, and these follicles express CD20 98.  

 

2.1.5.5.2  Infiltration of autoreactive T cells in CNS 

 

The CNS is an immune-privileged site which is protected by the 

blood-brain barrier (BBB), a specialized barrier made of tight 

junctions between endothelial cells of blood vessels, the basement 

membrane of vessels, astrocyte feet and microglial cells  99 . 

However, it has been shown that in physiological conditions, 

activated T cells and memory T cells express adhesion molecules 

and chemokine receptors necessary for crossing these barriers and 

perform CNS immune surveillance 100.  A key molecule regulating 

the entry of CD4+ T cells in the CNS is the integrin very late 

antigen (VLA)-4. VLA-4 is shown to be present on perivascular T 

cells of acute MS lesions, and VLA-4 binds vascular cell adhesion 

molecule (VCAM)-1, that is expressed by activated endothelial 

cells and mediates adhesion of CD4+ T cell 101.  Once the blood-

CSF and blood-brain barriers is crossed, immune cells can diffuse 

into the white matter of the CNS, and target myelin sheath as 
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observed in EAE and MS. In this regard, a model has been 

proposed based on the studies in the animal model of MS, namely 

experimental animal encephalomyelitis (EAE), as shown in the 

Fig.7 102. 

 

 

Figure 6. EAE serves as a model for proof of concept of new MS 
therapies. Interventions at various checkpoints in the 
pathophysiology of EAE, and presumably MS, are shown. T and B 
cells penetrate the blood vessel endothelium. (a) The key molecule 
in adhesion is α4β1 integrin on T and B cells. This integrin binds 
to VCAM and the lymphocytes diapedese, crawling through and 
penetrating the extracellular matrix. Matrix metalloproteases 
(MMPs) are crucial for this process. MMPs can be inhibited with 
IFN-β. Antibodies to α4β1 integrin inhibit the adhesion step. (b) 
Once inside the brain, T cells recognize myelin fragments in 
association with class II molecules of the MHC. The expression of 
these molecules, including MHC II and co-stimulatory molecules, 
such as CD80, CD86 and CD23, can be inhibited by statins and 
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PPAR agonists. APLs and glatiramer can inhibit the interaction of 
MHC II with T cells. (c) Mast cells also have a role in the 
inflammatory response in MS. In EAE, histamine antagonists and 
platelet-activating factor (PAF) antagonists can prevent EAE. (d) 
Antibodies to protein and lipid components of the myelin sheath 
can activate complement, culminating in the production of 
membrane attack complexes, which damage the oligodendrocyte 
and lead to the stripping of myelin by activated macrophages. (e) 
Destructive cytokines, such as IL-6, osteopontin, TNF and IFN-γ, 
amplify the inflammatory response in the brain. Some of these 
cytokines have Janus-like activities, both inducing pathology but 
also having key roles in recovery (derived from: 102) 
 

 

2.1.5.6  Neurodegeneration in MS 

 

The pathological hallmark of MS consists of multiple plaques of 

demyelination, located more often in the optic nerves, 

periventricular white matter, corpus callosum, brain stem, 

cerebellum and spinal cord 69. According to structural and 

immunopathological features, MS lesions have been distinguished 

and classified  into acute active, chronic active, smoldering active 

and chronic silent plaques 103. There is a correlation between CNS 

inflammation and and the frequency of transected axons in MS 104. 

There are a number of substances that could injure axons, such as 

proteolytic enzymes, cytokines, oxidative products, and free 

radicals produced by activated immune and glial cells 105. One of 

the key enzymes is iNOS, which is involved in synthesis of nitric 

oxide (NO). iNOS is upregulated in acute inflammatory MS 

lesions and elevated levels of NO can have a detrimental effect on 

axonal survival by modifying the action of key ion channels, 
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transporters, and glycolytic enzymes 106.  Further, NO can limit 

axon's ability to generate ATP. It was shown that cytotoxic CD8+ 

T cells can mediate axonal transection in active MS lesions 107. 

Inflammation reduces energy metabolism in demyelinated axons 

and inflammatory intermediates may act directly on the 

mitochondria, and local inflammatory edema. Axoplasmic changes 

resulting from chronic demyelination can reduce ATP production 
108. 

Even though axonal loss is extensive in acute MS lesions, during 

early stages of RRMS only minor permanent axonal loss is seen. 

This is due to the plasticity of the human CNS which compensates 

for neuronal dysfunction and loss.  Probably, the conversion of 

RR-MS to SP-MS happens when the CNS can no longer 

compensate for additional neuronal loss 104. However, at later 

stages of MS, progressive and irreversible disability and brain 

atrophy often occur in the absence of new inflammatory 

demyelinating lesions 109. Therefore, mechanisms other than 

inflammatory demyelination of white matter could be contributing 

to axonal degeneration. 

 

 

2.1.5.7  MS therapeutics 

All the available therapies are either immunomodulating and 

immunosuppressive treatments. These treatments differ in their 

selectivity for the aspects of the immune system that they target 

and in their selectivity for immune dysfunction specific to 

multiple sclerosis. 
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Figure 7. MS patho-mechanism and targets of established 
drugs. The torso on the left side schematically represents the 
different compartments involved in MS pathogenesis, as shown 
enlarged with the candidates involved on the right side, including 
the central nervous system (CNS) with autoinflammatory lesions 
or plaques, the blood–brain barrier, the peripheral blood/immune 
compartments (e.g., thymus, spleen), and lymph nodes. The images 
exemplify how inflammatory lesions are detected by MRI (red 
circles): lower left shows a transversal image (T2-FLAIR, fluid 
attenuated inversion recovery image), upper left a sagittal image of 
a MS-CNS; right side image shows a sagittal spinal cord lesion 
(T2). The modes and sites of action of currently established MS 
therapeutics are illustrated in the respective compartments (derived 
from : 110) 

 

The new era in MS therapy began with interferon beta-1b 

(IFNb), and then GA.  Many targets have been proposed for GA 

and despite conflicting evidence, the inhibition or modulation of 

antigen-presenting cells is the currently favored model, altering 
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effector T and B cell responses as well as regulatory T cells that 

inhibit T cell autoreactivity 111, 112. In the case of IFNb, evidence 

suggests the induction of anti-inflammatory effects such as 

reduced BBB permeability and the inhibition of autoreactive 

lymphocytes (Fig.7) 113, 114.  Mitoxantrone is an anthracenedione 

that causes DNA strand breaks by intercalation, delays DNA 

repair by inhibiting topoisomerase II, and reduces lymphocyte 

numbers (Fig.7). Despite these severe adverse events, 

mitoxantrone remains a therapeutic option, particularly for 

SPMS, for which there are few alternatives.  Natalizumab is a 

monoclonal antibody (mAb) against the a4 subunit of the VLA-

4, and its therapeutic potential was first shown in the EAE 

model and then in MS patients 115. VLA-4 is expressed on 

virtually all activated leukocytes and enables them to cross the 

BBB, an activity that is blocked by natalizumab (Fig.7). 

Fingolimod is the first oral drug approved for RR-MS. It binds 

to spingosine-1-phosphate (S1P) receptors, inhibits S1P1-

mediated lymphocyte egress from secondary lymphoid organs, 

and prevents lymphocytes from encountering antigens within 

the CNS. Experimental evidence also suggests beneficial roles 

within the CNS, where it promotes the survival of 

oligodendrocytes and may lead to remyelination in damaged 

white matter via auxiliary S1P receptor subtypes (Fig.7) 116.  

DMF was recommended for approval by the EMA and the FDA 

in March 2013, final approval is expected in June 2013. BG-12, 

a fumaric acid ester, is an oral drug approved as first-line 

therapy for RR-MS. Experimental evidence implies that DMF 
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may have immunomodulatory and neuroprotective effects by 

activating antioxidative pathways, ultimately protecting 

neuronal and glial cells from inflammation-induced cell death 

(Fig.7) 117. 

 

The immunological, clinical and pathological data suggest that 

early treatment of MS patients with immunomodulatory drugs is 

advisable. Further, a better understanding of the mechanisms 

underlying axonal damage during both the acute inflammatory 

phase and the chronic degenerative phase can help in the 

development of neuroprotective drugs. 

 

 

2.1.5.8 Animal model of MS - Experimental Animal 
Encephalomyelitis (EAE) 

 

Over the years EAE has been induced in a wide range of species, 

including mouse, rat, guinea pig, rabbit, hamster, dog, sheep and 

marmoset 118. The most common EAE models currently employ 

rats and mice and different clinical courses have been reported, 

according to the strain of mice and peptide used 119.  In the 

majority of the models, EAE clinically manifests as ascending-

flaccid paralysis starting from the tail and progressing to hind and 

forelimbs 119. In C57BL/6 mice strain (bearing H-2b haplotype of 

MHC), EAE can be induced actively by subcutaneous 

administration of MOG35-55 peptide in CFA and by intravenous or 

intraperitoneal injection of PTX. These mice develop EAE with a 

chronic clinical course of paralysis 120. Active immunization with 
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PLP139-151 induces a relapsing-remitting EAE in SJL-J mice (H-2s), 

while in other strains such as PL/J (H-2u) an acute monophasic 

disease is observed 120. Actively induced EAE consists of an 

induction phase, which involves the priming and activation of 

myelin-specific CD4+Th1/Th17cells, and an effector phase. During 

the effector phase, encephalitogenic CD4+ T cells migrate to the 

CNS, where they are re-activated by APCs, and orchestrate an 

immune-mediated attack of myelin. Immune cells recruited in EAE 

lesions include macrophages, CD8+ T cells, B cells and plasma 

cells, thus resembling the neuroinflammatory milieu observed in 

MS plaques 119.  
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Figure 8. Examples of different clinical courses of EAE. (A) 
Induction of EAE in different mouse strains and with different 
myelin epitopes result in chronic, relapsing-remitting or acute 
monophasic disease. Clinical signs are graded according to a 0-5 
point scale (B) Representative tissue section of spinal cord from 
mice at the onset of EAE, stained with haematoxylin and eosin. 
Inflammatory cells infiltrates in the white matter are boxed, 
whereas a perivascular lesion is presented at higher magnification 
(derived from: 119). 

 

EAE has been useful for better characterizing the effector 

mechanisms of CNS autoimmune responses, and exploring new 

therapeutic strategies for MS. However some limitations have 

emerged as a model of MS. Infact, EAE is induced by 

administration of non-physiological stimuli and consequently is 

not useful to understand the initiating events occurring in MS 121. 
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2.2 Genome-wide association studies  

A genome-wide association study (GWAS) scans markers across 

genomes of large cohorts to find genetic variations associated with 

a particular disease. Such studies are extremely useful in finding 

genetic variations that contribute to complex diseases 122. With the 

completion of the Human Genome Project in 2003 and the 

International HapMap Project in 2005, researchers now have a set 

of research tools that make it possible to find the genetic 

contributions to common diseases. Till date, more than 1,200 

human GWA studies have examined over 200 diseases and traits, 

and almost 4,000 SNP associations have been found 122.  

 

2.2.1 GWAS methods 
 

In general, GWA studies are conducted in a case-control setup 

which compares two large groups of individuals: one healthy 

control group and a diseased group. All individuals in each group 

are genotyped for the majority of common known SNPs, based on 

the genotyping technology 122. Each of these SNPs is then 

investigated if the allele frequency is significantly altered between 

the case and the control group 123.  The basic unit for reporting 

effect sizes is the odds ratio, which is the ratio between proportion 

of individuals in the case group having a specific allele, and the 

proportions of individuals in the control group having the same 

allele. The odds ratio will be greater than 1 if the allele frequency 
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in the case group is higher than in the control group, and vice versa 

for a lower allele frequency. Further, a statistical test is performed 

(chi-squared test is widely used) to obtain the significance of the 

odds ratio. Further, the p-values are corrected for multiple testing 
122, 123. After determining odds ratios and p-values have been 

calculated for all SNPs, data are represented by a Manhattan plot, 

in which negative logarithm of the p-value will be shown as a 

function of genomic location 124. So, most significant association 

will have the highest peak in the plot.  
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Figure 9. Overview of the general design and workflow of a 
genome-wide association (GWA) study using microarrays. The 
discovery phase entails genotyping many case and control DNA 
samples and evaluation for significant associations. The replication 
phase involves fine mapping of association signals and 
independent confirmation in a second cohort. Biological validation 
is important for translation of GWA findings into diagnostic or 
therapeutic discoveries. (Derived from: 125) 
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2.2.2 The past, present and future of GWAS 

The first successful GWAS was of age-related macular 

degeneration, with 100,000 SNPs tested for association in 96 cases 

and 50 healthy controls 126. In the year 2007, a landmark study was 

conducted in seven common diseases, including bipolar disorder, 

coronary artery disease, Crohn's disease, hypertension, RA, and 

diabetes, at the Wellcome Trust Case Control Consortium 

(WTCCC). For each disease, around 500,000 SNP genotypes of 

1500–2000 cases were compared to 3000 control samples. This 

study discovered several risk loci, and confirmed previously 

implicated ones 127. Following WTCCC study several studies were 

reported in a short span of time. A series of remarkable studies in 

T1D accounted for about 80% of genetic variation in T1D 128-130. 

In the recent times gwas doesn't restrict to pathological conditions. 

A recent GWAS meta-analysis of nearly 180,000 individuals 

identified 200 loci explained approximately 14% of height 

variation and another study was elaborated the genetic basis of 

body mass index 131, 132. Notably, the National Human Genome 

Research Institute has catalogued the results from all published 

gwa studies. The database is frequently updated, and is available at 

http://www.genome.gov/gwastudies/. We have utilized data from 

this resource for our study. 

On the other hand, GWA studies have several limitations. The 

main issues are: insufficient sample size, lack of proper statistical 

methods, and control for population stratification 133.  
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The future of gwas will be to apply the findings in a way to better 

integrate genetic studies into the drug-development process and 

diagnostics. Notably, a recent technical advancement happened in 

the gwa studies through the application of next-generation 

sequencing technology (eg: 454 sequencing, Illumina Hi-seq etc), 

which may enable the discovery of novel SNPs that are not 

included in the microarrays. From a functional point of view, the 

gwas data are limited to offer the downstream effects of the 

associated genes, because of the lower number of reported 

associations 134. However in the last two years some studies has 

demonstrated that the network analysis can group genes into 

modules that participate in specific pathways or biological 

processes 135, 136.  Another evolving area is systems genetics, which 

is an approach for studying complex genetic traits in which 

genomic data and clinical phenotypes are obtained using global 

“omic” technologies such as gene expression arrays, mass 

spectrometry, and sequencing 137.  

 

 



 47

2.3 TRANCRIPTOME ANALYSIS 
 

2.3.1 Oligonucleotide microarray  

A microarray is a high-throughput technology consisting of an 

arrayed series of thousands of microscopic spots of 

oligonucleotides (probes). Each feature contains picomoles of a 

specific DNA sequence. This can be a short section of a gene or 

other DNA element that are used as probes to hybridize a cDNA or 

cRNA sample (targets).  Before the experiment the targets are of 

fluorescence labeled using dyes. The probe-target hybridization is 

usually detected and quantified by utilizing the intensity from the 

fluorescence and the abundance is determined 138. Microarrays are 

typically used in molecular biology and in medicine to monitor 

levels of thousands of genes simultaneously and study the effects 

of certain treatments, diseases, and developmental stages on gene 

expression. The quantified data (raw data) is to be processed 

before analysis. The commonly used microarray platforms are 

Affymetrix Sentrix arrays and  Illumina beadarrays.  

 

 

2.3.2 Illumina Beadarray Technology 

We have used Illumina microarray for the transcriptome analysis 

in peripheral blood mononuclear cells (PBMC) from MS patients 

and healthy controls. Illumina’s beadarray technology is based on 

color-coded 3-micron silica beads that randomly self assemble in 

either a fiber-optic bundle substrate that then themselves assemble 
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into arrays, or a silica slide substrate. Each bead is covered with 

hundreds of thousands of copies of a specific oligonucleotide that 

act as the capture sequences in one of Illumina’s assays. Each bead 

has a 23-mer oligo address attached to it, which then anchors a 50-

mer sequence-specific probe (Fig 10). 

 

Figure 10. Illumina bead and probe. The beads are randomly 
scattered across etched substrates during the array production 
process, with each array bundle containing about 50,000 beads. 
With this platform design, a specific oligonucleotide sequence is 
assigned to each bead type, but is replicated about 30 times on the 
array at random positions. Each gene is represented by two probe 
sequences. A series of decoding hybridizations are used to 
determine which oligos are present at each matrix coordinate for 
every array. 
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2.3.2.1 Illumina array data analysis  
 

2.3.2.1.1 Data processing 

For microarray data processing, Illumina provides 

GenomeStudio software (earlier called as BeadStudio) along 

with the instrument. The raw data obtained from the probe 

intensities need to be processed before differential gene 

expression analysis. A background correction calculation is then 

used to correct for non-specific or random contributions to the 

overall signal. Further, the software reports a detection p-value, 

which represents the confidence that a given transcript is 

expressed above the background defined by negative control 

probes (non-specific hybridization). The p-value represents the 

significance that a given probe is detected beyond the 

background level. A commonly used threshold is detection p-

value of 0.05. An important step in in data processing is 

normalization. The GenomeStudio software provides 

normalization methods such as CubicSpline, Rank-Invariant, 

and Quantile normalization. The normalization process is 

essential to remove systematic biases due to sample preparation, 

variability in hybridization, spatial effects of the chip, settings 

of the scanner etc.  Finally, the data is transformed into a 

log2scale or log2ratio in order to reduce the variance. 

It is a good practice in microarray analysis to perform a 

quality control of the processed data in order to assess the 

consistency of the samples, in which the cluster analysis and 

principal component analysis are useful methods.  Among 
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different cluster models (such as connectivity models, centroid 

models and graph models and subspace models), connectivity 

models are widely used. A cluster is built using a bottom-up 

(agglomerative) or top-down (divisive) approaches. The most 

popular cluster method is hierarchical clustering (connectivity 

model, usually agglomerative), the output is a tree classification 

composed by increasing number of nested classes that can be 

easily viewed and interpreted. The hierarchical cluster structure 

is easy to understand and provides very useful information 

about the relationships between samples/genes. Principle 

component analysis (PCA) is used to visualize the variability in 

the data by means of principal components. To each principal 

component a certain fraction of the overall variability of the 

data is attributed such that each successive component 

determined accounts for less of the variability than the previous 

one.  In a typical PCA map, only the first two or three principal 

components are represented. Together, hierarchical cluster 

analysis and PCA provides a enables a highly efficient quality 

control in microarray experiment. In addition, these tools are 

invaluable in downstream analysis, in terms of data 

representation, class identification etc. 

 

 

2.3.2.1.2 Differential expression analysis 

 

Transcriptional profiling is aimed to identify the genes 

whose levels of expression change significantly between two or 
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more conditions or time-points. A rejection threshold must be 

defined, and only those having a p-value lower to the threshold 

will be selected for the downstream analysis. In the last decade, 

a number of methods have been developed, which includes both 

parametric and non-parametric statistics. Some commonly used 

methods are t-test, ANOVA, Bayesian methods – 

Limma/BADGE, SAM, Mann-Whitney test etc. As microarray 

contains several thousands of probes, a multiple test correction 

is usually used for the calculated p-values. Commonly used 

approaches are Benjamini-Hochberg’s (FDR) method and 

Bonferroni’s correction. In addition, generally, the fold change 

criteria are also imposed along with the statistical significance 

to determine the differentially expressed genes. However, 

expression data containing far extreme expression values in few 

samples may wrongly influence the accurate estimation of fold 

changes. Fold change values can be calculated by taking the 

ratio expression (in case unlogged data) or the difference 

between the expressions (in case of data in log scale). 
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2.4 FUNCTIONAL ANNOTATION AND 
NETWORK-BIOLOGY ANALYSIS 

2.4.1 Functional annotation 

2.4.1.1 Gene Ontology 

In order to understand and interpret the biological or clinical 

relevance of the enormous data generated by high-throughput 

technologies, the Gene Ontology (GO) consortium has been 

established annotations linking primary data to expressions in 

controlled, structured vocabularies of genes 139.  The Gene 

Ontology project provides ontology of defined terms representing 

gene product properties. The ontology covers three domains: 

biological process, molecular function, and cellular component. 

The biological process comprises the molecular events pertinent to 

the functioning of integrated living units: cells, tissues, organs, and 

organisms. Molecular function describes the elemental activities of 

a gene product at the molecular level, such as binding or catalysis. 

Cellular component refers to the part of a cell or its extra-cellular 

environment. Altogether, they describe all attributes of genes or 

gene products resulting from a typical high-throughput experiment. 

Finally, the GO content is not static. Additions, corrections and 

alterations suggested by research communities, as well as by those 

directly involved in the GO project contribute to the growth of GO 

database.  
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2.4.1.2 Pathway databases  

A biological pathway is a series of actions among molecules/genes 

that leads to a certain product or a functional change in a cell. 

There are many types of biological pathways. Some of the most 

common are involved in metabolism (eg: glycolysis pathway, 

oxidative phosphorylation), regulation (eg: Ribosome biogenesis, 

Ubiquitin mediated proteolysis) and signal transduction pathways 

(eg: Calcium signaling pathway, MAPK signaling pathway). There 

are several databases that provide high-quality information about 

these pathways and genes involved in those pathways, for a 

number of species. Many of them are freely available (eg: KEGG 

database, PANTHER database) and some are commercial (eg: 

Ingenuity pathways, MetaCore pathways).  

 

2.4.1.3 Transcription factor binding sites 

Transcription factors (TFs) are regulatory proteins that bind to 

genomic DNA. Typically, TFs bind in close proximity to a gene, in 

order to activate or repress the gene expression. TFs bind to 

specific short DNA sequences of about 4 to 30 base pairs long (in 

most cases). A collection of such DNA binding sites, referred to as 

a DNA binding motif, can be represented by a consensus sequence. 

Few specialized databases (e.g. TRANSFAC, JASPER) contain the 

information about such sites for each TF, or a group of closely 

related TFs. In these databases, the binding motifs are aligned and 
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stored in the form of a matrix called as position-specific scoring 

matrix (PSSM) 140.   

2.4.1.4 Functional enrichment analysis  

Typically, a genome-wide high-throughput experiment gives a list 

of genes/proteins that may be functionally relevant to the 

biological/clinical conditions of the samples analyzed. As single 

genes are less informative, a functional enrichment analysis is 

typically performed on the outcome of those experiments. As 

described above, the GO, pathways and transcription factors 

provide much detailed information about the underlying biology in 

a specific condition or disease. Several tools are for functional 

enrichment study which carries out GO, pathway and TF analyzes 

in a single run. Given the subset of significant genes from the 

experiment (e.g. all differentially expressed genes from a 

microarray experiment), these programs identify which GO terms, 

pathways, or TFs which are most highly associated with this 

subset. This is done by performing a statistical test (e.g.: 

Hypergeometric test, Fisher's test) to prove that the association 

(enrichment) is significantly different from one expected by 

chance. Typically, a post-hoc test (e.g.: FDR, Bonferroni's 

correction) is also performed for multiple testing correction. Some 

of the free tools are Genecodis, ToppGene suite, DAVID etc, and 

the popular commercial tools include: Ingenuity pathway analysis 

and  MetaCore. 
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2.4.2 NETWORK BIOLOGY ANALYSIS  

The concept of systems biology emerged over the last two decade, 

which aims to characterize biological systems comprehensively as 

a complex network of interactions between the system’s 

components. Network biology has become a core research domain 

of systems biology, in which cells are envisioned as complex webs 

of macromolecular interactions, referred as interactome network 
141. 

 

2.4.2.1 Protein-protein Interaction (PPI) databases and 
analysis  

The study of PPIs are becoming increasingly important in our 

effort to understand complex diseases on a system-wide level. 

Traditionally, PPIs have been measured using a variety of assays, 

such as immuno-precipitation and yeast two-hybrid (Y2H). 

Recently, high-throughput techniques have been employed to 

identify protein complexes using affinity pull-down followed by 

mass spectrometry 142. Further, systematically constructed double-

knockout strains in yeast have proven to be useful for constructing 

a large-scale view of genetic-interaction networks 143. However, 

the experimental reconstruction of the entire network of PPIs 

within a cell still remains a challenge. To complement these 

experimental techniques, a number of computational methods have 

been developed that include algorithms that are capable of 

predicting interactions based on gene co-expression data 

(expression of genes that are spatially and temporally coordinated) 
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143. Additional prediction techniques include the association 

method, the Maximum Likelihood Estimation technique, 

parsimony-explanation approach etc. 144. Both experimental and 

computational methods for identifying interacting proteins have 

defined hundreds of thousands of protein interactions, which are 

systematically collected and stored in specialized databases. In the 

year 2000, the first among these databases was released for public 

access, namely, the database of interacting proteins - DIP 145.  

Since then, a large number of further interaction databases have 

evolved such as BioGRID, MINT, BIND, HPRD etc, each 

containing some unique features (Table 1). 
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PPI 
database 

Number of 
Interactions 

Salient features 

HPRD >38,000 

Information on phosphorylation 
motifs, signaling pathways, domain 
architecture, protein functions, 
enzyme–substrate relationships, 
sub-cellular localization, tissue 
expression and disease association 
of genes 

BioGRID >200,000 

Interaction directionality, phenotype, 
post-translational modification, 
domains and motifs are being 
added 

BIND >100,000 

Includes information on genetic, 
biopolymer–biopolymer and 
protein–small molecule interactions 
and DNA, RNA and protein 
sequences 

MINT >100,000 

Represents complexes, bio-
molecules, detailed experimental 
descriptions and protein structure 
information 

DIP >57,000 

Provides experimental-quality 
assessments to identify the most 
reliable interactions; represents 
complexes 

Reactome
>2900 

reactions 

Extensive cover of human pathways 
in 46 domains of human biology; 
hypergeometric testing is used to 
display statistically over-
represented events in the event 
hierarchy 

Table 1 : Major PPI databases (derived from: 144) 

More recently, bioinformatics tools have evolved which provides a 

unified platform by integrating data from these PPI databases and 

provides tools to visualize the networks. Among these tools, 

VisANT is a highly user-friendly free tool which offers navigation 

of database-driven interaction and association networks, as well as 
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manipulation and storage of uploaded user-defined data 146.  The 

core interface of VisANT is a workbench for network analysis and 

visualization. In addition to simple networks, interactions in 

VisANT can also be defined as higher-level connections between 

groups of proteins, complexes, pathways or sub-networks. These 

modular connections can be viewed simultaneously with 

connections between subcomponents, such as individual protein 

interactions (Fig 11). Interaction networks and protein complexes 

can be viewed, e.g. within the context of GO annotations or KEGG 

pathway assignments. VisANT, also have developed a preliminary 

standard for exchanging files that have visual markup and 

annotation of network layouts, called visML. As a network 

specification format, visML extends concepts of similar graph 

languages, such as graph markup language, but contains additional 

features for complex and compound network 

components.

 

Figure 11. Workflow of VisANT 
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Users of VisANT can input several basic data types, including data 

in standardized network and interaction data exchange formats, 

such as PSI-MI, BioPAX and SBML pathway formats. Output 

from VisANT can be saved at any point once a network has been 

loaded, annotated and analyzed. There are three types of output: 

Graphical ( JPEG, PNG and TIFF), VisML and Network statistics. 
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3. AIM OF THE STUDY 

 

3.1 Analysis of interactomes linked to susceptibility genes in 
five complex human diseases  

a. To derive the genetic interactome in MS, T1D, RA, PD and 
AD. 

b. To understand the shared molecular pathways among these 
diseases. 

 

3.2 Gender-based transcriptomics in MS 

a. To understand the contribution of gender to global gene 
expression in PBMC from MS and healthy individuals. 

b. Sex-specificity of differentially expressed genes in MS. 

c. To understand the biological themes of differentially 
regulated genes in RR-MS patients in a systems biology 
context. 

d. To identify new molecular drug targets in MS, and to 
validate them in the animal model of the disease. 
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4. MAIN RESULTS 

4.1 Shared interactomes among five diseases 

4.1.1 Link between MS interactome and genes predisposing to 

other neurodegenerative or autoimmune diseases 

Initially we identified the susceptibility genes that were linked to 

MS and to other neurodegenerative (Park, Alz) or autoimmune 

(T1D, RA) disorders. We utilized results from 39 published 

genome-wide association studies on these five human diseases 

available at GWAS catalog and found genetic mutations in 179 

genes passing the statistical significance threshold of 10-5 (Table 

1). There were 6 studies available for MS, Park and RA, 8 for 

T1D, and 13 for Alz. Notably, the number of studies carried out 

in each disease did not seem to influence the total number of 

disease-associated genes. For instance, despite the highest number 

of genome-wide association studies in Alz, the total number of 

susceptibility genes reported was the lowest among the five 

diseases. The ratios between the number of the reported genes and 

the number of studies in each disease accounted for this 

observation (Table 1).  
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MS Park Alz 

T1
D 

RA Total 

No. of 

studies 
6 6 13 8 6 39 

Unique 

genes 
54 35 17 52 21 179 

Gene/study 

ratio 
9 5.83 1.30 6.50 3.50 4.58 

TABLE 1: Summary of gwas data.  

 

Interestingly, MS displayed the highest number of susceptibility 

genes and the highest ratio, suggesting a greater genetic 

heterogeneity in MS than in the other four diseases. Then, as a 

first step towards the definition of the genetic network underlying 

these five diseases, we reconstructed the MS genetic interactome 

and checked possible links with the genes predisposing to the 

other neurodegenerative or autoimmune diseases. Using the 

VisANT tool we derived 376 first-degree interacting partners for 

the 54 MS gwas-genes. Among these MS interactors, 141 were 

connected with at least one among 17 T1D, 11 RA, and 10 Park 

or Alz gwas-genes (Figure 1A). Notably, 4 MS interactors were 

RA (HLA-DQA1, TRAF1) or T1D (IL2, PTPN11) gwas-genes 

themselves. It was also evident that several gwas-genes could 

contact two or more MS interactors (Figure 1A), and 24 MS 

interactors were connected with both neurodegenerative and 
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autoimmune genes (red nodes in Figure 1A), including the 

PTPN11 gene.  

 

Now, the analysis of disease relatedness with MS is more 

effective when considering the genetic interactome rather than the 

direct interactions at the gwas-gene level. In fact, for example, no 

interactions existed between gwas-genes predisposing to MS and 

Alz, but there were several shared interactions within the genetic 

interactomes linked to (but not including) the respective gwas-

genes (Figure 1B). Therefore, the introduction of the first-degree 

interactors in the definition of a disease-related molecular 

framework may lead to the discovery of relatedness among 

distinct complex disorders. 



 64

 

Figure 1. A. MS interactors shared by genes predisposing to 
neurodegenerative (green) and/or autoimmune (pink) diseases. The 
blue nodes indicate MS interactors contacted by either 
neurodegenerative or autoimmune susceptibility genes. Red nodes 
indicate MS interactors contacted by both neurodegenerative and 
autoimmune susceptibility genes. Note that four MS interactors are 
present among the T1D or RA gwas-genes. B. Comparison 
between MS and Alz at gwas-gene and genetic interactome levels. 
Despite the absence of a direct interaction at gwas level, the 
genetic interactome highlights the shared molecular networks 
(green section). 
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4.1.2 Molecular relatedness among autoimmune and 

neurodegenerative genetic interactomes. 

To perform a global comparative analysis among autoimmune 

and neurodegenerative genetic interactomes, we derived the list of 

interacting partners for each gwas-geneset (Table 2). As expected, 

the number of interactors was higher in MS and T1D, due to the 

more abundant number of reported gwas-genes. However, when 

normalizing the number of interactors for the total number of 

gwas-genes in each disease, RA reported the highest ratio among 

the five diseases, indicating that at least some of the RA 

susceptibility genes were highly interacting. In contrast, Park 

displayed the lowest interactor/gene ratio, despite the discrete 

number of described gwas-genes. 

 
Genes Interactors

Interactor/ gene 
ratio 

Park 35 160 4.57 

Alz 17 109 6.41 

T1D 52 316 6.07 

RA 21 249 11.85 

MS 54 376 6.96 

TABLE 2: Genetic interactomes for neurodegenerative and/or 
autoimmune disorders based on VisANT database. 
 

Next, we examined the relationships among the five diseases by 

comparing the genetic interactomes in a pairwise fashion. 

Notably, higher concordances were found among the autoimmune 

diseases, with MS-RA, MS-T1D and T1D-RA having 84, 61 and 

60 interactors shared respectively. Among the neurodegenerative 
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diseases, the sharing of interactors was limited to 10 elements for 

Park-Alz, 20 for Park-MS and 25 for MS-Alz. Most surprisingly, 

26 interactors were shared between the neurodegenerative Alz 

and the autoimmune T1D. The statistical significances for these 

observations were calculated using hypergeometric test and are 

shown in Figure 2 (see bars) and Supplementary file 5. MS-RA 

had the lowest p-value (P= 1.02E-67), followed by T1D-RA (P= 

4.42E-43) and MS-T1D (P= 3.09E-33). The T1D-Alz pair, with 

the p-value of 6.48E-19, was more significant than the MS-Alz 

pair (P= 5.21E-16). Comparatively higher p-values were found 

among T1D-Park (P= 1.18E-04), Alz-Park (P= 8.72E-07), RA-

Park (P= 3.95E-07) and MS-Park (P= 3.36E-08), exhibiting the 

distant relatedness for all possible combinations with Park (Figure 

2). Altogether, the results showed the close relatedness among 

autoimmune disorders and within Alz pairs.  

 

The degree of relatedness may be due to the real biological 

properties of the gwas-genes, i.e. the autoimmune gwas-genes 

participate in more biological pathways and processes than the 

neurodegenerative ones, and therefore the probability of abundant 

interactor sharing among autoimmune diseases is higher. 

However, we hypothesized that the observations could be partly 

biased by the difference in numbers of studies carried out on 

distinct gwas-genes, resulting consequently in higher or lower 

interactor information. To critically assess this aspect, we 

considered that the average number of interactions per gene in the 

VisANT database was equal to 7.26 (93684 interactions for 
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12888 human genes). Consequently, we derived a normalization 

factor by normalizing each disease interaction ratio for the one in 

the VisANT database. For example, the highest interaction ratio 

seen in RA resulted in a normalization factor equal to 1.88, 

signifying a nearly two fold increase in the interaction ratio 

compared to the database. Vice versa, Park normalization factor 

was 0.71, indicating that the interaction ratio was only 71% than 

the expected.  

For paired analyses we multiplied the normalization factors 

relative to the two diseases, and used the paired normalization 

factor to optimize the observed/expected ratio of interactor 

sharing. This resulted in an interactor score for each disease pair 

(Figure 2). So, if on the one hand the p-values relative to the 

inter-disease relatedness may reflect the shared interactome 

among diseases, on the other hand the interactor score might 

flatten or enhance some of these observations as it corrects for 

annotation bias. Therefore, both the p-values and the interactor 

scores have to be considered while interpreting the results. The 

interactor scores confirmed the close association among disease 

pairs in the autoimmune group (Figure 2). Surprisingly, the 

highest scores appeared in Alz-Park and T1D-Alz pairs. 

Therefore, even after eliminating the possible bias introduced by 

database annotation, the T1D-Alz pair maintained high 

association.  
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Figure 2. Molecular relatedness based on shared interactome. 
Statistical significance for each paired analysis is given. 
 

4.1.3 The biological themes in autoimmune and/or 

neurodegenerative interactomes  

In order to identify the biological themes related to each 

interactome, we used the ToppGene suite, an online tool for 

functional enrichment analysis. A Bonferroni corrected p-value of 

0.05 was used to extract the significant biological pathways 

reported by three distinct databases (CGAP-BioCarta, KEGG and 

Panther). The highest number of pathways was reported in T1D 

followed by MS, RA, Alz and Park respectively. Further, we 

tabulated the shared pathways among diseases and grouped them 

according to the database in seven main categories: Growth 

factor/Hormone signaling, Innate/Adaptive immunity, Cell cycle 

and apoptosis, Cancer, Adhesion, Host response and Other 

(Table 3). The combined statistical significances of the pathway 

enrichments are also listed in Table 3. The majority of the shared 

pathways were categorized in Growth factor/Hormone signaling, 

followed by Innate/Adaptive immunity and Cell cycle and 

apoptosis, while categories like Cancer, Host response and Other 

appeared in single databases.  
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In the Growth factor/Hormone signaling category Panther 

indicated EGF, FGF and PDGF signaling pathways as shared by 

three diseases, Alz and T1D with MS or RA. The other pathways 

were exclusively shared by the autoimmune diseases, with the 

exception of Angiogenesis that appeared both in T1D and Alz. In 

contrast to Panther, KEGG evidenced predominant pathway 

sharing among autoimmune disorders, except for the ErbB 

signaling present in Alz and in the three autoimmune diseases. 

CGAP-BioCarta exposed high concordances among Alz, T1D 

and MS. There were 10 pathways exclusively shared by these 

three diseases, among which EGF signaling and PDGF signaling 

were already reported by the Panther database. Many of the 

pathways common to these trios were related to tyrosine kinase 

signaling, such as Trka receptor signaling and Sprouty regulation 

of tyrosine kinases. Other remarkable observation was the sharing 

of NGF pathway by MS and Alz. IGF-1 signaling, IL3 signaling, 

Insulin signaling and Growth hormone signaling pathways were 

shared exclusively by T1D and Alz. In addition, Park shared only 

three pathways with the autoimmune diseases, namely Ceramide 

signaling, Trefoil factors initiate mucosal signaling and 

Phosphoinositides and their downstream targets. Overall, 

pathways shared by the five diseases in the Growth 

factor/Hormone signaling category portrayed an undisputable 

association within the autoimmune group with the predominant 

presence of T1D. It also revealed that several biological themes 

related to tyrosine kinase signaling were shared among Alz, T1D 
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and MS. Most unexpectedly, the analysis exposed numerous 

growth factor related pathways common to T1D and Alz.  

The second category Innate and adaptive immunity contained 20 

pathways derived from the three pathway databases. Although 

expected for the autoimmune diseases, there was consistent 

sharing of immunity related pathways also for Alz. For example, 

pathways related to B and T cell activation appeared in all 

databases as shared by T1D, RA, MS and Alz. Furthermore, in 

the KEGG database Alz and T1D exclusively shared the Fc 

epsilon RI signaling pathway and Natural killer cell mediated 

cytotoxicity pathway, whereas CGAP-BioCarta emphasized 

predominant pathway sharing between MS and RA. 

In the third category Cell cycle and apoptosis Panther and KEGG 

contributed with 2 pathways each, and Park shared the Apoptosis 

signaling pathway with RA and MS. Among the CGAP-BioCarta 

results, Alz shared 3 pathways with autoimmune diseases, while 4 

pathways were exclusively shared by T1D-RA or RA-MS disease 

pairs.  

The fourth category contained pathways derived from KEGG 

database related to Cancer. It resulted that many genes appearing 

in the autoimmune and /or neurodegenerative interactomes played 

a role in cancer related pathways.  

In the fifth category (named Adhesion), the Focal adhesion 

pathway (KEGG) was common to Park and the autoimmune 

group and the Integrin signaling pathway (CGAP-BioCarta) was 

shared among neurodegenerative disorders and T1D. In addition, 
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Adherens junction pathway in KEGG was shared among Alz, 

T1D and MS.  

The sixth category contained pathways related to Host response, 

which was reported exclusively by the KEGG database. Park and 

MS shared two pathways related to E. coli infection, and the 

autoimmune diseases shared the Epithelial cell signaling in 

Helicobacter pylori infection pathway. Lastly, the category Other 

contained the Parkinson’s pathway reported by Panther, which 

was common to Park and RA.  

Overall, pathway analysis revealed predominant sharing of 

functions among autoimmune diseases. Moreover, many of these 

pathways appeared also in Alz, which was associated with T1D in 

most cases.  

Disaeses Pathway p-value* 

Category 1 : Growth factor/Hormone signaling 
Alz, T1D, RA EGF receptor signaling 6.6E-13 
Alz, T1D, RA FGF signaling 3.6E-10 
Alz, T1D, MS PDGF signaling 4.2E-14 
T1D, MS Interleukin signaling 1.0E-16 
T1D, MS JAK/STAT signaling 3.6E-06 
T1D, RA PI3 kinase 1.5E-06 
Alz, T1D Angiogenesis 1.1E-18 
Alz,T1D,RA, MS ErbB signaling pathway 3.1E-33 
T1D, RA, MS Adipocytokine signaling pathway 7.1E-15 
T1D, RA Cytokine-cytokine receptor interaction 2.4E-07 
T1D, MS Insulin signaling pathway 1.5E-06 
T1D, MS Jak-STAT signaling pathway 3.8E-25 
RA, MS MAPK signaling pathway 1.1E-06 
Alz, T1D, MS EGF Signaling 8.9E-17 
Alz, T1D, MS EPO Signaling 1.8E-13 
Alz, T1D, MS IL 6 signaling 4.1E-06 
Alz, T1D, MS PDGF Signaling 6.5E-12 
Alz, T1D, MS Signaling of Hepatocyte GF  Receptor 4.3E-12 
Alz, T1D, MS Angiotensin II mediated activation of JNK 

via Pyk2 dependent signaling 
5.7E-08 

Alz, T1D, MS Sprouty regulation of Trk signals 9.4E-09 
Alz, T1D, MS Links between Pyk2 and Map Kinases 1.4E-13 
Alz, T1D, MS Trka Receptor Signaling 1.7E-09 
Alz, T1D, MS Bioactive Peptide Induced Signaling 1.1E-07 
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Park, RA, MS Ceramide Signaling 1.1E-12 
Park, T1D, MS Trefoil Factors Initiate  Mucosal Healing 3.6E-10 
T1D, RA, MS Chaperones modulate interferon Signaling 1.5E-07 
T1D, RA, MS Keratinocyte Differentiation 3.2E-15 
Alz, MS Nerve growth factor (NGF) 2.7E-05 
Alz, T1D IGF-1 Signaling 3.5E-05 
Alz, T1D IL 3 signaling 1.4E-06 
Alz, T1D Insulin Signaling 1.1E-04 
Alz, T1D Growth Hormone Signaling 9.1E-12 
T1D, MS IL 2 signaling 1.5E-12 
T1D, MS IL 4 signaling 4.4E-10 
T1D, MS IL-7 Signal Transduction 3.8E-09 
T1D, MS CBL mediated ligand-induced downregulation 

of EGF receptors 
5.6E-07 

T1D, MS CXCR4 Signaling 3.3E-08 
T1D, MS TPO Signaling 4.3E-10 
T1D, MS Ca Signaling by HBx of Hepatitis B virus 5.2E-05 
RA, MS MAPKinase Signaling 8.0E-11 
RA, MS Signal transduction through IL1R 1.3E-05 
RA, MS SODD/TNFR1 Signaling 1.3E-11 
RA, MS TNF/Stress Related Signaling 2.8E-21 
RA, MS TNFR1 Signaling 2.4E-12 
RA, MS TNFR2 Signaling 5.5E-19 
Park, T1D Phosphoinositides and their downstream targets. 7.1E-04 
Category 2 : Innate and adaptive immunity 
Alz,RA,T1D,MS B cell activation 1.0E-09 
Alz,RA,T1D,MS T cell activation 1.1E-31 
Alz,T1D,RA,MS B cell receptor signaling pathway 2.5E-25 
Alz,T1D,RA,MS T cell receptor signaling pathway 3.3E-38 
T1D, RA, MS Toll-like receptor signaling pathway 7.2E-13 
Category 2 : Innate and adaptive immunity (continued) 
Alz, T1D Natural killer cell mediated cytotoxicity 7.0E-16 
Alz, T1D Fc epsilon RI signaling pathway 2.6E-09 
RA, MS Antigen processing and presentation 1.7E-13 
Alz,T1D,RA,MS T Cell Receptor Signaling 7.9E-15 
Alz, T1D, MS IL-2R Beta Chain in T cell Activation 4.3E-24 
Alz, T1D, RA BCR Signaling 1.5E-07 
RA, MS CD40L Signaling 1.6E-13 
RA, MS The 4-1BB-dependent immune response 2.6E-10 
RA, MS TACI and BCMA stimulation of B cell 

immune responses. 
3.9E-16 

RA, MS NFkB activation by Nontypeable H.influenzae 5.9E-07 
RA, MS NF-kB Signaling 1.4E-15 
RA, MS Acetylation-Deacetylation of RelA in Nucleus 8.4E-13 
Alz, MS Fc Epsilon Receptor I Signaling in Mast Cells 3.3E-05 
T1D, RA Lck and Fyn tyrosine kinases in initiation of 

TCR Activation 
1.9E-07 

T1D, RA Co-Stimulatory Signal During Tcell Activation 6.3E-10 
Category 3 :Cell cycle and apoptosis  
Park, RA, MS Apoptosis signaling 1.0E-34 
T1D, RA p53 1.2E-05 
RA, MS Apoptosis 3.1E-23 
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T1D, RA Cell cycle 7.6E-23 
Alz,T1D,RA,MS PTEN dependent cell cycle arrest and apoptosis 9.7E-15 
Alz, T1D, MS Inhibition of Cellular Proliferation by Gleevec 2.4E-11 
T1D, RA, MS Telomeres,Telomerase, Aging, Immortality 1.2E-12 
T1D, RA Cyclins and Cell Cycle Regulation 1.0E-16 
T1D, RA Influence of Ras and Rho proteins on G1 to S  

Transition 
6.5E-14 

T1D, RA Cell Cycle: G1/S Check Point 8.1E-11 
T1D, RA p53 Signaling 4.5E-07 
Alz, T1D Multiple antiapoptotics from IGF-1R signaling  8.5E-06 
 lead to BAD phosphorylation  
RA, MS HIV-I Nef: negative effector of Fas and TNF 2.0E-29 
RA, MS Caspase Cascade in Apoptosis 1.1E-03 
RA, MS FAS signaling ( CD95 ) 2.3E-08 
RA, MS Induction of apoptosis through DR3 and DR4/5  3.2E-18 
Category 4 :Cancer 

Park, Alz, T1D, MS Colorectal cancer 7.1E-10 
Alz, T1D, RA, MS Prostate cancer 3.1E-19 
Alz, T1D, RA, MS Pancreatic cancer 4.4E-24 
Alz, T1D, RA, MS Pathways in cancer 1.1E-46 
Alz, T1D, RA, MS Chronic myeloid leukemia 8.6E-48 
T1D, RA, MS Acute myeloid leukemia 7.7E-13 
T1D, RA, MS Small cell lung cancer 4.8E-26 
Alz, T1D, RA Glioma 1.0E-18 
Alz, T1D, RA Non-small cell lung cancer 5.9E-17 
Category 5 :Adhesion 

Park, T1D, RA, MS Focal adhesion 8.8E-14 
Alz, T1D, MS Adherens junction 1.9E-08 
Park, Alz, T1D, MS Integrin Signaling 6.7E-20 
Category 6 :Host response  
Alz, RA, MS Epithelial cell signaling in H. pylori infection 8.2E-11 
Park, MS Pathogenic E. coli infection - EHEC 6.3E-09 
Park, MS Pathogenic E. coli infection - EPEC 6.3E-09 
Category 7 :Other  
Park, RA Parkinson’s disease 1.0E-13 

Panther               KEGG                CGAP-BioCarta 
* Combined p-value by Fisher’s method. 

Table 3: Shared pathways among interactomes 

 

4.1.4 Quantitative analysis of functional relatedness among 

neurodegenerative and autoimmune interactomes  

We tabulated the shared pathways for all disease pairs and 

quantified the significance of the observed pathway overlaps by 

performing hypergeometric test for each database separately 
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(Figure 3a). According to Panther, the most significant pathway 

overlap was in T1D-Alz pair (P= 2.10E-07), followed by the 

T1D-RA (P= 1.48E-05) and RA-Alz (P= 8.69E-05). MS-Park 

pair displayed no significant pathway overlap (P= 0.184). Among 

the KEGG results, the most highly significant pathway overlap 

was between MS and RA (P= 1.03E-13), followed by T1D-RA 

(P= 51.22E-12), T1D-Alz (P= 5.91E-11), MS-T1D (P= 8.58E-10) 

etc. Yet, the analysis revealed that pathway overlaps with Park 

could be due to chance, except for the MS-Park pair (P= 5.44E-

03). Finally, the CGAP-BioCarta analysis recognized T1D-Alz as 

the most significant association (P= 3.71E-12), followed by MS-

RA (P= 1.60E-11), MS-T1D (P= 2.16E-09), MS-Alz (P= 1.60E-

08) etc. To summarize, the p-values based on KEGG and CGAP-

BioCarta databases were more significant among the disease pairs 

in the autoimmune group, especially MS-RA. Moreover, through 

the consistent statistical results with respect to all the three 

databases, T1D-Alz pair could be considered as the most 

significant disease pair in the context of shared pathways.   
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Figure 3. A. Functional relatedness based on shared pathways. 
Statistical significance for each paired analysis is given as relative 
to the database, Dotted line indicates the p-value threshold of 0.05. 
B. Shared pathways and interactors among disease pairs. 
 

Theoretically, pathway sharing was partly anticipated as 

consistent interactor sharing was present in several disease pairs. 

Clearly, the more interactors were shared, the more common 

pathways were expected. We critically evaluated this issue and 

measured the Pearson’s correlation between the interactors and 

the pathways (as reported by the three databases together) shared 

among the disease pairs. Consistently, we observed that the 

number of shared pathways was proportional to the number of 
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shared interactors in most cases (Figure 3B). However, the Alz 

pairs with autoimmune diseases were not following this trend. 

The overall Pearson’s correlation coefficient was 0.79, which 

increased remarkably to 0.95 when Alz-autoimmune disease pairs 

were excluded. These observations demonstrate that the number 

of shared biological pathways among Alz and autoimmune 

diseases is higher than the expected on the basis of interactor 

sharing.  

Finally, we ranked the associations among diseases based on the 

statistical significances of shared pathways in each database. 

Scores starting from 1 were assigned from the highest significant 

association to the lowest. Those with insignificant p-values were 

assigned the rank 10. Then, we derived the cumulative ranks for 

each disease pair by summing their ranks in the three databases. 

As expected, T1D-Alz pair had the highest rank, followed by the 

autoimmune disease pairs MS-RA and T1D-RA, and then by MS-

Alz and RA-Alz. Park pairs scored all very low. These results 

were depicted in Figure 4 displaying a network summary of 

relationships among the five diseases.  
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Figure 4. Overall disease relatedness based on shared pathways 
in the Panther, KEGG and CGAP-BioCarta databases. Green 
nodes indicate neurodegenerative disorders, whereas pink nodes 
highlight autoimmune diseases. The color of the edges connecting 
the nodes reflects the shared pathway rank ranging from 3 
(highest relatedness) to 30 (lowest relatedness). 

 

Altogether, the relationships among diseases identified at the 

level of molecular interactions were found to be sustained at the 

level of biological pathways, especially among autoimmune 

diseases. Surprisingly, the same approaches evidenced strong 

relatedness between Type 1 diabetes and Alzheimer’s disease.  
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4.2 GENDER-BASED TRANSCRIPTOMICS IN MS 

4.2.1 A comparison of conventional and gender-based 

transcriptome analysis 

Conventional analysis strategy in transcriptome studies foresees 

that differentially expressed genes (DEG) which are significant in 

the disease state are derived from the comparison between healthy 

and diseased populations. We applied this approach in our study 

which included initially 22 healthy individuals and 23 patients with 

relapsing-remitting MS. All the patients were clinically stable and 

none of them had started any immunomodulatory therapy till 

sampling. Peripheral blood drawings were performed at least 4 

weeks after relapse treatment with steroids, in order to exclude the 

variations in gene expression due to drugs. We labeled RNA 

extracted from PBMC and hybridized Illumina microarray chips 

that contained about 22,000 probes. After normalization and data 

filtering, the sample set was analyzed by PCA and hierarchical 

sample clustering methods. Three samples (1 healthy control and 2 

RR-MS patients) were identified by both methods as outliers and 

removed from further analysis. For the remaining 21 diseased 

subjects there were no significant differences in age, disease 

duration, EDSS score and annual relapse rate between the two 

gender groups (see materials and methods). Control subjects were 

sex and age-matched. 

The most widely used strategy of deriving genesets is through 

single statistical tests and/or fold change criteria. However, in a 

preliminary analysis it was observed for several genes that the 

mean expression values were considerably determined by far 
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extreme expression values in few samples within the group. This 

could result in fold changes that did not reflect reproducible 

expression in most of the samples within each group. Therefore, to 

facilitate higher reproducibility and reliability of results we used 

three statistical tests in parallel to find differential expressions and 

selected the genes which passed through at least two tests. This 

way we controlled the potential false positives without losing vital 

information in the transcriptomics data. The statistical tests were 

Welch t-test, Significance Analysis of Microarrays (SAM) and 

Bayesian analysis of differential gene expression (BADGE). The 

BADGE analysis also performed Leave One out Cross Validation. 

The DEG identified by these methods were 162, 80 and 289 for t-

test, SAM and BADGE respectively, with 167 genes common to 

any two statistical tests (Figure 1A). Hierarchical clustering of this 

geneset, represented in Figure 1B, showed 65 downregulated and 

102 upregulated genes in the relapsing-remitting course of the 

disease.  

However, while observing the heatmap generated with the 

conventional (hereon called “couple”) case-control comparison, we 

noticed a considerable amount of intra-group variability which was 

independent from the health status, as it appeared both in the MS 

and CTRL groups. We hypothesized that this could be due to the 

inherent heterogeneity in the global gene expression between 

women and men. To verify this aspect, we measured the 

coefficient of variation (CV) for sets of probes that were grossly 

selected (median fold change threshold of 1.3 between healthy and 

diseased) in the couple, male and female case-control comparisons, 
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and then calculated the average CV in each sample group. Here, 

we used the median fold differences because median values are 

least affected by the presence of few extreme expression values. 

As shown in Figure 1C, high heterogeneity was found in the 

diseased and control groups when genelists were generated with 

the couple approach. On the contrary, gender-based case-control 

comparisons led to gene lists which exhibited a significant 

reduction in the variability. 

Finally, we assessed whether MS pathology was associated with 

alterations in the expression of sex-specific genes. We defined the 

naturally occurring sex-specific genes as those genes that were 

normally differentially expressed in men versus women in the 

healthy population. Among the 10,390 filtered probes, 1083 

(10.42%) passed the relaxed t-test with p-value threshold of 0.05 

and were differentially regulated between healthy women and 

healthy men (Figure 1D left circle). Interestingly, when repeating 

the same analysis on the diseased population (Figure 1D right 

circle), only 206 probes (1.98%) were sex-specific (p-value 2.3E-

140). This significant reduction in the percentage of the sex-

specific genes was accompanied also by qualitative changes, as 

only 32 out of the 206 MS sex-specific probes appeared among the 

natural sex-specific probes, indicating that in diseased subjects 

almost all natural sex-specific genes were not differentially 

expressed between women and men any more, while a new 

(smaller) subset of genes performed as sex-specific. 
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Figure 1. The heterogeneity in human populations displayed by 
conventional transcriptome output is reduced in gender-based 
genelists. A. Number of differentially expressed genes detected by 
three statistical tests. The MS signature is defined by the DEG 
common to at least two tests (green sections). B. Heatmap showing 
unsupervised clustering of DEG (in rows) and of the samples (in 
columns). Bar above the heatmap indicates sample classification 
(healthy/pink vs. MS/blue subjects). Bar below the heatmap 
indicates expression intensity. C. Coefficients of variation (%) of 
grossly selected probes in couple and gender-based groups. *** p 
value < 0.001.  D. Left and right pie charts indicate the fraction of 
natural (pink) or MS (blue) sex-specific probes among the 10,390 
filtered genes. The Venn diagram in the middle highlights the 
number of sex-specific probes overlapping among healthy and 
diseased populations. 
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4.2.2 The gender-based MS signatures 

 Based on the previous observations, we switched to a gender-

based strategy as opposed to the couple approach and compared 

MS women or men with their respective healthy counterpart. The 

female population comprised of 9 controls and 12 RR-MS, while 

the male group consisted of 12 controls and 9 RR-MS samples. 

The statistical approaches and parameters for identifying DEG 

were the same as in the couple analysis. In the female sample 

group, the t-test, SAM and BADGE identified 197, 139 and 301 

genes respectively, with 208 probes (207 genes) common to any 

two of them (Figure 2A and supplementary file WOMEN, sheet 1). 

Similarly, in the male group t-test identified 73, SAM 19 and 

BADGE 126 genes (Figure 2D). There were 72 genes common in 

any of these two tests (supplementary file MEN, sheet 1).   

Hierarchical clustering of 208 MS female probes (207 genes, as 

SNRPN gene was represented by two probes in all the tests) 

showed 131 downregulated and 77 upregulated probes in the 

disease (Figure 2B). Unsupervised sample clustering showed that 

such signature was extremely efficient in classifying the healthy 

and diseased subjects, as 18/21 samples were properly assigned 

(Figure 2B pink and blue bar). The relative gene expressions in the 

male sampleset were also checked and the cluster analysis is 

shown in the Figure 2C. It is apparent that the MS female DEG had 

poor performance in male sampleset, as it resulted in a substantial 

rise in misclassifications in the unsupervised classification. The 

MS male geneset was characterized by 72 genes with 47 

downregulated and 25 upregulated genes in the disease. 
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Hierarchical clustering of these genes is shown in the Figure 2E. 

Similar to the MS female DEG, the male DEG classified almost 

perfectly the male (20/21 correct classifications, Figure 2E) but not 

the female (Figure 2F) specimens. Overall, when compared to the 

couple heatmap, the gender-based heatmaps gained substantial 

clarity in differentiating healthy and diseased groups.  

We compared the MS couple, female and male genesets to make 

out the commonalities and differences between them. Forty-three 

genes out of 207 genes in the female and 16 out of 72 genes in the 

male genesets were present in the couple genelist. Most 

unexpectedly, there was only one gene (LOC196752) common 

between the male and female genesets. This gene, located at 

10q22.2 and coding for a protein with unknown function, appeared 

also in the couple geneset. Further, to verify the reliability of the 

female and male DEG, we added two new groups of RR-MS 

patients comprising of 10 women and 8 men to the existing 

sampleset and the corresponding log ratios were calculated without 

adjusting the average with the expression values of newly recruited 

samples. Consistent with the previous results (Figure 2), the global 

unsupervised cluster analysis (hierarchical clustering) classified 

correctly 29 out of 31 female and 27 out of 29 male samples. In 

addition, differential expression was evident also by real-time PCR 

for selected DEG from male and female groups. 

 

In summary, gender-based analyses allowed to limit the natural 

heterogeneity existing within human populations and unraveled 
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distinct changes in blood gene expression in MS men or women 

although associated to the same disease form.  

 

 

Figure 2. Gender-based analyses in multiple sclerosis improve 
sample classification. A. Number of differentially expressed 
genes detected by three statistical tests between healthy and RR-
MS women. Green sections contain genes common to at least two 
tests. B-C. Heatmaps showing unsupervised clustering of female 
DEG in female (B) or male (C) samples. D. Number of 
differentially expressed genes detected by three statistical tests 
between healthy and RR-MS men. Green sections contain genes 
common at least two tests. E-F. Heatmaps showing unsupervised 
clustering of male DEG in male (E) and female (F) samples. Bars 
above the heatmaps indicate sample classification (healthy/pink vs. 
MS/blue subjects). Bar below the heatmap indicates expression 
intensity. 
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4.2.3 Biological themes of the MS signatures 

In order to explore the biological information contained in the 

gender-related MS genesets, we applied the Genecodis program 

which uses the Gene Ontology (GO) database for annotations and 

identifies the corresponding GO-ID for the significantly enriched 

terms.  

Out of the 30 enriched biological process categories in the MS 

female geneset, the top scores were interspecies interaction 

between organisms, transcription and regulation of transcription- 

DNA dependent. In MS male geneset, due to the lower number of 

DEG, only 8 biological process categories were significant and 

oxidation reduction- fatty acid metabolism, transcription and 

regulation of transcription- DNA dependent were the most 

significantly enriched.  

Most surprisingly, there was strong concordance in biological 

processes between the female and male geneset. The statistical 

significance and the number of genes for each common item are 

shown in Table 1. The commonalities were salient with the 

presence of 5 biological processes among the 8 enriched terms in 

men. The common GO terms were regulation of transcription- 

DNA dependent, co-occurrences of regulation of transcription- 

DNA dependent and transcription, modification-dependent-protein 

catabolic process, transcription and chromatin modification. As 

the genesets were derived from independent datasets through 

independent analyses, the combined p-values were calculated 

(Table 1). They ranged between 4.6E-06 and 5.6E-03, ruling out 

the possibility that these findings were due to chance. Therefore, 
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even if the DEG were different in MS women and men, many of 

them played a role in the same biological processes. Furthermore, 

4 out of 5 highly enriched biological process categories referred to 

transcription and chromatin modification, indicating that 

epigenetic events may be the common basis for MS disease in 

women and men.   

Next, we reasoned that if the DEG were involved in the same 

processes, then they could exert similar functions. We tested this 

hypothesis by searching for recurrent molecular functions in the 

genelists. Among the 41 enriched molecular functional categories 

in female geneset, the top scores were protein binding, hydrolase 

activity, and transferase activity. In the male genelist, only 10 

significant functions were enriched, however, similarly to the 

concordance seen in biological processes and consistent with our 

hypothesis, 6 out of 10 enriched categories in men were present in 

women as well. Table 2 illustrates them together with the corrected 

and the combined p-values. The shared molecular functions were 

protein binding, co-occurrences of protein binding and RNA 

binding, DNA binding, metal ion binding, zinc ion binding and 

RNA binding. Furthermore, most of the common molecular 

functions dealt with interactions with nucleic acids, once more 

affirming the prominence of epigenetic mechanisms in multiple 

sclerosis.   
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F= Female, M= Male 

TABLE I. Biological processes (GO terms) shared by gender-
based MS DEG.    

    

Gene Ontology : 
Biological process 

Gender
No.  of 
Genes

Correcte
d 

p-value 

Combin
ed 

p-value 
F 23 0.00012 GO:0006350 : 

transcription M 10 0.00224 
4.6E-06 

F 20 0.0003 GO:0006355 : 
regulation of 
transcription, DNA-
dependent & 
GO:0006350 : 
transcription 

M   8 0.00423 

1.8E-
05 

F 23 0.00104 GO:0006355 : 
regulation of 
transcription, DNA-
dependent 

M 10 0.00543 
7.4E-05 

F   4 0.01767 GO:0016568 : 
chromatin modification M   3 0.00482 

9.0E-04 

F   6 0.02187 GO:0019941 : 
modification-dependent 
protein catabolic 
process 

M   3 0.03103 
5.6E-03 
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Gene Ontology : 
Molecular Function 

Gender 
No. of 
Genes

Corrected
p-value 

Combined 
p-value 

F 73 2.142E-13GO:0005515 : protein 
binding     M 21 0.0022441

1.7E-14 

F 16 0.0056011GO:0003677 : DNA 
binding     M   8 0.0053933

3.0E-04 

F 20 0.0464598GO:0046872 : metal ion 
binding     M 14 0.0019222

9.0E-04 

F   5 0.0206388GO:0003723 : RNA 
binding &  
GO:0005515 : protein 
binding     M 

  4 
0.0039642

9.0E-04 

F 13 0.0456205GO:0008270 : zinc ion 
binding     M   9 0.0021955

1.0E-03 

F   9 0.0486291GO:0003723 : RNA 
binding  M   5 0.0069794

3.1E-03 

F= Female, M= Male 

TABLE 2. Molecular functions (GO terms) shared by gender-
based MS DEG.    

 

These high concordances in biological processes and molecular 

functions might indicate that the diverse genesets share some 

interacting partners. We tested this hypothesis by a systems 

biology approach using the VisANT program, a web-enabled tool 

for data-mining, visualizing, analyzing and modeling biological 

networks from user given input of genes or proteins. VisANT 

extrapolates the interacting partners for each gene by querying 

databases such as Biogrid, MIPS, BIND and HPRD, represents 

then each gene as a node and connects the interacting nodes by a 

straight line. We found that there were 1486 and 453 interactors for 

female and male genesets respectively. Notably, 171 out of 453 

male interactors (about 38%) were common to female interactor 
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set. In order to get further insights into disease related mechanisms, 

we checked the molecular functions and biological processes 

enriched in the common 171 interactors. Among the 134 

significant biological processes, interspecies interaction between 

organisms, positive regulation of I-kappaB kinase/NF-kappaB 

cascade and positive regulation of transcription from RNA 

polymerase II promoter were the most significant, while regulation 

of transcription-DNA dependent was enriched with 33 genes and 

transcription with 29 genes, and were the GO terms defined by the 

highest numbers of interactors. Furthermore, 49 categories 

contained ontology terms related to transcription and 3 to 

chromatin modification. Similarly, 130 categories defined 

molecular functions for the shared interactors, with protein 

binding, transcription factor activity and transcription factor 

binding as the most significantly enriched terms. Among the 130 

categories, 40 groups were related to transcription and 29 to DNA 

binding. As highlighted in Figure 3, a remarkable part of the DEG 

sharing the interactome (72/89 female and 27/35 male DEG, green 

nodes in upper and lower left circles) were involved in epigenetic 

processes and contacted 62/171 common interactors related to 

transcription and chromatin modification (green nodes in right 

circles). ).  
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Figure 3. Gender related MS interactomes identify shared 
interactors among male and female MS DEG. Female and male 
DEG have unique and shared interacting genes. Network 
reconstruction identified 171 shared interactors contacted by 
89/207 female and 35/72 male DEG. Green nodes highlight 
epigenetic and transcription related genes among the DEG and the 
interactors. 
 

Further, additional epigenetic factors appear also among the female 

or male specific interactors, such as DNMT1 in the female specific 

interactome and HGMA2 in the male specific interactome. Further, 

many of the 62 epigenetic interactors (green nodes in Figure 4A) 

were connected with more than one female and male DEG (pink 

and blue nodes respectively). The most connected interactor was 
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HNF4A (with 36 female and 12 male DEG), followed by TP53 (11 

female and 2 male DEG), IKBKG (7 female and 2 male DEG) and 

RELA (5 female and 4 male DEG). Finally, we verified a further 

network level by reconstructing the interactions among the 62 

epigenetic interactors. Interestingly, with two exceptions (KLF5 

and TSC22D4), all the other interactors were found to be involved 

in a complex network, where some nodes, such as histone 

deacetylase (HDAC)1, HDAC2, RELA, TP53, SP1 and AR, were 

highly interactive (Figure 4B, Supplementary file 

INTERACTORS, sheet5). Interestingly, most of the epigenetic 

factors fell in three main groups related to the HDAC, AR or NF-

kappaB complexes. These groups could interact each other either 

directly or through a central group of transcription factors.   
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FIGURE 4. Epigenetic interactors shared by female and male MS 
DEG. A. Shared epigenetic interactors (green) of female (pink) and 
male (blue) MS DEG. B. Interaction network among the shared 
epigenetic interactors. Most of the epigenetic factors fall in three 
main groups related to the HDAC, AR or NF-kappaB complexes. 
These groups can interact each other either directly or through a 
central group of transcription factors. In A and B the sizes of the 
interactor nodes are proportional to the number of interactions. 
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Overall, the distinct MS female and male genesets shared 

biological and molecular functions as well as interactors. Themes 

related to epigenetics were predominant in both female and male 

MS signatures and in the shared interactome, suggesting they 

might give shape to and/or sustain pathogenic processes in 

multiple sclerosis.  

 

 

 

4.2.4 Identification of the transcription factor SP1 as a 

modulator of experimental autoimmune encephalomyelitis 

Finally, we checked whether the two MS genesets were potentially 

regulated by common transcription factors by querying the 

GeneCodis database. As shown in Table 3, both female and male 

MS signatures were significantly enriched for genes containing 

binding sites for four transcription factors (SP1, LEF1, NFY and 

ELK1) and their combinations. In particular, several DEG 

contained binding sites for SP1 alone or together with NFY and 

ELK1 (Table 3). We applied the same analysis tools to two 

published signatures for the RR-MS population and found that the 

binding sites for these transcription factors were enriched also 

among the genes described in other studies (Table 3). As SP1 

appeared among the epigenetic interactors connected with both 

female and male DEG (Figure 4A) and belonged to the central core 

of highly connected epigenetic factors (Figure 4B), we 
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hypothesized that SP1-dependent transcription could play a role in 

MS pathogenesis.  

To validate the involvement of SP1 in immune responses, we 

initially targeted SP1-dependent gene transcription in peripheral 

blood mononuclear cells with the specific inhibitor WP631 and 

induced T cell proliferation with the mitogen concanavalin A 

(ConA). Interestingly, WP631 concentrations above 0.5µM 

strongly blocked proliferation of human T cells (Figure 5A). 

Similar results were obtained with ConA-activated mouse 

splenocytes (Figure 5A). As WP631 belongs to the family of 

anthracylines, cytotoxic agents used in cancer therapy, we checked 

WP631-dependent cytotoxicity in PBMC and splenocyte cultures 

by flow cytometry. As depicted in figure 5B, the drug increased 

the levels of cell death both in unstimulated and in ConA- 

stimulated cultures, indicating that part of the reduction in the 

proliferation was due to cytotoxicity. Finally, WP631 was 

administered in vivo to C57BL6 mice immunized with the 

encephalitogenic MOG35-55 peptide, and T cell responses to the 

autoantigen were tested ex vivo. Mice receiving the drug 

(3mg/kg/day) or its vehicle from day 3 to day 7 post-immunization 

were sacrificed at day 10 and lymphoid organs were extracted. 

Interestingly, T cell proliferation to MOG peptide was significantly 

reduced in WP631-treated animals (Figure 5C). Moreover, clinical 

expression of experimental autoimmune encephalomyelitis (EAE), 

the animal model of MS, was significantly altered by WP631 

treatment. In fact, compared to the control group, in the WP631-

treated group the incidence of disease was reduced, the onset was 
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delayed and the disease severity in the acute phase was milder 

(Figure 5D-E). Similar results were obtained in the EAE model in 

SJL mice (Figure 5F). 

 

 

 

Unique 
TF 

Multiple 
TF (if any) 

Female     
p-vala 

Male     
p-vala 

Combine
d p-valb 

Gand
hi et 
al.     

p-vala 

Rivero
s et al.   
p-vala 

V$SP1_Q6 1.9E-05 1.7E-02 5.1E-06 
4.7E-

05 
1.0E-

06 

V$SP1_Q6 & 
V$NFY_Q6_

01 
2.7E-02 4.6E-02 9.6E-03 

3.0E-
02 

n.d. 

V$SP1_Q6 & 
V$NFKB_Q6 1.5E-02 4.1E-03 6.7E-04 n.d. n.d. 

V$SP1_
Q6 

V$SP1_Q6 & 
V$ELK1_02 3.4E-03 3.3E-03 1.4E-04 n.d. n.d. 

V$LEF1_Q2 8.3E-03 6.9E-03 6.1E-04 n.d. 
2.7E-

02 

V$LEF1_Q2 
& 

V$NFY_Q6_
01 

3.4E-02 7.6E-03 2.4E-03 n.d. n.d. 

V$LEF1_Q2 
& V$AR_Q6 6.3E-03 3.7E-03 2.8E-04 

3.1E-
02 

2.8E-
02 

V$LEF1
_Q2 

V$LEF1_Q2 
& 

V$TATA_01 
3.1E-02 5.0E-02 1.1E-02 n.d. n.d. 

V$NFY_
Q6_01 

V$NFY_Q6_
01 2.1E-02 5.4E-03 1.2E-03 

4.8E-
02 

1.7E-
03 

V$ELK1
_02 

V$ELK1_02 2.9E-08 6.4E-03 4.2E-09 
6.9E-

16 
4.9E-

04 

 
a Corrected p-values by Benjamini-Hochberg's method. b Combined p-

values using Fisher's method. 

TABLE 3. Transcription factors regulating MS DEG. 
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Figure 5. Inhibition of SP1 dependent transcription modulates 
EAE. A. WP631 blocks ConA-induced T cell proliferation. Data 
are given as percentage of proliferation in absence of WP631 
(100%). hPBMC= human PBMC, mSplenocytes= mouse 
splenocytes. Data are shown as mean ± SEM of 5 independent 
experiments. B. WP631 induces immune cell death. WP631 
concentration was 1 µM. Data are shown as mean ± SEM of at 
least 4 independent experiments. C. WP631 administration in 
MOG35-55 immunized animals reduces T cell responses to the 
encephalitogenic peptide. Proliferation to MOG35-55 peptide of 
draining lymph node (left) or spleen (right) cells from WP631 or 



 97

vehicle-treated EAE mice (n=5 per group). Data are given as 
average  SEM. Similar observations were obtained in a second 
experiment. D-E. WP631 administration in vivo attenuates MOG35-

55 (D-E) and PLP 139-151 (F) induced EAE. Clinical score chart (D) 
and clinical parameters (E) are given for MOG35-55 induced EAE 
(n=14 mice per group). WP631 was administered at a dose of 3 
mg/kg/day. Mean values  SEM of 2 pooled EAE experiments are 
shown. F. Clinical parameters relative to PLP139-151 induced EAE 
in mice treated with two distinct doses of WP631.* p value < 0.05, 
** p value < 0.01, *** p value < 0.001. 
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5 CONCLUSIONS AND FUTURE PROSPECTS  

The aim of genome-wide association studies (gwas) is to discover 

the common genetic variants associated with susceptibility to 

complex diseases. However, the analysis of isolated genes is little 

informative about the biological processes underlying disease and 

offers limited rationale for the development of novel therapies. 

Theoretically, reconstruction of the molecular interaction 

networks linked to gwas-genes by systems biology approaches 

may help to elucidate the functional consequences related to each 

susceptibility allele and the combined effects of more genetic 

variants. The few reports available till date on this issue 

demonstrated that this approach can identify previously unseen 

relationships among human diseases at molecular level 147, 148. 

The reconstruction of the molecular framework hosting the 

genetic variants associated with susceptibility to a complex 

human disorder has the potential to reveal the biological 

mechanisms underlying that disease and to highlight similarities 

with other diseases. Here we made a cross-disease comparison on 

autoimmune (T1D, RA) and neurodegenerative diseases (Park, 

Alz) initially from the view point of MS, as it presents both 

autoimmune and neurodegenerative facets 104. Indeed, several 

nodes in MS interactome interacted with susceptibility genes of 

the other four diseases, with a subset of MS interactors taking 

contact with both autoimmune and neurodegenerative gwas-

genes. These observations indicate that MS offers a framework 

that can be  shared to certain extend by other diseases.  
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Further, we elucidated the interactors linked to the gwas-genes in 

all five diseases and the pathway enriched in each disease-related 

interactome using the ToppGene suite. Although a few previous 

studies revealed enriched biological pathways related to 

susceptibility genes in several human complex disorders, 

including MS 83, 135, 149, 150, no information was available on the 

pathways emerging from the global genetic framework. 

Differently, our study ascertained such issue in multiple sclerosis 

as well as in four additional autoimmune or neurodegenerative 

disorders. Numerous immune related pathways were enriched in 

autoimmune interactomes, which was expected as many of the 

susceptibility genes in RA, T1D and MS were immune related. 

Notably, the pathways B-cell activation and T-cell activation 

appeared in all autoimmune diseases. It is well known that both 

arms of adaptive immunity greatly contribute to autoimmunity. 

Our data suggest that the processes leading to alterations in 

immune tolerance may be caused or sustained by the genetic 

framework, and, hence, support the rationale for therapeutical 

approaches targeting T and B lymphocytes in autoimmune 

disorders. Surprisingly, the same pathways appeared in 

Alzheimer’s disease. The role of adaptive immunity in Alz 

remains under-explored so far, however some studies suggest 

altered T cell phenotypes and responses in such patients 

(reviewed by 151). Interestingly, regular use of anti-inflammatory 

drugs reduces the odds of developing Alz 152, 153. Our observation 

that Alz genetic framework may have an impact on immune 

function questions the classical distinction between inflammatory 
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and non-inflammatory diseases and supports the hypothesis that, 

even though the primary insult is not inflammation but 

neurodegeneration, immunological pathways play a role in the 

etiopathogenesis of Alzheimer's disease 154.  

The paired comparisons of genetic interactomes allowed 

measuring the degree of relatedness among the five disorders. 

Sharing of interactors and pathways was highly significant among 

the autoimmune group. This may be partly explained by the 

genetic overlap between autoimmune diseases 155, 156. In fact, 

among all autoimmune gwas-genes analyzed in our study, HLA-

DRB1 was associated with MS, T1D and RA, three genes 

(PTPN22, PRKCQ, CTLA4) were shared between T1D and RA, 

three (IL2RA, IL7R and CLEC16A) between MS and T1D, and 

one more (CD40) between MS and RA. However, analyses at the 

genetic network level showed also that several gwas-genes 

specific for single pathologies converged at the interactome level, 

meaning that, although the primary events may differ, the 

resulting functional cascades may come together and lead to 

alterations in the same pathways.    

The most surprising observation was the strong relatedness in 

T1D-Alz pair in terms of shared interactome and pathways. 

Clinical and epidemiological data are available about associations 

between T1D and Alz. Type 1 (and Type 2) diabetic patients 

present deficits in numerous cognitive functions (reviewed in 157) 

and diabetes is a risk factor for Alz 158. In addition, biological 

evidences indicate that dysregulation of insulin metabolism may 

affect amyloid- accumulation and degradation 159. 
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On the whole, we have performed an unprecedented comparison 

among the genetic interactomes derived from the genes 

predisposing to five human complex disorders. The shift in the 

network analysis from the gwas-genes to their first-degree 

interactors made the detection of shared molecules possible even 

when no interactions were present at the gwas-level.  

 

Next, we focused our attention on transcriptomics in PBMC's from 

patients with RR-MS, and compared them with healthy 

individuals. Even though several past gene profiling studies in MS 

were successful in giving molecular insights 160-167, many of them 

did not effectively restrict the diverse parameters of the disease. 

For instance, Bomprezzi and colleagues 161  through PBMC 

transcriptomics in MS and healthy controls demonstrated that a 

few candidate genes could accurately classify MS patients and 

healthy controls. Unfortunately, out of the 24 MS patients used in 

the study 18 were RR-MS and 6 were in the secondary progressive 

course of the disease, moreover active or stable phase of disease 

was not specified. In addition, in this and in other studies 160, 161, 163, 

164 the analyses were not unbiased but restricted to a selection of 

potentially interesting genes. Critically considering these issues, 

we recruited patients with the relapsing-remitting course of the 

disease; all were clinically stable, free from immunomodulatory 

therapy and from other inflammatory or autoimmune disorders. 

Moreover, the standardized Illumina gene expression platform 

containing more than 22,000 probes was used for all the 
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hybridizations. We assumed that a gender-based analysis of the 

transcriptome data could possibly eliminate a considerable amount 

of heterogeneity seen in the heatmap. The analysis of the 

coefficient of variation among selected probes from the couple and 

gender-based datasets strongly supported our hypothesis as 

significant reduction in variability both in the healthy and in the 

MS genelists was observed. Further, we investigated whether 

sexual dimorphism in MS was driven by sex-specific genes. Sex 

related gene expression differences are normally present in several 

tissues, including blood 168, 169, however they have never been 

specifically monitored under disease. Using relaxed statistics to 

maximize the number of differences existing in blood between 

genders, about 10% of the filtered genes resulted sex-specific in 

the healthy population, while only 2% in MS subjects. Moreover, 

only a minor part of the MS sex-specific genes were natural, pre-

existing sex-specific genes. These data clearly demonstrated that 

MS pathology is associated with dysregulation in sex-specific 

genes. The factors leading to physiological gender differences are 

complex and include genetic, hormonal and environmental stimuli. 

It is well known that sex makes a difference in MS susceptibility 

and clinical course, and sex hormones may modulate disease 170. 

However, the contribution of sex-related factors to the same 

clinical course in men and women remains still elusive. Certainly, 

our observations cannot be allocated to specific etiological factors. 

However, our data showed for the first time, that the genes 

accountable for the remission state of MS are different in men and 

women and that part of this diversity is driven by the sex specific 
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genes. On the other hand, the dissimilar DEG in the two genders 

were wrapped in common biological contexts and this 

phenomenon was associated with shared molecular functions. 

More interestingly, the common biological themes were dominated 

by ontology terms related to transcription, DNA binding and 

chromatin modification, strongly indicating that epigenetics may 

be the underlying pathogenic mechanism in multiple sclerosis. 

Further, we used system biology tools to explore the genes 

interacting with the DEG. We reconstructed the global interactome 

relative to the female and male genelists and found 171 distinct 

genes interacting with both the female and male DEG.  

 

A recently published study proposes that differential expression in 

MS might be sustained by a network of regulatory transcription 

factors 171. They found that using the TRANSFAC database several 

transcription factor binding motifs were overrepresented in the 

transcriptional signatures associated with MS. We analyzed this 

issue by querying the GeneCodis database, in which the 

annotations for human transcription factors is derived by the 

systematic catalogue described in 172. This analysis unraveled that 

several genes in the female and male MS signatures could be 

regulated by common transcription factors. We focused the 

attention on SP1 which appeared also among our epigenetic 

interactors and belonged to the central core of highly connected 

epigenetic factors. In fact, it is implicated in chromatin remodeling 
173 and may form transcriptional complexes with HDAC, NF-

kappaB and AR 174, 175. SP1 was not one of the transcription factors 
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described in 171, as TRANSFAC lacks high quality matrices to 

detect SP1 binding sites 176. SP1 is the prototype member of a 

family of related transcription factors that recognize G/C rich tracts 

in DNA. Importantly, mitoxantrone, one of the approved drugs for 

the treatment of multiple sclerosis, is a type II topoisomerase 

inhibitor with intercalating properties at GC-rich sequences 

including SP1 binding sites 177, raising the hypothesis that SP1 

targeting in multiple sclerosis could be beneficial. The drug 

WP631 is a specific inhibitor of SP1-dependent transcription 178, 

179. It belongs to the family of anthracyclines, antineoplastic 

compounds with potent cytotoxic effects after DNA intercalation. 

Compared to other anthracyclines, WP631 bisintercalates into 

DNA with a binding affinity close to that of transcription factors 
180-182. Treatment of Jurkat T lymphocytes with WP631 induces 

cell cycle arrest and death 179. Consistently, we observed cell death 

and blockade of T cell proliferation in cultures of human PBMC 

and mouse splenocytes exposed in vitro to WP631. Moreover, in 

vivo administration of the drug reduced T cell responses to the 

encephalitogenic MOG peptide and significantly reduced EAE 

incidence and clinical expression, demonstrating that SP1 

dependent transcription modulates autoimmune responses and that 

its blockade may represent a novel target for MS treatment.   

 

In both the studies (genetic and transcriptomics), the usefulness of 

applying network biology approaches  was evident. On the other 

hand, the downstream effects of the genetic modification in terms 

of transcriptional changes will be an interesting area to be 
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investigated. The transcriptome analysis needs to be extended to 

the progressive forms (SP and PP) of MS. Additional samples 

needs to be recruited in RR-MS and healthy groups. Importantly, 

transcriptome analysis of converted and non-converted CIS 

individuals will be very useful for the identification of biomarkers 

related to conversion. Finally, considering the present limitations 

in the proper diagnosis of MS sub-types, it will be very useful to 

apply machine learning approaches in the transcriptome data to 

identify the reliable gene signatures which can predict the clinical 

form of MS. 
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Abstract

Background: Genome-wide association studies (gwas) are invaluable in revealing the common variants predisposing to
complex human diseases. Yet, until now, the large volumes of data generated from such analyses have not been explored
extensively enough to identify the molecular and functional framework hosting the susceptibility genes.

Methodology/Principal Findings: We investigated the relationships among five neurodegenerative and/or autoimmune
complex human diseases (Parkinson’s disease-Park, Alzheimer’s disease-Alz, multiple sclerosis-MS, rheumatoid arthritis-RA and
Type 1 diabetes-T1D) by characterising the interactomes linked to their gwas-genes. An initial study on the MS interactome
indicated that several genes predisposing to the other autoimmune or neurodegenerative disorders may come into contact
with it, suggesting that susceptibility to distinct diseases may converge towards common molecular and biological networks.
In order to test this hypothesis, we performed pathway enrichment analyses on each disease interactome independently.
Several issues related to immune function and growth factor signalling pathways appeared in all autoimmune diseases, and,
surprisingly, in Alzheimer’s disease. Furthermore, the paired analyses of disease interactomes revealed significant molecular
and functional relatedness among autoimmune diseases, and, unexpectedly, between T1D and Alz.

Conclusions/Significance: The systems biology approach highlighted several known pathogenic processes, indicating that
changes in these functions might be driven or sustained by the framework linked to genetic susceptibility. Moreover, the
comparative analyses among the five genetic interactomes revealed unexpected genetic relationships, which await further
biological validation. Overall, this study outlines the potential of systems biology to uncover links between genetics and
pathogenesis of complex human disorders.
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Introduction

The aim of genome-wide association studies (gwas) is to discover

the common genetic variants associated with susceptibility to

complex diseases. In a typical experiment, hundreds of thousands

of markers are tested simultaneously in cases and controls, and the

allelic frequencies of each marker in the two groups are compared,

so that the contribution of single genes to the disease is quantified.

However, complex diseases do not originate from changes in single

genes, but from the interactions between several genetic and

environmental factors. Therefore, the analysis of isolated genes is

not overly informative about the biological processes underlying

disease and offers limited rationale for the development of novel

therapies. Theoretically, reconstruction of the molecular interac-

tion networks linked to gwas-genes by systems biology approaches

may help to elucidate the functional consequences related to each

susceptibility allele and the combined effects of more genetic

variants. The few reports available to date on this issue

demonstrated that this approach can identify previously unseen

relationships among human diseases at molecular level [1,2].

In this study, we elaborated the genetic interactomes relative to

five complex human diseases. Our lab has strong interest in

multiple sclerosis (MS), a chronic disorder of the central nervous

system presumably of autoimmune etiology, characterized by

inflammation of the white matter, demyelination and neurode-

generation [3]. Initially, we reconstructed the MS interactome

and searched for interactions with genes predisposing to either

neurodegenerative (Parkinson’s disease Park, Alzheimer’s disease

Alz) or autoimmune (Type 1 diabetes T1D, Rheumatoid Arthritis

RA) disorders. Then, disease interactomes of all five disorders

were analyzed at the functional level by independent pathway

enrichment studies. Finally, paired comparisons elucidated

relatedness among the diseases. Interestingly, the shift from

single genes to molecular frameworks via system biology

unraveled novel functional relationships among the five complex

diseases.
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Results

Link between the MS interactome and the genes
predisposing to other neurodegenerative or
autoimmune diseases
Initially we identified the susceptibility genes that were linked to

MS and to other neurodegenerative (Park, Alz) or autoimmune

(T1D, RA) disorders. We utilized results from 39 published

genome-wide association studies on these five human diseases

available in the GWAS catalog [4] and found genetic mutations in

179 genes passing the statistical significance threshold of 1025

(Table 1). There were 6 studies available for MS, Park and RA, 8

for T1D, and 13 for Alz (Table S1). Notably, the number of studies

carried out for each disease did not seem to influence the total

number of disease-associated genes. For instance, despite the

highest number of genome-wide association studies performed for

Alz, the total number of susceptibility genes reported was the

lowest among the five diseases. The ratios between the number of

the reported genes and the number of studies in each disease

accounted for this observation (Table 1). Interestingly, MS

displayed the highest number of susceptibility genes and the

highest ratio, suggesting a greater genetic heterogeneity in MS

than in the other four diseases. Then, as a first step towards the

definition of the genetic network underlying these five diseases, we

reconstructed the MS genetic interactome and checked possible

links with the genes predisposing to the other neurodegenerative or

autoimmune diseases. Using the VisANT tool we derived 376 first-

degree interacting partners for the 54 MS gwas-genes. Among

these MS interactors, 141 were connected with at least one among

17 T1D, 11 RA, and 10 Park or Alz gwas-genes (Figure 1A and

Table S2). Notably, 4 MS interactors were RA (HLA-DQA1,

TRAF1) or T1D (IL2, PTPN11) gwas-genes themselves. It was

also evident that several gwas-genes could come into contact with

two or more MS interactors (Figure 1A), and that 24 MS

interactors were connected with both neurodegenerative and

autoimmune genes (red nodes in Figure 1A), including the

PTPN11 gene.

Now, the analysis of disease relatedness with MS is more

effective when considering the genetic interactome rather than

direct interactions at the gwas-gene level. In fact, no interactions

existed between gwas-genes predisposing to MS and Alz, for

example, but there were several shared interactions within the

genetic interactomes linked to (but not including) the respective

gwas-genes (Figure 1B). Therefore, the introduction of first-degree

interactors in the definition of a disease-related molecular

framework may lead to the discovery of relatedness among distinct

complex disorders.

Molecular relatedness among autoimmune and
neurodegenerative genetic interactomes
To perform a global comparative analysis among autoimmune

and neurodegenerative genetic interactomes, we derived a list of

interacting partners for each gwas-geneset (Table 2, Table S3). As

expected, the number of interactors was higher in MS and T1D,

due to the more abundant number of reported gwas-genes.

However, when normalizing the number of interactors to the total

number of gwas-genes in each disease, RA reported the highest

Table 1. Summary of gwas data.

MS Park Alz T1D RA Total

No. of studies 6 6 13 8 6 39

Unique genes 54 35 17 52 21 179

Gene/study
ratio

9 5.83 1.30 6.50 3.50 4.58

doi:10.1371/journal.pone.0018660.t001

Figure 1. Relationship between MS interactome and gwas genes relative to other diseases. A. MS interactors shared by genes
predisposing to neurodegenerative (green) and/or autoimmune (pink) diseases. Blue nodes indicate the MS interactors contacted by either
neurodegenerative or autoimmune susceptibility genes. Red nodes indicate the MS interactors contacted by both neurodegenerative and
autoimmune susceptibility genes. Note that four MS interactors are present among the T1D or RA gwas-genes. B. Comparison between MS and Alz at
gwas-gene and genetic interactome levels. Despite the absence of a direct interaction at gwas level, shared molecular networks appear in the genetic
interactomes (green section).
doi:10.1371/journal.pone.0018660.g001
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ratio among the five diseases, indicating that at least some of the

RA susceptibility genes were highly interactive. In contrast, Park

displayed the lowest interactor/gene ratio, despite the discrete

number of described gwas-genes.

Next, we examined the relationships among the five diseases by

comparing the genetic interactomes in a pairwise fashion. The

overlaps between interactomes are given in Table S4. Notably,

higher concordances were found among the autoimmune diseases,

with MS-RA, MS-T1D and T1D-RA having 84, 61 and 60

interactors shared respectively. Among the neurodegenerative

diseases, the sharing of interactors was limited to 10 elements for

Park-Alz, 20 for Park-MS and 25 for MS-Alz. Most surprisingly,

26 interactors were shared between the neurodegenerative Alz and

the autoimmune T1D. The statistical significances for these

observations were calculated using a hypergeometric test and are

shown in Figure 2 (see bars) and Table S5. MS-RA had the lowest

p-value (P = 1.02E-67), followed by T1D-RA (P= 4.42E-43) and

MS-T1D (P=3.09E-33). The T1D-Alz pair, with the p-value of

6.48E-19, was more significant than the MS-Alz pair (P = 5.21E-

16). Comparatively higher p-values were found among T1D-Park

(P = 1.18E-04), Alz-Park (P= 8.72E-07), RA-Park (P= 3.95E-07)

and MS-Park (P= 3.36E-08), exhibiting the distant relatedness for

all possible combinations with Park (Figure 2). Altogether, the

results showed the close relatedness among autoimmune disorders

and within Alz pairs.

The degree of relatedness may be due to the real biological

properties of gwas-genes, i.e. the autoimmune gwas-genes

participate in more biological pathways and processes than the

neurodegenerative ones, and therefore the probability of abundant

interactor sharing among autoimmune diseases is higher. Howev-

er, we hypothesized that the observations could be partly biased by

the difference in the number of studies carried out on distinct

gwas-genes, consequently resulting in higher or lower interactor

information. To critically assess this aspect, we considered that the

average number of interactions per gene in the VisANT database

was equal to 7.26 (93684 interactions for 12888 human genes).

Consequently, we derived a normalization factor by normalizing each

disease interaction ratio to the one in the VisANT database (Table

S5). For example, the highest interaction ratio seen in RA resulted

in a normalization factor equal to 1.88, signifying a nearly two fold

increase in the interaction ratio compared to the database. Vice

versa, Park normalization factor was 0.71, indicating that the

interaction ratio was only 71% of that expected.

For paired analyses we multiplied the normalization factors relative

to the two diseases (see [materials and methods]), and used the

paired normalization factor to optimize the observed/expected ratio of

interactor sharing. This resulted in an interactor score for each

disease pair (Figure 2). So, if on the one hand the p-values relative

to the inter-disease relatedness may reflect the shared interactome

among diseases, on the other hand the interactor score might

flatten or enhance some of these observations as it corrects for

annotation bias. Therefore, both the p-values and the interactor

scores have to be considered while interpreting the results. The

interactor scores confirmed the close association among disease

pairs in the autoimmune group (Figure 2). Surprisingly, the highest

scores appeared in Alz-Park and T1D-Alz pairs. Therefore, even

after eliminating the possible bias introduced by database

annotation, the T1D-Alz pair maintained high association levels.

Biological themes in autoimmune and/or
neurodegenerative interactomes
In order to identify the biological themes embedded in each

interactome, we used the ToppGene suite, an online tool for

functional enrichment analysis. A Bonferroni corrected p-value of

0.05 was used to extract the significant biological pathways

reported by three distinct databases (CGAP-BioCarta, KEGG and

Panther). The highest number of pathways was reported in T1D

followed by MS, RA, Alz and Park respectively (Table S6).

Furthermore, we tabulated the shared pathways among diseases

and grouped them according to the database in seven main

categories: Growth factor/Hormone signaling, Innate/Adaptive immunity,

Cell cycle and apoptosis, Cancer, Adhesion, Host response and Other

(Figure 3). The combined statistical significance of the pathway

enrichments is also listed in Figure 3. The majority of shared

pathways were categorized in Growth factor/Hormone signaling,

followed by Innate/Adaptive immunity and Cell cycle and apoptosis,

Table 2. Genetic interactomes for neurodegenerative and/or
autoimmune disorders based on VisANT database.

Genes Interactors Interactor/gene ratio

Park 35 160 4.57

Alz 17 109 6.41

T1D 52 316 6.07

RA 21 249 11.85

MS 54 376 6.96

doi:10.1371/journal.pone.0018660.t002

Figure 2. Molecular relatedness based on shared interactome. Statistical significance for each paired analysis is given.
doi:10.1371/journal.pone.0018660.g002

Shared Interactomes among Complex Human Disorders

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18660

129



Figure 3. Pathways shared among diseases. Colors refer to the three distinct databases used for the pathway enrichment analysis. The
combined p-values for pathway overlap among diseases are given.
doi:10.1371/journal.pone.0018660.g003
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while categories like Cancer, Host response and Other appeared in

single databases.

In the Growth factor/Hormone signaling category, Panther indicated

EGF, FGF and PDGF signaling pathways as shared by three diseases,

Alz and T1D with MS or RA. The other pathways were shared

exclusively by autoimmune diseases, with the exception of

Angiogenesis that appeared both in T1D and Alz. In contrast to

Panther, KEGG evidenced predominant pathway sharing among

autoimmune disorders, except for the ErbB signaling present in Alz

and in the three autoimmune diseases. CGAP-BioCarta exposed

high concordances among Alz, T1D and MS. There were 10

pathways shared exclusively by these three diseases, among which

EGF signaling and PDGF signaling were already reported by the

Panther database. Many of the pathways common to these trios

were related to tyrosine kinase signaling, such as Trka receptor

signaling and Sprouty regulation of tyrosine kinases. Another remarkable

observation was the sharing of the NGF pathway by MS and Alz.

IGF-1 signaling, IL3 signaling, Insulin signaling and Growth hormone

signaling pathways were shared exclusively by T1D and Alz. In

addition, Park shared only three pathways with the autoimmune

diseases, namely Ceramide signaling, Trefoil factors initiate mucosal

signaling and Phosphoinositides and their downstream targets. Overall,

pathways shared by the five diseases in the Growth factor/Hormone

signaling category portrayed an undisputable association within the

autoimmune group with the predominant presence of T1D. It also

revealed that several biological themes related to tyrosine kinase

signaling were shared among Alz, T1D and MS. Most

unexpectedly, the analysis exposed numerous growth factor

related pathways common to T1D and Alz.

The second category Innate and adaptive immunity contained 20

pathways derived from the three pathway databases. Although

expected for autoimmune diseases, consistent sharing of immunity

related pathways was also found in Alz. For example, pathways

related to B and T cell activation appeared in all databases as

shared by T1D, RA, MS and Alz. Furthermore, in the KEGG

database Alz and T1D exclusively shared the Fc epsilon RI signaling

pathway and Natural killer cell mediated cytotoxicity pathway, whereas

CGAP-BioCarta emphasized predominant pathway sharing

between MS and RA.

In the third category, Cell cycle and apoptosis, Panther and KEGG

contributed with 2 pathways each, and Park shared the Apoptosis

signaling pathway with RA and MS. Among the CGAP-BioCarta

results, Alz shared 3 pathways with autoimmune diseases, while 4

pathways were shared exclusively by T1D-RA or RA-MS disease

pairs.

The fourth category contained pathways derived from the

KEGG database related to Cancer. It resulted that many genes

appearing in autoimmune and/or neurodegenerative interactomes

played a role in cancer related pathways.

In the fifth category (named Adhesion), the Focal adhesion pathway

(KEGG) was common to Park and the autoimmune group and the

Integrin signaling pathway (CGAP-BioCarta) was shared among

neurodegenerative disorders and T1D. In addition, the Adherens

junction pathway in KEGG was shared among Alz, T1D and MS.

The sixth category contained pathways related to Host response,

which was reported exclusively by the KEGG database. Park and

MS shared two pathways related to E. coli infection, and the

autoimmune diseases shared the Epithelial cell signaling in Helicobacter

pylori infection pathway. Lastly, the category Other contained the

Parkinson’s pathway reported by Panther, which was common to

Park and RA.

Overall, pathway analysis revealed predominant sharing of

functions among autoimmune diseases. Moreover, many of these

pathways appeared also in Alz, which was associated with T1D in

most cases.

Quantitative analysis of functional relatedness among
neurodegenerative and autoimmune interactomes
We tabulated the shared pathways for all disease pairs (Table

S7) and quantified the significance of observed pathway overlaps

by performing a hypergeometric test for each database separately

(Figure 4A). According to Panther, the most significant pathway

overlap was in the T1D-Alz pair (P = 2.10E-07), followed by the

T1D-RA (P= 1.48E-05) and the RA-Alz (P = 8.69E-05). The MS-

Park pair displayed no significant pathway overlap (P = 0.184).

Among the KEGG results, the most highly significant pathway

overlap was between MS and RA (P= 1.03E-13), followed by

T1D-RA (P= 51.22E-12), T1D-Alz (P = 5.91E-11), MS-T1D

(P= 8.58E-10) etc. Yet, the analysis revealed that pathway

overlaps with Park could be due to chance, except for the MS-

Park pair (P = 5.44E-03). Finally, the CGAP-BioCarta analysis

recognized T1D-Alz as the most significant association

(P = 3.71E-12), followed by MS-RA (P= 1.60E-11), MS-T1D

(P= 2.16E-09), MS-Alz (P = 1.60E-08) etc. To summarize, the p-

values based on KEGG and CGAP-BioCarta databases were

more significant among the disease pairs in the autoimmune

group, especially MS-RA. Moreover, on the basis of consistent

statistical results in all the three databases, the T1D-Alz pair can

be considered as the most significant disease pair in the context of

shared pathways.

Figure 4. Molecular vs. functional relatedness. A. Functional relatedness based on shared pathways. Statistical significance for each paired
analysis is given as relative to the database. The dotted line indicates the p-value threshold of 0.05. B. Shared pathways and interactors among
disease pairs.
doi:10.1371/journal.pone.0018660.g004
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Theoretically, pathway sharing was partly anticipated as

consistent interactor sharing was present in several disease pairs.

Clearly, the more interactors were shared, the more common

pathways were expected. We critically evaluated this issue and

measured the Pearson’s correlation between the interactors and

the pathways (as reported by the three databases together) shared

among the disease pairs. Consistently, we observed that the

number of shared pathways was proportional to the number of

shared interactors in most cases (Figure 4B). However, the Alz

pairs with autoimmune diseases were not following this trend. The

overall Pearson’s correlation coefficient was 0.79, which increased

remarkably to 0.95 when Alz-autoimmune disease pairs were

excluded. These observations demonstrate that the number of

shared biological pathways among Alz and autoimmune diseases is

higher than expected on the basis of interactor sharing.

Finally, we ranked the associations among diseases based on the

statistical significance of shared pathways in each database (Table

S6). Scores starting from 1 were assigned from the highest

significant association to the lowest. Those with insignificant p-

values were assigned the rank 10. Then, we derived the cumulative

ranks for each disease pair by summing their ranks in the three

databases. As expected, T1D-Alz pair had the highest rank,

followed by the autoimmune disease pairs MS-RA and T1D-RA,

and then by MS-Alz and RA-Alz. All Park pairs scored very low.

These results were depicted in Figure 5 displaying a network

summary of relationships among the five diseases.

Altogether, the relationships among diseases identified at the

level of molecular interactions were found to be sustained at the

level of biological pathways, especially among autoimmune

diseases. Surprisingly, the same approaches evidenced strong

relatedness between Type 1 diabetes and Alzheimer’s disease.

Discussion

The reconstruction of the molecular framework hosting genetic

variants associated with susceptibility to a complex human

disorder has the potential to reveal the biological mechanisms

underlying that disease and to highlight similarities with other

diseases. Here we made a cross-disease comparison of autoim-

mune (T1D, RA) and neurodegenerative diseases (Park, Alz)

starting from the point of view of MS, as it presents both

autoimmune and neurodegenerative facets [3]. Indeed, several

nodes in the MS interactome interacted with the susceptibility

genes of the other four diseases, with a subset of MS interactors

making contact with both autoimmune and neurodegenerative

gwas-genes. These observations indicate that MS offers a

framework that, to a certain extent, can be shared by other

diseases. This is partly due to the fact that genetic susceptibility to

autoimmune disorders may be driven by variations in some

common genes [5,6]. In this regard, two scenarios have been

demonstrated. In the first case, the same variant may be involved

in susceptibility to distinct diseases. For instance, genetic variation

in the CLEC16A gene is associated with MS as well as T1D in the

Sardinian population [7]. In the second case, distinct variants in

the same gene predispose to distinct diseases, i.e. polymorphisms

in the IL2RA gene linked to MS or T1D susceptibility are different

[8,9].

Previous studies have shown that molecular relatedness between

distinct diseases may be found when searching for direct

relationships among gwas-genes [10,11] and that the analysis of

first-degree interactors may also lead to similar observations[1,2].

However, the advantage of the second approach compared to the

first one has never been specifically addressed. Our study shows

that the analysis of first-degree genetic interactomes may highlight

shared molecular frameworks undetectable at the gwas-gene level.

In fact, even when no interactions exist between gwas-genes,

several shared interactions may be found when considering the

genetic interactomes.

Furthermore, we elucidated the interactors linked to the gwas-

genes in all five diseases and the pathway enriched in each disease-

related interactome using the ToppGene suite. This tool contains

a meta-database of annotated pathway databases such as Panther,

KEGG, and CGAP-BioCarta. As the level of annotation and the

number of genes related to a pathway may vary among databases

[12], the outputs were not pooled but shown in relation to each

database. Although a few previous studies revealed enriched

biological pathways related to susceptibility genes in several

complex human disorders, including MS [10,13–15], no informa-

tion was available on pathways emerging from the global genetic

framework. In contrast, our study ascertained such issue in

multiple sclerosis as well as in four additional autoimmune or

neurodegenerative disorders. Independent pathway analyses

demonstrated several commonalities among distinct genetic

interactomes. Numerous immune related pathways were enriched

in autoimmune interactomes. This result was expected as many of

the susceptibility genes in RA, T1D and MS were immune related.

Notably, the pathways B-cell activation and T-cell activation appeared

in all autoimmune diseases. It is well known that both arms of

adaptive immunity greatly contribute to autoimmunity. Our data

suggest that the processes leading to alterations in immune

tolerance may be caused or sustained by the genetic framework,

and, hence, support the rationale for therapeutical approaches

Figure 5. Overall disease relatedness based on shared
pathways in the Panther, KEGG and CGAP-BioCarta databases.
Green nodes indicate the neurodegenerative disorders, whereas pink
nodes highlight the autoimmune diseases. The color of the edges
connecting the nodes reflects the shared pathway rank ranging from 3
(highest relatedness) to 30 (lowest relatedness).
doi:10.1371/journal.pone.0018660.g005
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targeting T and B lymphocytes in autoimmune disorders.

Surprisingly, the same pathways appeared in Alzheimer’s disease.

The role of adaptive immunity in Alz so far remains under-

explored, however some studies suggest altered T cell phenotypes

and responses in such patients (reviewed by [16]). Interestingly,

regular use of anti-inflammatory drugs reduces the odds of

developing Alz [17,18]. Our observation that the Alz genetic

framework may have an impact on immune function questions the

classical distinction between inflammatory and non-inflammatory

diseases and supports the hypothesis that, even though the primary

insult is not inflammation but neurodegeneration, immunological

pathways play a role in the etiopathogenesis of Alzheimer’s disease

[19].

Most of the enriched pathways appeared in the category Growth

factor/Hormone signaling consistently among the three pathway

sources. Panther and CGAP-BioCarta reported the EGF related

pathway as enriched in Alz, T1D and RA or MS respectively,

while KEGG highlighted the ErbB signaling pathway in all four

diseases. EGF receptor belongs to the ErbB gene family.

Interestingly, EGF is decreased in liquor from multiple sclerosis

patients [20], while increased in the synovial fluid of RA patients,

where it may regulate the inflammatory process [21]. Moreover,

EGF promotes the release of amyloid precursor protein (APP)

[22], indicating that it might support amyloidogenesis in Alz.

Finally, downregulation of the EGF receptor signaling in

pancreatic islets causes diabetes [23]. Our data suggest that the

involvement of the EGF pathway in the pathogenesis of various

complex human disorders may be genetically determined. The

FGF signaling pathway appeared in two databases as enriched in

T1D and Alz. Interestingly, biological evidence links alterations in

this pathway to the two diseases, e.g. attenuation of FGF signaling

in mouse beta cells leads to diabetes [24], and aFGF levels in

liquor are increased in Alzheimer’s patients [25]. Insulin related

pathways were also enriched in T1D and Alz interactomes.

Obviously, the major defect in T1D is insulin deficiency caused by

the autoimmune attack against pancreatic b-cells. Accumulating

evidences indicate that alterations in insulin signaling may

contribute to Alz pathology (reviewed in [26]). Moreover, tau

phosphorylation is increased in diabetic animals [27], and mice

with combined APP overexpression and diabetes show exacerbat-

ed histological features of Alz [28]. Another interesting overlap is

the angiogenesis pathway shared exclusively between Alz and

T1D, especially if interpreted in relation to blood brain barrier

dysfunction due to increased vascular permeability induced by

hyperglycemia [29]. Further sharing of Growth factor/Hormone

signaling pathways between Alz and T1D strongly supports the

hypothesis of a genetic and functional link between these two

disorders.

CGAP-BioCarta highlighted TNF related pathways both in RA

and MS genetic interactomes. TNF is an inflammatory mediator

clearly involved in the RA and MS pathology [30,31]. Intrigu-

ingly, various biological compounds targeting TNF resulted

effective in RA treatment [32], while detrimental in multiple

sclerosis [33], indicating that TNF related pathways may play a

dual role in autoimmune diseases.

The Cell cycle and apoptosis category was almost dedicated to

autoimmune diseases. Such pathways regulate induction of

immune tolerance and, indeed, changes in the balance between

cell proliferation and death may lead to autoimmunity [34,35].

The same processes may be altered in neoplastic cells. Cancer

related pathways also consistently appeared enriched in the

KEGG database. Overall, our data indicate that the genetic

framework predisposing to complex human disorders may

contribute to changes in these basic cellular functions.

The paired comparisons of genetic interactomes allowed

measuring the degree of relatedness among the five disorders.

Sharing of interactors and pathways was highly significant among

the autoimmune group. This may be partly explained by the

genetic overlap between autoimmune diseases [5,6]. In fact,

among all autoimmune gwas-genes analyzed in our study, HLA-

DRB1 was associated with MS, T1D and RA, three genes

(PTPN22, PRKCQ, CTLA4) were shared between T1D and RA,

three (IL2RA, IL7R and CLEC16A) between MS and T1D, and

one more (CD40) between MS and RA. However, analyses at the

genetic network level also showed that several gwas-genes specific

for single pathologies converged at the interactome level, meaning

that, although the primary events may differ, the resulting

functional cascades may come together and lead to alterations in

the same pathways.

The most surprising observation was the strong correlation in

the T1D-Alz pair in terms of shared interactome and functions.

Moreover, this pair was found highly related by consistent

performances in the three distinct pathway databases. Clinical

and epidemiological data are available on associations between

T1D and Alz. Type 1 (and Type 2) diabetic patients present

deficits in numerous cognitive functions (reviewed in [36]) and

diabetes is a risk factor for Alz [37]. In addition, biological

evidence indicates that dysregulation of insulin metabolism may

affect amyloid-b accumulation and degradation [38].

In conclusion, in this article we provided an unprecedented

comparison among the genetic interactomes derived from genes

predisposing to five complex human disorders. The shift in the

network analysis from the gwas-genes to their first-degree

interactors made the detection of shared molecules possible even

when no interactions were present at the gwas-level. Furthermore,

it revealed strong molecular and functional relatedness among

autoimmune disorders. For example, the genetic interactomes

pertaining to autoimmune diseases converged on numerous routes

regarding immunity and growth factor signalling pathways. So,

network generation and functional annotation highlighted several

known pathogenic processes, indicating that changes in these

functions might be driven or sustained by the framework linked to

genetic susceptibility. Finally, the same tools underlined several

inherent relationships among the five diseases at the level of

genetic interactomes and biological pathways which went

unnoticed until now. Type 1 diabetes and Alzheimer’s disease

were emblematic in this respect, as they appeared the most closely

related disorders among all the disease pairs due to the extensive

sharing of interactors and functions.

Overall, this study established that the reconstruction of the

molecular framework hosting the genetic variants predisposing to

complex human disorders can significantly contribute to our

understanding of the biological functions linked to susceptibility

genes. Many of these in-silico results highly correlate with the

present experimental biology evidence, proving the reliability of

systems biology tools. Furthermore, the study revealed unexpected

genetic relationships, which await further biological validation.

Materials and Methods

Diseases and genetic association data
We collected genome wide association data related to five

human diseases (T1D, RA, Park, Alz and MS) from the GWAS

catalog (December 2009 version). The GWAS database is an

online resource comprising of all published genome-wide associ-

ation studies or meta-analyses of them, and provides information

regarding the gene, SNP variations and their statistical significance

in each study. We retrieved all the genes predisposing to each
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disease with the default critical p-value (10205) of the database.

The list of genes associated with each disease is summarized in

Table 1 and the detailed records about each study such as sample

size, journal name, authors, site of polymorphism etc. are

summarized in the Table S1.

Interactome analysis
To derive the list of interacting partners of the gwas-genes, we

used the VisANT tool (December 2009 version) [39], a web-

enabled program for construction, visualization, and analysis of

molecular and higher order networks based on functional and

physical relations of the genesets. Further, VisANT retrieves the

interaction information from databases such as BIND, MIPS,

Biogrid, HPRD and CAGT. The lists of interactors are given in

Table S3. The statistical significances for the interactor overlap

among disease pairs were calculated using a hypergeometric test.

In order to compensate the eventual biases in database annotation,

we calculated the interactor score through the normalization of the

observed/expected ratio. In the VisANT database there were

93684 interactions among 12888 Homo sapiens genes, resulting in

an average of 7.26 interactions per gene (VisANT interaction

ratio). This ratio was used for normalization, as follows:

Disease interaction ratio = No. of interactions/No. of gwas-

genes.

Normalization factor = Disease interaction ratio/VisANT

interaction ratio.

Paired normalization factor = (Disease1 normalization factor) x

(Disease2 normalization factor).

Observed = No. of interactors shared within a disease pair.

Expected = (No. of interactors in disease1/12888) x (No. of

interactors in disease2).

Interactor score = (Observed/Expected) x (Paired normaliza-

tion factor).

Pathway enrichment study
We chose the ToppGene suite for determination of pathways

enriched in the genetic interactomes. At the time of analysis, this

tool maintained a meta-database of pathway information derived

from KEGG (update: June 2009), Panther (update information not

available), CGAP-BioCarta (update: August 2009). The analysis was

performed with the stringent criteria of Bonferroni corrected p-

value cut-off 0.05 in all cases. The combined p-values were

calculated for the shared pathways among diseases using Fisher’s

method [40].
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a b s t r a c t

In this study we investigated the contribution of gender to global gene expression in peripheral blood
mononuclear cells from multiple sclerosis (MS) patients and healthy controls. We observed that, in
contrast to the conventional approach, gender-based case-control comparisons resulted in genelists with
significantly reduced heterogeneity in human populations. In addition, MS was characterized by
significant changes both in the quantity and in the quality of the sex-specific genes. Application of
stringent statistics defined gender-based signatures which classified a second independent MS pop-
ulation with high precision. The global unsupervised cluster analyses for 60 subjects showed that 29/31
female and 27/29 male samples were properly identified. Notably, MS was associated in women and in
men with distinct gene signatures which however shared several molecular functions, biological
processes and interactors. Issues regarding epigenetic control of gene expression appeared as the main
common theme for disease, with a central role for the functional modules related to histone deacetylase,
NF-kappaB and androgen receptor signaling. Moreover, in silico analyses predicted that the differential
expression in MS women and men were depending on the transcription factor SP1. Specific targeting of
this pathway by the bis-anthracycline WP631 impaired T cell responses in vitro and in vivo, and reduced
the incidence and the severity of experimental autoimmune encephalomyelitis, indicating that SP1
dependent gene transcription sustains neuroinflammation.

Thus, the gender-based approach with its reduced heterogeneity and the systems biology tools with
the identification of the molecular and functional networks successfully uncovered the differences but
also the commonalities associated to multiple sclerosis in women and men. In conclusion, we propose
gender-based systems biology as a novel tool to gain fundamental information on disease-associated
functional processes.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple sclerosis (MS) is a chronic demyelinating disorder of
the central nervous system (CNS) characterized by the presence of
inflammatory cells and mediators within nervous tissue [1,2]. It is
a chronic disease with onset in young adulthood, prevalence of

1:500 in some geographical regions and predominance in women
(2:1 female/male ratio) with the relapsing-remitting (RR-MS) form
of disease [3]. Diagnosis of MS is difficult due to the variability of
clinical symptoms patients experience and to the resemblance with
other neurological disorders of CNS. Currently, diagnostic criteria
are mainly based on clinical and radiological examinations, as
specific laboratory tests are not yet available. Furthermore, there is
still no single biomarker that correlates accurately with clinical
activity or treatment response [4,5].

Multiple sclerosis is a complexdiseasedeterminedbybothgenetic
and environmental factors. Intriguingly, many of the susceptibility
genes play a role in immune system. For instance, classical linkage
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analysis in large familieswithMSpointed outmainly the importance
of the major histocompatibility complex locus in determining
predisposition to the disease [6]. More recently, application of high-
throughput screening techniques in genetics association studies [6]
identified additional polymorphisms in immune related genes such
as interleukin (IL) 7 receptor and IL2 receptor [7]. AlthoughMSaffects
the CNS, there are evidences of altered immunity in the periphery in
MS patients [2]. Further, the most widely used therapeutic drugs in
MS are either immunosuppressive or immunomodulatory agents
[2,8], indicating that targeting peripheral immune system is benefi-
cial to patientswith this CNS disorder. These observations sustain the
rationale for employing peripheral blood mononuclear cells (PBMC)
as aneasily accessible and informative sourceof biologicalmaterial in
transcriptome studies. Transcriptional profiling aims to comprehend
complex molecular interactions and to identify disease related
biomarker. Such informationmay lead to newhypotheses that either
would not be considered based on current knowledge or which are
too complex to be examined by conventional approaches. Here, we
performedmicroarray-based gene expressionprofiling onperipheral
bloodmononuclear cells (PBMC) derived from23MSpatients and 22
healthy controls (CTRL). To reduce variability, we included patients
with the relapsing-remitting clinical course, who were free from
immunomodulatory treatments and from any other acute or chronic
inflammatory disorder. Distinct from the conventional disease tran-
scriptomics approach, we applied a gender-based approach for
selection of differentially expressed genes (DEG) inMS and validated
them in a second independent MS population. Further, we extended
bioinformatical annotation to the systems biology level and verified
the involvement of a novel pathway in the animal model of multiple
sclerosis.

2. Materials and methods

2.1. Inclusion criteria for RR-MS patients and healthy controls

Clinical investigations have been conducted according to the
principles expressed in the Declaration of Helsinki and peripheral
blood was drawn after signing of the institutional informed
consent. Twenty-three MS patients were initially enrolled for this
study. They were Italian adult subjects comprised of 13 women
and 10 men. They had relapsing-remitting course of the disease
diagnosed according to the McDonald criteria [9] and all of them
were clinically stable at the time of blood sampling. Moreover,
they were not suffering from any acute or chronic inflammatory
diseases or other autoimmune disorders and they had not yet
started any immunomodulatory therapy for MS. Sampling was
performed at least 4 weeks after the last clinical attack or steroid
treatment. All participants had peripheral blood counts within
the reference range. A second MS population (comprised of 10
women and 8 men) was subsequently enrolled according to the
same inclusion criteria. Twenty-two healthy subjects (comprised
of 10 women and 12 men), who had no acute or chronic
inflammatory diseases or autoimmune disorders, were included
as controls for this study. All blood samplings were performed
between 9 and 12 a.m.

2.2. PBMC isolation and RNA isolation

Peripheral blood mononuclear cells (PBMC) were isolated using
a discontinuous density gradient (Lymphoprep, Nycomed, Oslo,
Norway). Viable cells were counted by Trypan Blue (SigmaeAldrich,
Milan, Italy) exclusion. Then total RNA was extracted using TriRe-
agent (Ambion, Applied Biosystems, Monza, Italy) and stored
at �80 �C.

2.3. The microarray experiment and data processing

Total RNA extracted from PBMC was used for microarray
experiments on Illumina Human_Ref-8_V2 arrays (Illumina, Son,
Netherlands). Quantification and quality analyses of RNA were
performed on a Bioanalyzer 2100 (Agilent, Milan, Italy). Reverse
transcription and biotinylated cRNA synthesis were performed
using the Illumina TotalPrep RNA Amplification Kit (Ambion),
according to the manufacturer’s protocol. Hybridization of the
cRNAs was carried out on Illumina Human_Ref-8_V2 arrays. These
arrays contain about 22,000 probes exploring the transcripts con-
tained in the Refseq database. Array hybridization, washing,
staining and scanning in the Beadstation 500 (Illumina) were per-
formed according to standard Illumina protocols. The BeadStudio
software (Illumina) was used to analyze raw data grouped by
experimental condition. The data were normalized using cubic
spline method as implemented in the software. The MIAMI
compliant microarray data have been deposited in the EBI
ArrayExpress database (Accession no. E-MTAB-380). The Bead-
studio software reports a detection p-value, which represents the
confidence that a given transcript is expressed above the back-
ground defined by negative control probes. This value clues the
“absent” or “present” status of transcripts in the array. In this study,
we considered a probe to be “present” in the array if at least 2/3 of
the samples in both control and disease phenotypes had a detection
p-value < 0.05. With this paradigm we removed the potential
unfavorable probes from the analysis and proceeded with 10,390
probe sets for the study. In addition, we identified three outlier
samples through both the principal component analysis (PCA) and
hierarchical sample clustering methods using MeV package 4.3.01
[10], and removed those samples from further analysis. There were
no significant differences in age (36.9 � 11.3 vs. 35.5 � 11.4 in
female and male controls, 36.5 � 7.5 vs. 36.3 � 7.8 in female and
male patients), disease duration (3.8 � 3.2 vs. 6.1 � 5.5 in female
and male patients), EDSS score (1.7 � 1.4 vs. 1.8 � 1.5 in female and
male patients) and annual relapse rate (1.5 � 1.6 vs. 1.0 � 0.9 in
female and male patients) between the two gender groups.

For the validation group comprising of 10 female and 8male RR-
MS samples (Age: 40.5 � 14.1 vs 36.5 � 8.6; EDSS: 1.6 � 0.7 vs.
1.0 � 1.0; Disease duration: 6.9 � 8.4 vs. 8.4 � 6.3; Annual relapse
rate: 1.1�1.2 vs. 0.8� 0.4 in female andmale patients respectively),
the experimental protocols for RNA extraction, labeling and array
hybridizations were performed as described above. In order to
reduce the technical variation due to hybridizations made at
distinct time points, batch correction was performed for the newly
recruited samples using the dChip software [11].

2.4. Analysis of differential gene expression

Toward the identification of differentially expressed genes, the
samples were divided into MS and healthy control groups, each
comprising of 21 samples. We used three parallel statistical
methods to identify the differentially expressed genes. A differen-
tially expressed genewas the one that passed at least two tests. The
first method was a two sample t-test performed on MS and healthy
controls with a p-value threshold of 0.01. The t-test was performed
withWelch approximation for unequal variances in the two groups
using the MeV package. Secondly, we used Significant Analysis of
Microarrays [12], a robust permutation based non-parametric
method that relies on variance information present in measure-
ments obtained from the probes. Unlike t-test, SAM outputs the q-
value which represents the significance of the differential expres-
sion for a given gene. In our study, the q-value cut-off was 20% and
used the SAM implementation in Stanford tools for Excel software,
version 1.1. Finally, a bayesian approach to identify differentially
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expressed genes was used as implemented in the Bayesian Analysis
of Differential Gene Expression, BADGE 1.0 [13]. The BADGE software
computes the posterior probability that a gene is expressed more
than one fold in the first condition than in the second condition. A
false positive rate of 1% was selected for the bayesian analysis and
a leave one out cross validation was carried out by which the
prediction accuracy ranged from 70 to 100 percent. The unsuper-
vised classification of samples using the differentially expressed
genes was performed by means of Hierarchical clustering (Pearson
correlation, average linkage), as implemented in the MeV package.
For the validation experiments, we generated a heatmap where the
new datasets did not contribute to the average expression value for
each DEG used for the calculation of the Log2 Ratio but were
challenged with the previously identified average expression
values.

2.5. Functional enrichment study

We choose the Genecodis program (as of November 2009) [14],
a grid-based online tool that integrates different sources such as
GO, KEGG, miRBase etc. to search for biological features that
frequently co-occur in a set of genes and ranks them by statistical
significance. Unlike most of the currently available tools which are
designed to evaluate single annotations, Genecodis finds relation-
ships among annotations based on co-occurrence patterns that can
extend the understanding of the biological events associated to
a given experimental system. Furthermore, the database was
annotated with approx. 98% of the genes in our genelist. In the
Genecodis analysis, we selected the hypergeometric test, corrected
for multiple testing using Benjamini & Hochberg FDR method. The
corrected p-value threshold was 0.05 and the minimum number of
genes in a functional categorywas set to 3. Combined p-values were
calculated using the Fisher’s approach as implemented in MetaP
program (http://people.genome.duke.edu/wdg48/metap.php).

2.6. Systems biology tool

To derive the interacting genes, we used the VisANT tool (as of
December 2009) [15], a web-enabled program for construction,
visualization, and analysis of molecular and higher order networks
based on functional and physical relations of the genesets. Further,
VisANT has references to several databases, such as KEGG, Gen-
Bank, and Gene Ontology database.

2.7. cDNA synthesis and real-time PCR

Total RNA was reverse transcribed using random hexamer
primers and Superscript III reverse transcriptase (all from Invi-
trogen) following the manufacturers’ instructions. Real-time PCR
was performed using TAQMan Universal Master Mix (Applied
BioSystem, Monza, Italy). Amplification sets were purchased at
Applied BioSystem. GAPDH and ALG8 were used as housekeeping
genes for high or low expression DEG respectively. mRNA levels of
the target gene were expressed as percentage of the housekeeping
gene.

2.8. In vitro immunological studies

Human PBMC were isolated from healthy donors by density
gradient. Murine splenocytes were extracted fromwild type C57BL/
6N mice (Charles River Laboratories, Calco, Italy). Both human and
mouse cells were seeded in 96-well round bottom plates at the
concentration of 2 � 105 cells/well in RPMI medium supplemented
with L-glutamine (200 mM), penicillin and streptomycin (all from
Euroclone, Pero, Italy) and 5% FCS (PAA, M-Medical, Cornaredo,

Italy). Immune cells were stimulated with Concanavalin A (ConA;
2.5 mg/ml; SigmaeAldrich) in the presence of increasing concen-
trations of WP631-dimethansulfunate (Alexis, Enzo Life Sciences,
Vinci, Italy) for 72 h. Then, cultureswerepulsed for 18 hwith 0.5 mCi/
well of [3H] thymidine, and proliferation was measured from
quadruplicate samples on amicro-b counter (PerkineElmer,Monza,
Italy). Parallel cultureswere labeledwith the vital dye7-AADmarker
(BD Biosciences, Buccinasco, Italy) and acquired at the flow cytom-
eter FACS vantage (BD). The number of dead cells was calculated as
relative to a known amount of beads (BD).

2.9. EAE experiments

EAE was induced in 8-week-old wild type C57BL/6N female
mice by subcutaneous injection of 200 mg MOG35e55 emulsified in
complete Freund’s adjuvant (CFA) containing 5 mg/ml Mycobac-
terium tuberculosis (DIFCO, BD). Bordetella pertussis toxin (List,
Quadratech, Epsom, England) was administered by intra-peritoneal
(i.p.) injection on the day of immunization (400 ng/mouse) and 2
days later (200 ng/mouse). In SJL/J mice (Harlan Laboratories, Bol-
zano, Italy) EAE was induced by subcutaneous injection of 100 mg
PLP139e151 emulsified in CFA containing 2 mg/ml Mycobacterium
tuberculosis. Animals were monitored daily and scored as follows:
0 ¼ no disease; 1 ¼ flaccid tail; 2 ¼ gait disturbance; 3 ¼ complete
hind limb paralysis; 4 ¼ tetraparesis; and 5 ¼ death. C57BL6N mice
received the following treatment schedule: from day 3 to day 7 p.i.
a dose of 3 mg/kg/day of WP631 solubilized in 6% DMSOePBS
solution, divided into 2 daily i.p. injections. SJL/J mice received
a dose of 1.5 or 3 mg/kg/dayWP631 from day 5 to day 9 p.i.. Control
mice received 6% DMSOePBS solution in the same amount. All
procedures involving animals were authorized by the Italian
General Direction for Animal Health at the Ministry for Health.

2.10. Primary immune responses

Draining lymph nodes (popliteal, inguinal, para-aortal, axillary)
and spleen cells of C57BL/6N mice receiving either vehicle or
WP631 (5 animals/group) were harvested at day 10 after immu-
nization with MOG35e55 peptide. Cells (2x105/well) were seeded in
96-well round bottom plates in complete RPMI medium and
stimulatedwith 1 mg/mlMOG35e55 peptide. After 72 h of incubation
cultures were pulsed for 18 h with 0.5 mCi/well of [3H] thymidine,
and proliferation was measured from quadruplicate cultures on
a micro-b counter (PerkineElmer). The stimulation index was
calculated as the ratio between stimulated and unstimulated wells
for each mouse.

2.11. Statistical analysis of in vitro and in vivo experiments

Normality of data distribution was assessed by Kolmogor-
oveSmirnov statistics. ANOVA (in case of normal distribution) or
non-parametric ManneWhitney U test (in case of non-normal
distribution) were performed to compare means. For statistic
evaluation of EAE clinical score, the non-parametric Wilcoxon sign
rank test was used. All p-values were two-sided and subjected to
a significance level of 0.05.

3. Results

3.1. A comparison of conventional and gender-based transcriptome
analysis

Conventional analysis strategy in transcriptome studies foresees
that differentially expressed genes (DEG) which are significant in
the disease state are derived from the comparison between healthy
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and diseased populations. We applied this approach in our study
which included initially 22 healthy individuals and 23 patients with
relapsing-remitting MS. All the patients were clinically stable and
none of them had started any immunomodulatory therapy till
sampling. Peripheral blood drawings were performed at least 4
weeks after relapse treatment with steroids, in order to exclude the
variations in gene expression due to drugs. We labeled RNA
extracted from PBMC and hybridized Illumina microarray chips
that contained about 22,000 probes. After normalization and data
filtering, the sampleset was analyzed by PCA and hierarchical
sample clustering methods. Three samples (1 healthy control and 2
RR-MS patients) were identified by both methods as outliers and
removed from further analysis. For the remaining 21 diseased
subjects there were no significant differences in age, disease
duration, EDSS score and annual relapse rate between the two
gender groups (see materials and methods). Control subjects were
sex and age-matched.

The most widely used strategy of deriving genesets is through
single statistical tests and/or fold change criteria. However, in
a preliminary analysis it was observed for several genes that the
mean expression values were considerably determined by far
extreme expression values in few samples within the group. This
could result in fold changes that did not reflect reproducible
expression in most of the samples within each group (data not
shown). Therefore, to facilitate higher reproducibility and reliability
of results we used three statistical tests in parallel to find differ-
ential expressions and selected the genes which passed through at
least two tests. This way we controlled the potential false positives

without losing vital information in the transcriptomics data. The
statistical tests were Welch t-test, Significance Analysis of Micro-
arrays (SAM) and Bayesian analysis of differential gene expression
(BADGE). The BADGE analysis also performed Leave One out Cross
Validation. The DEG identified by these methods were 162, 80 and
289 for t-test, SAM and BADGE respectively, with 167 genes
common to any two statistical tests (Fig.1A). Hierarchical clustering
of this geneset, represented in Fig. 1B, showed 65 downregulated
and 102 upregulated genes in the relapsing-remitting course of the
disease.

However, while observing the heatmap generated with the
conventional (hereon called “couple”) case-control comparison, we
noticed a considerable amount of intra-group variability which was
independent from the health status, as it appeared both in the MS
and CTRL groups. We hypothesized that this could be due to the
inherent heterogeneity in the global gene expression between
women and men. To verify this aspect, wemeasured the coefficient
of variation (CV) for sets of probes that were grossly selected
(median fold change threshold of 1.3 between healthy and
diseased) in the couple, male and female case-control comparisons,
and then calculated the average CV in each sample group. Here, we
used the median fold differences because median values are least
affected by the presence of few extreme expression values. As
shown in Fig. 1C, high heterogeneity was found in the diseased and
control groups when genelists were generated with the couple
approach. On the contrary, gender-based case-control comparisons
led to genelists which exhibited a significant reduction in the
variability.

Fig. 1. The heterogeneity in human populations displayed by conventional transcriptome output is reduced in gender-based genelists. A. Number of differentially expressed genes
detected by three statistical tests. The MS signature is defined by the DEG common to at least two tests (green sections). B. Heatmap showing unsupervised clustering of DEG (in
rows) and of the samples (in columns). Bar above the heatmap indicates sample classification (healthy/pink vs. MS/blue subjects). Bar below the heatmap indicates expression
intensity. C. Coefficients of variation (%) of grossly selected probes in couple and gender-based groups. ***p-value < 0.001. D. Left and right pie charts indicate the fraction of natural
(pink) or MS (blue) sex-specific probes among the 10,390 filtered genes. The Venn diagram in the middle highlights the number of sex-specific probes overlapping among healthy
and diseased populations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, we assessed whether MS pathology was associated with
alterations in the expression of sex-specific genes. We defined the
naturally occurring sex-specific genes as those genes that were
normally differentially expressed in men versus women in the
healthy population. Among the 10,390 filtered probes, 1083
(10.42%) passed the relaxed t-test with p-value threshold of 0.05
and were differentially regulated between healthy women and
healthy men (Fig. 1D left circle). Interestingly, when repeating the
same analysis on the diseased population (Fig. 1D right circle), only
206 probes (1.98%) were sex-specific (p-value 2.3E-140). This
significant reduction in the percentage of the sex-specific genes
was accompanied also by qualitative changes, as only 32 out of the
206 MS sex-specific probes appeared among the natural sex-
specific probes, indicating that in diseased subjects almost all
natural sex-specific genes were not differentially expressed
between women and men any more, while a new (smaller) subset
of genes performed as sex-specific.

3.2. The gender-based MS signatures

Based on the previous observations, we switched to a gender-
based strategy as opposed to the couple approach and compared
MS women or men with their respective healthy counterpart. The
female population comprised of 9 controls and 12 RR-MS, while the
male group consisted of 12 controls and 9 RR-MS samples. The
statistical approaches and parameters for identifying DEG were the

same as in the couple analysis. In the female sample group, the t-
test, SAM and BADGE identified 197, 139 and 301 genes respec-
tively, with 208 probes (207 genes) common to any two of them
(Fig. 2A and Supplementary file WOMEN, sheet 1). Similarly, in the
male group t-test identified 73, SAM 19 and BADGE 126 genes
(Fig. 2D). There were 72 genes common in any of these two tests
(Supplementary file MEN, sheet 1).

Hierarchical clustering of 208 MS female probes (207 genes, as
SNRPN genewas represented by two probes in all the tests) showed
131 downregulated and 77 upregulated probes in the disease
(Fig. 2B). Unsupervised sample clustering showed that such
signature was extremely efficient in classifying the healthy and
diseased subjects, as 18/21 samples were properly assigned (Fig. 2B
pink and blue bar). The relative gene expressions in the male
sampleset were also checked and the cluster analysis is shown in
the Fig. 2C. It is apparent that the MS female DEG had poor
performance inmale sampleset, as it resulted in a substantial rise in
misclassifications in the unsupervised classification. The MS male
geneset was characterized by 72 genes with 47 downregulated and
25 upregulated genes in the disease. Hierarchical clustering of
these genes is shown in the Fig. 2E. Similar to the MS female DEG,
the male DEG classified almost perfectly the male (20/21 correct
classifications, Fig. 2E) but not the female (Fig. 2F) specimens.
Overall, when compared to the couple heatmap, the gender-based
heatmaps gained substantial clarity in differentiating healthy and
diseased groups.

Fig. 2. Gender-based analyses in multiple sclerosis improve sample classification. A. Number of differentially expressed genes detected by three statistical tests between healthy and
RR-MS women. Green sections contain genes common to at least two tests. BeC. Heatmaps showing unsupervised clustering of female DEG in female (B) or male (C) samples. D.
Number of differentially expressed genes detected by three statistical tests between healthy and RR-MS men. Green sections contain genes common at least two tests. EeF.
Heatmaps showing unsupervised clustering of male DEG in male (E) and female (F) samples. Bars above the heatmaps indicate sample classification (healthy/pink vs. MS/blue
subjects). Bar below the heatmap indicates expression intensity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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We compared the MS couple, female andmale genesets tomake
out the commonalities and differences between them. Forty-three
genes out of 207 genes in the female and 16 out of 72 genes in
the male genesets were present in the couple genelist. Most
unexpectedly, there was only one gene (LOC196752) common
between the male and female genesets. This gene, located at
10q22.2 and coding for a proteinwith unknown function, appeared
also in the couple geneset.

In summary, gender-based analyses allowed to limit the natural
heterogeneity existing within human populations and unraveled
distinct changes in blood gene expression in MS men or women
although associated to the same disease form.

3.3. Validation of gender-based MS DEG in a new RR-MS population

To verify the reliability of the female and male DEG, we added
two new groups of RR-MS patients comprising of 10 women and 8
men to the existing sampleset and the corresponding log ratios
were calculated without adjusting the average with the expression
values of newly recruited samples. Consistent with the previous
results (Fig. 2), the global unsupervised cluster analysis (hierar-
chical clustering) classified correctly 29 out of 31 female and 27 out
of 29 male samples (Supplementary Fig. 1). Moreover, we validated
the differential expression of some MS female and male DEG by
real-time PCR (Supplementary Fig. 1C).

3.4. Biological themes of the MS signatures

In order to explore the biological information contained in the
gender-related MS genesets, we applied the Genecodis program
which uses the Gene Ontology (GO) database for annotations and
identifies the corresponding GO-ID for the significantly enriched
terms.

Out of the 30 enriched biological process categories in the MS
female geneset, the top scores were interspecies interaction between
organisms, transcription and regulation of transcription-DNA depen-
dent (Supplementary file WOMEN, sheet 2). In MS male geneset,
due to the lower number of DEG, only 8 biological process cate-
gories were significant and oxidation reduction- fatty acid metabo-
lism, transcription and regulation of transcription-DNA dependent
were the most significantly enriched (Supplementary file MEN,
sheet 2).

Most surprisingly, there was strong concordance in biological
processes between the female and male geneset. The statistical
significance and the number of genes for each common item are
shown inTable 1. The commonalitieswere salientwith the presence

of 5 biological processes among the 8 enriched terms in men. The
common GO terms were regulation of transcription-DNA dependent,
co-occurrences of regulation of transcription-DNA dependent and
transcription, modification-dependent-protein catabolic process,
transcription and chromatin modification. As the genesets were
derived from independent datasets through independent analyses,
the combined p-values were calculated (Table 1). They ranged
between 4.6E-06 and 5.6E-03, ruling out the possibility that these
findings were due to chance. Therefore, even if the DEG were
different in MS women and men, many of them played a role in the
same biological processes. Furthermore, 4 out of 5 highly enriched
biological process categories referred to transcription and chro-
matin modification, indicating that epigenetic events may be the
common basis for MS disease in women and men.

Next, we reasoned that if the DEG were involved in the same
processes, then they could exert similar functions. We tested this
hypothesis by searching for recurrent molecular functions in the
genelists. Among the 41 enriched molecular functional categories
in female geneset, the top scores were protein binding, hydrolase
activity, and transferase activity (Supplementary file WOMEN, sheet
3). In the male genelist, only 10 significant functions were enriched
(Supplementary file MEN, sheet 3), however, similarly to the
concordance seen in biological processes and consistent with our
hypothesis, 6 out of 10 enriched categories in men were present in
women as well. Table 2 illustrates them together with the corrected
and the combined p-values. The shared molecular functions were
protein binding, co-occurrences of protein binding and RNA binding,
DNA binding, metal ion binding, zinc ion binding and RNA binding.
Furthermore, most of the common molecular functions dealt with
interactions with nucleic acids, once more affirming the promi-
nence of epigenetic mechanisms in multiple sclerosis.

These high concordances in biological processes and molecular
functions might indicate that the diverse genesets share some
interacting partners. We tested this hypothesis by a systems biology
approach using the VisANT program, a web-enabled tool for data-
mining, visualizing, analyzing and modeling biological networks
from user given input of genes or proteins. VisANT extrapolates the
interacting partners for each gene by querying databases such as
Biogrid, MIPS, BIND and HPRD, represents then each gene as a node
and connects the interacting nodes by a straight line. We found that
there were 1486 and 453 interactors for female and male genesets
respectively. Notably, 171 out of 453 male interactors (about 38%)
were common to female interactor set. In order to get further
insights into disease relatedmechanisms, we checked themolecular
functions and biological processes enriched in the common 171
interactors (Supplementary file INTERACTORS, sheet 1). Among the
134 significant biological processes, interspecies interaction between
organisms, positive regulation of I-kappaB kinase/NF-kappaB cascade

Table 1
Biological processes (GO terms) shared by gender-based MS DEG.

Gene ontology: biological process Gender No. of
genes

Corrected
p-value

Combined
p-value

GO:0006350: transcription F 23 0.0001283 4.6E-06
M 10 0.0022488

GO:0006355: regulation
of transcription,
DNA dependent & GO:0006350:
transcription

F 20 0.0003 1.8E-05
M 8 0.0042338

GO:0006355: regulation
of transcription,
DNA dependent

F 23 0.0010434 7.4E-05
M 10 0.0054379

GO:0016568: chromatin
modification

F 4 0.0176748 9.0E-04
M 3 0.004822

GO:0019941: modification-
dependent-protein
catabolic process

F 6 0.0218752 5.6E-03
M 3 0.0310367

F ¼ Female, M ¼ Male.

Table 2
Molecular functions (GO terms) shared by gender-based MS DEG.

Gene ontology: molecular function Gender No. of
genes

Corrected
p-value

Combined
p-value

GO:0005515: protein binding F 73 2.142E-13 1.7E-14
M 21 0.0022441

GO:0003677: DNA binding F 16 0.0056011 3.0E-04
M 8 0.0053933

GO:0046872: metal ion binding F 20 0.0464598 9.0E-04
M 14 0.0019222

GO:0003723: RNA binding
& GO:0005515: protein binding

F 5 0.0206388 9.0E-04
M 4 0.0039642

GO:0008270: zinc ion binding F 13 0.0456205 1.0E-03
M 9 0.0021955

GO:0003723: RNA binding F 9 0.0486291 3.1E-03
M 5 0.0069794

F ¼ Female, M ¼ Male.
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and positive regulation of transcription from RNA polymerase II
promoterwere themost significant, while regulation of transcription-
DNA dependent was enriched with 33 genes and transcription with
29 genes, and were the GO terms defined by the highest numbers of
interactors (Supplementary file INTERACTORS, sheet 2). Further-
more, 49 categories contained ontology terms related to transcrip-
tion and 3 to chromatin modification. Similarly, 130 categories
defined molecular functions for the shared interactors, with protein
binding, transcription factor activity and transcription factor binding as
the most significantly enriched terms (Supplementary file
INTERACTORS, sheet 3). Among the 130 categories, 40 groups
were related to transcription and 29 to DNA binding. As highlighted
in Fig. 3, a remarkable part of the DEG sharing the interactome (72/
89 female and 27/35 male DEG, green nodes in upper and lower left
circles) were involved in epigenetic processes and contacted 62/171
common interactors related to transcription and chromatin modi-
fication (green nodes in right circles). Additional epigenetic factors
appeared in the gender-specific interactomes, as DNMT1 and
HGMA2 among the female and male specific interactors respec-
tively. When considering the common interactome, many of the 62
epigenetic interactors (green nodes in Fig. 4A) were connected with
more than one female and male DEG (pink and blue nodes respec-
tively). The most connected interactor was HNF4A (with 36 female
and 12 male DEG), followed by TP53 (11 female and 2 male DEG),
IKBKG (7 female and 2 male DEG) and RELA (5 female and 4 male
DEG). Finally, we verified a further network level by reconstructing
the interactions among the 62 epigenetic interactors. Interestingly,
with two exceptions (KLF5 and TSC22D4), all the other interactors
were found to be involved in a complex network, where some
nodes, such as histone deacetylase (HDAC)1, HDAC2, RELA, TP53,
SP1 and AR, were highly interactive (Fig. 4B, Supplementary file
INTERACTORS, sheet 5). Interestingly, most of the epigenetic
factors fell in three main groups related to the HDAC, AR or NF-
kappaB complexes. These groups could interact each other either
directly or through a central group of transcription factors.

Overall, the distinct MS female and male genesets shared bio-
logical and molecular functions as well as interactors. Themes
related to epigenetics were predominant in both female and male
MS signatures and in the shared interactome, suggesting they
might give shape to and/or sustain pathogenic processes in
multiple sclerosis.

3.5. Identification of the transcription factor SP1 as a modulator of
experimental autoimmune encephalomyelitis

Finally, we checked whether the two MS genesets were poten-
tially regulated by common transcription factors by querying the
GeneCodis database. As shown in Table 3, both female and male MS
signatures were significantly enriched for genes containing binding
sites for four transcription factors (SP1, LEF1, NFY and ELK1) and
their combinations. In particular, several DEG contained binding
sites for SP1 alone or together with NFY and ELK1 (Table 3). We
applied the same analysis tools to two published signatures for the
RR-MS population and found that the binding sites for these tran-
scription factors were enriched also among the genes described in
other studies (Table 3). As SP1 appeared among the epigenetic
interactors connected with both female andmale DEG (Fig. 4A) and
belonged to the central core of highly connected epigenetic factors
(Fig. 4B), we hypothesized that SP1 dependent transcription could
play a role in MS pathogenesis.

To validate the involvement of SP1 in immune responses, we
initially targeted SP1 dependent gene transcription in peripheral
blood mononuclear cells with the specific inhibitor WP631 and
induced T cell proliferation with the mitogen concanavalin A
(ConA). Interestingly, WP631 concentrations above 0.5 mM strongly
blocked proliferation of human T cells (Fig. 5A). Similar results were
obtained with ConA-activated mouse splenocytes (Fig. 5A). As
WP631 belongs to the family of anthracylines, cytotoxic agents
used in cancer therapy, we checkedWP631-dependent cytotoxicity
in PBMC and splenocyte cultures by flow cytometry. As depicted in
Fig. 5B, the drug increased the levels of cell death both in unsti-
mulated and in ConA- stimulated cultures, indicating that part of
the reduction in the proliferation was due to cytotoxicity. Finally,
WP631 was administered in vivo to C57BL6 mice immunized with
the encephalitogenic MOG35e55 peptide, and T cell responses to the
autoantigenwere tested ex vivo. Mice receiving the drug (3 mg/kg/
day) or its vehicle from day 3 to day 7 post-immunization were
sacrificed at day 10 and lymphoid organs were extracted. Inter-
estingly, T cell proliferation to MOG peptide was significantly
reduced in WP631-treated animals (Fig. 5C). Moreover, clinical
expression of experimental autoimmune encephalomyelitis (EAE),
the animal model of MS, was significantly altered by WP631
treatment. In fact, compared to the control group, in the WP631-
treated group the incidence of disease was reduced, the onset
was delayed and the disease severity in the acute phase was milder
(Fig. 5DeE). Similar results were obtained in the EAE model in SJL
mice (Fig. 5F).

4. Discussion

4.1. Relevance of a gender-based approach in disease
transcriptomics

MS is widely regarded as an erratic disease in terms of clinical
symptoms, disease course, gender prevalence and therapeutics
[1e3,8]. An optimal transcriptomics study in MS might be the one
that attempts to reduce these variable parameters through imple-
menting appropriate inclusion criteria for the recruitment of
patients. Even though several past blood gene profiling studies in
MS were successful in giving molecular insights [16e23], many of

Fig. 3. Gender-related MS interactomes identify shared interactors among male and
female MS DEG. Female and male DEG have unique and shared interacting genes.
Network reconstruction identified 171 shared interactors contacted by 89/207 female
and 35/72 male DEG. Green nodes highlight epigenetic and transcription related genes
among the DEG and the interactors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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them did not effectively restrict the diverse parameters of the
disease. For instance, Bomprezzi and colleagues [17] through PBMC
transcriptomics in MS and healthy controls demonstrated that
a few candidate genes could accurately classify MS patients and
healthy controls. Unfortunately, out of the 24 MS patients used in
the study, 6 were in the secondary progressive course of the disease
and 18 were RR-MS, and the active or stable phase of disease was
not specified. In addition, in this and in other studies [16,17,19,20]
the analyses were not unbiased but restricted to a selection of
potentially interesting genes. In a high-throughput screening study
on PBMC [18], Achiron and coworkers identified molecular signa-
tures of multiple sclerosis that could discriminate relapsing and
remission phase of RR-MS. However, a significant group of patients
was on immunomodulatory therapy, which may strongly influence
global gene expression. Critically considering these issues, we
recruited patients with the relapsing-remitting course of the

disease, all were clinically stable, free from immunomodulatory
therapy and from other inflammatory or autoimmune disorders.
Moreover, the standardized Illumina gene expression platform
containing more than 22,000 probes was used for all the
hybridizations.

The study started with a conventional analysis in which RR-MS
samples were compared to healthy controls. In order to identify the
DEG in MS, we used three statistical methods with moderate
stringencies and subsequently selected the genes which were
common to any two of the three tests. Hierarchical clustering of
samples based on 167 selected DEG showed satisfactory classifi-
cation, but still considerable heterogeneity among subjects.
Consequently, we hypothesized that the observed heterogeneity
might be a consequence of gender differences in the MS and
healthy populations. Although factors contributing to gender
prevalence of human diseases have been widely addressed in the

Fig. 4. Epigenetic interactors shared by female and male MS DEG. A. Shared epigenetic interactors (green) of female (pink) and male (blue) MS DEG. B. Interaction network among
the shared epigenetic interactors. Most of the epigenetic factors fall in three main groups related to the HDAC, AR or NF-kappaB complexes. These groups can interact each other
either directly or through a central group of transcription factors. In A and B the sizes of the interactor nodes are proportional to the number of interactions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Transcription factors regulating MS DEG.

Transcription factors-TF Female Male Gandhi et al. Riveros et al.

Unique TF Multiple TF (if any) DEG p-vala DEG p-vala Combined p-valb DEG p-vala DEG p-vala

V$SP1_Q6 V$SP1_Q6 33 1.9E-05 10 1.7E-02 5.1E-06 37 4.7E-05 41 1.0E-06
V$SP1_Q6 & V$NFY_Q6_01 6 2.7E-02 3 4.6E-02 9.6E-03 7 3.0E-02 n.d. n.d.
V$SP1_Q6 & V$NFKB_Q6 3 1.5E-02 3 4.1E-03 6.7E-04 n.d. n.d. n.d. n.d.
V$SP1_Q6 & V$ELK1_02 8 3.4E-03 5 3.3E-03 1.4E-04 n.d. n.d. n.d. n.d.

V$LEF1_Q2 V$LEF1_Q2 22 8.3E-03 11 6.9E-03 6.1E-04 n.d. n.d. 23 2.7E-02
V$LEF1_Q2 & V$NFY_Q6_01 5 3.4E-02 4 7.6E-03 2.4E-03 n.d. n.d. n.d. n.d.
V$LEF1_Q2 & V$AR_Q6 3 6.3E-03 3 3.7E-03 2.8E-04 3 3.1E-02 3 2.8E-02
V$LEF1_Q2 & V$TATA_01 6 3.1E-02 3 5.0E-02 1.1E-02 n.d. n.d. n.d. n.d.

V$NFY_Q6_01 V$NFY_Q6_01 11 2.1E-02 8 5.4E-03 1.2E-03 12 4.8E-02 17 1.7E-03
V$ELK1_02 V$ELK1_02 24 2.9E-08 7 6.4E-03 4.2E-09 37 6.9E-16 18 4.9E-04

a Corrected p-values by Benjamini-Hochberg’s method.
b Combined p-values using Fisher’s method.
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literature, disease transcriptomics with a gender perspective is still
in infancy. A first effort in this direction is represented by a recent
MS transcriptome study, where gene expression changes in blood
were associated with clinical parameters that were diverse among
male and female patients [24]. However, this study did not include
a healthy reference population, therefore disease specificity of the
observations remains questionable.

We assumed that a gender-based analysis of the transcriptome
data could considerably reduce the heterogeneity seen in the
heatmap. The analysis of the coefficient of variation among selected
probes from the couple and gender-based datasets strongly sup-
ported our hypothesis as significant reduction in variability both in
the healthy and in the MS genelists was observed. Therefore, we
subdivided the RR-MS and control samples into male and female

Fig. 5. Inhibition of SP1 dependent transcription modulates EAE. A. WP631 blocks ConA-induced T cell proliferation. Data are given as percentage of proliferation in absence of
WP631 (100%). hPBMC ¼ human PBMC, mSplenocytes ¼ mouse splenocytes. Data are shown as mean � SEM of 5 independent experiments. B. WP631 induces immune cell death.
WP631 concentration was 1 mM. Data are shown as mean � SEM of at least 4 independent experiments. C. WP631 administration in MOG35e55 immunized animals reduces T cell
responses to the encephalitogenic peptide. Proliferation to MOG35e55 peptide of draining lymph node (left) or spleen (right) cells fromWP631 or vehicle-treated EAE mice (n ¼ 5 per
group). Data are given as average � SEM. Similar observations were obtained in a second experiment. DeE. WP631 administration in vivo attenuates MOG35e55 (DeE) and PLP
139�151 (F) induced EAE. Clinical score chart (D) and clinical parameters (E) are given for MOG35e55 induced EAE (n ¼ 14 mice per group). WP631 was administered at a dose of 3 mg/
kg/day. Mean values � SEM of 2 pooled EAE experiments are shown. F. Clinical parameters relative to PLP139e151 induced EAE in mice treated with two distinct doses of WP631. *p-
value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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groups. Through the same statistical tests and parameters used for
the couple analysis, we identified 207 and 72 genes defining the
female or male genesets respectively. When comparing the gender-
based to the couple signatures, only about 20% of female or male
DEG appeared in the couple geneset. Further, only 43/167 (25%) and
16/167 (w10%) of the couple genes appeared in female and male
signatures respectively. This is due to the fact that the conventional
couple strategy can single out only those genes that are a compro-
mise among the female and male datasets, while losing gender-
specific information. The unsupervised clustering of samples
showed that gender-based signatures reduced misclassification.
Further, they classified a second independent MS population,
demonstrating their reliability.

In conclusion, these results not only affirm the importance of
a gender-based transcriptomics approach in MS but also advocate
its applicability in other human disease transcriptome studies.

4.2. Sexual dimorphism in MS

The application of the stringent statistics on the female and
male populations led to the identification of a lower number of DEG
in the male group, suggesting that the pathological processes
measured in the periphery are sustained by fewer transcriptional
changes in men than in women regardless the same clinical
expression of disease. Likewise, brain aging has been associated
with sexual dimorphism in terms of different numbers of gene
expression changes in the two genders [25]. Moreover, our gender-
based analysis illustrated that the DEG inMSwomen andmenwere
dissimilar not only in quantity but also in contents. In fact,
compared to 207 significant genes in female geneset, the male
counterpart comprised of a nearly distinct set of 72 genes. Similarly,
despite the great number of dysregulated genes both in female and
male Parkinson’s tissue, only very few changes were common to
both [26]. Conversely, about 20% DEG resulted common to female
and male datasets in a PBMC gene profiling study in Alzheimer’s
disease [27]. Anyway, such observations emphasize that gene
expression dysregulation in human disorders may be strongly
biased by gender. For this reason, we investigated further whether
sexual dimorphism in MS was driven by sex-specific genes. Sex-
related gene expression differences are normally present in
several tissues, including blood [28,29], but they have never been
specifically monitored under disease. Using relaxed statistics to
maximize the number of differences existing in blood between
genders, about 10% of the filtered genes resulted sex-specific in the
healthy population, while only 2% in MS subjects. Moreover, only
a minor part of theMS sex-specific genes were natural, pre-existing
sex-specific genes. These data clearly demonstrate that MS
pathology is associated with dysregulation in sex-specific genes.
The factors leading to physiological gender differences are complex
and include genetic, hormonal and environmental stimuli. Theo-
retically, if a disease is associated with alterations in these same
components, then the expression of the sex-specific genes may
result dysregulated. Surely, sex makes a difference in MS suscep-
tibility and clinical course, and sex hormones may modulate
disease [30]. However, the contribution of sex-related factors to the
same clinical course in men and women remains still elusive.
Certainly, our observations cannot be allocated to specific etiolog-
ical factors. Differently from genetic epidemiology studies, whose
task is to isolate the single factors contributing to disease suscep-
tibility, the principal aim of transcriptome studies is to offer a wide
picture of the events conserved during disease despite the causes
may differ in distinct human subjects. However, our data show for
the first time that the genes accountable for the remission state of
MS are different inmen andwomen and that part of this diversity is
driven by the sex-specific genes.

4.3. Functional annotations, network analysis and the common
epigenetics theme

We determined the biological themes involving the DEG in MS
women andmen by analyzing independently each genelist for gene
ontology enrichments. Surprisingly, the dissimilar genesets were
wrapped in common biological contexts and this phenomenonwas
associated with shared molecular functions. More interestingly, the
common biological themes were dominated by ontology terms
related to transcription, DNA binding and chromatin modification,
strongly indicating that epigenetics may be the underlying patho-
genic mechanism in multiple sclerosis. Further, we used system
biology tools to explore the genes interacting with the DEG. We
reconstructed the global interactome relative to the female and
male genelists and found 171 distinct genes interacting with both
the female and male DEG. Again, the main biological issues related
to the common interactome dealt with transcription and chromatin
modification. Interestingly, part of these interactors served as
convergence points for several distinct gene expression changes as
they were contacted by numerous male and female DEG, suggest-
ing that, irrespective of gender, activation of suchmolecules may be
fundamental in sustaining MS in the periphery during the remis-
sion state of the disease. The term epigenetics refers to the heritable
changes in gene expression that are not due to modifications in
DNA sequence [31,32]. Environmental factors may alter physio-
logical epigenetic homeostasis and lead to aberrant gene expres-
sion. For example, in multiple sclerosis the low disease
concordance in homozygotic twins highlights the importance of
environmentally induced epigenetic changes. Among environ-
mental triggers that have been associated with MS, EpsteineBarr
virus (EBV) strongly relies on host epigenetic processes to establish
infection (reviewed by [33]). Overall, while it is clear that the
environment has an influence on disease expression, little is known
about how it specifically alters epigenetic control in multiple
sclerosis. Our results provide evidence that genes related to
epigenetics have altered expression both in the female and male
MS populations, although several distinct triggers may have played
a role in disease induction in each individual. The observation that
a common epigenetic theme exists is of higher significance as it
resulted from two distinct sets of genes derived through indepen-
dent datasets and analyses. Interestingly, the epigenetic interactors
were highly connected one with the other and participated to three
main complexes, the HDAC, AR or NF-kappaB complexes. It is well
known that the transcription factor NF-kappaB has a central role in
several biological processes, including inflammation, apoptosis and
autoimmunity [34e36]. Histone deacetylases (HDAC) regulate
chromatin tightness, as removal of acetyl groups from lysine resi-
dues on histone tails promotes chromatin condensation and
thereby transcription blockade. Our systems biology model
suggests that several DEG may take contact with HDAC proteins or
related interactors, however the outcome of all these possible
interactions on chromatin accessibility remains unpredictable.
Interestingly, the epigenetic drug trichostatin A, a histone deace-
tylase inhibitor, was effective in reducing neuroinflammation in the
animal model of multiple sclerosis [37], indicating that disease is
relying on chromatin condensation and that support of transcrip-
tional processes by opening chromatin structure may be beneficial.
Notably, also NF-kappaB and AR may be targets of trichostatin A
epigenetic action [38,39].

The androgen receptor AR is a cytoplasmic receptor for andro-
genic hormones, such as testosterone, and moves into the nucleus
upon ligand binding where it modulates gene expression. AR has
been linked to immune functions, including tolerance induction, as
studies in appropriate animal models showed that lack of AR in B
cells causes B cell expansion due to apoptosis resistance and
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susceptibility to autoimmunity [40]. Interestingly, MS women tend
to have less seric testosterone than healthy women, and these
levels correlatewith brain damage [41]. These observations seem to
indicate a link between MS and impairment in AR-mediated
functions. Furthermore, treatment of MS men with testosterone
improved cognitive functions and slowed brain atrophy [42],
demonstrating that AR activation may be beneficial. Moreover, it is
intriguing to note on the one hand that several female andmale MS
DEG may take contact with AR which is fundamental for the
development and maintenance of male sexual phenotype, and on
the other hand that MS is associated with changes in the pool of
sex-specific genes. Unfortunately, no information is available on the
molecular networks sustaining gender differences during adult-
hood, so our data support a role for sex-related factors inMS, whose
implications remain at the moment obscure. Clearly, different
experimental approaches are required to understand the role of
each factor in peripheral events occurring in MS.

4.4. The transcription factor SP1, a novel candidate for
immunomodulation

A recently published study proposes that differential expression
in MS might be sustained by a network of regulatory transcription
factors [43]. They found that using the TRANSFAC database several
transcription factor binding motifs were overrepresented in the
transcriptional signatures associated with MS. We analyzed this
issue by querying the GeneCodis database, in which the annota-
tions for human transcription factors is derived by the systematic
catalog described in [44]. This analysis unraveled that several genes
in the female and male MS signatures could be regulated by
common transcription factors. We focused the attention on SP1
which appeared also among our epigenetic interactors and
belonged to the central core of highly connected epigenetic factors.
In fact, it is implicated in chromatin remodeling [45] and may form
transcriptional complexes with HDAC, NF-kappaB and AR [46,47].
SP1 was not one of the transcription factors described in [43], as
TRANSFAC lacks high quality matrices to detect SP1 binding sites
[48]. SP1 is the prototype member of a family of related tran-
scription factors that recognize G/C rich tracts in DNA. Importantly,
mitoxantrone, one of the approved drugs for the treatment of
multiple sclerosis, is a type II topoisomerase inhibitor with inter-
calating properties at GC-rich sequences including SP1 binding
sites [49], raising the hypothesis that SP1 targeting in multiple
sclerosis could be beneficial. The drug WP631 is a specific inhibitor
of SP1 dependent transcription [50,51]. It belongs to the family of
anthracyclines, antineoplastic compounds with potent cytotoxic
effects after DNA intercalation. Compared to other anthracyclines,
WP631 bisintercalates into DNAwith a binding affinity close to that
of transcription factors [52e54]. Treatment of Jurkat T lymphocytes
with WP631 induces cell cycle arrest and death [51]. Consistently,
we observed cell death and blockade of T cell proliferation in
cultures of human PBMC andmouse splenocytes exposed in vitro to
WP631. Moreover, in vivo administration of the drug reduced T cell
responses to the encephalitogenic MOG peptide and significantly
reduced EAE incidence and clinical expression, demonstrating that
SP1 dependent transcription modulates autoimmune responses
and that its blockade may represent a novel target for MS
treatment.

Overall, it is apparent that transcriptomics studies may deliver
important information on disease-associated functional processes
beyond lists of genes. Here, we provide novel evidences that the
“dissection” of MS through gender-based transcriptomics i) leads to
more reproducible observations in human populations, ii) uncovers
distinct changes in gene expression in diseased women and men
but shared biological processes, iii) emphasizes epigenetic events

as common basis for relapsing-remitting MS, and iv) may lead to
the identification of novel targets and compounds for MS therapy.
In light of the results, we propose gender-based systems biology for
the analysis of human disease transcriptomics.
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