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Abstract

Despite the increasing performance of Mass spectrometry (MS)

and others analytical tools, only few biomarkers have been validated

and proved to be robust and clinically relevant; indeed a large num-

bers of proteomic biomarkers have been described, but they are not

yet clinical implemented [1]. MALDI-TOF MS seems one of the more

powerful tool for biomarkers discovery [2, 3], and shows interesting

clinical properties, for instance the possibility to directly search in pe-

ripheral fluids for proteins related to an altered physiological state:

samples (urine, plasma, serum, etc.) can be collected easily and

cheaply by non-invasive, or very low-invasive, methods [4]. The com-

bination of some biomarkers is actually considered more informative

than a single biomarker [5, 6], and the improvement in the bioinfor-

matics analysis of MS data could probably help this investigation,

decreasing costs and time necessary for each discovery [7].

It is possible to approach the problems related to the analysis of

(MALDI-TOF) MS data in two ways, either trying to increase the

number of available samples or by reducing the complexity of the

problem [8]: in the first case, we developed an approach to compare

small datasets from different sources (i.e. hospitals), based on mu-

xvii
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tual information and mass spectra alignment, that showed significant

performance increase compare to the competing ones tested.

In the latter case, we developed novel methods and approaches to

compare MALDI-TOF MS profiles of normal and Renal Cell Carci-

noma (RCC) patients, with the goal of isolating the more interest-

ing subset of small proteins and peptides from the whole analysed

peptidome. MS-based profiling is in fact able to detect differently

expressed proteins or peptides during physiological and pathological

processes. Every MALDI-TOF MS spectrum, that reports the rela-

tive abundance of sample analytes, could be considered as a snapshot

of samples peptidome in a definite mass range. The relationship be-

tween mass/charge ratio, or m/z, and concentration of detected pep-

tides can be represented by networks. Tumor case and control sub-

jects show different peptidome profiles, due to differences in biomolec-

ular and/or biochemical features of cancer cells: they will show some

changes in the networks that describe them. We use graphs to cre-

ate networks representation of data and to evaluate networks prop-

erties. We explore the networks properties comparing cases versus

controls datasets, and subdividing cases in the different histological

subtypes of RCC, clear cell RCC (ccRCC) and not-ccRCC, using

different methods both for networks creation and analysis, and for

results evaluation. We identify, for each datasets (controls, ccRCC

and not-ccRCC) some interesting mass ranges within which we be-

lieve biomarkers signals should be searched.

In conclusion, we have developed a set of methods which we be-

lieve improve the current computational approaches for the analysis

of mass spectrometry data. These results have been published or

presented at workshops and conferences.
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Chapter 1

State of the Art

1.1 Mass Spectrometry and Biomarkers

discovery

Assessing differences between normal and pathogenic processes

is a mainstream topic of biomedical research, particularly in can-

cer and neurodegenerative treatments, diseases involving several eco-

nomics and social aspects [7]. Often these differences can be identified

through biomarkers [9]. A biomarker is “a characteristic that is ob-

jectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes, or pharmacological responses to a

therapeutic intervention” [10].

Only a small number of proteins have been validated as cancer

biomarkers in this last years of intensive analysis [8,11,12]. The per-

formance improvement of the analytical tools and software involved

could probably increase this pool, but, on the other hand, the also

3



4 CHAPTER 1. STATE OF THE ART

increasing specificity and sensitivity of both analytical methods and

hardware raise also the magnitude of biological complexity involved,

implying greater difficulty in the discovering of new molecular bio-

markers [13, 14]. The use of a single biomarker is now widely recog-

nized to be inadequate and multivariate predictive models combining

existing tumor markers improve cancer detection; therefore interest

in the search of multiple biomarkers is growing and required [5,6,15].

This view agrees with the new Systems-oriented paradigm of life sci-

ences [13, 14,16].

Mass spectrometry (MS), an analytical method measuring molec-

ular masses, played an increasing important role in clinical diagnostic

during the latter half of the twentieth century [2,3]. Mass spectrome-

try is also an analytical techniques widely used in different biological

studies, because is one of the simplest and most powerful way to

identify and characterize biological molecules [17, 18]. To this end

proteomics has become an interesting field in the post genomic area

and offers the opportunity of large-scale protein analysis in tissues

and body fluids. Proteomic pattern diagnostics enables to character-

ize proteins and functional protein networks as well as their dynamic

alteration during physiological and pathological processes and protein

profiling with mass spectrometry is a valid approach in the discovery

of disease biomarkers [19].

Mass spectrometry data are usually visualized using a plot called

spectrum (see picture 1.1). Spectra from complex biological mixtures

are composed by several peaks, sometimes distorted by overlaps [20].

Many chemicals and physicals factors increase spectra complexity,
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so also data pre-processing is a crucial step in sample analysis [21].

Computers are mandatory to handle such complexity: bioinformat-

ics, a science promoted to understand the complexity of biological

sequences [22], and, generally, the increasing amount of datasets

produced by life sciences [23], helps to understand biological prob-

lems [24]. Data from projects for biomarkers identification can be

processed in different ways, using different models, producing very

different results: despite its importance, data modelling started to

gain attention only recently [25].

Figure 1.1: A MALDI-TOF spectrum. Mass-to-charge ratio (m/z )
on x-axis, signals intensity on y-axis.

As bioinformaticians, we try to approach Mass Spectrometry-
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related problems, developing new methods for data alignment and

for biomarkers detection. An MS data alignment approach is dis-

cussed in sections 2.1, 3.1, 4.1. All the others sections describe some

different methods for MS data analysis.

The first part (“Part I”) of the thesis is divided into four chap-

ters: the first chapter describes MALDI-TOF Mass Spectrometry

and problems associated to, the guidelines and the key points of our

approaches. The second chapter collects the descriptions of datasets

and of each single method used in the project. The third and the

fourth chapters show respectively the main results and the conclu-

sions. Chapters are basically divided into two parts: one, smaller,

relative to a method for the alignment of MS datasets from different

labs; the other one, thicker, relative to analysis of MS data.

Thesis “Part II” collects the published papers on the topics discussed,

“Part III” papers on different topics, and supplementary materials.
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1.2 MALDI-TOF Mass Spectrometry

A mass spectrometer measures the elemental composition of a

sample, elucidating the molecules masses and structures. The Matrix-

assisted laser desorption/ionization (MALDI; [26]) analysis and char-

acterization of peptides and proteins has been the fastest expanding

area, by far, that has resulted from methods for introducing non-

volatile compounds into the mass spectrometer [17]. The Time-Of-

Flight (TOF; [27,28]) mass analyzer is one of the means for measuring

ion masses with MALDI [29]. All the MS-related data analysed in

this PhD project were produced using MALDI-TOF Mass Spectrom-

etry: a brief summary of the features of this MS technique could be

useful.

1.2.1 MALDI-TOF Mass Spectrometry descrip-

tion

There are different MS technologies, but few of them have a high-

resolution capability of the MALDI-TOF [28]). The prominence of

MALDI-TOF MS was clearly showed in the the latter half of the

twentieth century, in different contexts, like clinical diagnosis [2, 3],

post-translational modifications [18, 30, 31], specific and nonspecific

proteins interactions [32, 33], and in many other different biological

fields [34–36]. Last but not least, the importance of MALDI was

also underlined by the 2002 Nobel Prize in Chemistry, co-awarded

to John B. Fenn and Koichi Tanaka “for their development of soft

desorption ionisation methods for mass spectrometric analyses of bi-

ological macromolecules” [www.nobelprize.org].
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Despite the impressive range of MALDI-TOF MS applications,

also biological-oriented (analysis of peptides, proteins, oligonucleoti-

des, and oligosaccharides, synthetic polymers, etc.), the nature of the

MALDI remain poorly understood [37].

In a MALDI experiment, analytes are linked to a matrix (an or-

ganic acid), then the resulting mixture, coupled to a metal target sup-

port, are fired with a laser beam. The excess of energy accumulated

by the affected molecules allows the formation of ions. These ions

are accelerated in an uniform electromagnetic field and the time of

flight provides information about the accelerated ions obtained. Since

the electromagnetic field applies a constant kinetic energy (2eV ), the

same for all ions, the flight times (t) is proportional to the square

root of the mass/charge ratio (m/z ) [38]:

t =

√
m

z

1

2eV
D (1.1)

Ions with the same m/z ratio have identical kinetic energy, and hit

the detector at same time. However, ions from the same analyte

could have some additional kinetic energy (eV + ∆U0), due to the

ions plume described below, and/or an initial spacial distribution

(D 6= 0), so collisions against the detector do not happen exactly at

the same time, reducing the resolution.

Moreover, it is possible to overcome the ion energy spread using

a reflecting magnetic field, called reflectron [39], based on principles

of ion optics: the time of flight of ion packets quitting a decelerating
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field, whose potential grows exponentially, does not depend on the

initial velocity [40]. This allows to delete the contribution of the ∆U0,

increasing the resolution.

There are several theories about mechanisms of ion production,

and probably there is no a single cause for MALDI ionization dy-

namics [37, 41]; different theories concern both matrix or analyte

molecules. Usually MALDI ionization is described as a plume, a very

rapid, even explosive, solid-to-gas phase transition. An additional

pool of phenomena probably act together (see [42–44]).

Although the physics phenomenon mechanism is not clear, MA-

LDI shows extraordinary robustness, high speed and relative im-

munity to contaminants, bio-chemical buffers, and common addi-

tives [45].

1.2.2 Sources of variability

The key issue of this kind of analysis is to understand and to

manage the variability of the datasets analysed [8]. There are two

main different reasons for variability:

• biological variability;

• intra subject variability,

both affected by biological and experimental noise, that highly in-

crease the complexity of the landscape observed [46]. Understanding
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MALDI-TOF MS strength and weakness helps comprehend our ap-

proaches and ideas [47].

A MALDI-TOF Mass Spectrometer works recording the number

of ion collisions against a detector. Data are collected dividing flight

time in small bins: ions detected in the same bin are considered

related, with high probability, to the same molecule. The relative

concentration of the chemical compounds detected is calculated com-

paring the ratio between the number of hits in the same bin and the

total hits.

Figure 1.2: A spectrum distorted by chemical background noise, due
to the disturbance produced by polymers contamination.
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Several issues and shortcomings are related to this procedure, like:

chemical and baseline noises, mass-dependent sensitivity, chemical

adducts, fragmentation of big proteins, reproducibility, calibration,

and ion suppression effects [8]. Some chemical background noise

is due to the disturbance produced by the matrix molecules, but this

usually happens only for low m/z values; some is due to molecules

derived from sample preparation, like trypsin, keratin and polymers

from disposable material: see figure 1.2.2. An additional source of

noise concerns the anomalous baseline level , a distortion due to

low mass molecules, some of the same causing chemical noise (see

figure 1.2.2).

A great issue in MALDI-TOF data analysis is that very large

proteins could give more than one signal: the protein is so large that

spontaneous protein fragmentations happen, also in mild condi-

tions. Original signal is split in different signals, one per fragment,

related to his new m/z, so the original information (the m/z of the

precursor protein) must be reconstructed from the different signals.

This principle is used for peptide mass fingerprint (PMF), a technique

useful for protein identification [48]: unfortunately, unlike PMF, that

employs restriction enzyme digestions, in a MS run the polypeptide

chain of large proteins break in random-like way.

Signals shifts could also happen due to chemical adduct ions (salt,

solvent, or matrix ions) that could be carried by large (unbroken)

proteins.

Like many experimental technologies, MALDI gives some vari-

ability due to different apparata involved (lasers, quality of the ma-
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Figure 1.3: Comparison of the same spectrum, before and after base-
line correction.
The two arrows identify the same peaks: to be note that the peak
on the left, initially more intense, become less intense than the right
one after baseline correction.

trix, sample preparation). Reproducibility could be improved using

commercial kits and standardized procedures, like standardized sam-

ple collecting. We employed a solid-phase extraction technique based

on an off-line fractionation of the proteome present in biological flu-

ids using magnetic beads with activated surface, before MS analysis,

i.e. ClinProtTM by Bruker Daltonics (Germany): every step of sample

preparation and proteins extraction is based on kit protocols, and ev-

ery aspect of the procedure was developed by the same company, from

sample purification to mass spectrometer. This procedures support
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more consistent results than using heterogeneous methods and equip-

ments. Also mass spectrometer calibration yields similar problems,

and, again, the use of standardized calibration methods helps to in-

crease the reproducibility of the experiments.

In MALDI-TOF profiling technique, proteins and peptides con-

centration is a relative measures. If the signal intensity of a protein

(peptide) is too strong compared to other analytes, some minor

signals suppressions could happen: in other words, the signal in-

tensity is not always linear and the suppression is non-homogeneous

for different peptides but homogeneous for the same peptide [49].

In addition, some different variables can influence the outcome

of MALDI mass spectrum analysers : time scales, acceleration

fields, sample temperatures, incident angles of the laser beam, laser

wavelengths, pulse energies, and pulse widths: see, for instance [41].

1.2.3 Data overview

Each mass spectrum is composed by the intensity values of thou-

sand of different masses or, to be more accurate, m/z ratios: each

m/z on the x-axis is associated with a relative intensity value on y-

axis [50].

From the mathematical point of view, each m/z can be repre-

sented as a single point in a high-dimensional geometry space. Data

mining in a such multi-dimensional space could be performed easily

only if the size of analysed sample is large enough. This is not true
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in our case: sample from patients are relative few compared to the

number of m/z involved. This is called the high-dimensionality-

small-sample (HDSS) problem , and it is the main issue of the

current research on protein mass spectra classification [8]. Main

goals of MS data analysis are to reduce the complexity of the high-

dimensional geometry space, extracting only meaningful information,

and to increase the amount of available data, including data from

different sources [51]. In the first case, for instance, it is possible

to detect the changes between normal and case proteome profiles; in

the latter case, identification of the same peptides in different spectra

allows the alignment of data from different sources. Unfortunately,

direct comparisons are not so quite functional: also the same model

of Mass Spectrometer built by the same company could give slightly

different results on the same sample [52].

In this Ph.D. project we try to focus on both this problems, trying

to align data from different sources (“Mass Spectrometry data align-

ment”) and to isolate interesting portions of mass spectra, useful for

biomarkers discovery (“Mass Spectrometry data analysis”).
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1.3 Mass Spectrometry data alignment

The first problem we faced was to provide a new method for MS

data alignment, in order to integrate three small Alzheimer’s dis-

ease experimental data we hold. We used feature extraction methods

based on Mutual Information, and tested then using classification

methods. This approach was published (see chapter 5).

1.3.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a form of dementia that relates to the

progressive loss of cognitive abilities. The disease rarely affects young

people, and is responsible for one out of three cases of dementia in

the elderly. It is estimated that the number of cases of AD in the

years 2000 was 25 million, with a increasing tendency (estimates for

2050: 114 million) [53].

The disease is characterized by an accumulation of amyloid-beta

peptide in the brain [54]. This seems caused by improper cleavage

of the amyloid precursor protein (APP) [55]. APP is toxic for nerve

cells, both in vivo and in vitro, so to induce inflammation and oxida-

tive damage [56]. The toxicity is caused in different ways by different

polymeric forms dell’amyloid-β peptide (Aβ), which causes various

types of damage, like microglial infiltration (see for example [57,58]).

Mass spectrometry offers various possibilities for the study of AD,

and publications are substantial (for example, see [59–61]). One of

the main problems is the availability of only small datasets [62, 63]:

our work originates from this fact.



16 CHAPTER 1. STATE OF THE ART

1.3.2 Experimental issues

The main issues associated to the alignment of MS spectra are

due to the resolution of mass spectrometer, that usually does not

permit to distinguish molecules with very similar weights. For exam-

ple, the resolution of the MALDI-TOF spectrometers involved in this

project is ± 8 Dalton (linear mode, no reflectron): signals (peptides)

which differ for less than 8 Da are indistinguishable, and collapse to

the same peak. This problems also affects data produced by similar

spectrometers (even the same model from the same company) and

also the same spectrometer over day-to-day variations.

Experimental variations, even minimal ones, determine a change

in the spectra profiles and the inability to precisely align two similar

experiments, due to a slight variation in the m/z ratios of the pep-

tides analysed. The key point is therefore to detect a set of common

attributes (commonalities) useful to compare relative abundance of

the same peptide (protein) in the different spectra. This procedure

is also compatible with experimental noise and the splitting of the

signal of the same protein in multiple peaks, as happens in finger-

printing (the use of molecular weight information to identify proteins

in sequence databases; [64–67]) or, accidentally, for protein fragmen-

tations (see above, §1.2.2).

1.3.3 Our approach

There are two ways to achieve integration between different datasets

[68]. If we know exactly the question we want to answer and if we

know what information are available, the best idea is to design and



1.3. MASS SPECTROMETRY DATA ALIGNMENT 17

set up a database [68]: the whole information can then be analysed

in an efficient way, thanks to the fact that the data are already sorted

and easily retrievable. For example, it is possible to design and con-

struct a database composed of different Affymetrix microarrays from

different subjects and different tissues: we could query the database

asking for levels of expression of a given gene, or to compare the levels

of expression within the same tissue [69]. The second way concerns

data on which we have no great certainties: the purpose is to analyse

the data to search for some kind of correlation or relationship, to

identify differences or similarities [68], like we did in this project.

Reducing the dimensionality of the raw input variable space is

an important step in biomarkers identification, essential in data ex-

ploring and analysis. We are interested in methods that reveal or

enhance the class structure of the data and rank the useful ones, to

help define biomarkers: feature selection methods, that keep only

useful features and discards others [70]. Feature selection methods

can be classified into different main groups, based on the statistical

approach adopted to reduce dimensionality: particularly, Mutual In-

formation (MI) and Area Under ROC Curve (AUC), can be classified

as Individual Variable Selection methods [8].

The ROC (Receiver Operating Characteristic) function describes

the results of a classification model, usually represented in a contin-

gency table (see table 1.1), that is a 2x2 table that list the results of a

prediction (actual values versus predicted ones), listing the true/false

positives and the true/false negatives. The AUC is a useful global

way to quantify the accuracy of a test [71]. For several distribu-
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tions, the AUC is a first-rate indicator of biomarkers discriminative

power [72].

Condition Positive Condition Negative
Test outcome Positive True positive False positive
Test outcome Negative False negative True negative

Table 1.1: A contingency table

Figure 1.4: Use of set theory to visualize Mutual Information as
quantity of information shared by X and Y.
The bigger the superposition, the higher the quantity of information
of X could be deduced by Y, and vice versa; if there is no join,
variables are independent.

Mutual Information (MI ) is a dependency measure between

two random variables. Is also defined as an entropy-based criterion

between a predictive and a class variable [73], whose predictive capa-

bility for biomarkers has been shown [74].

MI quantify the dependency between two random variables (r.v.) X
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and Y. It is possible to describe MI using set theory: the bigger the

superposition, the higher the quantity of information of X could be

deduced by Y, and vice versa; if there is no join, the variables are

independent (see fig.1.3.3). It is also possible to describe MI as the

amount of information I shared by X and Y. Formally:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (1.2)

where H(X) is the entropy of X, H(Y ) is the entropy of Y and

H(X, Y ) is the entropy of the joint variable (X, Y ). If X ∈ {x1,
x2,..., xk} and Y ∈ {y1, y2,..., yk} are two discrete random variables,

than we have:

H(X) = −
k∑

i=1

PX(xi) log2 PX(xi) (1.3)

H(Y ) = −
k∑

i=1

PY (yi) log2 PY (yi) (1.4)

H(X, Y ) = −
k∑

i,j

PXY (xi, yi) log2 PXY (xi, yi) (1.5)

where PX , PY are the distributions of X and Y, and PXY the joint

distribution between discrete random variables. Equations 1.3, 1.4

and 1.5 expressed the uncertainty contained in X, Y and (X,Y) re-

spectively [73].
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1.4 Mass Spectrometry data analysis

Data obtained by statistical methods are usually directly com-

pared to highlight significant differences between case and control

datasets. As already seen in other “omics” frameworks, biological

variability, experimental noise and other factors prevent this kind of

analysis to reach satisfactory results [75]: it is then necessary to re-

duce the complexity of the data observed (§1.2.2, §1.2.3), or, if biolog-

ical knowledge allows it, to do a pre-selection of relevant data [76,77].

We tried to investigate the relationships between the mass spec-

tra collected, attempting to establish a network of links between pep-

tides, hoping to detect changes between profiles, like the increase or

decrease of genetic products levels, absence or presence of peptides,

etc. This network describes interactions between actors (peptides),

like a social network describe interactions between people, and can be

described and analyzed using graph theory (§1.4.2). Our work can

be summarized, in a very general way, as the creation of networks

starting from the spectra recorded from different subjects, the study

and evaluation of the properties of networks so created and the com-

parison of the detected properties through statistical tests.

Since a large part of the knowledge acquired regarding the analysis

of networks have been developed in the analysis of social networks,

there are some references to social networks.
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1.4.1 Renal Cell Carcinoma

Renal Cell Carcinoma (RCC) is the most common kidney-related

tumor in adults, and accounts for about 3-4% of the total number

of malignancies [78]. The clear cell variant (ccRCC) is the most

frequent histological subtype of this tumor: it is responsible for ap-

proximately 75% of cases [79]. The incidence of RCC has increased

steadily in the past years, but recently it seems more stable, prob-

ably as a consequence of an increasing use of imaging procedures [80].

RCC is generally asymptomatic, and at the time of diagnosis,

about 30-50% of the patients already have local or distal metastases

[81]. Moreover, RCC is one of the most radiation- and chemotherapy-

resistant tumors [82]. The diagnosis of RCC is often confirmed by

imaging studies, like X-ray and computed-tomography, but some-

times benign lesions could be hardly distinguished from malignant

ones, for example, in presence of several cystic renal lesions or pecu-

liar solid masses [83].

There are currently no biomarkers available for RCC early detec-

tion [1] (some attempts for biomarkers detection in [84–86]): nothing

for an efficient prognosis, nor for monitoring recurrence after surgical

treatment, nor for optimal predictive therapeutic approach [87].

ccRCC is not the only RCC subtype: some of our datasets were

also taken from patients with papillary RCC (pRCC), clear cell pap-

illary RCC, and also benign tumors (Oncocytoma, Angiomyolipoma,

Cyst). pRCC is the second most frequent subtype of RCC (13-
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15%) [88]. As virtually every RCC, pRCC is diagnosed accidentally,

because is asymptomatic. It is the most bilateral renal tumor [89].

For details on how these different subtypes were used, see section

2.2.1.

Regardless of the subtype of RCC, patients usually undergo surgery,

with a partial or total nephrectomy [90]. The 5-year survival rate is

60-70% but, if metastases appear, it decreases consistently: it is plau-

sible that an early diagnosis may result in a significant increase in

survival [91].

1.4.2 Oriented bipartite graphs

A network, as generally understood, is a collection of elements

and relationships, and is usual represented with graphs [92].

A graph G = (V,E) consist of a set of nodes or vertices V and

a set of edges E, i.e. links between vertices (x, y) ∈ V × V . The

number of the vertices SV = |V | is defined order, the number of the

edges SE = |E| is defined size of the graph.

A graph A = (VA, EA) is a subgraph of G = (VG, EG) if VA ⊆ VG and

EA ⊆ EG. Edges can be directed, like a graphical link between two

point could be direct drawing a row: an ordered set of edges defines

a directed graph. An oriented graph is a subtype of directed graph,

the orientation of an undirected graph (no self-loops, no multiple ad-

jacencies, and no 2-cycles; see [93]).

In our case the use of graphs is useful to establish network re-
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lationships between the m/z signals (peptides) detected in a condi-

tion (for example, detected from ccRCC patients). We compare each

signal with the others: this splits the same signals in two distinct

subsets. This condition describes a particular graph topology, called

bipartite . Formally, a graph G = (V,E) is bipartite if

G = (V,E);V1 ⊂ V ;V2 ⊂ V ;V1 ∩ V2 = ∅;V1 ∪ V2 = V

Figure 1.5: Representation of signals of a MALDI-TOF spectrum as
an oriented bipartite graph.
Each signal is represented by a vertex, and colors allow to associate
signals and vertices. Signals are sorted by m/z : this property is
preserved also in the graph. This picture is actually simplified: the
graph shows only some of the bigger signals: we use instead every
single peak.

It should be emphasized that our graphs show an additional prop-
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erty: the m/z signals are an ordered list of peaks, so they can be

represented as an ordered set of vertices (see fig.1.5).

1.4.3 Random graphs

In order to consider stochastic components in our analysis we will

also make use of random graphs (RGs). A random graph is defined

as

RG = (G, P r) (1.6)

where G is the set of graphs with similar properties and Pr is a prob-

ability measure [94]. The different models of generation of RGs rely

on these two aspects, G and Pr (see [92, 95]).

There are two closely related basic models of RGs. One is the

Erdos-Rényi model [96], given by considering the whole set of G, gra-

phs whose size is given (i.e. |V | = n) and each of the
(
n
2

)
possible

edges exists independently with a probability p. The other model

G(n,m), which we used in our analysis, is Gilbert’s one [97], based

on random choices between the given collection of graphs G, having

n nodes and m edges.

Our procedure is based on the generation of graphs obtained from

real data. These graphs are the template T = (n,m) for the construc-

tion of RGs G = (n,m) that actually describe random relationships

between the n vertices (peptides) considered.
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1.4.4 Neighborhoods

Graphs can be studied observing their local or global proper-

ties [92]. To study the local properties of a graph is necessary to

split it into subgraphs. A neighborhood is a subgraph composed by

a constant number N of vertices.

In order to define a subgraph is necessary to identify the set of

vertices from which it is composed: randomly selecting two vertices

of an oriented bipartite graph as “centers” and a value k as “ra-

dius”, we select the neighboring vertices for each of the two centers.

Therefore, k define the size of the neighborhood and, for each pair of

vertices selected, all the neighboring vertices included: N = 2(2k+1).

Using the neighborhoods we can compare different subgraphs, an-

alyzing different portions of the graph. We can fix a neighborhood

and compare it with all the others, identifying the neighborhood with

more edges, or those that show major variations in the comparison

of data from cases against control data, and so on: we use neighbor-

hoods to sample graph properties.

1.4.5 Graph Density

Global density is a overall indicator describing how nodes are

more or less intensely connected to each other [92]. Formally, for a

graph G = (V,E):

den(G) =
SG

|VG1 × VG2|
(1.7)
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where SG = |E| (graph size), VG1 and VG2 are the two subsets of

nodes of a bipartite graph G (VG1 ⊂ V ; VG2 ⊂ V ; V1 ∩ V2 = ∅;
V1 ∪ V2 = V ).

Global density is a generic metric that provides only a particular

property of the structure of a graph: it is in fact easy to imagine

a great number of alternative graphs sharing the same global den-

sity. The composition of a network can be studied more effectively

using methods for the characterization of network cohesion. This is

an approach that helps to investigate the relationships between ob-

jects of a network and answering more interesting questions, like, for

instance [92]:

• do friends of a member of a social network tend to be friends

of one another?

that, changing to a biological context, sounds very similar to

• do proteins that work together also work with another protein?

It is also possible to reverse the question:

• do peptides showing a particular behaviour in normal condition

show the same behaviour in different conditions (e.g. ccRCC)?

Formally, considering two connected vertices, vA and vB,

• is a subset of vertices VF , all connected with vA, also connected

to vB?

There are many different approaches to network cohesion estimation,

but we chose local density, because of its strong local perspective,
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hard bonded to the neighborhood features.

Local density is an indicator of cohesion of a network, and is

defined, for a bipartite subgraph A = (VA, EA), as

den(A) =
SA

|VA1 × VA2|
(1.8)

where A is a subgraph of G (VA ⊂ V ; EA ⊂ E), SA = |A| (size of A),

VA1 ⊂ VA; VA2 ⊂ VA; VA1 ∩ VA2 = ∅; VA1 ∪ VA2 = VA.

1.4.6 Hypothesis testing, the Neyman-Pearson

framework

The hypothesis testing is a valid method for comparing the distri-

butions of values obtained from neighborhoods sampling of controls

and patients data. Hypothesis testing is also one of the most im-

portant yet most confusing parts of statistical inference. This is due

to several reasons, the main one being that the hypothesis testing is

explained in a “hybrid form” [98] that combines the formulation of

Fisher with the subsequent formulation of Neyman-Pearson [99].

Fisher’s test Fisher’s approach is based on a test that he called

Null hypothesis

H0 : µ = µ0 (1.9)
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and a “distance” measure that evaluates the values X = (X1, X2,

..., Xn) observed for H0, a test statistic

τ(X) (1.10)

It is the measurement of this distance that allows to assess the null

H0: if this distance is sufficiently “small”, then H0 is considered valid.

That assessment is performed using a pivotal function and the dis-

tribution of values τ(X, µ).

The performance of this assessment is calculated by:

P(τ(X) ≥ τ(x); H0is valid) = p (1.11)

where τ(x) is the observed value of the statistic τ(X). The p-value

defines the worst possible case for a Null hypothesis: low values de-

scribe low probability events, so either the observation of such a value

x is a rare event or the null hypothesis is not valid. The smaller the

p-value, the less plausible is H0 [99].

Neyman and Pearson test Neyman and Pearson revealed the

limitations of Fisher’s approach: how does the modeler choose τ(X)

[100]? In particular, they questioned [99–101]:

• the ability to construct different valid statistical tests without

being able to distinguish the most appropriate one;

• the use of p-value as a measure for the assessment of the null

hypothesis derived from the sample.
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The key point of the approach of Neyman-Pearson is the addition of

an alternative hypothesis that transforms testing in a choice among

two mutually exclusive hypothesis [99]. Formally:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 := Θ−Θ0 (1.12)

where the parameter space is Θ = Θ0 ∪Θ1.

The main purpose of the statistical test becomes the formulation of a

decision rule that allows for each observed value x := (x1, x2, ..., xn)

(i.e. realization of sample X := (X1, X2, ..., Xn)) to accept or reject

H0 on the basis of a statistical test τ(X). This effectively splits the

sample space ℵ into two complementary sets S1 and S0, such that

S0 ∪ S1 = ℵ and S0 ∩ S1 = ∅ [99]. To compare the Fisher’s Eq.1.9:

H0 : µ = µ0 (1.13)

H1 : µ 6= µ0 (1.14)

Accept or reject H0 on the basis of a statistical test can lead to

two types of errors: refuse H0 when this is actually valid - type I

error, or α - or accept H0 when it is in fact false - type II error, or

β. This situation can be summarized in the table 1.2. The calcula-

tion of α and β also allows you to define the statistical significance

(1 − α) and power (1 − β) of a test. Since the type I error usually

Accept H0 Reject H0

H0 valid correct decision type I error (α)
H0 invalid type II error (β) correct rejection

Table 1.2: Possible errors in hypothesis testing
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has worse consequences (e.g. a person who is diagnosed with a tumor

that doesn’t have), clinical tests are designed to minimize α rather

than β. Since our goal is the identification of biomarkers signals, we

generally minimize β, so to avoid missing signals of interest.

The Neyman-Pearson hypothesis tests is actually a comparison

between two different distributions: α and β result from the errors

in interpreting values found in the overlapping portion of the two

distributions. This suggests that the there is a trade-off between

type I and II errors: the decrease of α increases β and vice versa.

1.4.7 Robustness

Robustness is an essential property of biological system [102,103]

and can therefore be considered as a decisive factor for selecting a

credible model or pinpointing the weaknesses of a failed model [104],

as we have done for some of our approaches. This is particularly

important in areas such as medicine and drug discovery where ro-

bustness analyses are the logical next step to face with many uncer-

tainties, arising for example from the experimental design or even

from technical (or biological) variabilities (§1.2.2) [104].

In its general form, the word robustness refers to the ability of

a process to cope well with uncertainty, the different ways in which

the performance of the process is evaluated. The framework used

for modelling uncertainty leads to many alternative definitions of the

word itself. Hampel defines the word robustness within a general sta-

tistical context [105]. The definition can be summarized by consider-
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ing the robustness as the stability theory of statistical procedures. He

systematically investigates the effects of deviations from modelling

assumptions on known procedures and, if necessary, develops new,

better procedures.

Recently, the relationship between robustness and multiple crite-

ria decision analysis has been observed by a number of researchers

[106, 107]. For instance, Kouvelis and Yu studied the robustness in

the context of discrete optimization [108]. They provide theoretical

results and algorithms for determining the solution that exhibits the

best worst case deviation (or percentage deviation) from optimality,

among all feasible decisions over all realizable input data scenarios.

Related ideas can be found in the Robust Bayesian literature [109],

where the robustness analysis has been developed mainly to cope

with the arbitrariness affecting the choice of a prior distribution. The

high grade of that arbitrariness make the Bayesian methods difficult

to be acceptable as standard practice, therefore the key idea behind

Robust Bayesianis the need to base inferences only on the actual as-

sessment by the experts, specifying a class of priors compatible with

their opinions and studying the influence of changes in the prior on

the values of the quantity of interest [110,111].
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Chapter 2

Aim of the Project

The aims of the project are:

• to develop a novel method for MS data alignment;

• to provide novel and original methods for the analysis of MS

data, in order to identify suitable biomarkers signals.

Both goals were examined separately in the following sections.

2.1 Mass Spectrometry data alignment

2.1.1 Summary

In the first part of the project we focused on Alzheimer’s disease

data. We collected samples from 77 subjects in three different hospi-

tals and medical institutions. The poor number of samples gathered

per hospitals (41, 21 and 15 subjects involved) made any signifi-

cant data analysis hard to perform, so the idea was to integrate MS

33
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data produced by different sources, using similar equipment in dif-

ferent labs: a “data integration/fusion” approach, useful to improve

the performance of data analysis, thus biomarkers signals discovery.

This Mass Spectrometry Data Alignment (MSDA) approach could be

useful to merge different datasets from different labs, also in different

context.

Briefly, we developed a theoretical method for the alignment of

MALDI-TOF MS data from Alzheimer patients and controls. This

approach is founded on feature construction and extraction methods

(FSCM) and on a measure for the stochastic dependence of random

variables (Mutual Information). We tested this approach using a

machine learning environment (RapidMiner, [112]), and compared it

to other approaches with satisfactory results.

2.1.2 Materials: samples from Alzheimer dis-

ease patients and controls

Samples were collected after receiving informed consent from all

the subjects participating in the study from three different hospitals

using a standardized protocol. A cohort of 6 control subjects and 9

AD patients was recruited from the University of Florence - School of

Medicine network (Florence, Italy), 23 controls and 18 AD patients

from San Gerardo Hospital (Monza, Italy), and a total of 6 controls

and 15 AD patients from the Center for Aging Brain and Dementia

(Brescia, Italy). Plasma was obtained from blood collected in EDTA.

A cohort summary is available in table 2.1.
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Table 2.1: Cohort description

Location CASE CONTROLS Sums
Monza 18 23 41

Florence 9 6 15
Brescia 15 6 21
Totals 42 35 77

Plasma pre-fractionation Sample purification was performed in

duplicate at room temperature with ClinProtTM MB-HIC8 (Magnetic

Beads based Hydrophobic Interaction Chromatography) kit. All pro-

cesses were automatically executed by using a ClinProtTM Robot as

previously described [84].

MALDI-TOF MS and Data Processing The plasma protein

profiles were obtained by an MALDI-TOF Reflex IVTM mass spec-

trometer (Bruker Daltonics, Germany). The instrument was exter-

nally calibrated using a mixture of standard peptides/proteins. Mass

spectra were acquired in positive linear mode in the m/z range of

1,000-10,000 Da; accumulation of signals from different sample spot

positions resulted in a total averaging spectrum. The spot was pre-

irradiated with higher laser power to improve the spectra quality

before each acquisition cycle. Multiple spectra comparison was per-

formed using ClinProToolsTM 2.1 software (Bruker Daltonics). First,

each raw spectrum was normalized and all spectra were then recal-

ibrated (realignment) using prominent internal m/z values. Subse-

quently, baseline subtraction and peak detection were achieved before

peak area calculation. The software calculates the mean spectrum
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for each subject’s data set, and then, selects the spectrum that is

most similar to the average one to be used for further evaluations.

ClinProToolsTM automatically provided a list of peaks sorted accord-

ing to the statistical relevance to differentiate between classes with

their corresponding p-value.

2.1.3 Methods: our approach

Our method for Mass Spectrometry Data Alignment (MSDA)

from different lab is based on the Features Extraction and Construc-

tion Method (FSCM), a process of dimensionality reduction for the

selection of a set of relevant features in a dataset, useful to build a

model for the evaluation of datasets of similar origin [113]. Features

extraction and construction method consists of

• features construction mechanism

• relevance mechanism

Common attributes are usually investigated with statistic meth-

ods that search for dependencies between variables. We choose Mu-

tual Information (MI; see §1.3.3 for a formal description) to measure

the commonalities shared by signals/peptides. In brief, MI quantify

the dependencies of two distributions of values (X, Y ).

We apply the Mutual Information to quantify the dependencies

between signals, merging the peptide signals with higher values of

shared MI, to maximize the performance of a classification task. MI

is not the only method to quantify commonalities: however, at the
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time the publication, there was no evidence that somebody used MI

for the alignment of MS spectra.

Problem description

The data for each laboratory k can be defined using three objects:

1. the subpopulation of peptides P(k) useful to identify biomar-

ker signals within the whole peptides population detected by

the k lab spectrometer. There is an intensity value, a random

variable Ip
(k) associated with each peptide p ∈ P(k), distributed

accordingly to f
I
(k)
p

(i
(k)
p ). For simplicity:

fp,k(i) ≡ f
I
(k)
p

(i(k)p ) (2.1)

fp,k(I) ≡ f
I
(k)
p

(I(k)p ) (2.2)

2. the random variable M
(k)
p , that is the m/z for each peptide p,

distributed accordingly to f
M

(k)
p

(m
(k)
p );

3. a Bernoulli random variable D(k) expressing the case-control

group membership.

Our aim is to highlight and evaluate the relationships between

features (disease class and intensity). Basically, it corresponds with

the evaluation of the joint distribution that, write with the aid of

(2.1) and (2.2) is:

fp,k(i, d) ≡ f
I
(k)
p ,D(k)(i

(k)
p , d(k)) (2.3)

fp,k(I,D) ≡ f
I
(k)
p ,D(k)(I

(k)
p , D(k)) (2.4)
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Features construction mechanism

As described above (see section 1.3.2), the MALDI-TOF mass

spectrometer cannot distinguish signals originated by peptides of pro-

teins with very similar weights. In our case, the resolution limit is ±
8 Da. From the formal point of view, considering two labs, A and B

(k = A, k = B), for each pair of peptides px e py, satisfying

|MA
px −MB

py | ≤ 8 (2.5)

Considering the last equation, we define the dependence Zk
p between

intensity value and disease class using:

Z(A)
px = lg

fpx,A(I,D(A))

fpx,A(I) · fD(A)(D(A))
,

Z(B)
py = lg

fpy ,B(I,D(B))

fpy ,B(I) · fD(B)(D(B))
,

Z(A,B)
px,py = lg

fpx,A(I,D(A))

fpx,A(I) · fD(A)(D(A))
+ lg

fpy ,B(I,D(B))

fpy ,B(I) · fD(B)(D(B))
(2.6)

Relevance mechanism

The relevance method is implemented as the sum of the Mutual

Information shared by I
(A)
px with D(A) and I

(B)
py with D(B). The MI

I = I(I
(A)
px , D

(A)) + I(I
(B)
py , D(B)) is calculated using the expected

value E[Z
(A,B)
px,py ] accordingly to the following equation (see 2.6):

E[Z(A,B)
px,py ] = E

[
lg

fpx,A(I,D(A))

fpx,A(I) · fD(A)(D(A))

]
+

E

[
lg

fpy ,B(I,D(B))

fpy ,B(I) · fD(B)(D(B))

] (2.7)
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We want to identify those peptides that provide the highest values

(argmax) of MI:

arg max
(px,py)∈p(A)×p(B)

(I(I(A)px , D
(A)) + I(I(B)

py , D(B))) (2.8)

From the computational perspective, the calculation of MI of I(I
(A)
px ,

D(A)) and I(I
(B)
py , D(B)) in Eq.2.8 is made discretizing and tallying,

for each peptide, the samples from distribution of intensities fpx,A(i)

(or fpy ,B(i)), the class disease fD(A)(d(A)) (or fD(B)(d(B))), and the join

distribution fpx,A(i, d) (or fpy ,B(i, d)). However this leads to troubles

if the datasets from all the three laboratories are involved, and, gen-

erally, if we want to involve an greater number of labs.

Aligning more than two labs From the formal viewpoint, it is

possible to formulate again the problem in (2.8) using graphs the-

ory (graphs theory is discussed in §1.4.2), formulated via Maxi-

mum Weight Bipartite Matching (MWBM ) [114]. Roughly,

we can symbolize each signal as a vertex of a bipartite weighted graph:

among all the possible weighted graphs, the one with the greatest MI

is the one that maximize the sum of the weights. Without going

too far into the formalism [115], we can rewrite the equation 2.5 and

consider our m/z data as observation to estimate

Ri = {(MA
px ,M

B
py) : |MA

px −MB
py | ≤ 8} (2.9)

that is

R̃i = {(mA
px ,m

B
py) : |mA

px −mB
py | ≤ 8} (2.10)
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Consider now the bipartite graph G = (V1 ∪ V2, E):

V1 = {m(A)
px |∃ py, j : (m(A)

px −m(B)
py ) ∈ R̃j}, (2.11)

V2 = {m(B)
py |∃ px, j : (m(A)

px −m(B)
py ) ∈ R̃j}, (2.12)

E =
⋃
R̃i (2.13)

We can now estimate the weights for the two peptides involved:

w(m(A)
px ,m

(B)
py ) =

∑

t,d

f̃px,A(t, d) log
f̃px,A(t, d)

f̃px,A(t) · f̃D(A)(d(A))
+

∑

t,d

f̃py ,B(t, d) log
f̃py ,B(t, d)

f̃py ,B(t) · f̃D(B)(d(B))

(2.14)

and so on, to assess the MWBM in a general form, that could embroil

more labs.

2.1.4 Methods: competitive approaches

To understand the usefulness of our method we decide to test

it against possible competitors. We choose two simple but effective

tests, that show the progress of our method in a easy way. The

methods we choose are:

• Equal Mass Fusion test (EM);

• t-Test Fusion test (TT).

The EM unify features from different labs whenever the associ-

ated mass values are equal. It’s a simple approach that postulate

that there’s a low level of noise and misalignment in the spectra, so
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that it is better to use the data without further processing.

The TT is based on a statistical approach, the t-Test. The t-

Test is a statistical test, which tries to understand if the difference

of means of datasets is due to chance. Further information on t-

Test in Section 2.2.3. For all pair of features whose mass difference

ranges in an interval of ± 8 Da, we compare the means from two

different samples by a statistical t-Test. Then, we unified these pairs

of features with the maximum value of significance.

2.1.5 Evaluation tool

The purpose of our work is to propose a method that optimizes

the alignment of mass spectrometry data. In the previous section we

have listed out others methods; what follows is a description of the

machine learning environment used for the comparison. The results

can be found in section 3.1.

We employed RapidMiner, a flexible and powerful machine learn-

ing environment. The interface is intuitive enough to allow simple

editing also for users without a solid foundation in computer sci-

ence. RapidMiner is based on knowledge discovery processes (KD

processes): every process is viewed through complex nested tree. Ev-

ery tree object is called operator, and each operator could incorporate

a number of operations and parameters, a “not-so-black” boxes that

allow you to manage the flow of input and output of data in a very

simple way. All processes are described using XML mark-up lan-

guage. The figure 2.1 shows a snapshot of the operators described in

table 2.2, that we use to implement our approach.
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Figure 2.1: A snapshot of the operator tree of RapidMiner.
Operators are described in table 2.2
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Table 2.2: Summary of the knowledge discovery process we imple-
mented in RapidMiner

Sequence Operator Description
1 Data Source Read input file. The input

files are the aligned data
produced with the meth-
ods discussed.

2 Normalization Normalize data signal in-
tensities in [−1, 1].

3 Information Gain Computation of MI.
4 Parameter Iteration Performs an iterative cy-

cle of operations testing
all the parameters set in.

4.1 Attribute Weight Selec-
tion

See 3 - Information Gain.

4.2 Cross Validation It starts a cross-validation
(training/testing sets)
sub-process: input data
set S is split up into
subsets {S1, S2, ..., Sn};
the forthcoming operators
are applied n times using,
for each iteration i, the
set Si as test set and S\Si
as training set.

4.3 Model Applier It applies the model deliv-
ered by SVM (see 4.2)

4.4 Binomial Classification
Performance

Computes the perfor-
mance of classification
providing the Area Under
ROC Curve (AUC; see
1.3.3)
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2.2 Mass Spectrometry data analysis

The following sections will report a variety of approaches and

methods for the analysis of data from MALDI-TOF mass spectrom-

etry we employed. The basic concepts used in these approaches are

described in section 1.4, and are briefly summarized below:

• the data originated from mass spectrometric analysis obtained

from patients affected by Renal Cell Carcinoma (ccRCC, not-

ccRCC), and from healthy controls (section 1.4.1);

• analyses were not directly performed on the data, but from the

properties of a graph created using the same datasets (section

1.4.2);

• graphs were sampled and studied by calculating density, em-

ploying neighborhoods (sections 1.4.4, 1.4.5);

• density and neighborhoods produced sets of values, which are

weighted with different methods, and provided a range of nu-

merical results. These results were used to make a series of hy-

pothesis tests (section 1.4.6) that compare the different datasets

(e.g., cases versus controls);

The results of the tests of hypotheses were used to define regions of

interest within the spectra analyzed: these regions contained the most

interesting signals, on which focus the attention for the recognition

of biomarkers signals.
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2.2.1 Materials: ccRCC, not-ccRCC patients

and controls datasets

Cohort description

The cohort is composed by 187 people screened in three different

clinics:

• San Gerardo Hospital (Monza, Italy),

• “Ospedale Maggiore Policlinico” Foundation (Milano, Italy),

• Desio Hospital (Desio, Italy),

and consist of 85 controls (58 men, 27 women) and 102 cases (64

men, 38 women). Mean age for controls was 45 with a range of

30-68 years, while for patients it was 64 with a range of 33-88 years.

Patients have been divided into groups according to their pathologies:

clear cell RCC (n = 79) and other different histological subtypes i.e.,

non-ccRCC (n = 23). A bird-eye view of the cohort is summarized in

table 2.3, made accordingly to 2002 TNM (tumor-node-metastasis)

system.

Samples: Urine collection and handling procedure

The samples consisted in urines collected from patients the day

before surgery (ccRCC and not-ccRCC); controls samples was col-

lected from healthy volunteers. All subjects had signed an informed

consent prior to sample donation. Study protocols and procedures

were approved by the local ethic committee and analysis was carried

out in agreement with the Declaration of Helsinki.
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Second morning midstream urine were collected in sterile urine

tubes (Anicrins.r.l., Italy). Within one hour the sample was cen-

trifuged at 4◦C for 10 min at 1000 g to remove cell debris and casts.

Supernatant was immediately transferred into 2 mL tubes and stored

at -80◦C until further use. A tube per each sample was thawed once

for the automated peptide isolation procedure.

Mass Spectrometry techniques

Peptidome separation with magnetic beads The proteome/pep-

tidome were extracted using ClinProtTM, a technology providing a

wide range of functionalities for excellent and sophisticated peptide

and protein separation and preparation directly from biological flu-

ids. In our case, we used Weak Cation ion eXchange Magnetic Beads

(WCX MB), as previously described in [85,116].

The profiling kit was employed to purify all samples and checked

before use with a standard light microscope (Dialux EB-20, Leitz,

Germany) in order to evaluate dispersion and potential aggregation

within the suspension. An auto-mated extraction procedure was

achieved using a 96-channel Hamilton STARplus R© pipetting robot

(Hamilton, Bonaduz, Switzerland) for a greater sample throughput.

As concerning the WCX protocol, the binding, wash and desorption

steps of the beads were based on the manufacturer instructions and

optimized for the implementation on the pipetting robot. Briefly, 10

µL of WCX MB were used for the analysis of 40 µL of urine sample,

mixed intensively with 10 µL of a binding buffer supplied with the kit

and incubated for few minutes at RT in a 96-well plate. After the re-

moval of supernatant,the WCX beads were washed three times with
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45 µL of a recommended washing solution and eluates with 15 µL

of a 130 mM ammonium hydroxide solution. Thus obtained eluates

were immediately stabilized with a 30 µL of a 3% TFA solution and

then used for the MALDI-TOF analysis. Pipetting was automatized

using a 96-channel Hamilton STARplus R© robot.

MALDI-TOF peptide profiling

Aiming for the MALDI-TOF acquisition of urinary spectra pro-

files for all studied patients, a MALDI-spotting procedure was au-

tomatically obtained by robot. To this purpose, 4 µL of the WCX

eluates peptide fraction were mixed with 15 µL CHCA matrix solu-

tion (0.3 g/L in ethanol/acetone 2:1). Then, 1 µL of this mixture was

spotted in quadruplicate directly onto a MALDI AnchorChip 600/384

target plate (Bruker Daltonics, Germany) with the pipetting robot.

The target plates were air-dried and immediately kept in an envi-

ronment controlled storage chamber (RT, 5% oxygen, 95%nitrogen)

until transfer into the MALDI-TOF/TOF mass spectrometer.

Fractionated samples were analyzed using an UltraFlexII
TM

MALDI

TOF/TOF MS instrument (Bruker Daltonics, Germany) and mass

spectra were automatically acquired in positive linear mode (LM).

The acquisition was performed in a m/z range of 1 to 12 kDa and the

external calibration was achieved using a mixture of peptide/protein

standards, ProtMix I and PepMix II (Bruker Daltonics, Germany).

Analyses were performed using AutoXecute tool (v. 3.0.100.0) of

FlexControl software v. 3.0 (Bruker Daltonics, Germany). For each

MALDI spot, spectra were recorded from six different spot positions

(200 shots per position) and summed up (1200 satisfactory shots).
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Number of patients
Patients 102

Male - Female 64 - 38
SD Age (mean, at diagnosis) 64± 12.4

STAGING
Primary tumor (T)

pT1 - pT2 - pT3 - pT4 57 - 14 - 17 - 1
unknown 3

Regional Lymph nodes (N)
NX - N0 - N1 59 - 27 - 1

unknown 5

GRADE
G1 - G2 - G3 - G4 6 - 62 - 17 - 1

unknown 6

HISTOLOGY
Clear cell RCC (ccRCC) 79

Papillary RCC 7
Clear cell & papillary RCC 1

Chromophobe 2
Adenocarcinoma 1
Renal neoplasm 1

Mucinous tubular and spindle cell RCC 1
Oncocytoma (benign) 6

Angiomyolipoma (benign) 3
Cyst (benign) 1

TUMOR TYPE
Malignant - Benign 92 - 10

Table 2.3: Patients’ clinical characteristics according to the 2002
TNM (tumor-node metastasis) system.
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2.2.2 Divergence Analysis with Random Gra-

phs

In the first approach we focused on the identification of spectral

regions that showed divergence in the comparison between case and

controls. We supposed that divergent regions were those containing

signals that justify the biological differences between the two states,

healthy and sick.

A first goal was to demonstrate, using statistic tests, that the

properties obtained from the graphs constructed from data (controls

and cases) deviate from a uniform reference model with similar prop-

erties, but generated randomly: this showed that our system was

able to distinguish between real and random data. We then com-

pared controls and cases, hoping that the ability to differentiate let

highlight regions showing the greatest divergence, i.e. the regions

probably holding biomarkers signals.

The whole analysis was based on hypothesis testing with Ran-

dom Graphs (RGs): if, on the one hand, RGs were useful for the

creation of graphs with properties similar to those obtained from the

data, but randomly assembled, on the other hand they were also used

to perturb the “real” graphs to create a populations of similar graphs.

This is the summary of the main steps of the proposed method (some

terms are better explained in the next section):

1. Use of divergence to track edges of bipartite graphs R(obs), that

represent real data (case and controls). Tools: Kullback-Leibler
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(KL) divergence, bipartite graphs.

2. Density calculation for R(obs) graphs:

• computation of global density, Tool: global density;

• use of neighborhoods for calculating distribution of values

of local density. Tools: neighborhoods, local density.

3. Construction of random graphs (RGs) for comparison between

RGs and

• cases data, using the global density of the graph R(case):

Uniform Reference model (URfM). Tool: global density;

• controls data, using the local density values distribution

of the graph R(control): Uniform Random model (URnM).

Tools: local density, perturbation probability.

4. Comparison between values of local density of the neighbor-

hoods between:

• URfM versus Cases;

• URnM versus Controls;

• Controls versus Cases;

The distributions of local density values are used for hypothesis

testing: we carry out an hypothesis test for each neighborhood.

Tool: hypothesis tests.

5. Retrieval of the mass ranges that identify the more interesting

neighborhoods.
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Parameters involved in this method, such as the KL threshold

δ, the parameters related to the perturbation and the size of the

neighborhoods, will be detailed in the results chapter (section 3.2.1).

Divergence representation

Peptides detected by MS can be represented using a graph: each

vertex stand for a specific m/z signal; edges are tracked between

vertices which divergences in the intensity values I exceed a thresh-

old. More formally, for each group of subjects, for instance, pa-

tients, signal intensity I(case) can be expressed through a product

I(case)m1 × I(case)m2 × ...× I(case)mn × of spaces I(case)mi , 1 ≤ i ≤ n, given by

all potential intensity values of mi. We also assumed that each I(case)mi

was associated with a distribution function f
(case)
Imi

.

We called template R(case) a bipartite graph (V1 ∪ V2, E) with

V1 = V2 = {m1, m2, ..., mn}, and (mi,mj) ∈ E if a measure of diver-

gence D(f̃
(case,1)
Imi

, f̃
(case,2)
Imj

) between the empirical distribution f̃
(case,1)
Imi

and f̃
(case,2)
Imj

exceeds threshold δ. The template R(case) was calcu-

lated sampling I
(case,1)
mi and I

(case,2)
mj from each pair (I(case)mi , I(case)mj ).

We chose Kullback-Leibler entropy divergence as measure of

divergence [117]:

D̃(fImi
||fImj

) =
∑

i

fImi
(i) log

fImi
(i)

fImj
(i)

(2.15)

The template R(case) has been obtained by sampling I
(case)
mi and

I
(case)
mj from (I(case)mi , I(case)mj ): this template described pattern of di-
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vergences inside a population (i.e.,case). Generally, we wanted to

associate observed m/z ratios with the value of divergence for their

respective observed intensities I: given an observed group of I(obs)
from which the template R(obs) has been obtained through some sam-

pling mechanism, we called local divergence the vector

D = (d(mi,mj))(mi,mj)∈V1∪V2 (2.16)

where d(mi,mj) = D̃(fImi
||fImj

). We also called amount of divergence

K =
∑

(mi,mj)∈E
d(mi,mj) (2.17)

Graphs like R(obs) were created by adding an edge to E if d(mi,mj) ≥ δ

(or removing one if d(mi,mj) < δ), where δ was the divergence thresh-

old.

Random models

We employed two different types of random models:

• an “uniform reference model”, based on Gilbert Model for Ran-

dom Graphs: see §1.4.3;

• an “uniform random model”, random graphs built starting from

an observed graph R(obs).

The essential difference was that the first preserves only global prop-

erties, while the latter preserves also the amount of divergence, a

local property, even with a certain (low) probability that this could

vary substantially.
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Uniform Reference model (URfM) We chose as uniform ref-

erence model a Random oriented bipartite graph defined as follows:

URfM(v, e) is a random oriented bipartite graph taking values from

(G,Pr) where G is the set of all oriented bipartite graphs with v

vertexes and e edges and Pr is a uniform probability measure on

G assigning to each graph Gi ∈ G the same probability value p =

Pr({G = Gi}).

This graph will be used for comparison with the cases datasets:

it would be incorrect to use a graph R(case), which is considered in

some sense already perturbed by the pathology (RCC), to build an

Uniform Random model, which is in fact a perturbed graph with a

given probability, as happens for R(control).

Uniform Random model (URnM) We wished to construct a

random graph able to preserve some property of an observed tem-

plate R(obs) = (V1∪V2, E(obs)) (see §2.2.2). The key idea was to apply

enough distortion (i.e., perturbation of R(obs)) in such a way that the

probability for the model to fail (i.e., failing to preserve that prop-

erty) is small.

Among the different graph properties cited in literature, here

we were interested in preserving the original cohesion of R(obs) [92]:

we tried to preserve the density of R(obs) by maintaining its order

S
(rnd)
V = S

(obs)
V (i.e., the number of its vertices; see §1.4.2). A density-

preserving random graph R(rnd) = (V1∪V2, E(rnd)) was created start-

ing from a template R(obs) adding a random quantity of noise ε(mi,mj)
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such that

E(
∑

(mi,mj)∈V1×V2

ε(mi,mj)) = 0 (2.18)

Var(
∑

(mi,mj)∈V1×V2

ε(mi,mj)) = σ2
tot (2.19)

So we obtained R(rnd) from R(obs) by adding an edge to E if d(mi,mj)+

ε(mi,mj) ≥ δ or removing one edge if d(mi,mj) + ε(mi,mj) < δ.

Another key point was that the size S
(rnd)
E = |E(rnd)| of the ran-

dom graph should have to deviate from S
(obs)
E = |E(obs)| with low

probability. We used a “drop off” function fSE
(c):

Pr(X ≥ cSE) ≤ fSE
(c) (2.20)

Summarizing, by locally adding up random quantities ε(mi,mj) we

obtained a random graphR(rnd) which globally preserved (on average)

the amount of divergence K of R(obs) (see previous paragraph). Also,

it deviated from the original number of edges with low probability.

Hypothesis testing

We applied three different hypothesis tests (Neyman-Pearson),

each involving different sets of data. In particular:

1. “Uniform Reference model versus case”, also called random ver-

sus cases test, based on graph R(obs), built from case datasets.

The global properties of the graph obtained (R(obs) = R(case))

are used to generate the random graph URfM(v, e). The aim is
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to show that the graph created experimental data differs from

random one:

H0 : URfM(v, e) and H1 : R(case) (2.21)

2. “Uniform Random model versus control” based on control datasets.

The observed graph R(obs) = R(control) is used to made the

URnM graph. Again, the aim is to show that the graph created

from the experimental data differs from random one:

H0 : URnM(v, e) and H1 : R(control) (2.22)

3. “Control versus case”: a slightly different test, based on com-

parisons between two different R(obs), R(obs) = R(controls) and

R(obs) = R(case). We chose R(controls) as null hypothesis (H0)

because it is more reasonable to think about the healthy state

as the reference state, so the hypothesis test is

H0 : R(control) and H1 : R(case) (2.23)

The variability space of interest (the sampling from I(case) in order to

obtain R(case)), is the statistic η(I(case,1), I(case,2)) or η(G), where η is

some suitable graph property compactly summarizing the structural

relation (i.e., given through the random model G) endowing the set

I(case,1) ∪ I(case,2).
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Test and numeric evaluation

In order to evaluate the tests proposed in the last section, it is

generally enough to ensure that:

1. the probability of rejecting the null when valid (type I error) is

small:

p(rejecting H0|H0 is true) = α (2.24)

for instance, with α = 0.05 or α = 0.01, and

2. a test which minimizes the probability of type II error is chosen

p(not rejecting H0|H1 is true) = β (2.25)

Following our experimental design let us assume we reject the

null hypothesis when η(G) > CV , η being a statistic (i.e., graph

properties) of the random graph G and CV a fixed constant. For

example, by taking the density den(G) and equations 2.24, 2.25:

p(η(G) > CV |H0 is true) = α (2.26)

p(η(G) ≤ CV |H1 is true) = β minimized (2.27)

Density distribution η(G) and power computation

Distributions for random graph properties are notoriously difficult

to obtain, even for the simple characteristics of equations 2.26, 2.27.

This problem could be solved using Monte Carlo method [118]. In

order to employ this method we needed a model that represents the

population or the phenomena of interest, and to generate sampling
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realizations (random numbers). Generated data can be then studied

as if they were real observations [92].

In our case, we replaced the N sample realizations of (G̃(1), G̃(2), ...

, G̃(n)) with the random realization ( ˜g(1), ˜g(2),..., ˜g(n)) which satisfies

the properties of the sample. Then we proceeded to estimate the ˜g(n)

and view them as observations from the sample distributed as den(G).

An intuitive way to proceed was to approximate the distribution of

den(G) using the histogram of the estimates ( ˜g(1), ˜g(2),..., ˜g(n)). This

way, as in Eq. 2.26 the null hypothesis was rejected when den(G) >

TN(1−α). The type II error (Eq.2.25) could be finally derived using

the significance level α and the corresponding Critical Value CV ≈
TN(1−α). In our case we will have Type II errors a number of estimated

times

β̂ =
1

M

M∑

r=1

I{X(N),r ≤ TN(1−α)} (2.28)

with X(N),r the r-th sample and I the indicator function for the event

{X(N),r ≤ TN(1−α)}. Finally, the power of the test was given by 1− β̃.

We briefly reviewed the procedure in Algorithm 1.
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Algorithm 1 Power computation
INPUT: CV
OUTPUT: p
E ⇐ 0
for i = 1 to M do
G⇐ sampling (H1); {sampling G from H1}
V ⇐ MaxDegree(G); {compute max vertexes degree for G}
if V < CV then
E ⇐ E + 1; {an error occurred: H0 not rejected}

end if
end for
β̃ ⇐ E/M ; {Type II Error Estimation}
p⇐ 1− β̂
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2.2.3 Analysis of Correlation Structures

A number of criticisms can be raised about the method of diver-

gence just described, particularly in relation to the use of the KL

divergence and the use of Random Graphs for the simulation of bio-

logical and experimental noise required to test the robustness of the

system (see §4.2.1). Consequently, we have archived the use of RGs

and the KL divergence to retain only those points which we consider

to be less critical in our process, such as the use of graphs for the

representation of relations and for the composition of a network Robs,

of global and local density, neighborhoods and in particular the eval-

uation of test results.

The analysis of Correlation Structures in Renal Cell Carcinoma

datasets that we performed was therefore managed using a good part

of the concepts already introduced and some notions that we will

introduce below, accounting also the importance of constrained clas-

sification: we constrained Type I error (α) the ensure the best clas-

sification error for for the most important class, a common practice

useful to improve the ability to discriminate between case and con-

trols [15].

This section summarizes what we will see regarding the analysis

of correlation structures:

1. Use of a bipartite graph R(obs): the edges between vertices are

no longer tracked using the KL divergence, but the correlation

psubjmi,mj
. Tools: bipartite graphs, Pearson correlation.
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2. Subdivision of the graph obtained in a low number of adjacent

and non-overlapping regions: de facto, a division of spectra into

also-adjacent-and-non-overlapping regions. Tool: regions size

(k(regions) “radius”).

3. Evaluation of regions properties: estimation of the distribution

of the values of local density through neighborhoods sampling.

Tools: neighborhood, local density.

These steps are performed for each individual datasets: controls,

ccRCC, not-ccRCC. Results are there compared:

4. Tests of hypotheses between different datasets: the values dis-

tributions previously sampled are compared by t-test. We try

to isolate regions that show a different behaviour in the com-

parison between two different datasets (rejection of the null

hypothesis). Tools: hypothesis tests, t-test.

Correlation structures

In the divergence analysis we represented the divergence structure

through a graph whose edges were traced by calculating the differ-

ence between the different m/z signals (peptides) in the spectrum.

The divergence was calculated using the Kullback-Leibler divergence

entropy. This time we represented graphs through correlations (or

anti-correlations) between the recorded signals in the spectra. This

new representation (template) was called correlation structure.

The formal aspect was almost identical to what we saw in the anal-

ysis of divergence (see previous section): definitions for I(subj) and the
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templates R(subj) were identical. The only difference concerns the def-

inition of the edges: if a measure of correlation |Corr(f̃ (subj,1)
Imi

, f̃
(subj,2)
Imj

)|
between empirical distribution f̃

(subj,1)
Imi

and f̃
(subj,2)
Imj

exceeds a thresh-

old δ, than (mi,m
′
j) ∈ E. The template R(subj) was calculated sam-

pling I
(subj,1)
mi and I

(subj,2)
mj from each pair (I(subj)mi , I(subj)mj ). We em-

ployed the Pearson correlation as measures of correlation [119]:

psubjmi,mj
=

∑n
k=1(I

(subj)
mi,k − I(subj)mi )(I

(subj)
mj,k − I(subj)mj )√∑n

k=1(I
(subj)
mi,k − I(subj)mi )2

√
(I

(subj)
mj,k − I(subj)mj )2

≥ δ (2.29)

Regions

Correlation structures were constructed splitting spectra, then

graphs, into an arbitrary number of distinct regions S, contiguous

and not overlapped. Each region was characterized by the distribu-

tion of local density values D = {d1, d2, ..., dn}, sampled using neigh-

borhoods.

In divergence analysis, we used the graph properties (the dis-

tribution of local density values generated by perturbation) as test

statistics : every single neighborhood was assessed via test powers,

one test per neighborhood. Instead, in correlation structure analysis,

we used regions properties (the distribution of local density D) as

test statistics.

Student’s t-distribution and t-test

In the analysis of divergence the test statistics η(G) was the den-

sity distribution obtained perturbing the Robs. In this analysis of
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Correlation Structures we provided the distribution of density values

by sampling each region with neighborhoods. We can then employ

a more classic statistic test based on Student’s t-distribution with

n− 1 degree of freedom, published by WS Gosset during his working

period at the Guinness brewery in Dublin, Ireland [120].

To estimate the mean of a normal population µ using the sample

mean X̄, usually the standard deviation of statistical population σ,

more accurately σ/
√
n (95% confidence), is unknown, but could be

estimated using the standard deviation of the sample, s (sample size:

n). The estimation of t-distribution is similar to that of the standard

or Z distribution

Z =
X̄ − µ
σ/
√
n

(2.30)

with the use, as mentioned, of s in place of σ:

t =
X̄ − µ
s/
√
n

(2.31)

Compared to the normal distribution, the Student’s t has a greater

dispersion, and consists of a family of distributions that vary with the

sample size n; if the sample is very large the distribution becomes

approximately equivalent [121].

A classic two-sample, paired t-Test was applied, rejecting the null

hypothesis if |t| is greater than the quantile of Student’s t-distribution

with n− 1 degrees of freedom:

|t| > t1−α/2(n− 1) (2.32)
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Hypothesis testing

We conducted three different hypothesis tests (Neyman-Pearson),

each involving different set of data:

1. “Control versus ccRCC” (CVR):

H0 : µctrlS = µccRCCS

H1 : µctrlS 6= µccRCCS

(2.33)

2. “Control versus not-ccRCC” (CVNR):

H0 : µctrlS = µnot−ccRCCS

H1 : µctrlS 6= µnot−ccRCCS

(2.34)

3. “ccRCC versus not-ccRCC” (RVNR):

H0 : µccRCCS = µnot−ccRCCS

H1 : µccRCCS 6= µnot−ccRCCS

(2.35)

Compared to the analysis of divergence, to be note the disap-

pearance of the test against the random sets and the differentiation

of cases in the histological subgroups ccRCC and not-ccRCC. All

tests involve the same procedure:

• the representation of Robs by sampling the distribution func-

tions (f
(subj)
Imi

, f
(subj)
Imj

), using {Iobsmi,1
, Iobsmi,2

, ..., Iobsmi,n
} and {Iobsmj,1

,

Iobsmj,2
, ..., Iobsmj,n

} (see above, “Correlation structures”);

• the collection of observations on the local density of the re-

gion S: Dobs
S = {den(M obs

1 ), den(M obs
2 ), ..., den(M obs

n )}. These
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collections describe the t-distribution useful to perform the dif-

ferent tests.

2.2.4 Characterization of Distinguishing Re-

gions

The main flaw of the analysis of correlation structures is that it

does not provide a tool for the evaluation of the validity of the deci-

sions made. In addition, the Pearson correlation has some flaws:

for example, it miss the correct estimation of nonlinear relation-

ships [122]. We tested then if it was possible to improve the method

by varying the metric used to trace edges between vertices, preserv-

ing all that remains.

Here we provide a summary of the Distinguishing Regions ap-

proach: it is almost identical to the previous one (Analysis of Corre-

lation Structures). To note the replacement of the correlation with

the Mutual Information and the use of Fisher’s exact test:

1. Use of a bipartite graph R(obs): the edges between vertices are

no longer tracked using Pearson correlation, but MI. Tools: bi-

partite graphs, MI.

2. Subdivision of the graph (spectrum) obtained in a low number

of adjacent and non-overlapping regions. Tool: regions size

(kregions “radius”).

3. Evaluation of regions properties: estimation of the distribution

of the values of local density through neighborhoods sampling.

Tools: neighborhood, local density.
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These steps are performed for each individual datasets: controls,

ccRCC, not-ccRCC. Results are there compared:

4. Tests of hypotheses between different datasets: the values dis-

tributions previously sampled are compared by t-test. We iso-

lated regions rejecting the null hypothesis. Tools: hypothesis

tests, t-test.

5. we tested new data, using samples not yet used during the

analysis and the same parameters: with the results we filled

the contingency table and calculate the Fisher’s exact test.

Mutual Information

The characterization of Distinguishing Regions is based on Mu-

tual Information (see also section 1.3.3), which replaces the Pear-

son correlation: the existence of an edge, that is a relationship be-

tween two vertices (peptides), is assessed on the basis of mutual de-

pendence of the signal intensity observed. This is similar to that

we discussed about Divergence representation (§2.2.2) and Corre-

lation structures (§2.2.3): each group of subjects I(subj) (controls,

ccRCC or not-ccRCC; see §2.2.1) can be expressed through a prod-

uct I(subj)m1 ×I(subj)m2 × ...×I(subj)mn of spaces I(subj)mi , i ∈ {1, ..., n}, given

by all potential intensity values whose m/z ratio is mi. We also as-

sume that each I(subj)mi is associated to a distribution function f
(subj)
Imi

.

Mass spectra supply continuous data for which probability distri-

butions f
(subj)
Imi

are unknown and should be estimated. However, the

concept of MI was initially developed for discrete data. The most
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used technique useful to estimate MI from discrete distribution is the

histogram estimation [123]. The calculation of mutual information

is, therefore, based on the binning of data into M discrete intervals

ak, k ∈ {1, ...,M}. For any group g and m/z ratio mi, our experimen-

tal data consist of j measurements of intensities {igmi,1
, igmi,2

, ..., igmi,j
}.

An indicator function Θigmi,u
,u∈ak , u ∈ {1, ..., j}, can be employed to

count the number of data points within each bin ak. The probabili-

ties are then estimated based on the relative frequencies of occurrence

p̃(ak) = 1
n

∑n
u=1 Θigmi,u

,u∈ak , where Θigmi,u
,u∈ak = 1 if igmi,u

∈ ak, else

= 0.

Let {igmi,1
, igmi,2

, ..., igmi,j
} and {igmt,1

, igmt,2
, ..., igmt,j

} be two sets of

observations obtained by sampling f gImi
and f gImt

, for each i, t ∈
{1, ..., n} and every group g. We call the template of g Rg a bipartite

graph (V1∪V2, E) with V1 = {m1,m2, ...,mn}, V2 = {m′1,m′2, ...,m′n}:
if a measure of Mutual Information exceeds a threshold δ, than

(mi,m
′
t) ∈ E:

M∑

k=1

M∑

l=1

p̃(ak, bl) log2

p̃(ak, bl)

p̃(ak)p̃(bl)
≥ δ (2.36)

Fisher’s exact test

Fisher’s exact test is a statistical significance test useful for eval-

uating contingency tables (see table 2.4; [124]). It is usually applied

for the study of small samples, which can not be evaluated with the

distribution χ2 [124,125].
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The Fisher’s exact test allows to calculate the p-value

p =

(
a+b
a

)(
c+d
c

)
(
n
a+c

) =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

a! b! c! d!n!
(2.37)

We use Fisher’s exact test to verify that the property of the Re-

gions (distinguish or not distinguish) and the test results are associ-

ated.

a b a+b
c d c+d

a+c b+d a+b+c+d = n

Table 2.4: A contingency table, as described by Fisher
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2.2.5 Robust Conclusions in MS Analysis

The evaluation of the quality of the results obtained, the idea

that led us to introduce the Fisher’s exact test in the last section,

prompted us to investigate the robustness of our approach. We have

thus constructed a new approach based on the previous ones, because:

• retains all of the tools used in the last approach: bipartite

graphs, neighborhoods, local/global density, regions, the use

of Mutual Information for template construction, the CVR,

CVNR, RVNR hypothesis tests;

• recovers some of the interesting items that we have lost by the

wayside: Random Graphs (RGs; see §1.4.3), used to investigate

the robustness of the decisions the method performed.

This approach is built from lessons learned from previous ap-

proaches, which can be summarized as follows:

1. Use of a bipartite graph R(obs) (template): the edges between

vertices are tracked using Mutual Information. Tools: bipartite

graphs, MI.

2. Subdivision of the graph (spectrum) in regions. Tool: regions

size (k(regions) “radius”).

3. Evaluation of regions properties: estimation of the distribution

of the values of local density through neighborhoods sampling.

Tools: neighborhood, local density.

4. Tests of hypotheses between different datasets (CVR, CVNR,

RVNR). We isolated regions rejecting the null hypothesis. Tools:

hypothesis tests, t-test.
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Analysis of robustness:

5. creation of a pool of RGs, perturbed graphs based on templates

R
(obs)
ctrl , R

(obs)
ccRCC , R

(obs)
not−ccRCC . Tools: RGs, global and local den-

sity.

6. method testing, employing samples not yet used during the

analysis, and the same parameters: with the results we filled

the contingency table and calculate the Fisher’s exact test p-

values.

Robustness

Uncertainty characterizes many experimental processes and may

change the analysis of the events being investigated. For this reason,

robustness analysis needs to be considered in an appropriate man-

ner [126–128].

Robustness (see also section 1.4.7), here, is specifically defined

as the persistence of statistical procedures (i.e., test of hypotheses)

against graph property perturbations. Different graph perturbation

approaches are employed in the literature to compute graph proper-

ties as the graph undergoes some perturbation or change (see for ex-

amples [129,130]). This perturbation may represent new knowledge,

reinterpretation of old data, or exploratory “what-if” type scenario.

Differently, we verify (empirically) the persistence of conclusions (de-

cisions) for the considered statistical procedures when the mechanism

of perturbations (i.e.,the reference model of variability) is applied. In

other words, we observe whether the statistical procedures (test of
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hypotheses) still preserve their decisions even though a source of vari-

ability affects the observed (data) reference model.

We should also say that, similarly to sensitivity analysis, which

consists of studying how a given solution changes when the reference

model is perturbed, we investigate how the decisions of statistical

tests are due to changes in the variability reference model parame-

ters [131]. Solutions are given through statistical procedure decisions

(i.e., test of hypotheses decisions), and perturbations over the data

reference model (i.e., graphs) are provided from the considered vari-

ability model (i.e., RGs).

Reference model of variability

We define a model of variability through RGs instead of deal with

parameters modifications of the reference method. This way we pro-

vide a perturbation mechanisms for our data reference model (i.e.,

template), thus permitting us to obtain information about the valid-

ity of the proposed conclusions (i.e., statistical test decisions) for a

set of acceptable parameters.

In order to define a reference model of variability, we introduce

stochastic elements in our analysis: starting from an observed tem-

plate R(obs) = (V1 ∪ V2, E) we wish to define a random graph able to

preserve, within a defined range, a property of the template itself. We

analyze the neighborhood cohesions of an observed graph (i.e., tem-

plate) R(obs). Hence, we attempt to preserve the densities of R(obs) by

preserving (on average) its size. Among the many methods for defin-
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ing a RG from any observed graph while preserving some properties

(see, for example, the problem of graph randomization in [130]), here

we randomly modify (additions or deletions) the edges of RGs. We

realize this perturbation in such a way that the expected number

of modifications takes values inside specific ranges. The following

definition formalizes this mechanism:

Definition 1 (s, t, R(obs))-Preserving Random Graph

Let R(obs) = (V1 ∪ V2, E) be a template. We consider the following

experiment: for any e ∈ V1×V2, if e ∈ E we delete e with probability

p. Otherwise, if e /∈ E, we add e to E with probability p. We

say that this mechanism defines an (s, t, R(obs))-preserving RG τ(s, t)

if the expected number of edge additions and deletions in RG take

values in [s, t].

Property 1 Let R(obs) = (V1 ∪ V2, E) be a template. We should

obtain an (s, t, R(obs))-preserving RG τ(s, t) by constraining the per-

turbation probability p in definition 1 in such a way that s
n2 ≤ p ≤ t

n2 ,

where n2 = |V1 × V2|.

Test of hypotheses can be formulated also when the perturbation

mechanism in definition 1 is applied, using the Monte Carlo method

for instance [118], defined two templates R(ctrl) and R(ccRCC) we gen-

erate, for any pair of regions R1 and R2, two Monte Carlo samples:

• n realizations {τ̃ (1)1 , τ̃
(2)
1 , ..., τ̃

(n)
1 } of τ1(s, t);

• n realizations {τ̃ (1)2 , τ̃
(2)
2 , ..., τ̃

(n)
2 } of τ2(s, t)
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where τ1(s, t) is a (s, t, S1)-Preserving Random Graph and τ2(s, t) is

a (s, t, S2)-Preserving Random Graph.



Chapter 3

Main results

3.1 Mass Spectrometry data alignment

We aligned proteomics data from the three laboratories involved

in our work (section 2.1.2), using the three methods (Mutual Infor-

mation, Equal Mass and t-test based methods) mentioned in sections

2.1.3 and 2.1.4.

The performance on the datasets has been tested using RapidMiner:

in particular the process described in the section 2.1.5.

Results are reported in the following pages, summarize by the per-

formances of the SVM classifier employed (see section 2.1.5), and

specifically using:

• the Area Under ROC Curve (AUC; see §1.3.3), that could be

considered a good indicator of the diagnostic power of a method

(here to be understood as the ability to detect biomarkers) [72].

• Precision, the fraction of objects truly relevant compared to

73
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the number of objects classified as relevant:

Precision =
true positive

true positive+ false positive

• Recall, the fraction of identified relevant objects over the total

number of objects that should have been identified as relevant:

Recall =
true positive

true positive+ false negative

The results are summarized in charts and tables, listed below.

Some of the charts and tables discussed here are listed in Supple-

mentary Material section (6.1). Specifically, we selected to show:

• the average values of AUC, Precision and Recall at different

parameter k (number of features selected). We considered two

different series of values, one from the alignments between pairs

of labs (Monza and Florence, MF; Monza and Brescia, MB;

Florence and Brescia, FB) and one for the alignment of all

the labs involved (Monza and Florence and Brescia, MFB). See

tables 3.1 (AUC), 3.2 (Precision and Recall, MF, MB, and FB),

3.3 (Precision and Recall, MFB), and related charts.

• the difference (percentage) between the various methods evalu-

ated, obtained by comparing the mean values of AUC, Precision

and Recall with the the parameter k. The comparison includes

all types of alignment (MF, MB, FB, and MFB). See tables 3.4

(AUC), 6.1 (Precision and Recall), and relative charts.

• the difference (percentage) between the various methods evalu-
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ated, obtained by comparing the mean values of AUC, Precision

and Recall in the same labs. See tables 3.5 (AUC), 6.2 (Preci-

sion and Recall), and related charts.

AUC - Area Under ROC Curve

k
Pairs of labs All 3 labs (MFB)

EM MI TT EM MI TT
2 0.774 0.805 0.796 0.730 0.660 0.467
3 0.722 0.827 0.751 0.632 0.720 0.660
4 0.839 0.809 0.782 0.515 0.824 0.641
5 0.681 0.881 0.722 0.499 0.759 0.749
6 0.621 0.854 0.754 0.507 0.538 0.573
7 0.832 0.877 0.766 0.541 0.776 0.467
8 0.797 0.854 0.844 0.506 0.755 0.652
9 0.612 0.836 0.784 0.477 0.563 0.629
10 0.744 0.821 0.775 0.525 0.547 0.653
11 0.766 0.851 0.766 0.452 0.691 0.605
12 0.670 0.873 0.769 0.578 0.547 0.660

Mean 0.733 0.845 0.773 0.542 0.671 0.614

Table 3.1: Mean values of AUC (§1.3.3) depending on the number k
of features selected, both in the case of alignment between pairs of
labs (Monza and Florence, MF; Monza and Brescia, MB; Florence
and Brescia, FB), and between all the three labs involved (Monza,
Florence and Brescia, MFB).
Data are represented in figure 3.1.
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Figure 3.1: Mean values of AUC (§1.3.3) depending on the number
k of features selected.
Results from the alignment between pairs of labs are draw in solid
lines; dashed lines for results from the alignment of all labs involved
(Monza, Florence and Brescia; MFB). Mutual Information shows vir-
tually always better performance compared with other methods, and
in both types of alignment analysed. This data are reported in table
3.1.
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SVM performance - pairs of labs (MF, MB, FB)

k
Precision Recall

EM MI TT EM MI TT

2 0.575 0.703 0.690 0.677 0.657 0.633
3 0.651 0.675 0.711 0.533 0.840 0.571
4 0.643 0.653 0.635 0.679 0.663 0.644
5 0.562 0.707 0.640 0.419 0.788 0.546
6 0.541 0.704 0.611 0.572 0.732 0.608
7 0.622 0.732 0.668 0.624 0.781 0.607
8 0.550 0.707 0.672 0.573 0.724 0.650
9 0.568 0.699 0.597 0.456 0.699 0.587
10 0.549 0.696 0.599 0.620 0.684 0.592
11 0.546 0.658 0.548 0.569 0.625 0.553
12 0.487 0.712 0.507 0.522 0.715 0.533

Means 0.572 0.695 0.625 0.568 0.719 0.593

Table 3.2: Mean values for Precision and Recall, depending on the
number k of features selected, only for alignment between two labs
(Monza and Florence; Monza and Brescia; Florence and Brescia).
This data are represented in figure 3.1. For the three labs alignment,
see table 3.3.
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Figure 3.2: Mean values for Precision and Recall, depending on the
number k of features selected, only for alignment between two labs
(Monza and Florence; Monza and Brescia; Florence and Brescia).
This data are reported in table 3.2. For the three labs alignment, see
figure 3.1.
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SVM performance - All 3 labs (MFB) involved

k
Precision Recall

EM MI TT EM MI TT
2 0.580 0.545 0.356 0.721 0.630 0.400
3 0.514 0.598 0.539 0.536 0.645 0.530
4 0.330 0.735 0.528 0.288 0.661 0.561
5 0.432 0.619 0.554 0.473 0.536 0.661
6 0.410 0.444 0.389 0.376 0.497 0.403
7 0.472 0.731 0.451 0.409 0.503 0.473
8 0.556 0.617 0.518 0.600 0.530 0.652
9 0.481 0.487 0.533 0.688 0.530 0.685
10 0.517 0.526 0.502 0.506 0.467 0.594
11 0.374 0.657 0.527 0.370 0.473 0.533
12 0.461 0.476 0.495 0.630 0.342 0.533

Mean 0.466 0.585 0.490 0.509 0.529 0.548

Table 3.3: Mean values for Precision and Recall, depending on the
number k of features selected, only for alignment between all the
three labs (Monza and Florence and Brescia, MFB).
This data are represented in figure 3.1. For alignments between pairs
of labs, see table 3.2.



80 CHAPTER 3. MAIN RESULTS

Figure 3.3: Mean values for Precision and Recall, depending on the
number k of features selected, only for alignment between all the
three labs (Monza and Florence and Brescia, MFB).
This data are reported in table 3.3. For alignments between pairs of
labs, see figure 3.1.
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AUC - All labs (MF, MB, FB and MFB)
k MI vs EM MI vs TT TT vs EM
2 0.75% 7.14% -6.89%
3 12.62% 9.02% 3.96%
4 6.69% 8.08% -1.52%
5 25.28% 14.35% 12.77%
6 23.53% 8.54% 16.39%
7 10.86% 18.90% -9.92%
8 12.68% 4.07% 8.98%
9 24.67% 3.02% 22.33%
10 8.44% 1.01% 7.50%
11 15.22% 10.52% 5.25%
12 18.25% 6.32% 12.73%

Table 3.4: Performance comparison (percentage) between the AUC
means of the various methods proposed, measured for each method
by varying k.
Positive values indicates a better performance of the first method
versus the second (for example, given A vs. B: A better than B),
negative values the opposite (B better than A). Data drawn in picture
3.1.
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Figure 3.4: Performance comparison (percentage) between the AUC
means of the various methods proposed, measured for each method
by varying k.
MI (light and dark orange) performed always better than the com-
peting methods, with peaks between 20-25%. See also table 3.4.
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AUC - Labs comparison
Methods Monza &

Florence
Monza &
Brescia

Florence &
Brescia

MFB

MI vs EM 3.17% 18.69% 14.93% 19.19%
MI vs TT -6.34% 28.49% -0.21% 8.46%
TT vs EM 8.94% -13.70% 15.10% 11.73%

Table 3.5: Performance comparison (percentage) between the AUC
means of different aligned datasets (different labs merging).
Positive values indicates a better performance of the first method
versus the second (for example, given A vs. B: A better than B),
negative values the opposite (B better than A). For a chart, see 3.1.
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Figure 3.5: Performance comparison (percentage) between the AUC
means of different aligned datasets (different labs merging).
MI (light and dark orange) performed better than the competing
methods, notably in MFB, the most complex dataset. Data from
table 3.5.
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3.2 Mass Spectrometry data analysis

The following sections list the results obtained in Mass Spec-

trometry data analysis. All methods designed have been imple-

mented using MATLAB R© (MATrix LABoratory), a high-level lan-

guage and interactive environment for numerical computation, vi-

sualization, and programming developed by MathWorks company

[www.mathworks.com].

3.2.1 Divergence Analysis

Our purpose was to identify those part of spectrum (neighbor-

hoods) that respond to the Neyman-Person hypothesis tests rejecting

the null hypothesis.

As often happens in these cases, we have imposed a predefined level

for type I error (usually α = 1%, otherwise reported), so to ensure

tests with high statistical significance: consequently the final results

highlight those neighborhoods that reject the null hypothesis with

higher test powers (1 - β).

Parameters evaluation

We studied the free parameters of the algorithm:

1. the Kullback-Leibler divergence threshold δ, or KL threshold,

that define, for each pair of nodes, the presence or absence of

an edge;
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2. the parameters related to perturbation: the number of per-

turbed graphs;

3. the size k of the neighborhoods.

This analyses have been repeated independently for each one of the

three hypothesis test type designed:

1. H0 : URfM(v, e) and H1 : R(case) (random versus case);

2. H0 : URnM(v, e) and H1 : R(control) (random versus control);

3. H0 : R(control) and H1 : R(case) (control versus case).

The Kullback-Leibler (KL) threshold δ

As a first step we established a set of arbitrary KL thresholds,

then we counted, for each threshold and for every neighborhood,

the number of graphs with test powers greater than δ. This pro-

cess was iterated several times with different KL thresholds and δ

(δ > 0.25, δ > 0.50, δ > 0.75, δ = 1). These raw results helped us

defining the range of best values useful to search for the optimal KL

threshold: [10, 20]. We iterative replicated the procedure within the

selected range, choosing the set of the most interesting results until

we find the overall best KL threshold value (Fig.3.6). This steps was

repeated for each one of the three type of hypothesis tests we per-

formed.

The first runs of the KL threshold analysis were performed us-

ing a number of perturbations of several orders of magnitude (i.e.

number of perturbed graphs), because at this point we has not yet
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determined the effect of perturbation on results. Likewise, an arbi-

trary neighborhood size (k = 2) was selected. To be note that after

establishing the values to be assigned to each parameter, all the tests

were repeated, in order to confirm the rightness of the choices.

Number of Perturbations

Two different models of randomness have been employed: the Uni-

form Reference model (URfM) and Uniform Random model (URnM;

see 2.2.2). The URfM is actually represented with a random graph

consisting of v vertices and e edges. Since the number of vertices and

edges are known, we could generate the entire population P , or one

or more graph Pg ∈ P . The URnM was obtained instead by apply-

ing noise, with a normal distribution, to the R(obs): in both cases we

could decide, at our discretion, the number of graphs Pg we wanted.

To ensure that the results did not depend on chance, we repeated the

test by generating multiple random graphs: as we will see shortly, if

we exclude the fluctuations for small numbers of graphs, the number

of random graphs does not affect the behavior of the test, demonstrat-

ing the non-dependence between the results and methods of pertur-

bation.

For the analysis of the number of perturbed graphs Pg that must

be computed we used the same principles of the last analysis, set-

ting a type of test to be performed (case versus controls) and the

KL threshold just calculated. We did the first analysis using arbi-

trary numbers of perturbed graphs: for example, Pg = 100, Pg =

500 and Pg = 1000. In none of our experiments there was significant
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Figure 3.6: The Kullback-Leibler divergence threshold δ
Number of tests of hypotheses with test powers greater than (or equal
to) arbitrary thresholds. H0 = null hypothesis; H1 = alternative
hypothesis.



3.2. MASS SPECTROMETRY DATA ANALYSIS 89

Figure 3.7: Number of perturbed graphs.
Performance of the same test (controls vs. case), varying the dimen-
sion of the population of perturbed graph. Y-axis: number of tests
of hypothesis with test powers greater than the arbitrary thresholds;
H0 = null hypothesis; H1 = alternative hypothesis.
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variations between the results obtained from these Pg values (data

not shown).

We then reduced search space in a smaller range, like 2 ≤ Pg ≤
100, without detecting, even in this case, dependencies between the

number of perturbed graphs and results: for Pg > 10, the increase of

the perturbation number does not affect results, (see Fig.3.7) except

for what concerns the δ = 1 threshold, which decreases very slowly

but steadily with the increasing of the number of perturbed graphs.

All these tests were repeated several times, to verify that this

behaviour was not due to chance, and that the perturbation method

was adequate, achieving hard consistence (average deviation: 2.5%;

data not shown). Supported by this observations, we set the number

of perturbed graphs to the arbitrary value Pg = 100.

Neighborhood size (k)

The last parameter to be studied was related to the size of the

neighborhoods. The analysis was similar to that performed for the

study of KL threshold: we established an increasing set of arbitrary

k size and counted how much tests had test power higher than a

threshold.The value k is a “radius” that, centred on a vertex, defines

the number of adjacent vertices in the neighborhood: all vertexes

[vAn−k, v
A
n+k]; [vBn−k, v

B
n+k]. We called this window local density win-

dow . Please, note that the population size of the possible local den-

sity windows decreases with the increasing of k: to avoid distortion

of experimental results, is therefore necessary to weigh the absolute
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values found with the population size (see Fig.3.8).

We finally selected the local density window that had the highest

number of tests with high power level, in particular for more stringent

thresholds (> .75,= 1).

Figure 3.8: Local density window size
X-axis: Local density window radius k; Y-axis: number of hypothesis
tests with test powers greater than the arbitrary thresholds; H0 =
null hypothesis; H1 = alternative hypothesis.

Results for free parameters analysis

We did not find a set of free parameters suitable for all the tests,

except for the number of perturbed graphs, setted to 100. Table 3.6

summarize the best results related to the three different hypothesis
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tests.

Hypothesis
test

KL thresh-
old

Number of
perturbed
graphs

Local den-
sity window
size

Random vs
Case

7 100 13

Random vs
Control

7 100 15

Control vs
Case

12 100 14

Table 3.6: Best parameters for the three different tests

Heat maps and most interesting mass ranges

The next pages will show the results obtained with our method

and with the parameters chosen. The results are represented using

heat maps and mass ranges. Information are actually the same: re-

sults are represented by heat maps that show the hottest areas, ie

tests with high power (all areas with low power were set to zero).

These areas are then described by axes coordinates i and j, easy to

identify and summarized in the following tables. These coordinates

indicate the vertex taken as the center of the window of the local

density.

The tables with mass ranges represent a discretization of the heat

map information, because reported contiguous areas in which we ob-

tain tests that rejects the null hypothesis with high test power.
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In particular, the first two tests, random versus controls and ran-

dom versus cases, show extremely large hot areas, to emphasize the

ability of the method to distinguish an ordered set of data (healthy)

compared to similar sets but perturbed (URnM), or a dataset more

or less ordered (cases) compared to a system with similar general

features (URfM). The main heat map, “controls versus cases”, has a

very different profile, because it identifies those areas of the spectrum

that show a different behaviour in the two sets.

Here is the list of heat maps and tables displayed below:

1. random versus controls: Fig.3.9 (heat map) and Table 3.7;

2. random versus cases: Fig.3.10 (heat map) and Table 3.8;

3. controls versus cases: Fig.3.12 (heat map), Type I error (α) =

1%), Fig.3.11 (α = 5%) and Table 3.9;

areas
start & stop masses start & stop (Da)
i j i j

a 25 53 24 96 2050.24 3464.28 2043.36 5924.40
b 16 77 96 109 1770.14 4543.79 5924.40 8858,15
c 55 107 37 43 3712.83 8192.67 2805.13 3164.61

Table 3.7: Random versus Controls test - Some coordinates for the
best local density windows (best power test), and related mass range.
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Figure 3.9: Random versus Controls test - Heat map representing the
most interesting local density window coordinates

areas
start & stop masses start & stop (Da)
i j i j

a 16 56 14 111 1728.8 3486.19 1666.92 8858.15
b 93 111 30 44 5237.85 8858.15 2382.26 3158.31

Table 3.8: Random versus Cases test - Some coordinates for the best
local density windows (best power test), and related mass range.

areas
start & stop masses start & stop (Da)
i j i j

a 23 58 97 110 1940.18 3743.34 5924.4 8858.15
b 38 41 38 46 2805.13 3017.81 2805.13 3214.45

Table 3.9: Controls versus Cases test - Some coordinates for the best
local density windows (best power test), and related mass range.
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Figure 3.10: Random versus Cases test - Heat map representing the
most interesting local density window coordinates
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Figure 3.11: Controls versus Cases test - Heat map representing the
most interesting local density window coordinates. α = 5% (others
heat map: α = 1%).
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Figure 3.12: Controls versus Cases test - Heat map representing the
most interesting local density window coordinates. α = 1%.
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3.2.2 Analysis of Correlation Structures

As in divergence analysis, the purpose of our analysis of corre-

lation structures was to detect the interesting regions of the RCC

spectra. It should be noted that in this case the spectrum was ac-

tually divided into regions (see “Regions”, §2.2.3): the number of

regions kregions becomes then a first parameter to be tested. Instead,

all parameters related to the perturbation of graphs disappeared.

Among the parameters to be studied we still kept the threshold

δ and the neighborhoods k radius: the first no longer set the thresh-

old of divergence that characterizes the presence/absence of an edge

between two vertices, but, in a similar way, the threshold of the ab-

solute value of correlation psubjmi,mj
(see Eq. 2.29) which, if exceeded,

sets an edge between two vertices; the latter was identical, but it

was limited by the size of the region sampled by neighborhoods: in

practice, max(k) ≤ kregion − 1.

We were no longer interested in representing directly the power of

the tests (heat maps), but to select the windows of the spectrum that

reject the null hypothesis, supported by powerful and reliable tests.

This involved the study of the three parameters, δ, k and kregion.

Parameters evaluation

With the above concerns in mind, the targets of our experiments

could be summarized as follows:

• the goal was to evaluate empirically kregions, δ and k in order

to detect the lowest number of correlation structure changes in
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every datasets comparison. In other terms, for different pairs of

kregions, δ, k, we counted the number of significant and powerful

tests that reject the null hypothesis, searching for a minimum

(i.e. one rejection). The best result is shown in figure 3.13.

• In order to allow the comparison between different tests, we

decided to use the same parameters for all the three different

hypothesis tests (CVR, etc.). The benchmark test was selected

by choosing the test that included the largest number of data:

CVR.

• The number of regions used was constrained by the number of

signals contained in the data (135): since the regions should

not overlap, this has limited the kregions possible values.

• The range of values of the parameters analysed were:

– δ = [0.8, 0.75]; preliminary experiments have shown un-

satisfactory results for δ > 0.8.

– kregion = (2; 4; 7; 13; 22), that corresponds to splitting the

spectrum into a number of regions respectively equal to

27, 15, 9, 5, 3;

– k depends on kregion (max(k) = kregion− 1), so k = [2, 21],

consistently with max(k). For kregion = [2], k = 2; for

kregion = 4, k = [2, 3]; for kregion = 7, k = [2, 6], and so on.

• Using the values of δ and kregion obtained above, we finally re-

covered the mass-to-charge ratio bounds which identify regions

where we have detected modification in a correlation structure
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at high level of significance (95%) and test power (> 0.75). This

mass ranges are listed in table 3.10.

CVR CVNR RVNR
δ = 0.75, k = 2 δ = 0.75, k = 2 δ = 0.75, k = 2
From To From To From To

m/z 1719.45 2084.34 1719.45 2084.34 4625.10 5374.00

Table 3.10: Mass Ranges (Da) of the best regions selected by our
method, one region per test.
Parameters are the same, and was selected using Ctrl VS ccRCC
datasets (see text).
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Figure 3.13: Number of rejected tests according to parameters δ and
k; kregion = 7 (maximum number of rejected tests = 8; controls vs.
ccRCC).
The only combination of parameter with only one test rejected is the
fifth from the right: δ = 0.75, k = 2.
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3.2.3 Characterization of Distinguishing Re-

gions

The results of the Characterization of Distinguishing Regions were

obtained with the same method reported in the previous section,

§3.2.2. The only differences are:

• the replacement of Pearson correlation with Mutual Informa-

tion;

• the addition of the Fisher’s exact test, which involves a simple

computation of the distinguishing/not-distinguishing regions

and calculation of the relative p-value, described in §2.2.4.

The three parameters kregions, δ and k are also involved (§3.2.2):

kregions and k are the same (kregions = 7, k = [2, 6]), only δ changes:

δ = [0.01, 0.00001].

We report only the final results of the procedure: the table of inter-

esting mass ranges (table 3.11) and related Fisher’s exact tests (table

3.2.3).

CVR CVNR RVNR
From To From To From To

m/z 2644.49 3214.26 1719.45 2084.34 1719.45 2084.34
m/z 3270.53 4018.88 4050.39 4540.10 1832.33 2217.20

Table 3.11: Mass Ranges (Da) of the two best regions selected by our
method, two regions per test.
Parameters are always the same, and was selected using CVR (Con-
trols vs. RCC datasets) datasets: δ = 0.005; k = 2.
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CVR CVNR RVNR
Region H0 H1 H0 H1 H0 H1

DR 2 17 2 17 0 19
NDR 11 8 13 6 11 8
p-value 0.005 0.0006 0.0001

Table 3.12: Fisher’s exact test and p-values
DR: Distinguishing Region; NDR: Not-distinguishing region.
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3.2.4 Robust Conclusions in MS Analysis

By introducing the reference model of variability, we provided

a perturbation mechanisms for the data reference model (i.e. tem-

plate). This way, we can also interpret robustness as the persistence

of statistical conclusions (i.e., test of hypotheses decisions) against

template property perturbations. We verified empirically the per-

sistence of these conclusions when the perturbation mechanism is

applied to the RCC data. We observed if the statistical procedures

(test of hypotheses) still preserve their decisions even when a source

of variability affects the observed templates (Robs).

We have provided a set of arbitrary values to all the variables in-

volved, the same of §3.2.3: kregions = 7, k = [2, 6], δ = [0.01, 0.00001].

For each combination δ and k, we considered the number of signifi-

cant tests rejecting the null hypothesis. For each class we evaluated

(empirically) the threshold δ and ray k detecting a low number of

dependence structure modifications from control to case groups. By

using these values (i.e. δ and k), we detected the m/z bounds iden-

tifying modified regions over the spectra at a specific level of signif-

icance (usually 5%). This was iterated for each class of tests. We

appointed regions rejecting the null hypothesis as distinguishing re-

gions (DRs; not-distinguishing: NDRs).

Therefore we classified regions in distinguishing/not-distinguishing

reflecting the test decisions. The aim of our analysis was to check

the robustness of these decisions or, equivalently, the robustness of

the distinguishing/not-distinguishing capabilities. We verified then
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if, after the application of the variability model (see §2.2.5), the

distinguish/not-distinguish capability was preserved: after a pertur-

bation we still obtain new distinguishing/not-distinguishing regions,

but the question of interest was to asses, for each region, the distin-

guishing capability before and after the perturbation. We tested this

results by using the Fisher’s exact test.

We have selected the parameters that allowed us to see a number

of DRs = 3 (δ = 0.001; k = 4).

CVR CVNR RVNR
From To From To From To

1719.45 2084.34 1719.45 2084.34 1719.45 2084.34
m/z 2644.49 3214.26 2092.18 2563.79 2644.49 3214.26

3270.53 4018.88 4050.39 4540.10 3270.53 4018.88

Table 3.13: Mass Ranges (Da) of distinguishing regions (DRs) se-
lected by our method, three regions per test.
Parameters are always the same, and was selected using CVR (Con-
trols vs. RCC datasets) datasets.
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CVR
Perturbation prob. 0.05 0.1 0.2 0.3
After perturbation H0 H1 H0 H1 H0 H1 H0 H1

Before perturbation
DRs 0 12 0 12 1 11 1 11
NDRs 19 1 13 7 12 8 12 8

Table 3.14: Fisher’s exact test for CVR class
DRs: Distinguishing Regions; NDRs: Not-distinguishing regions.

CVNR
Perturbation prob. 0.05 0.1 0.2 0.3
After perturbation H0 H1 H0 H1 H0 H1 H0 H1

Before perturbation
DRs 0 12 0 12 0 12 0 12
NDRs 20 0 17 3 17 3 12 8

Table 3.15: Fisher’s exact test for CVNR class
DRs: Distinguishing Regions; NDRs: Not-distinguishing regions.

RVNR
Perturbation prob. 0.05 0.1 0.2 0.3
After perturbation H0 H1 H0 H1 H0 H1 H0 H1

Before perturbation
DRs 0 12 0 12 0 12 0 12
NDRs 19 1 15 5 12 8 15 5

Table 3.16: Fisher’s exact test for RVNR class
DRs: Distinguishing Regions; NDRs: Not-distinguishing regions.
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p-values
Perturbation prob. CVR CVNR RVNR
0.05 5.75× 10−8 4.43× 10−9 5.75× 10−8

0.1 2.23× 10−4 1.99× 10−6 2.74× 10−5

0.2 4.57× 10−3 1.99× 10−6 5.58× 10−4

0.3 4.57× 10−3 5.58× 10−4 2.74× 10−5

Table 3.17: Fisher’s exact test p-values



108 CHAPTER 3. MAIN RESULTS



Chapter 4

Conclusions and

Perspectives

4.1 Mass Spectrometry data alignment

The aim of the work was to provide a method for alignment of

mass spectrometry data: data alignment from Alzheimer’s patients

allowed the creation of larger starting datasets, useful, eg, for data

mining or other type of analysis.

We started with a theoretical frame and then materially imple-

ment the solutions in a machine learning environment (RapidMiner,

see §2.1.5): this allowed us to compare our method against two com-

petitive methods (§2.1.4) using a neutral context (the same machine

learning process, with input data obtained according to the different

methods).

109
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As reported in the graphs listed in section 3.1 and 6.1, our method

showed better performance in almost all tests, often with peaks of 20-

25 %, and for all the different performance indexes considered (AUC,

Precision and Recall; §3.1). Results were largely positive both re-

garding the comparison (alignment of pairs of laboratories), and the

generalization to more laboratories (in our case, extension to all three

labs).

Overall, our method provided a sensible fusion criterion between MS

signals of different laboratories while also providing a generalization

by Maximum Weight Bipartite Matching and maximization of shared

information.

Our conclusions should be further strengthened by additional exper-

imental data.

4.2 Mass Spectrometry data analysis

4.2.1 Divergence Analysis

The ultimate purpose of our divergence analysis was to compare

datasets of cases and controls, to identify interesting regions in the

spectra. The changes in these regions indicated a change in the

peptidome, a mark showing that something changed upstream (pro-

teome, transcriptome, genome).

The system had allowed us to identify the mass ranges of interest

on which direct the work of mass spectrometrists. In analogy with

wet labs, the comparison between observed and random graphs es-
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tablished a kind of “blank” able to highlight the areas in which the

method worked well: it was no coincidence that the areas highlighted

by the comparison between the case and control systems were totally

covered by those highlighted in the comparisons random versus cases

or controls. The range of signals extracted in controls vs. cases com-

parison were (Table 3.9):

a) From 1940-3743 for controls;

b) From 5924-8858 for cases.

How to interpret the interval a), which indicated a controls mass

range with unexpected behaviour? In “inverse” analogy with “ran-

dom vs. case” and “random vs. controls” tests, we could consider

this range of signals as untrustworthy for any signal case-related. For-

tunately, a) and b) do not overlap, so with these data, the problem

does not exist.

This first approach showed some defects, such as:

• use of the Kullback-Leibler divergence, a measure which is not

metric (not define distances), is not symmetric, and is always

positive [132]: in short, is confusing when compared to mea-

sures more understandable as the Pearson correlation. Its mean-

ing would also be more difficult to interpret if we should develop

a bioinformatics tool for a wider audience;

• the system is entirely based on the use of Random Graphs that

simulate the noise biological and experimental measured and

the robustness of the system. Is yet to be proved that the
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robustness of a system can be verified using this method and,

generally, a system completely designed with random objects,

also not-so-random ones (see URnM above), does not seems so

compelling.

4.2.2 Analysis of Correlation Structures

The analysis of correlation structures was based on the construc-

tion and the comparison between the signal correlation structures of

control, ccRCC and not-ccRCC data. This allowed us to extract a

region of interest (a range of signals) for each category of possible

tests (see section 2.2.3). First of all, we must consider the greater

clarity of the final result: for each test, each one very significant and

powerful, we isolated a single contiguous range of signals in a region

which showed different behavior in the two in different clinical states

considered (for instance, controls and ccRCC).

A very interesting aspect is the ability of the method to operate

not only the comparisons against controls, but also on histological

sub-divisions, ccRCC and not-ccRCC, which in fact singles out dif-

ferent regions.

The decision to divide the spectrum, and therefore the graph, into

regions created the conditions for calculating a distribution of values

and for the elimination of Random Graphs. We understand, how-

ever, that the choice of dividing the spectrum in different regions was

in itself arbitrary, because it established strict boundaries within a

population of peptides ordered by weight (more precisely, for m/z ):
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this could be counterproductive, because we wanted to identify pro-

teins linked by functional relationships, usually uncorrelated to mass.

However, we think that the fact that studying a number of different

sizes for the regions can overcome at least in part this problem. Fi-

nally, it is certainly necessary to identify the list of peptides in the

ranges indicated, a list which we hope will be provided in the future

by our mass spectroscopists.

The weak point of this method was the lack of a criterion for the

evaluation of the results, which we introduced in the following meth-

ods: we could not verify in any way the goodness of the choices made

by the algorithm. The Fisher’s exact test allowed us to overcome this

limitation.

4.2.3 Characterization of Distinguishing Re-

gions

The analysis of correlation structures did not provide a tool for

the evaluation of test results: the selected regions were not described

by any index like, for instance, a p-value, widely used in other con-

texts (see, for instance, [133–135]). More importantly, the hypothesis

tests presented in the previous methods were entirely designed and

analyzed using always the entire datasets, which can induce statisti-

cal bias [136]. We decided to verify the presence of statistical bias by

checking if there was an association between the properties of each

region (discriminating/not discriminating) and the result of hypoth-

esis testing, using Fisher’s exact test. Fisher’s exact test is probably

one the best statistical tool available for small samples [125].
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The results of the Characterization of Distinguishing Regions were

substantially similar to that seen in the previous paragraph, regarding

the analysis of correlation structures: however, we tried to identify

two distinguishing regions instead of one. As already mentioned, we

also examined each type of test with Fisher’s exact test, always find-

ing a significant association (α = 5%) between decision and region’s

property. The regions were in fact different from those identified by

the previous method, with the exception of the test CVNR (see table

3.11).

4.2.4 Conclusions in MS data Analysis

This method represents the synthesis of everything we did before:

we decided then to enclose in this section not only the conclusions

concerning the “Robust Conclusions in MS Analysis” approach, but

also more general conclusion about the analysis of MS data.

The robustness of a biological system is mainly defined as a prop-

erty of a biological function [102,103]. For this reason robustness here

relates to the determination of the effect of certain perturbations on

the expression levels (i.e., spectra signals) of protein dependencies.

Specifically, we referred to robustness as the persistence of our data

model behavior (i.e., template behavior) against perturbations, as

reflected in the deviations from proteomic signal dependencies. In

the broadest sense of the word, robustness studies need to determine
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how a process copes with uncertainties: data values models and pa-

rameters used in methods could be ill-determined, so the role of the

modeler is to provide information about the validity of the proposed

solutions for different sets of acceptable values for the reference model

and the reference method [106,107]. Based on these ideas, we focused

on the following three key points:

• Reference model for the observed data - Many conditions are

best described by relational models in which instances of mul-

tiple types are related to each other in complex ways. Gra-

phs provide a canonical representation for such relational data

and their employment to reassess traditional data seems to

be promising in order to better understand, summarize and

visualize relationships amongst very large number of observa-

tions [137–140]. The rich literature on social network analysis

gives probably the main tools for working with this aim (for

example, [141,142]).

In mass spectrometry analysis, when it comes to analyzing

peaks with different intensity in the MS spectra, comparisons

are generally performed between proteins (peptides) profiles of

different groups - or between statistics summarizing the peak

property of a group [143]. Actually, different signals in the

m/z spectra can be related to each other, and this property in

turn may change from group to group. For this reason, follow-

ing the idea to introduce relational information, we represented

each group of subjects (controls, ccRCC, not-ccRCC) through

graphs providing our reference model for the observed samples.
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In this representation vertices are m/z ratios and edges express

dependencies (i.e., mutual information) between signal intensi-

ties with specific m/z values.

• Reference method to provide decisions - The theoretical frame-

work was employed mainly to define a reference methods for our

analysis, i.e., a standard test of hypotheses approach over graph

properties. Using this approach we obtained “differentially ex-

pressed” spectra regions between case and control groups of

subjects, even if the signal identity was not yet ensured. As

a matter of fact, one of the major advantages of this strategy

is that no pre-knowledge of the identity of signals selected for

the pattern is needed to allow their use as biomarkers [144]. It

should be noted that the identification of peptide or protein sig-

nals in a profile is not straightforward: such efforts are tedious

because of the requirement of specific separation or enrichment

strategies. In addition, a high MS/MS data quality is needed

for identification of endogenous species, i.e. large coverage of

fragment ions. For these reasons, it is useful to first determine

the diagnostic power of candidate markers before performing

identification studies and further investigations into their bio-

logical role in disease mechanisms.

• Reference model of variability - We formulated through random

graphs the reference model of variability, that can be helpful

for a variety of purposes in the statistical practice: in our case,

we derived a simple statistical property (property 1, see sec-

tion 2.2.5), supporting the modeler to draw reliable conclusions

about noised data. The modeler first should employ the con-
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sidered variability model - i.e., the (s, t)-preserving Random

Graph (defined in section 2.2.5), with a set of acceptable pa-

rameters s, t. Then he should check whether for these parame-

ters a perturbation probability satisfying property 1 give rise to

test decisions, which still maintains the conclusions previously

obtained (i.e., before the perturbation mechanism was applied).

In other words, due to property 1, a set of acceptable changes

(e.g., at most deleted/added edges) give rise to the associated

probabilities for the simulation of the effect of an uncertainty

over the represented data. Throughout this process, we ob-

tained robust conclusions for all the class of tests applied in

this study, by considering as acceptable those template modifi-

cations for which, on average, at most 10% of the possible edge

have been modified (i.e. added or deleted) from the original

(observed) representation.

Our case-study concerned robust conclusions for differentially ex-

pressed mass spectrometry regions. Spectra regions are sequences of

m/z values which provide information about the mass of biological

molecules. Inside these regions we verified differentially expressed

properties (i.e., signal dependencies cohesion) between control and

case (ccRCC, not-ccRCC) groups. We point out that we defined as

graph regions those subgraphs which reflect the signal dependencies

occurring over mass spectrometry regions. On the other hand, we

called neighborhoods these subgraphs which characterize statistical

units of analysis. We gave these definitions simply for the different

use we made of these structures.
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Many questions still need to be addressed in future analysis. First

of all, defining on average acceptable number of modifications (section

2.2.5) should also require info about the related proteins (peptides)

involved in the added and/or deleted dependencies. Here we em-

ployed the reference method mainly to obtain spectra distinguishing

regions for their biological evidence, but a better understanding of the

molecular interactions would give a greater biological significance to

the edges addition or removal. Also,the number of acceptable modi-

fications is clearly arbitrary and strictly dependent on the modeler’s

opinion: this lead to having to many alternative results in the ro-

bustness analysis. For instance, for some large value assignment to

the parameter t (see section 2.2.5), eg probability = 50% of additions

and deletions, can even results in puzzling conclusions. De facto, we

give the modeler the chance to choose both a perturbation inducing

association (e.g., p = 0.1) and a perturbation inducing independence

(e.g., for p = 0.2) in the Fisher’s exact test.

Further analysis should concern the use of some parameters which

we have arbitrary defined as constant values (for examples, the size

kregions of regions, or the “radius” k of a neighborhood). The selec-

tion of these arbitrary values can have different effects on the model

accuracy. For instance, in order to adapt the method to different

data sets, it should be important to allow one to choose them in a

more principled way.

Probably the most critical parameter is the hard threshold δ, use-

ful to represent dependencies (i.e., edges) in the template graphs. It

would be possible to overcome this hard threshold using weighted

graphs, but the calculation of the weight needs more biological in-



4.2. MASS SPECTROMETRY DATA ANALYSIS 119

formation: first, even partial recognition of the peptides associated

with the signals, and then the creation of weighted networks using,

for example, interactions reported in literature.

Finally from a biological and clinical prospective, since the pro-

teins that show changes in expression level as a consequence of a

disease have great potential as new biomarkers (in diagnosis, prog-

nosis and as potential therapeutic targets), we need to conclusively

fix both the classification predictive power of the RCC distinguishing

regions and their biological identity aimed to explore the structure

and function of these potential biomarkers.
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Mutual Information Optimization for
Mass Spectra Data Alignment

I. Zoppis et al.

Abstract—“Signal” alignments play critical roles in many clinical setting. This is

the case of mass spectrometry (MS) data, an important component of many types

of proteomic analysis. A central problem occurs when one needs to integrate (MS)

data produced by different sources, e.g., different equipment and/or laboratories.

In these cases, some form of “data integration” or “data fusion” may be necessary

in order to discard some source-specific aspects and improve the ability to perform

a classification task such as inferring the “disease classes” of patients. The need

for new high-performance data alignments methods is therefore particularly

important in these contexts. In this paper, we propose an approach based both on

an information theory perspective, generally used in a feature construction

problem, and the application of a mathematical programming task (i.e., the

weighted bipartite matching problem). We present the results of a competitive

analysis of our method against other approaches. The analysis was conducted on

data from plasma/ethylenediaminetetraacetic acid of “control” and Alzheimer

patients collected from three different hospitals. The results point to a significant

performance advantage of our method with respect to the competing ones tested.

Index Terms—Optimization, information theory, medicine, medical informatics,

proteomics, data integration, graph algorithms.

Ç

1 INTRODUCTION

ALZHEIMER disease (AD) represents one of the most common
neurodegenerative disorder in the elderly. It is characterized by
progressive memory, language, and other cognitive function
impairment, as well as by behavioral and social deterioration [1],
[2]. A large number of studies are currently investigating the
pathogenetic mechanisms involved in such a complex disease.
Abeta 1-42 aggregation, tau hyperphosphorylation, inflammation,
oxidative stress, and glutamate-induced excitotoxicity are now
considered the main events which probably interact and lead to
neuronal death and synaptic loss, ultimately resulting in dementia
[3], [4], [5], [6]. Alzheimer is often discovered late, so it is urgent to

define biomarkers for an early detection, for a differential diagnosis
from other neurodegenerative diseases, and tomonitor the course of
the disease [7]. Recently, proteomics has become an emerging field
in research on clinical diagnostics because of its power to detect and
identify differentially expressed proteins/peptides during physio-
logical and pathological processes [8]. Currently, the use of a single
biomarker to realize diagnostic models is considered incomplete;
consequently, studies are now growing about the discovering of
multiple biomarkers which contain a higher level of discriminatory
information [9], [10]. Protein profiling with mass spectrometry (MS)
represents a promising tool for the biomarkers discovery and for an
improved understanding of the disease biological mechanisms. One
of the emerging MS-based screening methods allowing high-
throughput analysis of peripheral fluids (easily accessible with
noninvasive procedures) with a simple and automated process is
the ClinProt technique. A successful discovery of a proteomic
profile related to an altered state has been obtained in different
human diseases with this methodology [11], [12], [13]. In particular,
the ClinProt technique can be used to obtain the protein profile of
the biological fluids utilizing magnetic beads with an active surface
able to extract specific peptides and proteins, which are then
analyzed by matrix laser desorption ionization time of flight
(MALDI-TOF) MS. A protein/peptide profile is a graph function
(Fig. 1) in which each peak (or signal) is bell-shaped with a height
which identifies the intensity (related to the “abundance”) at a
specific mass-to-charge ratio of a biomolecule (protein/peptide) in
the original sample. In this paper, we refer to this pair of variables
(i.e., intensity and mass value) as features.1

Observed data from MALDI-TOF are generally organized as
values stored in tables like those in Fig. 2. These values may be
affected by errors introduced during different experiment phases
(or even due to day-to-day instrument variations), causing noise,
peak broadening, contaminants, etc. Moreover, since the MALDI-
TOF mass spectrometer resolution working in linear mode has a
mass accuracy in the range of aboutþ=À8Daltons, themeasuredm/
z of the same entity (protein/peptide) can be slightly different in
each spectrum. To allow an easy and effective comparison of
different spectra, alignment methods find a common set of peak
locations (i.e., m/z values), among sets of spectra, in such away that
all spectra have commonm/z values for the same biological entities
(see, for instance, [14]). In other words, an alignment finds which
features among different spectra share common qualities (identify
the same protein/peptide molecule). The search for a suitable
solution to this clinical alignment problem can also be motivated
through two interrelated lines of thought. The first is noise
reduction. Discarding the source-specific aspects will eliminate
the noise. The second is, in general, more abstract. Here, different
measurement sources can even convey different kinds of informa-
tion. In our case, the mass-to-charge ratio values taken in different
laboratories may refer to the same peptide; and different peptides
may even be considered in each lab measurement. What is in
common in the sources is what we are really interested in.

The quality of sharing common attributes (commonalities) in
data sources has been studied by methods that search for statistical
dependencies between them. The earliest was the classical linear
canonical correlation analysis [15] which has been extended to
nonlinear variants (for example, in [16]) and more general
techniques that maximize mutual information (MI) [17]. Moreover,
MI [18], “the measure” adopted in our study and described later on,
has, of course, already been used in the biomedical domain, e.g.,
Hilario et al. [19] describe the use of MI for biomarkers prediction.
By applying this measure, it is generally possible to enhance the
inference on the disease class2 of patients and even rank the useful
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1. With a slide abuse of terminology, we also call the mass-to-charge
ratio value with the terms mass value.

2. With the terms “disease class,” we refer to a feature reflecting the
health state of patients; for instance, in this paper, this attribute can take two
values: 1) reflecting control patients (patients with no apparent disease) and
2) reflecting AD patients. We also name this attribute “target class.”
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features (e.g, this is the case adopted for several biomarkers
discovery problems—see [20]). In our case, following this approach,
our option is to also include these aspects of each data source that are
“mutually informative” for the integrated target attribute (i.e.,
disease class values of patients from different labs). In fact, the mass
spectra alignment is based on establishing protein/peptide corre-
spondences between data sets by concatenating these intensity
values from different profiles, which are most informative for the
respective disease classes (cf., Fig. 2). This is the facet we want to
analyze in this study, i.e., a suitable way to align signals in order to
integrate properly data provided from different labs.

The main source of inspiration for our proposal is the
theoretical formalism [21] used for the feature construction and
extraction methods (here denoted as FSCM). Broadly speaking
FSCM consists of applying both a “relevance function” which,
given a set of variables (features), evaluates the relevance of the set,
and a construction mechanism to build new characteristic features.
In this paper, FSCM gives us the possibility to induce a formal
definition for the MS data alignment (denoted as MSDA problem).
This definition expresses an MI maximization problem and also
gives the advantage of casting MSDA in the general context of the
stochastic optimization.

In a nutshell, by sampling the target class y and a feature x, one
generally applies the MI Iðx; yÞ to quantify the information these
two objects share together. Therefore, in order to perform an
optimization leading to some combination g of a suitable pair of
features, e.g., gðx; zÞ, one can try to extract z from a set of features
fz1; z2; . . . zmg, which improve Iðgðx; zÞ; yÞ. In our case, the right
combination gðx; zÞ may contribute to the common peptide
alignments measured in different labs. This is roughly the
approach we describe more formally in Section 2. In the same
section, we propose a way to approach computationally this task.
Its estimation can be quite naturally obtained through the
application of the Maximum Weighted Bipartite Matching problem
(MWBM). Several applications for both MWBM and (in general)
the matching problems have been described in literature (see, for
instance, [22]). In our case by giving a solution for MWBM, we
obtain an estimated solution for MSDA. In Section 2, we also recall
some fundamentals both concerning MI (useful for the MSDA’s
formulation) and the framework which helps to design a
comparative analysis for evaluating the proposed alignment. In
Section 3, we describe the clinical setting and give the results of
our tests. These results show a significance performance improve-
ment of our solution with respect to the competing approaches.
Some comments and future work are presented finally in Section 4.

2 MATERIALS AND METHODS

We approach the formulation of MSDA through the use of FSCM
which is generally applied in the context of the feature selection/
construction problem. This formulation gives the advantage of
casting MSDA in the context of MI maximization or, more
generally, in the field of stochastic optimization. In this section,
we first discuss some useful theoretical bases, then we present the
problem formulation and the feasibility to approach its estimation
through the application of an algorithmic solution for the MWBM
problem.

2.1 Mutual Information

Mutual information is a widely used information-theory-based
measure for the stochastic dependence of random variables (r.v.s).
In this paper, it represents the fundamental tool for the formal
definition of the MSDA problem. Formally, given two r.v.s X and
Y , MI can be defined as IðY ;XÞ ¼ HðXÞ þHðY Þ ÀHðX;Y Þ, where
HðXÞ is the entropy of X and measures the uncertainty associated
with it. When X is a discrete r.v. taking values in fx1; . . . ; xkg with
distribution PX , then HðXÞ ¼ À

Pk
i¼1 PXðxiÞlog2PXðxiÞ. HðX;Y Þ is

the joint entropy of ðX;Y Þ which, for discrete data, assumes the
value HðX;Y Þ ¼ À

P

i;j PX;Y ðxi; yjÞlog2PX;Y ðxi; yjÞ, where PXðxÞ;
PY ðyÞ and PX;Y ðx; yÞ represent the marginals and the joint
distributions for the bivariate ðX;Y Þ. Intuitively, MI measures the
information shared by two features X and Y . In case, X and Y are
independent, then knowing that X does not give any information
about Y and vice versa, so their MI is zero. At the other end, if X
and Y are identical, then all information conveyed by X is shared
with Y : knowing that X determines the value of Y and vice versa.

2.2 Features and Model Construction

Feature construction is important for solving many complex
learning tasks. One approach to this problem uses two major
components. There needs to be an evaluation mechanism, which,
given a set of variables, evaluates the relevance of the set; then a
construction mechanism to properly define new variables. We
formulate MSDA by using FSCM here below. This should be
performed by defining for each lab k the following objects:

1. Let PðkÞ be the set of helpful peptides population for k.3

Each peptide p 2 PðkÞ has an associated random variable
IðkÞp , distributed as f

I
ðkÞ
p
ðiðkÞp Þ, which gives the intensity value

of the peptide p.
2. Let DðkÞ be a Bernoulli r.v. which gives the disease class of

the patients.
3. Finally,MðkÞ

p is a random variable distributed as f
M
ðkÞ
p
ðmðkÞ

p Þ
which gives the mass-to-charge ratio for the peptide p.

In order to simplify the notation (with a slight abuse of notation),
we write in the following:

fp;kðiÞ � fIðkÞp

À

iðkÞp
Á

; fp;kðIÞ � fIðkÞp

À

IðkÞp
Á

:

We also write the joint distribution as

fp;kði; dÞ � fIðkÞp ; DðkÞ

À

iðkÞp ; d
ðkÞ
Á

;
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Fig. 2. Data integration is based, first, on establishing peptide correspondences

through a matching (bold lines) between sets of mass values (e.g., A and B), then

by “concatenating” the respective intensities (columns of the table).

Fig. 1. A typical mass spectrum profile.

3. We use the superscript to annotate the lab indexes.



and again, with an abuse of notation

fp;kðI; DÞ � fIðkÞp ; DðkÞ

À

IðkÞp ; DðkÞ
Á

:

At a first glance, the use of the two mechanisms follows the idea

both to express a relationship between features (e.g., disease class

and intensity), and then evaluate this expressed relationship. We

have to do this taking into account the set of signals which can be

aligned. In fact, the construction and relevance mechanisms are

specifically formulated as follows:

. Construction mechanism. For each pair of labs (for
instance, labs 1 and 2)4 and pairs of peptides ðp; qÞ
satisfying

�

�Mð1Þ
p ÀMð2Þ

q

�

�  8; ð1Þ

we define

Zð1Þp ¼ lg
fp;1ðI; DÞ

fp;1ðIÞ Á fDð1Þ ðD
ð1ÞÞ

;

Zð2Þq ¼ lg
fq;2ðI; DÞ

fq;2ðIÞ Á fDð2Þ ðD
ð2ÞÞ

;

Zð1;2Þp;q ¼ lg
fp;1ðI; DÞ

fp;1ðIÞ Á fDð1Þ ðD
ð1ÞÞ

þ lg
fq;2ðI; DÞ

fq;2ðIÞ Á fDð2Þ ðD
ð2ÞÞ

:

ð2Þ

In (2), it is given the dependence between the intensity

and the disease class for different labs whenever the mass

values are supposed to describe the same peptides entities

[i.e., (1)].
. Relevance mechanism. It is simply obtained by taking the

expectation

Zð1;2Þp;q

D E

¼ lg
fp;1ðI; DÞ

fp;1ðIÞ Á fDð1Þ ðD
ð1ÞÞ

( )

þ lg
fq;2ðI; DÞ

fq;2ðIÞ Á fDð2Þ ðD
ð2ÞÞ

( )

;

ð3Þ

that is, the sum of MI is shared by Ið1Þp with Dð1Þ and Ið2Þq
with Dð2Þ, respectively, i.e., IðIð1Þp ;Dð1ÞÞ þ IðIð2Þq ;Dð2ÞÞ.

Once the relevances have been attributed, it is possible, for each set

R of peptide pairs satisfying 1, to take the ones which maximize 3

that is:

argmax
ðp;qÞ2R

IðIð1Þp ;Dð1ÞÞ þ IðIð2Þq ; Dð2ÞÞ � Pð1Þ Â Pð2Þ: ð4Þ

Equation (4) expresses the MSDA problem by giving the pairs of

peptides (which can be aligned) whose intensities share most of the

information with the disease class of the patients. We emphasize

the constraint Mð1Þ
p ÀMð2Þ

q

�

�

�

�

�

�
 8; as described above, due to the

instrument resolution, this is the useful range in order for two

molecules (protein/peptide) to be referred to the same entity.

2.3 Maximum Weight Bipartite Matching and Data
Integration

Since we consider an MI-based optimization for only two labs (in

the next section, the numerical evaluation extends the results also

to a third lab), the estimation of MI in (4) does not cause

computational problems. Estimating MI in this case is straightfor-

ward because both the joint and marginal probability table can be

obtained by discretizing and tallying, for each peptide, the
samples from fp;1ði; dÞ (or fq;2ði; dÞ), fp;1ðiÞ (fq;2ðiÞ), and fDð1Þ ðd

ð1ÞÞ
(fDð2Þ ðd

ð2ÞÞ), respectively.
A feasible estimated computational solution for MSDA can be

quite naturally obtained when one considers the MWBM problem
[23]. Therefore, in the following, we reformulate problem (4) in
term of bipartite graphs.

A graph G ¼ ðV ;EÞ is bipartite if there exists partition V ¼
A [B with A \B ¼ � and E � AÂ B. A matching is a subset
M� E so that 8v 2 V at the most one edge inM is incident upon
v. The size of a matching is jMj, the number of edges inM. When
it comes to consider the weighted bipartite graphs (i.e., a function
w : E ! < exists), one can define the weight of a matchingM as the
sum of the weights of edges in M: sðMÞ ¼

P

e2M wðeÞ. It is
therefore possible to consider the following problem.

2.3.1 MWBM

Given a weighted bipartite graph G, find a matching M of
maximum weight.

In our case, the constrain (1) induces a family of relations
R1;R2; . . . ;Rn on Pð1Þ Â Pð2Þ where for each 1  i  n:

Ri ¼
È

ðp; qÞ :
�

�Mð1Þ
p ÀMð2Þ

q

�

�  8
É

; ð5Þ

or equivalently

Ri ¼
ÈÀ

Mð1Þ
p ;Mð2Þ

q

Á

:
�

�Mð1Þ
p ÀMð2Þ

q

�

�  8
É

: ð6Þ

In other words, due to (1), we handle different families of pairs
of random variables where each pair expresses the mass values of
potentially equivalent entities (i.e., peptides could be the same
molecule) provided from different labs. Therefore, we can view
our (mass-to-charge) data as observations for estimating (6).
Hence, instead of (6), we use the following:

~Ri ¼
ÈÀ

mð1Þ
p ;m

ð2Þ
q

Á

:
�

�mð1Þ
p Àmð2Þ

q

�

�  8
É

; ð7Þ

that is, by considering

V1 ¼
È

mð1Þ
p j9q; j :

À

mð1Þ
p ;m

ð2Þ
q

Á

2 ~Rj

É

;

V2 ¼
È

mð2Þ
q j9p; j :

À

mð1Þ
p ;m

ð2Þ
q

Á

2 ~Rj

É

;
ð8Þ

and E ¼
S

~Ri, we have a bipartite graph G ¼ ðV1 [ V2; EÞ. Finally,
we get an instance for MWBM by labeling each ðmð1Þ

p ;m
ð2Þ
q Þ 2 E as

follow:

w
ÀÀ

mð1Þ
p ; m

ð2Þ
q

ÁÁ

¼
X

t;d

~fp;1ðt; dÞ log
~fp;1ðt; dÞ

~fp;1ðtÞ Á ~fDð1Þ d
ð1Þð Þ

þ
X

t;d

~fq;2ðt; dÞ log
~fq;2ðt; dÞ

~fq;2ðtÞ Á ~fDð2Þ d
ð2Þð Þ

;

with ~f the associated empirical distributions.
This way, (4) can be estimated with one of the many general

applied techniques for MWBM [23]. Therefore, the data integration
process is performed first by establishing peptide correspondences
through their mass values (i.e., a matching), and then by
“concatenating” the respective intensity values (Fig. 2).

2.4 Tools of Evaluation

In this section, we briefly report on the environments and methods
we considered and used for the numerical evaluation process. We
save for the last section some comments on the results obtained.

The performances for evaluating the comparison among
different alignment methods were obtained through the design
of a Rapid Miner (v4.4) process [24]. Rapid Miner is a machine
learning environment where a knowledge discovery process (KD
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4. Almost all of our numerical experiments are performed on pairs of
labs. Even the general formulation to n-tuple is straightforward, we
maintain here this constraint to simplify the annotation.



process) is modeled by a complex nested chain (tree) of objects

called operators. These operators implement several KD processes,

such as data preprocessing, performance evaluation, visualization,

learning algorithms, etc. Fig. 3 represents the KD process used, in

our case, to analyze and extrapolate the performance values for

each data combination method. In other words, it describes the

experiments we designed in order to compare different data

alignment techniques. In Fig. 3, blocks correspond to simple

process steps in the whole design: each operator receives an input

and delivers an output to the forward operator. The information

flow is similar to an in depth first search [25] of normal trees. Here,

we give a short description of what each operator implements in

our evaluation process.

. Data Source Operator reads data from files. In our case, it
is an combined data set obtained with the application of a
specific data alignment method.

. Normalization Operator normalizes data in ½À1; 1�.

. Information Gain Operator computes an MI-based score
for weighting the relevance of each feature (i.e., signal). We
use this step in order to base the inference process on the
top 2  K  12 highest value features. The extrapolation
step is then realized with the Attribute Weight Selection
Operator.

. Parameter Iteration Operator uses some defined para-
meters and performs the inner operators for all possible
combinations of them (e.g., in our case for different
number of signals). We iterated the inner operators,
changing the number of features to consider the inference
process.

. XValidation Operator. XValidation Operator encapsulates
a cross-validation process: the input data set S is split up
into subsets fS1; S2; . . . ; Sng. The inner operators are
applied n times using at each iteration i the set Si as the
test set and SnSi as the training set.

. SVM Operator implements a Support Vector Machine
algorithm (see, for example, [26]) to deliver an inference
model. We used SVM as a black box inference process to
measure the performance for each combined input data set.

. Model Applier Operator applies the model delivered by
the SVM operator.

. Binomial Classification Performance Operator collects
the performance evaluation for the classification task and
outputs the performance measures. We measure here the
performance by using the Area Under ROC Curve (AURC)
and the Precision index.

3 EXPERIMENTAL RESULTS

3.1 Clinical Setting

Samples were collected after receiving informed consent from all
the subjects participating in the study from three different
hospitals using a standardized protocol. A cohort of six control
subjects and nine AD patients was recruited from the Università
degli Studi di Firenze—School of Medicine network (Florence,
Italy), 23 controls and 18 AD patients from San Gerardo Hospital
(Monza, Italy), and a total of 6 controls and 15 AD patients from
the Center for Aging Brain and Dementia (Brescia, Italy). Plasma
was obtained from blood collected in EDTA.

3.1.1 Plasma Purification

Sample purification was performed in duplicate at room tempera-
ture with ClinProt MB-HIC8 (Magnetic-Beads-based Hydrophobic
Interaction Chromatography) kit. All processes were automatically
executed by using a ClinProt Robot as previously described [13].

3.1.2 MALDI-TOF MS and Data Processing

The plasma protein profiles were obtained by an MALDI-TOF

Reflex IVTM mass spectrometer (Bruker Daltonics). The instru-

ment was externally calibrated using a mixture of standard

peptides/proteins. Mass spectra were acquired in positive linear

mode in the m=z range of 1,000-10,000 Daltons; accumulation of

signals from different spot positions resulted in a total averaging

spectrum. The spot was preirradiated with higher laser power to

improve the spectra quality before each acquisition cycle. Multiple

spectra comparison was performed using ClinProToolsTM 2.1

software (Bruker Daltonics). First, each raw spectrum was normal-

ized and all spectra were then recalibrated (realignment) using

prominent internal m=z values. Subsequently, baseline subtraction

and peak detection were achieved before peak area calculation.

The software calculates the mean spectrum for each subject’s data

set, and then, selects the spectrum that is most similar to the

average one to be used for further evaluations. ClinProTools

automatically provided a list of peaks sorted according to the

statistical relevance to differentiate between classes with their

corresponding p-value.

3.2 Numerical Evaluations

The data sets obtained from the proteomic analysis of these
biological samples will be identified with the name of the city
where the labs come from, i.e., Florence, Monza, and Brescia. Our
intent is to evaluate the application of the MI-based data fusion
(labeled as “MI-based” in this section) by comparing the inference
results with other two different methods. This evaluation has been
initially obtained by integrating all the following combinations of
data sets: Monza þ Florence (as MF data), Monza þ Brescia (MB
data), Florence þBrescia (FB data), and Monza þ Florence þ
Brescia data (MFB data). Next, we used the two competitive
approaches, called, respectively, Equal Mass Fusion (labeled as
“EM-based”) and T-Test based (or “TT-based”) to complete the
evaluation procedure.

. EM-based fusion. The features from different labs have been
unified whenever the associated mass values were equal.

. TT-based fusion. For all pair of features whose mass
difference ranges in an interval of þ=À8 units, we
compared the means from two different samples by a
statistical t-Test. Then, we unified these pairs of features
with the maximum value of significance.

In order to evaluate the performances of the above approaches,

we used integrated data sets as input to the same inference

procedure (SVM operator). As reported in Section 2.4, the inference

is performed to predict the disease class of the patients. The
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Fig. 3. Evaluation process. Each block in the figure explains a step in our

alignment evaluation.



different methods are fed by their integrated data sets, and are

ranked by comparing the results thus obtained. The results

presented in this section extend those in [27] through the

evaluations of the methods for different numbers of ranked

features (see, for instance, [21]). Therefore, performances have

been compared by computing the precision index (i.e., that fraction

of examples classified as positive that are truly positive) with

respect to case (AD) patients, and AURC, respectively. We recall

that the ROC curve can be represented by plotting the fraction of

true positives’ examples versus the fraction of false positives’

examples (see, for instance, [28]).
Average values for AURC are shown in Fig. 4: the MI-based

approach appears to be generally better than the competitive
methods. Similar results are confirmed when evaluating the
precision index (Fig. 5). In Figs. 6 and 7, the percentages
regarding how a first method m1 outperforms the second m2 in
a pairwise comparison of m1 versus m2 are shown. For example,
in Fig. 6—specifically comparing MI versus TT—it is shown that
MI behaves, on average, 7 percent better than TT for two

features. On the contrary when considering seven features, TT

has, on average, a 11 percent lower performance than EM. These

percentage are computed by averaging the respective perfor-

mance indexes (AURC in Fig. 6 and Precision in Fig. 7) over all

integrated data set. In Figs. 8 and 9, comparison for specific

integrated data is finally considered. The aggregation of all data

sets (reported as “Monza & FIrenze & Brescia”) seems to give

better results than data from a subset of them increasing

approximately of about 20 percent for AURC (Fig. 8) and

Precision, respectively (Fig. 9).

4 CONCLUSIONS

In this paper, we have presented the results of our development for

the mutual application optimization in the study of mass spectra

alignment of data provided from different labs. Our contributions

are the following:

. We studied the problem of signal alignments in a setting
where a sensible fusion criterion permits to align peptide
profile measurements of patients from different labs.

. We formalized the general problem using a feature
construction methodology, i.e., combining these features
with maximum information content with the resulting
combined target patient classes.
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Fig. 4. Average AURC (y-axis) for different number of features (x-axis) reported for

each method.

Fig. 5. Average precision (y-axis) for different number of features (x-axis) reported

for each method.

Fig. 6. Average AURC; percentage (y-axis) for different number of features (x-

axis). The last point on the x-axis refers to the average value computed over all

former values.

Fig. 7. Average precision; percentage (y-axis) for different number of features (x-

axis).

Fig. 8. AURC performance (y-axis) for each integrated data set (x-axis).

Fig. 9. Precision performance (y-axis) for each integrated data set (x-axis).



. We further applied the Maximum Weight Bipartite
problem formalization in order to give an estimation for
the general setting described above.

. We finally showed the validity of the proposed method on
three different real data sets by comparing performances
with two other approaches. These comparisons have the
target to show that with the given formulation (MSDA), one
has suitable solutions (e.g., MWBM) which do not fail like a
“rough” method (i.e., EM) that performs poorly. On the
contrary, these applications encourage us by performing
better than a specific statistical t-test-based approach. We
detailed the evaluation process for the alignment compar-
ison through a Rapid Miner process. This process explains,
through the way in which its base blocks are organized,
how we faced—we believe, a quite complex phase for
evaluating results (embedding normalization, cross valida-
tion, support vector inference, and feature ranking).

This study was realized on a small sample; thus, it is
necessary to validate our results with a wider number of
Alzheimer’s patients and other techniques. Extending these
numerical experiments should strengthen the evidence for the
proposed approach validity for this kind of inference task. In
addition, it is important to verify the diagnostic efficacy of these
predictive models in a blind manner on samples from subjects
with different neurodegenerative pathologies.
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Abstract: Mass Spectrometry (MS)-based technologies represent a promising area of research in clinical analysis. They
are primarily concerned with measuring the relative intensity (abundance) of many protein/peptide molecules
associated with their mass-to-charge ratios over a particular range of molecular masses. These measurements
(generally referred as proteomic signals or spectra) constitute a huge amount of information which requires
adequate tools to be investigated and interpreted. Following the methodology for testing hypotheses, we in-
vestigate the proteomic signals of the most common type of Renal Cell Carcinoma, the Clear Cell variant
(ccRCC). Specifically, the aim of our investigation is to detect changes of the signal correlations from control
to case group (ccRCC or non–ccRCC). To this end, we sample and represent each population group through a
graph providing, as it will be defined below, the observed signal correlation structure. This way, graphs estab-
lish abstract frames of reference in our analysis giving the opportunity to test hypotheses over their properties.
In other terms, changes are detected by testing graph property modifications from group to group. We show
the results by reporting the mass-to-charge values which identify bounded regions where changes have been
detected. The main interest in handling these regions is to perceive which signal ranges are associated with
some specific factors of interest (e.g., studying differentially expressed peaks between case and control groups)
and thus, to suggest potential biomarkers for future analysis or for clinical monitoring. Data were collected,
from patients and healthy volunteers at the Ospedale Maggiore Policlinico Foundation (Milano, Italy).

1 INTRODUCTION

Renal Cell Carcinoma (RCC) is the most common
tumor in the adult kidney and accounts for about 3-
4% of all adult malignancies (Brannon and Rathmell,
2010). The most frequent histological subtype (60-
80%) is the Clear Cell variant (ccRCC). There are
currently no biomarkers available for its early detec-
tion, for an efficient prognosis, and for optimal pre-
dictive therapeutic approaches (Drucker, 2005). At
present, proteomics represents a good tool for defin-
ing biomarkers in biological fluids which can char-
acterize and predict multifactorial diseases. In this
context, Mass Spectrometry (MS) techniques have re-
cently been playing an important role in studying bi-
ological samples. They are primarily concerned with
measuring the relative intensity (abundance) of many
protein/peptide molecules associated with their mass-
to-charge ratios over a particular Dalton range. The
resulting measurements are often displayed as a graph

Figure 1: A typical protein/peptide profile.

– a protein/peptide profile like the one in Fig. 1,
in which each peak (or signal) identifies the pair of
values given by the intensity (related to the abun-
dance) of a molecule (y–axis) with its specific molec-
ular mass-to-charge ratio (x–axis). The final inter-
est in handling the huge amount of data produced
from these analyses is to perceive which peaks are as-
sociated with some specific factors of interest (e.g.,



studying differentially expressed peaks between case
and control groups) and thus, to suggest potential
biomarkers for future analysis (Latterich et al., 2008).
However, to our knowledge, most of these studies
omit to consider the following key-points.

Constrained Classification. Case / Control discrim-
ination requirements for real-world problems are
often constrained by a given true positive or false
positive rate to ensure that the classification error
for the most important class is within a desired
limit.

Relational Information. Many domains are best de-
scribed by relational models in which instances of
multiple types are related to each other in com-
plex ways – see for example (Getoor and Taskar,
2007). In this case, some features of one entity are
often correlated with features of related entities.
It is intuitive that, just as some features are not
helpful for mining data sets, some relations might
provide informations for clustering or classifica-
tion algorithms. When it comes to analyze differ-
entially expressed peaks in a case/control classi-
fication problem, comparisons are generally per-
formed between protein/peptide profiles of differ-
ent groups – or between statistics summarizing
the peaks’ property of a group, (Solassol et al.,
2006). Actually, different neighborhoods in the
m/z spectra can be (anti)correlated each other
and, this property, in turn, may change from group
to group. In such a situation, the incorporation
of relational information may increase the perfor-
mance of the system for “difficult” data sets.

In order to manage the above issues, we formulate our
framework as follow.

1. The constrain requirement is met following a
standard test of hypothesis approach. This way,
one must decide between a null hypothesis and an
alternative hypothesis. A level of significance α
(called the size of the test) is imposed on the false
alarm probability (type I error), and one seeks a
test that satisfies this constraint. The experimen-
tal design which derive from this formulation pro-
vide us with a tool for detecting regions of the pro-
teomic spectra characterized by properties differ-
entially expressed from group to group. Specifi-
cally, in these region correlations between signals
are a “powerful” discrimination factor between
groups. This detection is our primary interest in
this paper.

2. Relational informations are introduced by giving
new graph representations for the observed sam-
ples. This way, as is used to represent relation-
ships of many interacting entities, we express cor-

relations between signals in the m/z spectra of
a patient group. Throughout, we call these rep-
resentations correlation structures (shortly, tem-
plates). Arguments of our hypotheses state con-
jectures over specific graph (i.e., template) prop-
erties. Therefore, by testing hypotheses over
properties, we can decide whether these graphs
have been changed from control to case groups
(i.e, either ccRCC or non-ccRCC groups).

Given the above concerns, this paper is laid out as
follows. In sections 2 we introduce the preliminaries
and notations. In section 3 we formulate the problem.
In section 4 we report the clinical setting and some
numerical results. Finally, in section 5 we conclude
the paper by discussing some issues of this work.

2 BASIC DEFINITIONS AND
NOTATION

Graphs are important structures to model a wide
range of natural phenomena, particularly when one
has to represent complex systems of interactions
among entities. Throughout this paper G = (V1 ∪
V2,E) denotes a oriented bipartite graph; that is, V1
and V2 are two sets of vertices such that the set of
all arcs E ⊆ V1 ×V2 connect vertices in one set with
vertices in the other: i.e., E is a set of ordered pairs
(vi,v j) with vi ∈V1 and v j ∈V2 constrained to not con-
tain any of the arcs (vi,v j) and (v j,vi). Given an ori-
ented bipartite graph G = (V1 ∪V2,E), the subgraph
of G given by G̃= (Ã, Ẽ), with Ã⊆V1∪V2 and Ẽ ⊆ E
is a biclique if, for all v1 ∈ (Ã∩V1) and v2 ∈ (Ã∩V2)
then (v1,v2) ∈ Ẽ. Biclique are, therefore, “extreme”
forms of highly inter-connected bipartite graphs and
they will of interest in defining indexes for our anal-
isys. The number of vertexes Nv = |V1 ∪V2| and the
number of arcs Ne = |E| are generally called the or-
der and the size of the graph. Moreover, graphs can
be, generally, “summarized” in a compact way by var-
ious graph properties. Among all the properties in
literature (Brandes and Erlebach, 2005), here we fo-
cus on cohesion. A well known index to characterize
this notion is that of density. We treat the subject in
order to give a “local” scale of characterization for
it. While, in general, with a “global” density, we can
characterize the cohesion on the whole graph, with a
local density index as we will define below, we wish
to analyze the cohesion (i.e., by testing hypotheses),
on differently located parts of the graph. Before in-
troducing formally this notion we give the following
definition.

Definition 1 (Neighborhood). Let G = (V1 ∪V2,E)



be an oriented bipartite graph with V1,V2 two well-
ordered sets of vertexes. We call Mi, j,k(G) = (Ã, Ẽ)
a (i, j,k)−neighborhood (or simply, a neighborhood
Mi, j,k centered in (vi,v j)) the subgraphs of G induced
by Ã = Ṽi,k ∪ Ṽj,k where Ṽi,k = {vi−k, . . . ,vi, . . . ,vi+k}
and Ṽj,k = {v j−k, . . . ,v j, . . . ,v j+k}1.

We are now able to give the following definition.

Definition 2 (Local density). Let G = (V1 ∪V2,E)
be an oriented bipartite graph and Mi, j,k = (Ã, Ẽ) a
neighborhood of size S centered in (vi,v j), we define
the local density of G in Mi, j,k as

den(Mi, j,k) =
S

|Ṽi,k × Ṽj,k|
. (1)

The local density is based on the ratio of the number
of arcs among a subset of vertices to the total num-
ber of possible arcs. This way they provide a measure
of “how close” Mi, j,k is to being an oriented biclique.
Since our primary interest is to detect which regions
of the spectra express different properties from con-
trol to case group (in our case, correlation structure
properties) we stress this point with the following def-
inition.

Definition 3 (Bipartite Graph Region). Let G= (V1∪
V2,E) be an oriented bipartite graph with V1,V2 two
well-ordered sets of vertexes. We say that S is a re-
gion of G if it is the subgraph S= (Ṽ1∪Ṽ2, Ẽ) induced
through the two sequences of vertexes Ṽ1 and Ṽ2.

For a formal point of view, definition 3 says noth-
ing more than S is a subgraph induced by a set of
vertexes. We give this definition purely as a matter of
convenience to point out that any region of the pro-
teomic spectra (i.e., a sequence of mass-to-charge ra-
tio values) is represented here through the region of a
bipartite graph. We use widely this term in section 3
to formulate our testing procedures.

3 PROBLEM FORMULATION

In this section we formally define the problem
inside the standard test of hypotheses framework.
The subjects of our formulation are tests concerning
graphs properties which can be easily obtained from
the following new samples representations. We start
by considering a population of interest divided into
two groups; respectively case and control subjects.
This population expresses the signal intensity values
observable in different regions over the spectra. We
sample and represent each population group through

1We also refer to the pair (vi,v j) and the constant k as,
respectively, the center and the ray of the neighborhood

graphs which provide the observed signal correlation
structure as will be defined below in section 3.1. This
way, graphs establish abstract frames of reference in
our analysis giving the opportunity to test hypothe-
ses over their properties (section 3.2). In other terms,
changes are detected by testing graph property mod-
ifications from group to group. The whole procedure
provide the mass-to-charge Dalton ranges bounding
the regions where significant changes have been de-
tected.

3.1 Correlation Structure
Representation

As is used to represent structures of many interact-
ing entities, we can express correlations inside pa-
tients’ groups through a graph whose vertexes are spe-
cific mass-to-charge ratios and arcs “express” corre-
lations between signal intensities with these specific
mass-to-charge values. We call the resulting represen-
tation, the (observed) correlation structure (briefly,
template). More formally, we denote the groups of
control and case subjects with I ctrl and I case respec-
tively. We assume that each group (for instance I ctrl)
can be expressed through a product I ctrl

m1
×I ctrl

m2
× . . .×

I ctrl
mn

of spaces I ctrl
mi

, i ∈ [n] 2, given by all potential in-
tensity values whose mass-to-charge ratio is mi. We
also assume that each I ctrl

mi
is endowed with a distribu-

tion function f ctrl
Imi

. More in general, let us give the fol-
lowing definition for any group of patients g on which
is defined a distribution f g

Imi
.

Definition 4 (Template). By sampling from each
pair ( f g

Imi
, f g

Im j
), with i ∈ [n], j ∈ [n], two sets of

i.i.d. random variables {Ig
mi,1 , I

g
mi,2 , . . . , I

g
mi,n} and

{Ig
mj,1 , I

g
mj,2 , . . . , I

g
mj,n}, we call template (of g) the bi-

partite graph Rg = (V1 ∪V2,E) with vertexes V1 =

{m1,m2, . . . ,mn} and V2 = {m
′
1,m

′
2, . . . ,m

′
n}. More-

over, (mi,m
′
j) ∈ E only if the absolute value of the

Pearson’s correlation coefficient exceeds a threshold
δ. That is,

ρg
i, j =

∑n
k=1(I

g
mi,k − Ig

mi)(I
g
mj,k − Ig

mj)√
∑n

k=1(I
g
mi,k − Ig

mi)
2
√

∑n
k=1(I

g
mj,k − Ig

mj)
2
≥ δ,

(2)
where Ig

mi and Ig
mj are the sample means.

Notice that, given the template Rg = (V1,V2,E)
and any region S of Rg, we can easily provide a set of
densities {d1,d2, . . . ,dn} by observing a set of neigh-
borhoods in S. For example, in Fig. 2 is reported

2We use the bracket notation [n] to denote the set
{1, ...,n} of the first n positive integers.



Figure 2: The bipartite graph for RCC data (template) with
one region and two neighborhoods.

a subgraph of Rg with one region and two neigh-
borhoods Mg

1 and Mg
2 .3 Yet it is clear that, these

neighborhoods provide the set of local density val-
ues Dg

S = {den(Mg
1),den(Mg

2)}. We assume that Dg
S

are observations from a distribution (of densities) re-
ferred to the region S. Throughout, we will consider
for any pair of templates Rctrl and Rcase the set of den-
sities Dctrl

S and Dcase
S as samples of observations real-

ized in a common region S to test local hypotheses
over a (density) population.

3.2 Hypothesis testing

We recall that, statistical hypotheses (noted as H0 and
HA) are competing statements concerning the popu-
lation parameters. The rationale for establishing our
hypotheses is deciding whether a pathology (for in-
stance, ccRCC) has modified the cohesion of a control
group’s correlation structure. Since we use density to
analyze cohesions, we should also say that for two
groups of densities, to be consistent with the above
rationale, it suffices that µctrl �= µcase, where µctrl and
µcase are the means in the control and case groups
of densities. Therefore, given (i) the (paired) sam-
ples of densities Dctrl = {X1,X2, ...,Xn} from controls,
and Dcase = {Y1,Y2, ...,Yn} from cases, (ii) their dif-
ferences D = {Di : Di = Xi−Yi,Xi ∈ Dctrl,Yi ∈ Dcase},
(iii) the sample mean D̃ and (iv) the sample standard
deviation of difference scores Sd , we can reject the
null H0 : µctrl = µcase (no change) in favor of the alter-
native HA : µctrl �= µcase using

T =
D̃

Sd/
√

n
(3)

as test statistic which, in turn, follows a Student’s t-
distribution with n−1 degree of freedom if H0 is true.
Thus, we apply a classical two-sample, paired t-test,
rejecting the null when the realization t of the statistic

3For sake of clarity to specify the group g from which
the neighborhood M is drawn, we also use the notation Mg.

in expression 3 is such that |t|> t1−α/2(n−1), where
t1−α/2(n−1) is the quantile of Student’s t-distribution
with n− 1 degrees of freedom. As argued above, the
use of local densities gives us the opportunity to ana-
lyze the cohesion in different parts of the graph. This
way, we can consider different regions over the spec-
tra – through different “local statistics”, and perform
different tests. Specifically, as noted in section 3.1,
given a common region S for both (the templates)
Rctrl and Rcase, we obtain two sets of densities Dctrl

S
and Dcase

S . As previously stated, using these data as
observations provided by sampling both the control
and the case groups in S, we are able to apply the
test H0 : µctrl

S = µcase
S against HA : µctrl

S �= µcase
S for any

region S; that is, by observing different regions, we
test the cohesion modifications from group to group
in different parts of the spectra. Given the above argu-
ments, we can define different classes of case/control
tests thought the following procedures:

• Control vs. ccRCC Tests (briefly noted CVR
Tests)

1. We represent Rctrl by sampling from each
pair ( f ctrl

Imi
, f ctrl

Im j
) – in the control group, the

sets of i.i.d rvs {Ictrl
mi,1

, Ictrl
mi,2

, . . . , Ictrl
mi ,n} and

{Ictrl
mj ,1

, Ictrl
mj ,2

, . . . , Ictrl
mj ,n}.

2. We represent Rrcc by sampling from each
pair ( f rcc

Imi
, f rcc

Im j
) – in the ccRCC group, the

sets of i.i.d rvs {Ircc
mi,1

, Ircc
mi,2

, . . . , Ircc
mi ,n} and

{Ircc
mj ,1

, Ircc
mj ,2

, . . . , Ircc
mj ,n}.

3. Given any region S, common both to R ctrl

and Rrcc, we obtain the local densities Dctrl
S =

{den(Mctrl
1 ),den(Mctrl

2 ), . . . ,den(Mctrl
n )} and

Drcc
S = {den(Mrcc

1 ),den(Mrcc
2 ), . . . ,den(Mrcc

n )}.
Then for each S, we employ these sets (as ob-
servations from a density population) together
with Eq. 3 (as test statistic) in the following
tests: H0 : µctrl

S = µrcc
S Vs. HA : µctrl

S �= µrcc
S ,

where µctrl
S and µrcc

S are, respectively, the (pop-
ulation) means of the densities in the control
and ccRCC groups.

• Control vs. non-ccRCC Tests (CVNR Tests)

1. We represent Rctrl by sampling from each
pair ( f ctrl

Imi
, f ctrl

Im j
) – in the control group, the

sets of i.i.d rvs {Ictrl
mi,1

, Ictrl
mi,2

, . . . , Ictrl
mi ,n} and

{Ictrl
mj ,1

, Ictrl
mj ,2

, . . . , Ictrl
mj ,n}.

2. We represent Rnrc by sampling from each
pair ( f nrc

Imi
, f nrc

Im j
) – in the non-ccRCC group,

the sets of i.i.d rvs {Inrc
mi,1

, Inrc
mi,2

, . . . , Inrc
mi,n

} and
{Inrc

mj,1
, Inrc

mj,2
, . . . , Inrc

mj,n
}.



3. Given any region S, common both to R ctrl

and Rnrc, we obtain the local densities Dctrl
S =

{den(Mctrl
1 ),den(Mctrl

2 ), . . . ,den(Mctrl
n )} and

Dnrc
S = {den(Mnrc

1 ),den(Mnrc
2 ), . . . ,den(Mnrc

n )}.
Then for each S, we employ these sets (as ob-
servations from a density population) together
with Eq. 3 (as test statistic) in the following
tests: H0 : µctrl

S = µnrc
S Vs. HA : µctrl

S �= µnrc
S ,

where µctrl
S and µnrc

S are, respectively, the means
of the densities in the control and non-ccRCC
population groups.

• ccRCC vs. non-ccRCC Tests (RVNR Tests)

1. We represent Rrcc by sampling from each
pair ( f rcc

Imi
, f rcc

Im j
) – in the ccRCC group, the

sets of i.i.d rvs {Ircc
mi,1

, Ircc
mi,2

, . . . , Ircc
mi,n} and

{Ircc
mj ,1

, Ircc
mj ,2

, . . . , Ircc
mj ,n}.

2. We represent Rnrc by sampling from each
pair ( f nrc

Imi
, f nrc

Im j
) – in the non-ccRCC group,

the sets of i.i.d rvs {Inrc
mi,1

, Inrc
mi,2

, . . . , Inrc
mi,n

} and
{Inrc

mj,1
, Inrc

mj,2
, . . . , Inrc

mj,n
}.

3. Given any region S, common both to R rcc

and Rnrc, we obtain the local densities Drcc
S =

{den(Mrcc
1 ),den(Mrcc

2 ), . . . ,den(Mrcc
n )} and

Dnrc
S = {den(Mnrc

1 ),den(Mnrc
2 ), . . . ,den(Mnrc

n )}.
Then for each S, we employ these sets (as ob-
servations from a density population) together
with Eq. 3 (as test statistic) in the following
tests: H0 : µrcc

S = µnrc
S Vs. HA : µrcc

S �= µnrc
S ,

where µrcc
S and µnrc

S are, respectively, the means
of the densities in the ccRCC and non-ccRCC
population groups.

We point out that, each of the above class is char-
acterized to have the same alternative conjecture but
test statistics related to different parts of the graph.
We shall also say that, while evaluating higher perfor-
mance tests we may also observe in which regions of
the spectra there are the best chances of seeing dis-
criminative effects between alternatives.

4 CLINICAL SETTING AND
NUMERICAL RESULTS

The above analysis has been applied to samples
collected, after informed consent from all subjects
participating in the study, at the Ospedale Maggiore
Policlinico Foundation (Milano, Italy) using a stan-
dardized protocol. As a first step the morning urine
midstream (100 mL) was collected in tubes. Af-
ter centrifugation at 3000 rpm for 10 minutes sam-
ples were divided into aliquots. For peptide and pro-

tein profiling the eluates from Weak Cation Exchange
magnetic beats extraction were automatically spotted
onto a Matrix–Assisted Laser Desorption Ionization
(MALDI) target plate. All samples were analyzed
using an UltraFlex II MALDI-TOF/TOF MS instru-
ment (Bruker Daltonics) and mass spectra were ac-
quired in positive linear mode in the m/z range of
1000-12000. ClinProTools 2.2 software (Bruker Dal-
tonics) was used for all MS data interpretation proce-
dures (Bosso et al., 2008).

4.1 Clinical data

The samples cohort consists of 85 control subjects (58
men, 27 women) and 102 Renal Cell Carcinoma pa-
tients (64 men, 38 women). Mean age for controls
was 45 with a range of 30–68 years, while for pa-
tients 64 with a range of 33–88 years. It was possi-
ble to classify pathological group in patients affected
by clear cell (ccRCC) and other different histological
subtypes (rispectively 79 ccRCC and 23 non-ccRCC).
ccRCC samples were classified according to the 2002
TNM (tumor-node-metastasis) system classification.

4.2 Numerical Results

Before discussing the numerical results, it might be
useful to remember that the decisions of a statistical
test depends on a number of factors; e.g., the sam-
ple size, the test statistic, the significance level and
the critical value. Moreover, we introduced new pa-
rameters which may influence the result as well; i.e.,
the threshold δ (employed for the template representa-
tion) and the neighborhood ray K. We also stress that,
in each class CVR, CVNR and RVNR (as defined in
section 3.2), tests follow common conjectures (e.g.,
µctrl = µrcc and µctrl �= µrcc) but they use statistics re-
ferred to different regions over the spectra. With the
above concerns in mind, we summarize the targets of
our experiments as follows.

1. For each class of tests, we evaluate (empirically)
which threshold δ, and ray K are employed to
detect the lowest number of correlation structure
changes from control to case groups. In other
terms, for different pairs of δ and K we count the
number of significant tests rejecting the null hy-
pothesis. For this, we constrain δ to range within
a set of higher Pearson’s correlation coefficients.

2. By using the values of δ and K obtained above,
we detect the mass-to-charge ratio bounds which
identify modified regions over the spectra. That
is, regions where we have detected a correlation
structure modification at a specific level of signif-
icance.



Indeed, we first established a fixed number of re-
gions (i.e., 7), a set of arbitrary thresholds T =
{0.75,0.76,0.77,0.78,0.79,0.80} and a set of arbi-
trary rays R = [6]. Then, for each combination of
δ ∈ T and K ∈ R, we evaluated (for each class of tests)
the number of significant tests rejecting the null hy-
pothesis over the spectra. In tab. 1, we report, for
each class, both the pair (δ,K) employed to detect the
lowest number (i.e., n = 1) of tests rejecting the null,
and the mass-to-charge ranges which identify the re-
jection regions at a 5% significance level.

5 CONCLUSIONS

This study showed the possibility to use the ex-
tracted peptides to separate healthy subjects from tu-
mor patients and mostly to distinguish non-ccRCC
from RCC. Specifically, testing hypotheses on a spe-
cific graph property (i.e., density), we derived deci-
sion procedures able to provide the clinical modeler
with lists of Dalton ranges where it has been detected
distinguishing regions. We point out that, from a clin-
ical perspective, in order to apply this approach (for
example, to decide the membership group of new sub-
jects), it will be necessary to compute a correlation
matrix (whose components are given by Eq. 2) over a
set of technical replicates. This will be the most ob-
vious extension for our next work, when new (biolog-
ical and technical) samples will be available. More-
over, we can summarize, as follow, some further ex-
tensions which we are immediately interested to: (I)
We need to determine conclusively the identity of the
lists of signals in any differentially expressed region.
The theoretical framework of section 3 was employed
to detect spectral signals for their biological impor-
tance (for instance, to suggest potential biomarkers
for future analyses) even their identity is not yet en-
sured. Identification of the peptides/proteins, gener-
ating these signals, is a very laborious process imply-
ing the analysis of the urine extract with different MS
approaches. Therefore, in order to recognize candi-
date multiple biomarkers, for a specific disease, it’s
important first to determine their diagnostic “power”
and then to investigate better their biological role in
the disease mechanisms. (II) The dominant approach
to classifier design in clinical studies has been to min-

Table 1: Mass-to-Charge regions for Control vs. Case

CVR CVNR RVNR
δ = 0.75,K = 2 δ = 0.75,K = 2 δ = 0.75,K = 2
From To From To From To
1719 2084 1719 2084 4625 5374

imize the probability of error – see for example, (Du-
doit et al., 2002). Yet it is clear that failing to de-
tect a malignant tumor has drastically different con-
sequences than erroneously flagging a benign tumor.
In other words, classification requirements are often
constrained by a given true positive (type I error)
and false positive rate (type II error) to ensure that
the classification error for the most important class is
within a desired limit. In order, for our procedures to
take into account all of these two requirements, it is
necessary to constrain the type II error. We point out
that, here by constraining only the type I error at a
standard level of significance, we applied a method-
ology approach mainly to provide the list of modified
regions.
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Mass Spectrometry (MS)-based technologies represent a
promising area of research in clinical analysis. They are pri-
marily concerned with measuring the relative intensity (i.e.,
signals) of many protein/peptide molecules associated with
their mass-to-charge ratios. These measurements provide a
huge amount of information which requires adequate tools
to be interpreted. Following the methodology for testing
hypotheses, we investigate the proteomic signals of the most
common type of Renal Cell Carcinoma, the Clear Cell
variant (ccRCC) [1]. By using mutual information, we detect
changes in dependence values between signals from control
to case groups (ccRCC or non–ccRCC). To this end, we
sample and represent each population group through graphs,
thus providing the observed dependence structures (many
real domains are best described by relational models [2]).
This way, graphs establish abstract frames of reference in
our analysis giving the opportunity to test hypotheses over
their properties. In other words, changes are detected by
testing graph property modifications from group to group.
We report the mass-to-charge values which identify bounded
regions where changes have been detected. The main in-
terest in handling such regions is to perceive which signal
ranges are associated with some specific factors of interest
(e.g., studying differentially expressed peaks between cases
and controls) and thus, to suggest potential biomarkers for
future analysis [3]. This study has been applied to samples
collected at the ”Ospedale Maggiore Policlinico” Foundation
(Milano, Italy) using a standardized protocol. All samples
were analyzed using an UltraFlex II MALDI-TOF/TOF MS
instrument and mass spectra were acquired in the m/z range
of 1000-12000. The samples cohort consists of 85 control
subjects and 102 Renal Cell Carcinoma patients. It was
possible to classify pathological group in patients affected by
clear cell (ccRCC) and other different histological subtypes
(respectively 79 ccRCC and 23 non-ccRCC). Table I reports
the selected rejection regions (i.e., tests reject the null) at the
5% significance level. Testing hypotheses suggested by the

Table I
REJECTION REGIONS FOR CONTROL VS. CASE TESTS

Control Vs. ccRCC Control Vs. non–ccRCC ccRCC Vs. non–ccRCC
From m/z To m/z From m/z To m/z From m/z To m/z
2644.49 3214.26 1719.45 2084.34 1719.45 2084.34
3270.53 4018.88 4050.39 4540.1 1832.33 2217.2

data may induce statistical bias. For this reason, we evaluate
the results to independent samples. We investigate whether
test decisions are statistically independent from the region’s
property (i.e., distinguishing (DR) or non–distinguishing
(ND) regions) when new samples are given. In other words,
we want to know whether the property of a region can be
statistically associated to test decisions when new samples
are available. After that a new sample is provided, we
verify test decisions over both the detected distinguishing
regions and these regions out of the m/z bounding values
previously detected. Table II summarizes the (Fisher’s exact
test) results confirming a significant association (α = 0.05
level) between decisions and region’s property for both the
class of tests. This work was supported by grants from the
Italian Ministry of University and Research (PRIN n. 69373,
FIRB n. RBRN07BMCT 011, FAR 2006–2011), EuroKUP
COST Action (BM0702) and the NEDD project (“Regione
Lombardia”).

Table II
NUMBER OF TESTS ACCEPTING H0 (HA) VS REGION’S PROPERTY

CVR CVNR RVNR
Region H0 HA H0 HA H0 HA
DR 2 17 2 17 0 19
ND 11 8 13 6 11 8
p-value 0.005 0.0006 0.0001
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Precision and Recall - All labs (MF, MB, FB and MFB)

k
Precision Recall

MI vs
EM

MI vs
TT

TT vs
EM

MI vs
EM

MI vs
TT

TT vs
EM

2 13.10% 8.50% 5.03% -5.83% 11.62% -19.74%
3 6.03% -1.77% 7.66% 32.53% 29.15% 4.77%
4 16.08% 9.72% 7.04% 12.28% 5.94% 6.74%
5 22.71% 9.70% 14.41% 40.32% 20.74% 24.70%
6 20.42% 13.04% 8.49% 22.35% 17.35% 6.05%
7 20.21% 16.24% 4.74% 19.84% 19.44% 0.50%
8 19.41% 7.43% 12.94% 14.14% 3.67% 10.87%
9 15.48% 10.07% 6.01% 21.71% 6.86% 15.94%
10 17.20% 12.08% 5.82% 6.11% 5.86% 0.27%
11 23.58% 17.48% 7.39% 11.55% 6.55% 5.35%
12 26.48% 22.79% 4.78% 11.71% 14.30% -3.02%

Table 6.1: Performance comparison (percentage) between Precision
and Recall mean values, measured for each method by varying k.
Positive values indicates a better performance of the first method
versus the second (for example, given A vs. B: A better than B),
negative values the opposite (B better than A). Data are drawn in
picture 6.1 and 6.1.
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Precision and Recall - Labs comparison
Methods Monza &

Florence
Monza &
Brescia

Florence &
Brescia

Monza &
Florence &
Brescia

Precision
MI vs EM -3.45% 27.60% 22.18% 20.37%
MI vs TT -9.32% 30.34% 3.15% 16.25%
TT vs EM 5.36% -3.94% 19.65% 4.92%

Recall
MI vs EM 17.49% 36.85% 12.97% 3.75%
MI vs TT 9.63% 47.56% 2.81% -3.60%
TT vs EM 8.70% -20.43% 10.45% 7.09%

Table 6.2: Performance comparison (percentage) between Precision
and Recall mean values, measured for each method by varying the
subsets of labs aligned.
Positive values indicates a better performance of the first method
versus the second (for example, given A vs. B: A better than B),
negative values the opposite (B better than A). Data are drawn in
picture 6.1 and 6.1.
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Figure 6.1: Performance comparison (percentage) between Precision
mean values, measured for each method by varying k.
MI (light and dark orange) always performed better than the com-
peting methods, with peaks between 20-27%. See also table 6.1.
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Figure 6.2: Performance comparison (percentage) between Recall
mean values, measured for each method by varying k.
MI (light and dark orange) always performed better than the com-
peting methods, with peaks between 20-40%. See also table 6.1.
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Figure 6.3: Performance comparison (percentage) between Precision
mean values, measured for each method by varying the subsets of
labs aligned.
MI (light and dark orange) performed better than the competing
methods two (MB, FB) on three match (pairs of labs), and, overall,
in the three labs alignment (MFB; 15-20 % better). See also table
6.2.
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Figure 6.4: Performance comparison (percentage) between Recall
mean values, measured for each method by varying the subsets of
labs aligned.
MI (light and dark orange) always performed better than the com-
peting methods (pairs of labs), and with slight differences in the three
labs alignment (MFB; +4 or -4 %). See also table 6.2.
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ABSTRACT

The MITOchondrial genome database of
metaZOAns (MitoZoa) is a public resource for
comparative analyses of metazoan mitochondrial
genomes (mtDNA) at both the sequence and
genomic organizational levels. The main character-
istics of the MitoZoa database are the careful
revision of mtDNA entry annotations and the possi-
bility of retrieving gene order and non-coding region
(NCR) data in appropriate formats. The MitoZoa re-
trieval system enables basic and complex queries at
various taxonomic levels using different search
menus. MitoZoa 2.0 has been enhanced in several
aspects, including: a re-annotation pipeline to
check the correctness of protein-coding gene pre-
dictions; a standardized annotation of introns
and of precursor ORFs whose functionality is
post-transcriptionally recovered by RNA editing or
programmed translational frameshifting; updates
of taxon-related fields and a BLAST sequence
similarity search tool. Database novelties and the
definition of standard mtDNA annotation rules,
together with the user-friendly retrieval system
and the BLAST service, make MitoZoa a valuable
resource for comparative and evolutionary
analyses as well as a reference database to assist
in the annotation of novel mtDNA sequences.
MitoZoa is freely accessible at http://www.caspur
.it/mitozoa.

INTRODUCTION

The mitochondrial genome (mtDNA) of Metazoa is a
major target of studies focused on phylogenetic recon-
structions, population genetics and molecular evolution
(1). Whole-genome sequencing projects of this relatively
small and mostly circular molecule have been undertaken
since the development of the Sanger sequencing method
(2,3) and have seen an explosive increase with the estab-
lishment of next-generation sequencing technologies (4–8).
To date, over 4000 entries described as complete mito-
chondrial genomes are collected in the EMBL nucleotide
database (release 108), with about 10 000 additional
entries corresponding to human mt genome variants.
The MITOchondrial genome database of metaZOAns

(MitoZoa; MZ; http://www.caspur.it/mitozoa) is a unique
resource that provides manually curated data on gene an-
notation, gene order, gene content and non-coding regions
(NCR) of complete and nearly-complete (�7 kb) mtDNA
entries of all available metazoan species. One representa-
tive entry is present for those metazoan species/subspecies
for which the mtDNA has been sequenced in several in-
dividuals (9).
Most mtDNA databases focus only on metazoan sub-

groups. For example, AMiGA collects only arthropod
mtDNA sequences (10); MamMiBase focuses on
mammals (11); HmtDB and Human mtDB on human
(12,13); MitoFish on fishes (http://mitofish.aori.u-tokyo
.ac.jp/). Only the no longer updated OGRe (14) and the
currently non-functional Mitome (15) databases collected
complete mtDNAs of all metazoans. In addition,
the NCBI Organelle Genome Resource (16,17) and
GOBASE (18) databases contain all mitochondrial and

*To whom correspondence should be addressed. Tel: +39 02 50314918; Fax: +39 02 50314912; Email: carmela.gissi@unimi.it
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chloroplastic genomes from all taxonomic groups.
However, GOBASE and the Organelle Resource do not
attempt to address, or fail in the correction of the large
number of misannotations present in mtDNA entries
(1,9,14,19). On the contrary, MitoZoa collects sequences
from all metazoan species, and systematically identifies
and resolves gene misannotations. It also offers several
additional types of information and search options
absent in other available mtDNA databases (9). Indeed,
an associative retrieval system provides a set of tools to
carry out basic and complex queries. Thus, MitoZoa users
can easily retrieve gene order, NCR sequences, NCR
location data, gene/genome sequences, reannotation infor-
mation and other mito-genomic characteristics, for a given
metazoan taxon or for congeneric species.
MitoZoa has already proved to be a useful tool for the

scientific community, particularly for studies using
mtDNA as a phylogenetic marker (20–23), but also for
molecular evolutionary (24,25) and evolutionary ecology
analyses (26) including studies on the parallel evolution of
minimal mt rRNA secondary structures in metazoans, and
on the development of software for environmental
metagenomics analyses.
MitoZoa presents several innovative features compared

to other mtDNA databases, including a user-friendly re-
trieval system with one general and three specialized
search menus (9). Innovative features of MitoZoa,
already described in (9), include:

(1) Extensive controls and correction of gene anno-
tations using a mtDNA-specific re-annotation
pipeline.

(2) Standard messages and new entry fields, unambigu-
ously reporting all modifications and data enrich-
ments of the original entries, and making these
changes easily searchable by MitoZoa users. The
‘MitoZoa Reannotation Summary’ (MRS) is one of
the main novelties of the EMBL-like MitoZoa entry
format.

(3) NCRs of any size are annotated under the new
‘NCR’ FTkey, thus they can be retrieved with the
specialized ‘NCR Menu’ using several selection
criteria.

(4) Gene names are standardized using hidden aliases,
thus all sequences of a given gene can be simply
retrieved using the ‘Gene Content Menu’.

(5) The mtDNA gene order is stored as a string of
standardized gene names using a FASTA-like
format. Thus, entries sharing a given gene order
can be retrieved with the ‘Gene Order Menu’.

(6) mtDNAs of congeneric species can be easily selected
by the ‘General Search Menu’, thanks to the creation
of the new ‘ConGeneric’ field.

Several new features have been introduced in MitoZoa
2.0, including: (i) the implementation of a sequence
similarity search service by BLAST; (ii) the improvement
of the gene re-annotation strategy and of the related
pipeline; (iii) the inspection of protein-coding genes;
(iv) the systematic and standardized annotation of
introns and ‘precursor ORFs’ post-transcriptionally

restored by RNA editing or programmed translational
frameshifting (PTF) (27,28); and (v) updating of entries.

NEW FEATURES IN MITOZOA 2.0

BLAST service

The MitoZoa web resource now includes a dedicated
BLAST page. The BLAST service allows sequence simi-
larity searches not only against the MitoZoa database
(i.e. the full ‘mtDNA’ sequence of each MitoZoa entry)
but also against five additional MitoZoa-derived data sets
(Table 1). Each of these additional data sets contains func-
tionally homogeneous mitogenomic ‘sub-sequences’, such
as NCRs or gene categories. Moreover, each sequence of
these five additional data sets is described in the header by
the entry Accession number, the species name and also the
MitoZoa-defined standardized gene name or NCR code
(Table 1). These gene names/NCR codes will greatly help
the use of BLAST results for annotation of newly
produced mt sequences, and for re-annotation of
existing mtDNA sequences.

It should be emphasized that all BLAST data sets
derived from MitoZoa are automatically updated in
concert with MitoZoa. As an example, Table 1 reports
the size of the BLAST data sets built from MitoZoa
release 9.1. The BLAST service uses the most recent
version (2.2.25) of the BLAST+package (29,30).

Quality checks of protein-coding gene annotation

Unlike the previous MitoZoa reannotation pipeline (9),
MitoZoa 2.0 now includes specific checks that verify the
correctness of protein-coding gene (CDS) annotations. As
a result, possible CDS name errors are fixed and CDS
boundaries are also significantly improved.

The quality check pipeline involves both automatic and
manual steps, described in detail in Supplementary Data.
In particular, examination of CDS multi-alignments
allows the detection of two types of CDS inconsistencies
resolved in MitoZoa in the following ways:

. Modification of the CDS boundaries: by shifting the
annotated start/stop codon, we can recover highly
conserved N/C-terminal protein regions identified in
the CDS multi-alignment of a given large taxon.
Similarly, we can also eliminate extra N/C-terminal
protein regions not present in all other multi-aligned
CDS. Thus, the encoded protein is accordingly length-
ened or shortened.

. Warning message on ‘loss of highly conserved
aminoacidic regions(s) that can be recovered by frame-
shift(s)’: highly conserved protein region(s) identified
in certain multi-alignments are lost in some CDS but
can be easily recovered by CDS frameshift(s). Most of
such CDS frameshifts are likely due to inaccurate
sequencing, as they are located close to sequencing
error hot spots (i.e. long homopolymers >8 nt).
However, other frameshift cases cannot be easily ex-
plained and could represent real losses of functional
regions. Thus, we have not modified the boundaries of
these CDS but have highlighted them in the MRS
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(‘MitoZoa Reannotation Summary’) field using a
specific warning message (see figure 1 of the online
MitoZoa Help). Consequently, MitoZoa users can
easily select these CDS, and are warned to pay
special attention to the analyses of these CDS and
their possible flanking NCRs.

Our CDS quality check strategy identified a total of 207
CDSs that need ‘modifications of name/boundaries’, and
107 CDS that invoke a warning on the ‘loss of highly
conserved aminoacidic regions’ (Table 2). We emphasize
that most CDS modifications and warning notes cause
the disappearance of flanking NCRs or gene overlaps. In
addition, 4 CDS errors have effects on the determination
of gene order (‘gene name’ and ‘gene strand’ modifications
in Table 2). Finally, 9 CDSs were likely incorrect because
they showed multiple internal stop codons (Table 2).
Therefore, the CDS re-annotation process has significant
consequences on the CDSs themselves (and their use in
phylogenetic reconstruction), the determination of
flanking NCRs, and even on the overall gene order.

As a final point, we would emphasize that CDS
re-annotation has required the definition of specific
criteria for mt CDS determination based on the

peculiarities of the mt transcriptional and maturation
processes (31–33). These criteria can be also regarded as
tentative rules for the standardization of mt CDS annota-
tion and are detailed in the Supplementary Data.

Standardized annotation of introns and frameshifts

Group I and II self-splicing introns as well as frameshift
sites post-transcriptionally resolved by RNA editing or
programmed translational frameshifting (PTF) (27,28,34)
occur in some protein-coding genes of few metazoan taxa.
However, original entries often contain non-standard an-
notations of these phenomena, rendering automated
parsing difficult. In MitoZoa 2.0, we have implemented
a specific pipeline, detailed in the Supplementary Data,
to identify and standardize such annotations.
These CDS peculiarities are now clearly recorded in

the MRS field with appropriate standardized messages
(see figure 1 of the Online MitoZoa Help), thus they can
be easily retrieved by MitoZoa users. Moreover, we have
created a new FTkey ‘prec_ORF’ in order to annotate
all ‘precursor ORFs’ with frameshift site(s) corrected
by RNA editing or PTF. This new FTkey allows the
automatic retrieval and analysis of these ‘precursor
ORF’ sequences. As discussed in the Supplementary
Data, we have used the ‘prec_ORF’ annotation to study
the reliability of the currently hypothesised RNA editing/
PTF cases. Thus, we are confident that this MitoZoa
novelty will help the correct annotation of future cases
of RNA editing/PTF.
In the current MitoZoa release, we have identified and

annotated 40 CDS with introns and 198 CDS with frame-
shift sites (see Supplementary Tables S1–S3).

MitoZoa format novelties

For each MitoZoa entry, the gene order is reported in a
FASTA-like format as a string of standardized gene
names (9). In MitoZoa 2.0, the gene order format has
been improved adding to the header a token that indicates
the linear topology (L) or the partial status (P) of the
entry. This novelty helps to identify linear and partial
mtDNAs from the inspection of gene order header. It
can be advantageous to users interested in extensive
analyses of the gene order in large taxonomic groups.

MitoZoa entry updates

Pre-existing MZ entries are now updated at each new MZ
release. This update is essential to allow reliable entry

Table 2. Inconsistencies of protein-coding genes (CDS) corrected or

pointed out with a warning message in MitoZoa Release 9.1

CDS inconsistency No. of
CDS

No. of
entries

Modification of name 2a 1a

Modification of strand and boundaries 2b 1b

Modification of boundaries 203 184
Internal stop codons resolved by adding a ‘join’c 9d 8
Unusual start codon resolved by deleting a ‘join’c 2e 2e

Warning on ‘loss of highly conserved regions’ 107 84
MitoZoa Release 9.1 27 022 2894

aExchanged annotation between atp8 and atp6 in the snake Anilius
scytale (FJ755180, v2 EMBL entry).
batp8 and nad3 of the gastropod Platevindex mortoni (GU475132).
cSpecial cases of the category ‘modification of boundaries’. The ‘join’
operator, defined by GenEMBL, is used to exclude internal positions
from CDS or other FTkeys.
dIn nad2 of the gastropod Ilyanassa obsoleta (NC_007781), the addition
of the ‘join’ operator is also accompanied by modification of the start
codon position. In all remaining cases, the CDS boundary modification
consists of only the addition of the ‘join’ operator.
eIn both cases (DQ340844 and NC_000844), the presence of the join
operator was due to the hypothesis of the existence of a four-base start
codon in cox1, recently rejected by experimental data (32).

Table 1. Mitochondrial data sets searchable with BLAST, together with the data set size in MitoZoa Release 9.1

Data set name FTkey used as data set source Additional data to the sequence header No. of sequences

mtDNA Full entry mtDNA 2894
CDS_nt CDS Standard gene name 37 022
tRNA tRNA Standard gene name 61 228
rRNA rRNA Standard gene name 5699
NCR� 25 nt NCR� 25 nt NCR codea 8761
Protein CDS translation, excluding pseudogenes Standard gene name 37 016

aThe NCR code defined by MitoZoa relates to species, flanking genes and NCR length (in bp). See also the online MitoZoa Help.
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selections with the Taxonomy, the Organism Species (OS)
and the ConGeneric (CG) fields of the ‘General Search
Menu’.
In particular, the update of the Taxonomy field is indis-

pensable because it comes from the Taxonomy database
(http://www.ncbi.nlm.nih.gov/taxonomy), where even
high taxonomic levels are frequently reorganized by
NCBI curators. Furthermore, the OS field of existing
entries are sometimes modified by the authors of entries
owing to revised taxonomic assignment of the biological
sample used for sequence production. Specific
standardized messages are added to the MRS field to
track these changes and allow easily retrieval (see figure
1 of the online MitoZoa Help).
As an example of the extent of MZ entry update, the

migration of the 2633 pre-existing entries from MitoZoa
Rel. 7 to Rel. 8 involved changes of 300 entries (11.4%) in
the OC field, and 65 entries (2.5%) in the OS field (plus
OC, if necessary).

Miscellanea

The MZ re-annotation pipeline includes some completely
manual steps involving literature check, evaluation of
unusual mtDNA characteristics, and de novo annotation
of interesting entries. All these steps depend on curator
expertise and are time-consuming. Thus, we have set up
specific file formats and scripts to assist curators. Some
examples of manually revised entries are reported in
Supplementary Table S4.
The previous MitoZoa list of the mt genetic codes

has been updated adding a new genetic code absent
in the translation table list compiled by the NCBI
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc
.cgi). This code, named ‘5bis’, has been recently identified
in the nematode Radopholus similis by Jacob et al. (35).

SUMMARY AND FUTURE DIRECTIONS

MitoZoa provides carefully revised annotations of all mt
gene categories, thus it ensures high accuracy of gene
sequences, NCRs and gene order data extracted from
MitoZoa. Moreover, all corrections and improvements
of the entries are indicated by standardized messages
(mainly located in the MRS field), further assisting
MitoZoa users in the analysis of the revised elements.
The Mitozoa retrieval system permits the easy selection

both of highly studied mt protein-coding genes and some
often overlooked mt features such as NCR sequences and
gene order, even for large taxonomic data sets. Among
these features, NCR sequences and gene order data are
difficult or impossible to retrieve from other mt databases.
Indeed, MitoZoa permits flexible queries not feasible by
any other system. For example, the selection of the teleost
L-strand replication origin sequences can be achieved
through the ‘NCR Menu’ searching for all NCRs longer
than 20 bp, located between trnN and trnC, and belonging
to the taxon Teleostei. Likewise, all metazoan mtDNAs
having the mammalian-distinctive ‘WANCY’ region can
be simply extracted through the ‘Gene Order Menu’

searching for entries having the ‘trnW -trnA -trnN -trnC
-trnY’ gene string.

We believe that both the correction of annotation
inconsistencies and the user-friendly retrieval system
makes Mitozoa a valuable resource for researchers inter-
ested in phylogenetic reconstructions and also in peculiar
aspects of mtDNA evolution. MitoZoa could also direct
the mitochondrial community to new investigations,
thanks to the emphasis on taxa/genes characterized by
problematic annotations or unusual features. Finally, the
implementation of the BLAST sequence similarity search
could make MitoZoa a reference database for the anno-
tation of novel mt genomes, and the definition of widely
shared mt annotation rules whose requirement has been
often invoked in the past (19). Indeed, as stressed in the
section on CDS quality check, the correction of gene
boundaries requires the definition of general annotation
rules based on the knowledge of the mt transcription and
translation processes.

In the future, we plan to develop new tools for the
examination of gene order and to implement services for
the analyses of retrieved sequences (programs for sequence
multi-alignment, prediction of secondary structures, etc).
Suggestions from MitoZoa users on new options for data
visualization and extraction will be also taken into
account.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S4.
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