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Abstract

Transcription factors (TFs) are regulatory proteins that have played a pivotal role in the

evolution of eukaryotes and that also have great biotechnological potential. REGIA

(REgulatory Gene Initiative in Arabidopsis) is an EU-funded project involving 29

European laboratories with the objective of determining the function of virtually all

transcription factors from the model plant, Arabidopsis thaliana. REGIA involves: 1. the

definition of TF gene expression patterns in Arabidopsis; 2. the identification of mutations

at TF loci; 3. the ectopic expression of TFs (or derivatives) in Arabidopsis and in crop

plants; 4. phenotypic analysis of the mutants and mis-expression lines, including both RNA

and metabolic profiling; 5. the systematic analysis of interactions between TFs; and 6. the

generation of a bioinformatics infrastructure to access and integrate all this information.

We expect that this programme will establish the full biotechnological potential of plant

TFs, and provide insights into hierarchies, redundancies, and interdependencies, and their

evolution. The project involves the preparation of both a TF gene array for expression

analysis and a normalised full length open reading frame (ORF) library of TFs in a yeast

two hybrid vector; the applications of these resources should extend beyond the scope of

this programme. Copyright # 2002 John Wiley & Sons, Ltd.
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Introduction

The completion of the sequence of the genome of
Arabidopsis [28] represents one of the most sig-
nificant landmarks in the history of plant biology.
The next step, the interpretation of this information
in functional terms is a demanding task in terms of
resources. One obvious class of proteins to be of
top priority are transcription factors.

These regulatory proteins provide the most
common mechanism of regulation of co-ordinated
gene activity, transcriptional control. Because of
their power to control gene expression and conse-
quently complex traits, TFs are believed to have
played an important role in the evolution of plants
and have been the targets for breeding and domes-
tication [reviewed in 3]. Thus, many of the best
characterised QTLs (quantitative trait loci) and

agronomically important genes correspond to TFs
(for example, [2,15,16,20,21,29,31]). Two examples
of the significance of TFs in domestication and
breeding are TEOSINTE BRANCHED and the
GRAS genes. TEOSINTE BRANCHED1 is a
bHLH type TF, responsible, through its regulatory
activity, for most of the morphological difference
between maize and its wild ancestor, teosinte [2].
The GRAS genes are responsible for the reduced
size and increased grain yield of cereals bred for the
‘green revolution’ and encode mutant giberellin
response modulators which are thought to act as
TFs [20,21]. Mutations in some genes encoding TFs
can phenocopy inter- or intra-specific natural vari-
ants [9,1] emphasising their importance in evolution
as well.

As a corollary of their seminal role in the deter-
mination of plant traits, transcription factors are
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considered to have enormous biotechnological
potential for the manipulation of agronomic traits.
In support of this are the established examples in
which transcription factors have been used to mani-
pulate plant metabolism (for example, the antho-
cyanin, phlobaphene and lignin pathways; [14,5,27]),
development (for example, flowering time and cell
shape; [4,17,19,30]) and responses to stress (for
example, cold, salinity, and drought stresses; [6,13]).

TFs are endowed with characteristics that make
them particularly suitable for driving evolution and
for biotechnological exploitation. One of these
characteristics is modularity, whereby domains
within the proteins function independently, thus
facilitating module exchange between TFs [10] and
allowing for the engineering of new TF activities.
Another characteristic of TFs is the large degree of
functional redundancy in higher eukaryotes, includ-
ing plants. Transcription factors are, in general,
members of large families that often include closely
related genes that are also functionally related.
Within subfamilies different extents of partial
redundancy are to be expected, in which redundant
genes may diverge in their expression pattern,
generally due to mutations in their cis-regulatory
regions [10]. Extreme examples of redundancy and
of divergence are the cases of SEP1, SEP2 and
SEP3, and of GL1 and WER, respectively [12,18].
In the first case, only the triple mutant sep1, sep2,
sep3 showed a phenotypic difference with the wild
type (sepaloid flowers). In the second case, muta-
tions at GL1 affect trichome formation, whereas
wer mutations affect root hair formation, but their
proteins are functionally equivalent. Finally, these
two characteristics, modularity and redundancy,
together with the fact that transcription factors
tend to act downstream in signal transduction path-
ways limits pleiotropy of mutations in transcription
factors, a necessary condition for evolutionary and
biotechnological potential [3].

Structure of the REGIA project

Current functional studies are generally based on
the identification of mutations at the loci of interest
and the evaluation of the phenotypic effects of these
mutations. This primary strategy is often comple-
mented by the generation of transgenic plants
ectopically expressing the corresponding gene (or a
derivative) and their phenotypic characterisation.
Our approach rests on similar principles, but has

been adapted and extended to cope with and to
exploit the characteristics common to many trans-
cription factors, such as low abundance, (partial)
redundancy, functional interdependency and mod-
ularity. The fact that TFs regulate gene expression,
and that expression is particularly amenable to
molecular analysis, means that we have also been
able to include aspects of target gene identification
in our functional analyses. Briefly, the activities (or
workpackages) in the REGIA project are the
following:

$ The analysis of the Arabidopsis genome sequence,

the analysis of all genes encoding recognisable

TFs and phylogenetic analysis, and the isolation

of unique identifier probes to prepare a TF gene

array and the analysis of the expression patterns

of TF genes. (WP1)
$ The identification of mutants of a large number

of strategically identified TF genes through

reverse genetic screens (WP2)
$ The ectopic expression of selected TF genes (or

derivatives, including inducible versions) in Ara-

bidopsis and key crop species (WP3)
$ Phenotypic analysis, including RNA and meta-

bolic profiling, of plants mutated at TF loci or

ectopically expressing TF genes (or their deriva-

tives) to define their biological functions (WP4)
$ The systematic analysis of physical (protein–

protein) interactions between TFs (WP5)
$ The bioinformatic analysis and management of

data produced in the programme (WP6)
$ The management and co-ordination of the

scientific activities on the programme, their com-

munication to other scientific groups and indus-

try and the protection of IP generated during the

programme. (WP7)

The relationships between the objectives of the
project and the workpackages, as diagrammatically
shown in Figure 1, are:

$ Information on the function of TFs will come

primarily from the phenotypic analysis (WP4) of

Arabidopsis plants with mutations at TF loci

(WP2) or lines ectopically expressing TFs (or

their derivatives; WP3). Expression data on TFs

(WP1) will assist phenotypic analysis. The bio-

informatic exercises of genome mining and phylo-

genetic analyses have helped to simplify TF gene

families into functionally related subfamilies.

Functional characterisation of any one member
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of such subfamilies, coupled with expression

analysis of all subfamily members should permit

preliminary functional assignment to the entire

subfamily membership.
$ Information on regulatory hierarchies will come

primarily from the analysis of the effects of

mutants/overexpressors of a given TF on the

expression of other TFs (WP4).
$ Insights into redundancies among TFs will be

obtained from the analysis of RNA profiles of

TF mutants (WP4). If mutations in any of two

structurally related TF genes, or their hyper-

expression, influence the expression of a given

(target) gene, these TFs are potentially redun-

dant. Hints on redundancy will also come from

detection of overlapping expression patterns of

closely related TFs (WP1). Confirmation of

redundancy will be obtained by preparing and

analysing the corresponding double mutants.
$ Insights into functional conservation and poten-

tial agronomic uses will be obtained from

comparison of the effects of ectopic expression

Figure 1. Relationships between the activities in the REGIA project. The white boxes and dashed arrows reflect
informational outputs of the programme on expression patterns, functions and biotechnological applications. The dark grey
boxes reflect the activities towards obtaining this information and the light grey outlined boxes reflect the two resources that
will be produced by the programme
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of a given TF (or a derivative) in Arabidopsis and
in other species (tomato, rapeseed, maize and
soybean; WP3&4).

$ Information on functional interdependencies will
be obtained primarily from the studies of the
interactions between TFs, using the yeast two-
hybrid system. Hints on interdependences (i.e, on
indirect as well as direct interactions) will also
come from the studies on functional links
between TFs based on molecular phenotypes of
the respective TF mutants (WP4). Thus, if muta-
tions at two or more TF loci, (or their hyper-
expression), influence the expression of the same
target gene, these TFs are possibly functionally
interdependent. The exhaustive definition of
interdependencies following this second criterion
is beyond the scope of this proposal, as it would
require the detailed functional characterisation of
each of the more than 1500 TF genes present in
Arabidopsis. ( [22], REGIA, unpublished). Con-
firmation of interdependencies between two TFs
identified by the yeast two-hybrid screen will be
obtained through the analysis of transgenic
plants hyperexpressing the two TFs.

Obviously, the biotechnological potential of each
TF will depend very much on the trait it controls
(WP4), but clearly the determination of functional
interdependencies forms a foundation for the
exploitation of the biotechnological potential of
transcription factors. In fact, it is the functional and
biotechnological relevance of TF interdependencies
that, in our opinion, justifies the huge amount of
work involved in their study, and consequently the
large size and the European dimension to the
Consortium.

Organisation

The Consortium includes one Project Manager and
29 research groups, 27 from academia and 2 from
industry. One of the group leaders is the scientific
coordinator and another seven group leaders are
workpackage coordinators, forming, together with
the Project Manager, the Coordination Committee.
The activities are organised around several core
centres which provide support to all groups on
techniques which could not be efficiently imple-
mented at the level of individual laboratories (for
example, the preparation of TF cDNA and EST

arrays, in situ RNA hybridisation analysis of TF
gene expression, high throughput AFLP-based
transcript profiling, metabolic profiling of mutant
and/or transgenic plants, generation of transgenic
crop plants, high throughput two-hybrid based
study of TF interactions and bioinformatic analysis
(see Alonso-Allende et al., this issue). Some of the
activities being undertaken in individual labora-
tories transcend the group’s specific interests in
particular types of transcription factor (for instance,
they provide probes and full size ORFs cloned in
two-hybrid vectors for a subset of TF genes). The
group benefits from this additional investment
because the tools they are developing provide a
better understanding of the function of specific TFs
in the context of transcriptional control in plants as
a whole. In this way, there will be an efficient use of
resources, which will also benefit the individual
research interests of the different laboratories,
reinforcing their intellectual freedom and creativity.

Progress

The program is halfway through at present and
much of the data that has been obtained is still
fragmentary, but it already provides indications on
its potential to uncover TF gene function and
application.

A significant result of our studies has been the
thorough bioinformatic definition and phylogenetic
analysis of some transcription factor families, which
provide a basis for identifying redundancy and for
functional assignment when information on func-
tion from highly related genes from other species or
from the same species is available (see for instance,
[7,26]).

One notable aspect of our approach is the
exhaustive phenotypic analysis of TF mutants
which, in addition to standard phenotypic screen-
ings, includes RNA profiling, using DNA arrays
complemented by AFLP-based techniques, and
metabolic profiling. These techniques are currently
operative in the Consortium. This strategy should
allow functional links between TFs to be estab-
lished, as well as links between ‘genes and metabo-
lites’, using bioinformatics tools. In addition, such
powerful phenotypic analysis should help to solve
analytical problems with gene redundancy since we
will be able to detect even the minor phenotypic
effects which can arise when there is a (partially)
redundant counterpart of the mutant TF under
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study. An example of this is AtMYB4, for which no
phenotype was obvious in mutant plants grown
under standard conditions. Expression profiling
showed it to change most in expression in plants
exposed to UV-B light. When mutants were grown
under UV-B light they were more tolerant than wild
type plants to this stress, establishing a role for this
TF in the negative regulation of UV-B protection
[11,8]. We have also prepared a TF gene array that
will allow the determination of TF expression
patterns. This will provide clues to functions (for
example, TFs controlling the cell cycle) and assist
phenotypic analysis of mutants. In addition, it will
allow the detection of overlapping expression
patterns among related and potentially redundant
TFs, thereby providing a rational basis for the
selection of the double mutants to be prepared and
analysed.

The fact that TFs are usually functionally
interdependent and act in combinations rather
than alone [25], has been given special consideration
in the context of this programme. The importance
of characterising TF functional interdependency is
twofold: first, it will help to define regulatory net-
works, and second, it is a necessary step to permit
the full manifestation of TF regulatory (and
biotechnological) potential. For instance, the maize
C1 and R anthocyanin regulatory genes are known
to interact and it has been shown that their co-
expression in transgenic Arabidopsis is necessary for
anthocyanin production in all tissues [14]. Func-
tional interdependencies involve both direct and
indirect interactions. Our approach to study direct
interactions depends on a novel iterative screening
of interactions among TFs based on the use of the
yeast two-hybrid system, and we are generating a
normalised full size TF library (800 full length
ORFs cloned at present) which will be made availa-
ble to the scientific community for screening for
additional interactions, particularly with non-TF
proteins. Additional clues on direct and, especially,
on indirect interactions will come from the studies
on functional links based on the molecular pheno-
types of TF mutants.

Also important in the context of this proposal is
the modular organisation of TFs, whereby the selec-
tor, DNA-binding domain, and the effector (activa-
tion or repression) domain are to a great extent
functionally independent, allowing module exchange
and/or the addition of other modules (for instance,
conferring chemical control, as demonstrated in
several instances including the Arabidopsis AP3

gene, controlling petal and stamen formation,
CONSTANS gene, controlling flowering time, and
the Arabidopsis STM gene, controlling meristem
identity; [24,23], Sablowski, personal communica-
tion). We have taken advantage of TF modularity
to prepare TFs whose activity can be post-
translationally controlled with glucocorticoids, or
whose effector domain is replaced by a strong
constitutive activation or repression domain. In this
way, we expect to circumvent possible problems of
redundancy, or those derived from expression of
constitutively active transcription factors (such as
lethality), as well as of problems associated with
factors for which activity depends on an unknown
post-translational modification/interaction. Addi-
tionally, inducible constructs such as those acti-
vated post-translationally by supply of steroids will
allow for the identification of direct target genes of
particular TFs. Identification of target genes of
particular TFs will be possible using the mutant and
inducible lines and microarray analysis or cDNA-
AFLP. These activities will help characterise func-
tion further. Once regulatory frameworks have been
defined for Arabidopsis, it is anticipated that we will
be able to modify the activity of relevant TFs in
crop plants to engineer desirable traits.

In summary, we have already defined many
transcription factor families through bioinformatic
analysis, the TF gene array has already been pre-
pared and is being used by the different groups for
expression analysis under 72 defined conditions/
treatments. More than 150 transcription factor
mutants have been isolated, and more than 250
TF-derived constructs have been prepared and
introduced into transgenic plants which are cur-
rently being analysed. Metabolic profiling techni-
ques have been set up. In addition, more than 800
full length TF ORFs have been cloned in Gateway
entry vectors and transferred to two-hybrid delivery
vectors. It is expected that by the end of the
program these activities will have crystallised to
provide many new ideas on plant transcription
factor function. It is also important that a very
significant degree of integration of the activities of
30 European laboratories has been achieved in a
relatively short time. These integrated activities
have been undertaken by groups separated by
large distances and by many who have not worked
in such co-ordinated programmes previously. We
expect the full manifestation of the potential of this
Consortium to be evident within the next three
years.
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