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Abstract

ACRs (atypical chemokine receptors) were initially referred to as ‘silent’ receptors on the basis of a lack of
signalling and functional activities that are typically observed with conventional chemokine receptors.
Although ACRs do not directly induce cell migration, they indirectly control leucocyte recruitment by
shaping chemokine gradients in tissues through degradation, transcytosis or local concentration of their
cognate ligands. Recent evidence also suggests that these biological activities are supported by G-protein-
independent, g-arrestin-dependent signalling events. In the present article, we review current knowledge
on structural and signalling properties of ACRs that are changing our view on this entire class of receptors
from silent to endogenous B-arrestin-biased signalling receptors.

Introducing the ‘silent’ ACRs (atypical
chemokine receptors)
Chemokines regulate leucocyte migration through the
activation of a distinct family of conventional 7TMRs
(seven-transmembrane domain receptors) [1]. Signalling
by chemokine receptors relies on a G-protein-dependent
signalling module promoting cell migration, integrated with
a B-arrestin-dependent signalling module that functionally
uncouples G-proteins from the receptor and subsequently
desensitizes and internalizes it via clathrin-coated pits-
dependent endocytosis [2,3]. In recent years it has become
increasingly evident that the role of B-arrestins is not
limited to receptor desensitization and internalization; their
function of adaptor proteins providing diversity and fine-
tuning of signalling activities is emerging [4]. Interestingly,
it has been reported that although most 7TMRs signal in
a balanced fashion through the G-protein and B-arrestin
modules [5,6], mutations in key residues have been shown
to generate G-protein- or B-arrestin-biased receptors [4].
However, so far, B-arrestin-biased receptors have only been
genetically engineered from balanced receptors by mutations
in key residues involved in G-protein coupling, including the
DRYLAIV motif in ICL (intracellular loop) 2 [7] and some
highly conserved residues in TM (transmembrane) 2, 3 and
5 domains [8], whereas no natural cases of B-arrestin-biased
receptors have been described.

Emerging evidence suggesting candidates for such g-
arrestin-biased receptors are a set of chemokine receptors
referred to as atypical or silent receptors, which are unable to

Key words: g-arrestin, atypical chemokine receptor, chemokine, G-protein

Abbreviations used: ACR, atypical chemokine receptor; DARC, Duffy antigen receptor for
chemokines; ICL, intracellular loop; PTX, pertussis toxin; TM, transmembrane; 7TMR, seven-
transmembrane domain receptor.

These authors contributed equally to this work.
2To whom correspondence should be
humanitasresearch.it).

addressed  (email massimo.locati@

Biochem. Soc. Trans. (2013) 41, 231-236; doi:10.1042/B5T20120246

activate the typical G-protein-mediated signalling pathways
that lead to directional cell migration, presumably as a
consequence of naturally occurring mutations in the domains
involved in G-protein coupling [9]. This subfamily of ACR
includes the DARC (Duffy antigen receptor for chemokines;
also known as Duffy antigen), D6, CCRL1 (also known as
CCX CKR), CCRL2 and CXCR?7. Furthermore, the C5L2
receptor, which recognizes the chemotactic complement
fragment Cba, also shows similar properties. Although
their biology is still largely unclear, results in gene-targeted
animals clearly indicate that ACRs overall act as negative
regulators of inflammation and adaptive immunity [10].
Recent reports indicate that the biological functions of
ACRs are G-protein-independent, but require the activation
of B-arrestin-dependent signalling pathways that support
their ability to generate and shape chemokine gradients in
the tissue through distinct biochemical processes, including
sequestration and degradation, transcytosis, or presentation
of their ligand [11,12]. Moreover, emerging evidence suggest
that the obligatory uncoupling of ACRs from G-proteins and
the preferential activation of B-arrestin module may also actas
a modulator of signalling activity of conventional chemokine
receptors, suggesting an additional molecular mechanism
for their regulatory role in leucocyte trafficking [13,14].
Thus the unbalanced activation of signalling modules
provides the first evidence in the understanding of the
molecular mechanisms underlying the loss of chemotactic
activity and gain of chemokine gradient shaping functions
that are peculiar to this subfamily of chemokine receptors.

ACRs are not DRY

A detailed structure—function analysis of the ACR subfamily
is not available yet, but it is interesting to note that,
although these receptors share high amino acids identity
with conventional chemokine receptors and show high
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Figure 1| The DRYLAIV motif in ACR

Alignment of the sequence present in the ACR of different species
substituting the DRYLAIV motif observed in conventional chemokine
receptors. Asterisks indicate conserved amino acids, colons indicate
substitutions with similar residues.
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affinity interactions with chemokines, they have impaired
conventional signalling activities through G-proteins (i.e.
intracellular calcium ion mobilization) owing to the presence
of altered structural determinants supporting G-protein
activation, a key signalling event in cell migration. The first
identified structural element has been the DRY (Asn-Arg-
Tyr triplet) motif located at the end of TM3, which is part of
one of the most conserved motifs in the 7TMR. This amino
acid triplet is highly conserved in chemokine receptors, with
100% conservation of Arg? in TM3, and 95% conservation
of both an aromatic residue in position 27 of TM3 and a
negatively charged residue in position 25 of TM3. This motif
plays a pivotal role in receptor activation, being involved
in the exchange of GDP with GTP and thus activating
the G-protein for further downstream signalling [15,16], as
also exemplified in CCR5 where mutation of Arg®® in TM3
to the neutral asparagine disrupted chemokine-induced G-
protein coupling despite retaining binding affinity for the
ligand [17]. ACRs either lack the DRY motif (i.e. DARC) or
exhibit a modified DRY motif and/or DRYLAIV consensus
(Figure 1). Interestingly, the presence of altered DRYLAIV
consensus in ACR is unlikely to simply represent a loss-
of-function mutation, as similar alterations in this motif are
observed for the same ACRs across species, suggesting some
selective pressure to maintain a specific altered DRYLAIV
motif within a specific ACR (Figure 1). These observations
raise the intriguing question of whether corrections of
mutated DRYLAIV consensus are enough to restore missed
G-protein signalling activities of ACRs, and vice versa,
whether modifications in this consensus are enough to
switch a conventional chemokine receptor into an ACR.
Interestingly, replacement of the CXCR7 ICL2 with the
corresponding CXCR4 domain does not resultin a G-protein
signalling-competent CXCR?7 chimaera [18], and signalling
competency was only partially achieved when this motif was
retromutated to the conventional DRYLAIV consensus in
D6 [19] or C5L2 [20]. Similarly, although replacement of
arginine by asparagine in the CCR5 DRY motif impairs its
G-protein coupling efficiency and chemotaxis activity [17],
chemical inhibition of the G,; signalling module through PTX
(pertussis toxin) treatment did not confer ACR features on
the receptor (E.M. Borroni, unpublished work), indicating
that besides G-protein uncoupling by the modified DRY
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motif, additional structural features are required to convert a
conventional chemokine receptor into an ACR.

DRY and beyond: structural degeneration
of micro-switch elements in ACRs

Surprisingly, modifications of DRYLAIV consensus are also
present in the conventional chemokine receptors XCRI1
and CXCR6, both known to signal via PTX-sensitive Gy
proteins [21,22]. This confirms that a mutated DRY motif
does not represent a reliable indicator for the lack of G-
protein coupling, and that, at least in the case of some 7TMRs,
the DRYLAIV consensus is not the only determinant of
G-protein coupling and that additional sequences are likely
to be involved. Crystallographic analysis of 7TMRs has
recently revealed that the majority of the conserved residues
involved in G-protein activation are part of the so-called
micro-switch elements that include the DRY motif in TM3,
the CWXP motif in TM6, and the NPXXY>*F motif in
TM?7 [23] (Figure 2). Recently, multiple amino acid sequence
alignment and iz silico modelling of the tertiary structures of
ACRs and conventional chemokine receptors have revealed
that these sites are also the most likely structural elements
accounting for the functional differentiation between the
two receptor subfamilies [24] (Figure 2). These observations
clearly suggest that, besides the DRY motif, the degenerations
of other motifs and functional residues involved in G-protein
activation may be related to functional changes typical of
ACRs. For example, the conventional DRY motif is present in
CCRL1 and CXCR7 but the CWXP and NPXXY>*F motifs
of these receptors show significant differences, suggesting
that constraints for amino acid conservation at these motif
sites active for conventional chemokine receptors are lost
in these ACRs, possibly explaining their impaired ability to
activate G-protein signalling [24] (Figure 2). Interestingly, in
addition to micro-switch elements, other highly conserved
sites in the TM regions of conventional chemokine receptors
are not conserved in several ACRs, suggesting that the use
of different amino acid residues at such sites may lead to
relevant functional and/or structural changes [24] (Figure 2).
As several of these residues are located in TM3 or ICL2,
which are important for the selectivity of receptor—G-protein
interactions and the efficiency of G-protein activation [25],
the modifications detected on the loops may be involved
in the loss of the conventional signalling functions of ACR. A
detailed examination of these predictions is needed in order to
better understand the mechanism of G-protein-independent
signalling of ACRs.

Are ACRs G-protein-null receptors?

On the basis of their impairment in intracellular calcium
mobilization and chemotaxis activities, ACRs have always
been referred to as ‘silent’ chemokine receptors. A detailed
analysis of data in literature, however, raises the question
of whether ACRs are really completely unable to activate



Figure 2 | Micro-switch elements in ACR
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(A) DRYLAIV motif in TM3. (B) CWXP motif in TM6. (€) NPXXY>"SF motif in TM7. The sequence of CXCR4 is shown as a
representative example of a conventional chemokine receptor, and the consensus sequences observed across all conventional
chemokine receptors are enclosed by grey boxes. The position of the first and the last residue of aligned sequence are
indicated. Amino acid residues statistically divergent from the consensus sequence, as reported by Daiyasu et al. [24], are
underlined and bold. C5L2 was not included in the statistical analysis. (D) 7TMR showing the alignment of micro-switch

elements in human ACR.
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G-protein signalling. For example, Cain and Monk [26]
demonstrated that C5L2 couples weakly with G,; protein as
a low level of PTX-sensitive signal transduction can occur
following ligand binding, and we have recently observed
that following ligand engagement, D6 is not coupled with G
and G4 but retains a residual G; activation, although this is
not required for its scavenger activity (E.M. Borroni, unpub-
lished work). However, the most intriguing observations refer
to CXCR?7. Although several studies failed to demonstrate
CXCR7-dependent activation of G-protein on either
CXCL12 or CXCL11 engagement [18,27], recently it was
shown to retain the ability to control proliferation and mi-
gration of primary astrocytes through a CXCL12-dependent
Ggi-mediated signalling pathway [28,29], whereas its sig-
nalling activity induced by CXCL11 was completely unaf-
fected by PTX treatment. It is also noteworthy that, besides
modifications in structural motifs required for G-protein
activation, the preferential intracellular localization may rep-
resent a second aspect of ACR biology contributing to their
reduced ability to activate G-protein-dependent signalling.
In fact, the lower expression of ACRs on the cell surface
compared with the conventional chemokine receptors results
in a reduced number of receptor copies available for ligand
binding and this may reflect the weak activation of G-protein

signalling, possibly insufficient to support cell migration.
Thus, although their G-protein signalling activity is not com-
pletely abrogated, structural and trafficking properties appear
to cause ACRs to be not best suited to signal through the
classical G-protein-dependent pathway, raising the intriguing
hypothesis that some ACRs may also act as conditional
conventional chemokine receptors under specific circum-
stances influencing their trafficking properties. Moreover, it
is tempting to speculate that the residual G-protein activation
may sustain some presently unknown subordinate biological
activities of ACRs, unrelated to their classical functions
associated with the shaping of chemokine gradients.

ACRs and p-arrestins: a fatal attraction

Conventional chemokine receptors use ligand-driven signals
to couple receptors to the endocytic machinery through
the association with B-arrestins, a response that reduces
surface receptor levels and desensitizes the remaining surface
receptors to further stimulation [30]. It has recently been
demonstrated that replacement of arginine by asparagine in
the CCR5 DRY motif abrogates its G-protein activation
properties and reduces receptor stability at the plasma
membrane as a consequence of its constitutive internalization
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Figure 3| Alignment of ACR C-terminal domains

Alignment of the C-terminal domain of ACR of different species. The position of the last residue of aligned sequences is
indicated. Serine/threonine clusters are white coloured and highlighted in grey. Asterisks indicate conserved amino acids,

colons indicate substitutions with similar residues.
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due to constitutive phosphorylation and interaction with 8-
arrestins [17]. Interestingly, the same features have been ob-
served in ACRs, suggesting that association with B-arrestins
plays a major role in receptor internalization and recycling.
For example, agonist activation of C5L2 results in relocal-
ization to endocytic vesicles and association to the receptor
of B-arrestin-2 [12]. CXCR?7 also interacts with B-arrestin-
2 in basal conditions, and ligand engagement significantly
enhances this interaction [31], and D6 relocalizes B-arrestins
within the cytoplasm even in the absence of ligand [32,33].
It is well established that B-arrestins can directly interact
with chemokine receptors via at least two distinct sites
located in ICLs and the C-terminal domain respectively
[34]. The C-terminal domain of some ACRs is particularly
rich in serine/threonine residues involved in direct physical
interaction with B-arrestins [33,35,36]. Although the need
for their phosphorylation is still unclear [32,33], these
serine/threonine clusters are well conserved across different
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species, further supporting their potential role in ACR
biology (Figure 3). In this respect, several studies have
identified the interaction of ACR intracellular tail with 8-
arrestins as a critical event for receptor stability, trafficking
and chemokine uptake from the extracellular space and
degradation [18,33,35,37]. For example, B-arrestins regulate
CXCRY7 level in early endosomes, promoting proper receptor
endosomal sorting, whereas internalized ligand undergoes
lysosomal degradation [38]. Likewise, B-arrestin-1 promotes
D6 adaptive up-regulation from endosomal compartment to
plasma membrane, increasing efficiency in chemokine uptake
and degradation (E.M. Borroni, unpublished work).

Are ACRs B-arrestins-biased signalling
receptors?

Foralong time, 7TMRs, including chemokine receptors, have
been thought to signal exclusively through G-proteins and



be desensitized by B-arrestins [39]. It is now appreciated
that B-arrestins act as multifunctional adapter proteins also
involved in signalling, and 7TMRs are currently thought to
signal through G-protein- and B-arrestin-mediated pathways
inabalanced fashion [4]. Specific mutations can bias signalling
towards B-arrestin or G-protein signaling [8], as in the case
of CCR5 where replacement of arginine by asparagine in
the DRY motif was shown to abrogate G-protein signalling
and to result in receptor constitutive phosphorylation and
association with B-arrestins [17]. The observation that ACRs
present similar modification in the DRY motif and associate
with B-arrestins, raised the hypothesis that these receptors
may operate as B-arrestin-biased receptors. Indeed, although
the literature indicates that ACRs do not require G-protein
signalling to exert their biological activities, evidence suggest
non-conventional signalling activities for these receptors.
Several studies clearly demonstrated a negative modulation
of signalling properties of conventional chemokine receptors
by some ACRs, including C5L2 [40], CXCR?7 [27], DARC
[41] and D6 [14], and recent findings have identified
the intracellular signalling molecule in B-arrestin that is
involved in this cross-talk [13,41,42]. Further evidence
suggests that ACRs could support B-arrestin-dependent
signalling has been provided by the observation that the
effects of CXCR7 on cancer cell adhesion and survival and
on tumour angiogenesis [43,44] require activation of Akt
and Erk1/2 through a B-arrestin-mediated process [11,45].
Finally, we have reported that D6 trafficking properties
are affected by D6 ligands that are driven to degradation
after receptor engagement, whereas other chemokines,
including protease-inactivated chemokines, bind with similar
affinity to the receptor but have no influence on its
cellular distribution and are not degraded [46,47], clearly
indicating a ligand-dependent modulation of D6 biological
properties. We have recently collected evidence suggesting
that D6 adaptive up-regulation and chemokine scavenging
activity results from its ability to activate a B-arrestin-1-
dependent Rac1-PAK1-LIMKI signalling pathway leading
to cofilin phosphorylation and cytoskeletal reorganization
(E.M. Borroni, unpublished work). Taken together, these
observations demonstrate that ACRs are active receptors
capable of signalling through B-arrestins and thus represent
the first described subfamily of B-arrestin-biased 7TMR.

Concluding remarks

The unbalanced activation of signalling modules provides a
first conceptual elementin the understanding of the molecular
mechanisms underlying the loss of chemotactic activity and
gain of chemokine gradient-shaping functions specific to the
ACR. The current results suggest that ACRs are ‘silent’ rather
than ‘sound’ receptors, laying the groundwork to review
the definition of this subfamily of chemokine receptors
as endogenous B-arrestin-biased signalling receptors, which
evolution has naturally engineered from balanced chemokine
receptors via mutations of key residues involved in G-protein
coupling. Finally, these new insights into ACR signalling
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properties may lead to the identification of innovative
therapeutic approaches aimed at regulating chemokines to
control immune responses.
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