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The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2–15 MeV

was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at

Ebeam¼19.1 MeV, while gamma rays between 2 and 9 MeV were produced using an Am–Be–Fe

radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height

conversion resulted to be linear within 0.05%.Experimental interaction multiplicity distributions are

discussed and compared with the results of Geant4 simulations. It is shown that the application of

gamma-ray tracking allows a suppression of background radiation caused by n-capture in Ge nuclei.

Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information

extracted with Pulse-shape analysis is discussed.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In many in-beam gamma spectroscopy experiments the detec-
tion of high-energy gamma rays in the 10–20 MeV range is of
primary importance (see e.g. Refs. [1–5]). The limited size of the
presently available HPGe crystals (up to �400 cm3) affects the
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pi).
possibility to detect the full energy deposition of such high-
energy photons. However, large detection volumes (and, conse-
quently, large detection efficiencies) can be obtained by using
composite germanium detectors, namely using multiple crystals
within the same cryostat, as was done in the past with the Clover
detectors [6] and with the EUROBALL Cluster detectors [7–10].
The response function of such composite detectors was investigated
up to 15 MeV [11–13]. The additional benefit of generating large
detection volumes packing several small crystals together is the
reduction of the Doppler broadening of photons emitted in-flight,
owing to the finite solid angle subtended by each crystal in case
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the photons are emitted from recoiling nuclei. With the new
generation high-resolution gamma-ray spectrometers like AGATA
[14–16] and GRETA [17,18], the HPGe crystals are operated in
position-sensitive mode through a combination of electrical
segmentation of the outer electrodes, digital electronics and
sophisticated Pulse Shape Algorithms [19–28]. The energy and
direction of the individual photons are extracted through dedi-
cated gamma-ray tracking algorithms [29–32]. It should be
remarked that the individual interaction points are extracted
with sub-segment precision, which experimentally turns out to
be better than a three dimensional (3D) Gaussian with 5 mm
FWHM in each direction (see for instance Refs. [33–36]). In order
to achieve this goal, remarkable effort has been devoted to the
characterization of highly-segmented HPGe detectors [37–52],
and the possibility to improve the performances of a gamma-
ray spectrometer at high energies using accurate 3D position
information was first proposed in Ref. [53].

The performance of the Advanced GAmma-ray Tracking Array
(AGATA) detectors with in-beam tests were discussed in Ref.
[33–36]. These studies, however, were limited to gamma-rays
energies up to 4 MeV. The present work provides the first detailed
study of the response of AGATA detectors to gamma-rays up to
15.1 MeV. This study represents an important test of the AGATA
detectors for the measurement of high-energy gamma rays, in
terms of energy resolution, tracking efficiency and performance of
the PSA algorithms. This aspect will be important in the forth-
coming experimental campaign with relativistic beams [54] at
GSI, where, the energies of the gamma-rays emitted in flight can
be significantly Doppler shifted toward higher values.

In Section 2 we describe the experimental set-up, the Am–Be–Fe
source calibrations and the in-beam test, while in Section 3 the
results concerning detector energy resolution and linearity as a
function of the gamma-ray energy are presented. Experimentally
extracted interaction multiplicity distributions are shown and
compared with Geant4 [55–57] simulations in Section 4. Finally,
in Section 5 we discuss the Doppler correction using the PSA and
gamma-ray tracking for the 15.1 MeV gamma line.
~20 cm

Fig. 1. Upper panel: The experimental set-up consisting of two AGATA triple

clusters and one 3.5‘‘�8’’ cylindrical LaBr3:Ce scintillation detector. Lower panel:

schematic representation of the Am–Be–Fe source.
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Fig. 2. Gamma-ray energy spectrum measured with the Am–Be–Fe source in the

0–5 MeV range (panel A) and in the 5–10 MeV range (panel B). The gamma lines

used for the analysis are labeled by the corresponding reaction.
2. In-beam test and Am–Be–Fe source measurement

The reaction used to produce the 15.1 MeV gamma-ray was
d(11B,ng)12C at Ebeam¼19.1 MeV.
A 11B beam with an energy of 45 MeV from the Legnaro XTU

Tandem accelerator was degraded to 19.1 MeV using an Au foil in
front of the target (29 mg/cm2). The reaction populates the
resonance state at 15.1 MeV in 12C nucleus which is produced
with a v/c �5%. This state decays directly to the ground state
(with a branching ratio of 92% [58]) by emitting a single M1
gamma-ray with an energy of 15.1 MeV [59–61]. The target was
made of C32D66 (dotriacontane-d66) with a thickness of 490 mg/
cm2, deposited on a 0.1 mm thick tantalum backing. Both the
recoiling nuclei and the beam were stopped in the target backing.
The gamma rays produced in the reaction were measured with
two AGATA triple clusters, which were placed at a distance of
13.5 cm from the target. The AGATA electronics was set in order
to have 0–20 MeV dynamic range, for each segment and for the
cores. The trigger condition did not require any coincidence
with other detectors. One large volume cylindrical 3.5 in.�8 in.
LaBr3:Ce detector, having larger efficiency as compared to one
single AGATA crystal was added to the experimental set-up for
monitoring purposes and operated using an independent acquisi-
tion system (upper panel of Fig. 1) [62,63].

The detectors were calibrated using an Am–Be–Fe source. The
Am–Be–Fe source was placed into a 3�3 cm hole drilled in an
iron slab of 7�7�20 cm and surrounded by paraffin wax in a
20�20 cm cylindrical shape (see the bottom panel of Fig. 1). The
neutrons from the Am–Be–Fe source were thermalized in the
paraffin housing and then captured in iron producing gamma rays
of energies up to 9.3 MeV.

The gamma-ray spectrum acquired using the Am–Be–Fe
source is displayed in Fig. 2 and the gamma lines used for the
analysis are labeled with the corresponding reaction. These data
were used to calibrate and check the linearity and energy
resolution of the AGATA detectors. The average counting rate
per crystal was 0.9 kHz during the source measurement, and
1.2 kHz in the in-beam test.
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3. Energy resolution and linearity

In Fig. 3 the relative energy resolution (i.e. FWHM/Egamma) as a
function of the gamma-ray energy is displayed. The data
associated to the single crystal showing the best performance
are reported with empty black circles. The black triangles repre-
sent, instead, the energy resolution obtained by summing the
energies detected by the crystals that fired in each event (add-
back).

All the spectra analyzed in this section were extracted without
using any kind of filter, but only summing the energy measured in
each segment; this procedure is feasible because of the low
gamma-ray multiplicity(see e.g. Section 4). These segment ener-
gies are extracted at pre-processing level by applying the moving
window deconvolution (MWD) algorithm [64,65] to the incoming
data streams. In this way it was possible to perform (offline) a fine
gain matching of all segments. This latter procedure turned out to
be extremely important especially when high-energy gamma rays
are involved. In addition, for each crystal, the sum energy of the
segments was forced to be equal to the energy extracted from the
core signal, in order to recover the segment energy resolution,
degraded by neutron damage [66]. It is important to mention that
a more sophisticated method to recover neutron damage in
segmented HPGe detectors, exploiting position information pro-
vided by PSA algorithms, was recently developed [67]. However,
such a procedure is not expected to provide a significant
improvement for the specific case of high-energy gamma rays,
considered in this work.

As can be seen from Fig. 3, the experimental data follow the
expected E�1/2 trend (indicated by the black dashed line). The
FWHM of the highest-energy gamma line (i.e. 9297.8 keV) is
6.1 keV in the case of the single crystal with the best perfor-
mances, and 7.6 keV for the add-back case. The energy resolution
obtained for the 15.1 MeV gamma emitted in the in-beam test is
not displayed since the FWHM of the peak is, in this case,
dominated by the Doppler broadening induced by the reaction
mechanism (see Section 5 for details). However, considering the
trend showed by the data displayed in Fig. 3, an intrinsic
resolution of the order of 10 keV is expected at the energy of
15 MeV.

In the following we present the study of the linearity for the
energy to pulse-height conversion up to 15 MeV.
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Fig. 3. Relative energy resolution of the AGATA detectors is given for the

Am–Be–Fe source data. The data for the best performing single detector are

shown by empty black circles. The black triangles represent instead the energy

resolution for the add-back procedure, performed among all crystals that fired

in each event. The experimental data follow the expected E�1/2 trend (indicated by

the dashed black line).

gamma line of the Am–Be–Fe source and for the 4.4 and 15.1 MeV gammas from

the in-beam test. If not displayed, error bars are smaller than the symbol size.
The plot in Fig. 4 displays the measured energy versus the
tabulated energy for gamma lines of the Am–Be–Fe source and for
the 4.4 and 15.1 MeV gamma rays from the in-beam reaction. The
measured energy is obtained with a linear calibration using the
1173 and 1332 keV lines of a 60Co source. In addition, a fine gain
matching of the detector segments was performed. This proce-
dure allowed us to refine the calibration coefficients obtained
using only 60Co source. The gain matching coefficients for each
single segment were extracted performing linear interpolation of
the 846.8, 2223.2 and 2614.5 keV gamma lines, on spectra
incremented only if the highest energy release in the event was
registered in the selected segment.

Percent deviation of the experimental data from tabulated
energies is reported in Fig. 5 as a function of energy. The deviation
is defined as the difference between measured and tabulated
energy divided by measured energy (Deviation¼(Emeas�Etab)/
Emeas). As expected data corresponding to gamma rays emitted
in-flight show larger error bars. It is found that the total devia-
tions from ideal linearity are lower than 0.1% in the energy range
2–15 MeV. Such results are consistent with those reported in [13]
for the case of EUROBALL [7–10] clusters.
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4. Multiplicity distributions

In this section, the multiplicity distributions of AGATA clusters,
crystals and segments are discussed. The results were extracted
with data from the Am–Be–Fe source measurement described in
Section 2. Full Energy Peak (F.E.P.) events are selected, for each
gamma-ray energy, imposing a gate centered on the correspond-
ing full energy absorption peak in the gamma spectrum; back-
ground events are selected instead imposing two gates
respectively corresponding to the two intervals adjacent to the
left and right boundary of the gate used for selecting F.E.P. events.
Unless otherwise specified, the plots are produced without
applying any filter to the data (e.g. gamma-ray tracking
algorithm).

In Table 1 the cluster multiplicity (Mclust) distributions for full
energy peak (FEP) and background events are listed. The AGATA
HPGe crystals are packed in common cryostats in groups of three,
each one of these group is referred to as a (triple) cluster; we
define Mclust as the number of triple clusters (i.e. cryostats)
sharing the energy release. In particular, when Mclust¼1 it is
intended that the energy release is confined to crystals of one
single cluster. The table clearly shows a general increase, with
gamma-ray energy, of the fraction of the events in which the
energy release is shared between both clusters (Mclust¼2). In
addition, background events show a larger percentage of Mclust¼2
events as compared to full energy peak ones. The same behavior
can be observed in Fig. 6, which displays the crystal multiplicity
distributions for full energy peak (bottom panel) and background
events (top panel). Such a behavior, in the case of the Am–Be–Fe
source data, is due to the fact that background events originate
mostly from neutron interactions in HPGe detectors and subse-
quent neutron induced gamma emission. These events are
expected to have in average a larger multiplicity as compared to
gamma-ray FEP events, leading to the same total energy release in
the HPGe detectors. This can be attributed to the presence of
additional interaction points associated to inelastic neutron
scattering with Ge nuclei [68] and to the multiplicity of gamma
rays emitted following the de-excitation of Ge nuclei.

Fig. 7 displays the centroid of the segment multiplicity
distributions, as a function of gamma-ray energy, for FEP (top
panel) and background (bottom panel) events. In addition, the
segment multiplicity distributions extracted using a simple
add-back algorithm (i.e. summing up the energies of all the
interactions in the two clusters) are compared with those
extracted applying the gamma-ray tracking alogirthm [69].
It should be mentioned here that AGATAdetectors can provide
also sub-segment information concerning interaction number
distributions (see e.g. Ref. [25]). Nevertheless, in this specific
study the used algorithm [19] provides a single interaction
Table 1
Cluster multiplicity for FEP and background events. Two A

Full Energy Peak (FEP) Events

Energy (MeV) Mclust¼1

2.2 92

4.4 88

7.6 85

9.3 86

Background

Energy (MeV) Mclust¼1

2.2 86

4.4 80

7.6 65

9.3 58
point in the segment where a net charge deposition took place,
implying that the multiplicity distributions of interaction points
and of segments necessarily coincide.

By looking at Fig. 7 one notices that even though the general
behavior is identical up to 7 MeV, for higher energies a clear
deviation between the two curves appears. This effect can be
attributed to the rejectionof neutron captureevents performed by
the tracking algorithm [69]. In fact this kind of events are
characterized by high multiplicity of gamma rays emitted follow-
ing Ge nuclei de-excitation. An example of this background
rejection is shown in Fig. 8 where the line at 10.196 MeV is
GATA triple clusters were used in the measurement.
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indeed suppressed in the ‘‘tracking’’ spectrum (gray line), while is
clearly visible in the add-back one (black line).

This peak is associated to the sum energy of the gamma-rays
emitted following the 74Ge nucleus de-excitation, after neutron
capture by 73Ge. The ground state decay from 10.196 MeV level is
not allowed [70,71], therefore the events in the peak have gamma
multiplicities larger than one. As the tracking algorithm [69]
recognizes the peak as a sum-peak of two or more gamma-rays
it is suppressed in the ‘Tracking’ spectrum.

In Fig. 9 the segment multiplicity distributions for the cases of
full energy peak (Egamma¼7.6 MeV), single escape (S.E.) and
double escape (D.E.) events are compared. The fact that the
distributions have centroids shifted toward higher multiplicities
for the case of full energy and single escape is caused by the
presence of the 511 keV gamma rays from pair production. In
addition, the fact that �50% of double escape events have multi-
plicity larger than one can be attributed to the presence of
Bremsstrahlung radiation and Compton interactions of the
gamma-ray prior to the pair production. In Fig. 9 the results of
Geant4 simulations [56,57] are also reported (open symbols),
showing a good matching with the experimental data.
5. Doppler correction of 15.1 MeV gamma-rays

In contrast to the Am–Be–Fe radioactive source data, the
15.1 MeV gamma rays are emitted by a 12C nucleus moving at
v/c�5% (see Section 2). Therefore the energy of the gamma rays
detected in the laboratory system is shifted according to the
equation:

Eg,shifted ¼ Eg0
1�bð Þ

1=2

1�bcos yð Þ
ð1Þ

where Eg0 is the energy of the gamma-ray in the rest frame of
the nucleus, b is the velocity of the nucleus in the laboratory
system relative to the speed of light andy is the angle between the
direction of motion of the nucleus and the direction of emission of
the gamma-ray. While the angular distribution of the 12C recoils
is not measured by our detection system, with the AGATA
detectors it is possible to determine the emission direction of
the detected photon with different levels of precision, namely:
(i) using the central position of the crystal with the largest energy
deposit, (ii) the central position of the segment with the largest
energy deposit, (iii) the position of the most energetic interaction
point provided by the PSA algorithm [19] (from now on we refer
to this procedure as ‘‘PSAþ1HitID’’), (iv) the incoming direction
provided by the gamma-ray tracking algorithm [69].

The PSAþ1HitID algorithm calculates, for each event, the sum
energy in all the detectors and determines the direction of the
detected gamma-ray starting from the assumption that the first
interaction corresponds to the location of the most energetic
interaction [75], extracted by PSA algorithm [19].
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Table 2
Values for the FWHM of the 15.1 MeV gamma line obtained with Doppler

correction using different position information, as described in the text. The main

factor limiting the FWHM of the 15.1 MeV gamma line was found to be the

uncertainty due to the missing event by event reconstruction of the 12C ion

velocity vector. However, it is important to point out that considering the trend

showed by the data displayed in Fig. 3, an intrinsic resolution of the order of

10 keV should be expected at the energy of 15 MeV.

FWHM of 15.1 MeV peak

PSAþ1HitID 119 keV

Segments 122 keV

Crystals 4160 keV
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This solution was chosen since the efficiency of the standard
tracking algorithm [69] was found to significantly decrease in the
10–20 MeV energy range. In particular, after applying the tracking
algorithm [69] on both simulated and experimental data the ratio
between the events in the 15.1 MeV full energy peak for the
tracked spectrum and the standard add-back with PSAþ1HitID is
0.25 only. This is related to the fact that the used tracking
algorithm was not optimized to treat gamma rays in the 10–
20 MeV range, where the pair production becomes the dominant
interaction mechanism. In addition, in the present in-beam test
the 15.1 MeV gamma-ray is produced by the direct decay into the
ground state of 12C, therefore the multiplicity is always one. This
fact justifies the use of a simpler approach as the PSAþ1HitID.

It is important to stress that the ‘‘multiplicity¼1’’ condition is
fulfilled in several AGATA physics cases where the measurement
of high-energy gamma rays is required (e.g. in the measurement
of the Pygmy Dipole Resonance [1]).

In the used reaction (see Section 2) 12C is produced with a b of
�5%, however the velocity of the 12C ions was not measured.
Therefore, in order to Doppler correct in the optimal way the
detected gamma-ray energy we determined the value of b which
better optimizes the centroid and width of the 15.1 MeV full
energy peak. In such a way we extracted an averaged velocity
vector of magnitude 0.046 (b) and components (0, 0.85, 0.51) in
the AGATA frame of reference; the AGATA reference frame is a
right handed reference frame where the z axis coincides with the
optical axis of PRISMA (magnetic spectrometer of LNL-INFN lab)
and the x axis points downward (see Refs. [15,36,56,57]).

The components of the velocity vector are compatible with the
beam direction. It is interesting to note that the best value of the
extracted velocity is consistent with the results of simulations of
the 12C ion velocity distribution performed with PACE4 [72–74]
giving a mean b of 0.048. More specifically we found that the 95%
confidence interval for the b value is between 0.042 and 0.058
and between 01 and 101 for the deviation angle with respect to
the beam direction in the AGATA frame of reference.

The spectra in the region of 15 MeV are shown in the panels of
Fig. 10. In particular, different Doppler corrections were applied,
using as gamma-ray emission direction the different options
listed at the beginning of this section. In the top panel of Fig. 10
the spectrum obtained without Doppler correction (dashed black
line) is compared to (i) the spectrum obtained by applying the
Doppler correction using the central position of the segment with
the largest energy deposit (thin black line) and (ii) the spectrum
obtained by using the full information provided by the PSA
‘‘PSAþ1HitID’’ (thin gray line). By looking at the spectra displayed
in the bottom panel of Fig. 10 one can note the marked improve-
ment in the FWHM of the 15.1 MeV peak passing from the
spectrum obtained by applying the Doppler correction using the
central position of the HPGe crystal with the largest energy
deposit (i.e. detectors operated in standard mode, thick black
line, FWHM larger than 160 keV) to the ‘‘PSAþ1HitID’’ (gray line,
119 keV FWHM, see also Table 1).

It is important to stress that, in this particular case, PSA
techniques do not improve in a significant way the energy resolu-
tion as compared with the spectrum where Doppler correction was
made using segment centers. In fact the FWHM slightly improves
from 122 to 119 keV (see Table 2). This fact is due to the uncertainty
in 12C ion vector velocity. The missing reconstruction on event by
event basis of the 12C ion velocity vector represents in this case the
main limiting factor in the Doppler broadening correction capability.

In order to verify the different contributions to the final width
(119 keV) of the 15.1 MeV peak Geant4 simulation were per-
formed and compared to the experimental result, see Fig. 11.
This simulation was performed using the AGATA code [56,57],
applying then the same algorithm used to process the
experimental data. The 12C ion velocity distribution was calcu-
lated using PACE4 [72–74] as discussed earlier. In the simulation
the value of the intrinsic energy resolution of the detectors was
extrapolated using the E�1/2 law (see Fig. 3) and set to 8 keV at
15.1 MeV. It should be pointed out, however, that this value has
negligible impact on the final energy resolution obtained in the
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experimental spectrum (see Table 2), since this is dominated by
the Doppler broadening effect.

As can be noted in Fig. 11 there is good agreement between the
measured and simulated curves, confirming that the measured
FWHM of the Doppler corrected 15.1 MeV gamma line to 119 keV
is understood.
6. Conclusions

In this paper we studied the response of two AGATA triple
clusters to gamma-rays in the energy range 2–15 MeV.
The energy resolution was found to scale as 1/sqrt(E), once
an accurate gain matching of the segments is performed.
The linearity resulted to be better than 0.05% up to 10 MeV and
better than 0.1% up to 15.1 MeV. The experimental interaction
multiplicity distributions show that, for high-energy gamma rays,
background events are characterized on average by higher multi-
plicities than full energy peak ones. This is related to neutron
capture events which characterize the spectrum for energy
greater than 7 MeV. The multiplicity was compared with the
results of Geant4 simulations. The Doppler corrected spectra were
obtained for the 15.1 MeV gamma line, using the PSAþ1HitID
procedure.

The main factor limiting the FWHM of the 15.1 MeV gamma
line was found to be the uncertainty due to the missing event by
event reconstruction of the 12C ion velocity vector. An intrinsic
resolution of the order of 10 keV should be expected at the energy
of 15 MeV. The simple add-back and PSAþ1HitID algorithm, in
the case of the 15.1 MeV gamma-rays, resulted to provide four
times more counts in the full energy peak than the standard
tracking algorithm. This is due to the fact that the 15.1 MeV
gamma-ray has multiplicity 1, the level of background is low and
that the tracking algorithm was optimized in the energy range
0–4 MeV where Compton scattering dominates; at 15 MeV the
pair production is the main interaction mechanism instead. As in
several AGATA physics cases which involve the measurement
of high-energy gamma rays the ‘‘multiplicity¼1’’ condition is
fulfilled, therefore the presented results might suggest a simple
and efficient alternative to standard tracking, provided that the
level of background radiation is sufficiently low.
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