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ABSTRACT

This thesis addresses philosophical issues regarding the young field of systems biology.

Systems biologists commonly present their approach as a superior alternative to ‘tradi-

tional’ molecular biology that they describe as being overly ‘reductionist.’ However, the

heterogeneity of systems approaches makes it difficult to understand what ‘the’ approach

of systems biology exactly consists in.

Here I propose a framework for the systematic comparison of different scientific ap-

proaches in biology. I argue that the relevant issues arise at the level of strategies of mech-

anistic discovery. These strategies are best understood as ‘heuristic,’ that is, as tools to re-

duce the complexity of a given research task. While having the virtue of making the search

for mechanisms more efficient, heuristic strategies rely on particular assumptions about

the system under study. This can introduce bias and lead biologists to underestimate the

actual complexity of the system. Framing the analysis in terms of heuristic strategies pro-

vides a precise way to distinguish between different approaches and to better understand

the ongoing rhetoric battles.

I discuss a number of case studies, both from molecular biology and from systems

biology. I argue that the traditional approach of molecular biology relies on a relatively

well-defined set of heuristics that corresponds to a particular idea of the organization and

complexity of living systems. Approaches in systems biology relax some of the underly-

ing assumptions of the traditional approach, notably by applying tools of mathematical

modeling, but they have to make use of alternative heuristics in order to be efficient. As a

result, they rely on different assumptions about organization and complexity.
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My detailed discussion of case studies reveals that there are a number of different sys-

tems approaches that can be distinguished by analyzing their heuristic character. The

ambition of systems biologists to build formal models of biological mechanisms, however,

has the virtue of making many of the underlying assumptions explicit which helps to rec-

ognize and reduce bias, and moreover facilitates the integration of different approaches.

Some of the issues touched upon also have relevance for more general questions in

the philosophy of biology. Assumptions about biological organization and complexity can

heavily influence what we think of as a good scientific explanation. Since systems biol-

ogy puts into question some of these assumptions, we might be forced to revise our ideas

about mechanistic explanation. I argue that notably the concept of biological robustness

has to be taken into account by philosophers who are thinking about mechanisms in bi-

ology.



INTRODUCTION

The recent popularity of systems approaches in molecular biology is perhaps best under-

stood as a reaction to technological developments beginning in the 1990s, notably the

large sequencing projects such as the Human Genome Project. Technological advances

are usually considered to be important drivers of scientific progress. The light micro-

scope revolutionized the study of living structures in the seventeenth century; the steam

engine had considerable influence on the development of thermodynamics in the nine-

teenth century; and more recently, the construction of fast computers has given a boost to

almost every scientific discipline. Obviously, countless other examples could be named.

However, the recent technological developments in molecular biology are often perceived

almost as a threat, or at least as a big challenge for scientists. The tools of genomics in par-

ticular, the large sequencing projects and their successors, are described as overwhelming

biologists by producing large and unmanageable amounts of data. Very often, the assess-

ments of the current situation in molecular biology are rendered more dramatic with the

help of aqueous metaphors (speaking, for instance, of a flood, deluge, spate, shock wave,

or tsunami of data), and typically they conclude by expressing the need for radical change

at the conceptual level. Systems biology is often presented as an alternative and superior

way of doing biology:

Perhaps the most important consequence of the Human Genome Project is

that it is pushing scientists toward a new view of biology—what we call the

systems approach. Systems biology does not investigate individual genes or

proteins one at a time, as has been the highly successful mode of biology for
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the past 30 years. Rather, it investigates the behavior and relationships of all

of the elements in a particular biological system while it is functioning. These

data can then be integrated, graphically displayed, and ultimately modeled

computationally. (Ideker et al. 2001, 343)

Many advocates of systems biology consider the traditional approach of molecular biol-

ogy, which during the second half of the twentieth century proved successful at explaining

some of the fundamental mechanisms of life, inadequate to respond to the challenges of

the so-called ‘postgenomic era’ (Winnacker 1997).1

Most commonly, this inadequacy is traced back to the allegedly ‘reductionist’ spirit of

molecular biology:

Without question, the reductionist pursuit of molecular biology has been a

tremendous success story. Systems biology today would not be possible with-

out the tools and knowledge that the reductionistic approach to identifying

system components has provided. But it is not always possible to understand

the behavior of a complex system simply by scaling up the properties of its

individual parts. (Levesque and Benfey 2004, R179)

Biological systems are extremely complex and have emergent properties that

cannot be explained, or even predicted, by studying their individual parts.

The reductionist approach—although successful in the early days of molec-

ular biology—underestimates this complexity and therefore has an increas-

ingly detrimental influence on many areas of biomedical research, including

drug discovery and vaccine development. (van Regenmortel 2004, 1016)

Molecular biology requires a certain way of thinking. It is about the naming

and behaviour of the parts. We reduce each whole to its component parts and

define them exhaustively. Biologists are now perfectly used to that thinking

and the interested lay public has caught up, too. So we are now ready to move

on. Systems biology is where we are moving to. Only, it requires a different

1Throughout this thesis, the term “molecular biology” is understood in a rather broad sense, without
clearly delineating it from disciplines like cell biology, immunology, etc. This is in line with the usage of
many systems biologists, but not necessarily of biologists in general. I thank Francesca Ciccarelli for point-
ing this out to me. For more details, see my discussion in Chapter 2.
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mind-set. It is about putting together rather than taking apart, integration

rather than reduction. (Noble 2006, x–xi)

Reductionism, which has dominated biological research for over a century,

has provided a wealth of knowledge about individual cellular components

and their functions. Despite its enormous success, it is increasingly clear that

a discrete biological function can only rarely be attributed to an individual

molecule. (Barabási and Oltvai 2004, 101)

These quotes give the impression that molecular biology and systems biology are two

distinct and well-defined ways of doing biology, and the history of biology at the turn

of the millenium is perceived as unfolding with almost Hegelian necessity: the obsolete

approach of molecular biology is saluted for preparing the stage and giving way to the

new era of systems biology. But what exactly is systems biology and how does it differ

from the ‘traditional’ approach of molecular biology? These are the main questions I want

to address in this thesis.

The term ‘systems biology’ appeared towards the end of the 1990s,2 and gained wide-

spread use in the early 2000s. Very early on, systems biology showed the characteristic

features of an institutionalized discipline: research institutes for systems biology were

founded, starting with the Institute for Systems Biology (ISB) in Seattle and the Systems

Biology Institute (SBI) in Tokyo in 2000; conferences about systems biology began to be

held regularly around the same time; and several journals specifically dedicated to sys-

tems biology were created in the following years, such as Systems Biology (2004), Molecu-

lar Systems Biology (2005), and BMC Systems Biology (2007).3 In spite of this concretiza-

tion at the institutional level, no clear and unique characterization of systems biology has

crystallized up to now. The field shows a considerable heterogeneity of approaches that

have their historical roots in different traditions of theoretical biology and other theoreti-

cal fields studying complex systems. To be sure, there are a number of distinctive features

that are commonly cited, such as the combination of mathematical methods with experi-

mental approaches, the investigation of quantitative and dynamic properties of living sys-

tems, and a focus on interdisciplinarity and integration. However, aside from these very

2Some scholars prefer to speak of the ‘new systems biology’ in order to distinguish the term from earlier
use in discussions about the application of a general systems theory to biology (e.g. von Bertalanffy 1950).

3For a more exhaustive historical overview, see Braillard (2008).
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general attributes, different systems biologists often highlight different aspects as being

central to the new field. Some see the main goal of systems biology in the integration of

different levels of biological information (Ideker et al. 2001), while others emphasize the

continuity with earlier systems theories (e.g. Wolkenhauer 2001, Westerhoff and Palsson

2004), still others stress the importance of engineering concepts, like robustness, modu-

larity, or feedback (e.g. Kitano 2002b). Given this multitude of accounts and characteri-

zations, it remains unclear what it is that different work labeled as systems biology has in

common—whether it is simply the ‘continuation of molecular biology by other means,’

or a radically different epistemic approach to the study of living systems.

With respect to this philosophical issue, two very different kinds of views are com-

monly found among biologists themselves. According to skeptics, the new interest in

systems approaches is simply a hype. ‘Systems biology’ for them is a fancy label that

helps attracting research funds while doing largely the same thing as before, although

perhaps on a larger scale and with more fashionable tools. Advocates of systems biology,

by contrast, point out that there are substantial epistemic differences between molecular

biology and systems biology. Usually, they invoke the opposition between ‘reductionism’

and ‘holism’ to argue for the superiority of their approach (Calvert and Fujimura 2011). It

should be obvious, however, that scientists when commenting on these issues are rarely

neutral observers. Especially those who identify themselves as systems biologists have

a strong interest in justifying and promoting their own perspective. As a consequence,

they are prone to equate ‘systems biology’ with the particular scientific approach they are

pursuing, and, on the other hand, to give an oversimplified account of the approach of

traditional molecular biology.4 The consensus that has emerged from the rhetorics put

forward by systems biologists, is that traditional molecular biology has confined itself to

the study of the parts of living organisms, whereas systems biology aims at understanding

how those parts interact to produce phenotypic properties and behavior. This schematic

distinction enables them to equate the two labels of ‘molecular biology’ and ‘systems

biology’ with competing philosophical perspectives: Molecular biologists dissect organ-

4An interesting non-standard view is expressed by the molecular biologist Sidney Brenner. Contrary to
most ‘traditionally minded’ molecular biologists, he thinks that systems biology is something very different
from molecular biology, and characterizes it as the attempt to solve ‘inverse problems,’ that is, problems
of directly inferring the underlying causal structure of a system from given observational data. He argues
that this goal cannot be achieved in biology (Brenner 2010). I doubt, however, that many systems biologists
would agree with the way he describes their activities.
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isms, list their parts, and try to explain biological function solely in terms of individual

molecules or genes. They implicitly follow a reductionist perspective assuming that the

whole is captured by the sum of its parts. Systems biologists, by contrast, realize that

the interactions between the parts and the systemic context in which they are embedded

have to be taken into account, and that biological systems show emergent behaviors in

which ‘the whole is more than the sum of its parts.’ Even though the usage of philosoph-

ical terms, such as ‘reduction’ or ‘emergence’ is rarely clarified by biologists themselves,

and the oversimplification of the dichotomy rather obvious, this consensus is echoed in

works that purport to approach the issue from a purely philosophical perspective:

The molecular biological revolution led to a characterization of the molec-

ular constitution of organisms. Systems biology aims to decipher how the

molecules jointly bring about cellular behaviour. The fact that the molecules

are supposed to do this jointly suggests that studying them only individually

without a focus on their interactions may not work. On the other hand, it is

clear that a return to the holist physiology strategy will not work either. Per-

haps some new strategy is needed, with unique philosophical foundations.

(Boogerd et al. 2007, 8)

While molecular biology is very narrowly defined as the ‘characterization of the parts,’ the

description of the alternative approach is rather vague and general. At times one gets the

impression that systems biology is more of a vision of how biology could be done if it were

freed of the insufficiencies of earlier approaches.

There are some philosophers of biology who have analyzed issues about systems bi-

ology in less vague and more neutral ways. Many of these analyses, however, focus on

specific problems occurring within systems biology, thereby leaving unclear its relation-

ship to the traditional approach of molecular biology. They deal, for instance, with the

classification of different streams of systems biology (O’Malley and Dupré 2005), with the

question of how different traditions of mathematical modeling and systems thinking are

merged in new approaches (Krohs and Callebaut 2007), the relationship of systems biol-

ogy to the framework of mechanistic explanation (Braillard 2010), or the role of integra-

tion in systems biology (O’Malley and Soyer 2012).
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A number of authors have more specifically addressed the question of the relationship

between molecular biology and systems biology. Pierre-Alain Braillard (2008), in his dis-

sertation, has given a very detailed account of some of the philosophical problems arising

in the context of systems biology. He argues that what distinguishes systems biology from

molecular biology is not the study of emergent phenomena per se, but rather the formal

study of such phenomena. Formal methods become increasingly relevant due to the high

complexity of the processes uncovered by modern experimental techniques. However,

it is not entirely clear whether Braillard wants to imply that the epistemic framework of

systems biology is in continuity or in tension with molecular biology. Powell and Dupré

(2009) argue that the classification of molecular biology as reductionist misses the philo-

sophically interesting point. The more relevant issue, they argue, is that molecular biol-

ogy’s focus on simple molecular explanations risks to underestimate the real complexity

of biological systems:

[M]olecular biology showed that molecular details do count, and may be richly

explanatory. This prosaic yet productive discovery becomes potentially dis-

torting only when it is combined with a commitment towards the simple,

since that commitment so easily slips into the simplistic. (Powell and Dupré

2009, 62)

The rise of systems biology, therefore, is the consequence of an “increasing recognition

of complexity and context” (Powell and Dupré 2009, 62), and concepts like emergence,

even though admittedly vague, might play a productive role as an “essential corrective

to misleading philosophical assumptions grounded in traditions of reductionist thought”

(Powell and Dupré 2009, 63). Even though it is more refined, this position essentially un-

derwrites the consensus view according to which the traditional approach of molecular

biology has to be replaced, or at least to be complemented, by a perspective that is more

adequate to the actual complexity of living systems. Taking a somewhat different stance,

De Backer et al. (2010) argue in a recent article that systems biology (SB) is in continuity

with the traditional approach of molecular biology (MB):

As such, SB can be considered as a next step in the development of MB, cen-

tred on the same biological question, and expanding its experimental toolbox
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with systemwide (omics) analyses and mathematical modelling. (De Backer

et al. 2010, 40)

They admit that the problems studied by systems biology involve a higher complexity as

far as the size of the system under study is concerned. Yet this does not imply a departure

from molecular biology’s ‘reductionist’ focus on molecular features:

SB definitely realizes the shift from single-gene regulation to genomic regula-

tion; from individual molecules to system-wide molecular interactions; from

linear pathways to dynamic networks . . . . In this, SB takes the molecular view

on biological organisms to its full potential. Hence, reductionism is method-

ologically maintained in SB. (De Backer et al. 2010, 40)

These philosophically more sophisticated analyses help at least to partially revise the sim-

plistic picture of ‘reductionist molecular biology’ versus ‘holistic systems biology.’ How-

ever, the picture that arises is one in which the boundaries between systems biology and

molecular biology are not very sharp: systems biology introduces more powerful tools to

cope with complexity and overcomes some of the mental biases of molecular biologists.

Is it possible to say anything more precise?

In this thesis I want to propose a framework of comparison that avoids both oversim-

plified dichotomies and the blurring of relevant differences. I want to argue that there

are in fact relevant differences, and that these mainly arise at the level of strategies of

discovery. What I mean by discovery in this context is the search for causal mechanisms

in order to explain an object’s properties and behaviors of interest. My starting point is

that scientists dealing with complex systems in nature must generally assume that what

they study is not as complex as it could possibly be. The reason is that initially they do not

have sufficient information to get an idea of the actual complexity of the systems they are

studying, and it would be highly impractical to work with the full set of possibilities of

how the system could be organized. In order to make progress toward an adequate mech-

anistic explanation, they make use of specific strategies, that I call heuristics, whose role

it is to reduce this set of possibilities. Heuristics introduce specific assumptions about

the system that may or may not be justified. Thus what makes these strategies efficient at

figuring out how a system works at the same time creates the risk of underestimating its

complexity.
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I will argue that the general approach of molecular biology is guided by a more or less

well-defined set of heuristic strategies, among which figures prominently the assump-

tion that living systems can be studied by dividing them into a set of relatively small and

quasi-independent mechanisms. In addition, it makes use of more specific heuristics that

license a focus on molecular properties and qualitative features of these mechanisms. If

taken literally as features of reality and not just as tools of discovery, these assumptions

can indeed lead to a simplistic perspective on life (which seems to have been Powell and

Dupré’s worry). The crucial and often neglected point, however, is that alternative ap-

proaches, such as the ones classified as ‘systems biology,’ must apply heuristic strategies

as well in order to be efficient. The availability of genome-wide data and the additional

power of mathematical methods do not enable scientists to pursue discovery in an unbi-

ased way. For this reason, I propose that the relevant comparison should be in terms of

alternative heuristic strategies. Investigating how particular assumptions are relaxed in

systems biology while others are introduced, in other words, how specific heuristics are

replaced by others, will allow me to identify with some precision both continuities with

and deviations from the traditional approach.

My aim is thus not to establish the philosophical foundations of systems biology, as

has been the ambition of other philosophical work (e.g. Boogerd et al. 2007), but rather

to understand what systems biology is by investigating existing work that goes under the

label. For this reason, my analysis makes heavy use of detailed case studies. In this way I

avoid both giving an oversimplified account of molecular biology and talking about some

idealized version of systems biology that might not be more than a largely unfulfilled

promise. Moreover, in order to do justice to the heterogeneity of systems approaches,

I have chosen to discuss several different examples from different areas of systems biol-

ogy. For lack of space and time, I had to leave out large and important parts of the field.

In particular, I have not discussed the various ‘omics’ approaches (genomics, proteomics,

metabolomics, etc.) that are sometimes subsumed under the label of systems biology as

well. But even if the results of my analysis might not be generalizable to all of systems

biology, my general strategy can nevertheless serve as a template for further case stud-

ies and perhaps for establishing a more complete picture of the ‘epistemic landscape’ of

current systems biology.
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A clearer view of the differences between molecular biology and systems biology is,

however, not the only goal of my analysis. Investigating the case of systems biology can

also have consequences for some more general issues in the philosophy of biology. Our

conceptions of what counts as a good biological explanation, for instance, has in the past

shown to be heavily influenced by our assumptions about the complexity and organiza-

tion of living systems. For this reason, I turn from discovery to explanation in the last

chapter and discuss the impact of recent work in systems biology on philosophical mod-

els of explanation.

The thesis is structured as follows. In Chapter 1 I introduce a general pragmatic per-

pective on the philosophy of biology in which the particular explanatory aims of biologists

are taken seriously. I argue that an important role for philosophers is to investigate and

assess the strategies to reach these aims. Afterwards, I discuss the topics of mechanistic

explanation and reductionism and conclude that the central issue regarding the relation-

ship of systems biology to molecular biology is not about explanatory reductionism, but

lies mostly at the level of strategies of discovery. I analyze the concept of complexity in

some depth and introduce heuristics as tools to reduce the (epistemic) complexity of a

given research task.

Chapter 2 discusses heuristic research strategies in traditional molecular biology. I

start by discussing already existing work on the topic of discovery by Bechtel and Richard-

son (1993) and Darden (2006) who have proposed general research strategies applied in

the life sciences. By analyzing two case studies, the discovery of the mechanism of protein

synthesis and the more recent search for the spindle assembly checkpoint mechanism, I

identify further and more specific heuristic strategies of molecular biology.

After having characterized the approach of molecular biology, I turn to systems biol-

ogy in Chapter 3. Here I discuss several case studies in order to reveal specific differences

from the traditional approach of molecular biology. The first example continues the dis-

cussion of the spindle checkpoint mechanism and is an instance of mathematical model-

ing of small mechanisms. These models retain some of the more fundamental strategies

of molecular biology. Mathematical methods and quantitative data allow systems biol-

ogists to relax some of the more specific assumptions of molecular biology. It appears,

however, that this increase in analytic power goes at the cost of introducing different as-
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sumptions in the form of idealizations. Next, I discuss two approaches to understand

the behavior of large networks. The approach of network motifs provides an alternative

strategy to decompose large systems into functional units, but it introduces strong as-

sumptions that require caution in the interpretation of results. The attractor perspective

in stem cell biology, by contrast, envisions to forego functional decomposition completely

based on the assumption that cellular behavior is simple and coherent at the level of the

whole system. My analysis suggests that both of these network approaches should be in-

tegrated with investigations of smaller and more detailed models in order to be efficient

and reduce potential bias. Finally, I analyze a very recent example of whole-cell modeling

which proposes a new way to integrate different styles of mathematical modeling.

Chapter 4 takes up the issue of scientific explanation. Here I argue that recent work

in systems biology can lead philosophers to reconsider their conceptions of mechanistic

explanation in the life sciences. In particular I discuss the widespread idea that ‘differ-

ence making’ is central to scientific understanding and explanation. Dynamic modeling

in systems biology draws attention to the explanatory role of ‘non-difference making’ re-

lationships. By analyzing the concept of robustness as it is investigated in systems biology,

I point to ways in which biological systems can be less complex than what is combinato-

rially possible, yet in a way that is unexpected from a traditional mechanistic perspective.

The explanatory role of mathematical modeling in this context is not to explain complex

behavior, but to explain simple behavior exhibited by potentially complex systems.

I have done my best to make this thesis readable to both scientists and philosophers.

However, it is difficult at times to strike a balance in this regard, and I apologize in advance

for passages that might be either too technical or too superficial for the taste of some

readers.
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PROBLEM SOLVING IN SCIENCE AND

THE ROLE OF HEURISTICS

Summary

In this chapter I develop a general pragmatic perspective on the philosophy of biology

that focuses on the strategies that biologists use to reach their particular epistemic aims.

An important part of their activities consists in the discovery of mechanisms and the de-

velopment and revision of proposed mechanistic explanations. I discuss the issue of re-

ductionism in biology and argue that the central issue regarding the relationship of sys-

tems biology to molecular biology is not about explanatory reductionism, but lies mostly

at the level of strategies of discovery. I analyze the concept of complexity in some depth

and introduce heuristics as tools to reduce the (epistemic) complexity of a given research

task.

1.1 Towards a Philosophy for a Pragmatic Science

Thomas Kuhn (1963) famously referred to most of the activity of scientists as puzzle-

solving. And even if one may hold that the idea of ‘normal science’, that Kuhn essentially

understood as the fabrication of expected results, does in general not fit the activities
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within the life sciences very well, the comparison with puzzle-solving can nevertheless

serve as a valuable analogy. The relevant point is that scientists belonging to the same

discipline or field do not only work on related problems, but they usually also share an

understanding of how to go about attacking these problems. In other words, they have

common ends and make use of common means. They may not always be confident about

whether they will find any solution to their problems at all, but they have relatively con-

crete ideas about the kind of solution they are looking for, and they know which methods

and techniques will increase their chances of finding one. Describing scientific activity in

terms of solving problems or puzzles, therefore, means conceiving of it as a rational activ-

ity, where ‘rational’ refers not only to the assessment of the eventual results of scientific

research, but also encompasses the choice of effective means to achieve these results.

Before Kuhn the prevailing style of doing philosophy of science implied a very differ-

ent conception of scientific rationality. The main concern of logical empiricism and its

direct successors was the analysis of theories—the eventual results of scientific activity

(e.g. Popper 1959, Nagel 1961, Hempel 1965). The main focus in this endeavor was on the

inner coherence of theories and their relationships among one another as well as to the

empirical facts provided by experimental observation.

Many philosophers have criticized the logical empiricist approach for promoting an

ideal of scientific rationality that is not attainable for real cognitive agents. In the context

of this discussion, William Wimsatt (2007b, Chapter 1) distinguishes between two types of

rationality that we might refer to as perfect rationality and pragmatic rationality, respec-

tively. Perfect rationality focuses on logical rigor and represents the ideal of the logical

empiricists. Pragmatic rationality, by contrast, is concerned with optimal strategies to

reach given aims. According to Wimsatt, “rigor is not a scientific-end-in-itself” (Wimsatt

2007b, 244), and he argues that perfect rationality is too narrow a concept to capture what

is going on in most parts of contemporary science. Focusing on logical structure might be

the right approach if the goal of science is seen in a fully explicated theory, but, as Wimsatt

notices, “at least in biology, most scientists see their work as explaining types of phenom-

ena by discovering mechanisms, rather than explaining theories by deriving them from or

reducing them to other theories” (Wimsatt 2007b, 241)

Unless philosophers want to completely dismiss the scientific status of biology as ac-
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tually practiced, they must acknowledge that its activity mainly consists in the discovery

and description of mechanisms, and not of laws and theories. In comparison with the log-

ical empiricists’ ideal, this requires a much more local and pragmatic view on the goals of

scientific activity in general. Logical rigor might still be desirable other things being equal,

but when faced with the complex types of problems that are common in biology, attaining

it will often be an unrealistic requirement. When rationally reconstructing and evaluating

modes of scientific activity, philosophers should above all assess whether the strategies

chosen by scientists are efficient ways of achieving their particular goals, irrespective of

whether these strategies conform to the high standards of perfect rationality. Clearly, such

an assessment cannot narrowly focus on theories as the results of scientific activity. After

all, for many fields of research, like for biology, it is not obvious that the knowledge pro-

duced can even in principle be laid out in the form of one coherent theory—at least if the

term is narrowly understood in the traditional sense of a formal axiomatic system. The

more important point, however, is that, if philosophers give up the standard of perfect

rationality, they have to accept that most of the results of science retain a somewhat ten-

tative character and almost unavoidably carry traces of the process of their discovery. This

‘path-dependence’ of scientific results strongly suggests that science ought to be analyzed

as an ongoing activity, in which both the results, in whatever form, and the strategies em-

ployed to attain them have to be taken into account. Only in this way can the rationality

of scientific endeavors be judged properly.

When philosophers analyze issues like scientific discovery and explanation, they can-

not ignore the current state of scientific knowledge. This also means that, if scientists

themselves are not sure about certain empirical issues, philosophers should not pretend

that they know better. Throughout this thesis, I want to argue that many of the current

debates about systems biology can be framed in terms of diverging opinions about the

complexity and organization of biological systems. These different conceptions entail

different ideas about the way in which biological phenomena should be explained and

translate into different research strategies to achieve such explanations.

I will start in the next section by discussing explanation in science in general and

briefly present some of the basic accounts that have been proposed. From my assessment

of these proposals, I conclude that in disciplines dealing with complex systems, there are
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two main aspects of explanation, intelligibility and empirical adequacy that have to be

given weight. Afterwards, I discuss how this plays out in the special case of mechanistic

explanation that is prominent in biology. Molecular biologists want to achieve intelligi-

bility by understanding how mechanisms work, but also by showing how biological phe-

nomena connect to the basic properties of matter that are studied by physics and chem-

istry. The question arises, therefore, to what extent the explanatory project of molecular

biology can be considered a ‘reductionist’ project, and whether systems biology might

provide a non-reductionist alternative. My discussion will show that valid objections

against explanatory reductionism are not those that are typically put forward by systems

biologists. Instead, their objections seem to mostly target particular research strategies

of molecular biology. For this reason, I sketch a framework for the analysis and com-

parison of strategies of scientific discovery. I will introduce complexity and heuristics as

fundamental concepts of this framework and thereby prepare the stage for the following

chapters.

1.2 Scientific Explanation

We have discussed scientific activity as an instance of human problem solving that should

be analyzed in terms of means and ends. The explanation of phenomena is certainly one

prominent end that biologists strive for, but it is not the only one. Molecular biology, in

particular, due to its close links to the medical sciences, is also involved, for example,

in the development of new tools for diagnosis and therapy. In the context of this thesis,

however, I want to focus almost exclusively on scientific explanation. I believe that it

is one of the guiding ideas behind the project of molecular biology that prediction and

control will be achieved via an understanding of the mechanisms of life. Therefore, I

am interested in the debate around systems biology insofar as it is concerned with the

question of how to go about understanding and explaining biological phenomena.

1.2.1 General Conceptions of Scientific Explanation

Scientific explanation is a relationship between something that has to be explained, the

explanandum, and something that does the explaining, the explanans. Philosophers of
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science have been debating for many decades about the structure of scientific expla-

nations and about the right criteria to distinguish good from bad explanations (see e.g.

Salmon 1989, Psillos 2002).

The more recent discussion about scientific explanation starts with the Deductive-No-

mological (DN) model of explanation (Hempel 1965). Its main idea was to frame expla-

nations as sound deductive arguments in which the explanandum, a sentence describing

the phenomenon or event to be explained, logically follows from a set of premises among

which must be at least one ‘law of nature.’ According to the DN-model, explanatory force

derives from the subsumption of the explanandum under generalizations that describe

strong regularities in nature. This model has been criticized on many occasions. One of

the main weaknesses is due to the fact that its proponents have been unable to provide

a satisfying account of what distinguishes real laws of nature from accidental generaliza-

tions. Other problems are that the DN-model proves insensitive towards certain strong

intuitions we normally have about explanations, such as asymmetry (effects should not

explain their causes), and explanatory irrelevance (taking birth control pills should not

explain why men do not get pregnant).

Important attempts to find a more adequate conception of explanation have come

mainly from two different directions. Michel Friedman and Philip Kitcher have proposed

accounts of explanation as unification that stress the importance of scientific understand-

ing. Like the DN-model, unificationist accounts still conceive of explanations as argu-

ments, but they restrict the allowed set of arguments by invoking an additional criterion

of economy (Friedman 1974, Kitcher 1981). The basic idea is that scientific understanding

consists in explaining a wide range of phenomena on the basis of only a few basic laws or

argument patterns:

[S]cience increases our understanding of the world by reducing the total num-

ber of independent phenomena that we have to accept as ultimate or given. A

world with fewer independent phenomena is, other things equal, more com-

prehensible than one with more. (Friedman 1974, 15)

Newton’s theory increased our understanding of the world since it allowed us to subsume

the movements of celestial and terrestrial bodies under the same set of principles. Ex-

planations are better to the extent that they allow us to derive the explanandum from a
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theory that unifies the phenomena better than another one.

Philosophers like Wesley Salmon (1984), by contrast, argued that a conception of ex-

planation should capture the intuitive idea that ‘causes explain their effects.’ Accordingly,

the facts to be included in an explanation should be only those that refer to the causal his-

tory of the explanandum phenomenon. The criteria for what counts as a good scientific

explanation are not given by epistemic criteria, such as their derivability from a unified

theory, but the extent to which they show how the phenomenon fits into the actual causal

structure of the world.

Both causal and unificationist accounts have their own difficulties that I do not want

to address in detail. What I want to highlight is that they point to two different concep-

tions of the general aim of scientific inquiry. Wesley Salmon referred to these broad cate-

gories as ‘epistemic’ and ‘ontic’ conceptions of explanation. On the one hand, the aim of

science is to organize our knowledge about the world and to provide understanding of its

complexity by reducing it to some restricted set of principles. On the other hand, scien-

tific effort is directed at uncovering the causal patterns in the world as they actually are,

that is, irrespective of whether they are simple or complex. To be sure, these aims are not

necessarily mutually exclusive. As Herbert Simon writes:

The central task of a natural science is to make the wonderful commonplace:

to show that complexity, correctly viewed, is only a mask for simplicity; to find

pattern hidden in apparent chaos. (Simon 1996, 1)

However, this quote precisely captures the aspect of faith that is a necessary part of scien-

tific inquiry. Simplicity is a desideratum of the human intellect, but the world is complex.

The only way in which we can expect to gain scientific understanding is by believing that

the world is only apparently complex, that its real structure can be made intelligible.

There is no question that most phenomena in the realm of biology are extremely com-

plex, and most people do not believe that this complexity is readily explained in terms of

a small set of principles. Nevertheless, we will see that most biologists expect the knowl-

edge they uncover to be simple in some sense—even though they diverge in their ideas

about what kind of simplicity is to be expected. Eventually, I want to show that the main

conflict between systems biologists and molecular biologists can be explained in terms

of competing ideas about biological simplicity. These ideas translate into different pro-
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posed research strategies. Before I come to this point, however, I will have to say more

about explanation in biology.

1.2.2 Mechanistic Explanation in Biology

Molecular biology studies complex systems such as bacteria, fruit flies, or yeast cells. The

explanandum is most commonly the behavior or capacity of a living system or of a part of

it. Molecular biologists are interested in explaining, for instance, how the genetic material

of an organism is replicated and distributed, how proteins are formed and how they act

in different contexts, or how an undifferentiated egg can give rise to a complex multicel-

lular organism. They try to explain these behaviors by describing underlying molecular

mechanisms.

Branching off from the general discussion about scientific explanation, many philoso-

phers of science have recently focused on the concept of mechanism and on how scien-

tists explain phenomena in terms of mechanisms (e.g. Glennan 1996, Machamer et al.

2000, Bechtel and Abrahamsen 2005, Bechtel 2006, Craver 2007). Even though the de-

tailed accounts differ between authors, the general idea is that a mechanism is a complex

system of causally interacting parts that produces a phenomenon. As a representative

example, I will mention the following characterization given by William Bechtel:

A mechanism is a structure performing a function in virtue of its component

parts, component operations, and their organization. The orchestrated func-

tioning of the mechanism is responsible for one or more phenomena. (Bech-

tel 2006, 26)

Thus, a mechanistic explanation cites facts about the relevant parts (= components) of a

structure, about what these components do, and about their organization. Organization

refers to the way in which the components are situated relative to each other. Informa-

tion about organization partly lies in the spatial configuration of the components, but of-

ten the more important aspect is ‘functional organization’ which consists of the relevant

causal interactions and the temporal order of events.

For example, the description of the mechanism underlying a particular type of signal

transduction includes as component parts the extracellular signaling molecule (ligand),
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the surface receptor, and all the downstream messengers involved in the signaling chain.

It includes facts about the structure of these molecules and the ways in which they inter-

act. Finally, it cites the location of these components and the temporal order in which

the signaling cascade occurs. Taken together, these facts explain the transduction of the

signal.

Interestingly, there is no agreement about whether mechanistic accounts of explana-

tion fall into the category of ontic or of epistemic explanation. Some people do not think

that intelligibility is a necessary property of explanation and thus prefer an ontic stance:

Some phenomena might be so complex that they overwhelm our limited cog-

nitive systems . . . . It would be wrong to say that the phenomena produced by

such complex mechanisms have no explanation. The explanations exist even

if we cannot represent them cognitively. (Craver 2007, 34)

Whereas others stress the fact that explanation is a cognitive operation, performed by

human beings:

The important insight is that mechanisms are real systems in nature, and

hence one does not have to face questions comparable to those faced by nomo-

logical accounts of explanation about the ontological status of laws. But it is

crucial to note that offering an explanation is still an epistemic activity and

that the mechanism in nature does not directly perform the explanatory work.

(Bechtel and Abrahamsen 2005, 424–425)

The kinds of explanations provided by molecular biologists thus potentially exhibit both

of the discussed aspects of scientific explanation. By describing a mechanism, they map

out the causal processes that are responsible for a phenomenon and thus fulfill Wesley

Salmon’s requirement that explanation must reveal how the explanandum fits into the

causal structure of the world. On the other hand, these descriptions normally reduce the

apparent complexity of a phenomenon by making intelligible how it is produced by the

organized interaction of a set of component parts.

What is often neglected in discussions of mechanistic explanation is the fact that at

least some scientists see the main goal of molecular biology in creating a link between the

biological realm and the more fundamental disciplines of chemistry and physics. Even
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though philosophers usually construe mechanistic explanations as connecting different

levels of organization, such as the cellular and the molecular level, they do not imply that

reference to some fundamental or otherwise privileged level must be involved. However,

molecular biologists do not strive for any kind of mechanistic explanation, they look for

explanations at, or at least involving, the molecular level. Molecular biology can thus

be considered to promote a strong unificationist ideal: it provides intelligibility partly by

showing how biological phenomena can be understood in terms of a relatively small set

of principles and interactions from chemistry and physics. Due to this aspect, molecular

biology has often been perceived as a reductionist enterprise.

Indeed, the most common accusation from the side of systems biologists depicts the

project of molecular biology as ‘overly reductionistic’ and thereby ignoring the real com-

plexity of living systems. On top of that, many people are worried about an ‘imperial-

istic’ tendency of molecular biology to invade other disciplines, with the long-term aim

of showing that everything can be explained in terms of genes and molecules—perhaps

even consciousness and mental states (van Regenmortel 2004). These worries are not

plucked out of thin air when considering that what came to be called molecular biology

was initially conceived within the Rockefeller Foundation’s ‘Science of Man’ agenda. As

the historian of science Lily Kay points out:

Within that agenda, the new biology (originally named "psychobiology") was

erected on the bedrock of the physical sciences in order to rigorously explain

and eventually control the fundamental mechanisms governing human be-

havior, placing a particularly strong emphasis on heredity. (Kay 1993, 8)

In order to evaluate such claims, and to see what role the advent of systems biology might

play in this context, we need to define better what is meant by ‘reductionism’ in differ-

ent contexts. My aim in the following section is to show that both traditional molecular

biology and systems biology can be considered as following an ideal of reductive mech-

anistic explanation, unless ‘reduction’ is understood in a very narrow sense. The main

differences instead can be detected in research strategies that rely on diverging ideas of

the organization of living systems.
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1.3 Reductionism in Biology

Reductionism became a widely discussed topic in the philosophy of biology after molec-

ular biology had provided an explanation of the principles of heredity in molecular terms.

Initially, the main issue was whether variants of theory reduction could be applied in this

context. The term goes back to Ernest Nagel (1961), and it refers to the derivation of a

higher-level theory from the laws of a more fundamental theory. A standard example of

theory reduction is the explanation of classical thermodynamics in terms of the princi-

ples and concepts of statistical mechanics. Theory reduction requires the connection of

the theoretical vocabularies of the two theories via ‘bridge principles’. In the case of ther-

modynamics, for instance, reduction was achieved by translating higher level terms like

‘temperature’, into a language that speaks only about molecules and their properties.

In biology, the debate initially revolved around the question of whether the laws of

classical genetics could be successfully reduced to the principles of molecular genetics.

Even though people like Kenneth Schaffner (1969) tried to adapt the model of theory re-

duction to the biological context, the difficulties involved in translating Mendelian con-

cepts like ‘dominance’ into molecular terms eventually lead to an “anti-reductionistic

consensus” (Waters 1990). One obstacle to reduction was seen in the problem of ‘mul-

tiple realization’: the concepts of classical genetics can be instantiated by a wide variety

of different molecular mechanisms, and no single molecular principle seems to be able

to explain the observed higher-level regularities. Another obvious difficulty is that the

knowledge produced by molecular biology is not organized into a small body of laws,

which seems to be a requirement for successful theory reduction (for an overview of the

debate, see e.g. Brigandt and Love 2012).

Many people, however, subsequently pointed out that the conception of theory re-

duction is not adequate to illuminate the issue of reductionism in biology. Sahotra Sarkar

(1992), for example, proposed that one should distinguish between three broad categories

of reductionism: theory reductionism, explanatory reductionism, and constitutive reduc-

tionism. Theory reductionism, as mentioned, views reduction as a relation between the-

ories. Explanatory (or epistemological) reductionism holds that the reduced entity is ex-

plained by the reducing entity, irrespective of whether these entities are framed as theo-

ries, laws, mechanisms, or even individual observations. Finally, constitutive (or ontolog-
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ical) reductionism merely asserts that upper-level systems are composed of lower-level

parts and conform to their principles, which does not imply that upper-level phenomena

must be explained in terms of lower-level principles. ‘Physicalism’ is a form of constitu-

tive reductionism which for most philosophers and biologists is uncontroversial. It asserts

that all biological properties supervene on physical properties. This is simply to say that

all biological facts are ‘fixed’ by the physical facts, and that there can be no change in a

biological property without a corresponding change in an underlying physical property.

Biologists nowadays do not believe in vitalistic ‘life-forces’ anymore.

What is at issue in the more recent debates about biology, therefore, is usually some

form of explanatory reductionism. Models of explanatory reduction most commonly start

from the idea of causal explanation and aim at capturing the explanation of a higher level

feature in terms of the interaction of its parts. Such models can thus be entirely consistent

with explanations in molecular biology. They do not require a full theory of molecular bi-

ology with genuine explanatory laws. In some models of reduction, the explanatory force

of molecular explanations may nevertheless derive from laws, but these are not biological

but more fundamental physical or chemical laws (e.g. Weber 2005, Rosenberg 2006). Mul-

tiple realizability is not necessarily a problem for conceptions of explanatory reduction-

ism since it is not required that one and the same mechanism must explain all instances

of a higher level regularity. For instance, even though different molecular factors and pro-

cesses underlie Mendel’s law of segregation in different biological species, each of these

instances can be separately explained with reference to its underlying mechanism.

Given this clarification, what could be the motivation for criticizing explanatory re-

ductionism in molecular biology? The philosophical literature on this topic is vast, and

I will restrict myself to discussing only those issues that are of relevance for my general

argument.

One aspect that is often mentioned by critics of explanatory reductionism is the im-

portance of context and organization in biological explanations (e.g. Gilbert and Sarkar

2000). A molecular feature or mechanism does not always play the same causal role,

but can be involved in the production of different phenomena depending on its context.

Complete explanations must therefore include information about the larger system in

which a mechanism is embedded. In many cases, the context objection is directed against
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forms of genetic reductionism that assign a privileged explanatory role to genes.

A different set of objections regards the status of higher level properties. Even though

explanatory reductionism does not have to deny that causes at levels higher than the

molecular level exist, e.g. a ball breaking the glass of a window, it is committed to the idea

that these higher level causes have explanatory force only in virtue of underlying lower

level causes. Different objections have been raised against this idea. Some people have

argued for the existence of emergent properties at the systemic level, that is, of properties

that cannot be explained or predicted in terms of the properties of the parts. Accord-

ing to strong forms of emergentism, there are systemic properties that are in principle

irreducible to the properties of the components, while according to others, irreducibility

only holds in practice due to the complexity of the world and our limited cognitive pow-

ers (for an overview, see e.g. Stephan 1999). Other scholars argue that especially the or-

ganizational features of biological systems are irreducible to the lower level (e.g. Mitchell

2003, Craver and Bechtel 2006). In general, this class of arguments is related to the issue

of ‘downward causation’, i.e. to the question whether entities at higher levels can exert

causal influences on lower level entities.

Still another way of arguing for the autonomy of higher levels is with reference to the

irrelevance of molecular details in many higher level processes. This objection is closely

related to the argument from multiple realizability discussed above. Recall the example

of the ball breaking the window. We know that the ball and the window are both made

up of molecules, and we assume that the events that cause the deformation and eventual

disruption of the window can be spelled out in terms of molecular interactions. How-

ever, we prefer the explanation in terms of the ball and the window to the one in terms of

gazillions of molecules—not simply because it is more manageable, but mainly because

it seems to describe the process at the right level. It does not matter whether the ball is

made of rubber or of leather (as long as it has sufficient momentum), and similarly it does

not matter whether some minuscule detail in the constitution of the window had been

different. Even if we are able to explain a particular instance of the breaking of a window

by giving a complete report of the underlying molecular processes, we thereby seem to

fail to capture what different window breaking events have in common. As Ingo Brigandt

argues:
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An important aim of scientific explanation is to discover the most salient and

relevant causal features, and entities above the molecular level can have a

stronger causal influence and be less indispensable than causal connections

on the lowest level. (Brigandt 2006)

If we believe in physicalism, as most people do, the entities in question are constituted by

molecular entities, and the relevant causal features supervene on properties at the molec-

ular level. However, even though every change at the higher level implies a corresponding

change at the molecular level, the converse is not true. Many higher level processes are

robust to a wide variety of changes at the molecular level, and introducing this kind of

molecular detail does not seem to add any explanatory power.

I will now discuss whether the three types of arguments put forward against reduc-

tionism are valid, whether they apply in the context of molecular biology, and whether

it makes sense to understand systems biology as an alternative, non-reductionistic ex-

planatory project. My conclusion will be that most of these arguments do not provide

objections to explanatory reductionism in molecular biology per se, but instead are bet-

ter understood in a methodological context, that is, as criticisms of particular research

strategies in molecular biology.

First, consider the context objection. It is not clear why explanatory reductionism

should in general not be able to accommodate cases in which systemic context is relevant.

As Brigandt and Love (2012) argue, “models of explanatory reduction can take the organ-

ismal context for granted without being committed to reducing it molecularly. Science

can avail itself of causes as difference makers relative to a given causal context.” Marcel

Weber, who devises a model that he calls ‘physical reductionism’, admits that molecular

explanations make use of higher level terms in order to specify e.g. the cellular context of

a mechanism, but he argues:

These concepts are descriptive rather than explanatory. They serve to identify

the kind of system that is to be explained. The terms that do real explanatory

work are all physical and chemical terms. . . ; they refer either to molecular

species. . . , to species of macromolecular aggregates. . . , or to purely physical

entities. . . . (Weber 2005, 27).
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In cases where contextual elements cannot be considered causally inert in this way, be-

cause the mechanism produces different effects in different relevant contexts, there is still

the option to extend the mechanism by reducing the relevant parts of the context to the

molecular level (Delehanty 2005). For this reason, compelling arguments that appeal to

the role of context must at the same time provide evidence for the existence of irreducible

higher level properties, which will be discussed below.

When looking at historical examples of research in molecular biology, one certainly

finds many instances in which the importance of context was initially underestimated. As

Phillip Sharp, one of the co-discoverers of RNA splicing, recalls:

Fifty years ago . . . everyone assumed that the structure of a gene was a con-

tiguous string of base pairs, from which information was transferred for syn-

thesis of a protein. (Sharp 2005, 279)

Thus the biologists did not take into account the possibility that the cellular context of

the protein synthesis machinery could specifically modify the ‘content’ of the transferred

information. However, such episodes do not show that explanatory reductionism as such

is misguided. At best, they provide evidence for the methodological claim that the mech-

anistic models proposed by molecular biologists are not sophisticated enough. Indeed,

systems biologists often point out limitations of this kind in the practice of traditional

molecular biology, and they aim at developing approaches that take more of the systemic

context into account. However, it is important to notice that this by itself does not imply

that systems biology moves beyond explanatory reductionism.

Let us now move to the kinds of arguments that invoke the existence of irreducible

higher level properties. In his dissertation, Pierre-Alain Braillard (2008, Chapter 2) has ar-

gued that the conceptions of emergence, whether taken in a weak or strong sense, do not

provide the right criterion to distinguish systems biology from the traditional approach

of molecular biology. I will briefly recapitulate the main line of his argument. Accord-

ing to ‘weak’ conceptions of emergence, a property of a system is emergent if none of

its parts has this property (Stephan 1999).1 For example, wetness is a weakly emergent

1A different idea of ‘weak emergence’ has been proposed by Bedau (1997), which is defined as underiv-
ability except by simulation. This conception might provide a useful criterion to distinguish systems ap-
proaches from molecular biology (Bedau, personal communication). However, it should be noted that, like
other weak conceptions of emergence, it is consistent with explanatory reductionism.
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property of water since it does not make sense to attribute it to a single molecule of H2O.

However, we can explain this property in terms of the chemical properties of individual

molecules and their interactions; weak conceptions of emergence can thus be entirely

consistent with explanatory reductionism. To hold that molecular biology deals only with

non-emergent properties then implies that its typical project is to explain the properties

of living systems by directly attributing them to the properties of some of their (molec-

ular) parts. But we have seen that molecular biologists explain in terms of mechanisms,

and in a mechanism the parts act together to produce a particular behavior. Therefore,

explanations in terms of mechanisms are almost always explanations of emergent prop-

erties taken in the weak sense. Strong forms of emergentism are mainly discussed in the

philosophy of mind, especially in contexts in which the status of mental states or phe-

nomenal qualities is at issue. Supporters of strong emergence claim that there are higher

level properties that are both irreducible and causally active. Even though the relevance

of these discussions for the narrower biological context discussed here is not obvious, one

should mention that powerful arguments have been put forward against the coherence of

such views (Kim 1999). In general, it seems that systems biologists do not put forward

arguments that rely on the existence of strongly emergent properties (cf. Gatherer 2010).

Arguments that rely on irreducibility in practice, on the other hand, seem to make the

criteria for what counts as a good explanation dependent on our current cognitive and

computational powers. According to Alex Rosenberg (2006), the claim that a particular

phenomenon cannot for practical reasons be reduced to the molecular level may well be

true, but could also turn out to be false:

For all we know, there are limits to the complexity and diversity of the natu-

ral realm, and what is more important, technological advance in information

storage and processing may substantially enhance our capacity to understand

macromolecular processes and their combinations. Consider how much of

an advance bioinformatics has made in the time since the early 1980s when

sequencing ten base pairs a week was an accomplishment. By the early years

of the twenty-first century, computational biology was able by a computa-

tional algorithm to identify all the genes on a chromosome from the brute

nucleotide-sequence data. It would be a mistake to underestimate the power
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of the human mind and its prostheses. (Rosenberg 2006, 14-15)

Anti-reductionist arguments that invoke irreducibility in practice, therefore, must rely on

a metaphysical position regarding the degree of complexity or “disorder” (Dupré 1993) of

the world. Since the correctness of such positions cannot be proven in any strict sense,

it ultimately seems to depend on whether one opts for an optimistic or pessimistic read-

ing of the historical record of previous reductionistic research projects.2 At any rate, as we

will see most practicing systems biologists do not hold anti-reductionistic positions of this

kind. Finally, if explanations are taken to go beyond the scope of reductionism because

they include information about the way in which a system is organized, then arguably

even in molecular biology most explanations have to be considered non-reductive. As we

have seen earlier, an account of how the parts in a mechanism are organized is one of the

key features of the typical mechanistic models put forward by molecular biology. There-

fore, if systems biologists accuse molecular biologists of ignoring the complex forms of

organization present in biological systems, they cannot mean that organization is com-

pletely absent in the accounts of traditional molecular biology. Again, it seems that the

only way to make sense of such allegations is as stating that the organizational schemes

devised by molecular biologists are not sophisticated enough. This corroborates the idea

that the purportedly anti-reductionistic voices from the side of systems biology are better

understood as pertaining to methodology rather than to explanation.

The argument referring to the irrelevance of molecular detail seems, at least in my

view, to have some bite against explanatory reductionism, as far as the autonomy of higher

level disciplines is concerned. However, if the point is that some causal processes at

higher levels are more ‘salient’ because they are robust to fluctuations at the molecular

level, then this robustness itself asks for an explanation. In this regard, systems biologists

appear often to be more reductionistic than molecular biologists since they want to pro-

vide explanations for higher level robustness in terms of detailed molecular models. It

is perhaps true that molecular biologists sometimes do ‘not see the forest for the trees’

when they assign causal relevance only to the molecular level, thereby ignoring robust

higher level regularities. But this does not necessarily point to a defect of explanatory re-

ductionism. Rather than being anti-reductionistic in any strong sense, most approaches

2In the end, this seems to be the main disagreement between Rosenberg and Dupré. For an illustration,
see <http://www.philostv.com/john-dupr-and-alex-rosenberg/>.
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in systems biology might instead better be understood as attempts to show that it is pos-

sible to see both the forest and the trees. Whether such attempts will turn out to be suc-

cessful, is a different question. In Chapter 4 I will come back to the questions related to

this argument and show how the investigation of robustness challenges some of the un-

derlying assumptions of current conceptions of mechanistic explanation.

As this brief discussion suggests, and as I want to substantiate throughout this thesis,

the epistemic aims of systems biology are not necessarily in conflict with explanatory re-

ductionism. My discussion so far, however, indicates that the main differences lie in the

epistemic strategies proposed to reach these aims. In the next chapter I will argue that

the strategies of traditional molecular biology can be understood as one specific way of

coping with biological complexity. Whether one wants to call this project ‘reductive’ in

the end seems to be a matter of terminology. The true difference of systems biology can

be assessed by finding a way to compare epistemic strategies. By way of preparation, I will

now turn to a general discussion of research strategies in biology and of the problem of

complexity in particular.

1.4 The Complexity of Discovery

The term ‘discovery’ in the philosophy of science usually refers to the generation of hy-

potheses, explanations and theories. Marcel Weber points out that, at least as far as the-

ories are concerned, this is a misnomer because theories are not discovered but con-

structed by the human mind (Weber 2005, 51). Moreover, speaking of ‘discovery’ suggests

that the development of new concepts and ideas is guided by ingenious intuition, helped

perhaps by luck and accident, and eludes rational reconstruction. The logical empiricist

tradition, invoking the logical distinction between the ‘context of discovery’ and the ‘con-

text of justification,’ considered this whole aspect of science to be immune to philosoph-

ical analysis and thereby delegated it to scholars of psychology, sociology, and history.

Starting in the 1950s, philosophers of science began to move beyond questions of log-

ics in the narrow sense and increasingly discussed the reasoning strategies employed by

scientists in the process of ‘discovery’ (for a review, see (Schaffner 1993, Chapter 2). The

underlying idea was that, even if this process is usually not guided by truth-preserving,



38 q Problem Solving in Science and the Role of Heuristics

deductive reasoning, one might still find that scientists follow rational strategies when

generating theories. In particular, if scientific activity is conceived as a special case of hu-

man problem solving (Langley et al. 1987), then the process of discovery consists in the

generation and testing of possible solutions to a given scientific problem. Herbert Simon

described such problem solving in analogy with the search through a maze:

The process usually involves a great deal of trial and error. Various paths are

tried; some are abandoned, others are pushed further. Before a solution is

found, a great many paths of the maze may be explored. The more difficult

and novel the problem, the greater is likely to be the amount of trial and error

required to find a solution. At the same time, the trial and error is not com-

pletely random or blind; it is, in fact, rather highly selective. . . Problem solving

requires selective trial and error. (Simon 1962, 472)

Thus, what makes human problem solving powerful are efficient strategies to restrict the

set of possible solutions. Simon calls these strategies ‘heuristics,’ after a term introduced

by William Whewell in the 19th century and later readopted by the mathematician George

Pólya. According to Pólya,

[h]euristic reasoning is encountered in all fields, theoretical or practical. Rig-

orous, precise, properly so-called logical reasoning is found in its pure form

only in mathematics. (Pólya 1941, 450)

This statement suggests that the notion of heuristics is extremely broad since it covers

basically all types of reasoning that are “fallible” in some sense. However, I want to use

a more specific characterization of heuristic reasoning by restricting myself to the par-

ticular model of human problem solving developed by Simon and others (Langley et al.

1987). According to this model, scientific discovery is a search through a problem space.

This space is determined by the structure of the research problem and by concepts and

parameters specifying possible solutions. In scientific contexts these parameters and con-

cepts usually stem from background theories and beliefs (Resnik 1997). If the problem

space is small, one might consider to simply use random search to test all candidate so-

lutions. But in more complex scenarios this is not an efficient strategy. Heuristics are

rules of thumb that facilitate the discovery process by restricting or directing the search
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through the problem space. They make the search selective, thereby raising its efficiency

over blind trial-and-error search.

An illustration may be given by the game of chess. Even though the concept of a ‘best

move’ in chess is in principle well-defined, going through all possible scenarios to find this

move is impossible in practice, even for modern computers. Therefore, chess computers

(and good chess players) use heuristic strategies to speed up the search, most notably by

restricting it to a small number of possible moves ahead and by evaluating these moves

according to various factors that are thought to influence the strength of a position. These

strategies cannot guarantee that the eventually selected move is the best possible, which

is why even the most powerful chess computers and the grand masters sometimes lose.

Large problem spaces make the application of heuristics unavoidable also in scien-

tific contexts. William Wimsatt observes that heuristic strategies are applied whenever

“the complexity of the systems we are studying exceeds our powers of analysis” (Wimsatt

2007b, 75) and discusses four important general characteristics of their use:

First, heuristics are not truth-preserving. Differently from algorithms, they do not

guarantee that the result is a correct solution to the given problem.

Second, heuristics are cost-effective with respect to more reliable procedures. This is

because they only take into account a restricted subset of the space of possible solutions.

Third, if heuristics produce errors, these errors are systematically biased. In order to

be efficient, a heuristic procedure makes assumptions about the structure of a problem

and the form of its solution that are not directly backed by available knowledge. It usually

fails when these assumptions are not justified.

Fourth, heuristics can be understood as effectively transforming the initial problem

into a related but different problem that is easier to solve.

All this suggests that heuristics are useful, but must be handled with care. There is a

risk to reach erroneous conclusions if a bias is introduced that goes unnoticed. On the

other hand, the fact that such bias is always systematic gives rise to the hope that one

can detect errors and subsequently refine the strategy. In the following chapters we will

see how these characteristics of heuristic strategies come into play in concrete examples

of biological research. Different approaches can be shown to rely on different families of

heuristics that correspond to alternative sets of assumptions about the complexity and
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organization of living systems. Before turning to this part, however, I want to make the

link between complexity and heuristics more explicit. Problems of complexity seem to

lie at the heart of the debates around systems biology, and we need a better understand-

ing of the concept of complexity in order to determine the ‘heuristic distance’ between

alternative approaches.

1.4.1 Two Concepts of Complexity

Complexity is a buzzword—not only in science, but in virtually all areas of societal dis-

course. The term is heavily used in the discussions around systems biology; on many

occasions as a rhetorical tool to argue for the inferiority of one particular approach or to

justify another. It seems, however, that there is no general agreement about a precise defi-

nition of complexity in biology, and it is not always certain whether different people mean

the same thing when talking about complexity.

As a first step of clarification, it is useful to notice that there are two different senses in

which complexity enters into the scientific realm: in an ontological and in an epistemo-

logical sense. First, complexity is studied as an interesting property of systems. Scientists

investigate the ways in which systems are complex or show complex behavior, and they

try to understand how complexity can evolve or emerge in a system. I will refer to this

property as ‘intrinsic complexity’. On the other hand, complexity is used with reference

to the difficulty of certain scientific tasks, which means that what is considered complex

then is not necessarily the system itself, but a given problem regarding the understand-

ing, prediction or control of its behavior. With Hans-Jörg Rheinberger, I will refer to this

second kind as ‘epistemic complexity’ (Rheinberger 1997a).

This distinction seems relatively obvious. However, when talking about biological

complexity both scientists and philosophers often tacitly shift between these two mean-

ings of complexity. The following quote from Warren Weaver’s 1948 article Science and

Complexity may serve as an example:

The significant problems of living organisms are seldom those in which one

can rigidly maintain constant all but two variables. Living things are more

likely to present situations in which a half-dozen, or even several dozen quan-

tities are all varying simultaneously, and in subtly interconnected ways. Often
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they present situations in which the essentially important quantities are ei-

ther non-quantitative, or have at any rate eluded identification or measure-

ment up to the moment. Thus biological and medical problems often involve

the consideration of a most complexly organized whole. (Weaver 1948, 536,

emphasis added)

He calls these problems instances of ‘organized complexity.’ However, complexity here

refers, on the one hand, to the “subtly interconnected ways” in which the system is orga-

nized and, therefore, to an intrinsic property of the system. On the other hand, Weaver

invokes the fact that our information about the system is limited, which suggests that he

understands complexity at the same time in an epistemic sense. It is very intuitive that

those systems which are complex are also those which are hard to study, but the link is

maybe not as obvious as it may seem and does not justify a conflation of the two concepts.

If complexity is understood as an intrinsic property of a system, it should not depend on

the state of knowledge of the investigator and the currently available tools of analysis.

When talking about epistemic complexity, on the other hand, we precisely must take into

account the investigator’s particular cognitive limitations and her access to information.

Is it possible to say something more precise about the two concepts?

1.4.2 Intrinsic Complexity

It seems that neither scientists nor philosophers have come up with a concise definition

that would capture all the possible ways in which we would want to refer to systems as

complex. This becomes especially clear when people try to make comparisons between

the complexity of different systems. An example is the debate on complexity trends in

evolution, in which the need for a precise definition of complexity is particularly press-

ing. Ever since Darwin, evolutionary biologists have discussed whether evolution shows

a trend of increasing complexity. It is clear that the collection of empirical evidence re-

garding this question requires some way of quantifying or at least ordering complex-

ity. But even in this context, as one of the involved biologists soberly remarks, “[m]ost

agree. . . that nobody knows precisely what is meant by the word ‘complexity’ when refer-

ring to a biological organism” (Adami 2002, 1085).

There is a discipline, that is sometimes called ‘complexity science,’ that seems to pre-
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cisely deal with the intrinsic complexity of systems. Here, the word refers to a property

exhibited by a particular class of dynamical systems. These systems are characterized by

features like chaos, nonlinearity, or self-organization. Starting in the 1960s and 1970s, in

the course of what some refer to as the ‘complex systems revolution,’ systems with such

features came to be widely studied by mathematicians, physicists and other theoretical

scientists (e.g. Hooker 2011). However, it seems that the sense of complexity suggested

by such studies is both too narrow and not precise enough to capture complexity in bi-

ology. It is too narrow because the mentioned hallmarks of complexity science are not

necessarily relevant in all the contexts in which biologists want to speak of complexity.

The computational scientist Tjeerd Olde Scheper, for instance, remarks that “[o]ne of the

mysteries surrounding the phenomenon of chaos is that it can rarely be found in biolog-

ical systems” (Olde Scheper 2008, 145). On the other hand, complexity science does not

seem to provide a general account of what complexity is and how to measure it, either.

Complexity science, therefore, does not give us a general framework that could be readily

applied to biological disciplines. By this I do not mean to say that the properties investi-

gated in complexity theory are unrelated to what biologists mean by ‘complexity’—there

are certainly many systems that biologists consider complex precisely because they pos-

sess some of the features studied by complexity scientists. Moreover, there is no doubt

that the ideas and mathematical tools developed within complexity theory provide useful

tools for the analysis of biological models, especially in systems biology. Yet, it does not

provide the kind of general characterization of complexity that we would be interested in.

The inability to provide a general definition may lead to the impression that complex-

ity is a rather mysterious property and will, once properly understood, provide the key to

deep metaphysical riddles, such as the difference between the living and the non-living.

Undeniably, there has been a certain hype about complexity, notably about the concept of

chaos, and it has left some people with the impression that, if we just captured the ‘phe-

nomenon’ of complexity in the right way, this would provide us with a “fundamentally

different idea of how to understand reality” (Hayes 1992 as quoted in Kellert 2008, 11-12).

But instead of driving us towards some kind of mysticism, the plurality of ideas about

complexity should rather direct our attention to the features that our different ways of

representing complexity have in common. A very obvious idea about complex systems
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is that they are difficult to represent, be it their structure or their behavior. I take it to

be uncontroversial that a system is minimally complex if we can give a short and simple

description of all relevant aspects of its structure and behavior. The more complex a sys-

tem, the more difficult it will be for us to describe its structure or behavior. Even though

characterized with respect to possible representations of a system, this idea of intrinsic

complexity should not be confused with what I have earlier called ‘epistemic complexity’

and which I will discuss in more detail in Section 1.4.3. A helpful clarification is provided

by the following quote from the introduction of a book called Complexity whose authors

set out to give a comprehensive discussion of the ways in which “complexity manifests

itself in nature” (Badii and Politi 1997, xi):

[T]he concept of complexity is closely related to that of understanding, in so

far as the latter is based upon the accuracy of model descriptions of the sys-

tem obtained using a condensed information about it. Hence, a “theory of

complexity” could be viewed as a theory of modeling, encompassing vari-

ous reduction schemes (elimination or aggregation of variables, separation

of weak from strong couplings, averaging over subsystems), evaluating their

efficiency and, possibly, suggesting novel representations of natural phenom-

ena. . . [A] system is not complex by some abstract criterion but because it is

intrinsically hard to model, no matter which mathematical means are used.

(Badii and Politi 1997, 6, emphasis added)

According to this view, complexity should be assessed with regard to our representations

of structure or behavior. A system is complex to the extent that it resists ‘condensing’ the

amount of information that is needed for describing it. The last part of the quote sug-

gests that this conception, even though subject-dependent in an obvious sense, is not

necessarily ‘subjective’ in the sense of depending on the contingent capacities of a par-

ticular cognitive agent. Incidentally, focusing on the representation of systems provides a

connection to the study of the complexity of syntactic structures (e.g. Kolmogorov [1963]

1998). This connection suggests that one might find a way to express the complexity of a

system in terms of some measure of computational complexity. However, the authors of

Complexity notice that,

the limited domain of applicability of all existing complexity measures strongly
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suggest that there cannot be a unique indicator of complexity, in the same way

as entropy characterizes disorder, but that one needs a set of tools from var-

ious disciplines (e.g. probability and information theory, computer science,

statistical mechanics). As a result, complexity is seen through an open-ended

sequence of models and may be expressed by numbers or, possibly, by func-

tions. Indeed, it would be contradictory if the ‘complexity function’, which

must be able to appraise so many diverse objects, were not itself complex!

(Badii and Politi 1997, 10–12)

Fortunately, for the purpose of my analysis I am not in need of the ‘universal complexity

function.’ Instead, the idea that intrinsic complexity corresponds to the extent to which

the description of a system can be condensed will be a sufficient guide. Provided that

we have found the optimal representation of a system, the resistance to condensation

can be expressed roughly as the number of degrees of freedom required. As I will show,

this captures most of the intuitions that people share about the complexity of biological

systems.

Consider Warren Weaver’s distinction between ‘disorganized’ and ‘organized’ com-

plexity in the article mentioned earlier. The former applies to systems in which the num-

ber of variables is very large, but each variable individually shows “helter-skelter” behav-

ior like the molecules in a gas (Weaver 1948, 538). When dealing with such systems, one

can often apply statistical methods in order to find a compact description of average be-

havior. What Weaver is suggesting, therefore, is that disorganized complexity in many

cases is just simplicity in disguise. Sometimes, as in the case of statistics, the introduction

of a new analytical method can reveal that a system is not as complex as had previously

been thought. Biological systems, by contrast, are organized. As a consequence, their de-

scription amounts to “dealing simultaneously with a sizable number of factors which are

interrelated into an organic whole” (Weaver 1948, 539, emphasis in original). The effec-

tive number of variables needed for the description of the behavior of a system may thus

serve as a good measure of complexity. A similar view can be found in Herbert Simon’s

reasoning about complexity. He argues that,

[h]ow complex or simple a structure is depends critically upon the way in

which we describe it. Most of the complex structures found in the world are
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enormously redundant, and we can use this redundancy to simplify their de-

scription. But to use it, to achieve the simplification, we must find the right

representation. (Simon 1962, 481)

In summary, complexity can be understood as an intrinsic property of systems, even

if it reveals itself only in our representations. Yet, there is not necessarily one particular

feature in the world that makes our descriptions ‘long.’ Nonlinearity and chaos, but also

organization or sheer size can contribute to the complexity of a system.

One further complication must be addressed. The preceding discussion suggests that

the complexity of a system can be assessed by choosing some suboptimal representation

as a starting point and then condense this representation as much as possible. But in

practice our representations are always partial from the beginning and constructed from

a particular theoretical perspective. We do not have, at least up to now, one universal and

consistent way of describing reality. In particular, there is not necessarily one privileged

decomposition of a system into parts, nor even a unique way of determining what the

system’s behavior is. As Stuart Kauffman observes,

not only are multiple views about what a system is doing possible, but also

any system may be decomposed into parts in indefinitely many ways, and for

any such part, it too can be seen as doing indefinitely many things. (Kauffman

1970, 259)

Different theoretical perspectives on a system might therefore yield different descriptions

of behavior based on different decompositions. Wimsatt, drawing on Kauffman’s ideas,

argues that, as long as we do not have one exhaustive and unifying theory, each theoretical

perspective taken by itself can only give an impoverished view of the real objects (Wimsatt

1972, reprinted in Wimsatt 2007b, Chapter 9). In particular, it seems that when we call a

system ‘complex’ from a given theoretical perspective, we can in effect only judge the

complexity of our particular representation:

Short of waiting for the ultimate all encompassing reduction to an all-embracing

theory, one can only talk about the internal complexity of our different per-

spectives or ‘views’ of an object. Nor could one avoid this conclusion by tak-

ing the complexity of the object as some aggregate of the complexities of the
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different views of the object, since part of its complexity would be located

at the interfaces of these views—in those laws, correlations and conceptual

changes that would be necessary to relate them—and not in the views them-

selves. (Wimsatt 1972, 68–69)

This suggests that, in order to get an idea of the actual complexity of a system, we must

also consider how different theoretical perspectives relate to each other. In this regard,

Wimsatt offers two concepts—‘descriptive complexity’ and ‘interactional complexity’—

that may be seen as proxies for the possibly inaccessible ‘actual’ complexity of a system.

A system is descriptively complex to the extent that different theoretical perspectives pick

out decompositions into parts that do not spatially coincide. Scientists belonging to dif-

ferent biological disciplines decompose an organism, like a fruit fly, differently into parts,

e.g. according to cell types, developmental fields, or physiological systems. In simpler sys-

tems the decompositions according to different perspectives will tend to coincide more.

In order to understand Wimsatt’s slightly more complicated concept of interactional

complexity, we have to consider the system in a state space representation that describes

causal interactions of state variables within a system. Each theoretical perspective picks

out different properties of a system and therefore works with a different set of variables.

Depending on the desired level of predictive accuracy, one can neglect causal links be-

low a certain threshold of interaction strength and thereby obtain a decomposition into

subsystems with strong internal bonds.3 A system is interactionally complex if many of

these subsystems partly fall into different perspectives. One will neglect important causal

factors and not be able to predict its behavior with precision, unless one considers it from

more than one perspective.

Wimsatt’s analysis highlights one further important aspect. When assessing the com-

plexity of a system, not only must different theoretical perspectives be taken into account,

but also our desired level of precision. A system that appears to behave in a very sim-

ple fashion when represented in a relatively crude way, such as a mass of water flowing

through a tube, becomes extremely complex as soon as we aim for a more precise descrip-

tion in which factors like viscosity and turbulence cannot be neglected anymore.

We have to accept that each theoretical perspective gives us an only crude approxima-

3Here Wimsatt is directly inspired by Herbert Simon’s concept of ‘near-decomposability’ (Simon 1962)
which will be discussed in more detail in the next chapter.
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tion of the intrinsic complexity of a system, at best a lower bound. Moreover, it depends

on what exactly we consider to be the relevant behavior of the system and on our desired

level of precision. Yet, the difficulties we have in dealing with certain systems compared

to others must at least to some extent be based on features of these systems themselves.

For this reason, I reject a position of ‘anthropocentric pluralism’, as defended by Meunier

(2011), according to which complexity is exclusively grounded in the variety of human

interests. It would be odd to say that scientists are struggling with certain problems only

because of the variety of their interests (and it would probably sound like an insult to pa-

tients who suffer from an incurable type of cancer). I will now turn to a clarification of the

relationship between intrinsic complexity and epistemic complexity.

1.4.3 Epistemic Complexity and Heuristics

The concept of intrinsic complexity has to be distinguished from the complexity of solv-

ing a difficult scientific problem. Biologists typically face the problem of describing and

explaining the behavior of a system while being in a situation of incomplete informa-

tion and limited experimental access. As a result, there are a great number of possible

ways in which the system could be organized that are consistent with their current state

of knowledge. Ideally, in order to determine the actual structure of the system, scientists

must find ways to eliminate all of these possibilities except for one. This task can be un-

derstood as a problem of search since it amounts to finding the right element in a set of

possible solutions to a problem. It seems, therefore, that biologists, like many other em-

pirical scientists, have to solve two problems at once: identifying the structure of a system

and explaining its behavior. Mathematicians and theoretical physicists know that it can

already be quite hard to represent and predict the behavior of an abstract system whose

structure is completely defined and known, but due to the additional problem of finding

the causal structure, the tasks biologists face are potentially much more difficult.

There are thus two factors that can contribute to the epistemic complexity of a scien-

tific task: the intrinsic complexity of the system under study and the complexity of the

search for its actual structure. But these factors are not independent. We have character-

ized the intrinsic complexity of a system roughly as the number of independent variables

needed to describe a system, whereas the complexity of the search for this description is
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related to our state of knowledge about the system. If the intrinsic complexity of a system

is very low, then already a few observations might be sufficient to fix the unknown param-

eters and to solve the epistemic problem. By contrast, if the intrinsic complexity is high,

and our description of the system cannot be substantially ‘condensed,’ then the informa-

tion needed to make determinate statements would have to be close to complete. We

see, therefore, that the epistemic complexity of the scientific task increases, other things

equal, with the intrinsic complexity of the system under study.

We have mentioned that in the face of complexity scientists have to resort to heuristic

strategies. We can now be more precise about this. The goal of applying heuristics is to

tentatively reduce the epistemic complexity of a particular scientific task. Some of these

strategies are very general and applied across a wide variety of scientific fields, whereas

others are very specific to particular areas of research. Concrete examples and the way

they work in practice will be presented in the following chapters. In the reminder of this

chapter, I want to discuss some general features of heuristics in science. First of all, we can

introduce an important distinction. Some heuristics primarily serve to attack the problem

of search, whereas others are targeted at tackling the intrinsic complexity of a system. I

will discuss both of these in turn.

Heuristics of Search

To get a very rough idea of the complexity of search in molecular biology, consider a sys-

tem of which we initially can say only that it contains atoms, a lot of them.4 Obviously,

there is a huge number of ways in which these atoms could be organized into molecules

inside this system. Next, there is a huge number of ways in which the molecules could be

organized into larger structures. On top of that, there are many possible ways in which

the individual parts may behave and act, and in which the particular causal interaction

of two components could be described. In short, there is a combinatorial explosion of

possible ways in which the system could be organized. If we only consider the number of

possible pairwise interactions between individual components, for example, we see that

it roughly increases exponentially with the number of parts in a system. Already for sys-

tems of moderate size this amounts to an astronomical number of possible interactions.

4This is not intended to give a representation of how biologists initially frame the problem.
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To be sure, existing background knowledge and available experimental evidence helps to

exclude a large number of these possibilities. Chemistry, for instance, provides a lot of in-

formation regarding the kinds of assemblages of atoms that are energetically possible. But

in most cases this alone is not sufficient to generate a manageable search space. During

the process of discovery of a particular mechanism, biologists often say that the mecha-

nism is still ‘poorly understood.’ What they mean is that they only have a very rough idea

of its structure and organization, that there are still many remaining possibilities for how

the system could be organized, and that decisive information as to its real structure is still

missing. Scientists are thus confronted with a problem of search through a large set of

possibilities, and the complexity of this search problem can in principle be estimated by

measuring the time it would take a computer to go through and check all of these possi-

bilities.

We can now better characterize what constitutes the ‘maze’ of the discovering scien-

tist in domains like biology. The problem space is given by the possible ways in which a

system could be organized according to reliable background knowledge and experimen-

tal evidence. High epistemic complexity means that it is impossible to to go through all

candidate solutions by random search. In such situations it becomes rational to apply

heuristic strategies in order to make progress towards the solution. These strategies work

by making certain additional restricting assumptions about the solution to the problem,

thus reducing the number of possibilities that must be considered. An obvious heuristic

move is to start with the simplest conceivable organizational scheme. More sophisticated,

but still very general heuristics of search are the strategies of decomposition and localiza-

tion (Bechtel and Richardson 1993) which will be discussed in detail in the next chapter.

Strategies of search are often guided by metaphors and analogies. The ideas of ‘the

mind as a computer’ and the ‘animal as a machine,’ for example, are metaphors that can

serve as powerful heuristics. According to the interactionist view on metaphor, initially

proposed by Max Black, a metaphor is “an instrument for drawing implications grounded

in perceived analogies of structure between two subjects belonging to different domains”

(Black 1993, 31). Metaphors thus often bring together two different ways of representing

complex systems such that one of them ‘inherits’ some of the structural features of the

other. If the system of comparison is more familiar and better understood than the system
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under study, one obtains concrete suggestions about possible ways of organization and

the relevant level or levels of analysis.

Tackling Intrinsic Complexity: the Role of Idealization

Even if the structure and internal organization of a system are more or less known, it can

be difficult to understand its behavior. Only in very few situations there is a straight-

forward algorithm that can be applied to ‘solve’ the system. In most cases one has to

approach understanding via intermediate steps that transform the initial problem into a

more manageable one. Here, heuristic strategies often work by introducing idealizations.

Since idealization raises several relevant issues, I will discuss it in some detail. Michael

Weisberg (2007) has recently distinguished between three kinds of idealization: Galilean

idealization, minimalist idealization, and multiple model idealization. These different

practices are used to reach particular scientific aims that Weisberg calls “representational

ideals” (Weisberg 2007, 639).

Galilean idealization, after McMullin (1985), introduces distortions into theories in or-

der to make them computationally tractable. An example of this kind of idealization, used

by Galileo himself, is to neglect the influence of a medium of resistance in the description

of the motion of massive bodies. Galilean idealization leads to a simplified representation

of the target system and thereby provides a first step towards the solution of the initial

problem. The distortion can be removed as soon as advances in computational power

and mathematical methods allow for a more complete account of the phenomenon of

interest.

Minimalist idealization, by contrast, consists in studying a model which includes only

the “core causal factors which give rise to a phenomenon” (Weisberg 2007, 642). Such an

idealization is introduced when factors that are known to be causally irrelevant are explic-

itly neglected. It is thus very close to the operation of abstraction which consists in delib-

erately omitting causal detail. Differently from Galilean idealization, however, this kind of

idealization is not just an intermediate step on the way towards a better understanding,

but rather promotes the goal of finding the most concise description of a system after it is

already understood.

Multiple model idealization, finally, is the practice of building several incompatible
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models for a phenomenon. It is used when there is no expectation of arriving at a sin-

gle ‘best model.’ This practice is pursued mostly in disciplines dealing with extremely

complex phenomena, such as ecology or meteorology. The need for multiple models is

justified by the existence of tradeoffs between different scientific goals. In complex do-

mains there is often not one single model that can satisfy all goals simultaneously. This

position was initially formulated by the ecologist Richard Levins:

The multiplicity of models is imposed by the contradictory demands of a com-

plex, heterogeneous nature and a mind that can only cope with few variables

at a time; by the contradictory desiderata of generality, realism, and precision;

by the need to understand and also to control; even by the opposing esthetic

standards which emphasize the stark simplicity and power of a general theo-

rem as against the richness and the diversity of living nature. These conflicts

are irreconcilable. Therefore, the alternative approaches even of contending

schools are part of a larger mixed strategy. But the conflict is about method,

not nature, for the individual models, while they are essential for understand-

ing reality, should not be confused with that reality itself. (Levins 1966, 431)

Thus the existence of multiple models for the same phenomenon is not necessarily a

symptom of disagreement about the right solution to the problem, but may instead reflect

a pragmatic reaction to the perceived complexity of nature. As Levins suggests, multiple

model idealizations are generally not expected to be replaced by one correct model. In-

stead, our understanding often derives from the combined account of several models that

are individually incorrect. In Levins’s own famous words, “our truth is the intersection of

independent lies” (Levins 1966, 423).

Galilean idealization and multiple model idealization are used in domains with high

intrinsic complexity. They are applied when the structure and organization of the sys-

tem under study is already known in some detail and the remaining problem is to gen-

erate a model that fulfills a particular scientific goal. Both of these strategies can be seen

as reducing the epistemic complexity of the task by creating a model that deliberately

underestimates the intrinsic complexity of the system. In the case of Galilean idealiza-

tion, this serves as an intermediate step towards a more accurate representation. The

way in which idealized models can serve as heuristic tools is discussed at length in Wim-
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satt (1987, reprinted as Wimsatt 2007b, Chapter 6), and we will come back to specific in-

stances of this practice in later chapters. Multiple model idealization, on the other hand,

is used when one has given up the goal of doing justice to the intrinsic complexity of the

system and settles for the optimization of other scientific goals, such as predictive accu-

racy or generality. In molecular biology, differently from ecology or meteorology perhaps,

there seem to be many scholars who believe that it will eventually be possible to find the

right models, and thus they assume that the intrinsic complexity of the systems they are

studying lies within our powers of analysis.

Minimalist idealization, by contrast, is not so much a strategy for solving scientific

problems, but rather a way of rendering the solution of this process. Here, all irrelevant

causal detail is stripped away in order to arrive at a representation that is true to the sys-

tem’s intrinsic complexity and successfully explains its behavior. It should be noted, how-

ever, that such instances of successful explanation often serve as exemplars for the so-

lution of further problems in the same or related domains and thereby acquire heuristic

character.

As I want to show later on, the roles of intrinsic complexity and idealization gain im-

portance in systems biology approaches. In traditional molecular biology, by contrast, the

emphasis is on heuristics of search. But obviously, the distinction between the two kinds

of heuristics is not as clear-cut, nor is their assignment to different scientific approaches.

1.5 Conclusion

In this chapter I have introduced some of the basic notions that I want to apply in my

analysis and motivated the particular approach I want to follow to analyze the relation-

ship of systems biology and traditional molecular biology. I consider scientific activity in

biology to be a rational process, directed towards achieving explanation and understand-

ing. Explanation, after Salmon, has an ontic and an epistemic aspect. On the one hand,

scientists try to figure out actual causal structures and thus strive for realism in their rep-

resentations of the world: events are explained by other events. On the other hand, scien-

tific explanation is supposed to provide intelligibility by reducing complex phenomena to

simpler principles. In the mechanistic explanations given in most areas of biology, both of
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these aspects can be found. Biologists certainly try to figure out causal structures, but at

the same time they want to grasp how these structures work as mechanisms that produce

particular behaviors or fulfill certain functions within larger systems.

One of the main accusations of systems biologists is that molecular biology ignores

the complexity of living systems by being ‘reductionistic.’ Allegedly, molecular biologists

want to eventually reduce all living phenomena to physics and chemistry. My brief discus-

sion of the general philosophical debate on reductionism suggests that the mechanistic

approach of molecular biology can be considered to follow a model of explanatory reduc-

tionism. However, this model is so general that it is likely to accommodate most of sys-

tems biology as well. Systems biologists do not put into question the knowledge that has

been accumulated by molecular biologists and the explanations it provides. It rather crit-

icizes the way in which molecular biologists attempt to approach the problems that are

as yet unsolved. I have argued, therefore, that the relevant differences between molecular

biology and systems biology are to be found at the methodological level. In particular, at

the level of strategies of discovery.

I have presented a general framework for the intended analysis of different research

strategies. In this framework, scientific discovery is conceived as a special case of human

problem solving that relies on heuristics. Heuristics are fallible but efficient strategies to

deal with the epistemic complexity of scientific tasks. It is important to pay attention to

the distinction between the epistemic complexity of a task and the intrinsic complexity of

the studied system. The epistemic complexity of a task is both due to this intrinsic com-

plexity and the complexity of the search of identifying the structure and organization of

the system. These two aspects broadly correspond to the different functions that heuristic

strategies can fulfill in scientific discovery.





2

RESEARCH STRATEGIES OF MOLECULAR

BIOLOGY

Summary

My aim in this chapter is to characterize the problem solving approach of molecular biol-

ogy in terms of a particular set of heuristic strategies. I start by discussing some very basic

strategies of discovering mechanisms, drawing in particular on the work of Bechtel and

Richardson (1993) and Darden (2006). Afterwards, I present two case studies of mech-

anistic discovery in molecular biology in order to identify further, more specific heuris-

tics. In particular, this analysis will illuminate the habit of molecular biologists to look for

mechanistic accounts that are relatively simple and apparently not in need of quantitative

reasoning. I will show that this habit relies on a particular idea of biological organization

and complexity.

2.1 Introduction

In order to answer the question of whether systems biology is new or different, we must

somehow characterize the traditional approach of molecular biology. However, this task

is not straightforward since, as Sahotra Sarkar has observed,
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perhaps the only guideline for demarcating the boundaries of molecular biol-

ogy is that research is guided by an exploration of interactions at the molec-

ular or sub-molecular level. However, if this characterization is pushed to its

extreme, there is a problem. Since all of biology seems to be using molecular

techniques, is there any “non-molecular biology” left? (Sarkar 1996, 7)

Thus it seems difficult to characterize molecular biology by pointing to a particular do-

main of biological phenomena or by describing the specific problems that it addresses. A

similar point has been made by the historian and philosopher of biology Richard Burian:

On my rather traditional account, disciplines are organized and institution-

alized bodies of research focused around a core group of questions. Molec-

ular biology, taken widely, is extremely well organized and institutionalized;

nonetheless, on my account it is not a discipline, because it does not cen-

ter on a focal group of questions. Molecular biology, after all, studies, among

many other things, the structure and behavior of proteins, but also of polysac-

charides, lipids, lysosomes, ribosomes, membranes, muscle fibrils, etc., etc.

Molecular biology is thus a technique-based field that impinges on, or in-

cludes, a number of disciplines, many interdisciplinary investigations, and

many investigations whose disciplinary location, if any, is uncertain. (Burian

1993, 387–388)

If molecular biology is such a heterogeneous and open endeavor itself, how can we arrive

at a characterization that allows us to compare it in philosophical terms with another

seemingly heterogeneous and open endeavor such as systems biology?

Perhaps one can find the right starting point for such a comparison by considering

that the set of ‘techniques’ that make up a field like molecular biology do not have to be

restricted to the material realm. Molecular biology might not pursue a well-defined set of

problems, but it might nevertheless have a preferred set of cognitive strategies to deal with

biological problems. As I have indicated in Chapter 1, the key to the comparison of the dif-

ferent approaches in contemporary molecular biology lies in the concept of complexity.

If I am right, then we need to understand how traditional molecular biology conceives of

the organization of biological systems and what methods it proposes to reduce epistemic

complexity.
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It is not obvious from the start that one should find such a set of general heuristics that

would allow for a characterization of research in molecular biology. It is at least conceiv-

able that the particular strategies used by molecular biologists are as diverse as the prob-

lems that they are applied to. However, when we look at typical examples of discovery and

explanation in molecular biology, we see certain common traits that suggest a shared idea

of basic strategies. In the recent philosophy of the life sciences, the reasoning strategies

involved in scientific discovery have prominently been discussed in terms of the search

and refinement of mechanisms. It has been argued that this provides the right tools to

describe the production of scientific hypotheses and to understand scientific change nei-

ther as a sequence of refutations nor as an irrational replacement of paradigms. Instead, a

focus on mechanisms promises to capture science as an “error-correcting process” (Dar-

den 2006, 2) that allows researchers to revise and adapt their initially sketchy hypotheses

in the light of new findings.

I will discuss the strategies of mechanistic discovery that have been proposed by Bech-

tel and Richardson (1993) and Darden (2006) and show that they allow us to partly char-

acterize research in molecular biology. However, they do not fully do justice to one aspect

that seems especially relevant for a comparison with systems biology, namely the fact that

mechanistic accounts in molecular biology are mostly qualitative. How is it possible that

a science that attempts to explain complex phenomena in terms of molecular properties

could largely do without any kind of formalization and quantitative reasoning? One might

think that molecular biology up to recently was simply not developed enough to become

a quantitative science, and that the advent of systems biology marks a step of matura-

tion. But I am not too happy with this interpretation. It seems that in the early days of

molecular biology it was expected that biology would necessarily turn into a quantitative

science. Warren Weaver, who actually coined the term ‘molecular biology’ (Kay 1993),

wrote in 1948:

As never before, the quantitative experimental methods and the mathemati-

cal analytical methods of the physical sciences are being applied to the bio-

logical, the medical, and even the social sciences . . . . It is tempting to forecast

that the great advances that science can and must achieve in the next fifty

years will be largely contributed to by voluntary mixed teams, somewhat sim-
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ilar to the operations analysis groups of war days, their activities made effec-

tive by the use of large, flexible, and highspeed computing machines. (Weaver

1948, 541–542)

It is not clear then why the subsequent developments of molecular biology in the 1950s,

which are usually perceived as spectacular successes, should have led to the insight that

molecular biology was not a mature science after all. It seems more plausible that these

successes suggested a research program that could be efficient in the absence of ‘mathe-

matical analytical methods.’

The history of molecular biology is often described in terms of two distinct phases

(e.g. Rheinberger 2007). The first phase was centered around the characterization of DNA

structure in the 1950s and can be understood as the result of a cooperation of different

disciplines, such as biophysics, biochemistry and genetics. Early molecular biology was,

however, not simply a continuation of these disciplines, but formed an “active assemblage

in its own right” (Rheinberger 2007, 219). Sahotra Sarkar, in a similar spirit, has referred

to Watson and Crick’s description of the double helix structure of DNA as a “confluent

model” (Sarkar 2005, 22) that channeled important insights from different sources, and

motivated a new research program. Conceptually, this phase was dominated by the no-

tion of ‘genetic information,’ and the period following the deciphering of the genetic code

can be understood as a stage of ‘normal science’ (Morange 1998, Chapter 15) in which

biological problems were framed in terms of the informational vision of life. With my

analysis of the discovery of the mechanism of protein synthesis in Section 2.3, I want to

suggest that particular aspects of this informational vision can illuminate the more spe-

cific heuristic strategies applied in molecular biology.

The beginning of the second phase of molecular biology, around the 1970s, has been

described as a transition towards molecular biotechnology. New techniques of genetic

engineering allowed molecular biologists to overcome the limitations of test tube assays

and to directly intervene into the intracellular mechanisms (Morange 1998, Chapter 16).

These new possibilities marked a deep shift in the general development of molecular bi-

ology. The results obtained by means of the new tools led to important refinements at

the conceptual level. However, as I want to show in Section 2.4, important aspects of the

classical molecular vision were retained and have continued to guide molecular research
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up to the present.

I will start in the next section by discussing accounts of mechanistic discovery pro-

posed by Bechtel and Richardson (1993) and by Darden (2006). The former propose very

general heuristics that are applied across a wide range of disciplines, whereas the latter

also discusses strategies that seem to be relatively specific to molecular biology. My anal-

ysis of two case studies will, however, go beyond their accounts in order to give a more

complete picture of the set of heuristics used in molecular biology.

2.2 Discovering Mechanisms

In their pioneering work on mechanistic explanation William Bechtel and Robert Richard-

son (1993, 2nd ed. 2010) develop a picture of theory development and change that heav-

ily relies on an analysis of concrete historical case studies taken from biochemistry and

cognitive neuroscience. They frame this analysis within the general picture of human

problem-solving discussed in Chapter 1. The reasoning strategies they discuss inevitably

entail a risk of failure, but such failures often represent starting points for the revision of

initial proposals. Therefore, the framework of heuristics, when understood in this way,

provides the means to reconstruct and to learn from instances of both progress and fail-

ure (Bechtel and Richardson 1993, Chapter 2).

In spite of this explicit focus on heuristics, most of the later discussions in the phi-

losophy of the life sciences have not pursued this aspect further, but instead picked up

almost exclusively on Bechtel and Richardson’s conception of mechanism and its import

for scientific explanation. This is unfortunate since the methodological considerations

they elaborate are visionary, to say the least, and seem particularly relevant for an ade-

quate understanding of the current developments in molecular and systems biology.

The title of the book, Discovering Complexity, already hints at the general idea of un-

derstanding scientific discovery as a process of progressive revision, leading to increas-

ingly complex representations of the structures that underlie the studied phenomena.

Throughout, two basic strategies of discovering mechanisms, decomposition and local-

ization, are discussed which are argued to have guided, and to continue to guide, much

of the activities of scientists, notably in the life sciences. These strategies are mechanistic
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in the sense that they can be understood in analogy with the way in which we attempt to

explain the working of an engineered machine. This is thus an instance of how metaphor

is turned into heuristics:

A machine is a composite of interrelated parts, each performing its own func-

tions, that are combined in such a way that each contributes to producing

a behavior of the system. A mechanistic explanation identifies these parts

and their organization, showing how the behavior of the machine is a con-

sequence of the parts and their organization. (Bechtel and Richardson 1993,

17)

An overarching theme of mechanistic reasoning, therefore, is the idea that understanding

the behavior of a complex system consists in determining what the parts of the system

are and what they do. The authors introduce a broad distinction between two classes of

strategies for isolating the components of a system, to which they refer as analytic and

synthetic, respectively. Analytic strategies try to identify components of the system phys-

ically and then perform experiments by intervening on these components in order to as-

sess their contribution to the overall behavior. Biologists know that the systems they study

are composed of physical parts, some of which can be distinguished and intervened on

by experimental means. Such experiments might provide clues to the way the system

produces its behavior. Synthetic (or functionalist) strategies, by contrast, start from a

conjecture about the way in which a behavior might be produced by a set of hypothet-

ical component operations. Many models in cognitive science and artificial intelligence,

for instance, propose hypothetical models of how particular cognitive tasks are achieved.

These models can then be tested by comparing their performance to the actual behavior

of the system.

Both kinds of strategies are ‘heuristics of search’ in the sense discussed in Chapter 1,

and consequently both are prone to errors. Analytic strategies proceed by privileging

those parts of a system that are readily accessible to experimentation. The observation

of a strong effect might lead to the conclusion that the part intervened on is responsi-

ble for a behavior; but it might merely be involved in providing necessary background

conditions. On the other hand, the hypothetical organizational schemes devised by syn-

thetic strategies usually draw on resources beyond the system’s observed behavior. In the
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absence of further empirical constraints, they might merely produce a model that repre-

sents one possible way of how the behavior is brought about, which is not necessarily the

actual one.

Therefore, Bechtel and Richardson argue, successful discovery usually requires an in-

terplay of both analytic and synthetic strategies. The combined strategies of decomposi-

tion and localization can be interpreted as one particular way in which this interplay may

take place.

2.2.1 Decomposition and Localization

The heuristic strategy of decomposition is characterized as follows:

Decomposition allows the subdivision of the explanatory task so that the task

becomes manageable and the system intelligible. Decomposition assumes

that one activity of a whole system is the product of a set of subordinate func-

tions performed in the system. (Bechtel and Richardson 1993, 23, emphasis

in original)

One starts with a complex problem, the explanation of a phenomenon, and arrives at a

reduction of (epistemic) complexity by conceptually subdividing it into more manageable

subtasks. This is possible because the activity of the system is conceived as the product of

component functions.

To give a toy example, let us assume that our task is to explain how a telephone works

and that we initially don’t know anything about its inner structure. We observe that the

telephone allows people separated by large distances to talk to each other. Assuming that

this complex activity is the product of several sub-operations, we look for a functional

decomposition. The telephone must be able to convert the human voice into a transmit-

table signal and, on the other hand, convert incoming signals into acoustic signals that

resemble the messages that have been sent at the other end. Furthermore, the signals

must be transmitted in some way from one person to the other. Thus we have identified

three subordinate activities through which the system may perform its overall function

that we could call conversion, re-conversion, and transmission.1 The assumption that each

1For the sake of simplicity, I restrict myself to the Bell-style setup of two connected apparatuses and
ignore the additional complexities brought about by the existence of a telephone network and the possibility
of connecting to particular people by dialing.



62 q Research Strategies of Molecular Biology

of these activities is performed by a different part of the system, and thus can be explained

independently, considerably simplifies the initial task.

Decomposition, according to the terminology introduced earlier, is a synthetic strat-

egy since it proposes a hypothesis about how the overall phenomenon is produced. The

second strategy of localization is supposed to ground such hypotheses in the physical

structure of the system:

Localization is the identification of the different activities proposed in a task

decomposition with the behavior or capacities of specific components. (Bech-

tel and Richardson 1993, 24, emphasis in original)

Localization thus presupposes decomposition into subordinate functions and consists in

finding a mapping between this functional decomposition and a structural decomposi-

tion of the system. This structural decomposition may already be available due to back-

ground knowledge. Alternatively, it can be the result of a specific line of experimental

research inspired by the initial proposal of functional decomposition. In the case of the

telephone, when looking for structural parts that are responsible for the identified sub-

operations, we may eventually find that three particular components, that we could call

microphone, earphone, and wire, correspond to conversion, re-conversion, and transmis-

sion.

Of course the caricatural example of the telephone omits several features that are rel-

evant in the discovery of biological mechanisms. First of all, we have taken for granted

what the boundaries of the system are that performs the complex activity. In the prac-

tice of scientific discovery, however, it is often far from obvious where and at what level

one should look for a mechanism. Bechtel and Richardson suggest that one of the first

stages in the discovery of a mechanism consists in the search for the locus of control. An

example where initially there was controversy is the search for the locus of control for

the phenomenon of respiration. During the 19th century competing proposals were put

forward according to which respiration occurred either in the lungs, in tissues, or in the

blood. Eventually, this controversy was resolved in favor of the cells found in biologi-

cal tissues. Identifying the locus of control goes along with the segmentation of a system

from its environment. This system is established as the site at which to look for the factors

that produce and control the behavior. The external context is considered to only provide



Discovering Mechanisms q 63

background conditions and to not properly exert control on the mechanism (Bechtel and

Richardson 1993, Chapter 3). The search for a locus of control by itself is a heuristic strat-

egy that can introduce bias by assuming some degree of context-independence. Wimsatt

considers this a reductionist research strategy:

[T]he focus of the reductionist will lead him to order his list of ‘economic’ pri-

orities so as to simplify first and more severely in his description, observation,

control, modeling, and analysis of the environment than in the system he is

studying. (Wimsatt 2007b, 81)

Note that ‘reductionism’ here is understood in a methodological sense, and could be char-

acterized as implying the application of research strategies that are somehow directed

‘inward,’ that is, towards the analysis of smaller segments of reality.

Once a locus of control has been identified, there are still many possible ways of de-

composing an activity into subordinate activities, and likewise many different ways of

structurally decomposing a system. In their case studies, Bechtel and Richardson (1993)

observe that scientists often start with the simplest assumption of direct localization,

which means that they look for one specific component that by itself is responsible for

the activity.

Direct localization assumes that there are a number of components in the sys-

tem, that these components function independently, and that any complexity

in the behavior of the system is the effect of isolable subsystems. (Bechtel and

Richardson 1993, 64)

Consider a modern personal computer that allows the user to do a variety of things, such

as writing a text, listening to music, or watching a movie. Each of these activities is en-

abled by a different program, and each of the programs works independently from the

others. In the same way, as Bechtel and Richardson discuss, direct localization was used

by some early investigators of brain function to assign different cognitive tasks to different

parts of the human brain. The same idea underlies the decomposition of the physiologi-

cal system into ‘organs,’ each of which is responsible for one of the activities of the whole

system.
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Obviously, direct localization does not yet explain an activity. All it does is to “locate

an underlying system within a complex system” (Bechtel and Richardson 1993, 65). It

merely ‘relocates’ the locus of control without explaining how the activity is produced.

Thus, if direct localization is successful, it has to be considered as the starting point for a

lower level analysis of the identified subsystem. Failure of direct localization, by contrast,

directs the attention towards more complex forms of localization at the initial level of

analysis:

Simple [i.e. direct] localization differentiates tasks performed by a system,

localizing each in a structural or functional component. Complex localization

requires a decomposition of systemic tasks into subtasks, localizing each of

these in a distinct component. (Bechtel and Richardson 1993, 125)

Strategies of complex localization give up the assumption of independence and consider

that different components interact and together produce the overall activity of the sys-

tem. In the case of the telephone, it is important that the components are arranged in

a particular way, otherwise they would not be able to perform the overall task of ‘allow-

ing communication at a distance.’ In other words, the organization of the components

becomes crucial.

As before, scientists often start with simple assumptions, for instance, that the or-

ganization is ‘linear,’ which means that the overall task is performed as a chain of sub-

operations in which the product of the activity of one component serves as the input to

the next operation. Simple organizational schemes allow researchers to study the activity

of each component in isolation and to understand the behavior of the whole system by

‘simulating’ the chain of events in their minds. Later in this chapter I want to show that

traditional molecular biology has a strong bias towards such simple forms of organization.

2.2.2 Assumptions and Limits of Decomposition

As Bechtel and Richardson stress, decomposition and localization can be directly suc-

cessful only if certain assumptions about the system under study are met. A closer look at

these assumptions reveals the heuristic character of these strategies. First, for the system

to be amenable to a structural decomposition into parts, we must assume that the system
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is constituted by more or less stable subsystems (which may themselves consist of further

parts); that is, we imply a hierarchical organization into levels. In addition, we assume

that among the identified components of the system each has an intrinsic function and

performs this functions in relative independence from the others. Put differently, we as-

sume that the system is composed of functional modules that we can study independently

to understand their role in the systemic context.

Discussing the strategies involved in the investigation of hierarchical systems, Herbert

Simon (1962) introduced the concept of near decomposability as the structural counter-

part of modular organization. In his terminology a decomposable system is one in which

the interactions between the parts are negligible when compared with the forces acting

within the parts. When confronted with such a system, we can treat the parts as if they

were independent of each other. As an example of a decomposable system Simon men-

tions the case of a rare gas in which the intermolecular forces are many orders of magni-

tude smaller than the chemical bonds holding together the individual molecules. Elabo-

rating on this idea, Simon then characterizes nearly decomposable systems as those where

the interactions among the subsystems are not negligible, but weak. He goes on to specify

two main properties of nearly decomposable systems:

(a) in a nearly decomposable system, the short-run behavior of each of the

component subsystems is approximately independent of the short-run be-

havior of the other components; (b) in the long run, the behavior of any one

of the components depends in only an aggregate way on the behavior of the

other components. (Simon 1962, 474)

This means that the behavior of the systems can—in approximation—be described in

terms of aggregate variables, or modules, and the organization of the system itself can

be accounted for by referring to the intrinsic properties of these modules together with a

set of input-output relationships between them.

The assumption of near decomposability allows for a tremendous reduction of epis-

temic complexity. It allows us to neglect the behavior of the inner parts of the modules,

thereby considerably reducing the required dimensionality of our models. However, by

making this assumption, we restrict ourselves to a very specific class of systems of rela-

tively low intrinsic complexity, and we cannot take for granted that the systems in nature
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will fall into that class. Imagine that we constructed a virtual network of interacting nodes

by assigning interactions of varying strength to pairs of nodes at random. The probability

of ending up with a nearly decomposable system in this way is extremely small; in other

words, within the space of possible systems of this general sort, nearly decomposable sys-

tems are very rare.2 Why should we expect to find them in nature?

In order to argue for the utility of decomposition and localization as general research

strategies, one has to give reasons why the strength of this underlying assumption is un-

problematic. One can either argue that it is justified simply because nature is that way,

hierarchically organized, and allows for a description in terms of nearly decomposable

systems. Alternatively, one can maintain that the assumption of near decomposability

represents a good first approximation even in situations where it is invalid, and that the

strategies of decomposition and localization should be regarded as a useful guide towards

adequate mechanistic explanations also of more complex systems.

Simon himself appears to be going for the first option and presents an evolutionary ar-

gument for the predominance of hierarchical modular systems in nature. His claim is that

“complex systems will evolve from simple systems much more rapidly if there are stable

intermediate forms. The resulting complex forms will be hierarchic” (Simon 1962, 473).

He illustrates this claim with a parable: Two watchmakers, Hora and Tempus, are both

building watches out of 1000 components while being constantly disturbed by incom-

ing telephone calls. Tempus builds his watches in one go, whereas Hora first constructs

subassemblies of 10 parts, assembles those into larger subassemblies, and so on. Tem-

pus’s watches are stable only when fully completed, so every time he is interrupted he will

have to start from scratch. Hora, by contrast, only loses the subassembly he was currently

working on. Simon shows with explicit calculations that Tempus, on average, needs much

more time to assemble a watch completely, even though the assembly of Hora’s watches

needs more steps. Like the watchmakers, nature is building complex structures in the face

of permanent perturbations. Therefore, Simon thinks that “the lesson for biological evo-

lution is quite clear and direct. The time required for the evolution of a complex form from

2Simon reasons in a similar way, using a representation in terms of ‘nearly decomposable matrices.’
These are matrices that can be arranged so that all large elements lie in square sub-matrices along the
main diagonal. He observes that this is a “rather strong property for a matrix to possess, and the matrices
that have this property will describe very special dynamic systems—vanishingly few systems out of all those
that are thinkable” (Simon 1962, 475)



Discovering Mechanisms q 67

simple elements depends critically on the numbers and distribution of potential interme-

diate stable forms” (Simon 1962, 471). Evolution is thought to be much more efficient if it

builds systems from stable intermediates, which is why we can expect hierarchical order

and modularity to be ubiquitous in nature. On a more cautious note, however, Simon re-

flects upon the double task of a heuristic strategy to both capture the actual structure of a

system and to simplify our description of it:

The fact . . . that many complex systems have a nearly decomposable, hierar-

chic structure is a major facilitating factor enabling us to understand, to de-

scribe, and even to “see” such systems and their parts. Or perhaps the propo-

sition should be put the other way round. If there are important systems in

the world that are complex without being hierarchic, they may to a consider-

able extent escape our observation and our understanding. Analysis of their

behavior would involve such detailed knowledge and calculation of the in-

teractions of their elementary parts that it would be beyond our capacities of

memory or computation. (Simon 1962, 477)

Thus, Simon seems to argue that our strategy to understand complex systems by decom-

posing them might be of no help when dealing with different classes of systems. This con-

cern becomes all the more pressing when we consider that Simon’s argument for the ubiq-

uity of modularity has been challenged by other authors and may not have the intended

general scope with regards to biological evolution. According to the watchmaker argu-

ment, we can expect hierarchical organization in living systems because it is much more

costly to evolve an integrated structure. However, once a structure of a certain size has

evolved, it is not obvious that its organizational features will be maintained. Modularity

can have fitness decreasing effects as well; therefore, which type of organization prevails

and whether it will be maintained depends on the particular conditions in which a system

evolves. Wimsatt (1972, reprinted in 2007b, Chapter 9) argues that the subassemblies of a

system will over time tend to become more integrated since “the optima and conditions of

stability for a system of aggregated parts are in general different . . . from the optima and

conditions of stability for its parts taken in isolation” (Wimsatt 1972, 76). A further issue

regards the extent to which we can expect decompositions according to structural crite-

ria to coincide with functional decompositions. The study of large networks in biology
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suggests that,

functional modules do not in general coincide with structural ones in biolog-

ical systems . . . and . . . functionality in metabolic and gene regulatory net-

works is not localized at particular components of the system but delocalized

or distributed over entire subnetworks. (Krohs 2009, 269)

This already gives a hint at the importance of this discussion for systems biology, and it

will be taken up again in the next chapter.3

Bechtel and Richardson are aware of these concerns and concede that for many sys-

tems the assumption of near decomposability will not be justified:

[A] wide variety of organizations may be revealed by beginning with an as-

sumption of near decomposability. The resulting models may not retain the

integrity of the components, but may describe what we have termed an inte-

grated system. In such a system nature is at best minimally decomposable. If

organization becomes even more dominant in explaining the behavior of the

system . . . , we reach a point where decomposition and localization in any rec-

ognizable form have to be surrendered. (Bechtel and Richardson 1993, 199)

They describe a continuum of systems with simply decomposable systems at on end and

fully integrated systems at the other. They maintain that decomposition and localization

are useful strategies, even for systems that are only minimally decomposable. Sophisti-

cated forms of organization might be unveiled by starting with the approximation of near-

decomposability and adjusting our models subsequently. In this process, initial failures of

localization may provide important hints towards more accurate accounts, so the heuris-

tics can work as powerful tools for the detection of errors. At a certain level of integration,

however, altogether different strategies may be needed:

There are other systems, yet farther out on the continuum, in which local-

ization and decomposition appear to be hopeless, or even misguided. The

hallmark of these cases is that, given a principled structural analysis, the ac-

tivities of the parts seem to be different in kind from, and so far simpler than,

those performed by the whole. (Bechtel and Richardson 1993, 202)

3For a more comprehensive discussion of the concept of modularity in general see Callebaut (2005).
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But even if the localization of functions fails due to complex organization, the behavior

of the system is nevertheless produced by the activities occurring within it. For this rea-

son, a general mechanistic perspective might still be useful, and increasingly powerful

computational methods might allow us to build models of such systems as well.

Traditional molecular biology, as I want to show, remains firmly within the scope of

decomposition and localization strategies. Giving up these strategies might, therefore,

be one way in which approaches in systems biology deviate from the traditional model.

However, they are but the most general in the set of heuristics used by molecular biolo-

gists. As Bechtel and Richardson show, they have been applied in a wide variety of scien-

tific fields. I will now turn to the discussion of some more discipline-specific strategies of

molecular biology.

2.2.3 Pruning the Hypothesis Tree: The Role of Constraints

Heuristic strategies can be understood as psychological, or cognitive, constraints on the

space of possible explanatory accounts of a phenomenon. Towards the end of their inves-

tigation, Bechtel and Richardson discuss the role of further kinds of constraints, among

which they mention phenomenological, operational, and physical constraints. Phenome-

nological constraints exist because the way in which a phenomenon is characterized is

often suggestive of particular explanatory models and potentially excludes certain pos-

sibilities. Operational constraints are determined by the available experimental proce-

dures and material systems. They force us to build our theoretical models on the basis of

the kinds of observations that we can obtain. Finally, physical constraints are given by the

background knowledge about the physical realization of the lower level components. This

background knowledge does obviously not only come from physics, it also encompasses

firmly established and sufficiently general insights from biochemistry or from molecular

biology itself.

Many of the ideas in Lindley Darden’s (2006) collection of articles can be seen as in-

vestigating the role of these different kinds of constraints in concrete examples. In collab-

oration with Carl Craver she discusses specific cases studies from molecular biology and

neuroscience, and together they identify some of the more specific strategies of mecha-

nistic reasoning involved in these disciplines. I will later take her discussion of the dis-
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covery of the mechanism of protein synthesis as an entry point for my own analysis, in

which I try to go further and identify some additional features that will be relevant for my

discussion of systems biology.

One of the starting points of Darden and Craver’s reasoning is the insight that the de-

tailed analysis of mechanisms can reveal constraints on their discovery (Darden 2006,

Chapter 2; published earlier as Craver and Darden 2001). Discovery is conceived as a

gradual and piecemeal process in which initially rough sketches are elaborated into in-

creasingly detailed mechanistic accounts. Bechtel and Richardson’s ideas on discovery

are essentially accepted, but the authors hold that

the contribution remains incomplete without a careful look at the products of

this discovery process. Thinking carefully about mechanisms and especially

their organization highlights a broad variety of constraints on their discovery

in addition to those that come from localizing and decomposing. (Darden

2006, 49)

Mechanisms are characterized as collections of entities and activities (Darden 2006, Chap-

ter 1; published earlier as Machamer et al. 2000). Entities are essentially the relevant struc-

tural components, while activities are the behaviors in which these entities can engage in

the context of the mechanism. A given scientific field at a given time has a “store” of

established entities and activities out of which (accounts of) mechanisms can be assem-

bled (Craver and Darden 2001). Established entities figuring in explanations in molecu-

lar biology, for instance, are macromolecules, ions, cellular structures etc.; examples of

activities are covalent bonding, lock-and-key binding in enzymatic reactions, or confor-

mational changes. The background knowledge about these entities and activities already

imposes constraints on the kinds of mechanisms in which they appear. However, the key

concept for Darden is productive continuity, which captures the idea that when trying to

understand a mechanism, scientists often look for intermediate steps in a chain that con-

nects an input event to an observed output event. When studying a signal transduction

pathway, for instance, molecular biologists often start with knowledge about the extra-

cellular signaling molecule (ligand) and about the cellular reaction it triggers, and they

ultimately want to identify all the intermediate molecules and reactions involved. An ad-

equate account of the mechanism must show how each stage of the process produces the
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next without leaving any gaps. Productive continuity is explicitly related to ideas about

the temporal asymmetry of causality, and the flows of energy, matter, and information in

biological processes (Darden 2006, Chapter 3).

The goal of eliminating gaps, or, more generally ‘black boxes,’ guides the process of

discovery. Biologists start with incomplete models and gradually add more detail until

they reach productive continuity. Productive continuity is relevant for the explanation of

a phenomenon since it makes the working of the underlying mechanism intelligible. The

existence of gaps or black boxes simply means that there is some part of the mechanism

that we do not yet fully grasp. In this context Darden and Craver specifically identify the

strategies of schema instantiation and forward/backward chaining. In the former one first

proposes a relatively abstract description of a mechanism, that is, a mechanism schema,

and then searches for components that fit the placeholders in this description. This strat-

egy is maybe best considered as a special case of Bechtel and Richardson’s localization

strategy. Mechanism schemas are often derived by abstraction from existing mechanistic

accounts of better understood phenomena; thus analogical reasoning plays an important

role in this strategy. In forward/backward chaining, by contrast, one starts from already

known, or hypothesized, components and then attempts to work forward or backward,

taking advantage of constraints that the components impose on the possible ways of fill-

ing the gaps. Consider again the example of signal transduction. If molecular biologists

find out, for instance, that the receptor that the ligand binds to belongs to the class of re-

ceptor tyrosine kinases, this tells them that the next step in the chain must be a protein

that can bind to the specific sites that are created as a result of receptor activation. In this

way by chaining forward, or backward, through the process they are often able to figure

out the whole cascade.

It should be obvious that these additional strategies are restricted to the realm of well-

behaved, nearly decomposable systems. Moreover, Darden and Craver exclusively discuss

cases of linear (i.e. sequential) organization. Their emphasis on productive continuity

suggests that they take such sequential organization to be a predominant feature of the

systems they consider, and they do not propose any strategies for cases with more com-

plex organization. In general, they do not discuss the heuristic character of their strate-

gies, and their analysis of constraints gives the impression that these play an exclusively
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beneficial role in the discovery process:

Constraints determine the shape of the space of hypothesized mechanisms.

Most simplistically, this space can be understood as a tree with terminal nodes

representing possible mechanism schemata for the phenomenon to be ex-

plained. The addition of constraints prunes the tree or changes the weights

on different branches. (Darden 2006, 48)

Scientists, in this picture, proceed by pruning the tree of hypotheses until, in the most

favorable case, only one account, the actual mechanism, is retained. In the same con-

text Darden also speaks of a process of “iterative refinement” (Darden 2006, 272). Even

though she acknowledges that scientists are often mistaken about particular elements of

a mechanism, or about what particular further constraints these elements impose, she

does not discuss the systematic errors that might be introduced whenever strategies are

applied that are heuristic in nature. The metaphor of pruning the tree suggests instead

that scientists are in possession of a determinate algorithm that will eventually lead them

to the right solution: Cut branches away in a particular order until you end up with the

right one. In practice, however, scientists must often get rid of a lot of branches in the

beginning before they can even get an overview of the tree’s structure.

But even if in Darden’s account an explicit discussion of the limits of heuristic rea-

soning strategies is missing, her description still captures some important aspects of dis-

covery in molecular biology. The fact that these strategies are fallible and rely on certain

assumptions about the organization of the underlying system will be important when it

comes to alternative proposals from the side of systems biology. In the reminder of this

chapter, I want to discuss concrete examples to illustrate the specific reasoning strategies

of molecular biology and illuminate (though in a very crude way) the historical context in

which they have to be understood.

2.3 Example: The Mechanism of Protein Synthesis

In this section I want to discuss an episode from the early period of molecular genetics

around the middle of the 20th century, at the center of which, of course, lies the discovery

of the structure of DNA by Watson and Crick in 1953. More specifically, I want to look
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at the discovery of the mechanism of protein synthesis. The role of this example within

the larger context of my project is twofold. First, it serves to illustrate how the strategies

introduced in the previous sections are actually applied in practice—and to thereby also

show the adequacy of the general framework of heuristics. It has to be noted, however,

that precisely due to its impact on subsequent research, one cannot take this episode as

representative for how discovery proceeds in molecular biology in general. I think, how-

ever, that the main features of a particular ‘molecular vision of life’ (Kay 1993) crystallized

around this period, and these can be illustrated well by looking at some of the steps of

this particular episode of discovery. Therefore, the main reason to discuss this example is

to motivate a characterization of molecular biology as a specific research program. The

early work in molecular genetics not only created important and fundamental knowledge

on which generations of biologists could build subsequently, it also suggested a particular

perspective on the organization of living systems that has expressed itself in very specific

research strategies up to this day. This is partly a historical claim, and to properly substan-

tiate such a claim here is both too large a job and beyond my expertise. However, I think

that it is made sufficiently plausible by observing how these strategies have continued to

shape discovery in molecular biology throughout the second half of the twentieth century.

For this reason, I will look at a more recent episode of discovery in the next section.

The discovery of protein synthesis has been described as a process in which a cen-

tral problem was attacked by two “local traditions” (Burian 1993) from different starting

points and eventually culminated in the convergence of the two approaches (Rheinberger

1997b, Morange 1998, Darden 2006). The biochemist Paul Zamecnik, one of the promi-

nent figures involved in this process, has described it with the metaphor of building a

tunnel by digging from two sides (Zamecnik 1962, 47). However, only with hindsight one

can say that both groups of researchers were actually working on the same problem, and it

is important to take into account the different perspectives from which they started. The

group of early molecular biologists, inspired by the discovery of the double helix struc-

ture of DNA and fascinated by the idea of a genetic ‘code,’ framed the problem in terms

of information transfer: How can a sequence of nucleotides in a string of DNA determine

the assembly of a chain of amino acids in a particular protein? Biochemists like Paul Za-

mecnik, by contrast, approached protein synthesis as a chemical process that involves a
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number of catalytic reactions with particular energy requirements and energy barriers.

The heuristics of decomposition and localization are clearly exemplified in this epi-

sode and expressed in the eventually accepted scheme in which a set of activities, self-re-

plication, transcription, and translation, is localized in a set of macromolecular compo-

nents: DNA, messenger RNA, and polypeptide. Initially, the finding that protein synthesis

does not occur directly at the site of DNA in the nucleus—it was shown to occur in cell-

free systems not containing DNA—revealed a failure of direct localization and motivated

the search for a more complex organizational scheme consisting of a sequential process of

intermediate steps. We will see, however, that early molecular biologists and biochemists

conceived of this scheme in very different ways.

2.3.1 Early Molecular Biology and the Coding Problem

Early molecular biologists, like James Watson and Francis Crick, tried to understand pro-

tein synthesis by focusing on the role of genes. Their problem was, therefore, to under-

stand how the order of nucleotide bases in a sequence of DNA is related to the structure

of a protein.

George Gamow, an astrophysicist of Russian origin who was mostly ignorant of biol-

ogy, suggested to Watson and Crick that their problem could be solved without perform-

ing any experiment, that is, without having to open the black box of possible chemical re-

actions that might figure as intermediate steps between DNA and protein (Morange 1998,

Chapter 12). Thus they started from a ‘coding hypothesis,’ according to which the amino

acid sequence of a particular protein is determined by a sequence of DNA. Crick summa-

rized the situation in the following way:

While the indirect evidence in favor of some relationship of this type is very

suggestive, the direct evidence is fragmentary in the extreme, and nothing

whatever is known about the actual mechanisms involved. It is possible, how-

ever, to consider the problem in an abstract way as that of translating from

one language to another; that is, from the 4-letter language of the nucleic

acids to the 20-letter language of the protein, without any detailed consid-

eration of the chemical processes involved. This approach is often referred to

as the coding problem. (Crick 1959, 35)
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Lily Kay (2000) suggested that the attempts at solving the coding problem must be un-

derstood as a transformation of the biological problem of protein synthesis into a prob-

lem of information theory. The mathematical theory of information, developed mainly by

Claude Shannon, was highly influential at the time, and together with cybernetics was one

of the main theoretical resources for early molecular biology. But the early molecular biol-

ogists were in the end not able to solve the coding problem by relying on these theoretical

tools alone. Crick eventually admitted that it was impossible, due to the lack of empirical

constraints, to draw any definite conclusions on the nature of the code and to decide be-

tween different proposed coding schemes. As I discuss below, the coding problem could

not be solved until the biochemical black box was finally opened. In spite of this failure

of the theoretical approach, the framing of the problem in informational terms became

entrenched, and information as a metaphor, or a “metaphor of a metaphor” (Kay 2000),

has continued to guide the ideas of molecular biologists. The idea of a biological process

as a ‘flow of information’ made biologists focus on very particular organizational schemes

and, even though the concepts of information theory did not enable them to sufficiently

constrain the explanatory problem by itself, it nevertheless carried important heuristic

value. The molecular biologists’ way of thinking in terms of large macromolecules and

their informational content eventually played a significant role in ‘cracking the code’ by

experimental means.

2.3.2 Localizing Energy: the Biochemical Perspective

The Biochemists started from a different store of entities and activities, focusing on the

chemical structure and reaction schemes of smaller molecules that were found to be in-

volved in the process, notably on peptides and covalent bonding reactions.

Their attempts of decomposing the problem were influenced by background knowl-

edge that consisted mainly of findings on the structure of proteins. The model of the

primary structure of proteins as a sequence of amino acids linked by peptide bonds went

back to the ideas of Emil Fischer and Franz Hofmeister in the beginning of the 20th cen-

tury. Another important resource was the work of Frederick Sanger (1941) who had shown

in his analysis of the sequence of insulin that the order of amino acids in proteins does not

follow a simple pattern, but that the amino acids instead are arranged in an irregular se-
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quence which is exactly reproduced in each molecule. Biochemists, therefore, assumed

that the amino acids are added one by one to the growing polypeptide chain via peptide

bonding reactions. Working out the details of this reaction scheme implied a first task de-

composition of the overall process of protein synthesis. Separating this step from the rest

of the mechanism of protein synthesis confronted them with a much more manageable

problem.

In her discussion of the same example, Darden (2006) describes this strategy as an

instance of backward chaining since the biochemists were beginning with the output of

the mechanism, looking for the steps in the process leading up to the end product. The

reaction of peptide bonding was known to be an endergonic process, which means that

it absorbs energy in the form of work and cannot occur spontaneously. For this reason

biochemists had to figure out what makes the reaction energetically possible. Zamecnik’s

cell-free rat liver system was used in the search for an active intermediate with the hypoth-

esized function of energizing the reaction. This intermediate turned out to be aminoacyl-

adenylate, an activated amino acid carrying an energy rich adenine monophosphate group.

In addition, Zamecnik’s system allowed them to identify macromolecular complexes in

the cytoplasm composed of RNA and protein, at the time called ‘microsomes’, that were

recognized as the sites of polypeptide synthesis.

This story nicely illustrates the application of some of the reasoning strategies dis-

cussed earlier, as well as the role of constraints. Aside from making use of backward

chaining, we have seen how biochemists sought to decompose the initial problem into

more manageable chunks. A quote by Zamecnik, looking back in 1962 on the already ac-

complished work, illustrates the explicit way in which the strategies of decomposition and

localization figured in his reasoning:

As one contemplates the way in which protein molecules such as insulin or

myoglobin are constructed, it appears that a number of steps must be in-

volved in the process, and three separate questions may be posed for experi-

mental attack. (Zamecnik 1962, 47)

Thus the particular characterization of the phenomenon, via known structural properties

of the end product and available background knowledge, imposed important constraints

on the task decomposition—phenomenological constraints in Bechtel and Richardson’s
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terminology. First, the fact that proteins were constituted by amino acid chains implied

an activity that would provide the required energy to create peptide bonds. Second, the

observation that the synthesized polypeptide chain had an irregular but nonrandom se-

quence suggested the existence of a process directing the incorporation of specific amino

acids. Third, there had to be some way in which the genetic information travelled from

the DNA in the nucleus to the site of protein synthesis.

Thus the three questions raised by Zamecnik concerned the localization of these activ-

ities in specific structural components of the system. We have seen that the first of them

was to a large extent answered in his own lab. Attacking the other two questions, however,

required the concerted effort of both biochemists and early molecular biologists.

2.3.3 Localizing Information: transfer RNA and messenger RNA

One of the two remaining problems was the question of how RNA might be involved in the

assembly of the specific sequence in the growing polypeptide chain. While biochemists

had not really considered the functional role of the RNA found in the microsomes, molec-

ular biologists almost immediately grasped its potential as a carrier of genetic informa-

tion.

The initial strategy to understand the possible role of RNA, pursued among others by

James Watson, was to assume that RNA determined the specific sequence of proteins in

a manner analogous to the way in which one of the strands in the DNA double helix de-

termines the complementary sequence of the other. Thus, RNA molecules, due to their

capacity to build weak hydrogen bonds with other molecules, were thought to provide

a scaffold for the controlled incorporation of amino acids into the growing polypeptide

chain. The data were not sufficient, however, to determine the structure of the RNA com-

plex. Francis Crick, who had become skeptical about the idea of a structural template,

instead proposed a different idea. According to his ‘adaptor-hypothesis,’ each amino acid

is initially attached to a small molecule that can specifically bind to a coding template

of RNA and thereby determine the future location of the amino acid in the polypeptide

chain. The integration of molecular biology and biochemical reasoning finally took place

when the people in Zamecnik’s lab used Crick’s hypothesis to interpret their discovery of

small and soluble RNA (S-RNA) molecules that were different from the RNA found in the
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microsomes. Strikingly, the S-RNA molecules were found to be covalently bound to amino

acids. Moreover, it was subsequently revealed that there were 20 specific enzymes, each

corresponding to one amino acid, that were responsible for catalyzing both the reaction

to build the activated aminoacyl-adenylate and the subsequent fixation to soluble RNA.

According to the adaptor model, the instructions to build a protein did not depend on

the specific three-dimensional structure of RNA, but was simply ‘read’ from its sequence.

This suggested a powerful way to study the specific relationship between RNA and the

sequence of amino acids. Thus the in vitro systems that had been devised for the bio-

chemical study of protein synthesis could subsequently be turned into a tool to break the

genetic code. Heinrich Matthaei and Marshal Nirenberg loaded their system with a syn-

thetic poly-U nucleic acid; that is, with a chain of RNA consisting of only the nucleobase

uracil (UUU. . . ). They observed that the thereby synthesized polypeptide was made up of

repeated instances of the amino acid phenylalanine: the first codon was deciphered. This

opened the door to a further set of experiments in which the precise relation between the

4 nucleotides in RNA and the 20 amino acids in proteins was systematically determined.

The way in which the ‘coding problem’ was finally solved is often taken as evidence for

the superiority of experimental approaches over purely theoretical speculations. How-

ever, as Michel Morange observes,

Matthaei and Nirenberg had dared to take the idea of a genetic code to its

logical conclusion and to try to determine this code experimentally, without

worrying about the precise nature of the RNA involved in protein synthesis

. . . . They also rejected the idea, deeply rooted in the biochemists’ view of the

world but rarely openly expressed, that the form of RNA molecules played an

essential role in protein synthesis. (Morange 1998, 136–137)

The informational perspective had thus left its distinct traces in experimental practice. It

had not been possible to crack the code by paper and pencil, but it was nevertheless possi-

ble to express the organizational scheme in purely informational terms, without reference

to specific biochemical detail.

Now that the link between RNA and protein had been largely understood, the remain-

ing task, according to Zamecnik’s list, was to figure out how genetic information is trans-

mitted from DNA to the RNA templates. This relationship was eventually unraveled by
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the French researchers François Jacob and Jacques Monod. When they began their inves-

tigations, the general opinion was that the RNA found in the microsomal particles (today

known as ribosomes) served as the natural template for protein synthesis. Experimenting

on sexually reproducing bacteria, Jacob and Monod investigated the transfer of a chro-

mosomal fragment carrying a gene for the enzyme β-galactosidase. They observed that

as soon as the fragment entered a bacterium that previously had lacked the gene, the

enzyme instantly started being synthesized at maximum rate. This was a puzzling re-

sult because no microsomal particles were transmitted in the process that could trigger

the synthesis, and their assembly from scratch was thought to take much longer. Jacob

and Monod, therefore, postulated the existence of an additional, short-lived intermediate

form of RNA whose role it was to carry the information from the genes to the microsomal

particles, a prediction that was eventually confirmed by the discovery of mRNA.

We have seen the extent to which the general heuristic strategies were applied in the

discovery of the mechanism for protein synthesis. I quoted Paul Zamecnik, who explic-

itly discussed the decomposition of the process into different steps, and I described the

efforts of localizing the corresponding activities that were undertaken by different groups

of researchers. There is a further respect in which the problem was decomposed. As dis-

cussed, it was known from Sanger’s work that proteins, in spite of their intricate three-

dimensional configurations, were composed of linear chains of amino acids. In the be-

ginning it was not known, however, that the assembly of the polypeptide chain and the

folding into the three dimensional structure were actually two separate steps in the overall

process. Francis Crick, in an article written before decisive progress on the coding prob-

lem had been made, emphasized that treating those steps as independent processes was

a simplifying assumption:

Our basic handicap at the moment is that we have no easy and precise tech-

nique with which to study how proteins are folded, whereas we can at least

make some experimental approach to amino acid sequences. For this rea-

son, if for no other, I shall ignore folding in what follows and concentrate on

the determination of sequences. It is as well to realize, however, that the idea

that the two processes can be considered separately is in itself an assumption.

(Crick 1958, 144)
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The black-boxing of the protein folding process was thus admittedly a heuristic move to

make a complex problem more tractable and to bring it within the reach of available ex-

perimental methods. The assumption in the end turned out to be correct. The discovery

of the mechanism of protein synthesis, however, was not merely a sequence of ingenious

guesses. Many of the initially proposed ways to attack the problem turned out to be mis-

guided, but they often revealed important clues about more adequate ways of structuring

the epistemic task. It is important to highlight that considerable amounts of selective trial

and error were involved in the discovery of the actual mechanism, but the errors are usu-

ally remembered less well.

2.3.4 From Specificity to Information

I discuss the example of protein synthesis not only because it illustrates the successful

application of general heuristic strategies. One further aim is to show that this episode

(among others, to be sure) has shaped the way in which scientific problems were framed

in the subsequent development of molecular biology. By looking at the discovery of this

fundamental mechanism, we can catch a glimpse of the origin of some of the more spe-

cific heuristics that have become part of the methodological toolkit of molecular biology.

As pointed out earlier, Darden’s concept of productive continuity presupposes that liv-

ing systems can be understood in terms of relatively simple functional schemes that es-

sentially depict them as consisting of sequential processes. The emphasis, therefore, lies

not so much on organization, but rather on the specific activities connecting the steps

in such a process. However, before the intermediate steps were discovered, it was not

obvious at all why the mechanism should be organized in such a simple way. Before Za-

mecnik’s group produced their results, for instance, many biochemists had assumed that

protein synthesis must be understood as the reversal of proteolysis, the breakdown of pro-

teins. The role of genes in directing or controlling this process was far from clear. The spe-

cific conception of productive continuity, in terms of a “flow of information” (Crick 1958),

had certainly not been guiding the process of discovery from the beginning. The idea

that genes influenced the conformation of proteins directly by means of their three di-

mensional structure was gradually replaced by the conception of an information transfer

that was in a certain sense independent of the underlying biochemical reactions. Michel
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Morange describes this development as the “break between form and information” that

“made it possible . . . for molecular biology to come of age” (Morange 1998, 149). It moti-

vated a general conception of living processes in terms of linear information flow.

This is maybe best illustrated by comparing Crick’s adaptor hypothesis with the ear-

lier idea that proteins were formed by using RNA as a structural template. As I discussed,

Crick’s guess was that there would be a set of ‘adaptor molecules’ providing specific con-

nections between each amino acid and its corresponding nucleotide codon. The link be-

tween RNA triplet and amino acid was contingent from a biochemical point of view. The

group of Seymour Benzer tested Crick’s hypothesis in an elegant study (Chapeville et al.

1962). It was known that the S-RNA molecules found by Zamecnik’s group consisted of an

amino acid covalently bound to a sequence of RNA. Thus, they created ‘artificial’ adaptor

molecules by transforming the amino acid (cysteine into alanine) of one species of S-RNA

while leaving its RNA part intact. With the same setup that Matthaei and Nirenberg had

previously used to crack the code, they showed that the system now incorporated alanine

into the polypeptide chain when stimulated with a template normally coding for cysteine.

The position of amino acids in protein molecules thus depended solely on the sequence

of the coding template, not on the biochemical properties of the amino acid itself. This

showed that the genetic code was arbitrary from a biochemical point of view, and it also

explained why purely theoretical approaches to the coding problem were doomed to fail-

ure.

However, the role of biochemistry in this development is ambivalent. On one hand, as

has been pointed out by historians, the research pathways leading to the solution of the

coding problem turned out to be “far more biochemical and far less theory-driven than

. . . anticipated” (Burian 1993, 401–402). The constraints that allowed the researchers to

work out the details of the mechanism were to a large extent derived from the results of

specific biochemical experiments, and not so much from information theoretical reason-

ing. On the other hand, those very results turned out to limit the perceived importance of

biochemistry, as a theoretical resource, for the subsequent development of molecular bi-

ology. The complex metabolic reaction schemes that biochemists had studied in the early

twentieth century, such as the integrated system responsible for fermentation (discussed

in Bechtel and Richardson 1993, Chapter 7), did not seem to provide the right exemplars



82 q Research Strategies of Molecular Biology

to illuminate the information transmitting mechanisms of molecular genetics. Instead,

the role of biochemistry was largely reduced to the study of the specific reactions occur-

ring in individual steps within such processes. The concept of biochemical specificity

certainly continued to play a crucial role in molecular biology, and it supplied substantial

heuristic power by reducing the expected number of important interactions occurring in

a biological system. Yet, from an informational perspective, the main role of biochemistry

was now to explain how a signal was transmitted from one component to the next. It had

no bearing on the general route of the signal and its significance for the rest of the sys-

tem. Jacques Monod captured the independence of the informational pathways from the

chemical nature of the underlying signals with his concept of “gratuité” (gratuity): “Phys-

iologically useful or ‘rational’, this relation is chemically arbitrary—‘gratuitous’, one might

say” (Monod 1971, 77).

There is another way to appreciate how the informational perspective detached the

organizational schemes of molecular biology from the theoretical framework of biochem-

istry. This connects the discussion with the question that Weaver’s quote raised in the

beginning of this chapter. Quantitative aspects, concentrations, kinetic parameters etc.,

had always been of crucial importance in many applications of biochemistry. Take as an

example the well-known Michaelis-Menten model of enzyme kinetics. It describes the

process in which an enzyme converts a substrate by forming an intermediate complex.

Even though a qualitative account of how one single molecule of substrate binds to one

molecule of enzyme, and how the former is subsequently converted, may partly illumi-

nate the process, it completely neglects the kinetic process that has to be described at the

population level.4 In order to understand how the presence of the substrate affects the

amount of product, one has to apply subtle mathematical methods, and in order make

predictions, one needs precise quantitative measurements of the required kinetic param-

eters (Gunawardena 2012b). Hence, it is an essential feature of the model that it describes

the dynamics of populations, or concentrations, of molecules.

The explanatory schemes of molecular biology, by contrast, typically do without any

quantitative features. To understand the relevant aspects of the mechanism of protein

4If I speak of large sets of molecules ‘populations,’ it is mainly for lack of a better term. I do not want to
suggest any strong analogies to the populations of organisms dealt with in ecology and evolutionary theory.
My usage is thus closer to the idea of a ‘statistical population.’
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synthesis, for example, we do not have to know how many molecules are turned over or

what the initial concentrations are. We can explain the process by restricting our descrip-

tion to the level of individual molecules, and this is precisely what is done in the typical

cartoons of molecular biology. Biochemical complexity is expected only in the specific

interactions of individual macromolecules. A fundamental assumption underlying the

mechanistic schemes of molecular biology, therefore, is that the individual molecule is

sufficient to represent the population. Before coming back to this point in more detail,

however, let me discuss a more recent example from research in molecular biology.

2.4 Example: The Spindle Assembly Checkpoint

As Sahotra Sarkar observes, “research in molecular biology has always favoured research

programs that attempted to push forward its frontiers” (Sarkar 1996, 8). If we want to un-

derstand what distinguishes molecular biology from systems biology, we have to take into

account the dynamic nature of scientific fields and disciplines, and we cannot assume

that a characterization of molecular biology based on a research episode from the middle

of the twentieth century will be sufficient for our purposes. For this reason, I will now

turn to a more recent example: the study of the spindle assembly checkpoint. Important

progress regarding the mode of operation of this important cell cycle control mechanism

has been made during the last two decades.

There are several reasons why the investigation of the spindle assembly checkpoint

provides a good case study in the general context of my project. First, this mechanism re-

lates to the fundamental principles of cellular regulation, and its basic properties are con-

served in eukaryotic species from yeast to human. Thus the discussion can both reveal

how scientists conceive of individual molecular mechanisms and also illuminate their

perspective on how these mechanisms hang together in the systemic context of the cell as

a whole. Moreover, the discovery of this mechanism has brought together different exper-

imental approaches, such as structural and cytological studies, in vitro biochemistry, and

genetic techniques, that have been applied across a variety of different organisms. This

work can, therefore, be taken as representative of a wide area of research in molecular

biology. The most important reason for this choice, however, is the fact that the spin-
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dle checkpoint mechanism has recently also been approached from a systems biology

perspective. The following discussion thus provides a natural entry point into a deeper

analysis of the differences between traditional molecular biology and systems biology.

2.4.1 Discovery of the Spindle Assembly Checkpoint

All living things are composed of cells, and all cells arise by the division of preexisting cells.

In eukaryotes, each daughter cell contains a set of chromosomes like that of the mother

cell. The eukaryotic cell cycle consists of a series of distinct stages that are highly regu-

lated in order to guarantee the correct duplication of the hereditary material and subse-

quent division of cells (e.g. Morgan 2007). The concept of a ‘cell cycle checkpoint’ is based

on the idea that these processes do not simply unfold independently,5 but that there are

additional control mechanisms that ensure that later events are dependent on the com-

pletion of earlier events. For example, cells do not enter the mitotic phase of the cycle,

in which division takes place, if DNA synthesis has not been completed (Hartwell and

Weinert 1989).

Another crucial step of the cell cycle, within mitosis, is the transition from metaphase

to anaphase, in which the duplicated chromosomes have to be distributed correctly to

mother and daughter cells. The spindle assembly checkpoint monitors the fidelity of

chromosome transmission in this process. After the chromosomes have been replicated,

they are condensed into joined pairs, the so-called sister chromatids, held together by

a protein complex called cohesin. In metaphase all chromatid pairs are aligned in the

central region of the cell, while in anaphase they are separated and pulled apart toward

opposite poles. Both alignment and segregation of chromosomes are carried out by the

mitotic spindle, a sub-cellular structure that mainly consists of long cylindrical polymers

called microtubules. The microtubules emanate from opposite poles of the cells and can

attach to the individual chromatids.

Once the sister chromatids in one pair are attached to microtubules coming from op-

posite directions (bipolar attachment), they move together towards the equatorial plane

of the cell because the dynamic properties of the microtubules create tension. Anaphase

5In early embryonic divisions of the frog Xenopus the events of the cell cycle apparently occur indepen-
dently of one another, that is, without extrinsic feedback control mechanisms, and are driven only by the
cyclic activation of particular protein complexes. For details see Murray and Kirschner (1989).
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essential to the functioning of this platform include all of
theoriginally identifiedcheckpointproteins, butmanyother
kinetochore proteins are required as well (see Box 2). Very
recent work suggests a central role for a complex of Mad1
and Mad2 in this platform [4]. It was known that
unattached kinetochores have two populations of Mad2
displaying different dynamics [5,6]. One population of
kinetochore Mad2 is stably associated with Mad1, while
the other very rapidly exchanges with free cytosolic Mad2,
with a half-life of only a few seconds. It now appears that
the kinetochore-bound Mad1–Mad2 complex functions as
a catalyst that promotes the binding of free Mad2 to
Cdc20, thus rendering it inactive [4]. Kinetochore-associ-
ated Mad1–Mad2 levels fall following microtubule

capture, thus disassembling the platform, and shutting
off the source of the inhibitor.

For recent reviews detailing the dynamics of kineto-
chore structure and function in regulating both micro-
tubule interactions and the checkpoint, see references
[4,7–9]. Our purpose here is to explain how RZZ activity
impinges on this mechanism.

Identification of the RZZ complex
The genes zeste-white 10 (zw10) and rough deal (rod),
originally identified in Drosophila, are conserved among
multicellular eukaryotes [10–14]. Null mutations in either
gene provoke similar chromosome segregation defects:
lagging chromatids, nondisjunction and anaphase
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unattached kinetochores (yellow dots) generates an inhibitor signal (‘wait’) that delays themetaphase–anaphase transition. In this way, the cell hasmore time for establishing
proper kinetochore–microtubule connections (red dots) before the onset of anaphase. (Right) If the checkpoint mechanism is defective, a cell can enter anaphase even with
unattached kinetochores, and this can lead to improper distribution of sister chromatids (aneuploidy). (b) A more detailed view of the checkpoint mechanism. Checkpoint
proteins (only some of which are indicated) assemble a platform on unattached kinetochores that promotes the inhibition of Cdc20 by Mad2 and BubR1. As Cdc20 is an
essential cofactor for activating the anaphase-promoting complex (APC), inhibiting Cdc20 inactivates the APC. Once the kinetochore has properly attached to microtubules,
however, the platform is disassembled, and Cdc20 is free to activate the APC. The APC in turn is a ubiquitin ligase that targets for degradation key proteins such as cyclin B
and securin, which are required to maintain the cell in metaphase.
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Figure 2.1: Basic behavior of the spindle assembly checkpoint. For further explanation
see text. Source: Karess (2005).

starts when the link between the sisters is severed and the chromatids are pulled in op-

posite directions. The spindle assembly checkpoint is a surveillance mechanism that de-

lays the initiation of chromatid separation until all chromosomes are properly attached

to the spindle. Thereby it prevents the premature start of anaphase which might lead to

infidelity in the distribution of chromosomes and, as a result, to a decrease in fitness or

death, or to genetic disease in the case of multicellular organisms (Figure 2.1).

Evidence for the idea that the transition from metaphase to anaphase involves active

regulation has existed for a long time. J. G. Carlson, based on cytological examination of

mitosis in grasshopper neuroblasts, suggested in 1956 that this transition was regulated

by chromosomes. He observed that right before metaphase individual chromosomes oc-

casionally moved away from the others, eventually returning to the plane of alignment.

He reports that,

by watching this movement, one can predict exactly when anaphase will be-

gin, for it never starts until all the chromosomes are in the equatorial plate,

and it always starts as soon as the last one has reached it. (Carlson 1956, cited

in Lew and Burke 2003, 252-253)

Systematic experiments in support of Carlson’s observations were performed by Zirkle

(1970), who managed to selectively destroy metaphase spindles with ultraviolet radiation.
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Using this technique, he was able to artificially delay the beginning of anaphase. He con-

cluded that the arrival of the last chromosome on the metaphase plate acts as a trigger for

anaphase onset (as cited in Lew and Burke 2003, 253). However, substantial steps beyond

this observational evidence were not made until two decades later. In 1989, Hartwell and

Weinert had proposed the idea of a ‘checkpoint mechanism’ as a general schema to ex-

plain the regulation of cell cycle events. They argued that the dependence of a later stage

on the completion of an earlier one might be either due to ‘substrate-product order’ or to

a ‘checkpoint mechanism.’ In case of the former, a series of events is ordered by a “princi-

ple intrinsic to the components themselves” (Hartwell and Weinert 1989, 630). This kind

of principle is found, for example, in the formation of the bacteriophage T4:

All structural proteins are synthesized at the same time, and unassembled

proteins remain unassociated until the partially assembled structure becomes

ready for their addition. (Hartwell and Weinert 1989, 630)

Hence, some structural units act as necessary substrates for the assemblage and addi-

tion of others, which enforces a temporal order (Figure 2.2, A). In a process regulated by

a checkpoint mechanism, by contrast, a later stage is actively inhibited until the earlier

stage has been completed (Figure 2.2, B and C).6 Hartwell and Weinert conclude that in

order to establish the presence of a checkpoint mechanism, it is not sufficient to observe

that one event only occurs after another one has been completed. But they describe a way

in which one might distinguish experimentally between the two scenarios:

The existence of a control mechanism is suggested when one finds chemi-

cals, mutants, or other conditions that relieve a dependent relationship; that

is, conditions that permit a late event to occur even when an early, normally

prerequisite event, is prevented. (Hartwell and Weinert 1989, 630)

Thus, in contrast to the case of substrate-product order, it should in principle be possible

to remove a dependency that is due to a checkpoint mechanism by interfering with the

control (Figure 2.2, D).

6Hartwell and Weinert mention that control might also work by activation, for instance if the completion
of DNA synthesis produces an activator of mitosis. However, they write: “Since it is difficult to distinguish
control by activation from substrate-order by an empirical test, we will concentrate our discussion of con-
trol mechanisms on those that act by inhibition” (Hartwell and Weinert 1989, 630).
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Figure 2.2: Different types of process ordering, illustrated with the example of DNA dam-
age control. (A) In normal mitosis the chromosomes are condensed and segregated af-
ter successful replication. (B) Substrate-product order would exist if mitosis is blocked
because the damaged chromosome is an inadequate substrate for chromosome conden-
sation. (C) Checkpoint control: DNA damage creates a signal that inhibits chromosome
condensation. (D) In case of checkpoint control: if the negative inhibition is removed, the
damaged chromosome can pass through mitosis. Source: Hartwell and Weinert (1989).

The observed delay of chromosomal segregation in the metaphase-anaphase transi-

tion strongly indicated the existence of a checkpoint mechanism, and Hartwell and Wein-

ert’s article suggested an experimental strategy. By making use of mutagenic screening

techniques in the budding yeast Saccharomyces cerevisiae, two independent studies sub-

sequently identified several genes whose disruption caused cells to resume the cell cycle,

even in conditions in which normal cells would arrest in metaphase. Hoyt et al. (1991)

found three genes that, when mutated, enabled yeast cells to build a new bud, and thus

to enter a new cell cycle, even when spindle assembly was prevented by the microtubule

inhibitor benzimidazole. They called these genes Bub1, Bub2, and Bub3 (for Budding

Uninhibited in Benzimidazole). In a very similar experiment, Li and Murray (1991) iden-

tified three further genes, Mad1, Mad2, and Mad3 (for Mitotic Arrest Deficient), as being

implicated in the purported control mechanism.

Independently from these genetic investigations, there were attempts to uncover how

exactly the putative checkpoint mechanism instantiates Hartwell and Weinert’s general
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scheme. In order to delay anaphase, the system must somehow ‘sense’ that the attach-

ment process has not been completed. McIntosh (1991) put forward the hypothesis that

the chromosomes that are not correctly attached produce a signal that delays anaphase:

An effective system for sensing when all the chromosomes are appropriately

associated with the spindle is more likely to assess the chromosomes that are

not attached than those which have already done so. Clearly, it is easier to dis-

tinguish one or more chromosomes unattached from none unattached than

it is to discriminate between 45 attached and 46. Furthermore, many aneu-

ploid cell lines show perfectly normal mitosis with the chromosomes they do

have, suggesting that an absolute count of the chromosomes attached to the

spindle would be insufficient information from which to make the decision

to proceed with anaphase. It would seem that the cell has a way to detect

unattached chromosomes. Presumably, these chromosomes emit a signal

that tells the rest of the cell to delay anaphase onset. (McIntosh 1991, 617)

The group around the cancer researcher Conly Rieder set out to localize the source of this

signal. Their sophisticated microscopic studies revealed that kinetochores play an impor-

tant role in the regulation of anaphase onset. Kinetochores are large protein complexes

that assemble in the central region of the chromosomes and provide ‘docking stations’

for microtubules. By means of a laser micro-beam, Rieder et al. were able to selectively

destroy specific areas on chromosomes in living rat kangaroo cells. Their results showed

that chromosomes whose kinetochores are destroyed by the laser are no longer able to de-

lay anaphase. From this they concluded that “molecules in or near the unattached kine-

tochore . . . inhibit the metaphase-anaphase transition” (Rieder et al. 1995, 941). Their

observations also revealed the striking result that one single unattached kinetochore is

sufficient to keep the whole cell arrested.

There was thus evidence for some of the molecular players of the putative mechanism,

and there were independent results pointing to the kinetochores as the location involved

in checkpoint signaling. The different strands of research were brought together for the

first time when the behavior of homologs of the Mad2 protein was investigated in human

cells and frog cell extracts (Li and Benezra 1996, Chen et al. 1996). Both studies showed

that the respective proteins localize at the kinetochores after chromosome condensation,
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but disappear when the attachment of microtubules is completed. In the following years,

most of the other proteins identified in the initial yeast screens could be shown to localize

at the kinetochores as well.

Subsequent research efforts were directed at understanding how the concerted action

of the identified checkpoint proteins can delay the onset of anaphase. It was known that

the progression from metaphase to anaphase in a regular cell cycle depends on the enzy-

matic activity of a large protein complex called anaphase promoting complex/cyclosome

(APC/C). This complex is responsible for the destruction of the cohesin rings that hold

the sister chromatids together and for the degradation of cyclins, which are proteins that

drive the progression through the cell cycle and whose loss triggers the program of mi-

totic exit. However, in order to perform these activities, the APC/C needs to be activated

by binding to another protein called Cdc20.

It was, therefore, reasonable to assume that the putative checkpoint mechanism would

delay the onset of anaphase by inhibiting the activity of APC/C, either directly or by in-

terfering with its activator Cdc20. By means of different techniques for the detection of

protein-protein interactions, such as the yeast two-hybrid system and co-immunopreci-

pitation, Hwang et al. (1998) could show that the checkpoint proteins Mad1, Mad2, and

Mad3 indeed all interact with Cdc20. Further studies suggested that especially the in-

teraction between Mad2 and Cdc20 was crucial for the activity of the checkpoint. How-

ell et al. (2000) proposed a model according to which the unattached kinetochore serves

as a catalytic site for the assembly of a Mad2-Cdc20 complex that sequesters Cdc20 and

thereby prevents it from activating APC/C. By the turn of the century the basic scheme of

the mechanism was largely agreed upon, and a review in the journal Cell summarized:

The basic plan of the signaling cascade is now well established. Central to the

spindle checkpoint is the kinetochore. Prior to spindle attachment, kineto-

chores generate a diffusible ‘wait anaphase’ signal, which inhibits the anaphase

promoting complex/cyclosome . . . . As a kinetochore binds microtubules . . .

its wait signal generator is silenced and the inhibition of anaphase is released.

(Shah and Cleveland 2000, 997)

However, important questions remained, notably concerning the recruitment of the check-

point proteins to the kinetochores, the exact mode of APC/C inhibition, and the deac-
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tivation of the signal after the attachment. The “second decade of checkpoint studies”

(Musacchio 2011) has given at least partial answers to some of these questions.

maintain focus, here we will only discuss mechanisms regu-
lating anaphase.

How Do Unattached Kinetochores Generate the ‘On’
Signal?
Kinetochores are complex structures comprising at least
80 different proteins assembled at the centromere of each
sister chromatid [23,24] (Figure 4A,B). Centromeric chro-
matin is specified by nucleosomes with the histone H3
variant CENP-A [25], which recruits the constitutive centro-
mere-associated network (CCAN), a complex of at least 16
different proteins [23,24]. As cells enter mitosis, the CCAN
assembles the KMN network, consisting of the KNL1,
Mis12 and Ndc80 sub-complexes (Figure 4C), thus forming
the outer kinetochore [23,24]. Importantly, the Ndc80 com-
plex, comprising Ndc80/Hec1, Nuf2, Spc24 and Spc25, is
essential for load-bearing attachments to microtubules (re-
viewed in [26]). Other kinetochore proteins regulating micro-
tubule attachment include the RZZ complex comprising

Zw10, Rod and Zwilch, which is recruited by Ndc80 and in
turn recruits the dynein/dynactin minus-end motor complex
[27]. As detailed below, RZZ is essential for recruitment of
Mad1 and Mad2 [27] (Figure 4C), and thus RZZ is often clas-
sified as a SAC component. An important regulator of kinet-
ochore assembly is Aurora B, the protein kinase component
of the chromosome passenger complex (CPC) that also
includes INCENP, Borealin and Survivin. Aurora B and the
CPC have been extensively reviewed [28,29] so they will
not be discussed here.
Exactly how the SACmodule is assembled is unclear. SAC

proteins are recruited to kinetochores in a step-wise fashion,
with Bub1, an essential SAC kinase [9,30,31], binding in early
prophase followed by the others [32–35]. Moreover, Bub1 is
required to recruit the majority of downstream SAC compo-
nents, including BubR1, Bub3, Mad1 and Mad2 [30,31,33–
37]. This suggests that Bub1 links the SAC module to
the outer kinetochore, so understanding exactly how Bub1
binds the kinetochore is an important question.
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Figure 2. SAC principles.

During the early stages of mitosis (prometaphase), unattached kinetochores catalyse the formation of the mitotic checkpoint complex (MCC)
composed of BubR1, Bub3, Mad2 and Cdc20, leading to inhibition of the APC/C. Once all the chromosomes are aligned with their kinetochores
attached to the spindle (metaphase), generation of the MCC ceases, allowing Cdc20 to activate the APC/C, leading to the ubiquitylation and
degradation of securin and cyclin B1. Degradation of securin liberates separase which in turn cleaves the Scc1 kleisin subunit of the cohesin
ring structure; this opens the ring, allowing sister chromatids to separate (anaphase). Meanwhile, degradation of cyclin B1 inactivates Cdk1,
leading to mitotic exit.

Current Biology Vol 22 No 22
R968

Figure 2.3: Representation of the spindle assembly checkpoint mechanism adopted from
a recent review article. The figure also represents some of the downstream effects of
APC/C activation. For further explanation see text. Source: Lara-Gonzalez et al. (2012).

It was shown, for example, that other checkpoint proteins apart from Mad2 are in-

volved in forming an inhibiting complex with Cdc20. Sudakin et al. (2001) found in the

human HeLa-cell line a factor that they called mitotic checkpoint complex (MCC). This

complex contained the homologs of the Cdc20, Mad2, Mad3, and Bub3 proteins and was

shown to bind to the APC/C, thereby preventing its enzymatic activity. Against expecta-

tions, however, they also reported that this complex was not only generated at the kineto-

chores and present also in cells before they enter mitosis, a finding that has led to compet-

ing hypotheses about how kinetochores exactly contribute to the inhibition of the APC/C.

By means of a sophisticated photobleaching technique, Shah et al. (2004) were able to

monitor the turnover of proteins at the kinetochores. Their results suggested that Bub1,

Mad1, and a portion of Mad2 are stably bound to unattached kinetochores, in line with

the idea of a catalytic platform. Subsequently, De Antoni et al. (2005) proposed a ‘template
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component shown to be conserved in vertebrate cells [60,61]
and has thus received considerable attention, with structural
studies and FRAP experiments being particularly informative
[5,62,63]. In brief, Mad2 adopts two distinct conformations;
when unbound, it adopts an open conformation (O-Mad2)
but upon binding to Mad1 (or Cdc20), two b-sheets move
across the face of the protein to create the closed conforma-
tion (C-Mad2), with Mad1 now trapped within this fold
[63–67]. Uponmitotic entry, theMad1–C-Mad2 core complex
is recruited to kinetochores. Because Mad2 can dimerise
[63,66,68], O-Mad2 from the cytosol can then be recruited
to kinetochore-bound Mad1–C-Mad2 [41,69]. Indeed, FRAP
studies revealed that kinetochore-bound Mad2 exists in
two populations; one that is relatively stable, correspond-
ing to the Mad1–C-Mad2 core complex, and a mobile frac-
tion that arises due to the transient recruitment of O-Mad2
to Mad1–C-Mad2 [34,41,69]. Crucially, O-Mad2 bound to
Mad1–C-Mad2 somehow captures Cdc20, thus creating a
C-Mad2–Cdc20 complex, the first step in MCC assembly
[63]. In this manner, C-Mad2 within the Mad1–C-Mad2
core complex acts as a prion-like template, catalysing the
conversion of additional O-Mad2 proteins to the closed con-
formation and in doing so binding Cdc20.

Importantly, when kinetochores bind microtubules, the
Mad1–C-Mad2 core is ejected via a mechanism known as
‘stripping’ and O-Mad2 is no longer recruited [60,61]. If
Mad1 is artificially tethered to kinetochores so that it is not
ejected upon microtubule capture, Mad2 is still recruited
and anaphase onset is delayed in a Mad2-dependent man-
ner [70]. Thus, the activity of the Mad1–C-Mad2 core at
kinetochores may be the critical and only step in the SAC
mechanism to indicate that a kinetochore is unattached.
Consequently, while the template model is well supported,
understanding how Mad1–C-Mad2 is recruited to kineto-
chores, how the template reaction is restricted to (or acti-
vated at) kinetochores, and how Mad1–C-Mad2 is ejected
following microtubule capture are all important questions.
In principle, C-Mad2–Cdc20 complexes could recruit

O-Mad2 and catalyse the formation of additional Mad2–
Cdc20 complexes in the cytosol, thereby amplifying the
SAC signal downstream of kinetochores [5,62,63]. How-
ever, when either p31comet, a negative regulator of the SAC,
or BubR1/Mad3 binds to C-Mad2–Cdc20, the dimerisation
interface of Mad2 is blocked [52,71]. Indeed, a recent study
in budding yeast shows that Mad2 dimerisation does not
amplify the SAC signal downstream of kinetochores [72].
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Figure 4. Kinetochore structure.

(A) Schematic of a single chromosome with one attached and one unattached kinetochore. (B) Schematic of kinetochore ultrastructure showing
sister kinetochores, composed of inner and outer regions, assembled on the inner centromere. The unattached kinetochore has a fibrous corona.
(C) Simplified schematic of the vertebrate kinetochore’s molecular architecture, showing an array of histone H3 and Cenp-A containing nucleo-
somes, which recruits the constitutive centromere-associated network (CCAN). The CCAN directs assembly of the KMN network comprising the
KNL1,Mis12 and Ndc80 subcomplexes. The KNL1 subcomplex in turn recruits SAC components, either directly as in the case of Bub1/Bub3 or via
RZZ/Ndc80 in the case of the Mad1/Mad2. Note that vertebrate kinetochores are modular in nature and for simplicity only two units are shown
here. (D) Models of Bub and Mad kinetochore recruitment. Bub1 and BubR1 have similar domain structures, comprising an amino-terminal TPR
domain, a Bub3-binding site (BBS) and a carboxy-terminal kinase domain. *Note that BubR1’s kinase domain is not catalytically active. While the
TPR domains bind directly to KNL1, kinetochore targeting of Bub1 and BubR1 depends on their interactions with Bub3. Kinetochore localisation
of the Mad1–C-Mad2 core complex is via the RZZ and Ndc80 complexes and it is promoted by Mps1 and Bub1. O-Mad2 is then recruited to the
kinetochore via dimerisation with C-Mad2 andMps1 also participates here. The exact mechanism of Bub1 and BubR1 recruitment and the role of
Mps1 remain to be determined.

Current Biology Vol 22 No 22
R970

Figure 2.4: Figure adopted from a recent review article that illustrates, with increasing
zoom levels, the amount of detail that has been accumulated about the SAC components.
The two panels on the right (D) represent hypothetical models for the recruitment of
checkpoint proteins. Question marks highlight interactions that have not been estab-
lished, yet. Source: Lara-Gonzalez et al. (2012).

model,’ according to which the binding of free Mad2 to Cdc20 is catalyzed by a Mad1-

Mad2 complex that is stably bound to the kinetochores. This model is by now widely

accepted (Lara-Gonzalez et al. 2012).

In recent years, an important strand of research has consisted in studying the function

of the kinetochores and their role in recruiting checkpoint proteins and monitoring the

attachment of microtubules. Here, biochemical studies have led to increasingly complex

models of kinetochore structure, but many open questions remain (Figure 2.4). Progress

in this context is expected to arise from even more detailed structural investigations. As a

recent review suggests:

[T]he relationship between kinetochores and checkpoint control remains poorly

understood. Crucial advances in this area in the third decade of checkpoint

studies (2011–2020) are likely to be brought about by the characterization

of the mechanism of kinetochore recruitment, activation and inactivation of

checkpoint proteins, which remains elusive for the majority of checkpoint

components. (Musacchio 2011, 3595)
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2.4.2 Analysis of the Example

Just as in the example of protein synthesis, the basic strategies of decomposition and

localization can be seen at work in the discovery of the spindle assembly checkpoint

mechanism. The initial explanandum phenomenon consisted in the observed capacity

of the cell to delay the onset of anaphase until all chromosomes are properly bi-oriented.

Hartwell and Weinert’s general analysis of cell cycle regulation provided a possible de-

composition of the cell’s capacity to delay anaphase in terms of an extrinsic control mech-

anism. Although this move did not yet define the locus of control of the phenomenon, it

nevertheless suggested that one could focus on a separate set of components and would

not have to take into account the cell cycle machinery as a whole. Furthermore, the idea

of a checkpoint immediately suggested an experimental test and a strategy of search for

the underlying components.

The initially proposed schema can be represented in the following way:

monitor bi-orientation

inhibit anaphase

start anaphase

no

yes

From this description it should be obvious that the sub-operations are not independent,

but produce the phenomenon only when properly connected. Thus the organization

of the proposed mechanism, already in this crude form, goes beyond what Bechtel and

Richardson call ‘direct localization.’ This is also the reason why the strategy to local-

ize components of the mechanism by screening for ‘checkpoint-deficient’ yeast mutants

could not discriminate between different sub-operations of the mechanism. Indeed, it

turned out that some of the genes identified in the initial screens are involved in monitor-

ing (Bub1, Mad1), while others are (mainly) involved in inhibition (Mad2, Mad3, Bub3).7

Note, moreover, that this scheme is ambiguous. It is not obvious, for example, whether ‘al-

low anaphase’ is an additional component operation, or whether it simply consists in the

removal of the inhibitory activity. Nevertheless, the proposed decomposition allowed re-

7It turns out that Bub2 is not involved in the spindle assembly checkpoint, but in a different checkpoint
mechanism that ensures the correct positioning of the spindle before division.
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searchers to focus on particular aspects of the problem, thus reducing its epistemic com-

plexity.

The example also fits very well with the strategies discussed by Darden (and Craver).

Notably, it can be interpreted as a clear case of ‘schema instantiation.’ Researchers started

with an abstract ‘mechanism schema’ and subsequently filled in increasing amount of

detail. Initially, the component operations were simply ‘black boxes,’ and an important

part of the work consisted in opening these boxes by accumulating molecular knowledge.

The efforts to localize the components of the mechanism can be described, just as in

the case of protein synthesis, as proceeding from opposite directions, thereby instantiat-

ing Darden’s strategy of forward/backward chaining. Forward chaining can be found in

the investigations of Rieder et al. who managed to localize the monitoring function to the

unattached kinetochores. The fact that single molecular complexes, that are very small

compared to the volume of the whole cell, are able to keep the cell cycle arrested, led to

the idea that the kinetochores produce a diffusible signal that carries out its inhibitory

function in the cytosol. Thus, this strand of research was reasoning forward, trying to fill

in the molecular details into the scheme ‘from left to right.’ Other groups, by contrast,

such as Hwang et al., started from the other end of the chain and focused on the possible

interaction of the checkpoint mechanism with the cell cycle machinery. This endeavor

revealed the interaction of Mad2 and Cdc20 and subsequently led to the discovery of the

mitotic checkpoint complex. As we have seen, the gap between the two strands of re-

search was rather small since most of the molecules involved in inhibition were found to

localize at the kinetochores.

Thus, once the “basic plan of the signaling cascade” (Shah and Cleveland 2000) was

established, the researchers could focus on a set of manageable explanatory sub-tasks

corresponding to the individual sub-operations of the mechanism. Among these were the

following questions: How does the kinetochore detect whether microtubules are attached

in the correct way? How is the inhibitory complex (MCC) assembled? How does it inhibit

the enzymatic activity of the anaphase promoting complex (APC/C)? How is the inhibition

removed when all chromosomes are correctly attached? The explanation of these sub-

operations required them to go to lower levels and, in particular, to investigate the inner

structure of macromolecular complexes. This problem decomposition was furthermore
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reflected in a division of labor into different research projects. Most publications, apart

from review articles, focused on contributing to only one of the mentioned subtasks.

Apart from the use of the basic heuristic strategies, there is a further parallel between

this example and the discovery of the mechanism of protein synthesis. This parallel lies

in the use of a particular informational perspective. We said earlier that explanations of

the basic mechanisms of molecular genetics, such as the one discussed in Section 2.3,

relied on a conceptual detachment of the organization of informational pathways from

the underlying biochemical processes, and we made reference to Jacques Monod’s no-

tion of ‘gratuity’ in this context. Biochemistry was invoked to explain how one step in

the informational chain leads to the next, but the kinetic aspects of biochemical reac-

tions were not considered relevant for the explanation of these mechanisms. Something

very similar can be observed in this example. Biochemistry plays an important role in de-

scribing the structure of macromolecular complexes and individual reactions. However,

these investigations are used exclusively to fill in the black boxes corresponding to the

single elements in the signaling cascade. This cascade itself is represented in purely qual-

itative terms and does not rely on any detailed kinetic information about the occurring

biochemical reactions. Quantitative information about the dynamical nature of certain

reactions is occasionally mentioned, but it serves to draw conclusions about the qualita-

tive nature of the process. For example, Shah et al. (2004) measure the turnover of various

checkpoint proteins at the kinetochores. The quantitative information arising from these

measurements, however, is subsequently used to draw a qualitative distinction between

those proteins that are stably bound to the kinetochores and those that participate in the

diffusible signal.

The final point in the previous section was the observation that when describing the

mechanism of protein synthesis, biologists could restrict themselves to the description of

events occurring at the level of individual molecules. In the present example, the same

observation can be made. The overall process can again be explained by describing it in

terms of individual molecules. For instance, the total checkpoint signal is simply taken

to be the aggregate of the signals produced at the individual kinetochores. Similarly, the

signal produced by one individual kinetochore is taken to be the aggregate of the activity

of the individual molecules. The spindle assembly checkpoint mechanism, as it has been
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described in this section, once more reflects the assumption that there are no non-trivial

population effects involved in the processes of molecular biology.

2.5 Conclusion

I started this chapter by describing some very basic heuristics of mechanistic science,

drawing on work by Bechtel and Richardson (1993) and Darden (2006). Next, I discussed

two case studies of discovery in molecular biology that exemplify these basic heuristics,

but also reveal additional and more specific strategies that belong to the perspective of

traditional molecular biology.

Decomposition and localization, as described by Bechtel and Richardson, are funda-

mental strategies that scientists adopt to understand the behavior of complex systems.

The goal is to describe the behavior in terms of sub-operations that are produced by spe-

cific components of the system (that might be complex systems themselves). Since the

complexity of an epistemic task is related to the number of degrees of freedom of the

system under study, as described in Chapter 1, we can understand how the strategies of

decomposition and localization reduce this complexity: proper subsystems, of necessity,

have less parts than the system in which they are embedded. The strategies thus seem

to be well-suited for the discovery of mechanisms with a relatively small number of parts

that can be described without taking into account the whole complexity of the systemic

context. To be sure, this does not imply that the scientists assume that these mechanisms

work in isolation: we have seen, for example, that the spindle assembly checkpoint mech-

anism is conceived as tightly integrated into the general machinery of the cell cycle. How-

ever, in this case, just as in the case of the mechanism of protein synthesis, it is possible to

represent the mechanism as receiving an input from the environment and as generating

an output that can in turn serve as an input for another part of the system. For instance,

the dynamics of microtubule formation and movement are not included into the descrip-

tion of the spindle assembly checkpoint, but their attachment serves as an input to trigger

a particular response in the mechanism. Similarly, the output of the checkpoint mecha-

nism is the inhibition (or the release) of the activity of the APC/C, yet the downstream

effects of this complex do not have to be included in the description. In general, it seems
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that molecular biologists think of the mechanisms they study as quasi-independent mod-

ules, communicating via input-output relationships, and, therefore, as subsystems of a

nearly decomposable system in the terminology introduced by Herbert Simon (1962) as

discussed in Section 2.2.2. Decomposition and localization might be called ‘reductionist’

strategies in that they aim at the explanation of a behavior in terms of the parts of a sys-

tem, while weighting less the interactions of the system with entities at the same level of

description.

The strategies discussed by Darden (2006) can be understood as more specific heuris-

tics that are applied within the more general framework of decomposition and localiza-

tion. Especially the strategies of forward/backward chaining point to the prevalence of

sequential organization in the mechanistic accounts of molecular biology. Apart from di-

rect localization, which locates an activity in an individual part of the system, sequential

organization is probably the simplest form of organization. The epistemic complexity is

further reduced if one thinks of a process as a linear chain of events because one can zoom

in once more and focus on the individual links of the chain. In a recent article, Bechtel has

discussed the assumption of sequential organization in biological mechanisms:

The assumption of sequential order reflects the practices of many scientists,

who attempt to envisage sequentially the qualitative changes occurring in the

mechanisms they investigate. More fundamentally, this reflects the sequen-

tial nature of human mental processes. We perceive successive states of the

world, and in imagination we redeploy perceptual processes . . . and so imag-

ine changes sequentially. (Bechtel 2011, 536)

Bechtel highlights the features of human reasoning that incline scientists to search for

particular schemes of organization. He also mentions that sequential organization allows

them to describe mechanisms qualitatively. While this is partly true, I think that addi-

tional assumptions must be taken into account in order to understand why molecular

biologists restrict themselves to qualitative mechanistic accounts. After all, many pro-

cesses in the realm of physics or engineering are studied with quantitative methods de-

spite being sequentially organized (think for example of the investigation of a sequence

of electronic elements such as resistors and coils). My discussion of the two case studies

suggests that there are two further assumptions that underlie to the idea that qualitative
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descriptions suffice for the purpose of explaining biological mechanisms. Both of these

rely, even though differently, on the idea of mechanisms in molecular biology as processes

of information transfer.

The first assumption, for which I have employed Monod’s notion of ‘gratuity,’ is that

the transmission of information in biological systems is basically unrestricted by chemical

principles. Molecular biologists invoke biochemistry for the explanation of individual sig-

naling reactions, phosphorylation, inhibition, etc., but not for the dynamics of the overall

processes. The idea of gratuity relies on the assumption that evolutionary processes, even

though having to work with chemical ‘bricks,’ had the freedom to ‘engineer’ physiological

systems in a largely unconstrained way:

[T]he very gratuitousness of these systems, giving molecular evolution a prac-

tically limitless field for exploration and experiment, enabled it to elaborate

the huge network of cybernetic interconnections which makes each organism

an autonomous functional unit, whose performances appear to transcend the

laws of chemistry if not to ignore them altogether. (Monod 1971, 78)

The idea of gratuity is what actually enables biologists to investigate the individual links in

a sequence independently from one another: there is no dependency of the single steps

in the process on the overall organization of the system. Compare this to the example of

two resistors arranged in a series circuit. According to Ohm’s law, the voltage drop across

one of the resistors depends on the resistance of the other resistor. Gratuity in this context

would mean that we could understand what the resistor does by studying it in isolation.

Note, that this particular ‘cybernetic’ vision of living systems is conceptually independent

from the idea that all biological processes are controlled by genes. The spindle assembly

checkpoint mechanism provides an example of control in which genes are not directly in-

volved. Molecular biologists, even though they work within an informational perspective,

are not necessarily genetic reductionists.

The second assumption that I have highlighted in both examples is the fact that pop-

ulation effects are largely disregarded in the accounts of molecular biologists. In the typ-

ical descriptions of a mechanism, molecular biologists content themselves with describ-

ing what happens to individual molecules, even though they are aware that the actual

molecular players are in most cases populations of molecules. This habit relies on the
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tacit assumption that there is a simple relationship between the activity of the individual

molecule and the activity of the population. For instance, if a molecule of A inhibits the

activity of molecule B by binding to it, the expectation is that the activity of a popula-

tion of As simply inhibits the activity of a population of Bs. In particular, it is assumed

that the activity at the population level can be described qualitatively if the interaction

at the molecule is discrete. However, the effect of a population on another can in gen-

eral not simply be equated with the effect of an individual member, which can already be

seen by looking at a simple example from ecology, such as the Lotka-Volterra model. This

model describes the dynamics of two interacting species, one a predator and one its prey.

While at the level of individual members ‘predation’ implies one organism hunting and

killing another, the interactions at the population level can be more complex. The prey

population is not simply killed but depleted at a certain rate depending on the size of the

predator population. Moreover, the complex behavior showed by the model, such as the

occurrence of oscillations, can only be explained when explicitly describing the process

at the population level.

Taken together, the set of heuristics that I have outlined here, from the more gen-

eral (decomposition and localization, assumption of sequential organization) to the more

specific (gratuity, neglect of—or disregard for—possible population effects), implies a par-

ticular perspective on the organization and complexity of living systems. They facilitate

the process of discovery and at the same time suggest that we can actually achieve an un-

derstanding of biological phenomena. Epistemic complexity is reduced to a large extent

by restricting the set of expected causal structures; the main focus is, therefore, on what I

have described in Chapter 1 as the problem of search.

The heuristics discussed in this chapter do not exhaust the repertoire of epistemic

strategies employed by molecular biologists, and they should certainly not be taken as

literally representing the beliefs of individual scientists. What I have tried to find are some

general features, shared by most work in traditional molecular biology that imply a certain

idea about the intrinsic complexity of living systems. The search for mechanisms with

simple organization, that can be described in qualitative terms, rests on this idea, and

does not simply express an aversion of molecular biologists to the use of mathematical

tools.
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As I have mentioned, the label of ‘methodological reductionism’ might be used in a

meaningful way for describing the strategies of decomposition and localization. It is not

obvious, however, whether it makes any sense to call the more specific heuristics that I

have discussed reductionist, unless reductionism is taken in such a broad sense that it

applies to basically any approach of making complex phenomena intelligible (that is, to

most of science). Instead of forcing molecular biology into the pigeonhole of reduction-

ism, it seems more promising to address the particular combination of heuristic strategies

that make up its ‘epistemic toolkit.’ In this way the question of what (if anything) is new

or different in systems biology can be addressed in a more meaningful way.





3

STRATEGIES OF SYSTEMS BIOLOGY

Summary

In this chapter I discuss a number of case studies from recent work in systems biology. My

focus is on the role of mathematical tools in biological discovery, that is, in the process of

developing and revising mechanistic models. I will show how systems biology replaces

some of the heuristic strategies of molecular biology. The examples are ordered roughly

according to increasing size of the models. At first I discuss models of ‘small’ mechanisms

which continues the discussion of the spindle assembly checkpoint mechanism started in

Chapter 2. These models allow systems biologists to relax the more specific assumptions

of the traditional approach. Afterwards, I deal with the study of large networks that raise

more fundamental issues about modularity and decomposability. Finally, I discuss a re-

cent example of whole-cell modeling which proposes a particular solution to the problem

of integrating different models.

3.1 Introduction

After having characterized the approach of traditional molecular biology, I will now turn

to the question of whether systems biology provides additional, or alternative strategies

to the general project of biological discovery. As I mentioned before, systems biology is
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not one homogeneous endeavor, but rather a large collection of different approaches that

have their historical roots in various traditions of theoretical biology or other theoretical

fields studying complex systems. However, a key feature of all approaches in systems

biology is the use of mathematical tools. It is often claimed that this renewed interest

in mathematical methods is due to the accumulation of quantitative data by means of

modern experimentation:

With the availability of quantitative data on the transcriptome and proteome

level, there is an increasing interest in formal mathematical models of gene

expression and regulation. (Wolkenhauer 2001, 258)

However, being quantitative for a science is not an aim in itself, and I have argued in

Chapter 2 that molecular biology could for a long time do without quantitative methods

because of a particular view on the organization of living systems—not necessarily be-

cause of a lack of quantitative data.

In a recent article, Rasmus Winther has identified four main functions of mathemati-

cal modeling in biology (Winther 2012): unification of both models and data, model fitting

to data, mechanism identification, and prediction. Even though we will find instances of

all of these functions in the discussed examples, I argue that mechanism identification

is central to systems biology in its current form. In other words, what I want to show in

this chapter is that one of the main roles of mathematical models in systems biology is

to facilitate the discovery of mechanisms. Modeling is used as an additional tool to re-

strict the set of possible causal structures underlying a particular phenomenon. In spite

of increasing amounts of data at the level of gene expression at the RNA and protein level,

of concentrations of metabolites, of epigenetic modifications etc., most areas in molec-

ular biology are lacking knowledge about the underlying causal structures. At the same

time many of the measurements, despite being quantitative, often lack in both precision

and accuracy. This explains why instead of trying to understand the behavior of systems

whose structure is largely known, a big part of systems biology consists in figuring out

this causal structure in the first place. The following quote is taken from an article about

modeling of complex signaling networks:

We believe that modeling these important biological systems cannot wait un-

til all the rates are reliably measured, or even until all the various players and
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interactions are discovered. Indeed, the most important role of modeling is

to identify missing pieces of the puzzle. It is as useful to falsify models—

identifying which features of the observed behavior cannot be explained by

the experimentalists’ current interaction network—as it is to successfully re-

produce known results. (Brown et al. 2004, 185)

The examples I discuss in the following are supposed to substantiate this idea of mathe-

matical models as having a productive role in the discovery of mechanisms. I discuss a

number of examples in order to do justice to the heterogeneity of the field, but I am aware

that I will have left out whole strands of research in systems biology, and I can therefore

make no strong claim of generalizability.

3.2 Mathematical Models of Small Mechanisms

In this section, I want to discuss the practice of building relatively small mathematical

models of individual mechanisms that are also studied by traditional molecular biology.

Building simple mathematical models to understand and explain particular phenomena

is not an invention of systems biology, but there is a longstanding tradition of modeling

in biology that goes back at least to the models of predator-prey interactions that were

studied, for instance, by Lotka and Volterra in the first decades of the twentieth century.

Another famous historical example that has received a lot of attention from philosophers

of science (e.g. Weber 2005, Craver 2007) is Hodgkin and Huxley’s model of neural rhythms

(Hodgkin and Huxley 1952). Looking at these instances of success, one might get the

impression that modeling is mainly used in order to understand or to explain phenomena

that are somehow unexpected or puzzling, such as chaotic or oscillatory behaviors in a

system. I want to suggest, however, that an important, and perhaps the most important

role, of mathematical models of mechanisms in systems biology lies in their potential to

facilitate biological discovery. I discuss two basic strategies, ‘thin’ and ‘thick modeling,’

that can be used at different stages of the process.
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3.2.1 Example: Modeling the Spindle Assembly Checkpoint

In Chapter 2 I discussed the discovery of the spindle assembly checkpoint mechanism. I

showed how this phenomenon was explained in qualitative terms, mainly by elucidating

the structure of large macromolecular complexes and simple biochemical reactions that

instantiated an abstract ‘checkpoint mechanism schema.’ From my review of the exper-

imental literature it appeared that the basic scheme had been worked out and that the

remaining work to be done would consist in the further specification of molecular details.

However, throughout the last decade there has also been a significant number of articles

approaching the spindle assembly checkpoint from a ‘systems perspective’ (Doncic et al.

2005, Mogilner et al. 2006, Sear and Howard 2006, Ibrahim et al. 2008, Mistry et al. 2008,

Simonetta et al. 2009, Doncic et al. 2009, He et al. 2011, Dao Duc and Holcman 2012). The

aim of this section is to take a closer look at two examples in order to illuminate what

exactly a ‘systems approach’ might consist in, what its aims are, and what differences we

can find with respect to the ‘traditional approach’ of molecular biology discussed in the

previous chapter.

To begin the discussion, I will quote from a recent review that summarizes different

modeling efforts and attempts to synthesize a coherent picture of a “quantitative systems

view of the spindle assembly checkpoint” (Ciliberto and Shah 2009). In the beginning of

the article, the authors explain the particular interest in the spindle assembly checkpoint

as a target of computational modeling:

The high fidelity and robustness of this process have made it a subject of in-

tense study in both the experimental and computational realms. A significant

number of checkpoint proteins have been identified but how they orchestrate

the communication between local spindle attachment and global cytoplas-

mic signalling to delay segregation is not yet understood. Here, we propose a

systems view of the spindle assembly checkpoint to focus attention on the key

regulators of the dynamics of this pathway. These regulators in turn have been

the subject of detailed cellular measurements and computational modelling

to connect molecular function to the dynamics of spindle assembly check-

point signalling. (Ciliberto and Shah 2009, 2162)



Mathematical Models of Small Mechanisms q 105

Thus, they maintain that the mechanism, in spite of the accumulated amount of molecu-

lar details, is not yet well understood. Differently from the reviews by molecular biologists

that we have seen, however, they do not see the main problem in missing molecular data,

but rather in a missing link between “molecular function” and “the dynamics of spindle

assembly checkpoint signalling.” What exactly does this mean?

In the introduction to their review, Ciliberto and Shah write:

Given its role, it is not surprising, but yet striking, that the spindle assembly

checkpoint can delay anaphase in response to a single uncaptured chromo-

some, exhibiting excellent sensitivity. Once this last chromosome attaches,

the spindle assembly checkpoint disengages and rapidly promotes anaphase

onset. High fidelity and speed are usually competing design constraints in

manmade machines, and as such the underlying logic and quantitative mech-

anisms of the spindle assembly checkpoint are of interest to life scientists and

physical scientists alike. (Ciliberto and Shah 2009, 2162)

This shows that the checkpoint mechanism is interesting for quantitative modeling be-

cause it solves a ‘design problem’ that would provide a challenge for human engineers.

On the one hand, it has to work reliably because the fidelity of chromosome segregation

is of crucial importance for the cell. It must, therefore, be sensitive to the signal pro-

duced by one single unattached kinetochore. On the other hand, it has been observed

that anaphase onset occurs in a matter of minutes after the last chromosome attaches

(e.g. Rieder et al. 1995, Howell et al. 2000). The observation of these competing constraints

gives rise to the question of how the biological system solves this ‘design problem,’ which

would represent a difficulty for human engineers. However, taking these constraints into

account requires a quantitative and dynamic perspective on the system. To understand

whether a proposed mechanism can produce reliable inhibition, even when coming from

only one chromosome, one has to consider both the rate of the putative reaction that

produces the inhibitory signal and the diffusion rate of the signal through the cytosol.

Similarly, to understand whether the checkpoint can be relieved fast enough, one has to

take into account the rate of disassembly of the inhibitory complex as well as the time it

takes for the APC/C to carry out its activating function.

Ciliberto and Shah use the analogy of a washbasin to explain why these constraints
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might be competing (Figure 3.1). The production of the inhibitor is represented by a

faucet filling up the sink, while its dissociation corresponds to the outflow through the

drain pipe. In the scenario represented in Figure 3.1 (A), the inhibitor is constantly flow-

ing out, i.e. dissociated. This dissociation must be slow enough in order to allow for re-

liable inhibition while the checkpoint is active. In other words, a thin pipe is needed to

guarantee that the the outflow does not exceed the inflow. As a result, it takes a long time

to drain the sink: the silencing of the checkpoint is slow.

Figure 3.1 (B) proposes a possible solution to the design problem. This time, the dis-

sociation rate is high, corresponding to a wide pipe, but the checkpoint produces an addi-

tional ‘dissociation inhibitor’ that plugs the pipe. As soon as the last kinetochore attaches

to the spindle, both the faucet is closed and the plug is removed. In this way, the silenc-

ing of the checkpoint can be fast. Thus, with a slightly different checkpoint schema both

constraints can be fulfilled. This analogy illustrates what a dynamic perspective on the
Once formed, the spontaneous dissociation rate of the

MCC:APC/C complex is small as observed in vitro and in
mitotic extracts, indicating a tight interaction (Reddy et al,
2007). However, the presumed rate of dissociation, indirectly
observed in vivo after all kinetochores having attached, is
relatively rapid (Clute and Pines, 1999; Morrow et al, 2005;
Braunstein et al, 2007; JVS unpublished data). The dissocia-
tion of the MCC from the APC/C, and the deactivation of
Mad2, has been proposed by Reddy and colleagues to occur
through Cdc20 ubiquitination in the context of the MCC:APC/
C in complex with its E2 enzyme UbcH10 (Reddy et al, 2007).
This process may itself be balanced by deubiquitination by
the deubiquitinating enzyme USP44 (Stegmeier et al, 2007).
The Cdc20 modification is a non-degradative ubiquitination,
which is proposed to break the complex formed between
Mad2 and Cdc20, a role played by the generic molecule ‘A’
(Figure 2D). Given that the binding of Cdc20 and Mad2 is
expected to be a spontaneous process in living cells, this
piece of data provides a potential source of energy needed to
destabilize the complex (Simonetta et al, 2009).

It is tempting to integrate these observations into a model
of the checkpoint whereby unattached kinetochores not only
control the formation of the inhibitor but also its dissociation,
as is proposed by the modulation of A by the kinetochore
catalytic scaffold. It can be argued that with this wiring, the
spindle assembly checkpoint would guarantee a more effec-
tive inhibition and faster release of Cdc20 as compared with a
system in which signalling only controls the formation of the
inhibitor (see Box 1 for a more detailed description).

The proposed dissociation pathway has been brought into
question by recent data suggesting that Cdc20 ubiquitination
is not required for checkpoint exit but instead to keep the
level of Cdc20 low during spindle assembly checkpoint
activation (Nilsson et al, 2008) as has been observed in
other organisms (Pan and Chen, 2004). Although the details
of this mechanism remain to be clarified, the dissociation rate
of the MCC:APC/C complex more than the mechanism per se,
modulates the balance of inhibition and release and deter-
mines the basis for single kinetochore sensitivity and the
timing of spindle assembly checkpoint inactivation.

Inhibitor generation has also been implicated within the
cytoplasm in which the Mad2:Cdc20 complex generated at
the unattached kinetochore, which also contains a Closed (or
N2) Mad2 molecule, can induce Mad2 activation by dimer-
ization. Through this reaction, it can hypothetically act to
generate new active Mad2 in the cytoplasm through an
autocatalytic loop (De Antoni et al, 2005). Such activity has
been observed in vitro, but not yet in vivo (Simonetta et al,
2009). Such a cytoplasmic amplification could act as a non-
kinetochore source of Mad2:Cdc20 complexes to aid in
inhibition of the APC/C (Figure 2D).

The combination of the dissociation of the inhibitory
complex and the non-kinetochore-mediated generation of
APC/C inhibitors underscores the complex role of the cyto-
plasmic module in checkpoint activation and silencing.

Together, these modules identify the critical interfaces by
which the kinetochore, microtubules and the cytoplasm
exchange information to determine spindle assembly check-
point activity. As described below, quantitative measure-
ments and computational modelling efforts have focused on
these interfaces to provide insight into the dynamics that
regulate this pathway.

Quantitative observations of spindle
assembly checkpoint activity

The scarcity of quantitative data often hinders the under-
standing of cellular systems from a systems perspective. The
spindle assembly checkpoint, however, is a notable
exception. This field has amassed a substantial amount of
quantitative data, on which mathematical models have
developed. In this section, we will review some of the
most significant quantitative data available for the spindle
assembly checkpoint, whereas in the next section, we will

Box 1 It is well known and accepted that the spindle assembly
checkpoint helps the formation of Mad2:Cdc20, and subse-
quent MCC:APC/C complexes through the activity of
Mad1:Mad2. Recent evidence suggests that the checkpoint
could also act through stabilizing the MCC:APC/C complex.
Reddy, Stegmeier, Rape and collaborators showed that the
MCC:APC/C complex can be dissociated by ubiquitination
(Reddy et al, 2007), a reaction opposed by the deubiquitinase
USP44 (Stegmeier et al, 2007), whose activity has been found
high in mitotic extract. It is not known whether the checkpoint
indeed activates USP44 (a potential mechanism for A to A*
conversion in Figure 1). It is, however, interesting to investi-
gate the dynamical consequences of a system in which the
checkpoint only induces the formation of MCC:APC/C as
compared with a system in which it both induces its formation
and stabilizes it. The two can be described metaphorically by a
sink, in which MCC:APC/C is represented by the water accu-
mulated in the basin. If the spindle checkpoint acts simply by
favouring the production of MCC:APC/C—panel A, opening of
the faucet—we have to assume that the spontaneous dissocia-
tion of MCC:APC/C must be small compared with the influx of
MCC:APC/C for the checkpoint to efficiently inhibit APC/C
(thin pipe). As a consequence, the silencing of the checkpoint
will necessarily be dictated by the slow rate of disappearance
of MCC:APC/C resulting in a long delay between the switching
off the kinetochore (faucet is closed) and spindle assembly
checkpoint silencing (basin empty). If, on the other hand, the
spindle assembly checkpoint not only contributes with ‘faucet’
molecules (MCC:APC/C), but also with ‘plug’ molecules that
stabilize MCC:APC/C—panel B—the dynamics can be quite
different. Here, we can imagine that a fast rate of MCC:APC/C
dissociation (wide pipe) is masked by the activity of the
checkpoint (plug in wide pipe). As soon as the kinetochores
are attached, not only does the influx of MCC:APC/C cease
(faucet is closed) but the inhibition is relieved as well (plug is
removed) and Cdc20 can be re-activated (basin empty) with a
much faster pace. Here, we discuss this activity through the
species ‘A’ that has yet to be verified or provided with a
molecular correlate. However, the emerging modelling and
molecular data suggest that such a pathway is likely to be
present.

Box 1 Dynamical regulation of inhibitor generation and
dissolution: Faucets, Sinks and Plugs

Quantitative view of the spindle checkpoint
A Ciliberto and JV Shah

The EMBO Journal VOL 28 | NO 15 | 2009 &2009 European Molecular Biology Organization2166

Figure 3.1: Two scenarios for the dynamic regulation of the spindle assembly checkpoint
(SAC). For explanation see text. Source: Ciliberto and Shah (2009).

mechanism can contribute. The activities of the mechanism are not represented as if they

were the actions of individual molecules, but in terms of changing quantities, which cor-

respond to the concentrations or copy numbers of the different molecular species. At the

same time, it becomes clear that such a dynamic vision must also take into account the

‘systemic’ nature of the mechanism. This is to say that the different steps in the process

cannot be modeled independently since their dynamic features might depend on each
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other. The scenario in Figure 3.1 (A) illustrates this kind of dependency. The slightly more

complicated model in Figure in (B), by contrast, relieves the dependency by introducing

an additional activity into the schema.

In order to deal with the dynamic nature of the mechanism, Ciliberto and Shah pro-

pose an approach that interprets its basic activities of terms of signaling modules:

[T]hese activities, inhibition on the one hand and release of that inhibition

on the other, must support the widespread observation of a single unattached

kinetochore delaying the onset of anaphase. Moreover, the coupling of these

activities and their relative dominance must be controlled entirely through

kinetochore attachment to permit the rapid transition to anaphase on kineto-

chore attachment. Each of these activities: inhibitor generation, release from

inhibition and kinetochore attachment are themselves complex signalling path-

ways involving a myriad of molecular components. A systems view of spindle

assembly checkpoint signalling focuses our attention onto the communica-

tion between signalling modules that are likely to govern the quantitative dy-

namics of this pathway. (Ciliberto and Shah 2009, 2163)

As we have seen, the conceptualization of a mechanism in terms of functional modules

is implicit also in the traditional approach of molecular biology. In Chapter 2 I discussed

how molecular biologists decompose a mechanism into separate activities, which allows

a reduction of epistemic complexity since each step in the process can be addressed in-

dependently. The molecular biology strategy requires, however, that the interaction be-

tween the modules is straightforward. Investigating each activity as an independent step

in a sequential process, it ignores the ways in which the properties of different modules

might depend on each other. The idea of the systems approach is to focus instead on the

communication between the modules. Epistemic complexity is reduced as well, but this

time by black-boxing molecular detail within each module. As the authors of the review

explain, with their systems view they “modularize the complexity of the components into

the key communicating elements” (Ciliberto and Shah 2009, 2162).

The motivation for using a coarse-grained perspective in terms of modules, however,

must not necessarily lie in the belief that these modules represent the ‘real’ parts of the

mechanism, or that the project of figuring out the molecular structure in detail is mis-
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guided. Mainly, the strategy serves to make the task well-constrained as a modeling prob-

lem. Even though the research on the spindle assembly checkpoint “has amassed a sub-

stantial amount of quantitative data” (Ciliberto and Shah 2009, 2166), this does not au-

tomatically enable scientists to build useful quantitative models at the molecular level.

The reason for this lies in what Jeremy Gunawardena has called “the parameter problem”

(Gunawardena 2010).

The Parameter Problem

The essence of the parameter problem is captured by the famous expression, that has

been attributed to John von Neumann: “with four parameters I can fit an elephant, and

with five I can make him wiggle his trunk” (quoted in Dyson 2004, 297). In an ideal world

every parameter of a model would be determined by independent measurement; in bi-

ological practice, however, most properties of interest cannot be directly measured, and

even those measurements that can be obtained might have been made in conditions dif-

ferent from those that are relevant for the model. For instance, many measurements

of biochemical properties are performed in vitro, but the corresponding in vivo values

might differ substantially (e.g. Minton 2006). The result is that virtually every quantitative

molecular model in biology must rely on a number of unknown parameters. One possi-

ble way out is to try to find the missing parameters by fitting them to experimental data.

This essentially means that one simulates a proposed model with different combinations

of parameters and picks out the set of parameters that best reproduces the observed be-

havior of the target system. Obviously, for large numbers of parameters one might have to

try a lot of combinations, but nowadays there are computational algorithms that greatly

facilitate this procedure.

However, the problem that von Neumann’s statement raises is that models with a large

number of free parameters are able to reproduce a wide variety of behaviors. This is

maybe best understood as a generalization of the theorem that for every n datapoints

one can find a polynomial of degree n − 1 that goes through all the points. So the fact

that we find a mathematical function that reproduces the data does not tell us anything

about the world because it is a result of pure mathematics. If we are confident that the

structure of our model matches the causal structure of the target system, then parameter
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fitting is a way to obtain measurements that might otherwise be unavailable. However, as

will become clear, mathematical modeling in systems biology is often used as a strategy to

determine this causal structure in the first place. If a model has many free parameters, the

fact that the model accounts for the data might largely be due to mathematical reasons,

and not because the model matches the target system.

There are two strategies to cope with the parameter problem, corresponding to what

Gunawardena calls “thick” and “thin” models (Gunawardena 2010, 26). Thick modeling is

acceptable when enough empirical data of the right kind are available. Here one tries to

bring the assumptions of the model as close to reality as possible and, therefore, accepts

a large number of unknown parameters. Most commonly, one ‘trains’ the model with a

part of the available data, and afterwards tries to reproduce or predict other data. De-

viations between predicted and observed behavior can then be exploited to modify the

structure of the model. Thin models, by contrast, include only what are assumed to be

the essential causal features of the system. These models can be tested against a small set

of observations and generic physical constraints.

I will now turn to examples of both strategies that will illuminate their roles in the

discovery and explanation of biological mechanisms. More specifically, I will present two

different ways of modeling the spindle assembly checkpoint: Doncic et al. (2005) is an

example of thin modeling, whereas Doncic et al. (2009) may be classified as thick. The

fact that both strategies have been followed by the same research group indicates that

they are not mutually exclusive or competing.

A Biophysical Model: Doncic et al. (2005)

The first article by Doncic et al. presents a comparison of three different models of the

spindle assembly checkpoint mechanism in budding yeast. These models are evaluated

with respect to the two basic requirements that were above identified as competing de-

sign constraints. According to the first constraint, which goes back to the experiments

by Rieder et al. (1995) mentioned in Chapter 2, one single unattached kinetochore must

be able to maintain the inhibition of the APC-Cdc20 complex. Secondly, the checkpoint

inhibition must be removed very quickly since cells have been observed to proceed to

anaphase in a matter of a few minutes after the attachment of the last kinetochore. Con-
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cluding from the analysis of their models, Doncic et al. confirm that these are in general

competing constraints; in other words: “improving inhibition comes at the expense of

activation time and vice versa” (Doncic et al. 2005, 6335). In the end the authors find

that only one of the three proposed models passes the test of properly fulfilling the two

requirements.

All three model variants are loosely based on molecular knowledge, but there is no

strict identification of model components with specific proteins, and the main focus is

on the role of physical constraints. The cell nucleus is modeled as a sphere with one sin-

gle kinetochore located in the center as a subsphere with significantly smaller radius (see

Figure 3.2). The molecular processes are characterized by a set of reaction-diffusion equa-

of protein diffusion, which defines the time it takes for the signal
to spread throughout the nucleus. Measurements of protein
diffusion constants within cells have consistently found diffusion
constants of the order of 0.3–3 !m2!s!1 (28–30), approximately
an order of magnitude less than the diffusion of molecules of
similar molecular weight in water.

The parameters that quantify checkpoint function Tb and Ac
also are constrained. A normal metaphase for budding yeast
takes "15 min (31) and consists of two phases: a checkpoint-
dependent phase before the chromosomes attach and a check-
point-independent phase where a cascade of reactions triggered
by APC activation culminates in cohesin degradation and chro-
mosomal separation. In the budding yeast, this second phase
lasts for "5 min (5). Due to these facts, we estimate Tb to be no
longer than 3 min.

Finally, although the precise level of APC–Cdc20 inhibition
that is required to prohibit premature chromosomal segregation
was not yet measured, we assume that to maintain good inhibi-
tion, at least 95% of the local c molecules should be inhibited,
corresponding to an Ac # 0.05. Together, those limits define the
‘‘working range’’ required for efficient checkpoint performance
(Fig. 1B). We note that assuming different threshold level of Ac
does not change our qualitative results but merely shifts the
boundary of this working range.

Direct Inhibition Model. We used mathematical modeling to ex-
amine the compatibility of different checkpoint mechanisms
with the physical constraints described above. Three models
were formulated that correspond to alternative propositions of
how the kinetochore inhibitory signal is controlled (Fig. 2 A–C).

Fig. 2. Three possible models of the mitotic spindle checkpoint. (A) The direct inhibition model. Here the c proteins are only inhibited at the kinetochore itself.
(B) The self-propagated inhibition model. The c proteins are inhibited at the kinetochore itself but also can catalyze the inhibition of additional c molecules
everywhere in the nucleus at some rate ". (C) The emitted inhibition model. Here the kinetochore catalyzes the formation of an inhibitory complex e*, which
diffuses and inhibits the c molecules everywhere at some rate #. The activated complexes also can decay spontaneously at some rate $, and the total amount
of e complexes is denoted as Etot. Note that the inhibited complex c* actually consists of both c and e. A scheme of each model is shown in A–C, and the
corresponding equations are shown in D–F. G–L display an example of the steady-state activation level before the attachment and the temporal increase in
activation once the kinetochore is attached for a typical set of parameters: Df $ Di $ 1 !m2!s!1, kinetochore size % $ 0.01 !m, & $ 0.02 s!1, " $ 0.38 !M!1!s!1,
# $ 2.5 !M!1!s!1, Etot $ 10Ctot, and $ $ 0.1 s!1. Note that all concentration units are defined by the amount of c molecules, which is taken here as 1,000. Changing
this number will somewhat change the levels of # and ", but it will have no effect on our qualitative results.

6334 ! www.pnas.org"cgi"doi"10.1073"pnas.0409142102 Doncic et al.

Figure 3.2: Three ‘thin’ models of the spindle assembly checkpoint. The panels in the
upper row show the geometrical setup and basic reaction scheme of the ‘direct inhibition
model’ (A), the ‘self-propagating inhibition model’ (B), and the ‘emitted inhibition model’
(C). Panels D–F show the corresponding sets of reaction-diffusion equations. Source:
Doncic et al. (2005).

tions which describe both spatial and temporal changes of the molecular concentrations

as well as the chemical interactions. Geometrical scale, reaction rates, and diffusion con-

stants are chosen in agreement with known general properties of cellular systems. The at-
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tachment process is simulated simply by setting all kinetochore dependent reaction rates

to zero. In all three models it is assumed that the transition into anaphase is triggered

by one component, called c, which diffuses through the nucleus. The checkpoint pre-

vents this transition by inhibiting c through a mechanism that is specified differently in

each model. Since the models lump the contributions of various molecular players into a

small set of core activities, this is a clear case of thin modeling. As the authors explain:

We did not simulate the full complexity of the network underlying the check-

point but, rather, compared classes of mechanisms. Each class may be real-

ized by a range of molecular machineries, but its essence can be summarized

by a simple model, composed of just a few components. (Doncic et al. 2005,

6336)

In order to quantitatively evaluate the functional requirements, two read-outs are pro-

posed. First, the inhibitory capacity of the checkpoint is measured by determining the

steady-state fraction Ac of uninhibited c close to the nuclear boundary. Second, the rate

at which the checkpoint is removed is quantified by Tb , the time it takes to get the frac-

tion of uninhibited c above 90%. From observations in yeast, Doncic et al. infer that Tb

should not be longer than 3 min., while the allowed level of inhibition is (arbitrarily) set

to Ac < 0.05. These two constraints define the ‘working range’ of the mechanism, which

means that a model is acceptable only if it satisfies both. In the following, I will give brief

(qualitative) descriptions of the three proposed models. Further information is provided

by Figure 3.2.

Direct Inhibition Model This model incorporates the simplest idea of checkpoint inhi-

bition. It is assumed that the inhibitory activity of the checkpoint is locally restricted to

the site of the kinetochore. If a c molecule hits the kinetochore, it is instantaneously trans-

formed into the inhibited form c∗. Inhibited molecules spontaneously lose their inhibi-

tion at a constant rate α. Doncic et al. report that, for realistic parameters, the checkpoint

performance is always outside the working range, which means that either the inhibition

is not tight enough or that the removal of inhibition is too slow. Due to its simplicity, Don-

cic et al. are able to derive analytic solutions for the model behavior. In this way they

find that Tb and Ac depend in opposite ways on α, the decay rate of inhibition. High val-
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ues of α, corresponding to tight inhibition, always go along with very slow removal times.

Conversely, if one chooses α small enough to fulfill the time constraint, the resulting in-

hibition is very poor. From the analysis of their first model the authors conclude: “Taken

together, it appears that a system that relies solely on inhibition at the kinetochore itself

cannot support good inhibition while maintaining rapid reactivation time” (Doncic et al.

2005, 6335).

Self-Propagating Inhibition Model The second model is based on the idea that the

inhibitory signal is amplified through a positive feedback loop. The underlying biologi-

cal interpretation is that the catalytic reaction at the kinetochore produces a molecular

species that can itself catalyze an inhibiting reaction away from the kinetochore, (as had

been suggested, for example, by De Antoni et al. 2005.) Mathematically speaking, this

simply amounts to an extension of the first model with the additional feature that an in-

hibited c∗ can bind to an uninhibited c at a rate κ and catalyze its inhibition anywhere

in the nucleus. The authors find that this extended model easily gives rise to sufficient

inhibition. However, due to the fact that the catalytic activity away from the kinetochores

persists after the attachment, the system remains inhibited. More generally, the feedback

loop becomes locked at high values of κ, producing a steady state that is independent of

the attachment. In the limit of small values for κ, the model reduces to the direct inhibi-

tion model. The authors report that for intermediate values of κ and realistic parameters

neither of the two checkpoint requirements are met. They conclude from this that the

second model can be excluded as a candidate for the real mechanism as well.

Emitted Inhibition Model Finally, the authors consider a model with an additional molec-

ular species e that represents an inhibitory complex. In order to carry out its inhibitory

role, this complex must first be transformed into its activated form e∗. The activation re-

action takes place at the kinetochore, and has the same form as the transformation c → c∗

in the previous models. The activated complex then diffuses away from the kinetochore

and transforms the c molecules into the inhibited form c∗. The authors report that the

emitted inhibition model shows both sufficient inhibition and rapid reactivation times

after the attachment. In addition, the model is consistent with the now widely accepted

idea that the kinetochores catalyze the assembly of a diffusible ‘mitotic checkpoint com-
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plex’ (MCC) that inhibits the APC/C away from the kinetochores.

A Reverse Engineering Approach: Doncic et al. (2009)

In this more recent work Doncic et al. adopted a fundamentally different strategy to which

they refer as a ‘reverse engineering’ approach. Instead of focusing on the essential prop-

erties of the mechanism and analyzing the role of physical constraints, they attempted

to capture the spindle assembly checkpoint network in full detail. They began by formu-

lating a very general model that includes basically all of the molecular players known to

be involved, but leaving open which are the relevant interactions between them. Specific

parameter choices could then be used to generate different network topologies from this

general scheme. Each choice can be interpreted as a hypothesis about the actual mecha-

nism. The key idea was to compare the predicted behavior from a particular instance of

the model to the phenotypic behavior of real cells under a set of different conditions. The

instance of the model that best matched the observations was shown to reflect some of

the features of the real checkpoint network.

The general model incorporates a biological picture according to which the core pro-

teins of the checkpoint interact at the kinetochores and promote diffusible factors that

can inhibit Cdc20. The model is composed of five ‘checkpoint factors’ (Mad1, Mad2,

Mad3, Bub1, Bub3), that correspond to the proteins that were identified in the first check-

point related yeast screens (see Chapter 2), plus two ‘outside factors,’ Mps1 and Ipl1,

which correspond to proteins that are assumed to promote the kinetochore association of

the checkpoint factors. In the most general form of the model, each factor can potentially

activate each of the checkpoint factors. This corresponds to a network with five nodes for

the checkpoint factors, each having four possible edges representing the connections to

the other factors plus one additional edge connecting to an outside factor. Each edge can

be assigned a direction (determining who activates who), and a weight between 0 and 1

indicating the strength of the interaction (Figure 3.3). Checkpoint function is controlled

via the inhibition of the APC:Cdc20 complex, either by sequestration or by degradation of

Cdc20. However, only a subset of the checkpoint factors, namely Mad2, Mad3, and Bub3,

and the possible complexes formed between them, can contribute to inhibitory activities.

Each of the inhibitory elements can contribute to sequestration and degradation accord-
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Figure 3. The SAC-proteins promote Cdc20 sequestering and degradation. A. A model representing the interactions of the SAC core
proteins on the kinetochores was formulated. Each SAC protein was represented by a node and each node was connected to five edges. The edges
represented possible activations from the four other SAC proteins or from some external source. The ten edges connecting the SAC proteins were all
assigned a direction and a value between 0 and 1, representing the relative strength of the interaction. The five external activations were only
assigned a value. An interaction whose value is set to zero does not exist. Hence by randomizing the interaction directions and their weights our
model can capture a vast number of different kinetochore interaction networks. In the end the relative activity of Mad2, Mad3 and Bub3 was
obtained. B. An example kinetochore interaction network. C. Mad2, Mad3 and Bub3, whose relative activity level was determined by the kinetochore
interactions, can inhibit Cdc20, either by forming complexes or by themselves. Each activated factor (protein/complex) is assigned two values: one for
its relative sequestering strength and one for its relative strength of degradation. Again, the values varied between 0 and 1. The relative degree of
sequestration and degradation for each factor was calculated as the product of the kinetochore activities of all its components multiplied by the
specific sequestration/degradation rate for this factor and normalized with the ‘total’ sequestering/degradation (see Equations 2–6). It is known that
Bub3 alone does not promote Cdc20 inhibition [51] and that Mad2 alone does not degrade Cdc20 [52] hence we exclude these activated proteins
from the computational screen. D. An example set of sequestering and degrading proteins and complexes: for simplicity, the constant contributions
are omitted here.
doi:10.1371/journal.pone.0006495.g003
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Figure 3.3: The network underlying Doncic et al.’s reverse engineering approach. A shows
the general network with all possible interactions, while B corresponds to one particular
instantiation. Source: Doncic et al. (2009).

ing to a given weight. The total inhibition rate is then given by summing the contributions

from all the elements.

The output of the model, the level of active APC:Cdc20 during an active checkpoint,

must somehow be connected to a measurable phenotype. One feature that can be used

to assess correct functioning of the spindle assembly checkpoint, and that can be easily

quantified in yeast cells, is the chromosome missegregation rate (CMR). If the checkpoint

does not function properly, chromosomes will be separated even in the presence of im-

perfect attachments. This leads to cells with either too few or too many chromosomes.

In order to make the connection with their model, Doncic et al. assumed that the CMR is

proportional to the level of active APC:Cdc20. The underlying idea is that the more of it

there is, the more likely it is that anaphase will be initiated prematurely, leading to errors

in chromosome segregation. This move allowed them to predict the impact of deletions

of network components on the CMR for any network topology. To identify the topology

that comes closest to the actual checkpoint, they searched for the best overall fit with a

set of mutant yeast strains in which key checkpoint proteins were deleted.

The actual reverse engineering part of the procedure consisted of an experimental

and a computational step. First, in a series of experiments, the CMR of wild type yeast

cells and of mutants deleted of either of the genes Bub1, Bub3, Mad1, Mad2, Mad3 were

determined. The second step consisted of a computational screen through thirty million

possible networks, comparing the output of each to the measured CMRs of the mutants.
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The networks differed in their edge configurations and corresponding activation values,

as well as in the types of sequestering and degrading complexes. The screen identified

a total of 105 networks that were consistent with the measurements of the five pheno-

types within 5% of the experimental values. A cluster analysis enabled them to reduce

this number to 82, by removing all redundant solutions. In order to further restrict the

set of possible solutions, they compared the remaining models to the CMRs of two mu-

tants carrying the double deletions mad1mad3 and mad2mad3. Experimentally, they ob-

served a strong buffering effect in the double mutants, meaning that the CMR was far

lower than the product of the rates in the mutants carrying the individual deletions. Only

two of the remaining networks accurately predicted this buffering effect. Of these, the au-

thors in the end excluded one by arguing that it “appeared less plausible since it relied on

highly improbable interactions and complexes” (Doncic et al. 2009, 7). The final result of

this reverse engineering procedure, therefore, was one specific model that describes the

structure and function of the (cell cycle arresting part of the) spindle assembly checkpoint

network.

Concluding their article, the authors emphasize that their model reproduces estab-

lished and previously hypothesized interactions of the real network even though they

“made no assumptions about their existence” (Doncic et al. 2009, 9). It seems, therefore,

that the strategy is successful in predicting structural features from behavioral data.

3.2.2 Discussion: Thin and Thick Modeling

In both of the examples that I just presented, modeling is used as a strategy for discovery.

Models are not built based on known causal structures in order to investigate their prop-

erties. Instead, modeling is used to decide between possible structures. In both cases the

starting point is a set of possible mechanisms that are consistent with known molecular

knowledge and, at least at first sight, plausible explanations of observed behavior.

Doncic et al. (2005) provide three different models, each of which represents a whole

‘class of mechanisms.’ By abstracting from most of the molecular details, they are able to

cover a large set of possible molecular structures with a small number of models. Each

model is simple enough to derive fairly general claims about its behavior under varying

parameter values. The goal of this work is not to explain the spindle assembly checkpoint,
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even though, as a by-product, it might provide understanding by elucidating how certain

causal structures bring about certain behaviors. Instead, its main interest is to compare

different models with respect to their ability to fulfill specific design constraints. As we

have seen, only one of the proposed models meets these constraints. Nevertheless, it is

not proclaimed as the actual mechanism of the checkpoint. The more important result

is negative: Certain types of causal structures are not able to account for the observed

behavior, and every proposed molecular mechanism must be evaluated with respect to

these constraints. The authors cannot guarantee that their selection of models exhausts

all possible checkpoint mechanisms, and whether the actual checkpoint mechanism fol-

lows the successful ‘emitted inhibition model’ can be established only on the basis of ad-

ditional molecular knowledge.

The authors can exclude some proposed mechanisms because they take into account

constraints that do not appear in the mechanistic models of molecular biologists. Firstly,

they quantify the observed behavior: it is not enough that the checkpoint is released after

attachment, but it must be released within a certain time. Information about upper limits

of the rates of chemical reactions are important to evaluate whether a proposed mech-

anism can fulfill this time constraint. Similarly, it is not sufficient to show that one type

of molecule is able to inhibit another, but inhibition must be strong enough in terms of

the fraction of inhibited molecules. The interaction between an inhibiting and an inhib-

ited species is a chemical reaction that produces a dynamical equilibrium in which there

always remain a number of uninhibited molecules. The chemical perspective, therefore,

implies a reasoning in terms of populations of molecules, which we found to be largely

missing in traditional molecular biology. Inhibition has different meanings depending

on whether one talks about populations or about individual molecules. The activity of a

single molecule is inhibited if it is bound to its inhibitor, whereas the activity of the pop-

ulation is inhibited if the number of uninhibited molecules is below a certain threshold.

A further consequence of quantitatively accounting for the chemical reactions is that the

strength of inhibition gets connected to the timing for the release from inhibition. This is

exactly what was illustrated in Ciliberto and Shah’s washbasin model (Figure 3.1). Aside

from that, the models of Doncic et al. (2005) take into account the spatial properties of

the system: inhibition must be strong everywhere in the nucleus, and not only near the
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kinetochore. Limits of possible diffusion rates of proteins, therefore, set further important

constraints on the possible signaling mechanism.

It has to be noted, though, that this strategy of thin modeling involves trade-offs. It

seems that in order to serve as powerful heuristic tools, the proposed models must be

of low complexity.1 In Doncic et al.’s work we can find instances of both minimal and

Galilean idealization (see Chapter 1). First of all, Doncic et al. lump a whole network of

interactions into a minimal number of effective reactions. This is not an assumption they

want to test, but it is a requirement of their strategy. Moreover, they make simplifying as-

sumptions, such as the idealized spherical geometry of the system or the conservation of

the numbers of all interacting particles. Especially this latter assumption is problematic

since it has been shown that some of the components are actively degraded during and

after a checkpoint arrest. In general, their models can capture only mechanisms that ap-

proximately fulfill these underlying assumptions. To the extent that these are unrealistic,

the overall strategy cannot amount to a strict criterion to exclude candidate mechanisms.

Let us now turn to the reverse-engineering approach pursued in Doncic et al. (2009).

Since it explicitly incorporates all relevant molecular species, it can be understood as an

instance of ‘thick’ modeling. Its aim appears more ambitious than that of the previous

project:

Our previous work focused on the essential properties of the SAC, but did not

attempt to capture the full details of the network. Here, we attempted to pro-

ceed beyond this general description and examine the possibility of deducing

the detailed interactions between the checkpoint proteins using the quanti-

tative phenotype of gene deletion mutants. (Doncic et al. 2009, 2)

For this reason, the proposed model is much more complex than the models in Doncic

et al. (2005). In its general form it can describe all the possible interactions between dif-

ferent components, but it initially leaves open which of them actually do occur and with

what strength. The point of this particular work is to show that reverse-engineering is

able to detect a network topology that matches the findings of molecular biology. It is,

therefore, best understood as a proof-of-principle for reverse-engineering as a general

1What I mean by the complexity of models is essentially the number of free parameters. For a more
general discussion of why simpler models might be better tools, see Hitchcock and Sober (2004).
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approach to biological discovery.

As I discussed in Chapter 1, the starting point of discovery is usually a vast number

of possible causal structures. Traditional molecular biology aims at establishing the ac-

tual structure ultimately by directly checking the putative interactions between molecular

components. As we have seen in the last chapter, this can be extremely tedious and re-

quires sophisticated experimentation. Even though the discussed heuristic tools make

the search much better than random, many findings in molecular biology appear to be

largely the result of serendipity. The reverse-engineering approach, by contrast, promises

an unbiased and systematic approach to discovery. It simply screens through all possible

structures and selects those that are consistent with the observed systemic behavior. It

relies only on information that is relatively easily accessible, and it seems to require much

less tinkering with the experimental system. The success of Doncic et al.’s strategy raises

the question of why one should go through the tedious experimental work at all. The

reverse-engineering approach, however, is not as straightforward as it may seem, and I

want to briefly highlight some crucial assumptions and possible drawbacks.

Obviously, screening through a large set of different parameter settings requires a lot

of computing power. To check 30 million different sets, as done in this example, might not

pose a serious problem. However, moving to more complex models and larger numbers

of free parameters might quickly make computing power the limiting factor. Moreover,

due to what I have referred to as ‘the parameter problem,’ one needs a suitable set of

quantitative data to sufficiently constrain the search. Doncic et al. had to create seven

different yeast single mutants and two double mutants in order to perform their screen.

They observe:

The number of free parameters over which we screened was rather large, and

we compared them to only seven quantitative phenotypes that were derived

to a limited resolution. In addition, some parameters not screened over were

fixed by literature values, which are again, known only to some limit. It is

interesting that despite these inevitable limitations, the reverse engineering

theme was quite successful in pinpointing the key features of the checkpoint.

This [makes] us optimistic regarding further developments in this direction.

(Doncic et al. 2009, 2)
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Note, however that a sufficient number of viable mutant strains (or other suitable pertur-

bation datasets) cannot always be generated easily. Aside from that, it should be men-

tioned that Doncic et al.’s screening was efficient in part because of various simplifying

assumptions in the model. First of all, they took into account only steady state solutions

and did not capture any of the dynamic interactions involved in the initiation or relieve

of the checkpoint. Second, they assumed that the activation levels of the molecular com-

ponents were linearly dependent on each other and that there were no feedback loops

in the network. A third crucial simplification was to assume the proportionality of APC

level and chromosome missegregation rate. Moreover, as can be seen in the supplemen-

tary material to their article, Doncic et al. did not treat all possible networks in the same

way. They distinguished between ‘known’ and ‘putative’ interactions, giving the latter less

weight in the screening. Certain topologies were not allowed from the start on the grounds

of empirical knowledge, and ‘redundant’ solutions, that is, solutions producing the same

activation levels of the output variables or containing ‘insignificant edges,’ were excluded

as well. Thus the procedure eventually yielded a unique solution not due to its ‘algorith-

mic’ nature, but because existing molecular knowledge was used to exclude many of the

possible network topologies. I mention all this not to discredit the reverse-engineering

approach, but rather to give an impression of how much simplification and biological

input is needed to perform a sufficiently constrained parameter screen. The fact that

simplifications are needed reveals the strategy as clearly heuristic in nature. These sim-

plifications imply unwarranted assumptions, which makes it necessary to check specific

results by other, more reliable means.

3.2.3 Conclusion

In this section I have discussed two examples of modeling the mechanism underlying the

spindle assembly checkpoint. This mechanism is known to consist of a relatively small

network of components, and a considerable amount of molecular knowledge has been

accumulated regarding their interplay. As we have seen in Chapter 2, molecular biologists

have gained a basic understanding of how the mechanism works, but they have not yet

filled in all the molecular details.

Systems biologists directly build on the findings of molecular biology, and they are in-
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terested in the solution of the same epistemic puzzle of how the mechanism works. Yet,

they propose a different strategy for solving it. As I have shown, the primary role of sys-

tems approaches in this context is not simply to explain complex behavior on the basis

of known molecular interactions, but to use mathematical modeling as an additional tool

for discovery. Describing the phenomenon and the hypothesized causal structure quanti-

tatively allows systems biologists to detect discrepancies between proposed mechanisms

and reality. Moreover, the introduction of physical and biochemical constraints can lead

to the exclusion of mechanistic models, even if they are considered plausible candidates

by traditional molecular biologists.

More specifically, I have discussed two strategies, ‘thin’ and ‘thick’ modeling, even

though the difference between them might be considered a matter of degree. Both strate-

gies can be understood as strategies to exclude candidate mechanisms. Thin models

are restricted to capturing the essential activities underlying a phenomenon and thereby

stand in for large classes of possible mechanisms. Such models are evaluated with re-

spect to very basic constraints, due e.g. to time, space, limits of possible reaction or dif-

fusion rates, etc. In this way it is possible to uncover inconsistencies in the proposals of

molecular biologists and to suggest candidate mechanisms that are consistent with these

constraints. It has to be noted, however, that in order to be powerful as heuristics, thin

models rely on, at times crude, idealizations. For this reason, molecular biologists might,

sometimes rightly, reject such models as ‘distortions’ and consider the claims made by

systems biologists as irrelevant to the plausibility of their proposals. However, a valuable

role of thin models might be to raise the standards that proposed models must fulfill.

Thick modeling seems more likely to escape objections since it aims at describing

mechanisms at the same level of detail as molecular biologists do. Due to the resulting

increase in the number of free or underdetermined parameters, however, this strategy

requires more quantitative data. With the help of modern computing power it seems fea-

sible to screen high-dimensional parameter spaces and to find unique solutions, provided

that the problem is sufficiently constrained. In the discussed example, however, we have

seen that a solution could eventually be found only with the help of many simplifying

assumptions and background knowledge.

Earlier in this section I quoted Ciliberto and Shah (2009) who promoted a modular ap-
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proach to modeling the spindle assembly checkpoint. What distinguishes this approach

from the traditional approach of molecular biology is not the fact that a system is decom-

posed into modules, but rather that the focus is on the organization of, or communica-

tion between, modules. As the discussion of my examples shows, this strategy involves

a trade-off between the amount of molecular detail that can be incorporated and the

level of organization that can be described. The thin models discussed in Doncic et al.

(2005) comprise both the inhibition and the release parts of the mechanism, whereas the

thick model in Doncic et al. (2009) only attempts to describe the system during an arrest,

thereby focusing on only one of the modules of checkpoint activity.

In Chapter 2 I presented the general strategy of molecular biology as a hierarchal set

of heuristics that together imply a particular view on the complexity and organization of

living systems. The kind of modeling presented in this chapter can do without some of the

more specific heuristics. However, as we have seen, it introduces other assumptions and

effectively replaces some of the more specific strategies in the hierarchy with alternative

heuristics. It is important to keep in mind this heuristic character of modeling and not

simply to replace a ‘molecular vision’ with a ‘modular vision of life’ (cf. Hartwell et al.

1999).

3.3 Studying Large Networks

The examples of modeling that I discussed in the previous section are committed to the

same basic decompositional strategy as the traditional accounts of molecular biology.

They start with the goal of explaining a particular well-defined behavior in terms of a rela-

tively small number of parts. Thus they rely on the same general perspective of functional

modularity, even though they introduce different strategies to tackle complexity within

the modules they are studying.

However, the system-wide study of the architecture of living organisms, as revealed in

the various ‘-omics’ projects, suggests that underlying many of the behaviors of biologi-

cal systems are large networks of interacting components. It is not obvious whether the

strategies to deal with small mechanisms can simply be scaled up:

[M]ost biological characteristics arise from complex interactions between the
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cell’s numerous constituents, such as proteins, DNA, RNA and small molecules.

Therefore, a key challenge for biology in the twenty-first century is to un-

derstand the structure and the dynamics of the complex intercellular web

of interactions that contribute to the structure and function of a living cell.

(Barabási and Oltvai 2004, 101)

Albert-László Barabási, one of the authors of the article from which this quote was taken,

is best known for his research in network theory. Along with others, he has proposed that

the tools of this theory should be applied to biological systems as well.

Network theory was developed in the 1930s, largely within the social sciences. It be-

came more widespread in its applications when connections with mathematics, espe-

cially graph theory, were established in the 1950s. The basic idea is to represent a sys-

tem, in a very abstract way, as a series of nodes that are connected by links standing for

pairwise interactions or relationships. One of the aims of the theory is to find quantita-

tive measures of network properties in order to classify different types of networks. Net-

work theory gained considerable popularity across the scientific community after it was

shown around the turn of the millenium that networks as different as the world wide web,

electrical power grids, and metabolic networks share some unexpected features, such as

the property of being scale-free (Jeong et al. 2000). If a network is completely random,

most nodes have roughly the same number of links, or degree.2 In scale-free networks, by

contrast, the degree distribution follows a power law, that is, the probability that a given

node has k links is P (k) ∼ K −γ for some positive exponent γ. This means that most nodes

have only very few links, while there are a few nodes, called ‘hubs,’ that are highly con-

nected. The fact that many different types of networks share this non-random property

led many scientists, and notably biologists, to expect that the general concepts of network

theory had the potential to reveal deep underlying principles and might increase our un-

derstanding of large complex systems (Keller 2005).

The study of universal properties of networks, however, did not turn out to be as fruit-

ful as expected in biology. Nevertheless, many systems biologists hope that more specific

network approaches, that elaborate on the concepts from network theory, will lead to im-

portant progress in the study of complex biological systems:

2‘Random’ in this context refers to the process of network construction, i.e. links between nodes are
created randomly, with every possible link having the same probability of being chosen.
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By itself, the fact that a network has scale-free properties is of limited use to

biologists. Power laws occur very widely in nature and can have many differ-

ent mechanistic origins. If we wish to obtain testable biological insights, we

must probe further into the substructure of the network. (Bray 2003, 1865)

In the following, I will discuss two different approaches of building on the basic insights

of network theory. The topic of Section 3.3.1 will be the search for network motifs which

represents a strategy to decompose large systems into smaller units even when there is

no intuitive functional decomposition. The network motif approach appears promising,

even though it has to deal with a number of specific objections that are mainly linked to

assumptions about the evolution of biological networks. However, some systems biolo-

gists argue more radically that one loses important biological understanding by decom-

posing large networks. In Section 3.3.2 I will discuss an alternative proposal according to

which it is best to conceive of these networks as large dynamical systems since they show

simple and coherent behavior at the macrolevel.

3.3.1 Decomposing Networks: Network Motifs

Network Motifs: The Basic Idea

The study of network motifs can be interpreted as an attempt to go beyond the investiga-

tion of global features of large networks. The approach has been developed mainly by the

group of Uri Alon at the Weizman Institute in Tel Aviv, focusing on the properties of tran-

scription networks of relatively simple, unicellular organisms such as E. coli or yeast. In

his “Introduction to systems biology,” Alon describes the ambition of his work as follows:

Our goal will be to define understandable patterns of connections that serve

as building blocks of the network. Ideally, we would like to understand the dy-

namics of the entire network based on the dynamics of the individual building

blocks. (Alon 2007, 27)

On this view, networks are not simply large assemblages of interconnected genes or pro-

teins, but they are constituted of ‘building blocks,’ that is, substructures that are situated

somewhere between the level of the single node and the level of the whole network. These

building blocks reveal themselves through recurring patterns of connectivity, or ‘motifs.’
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The key idea behind the search for motifs in a network might be called a ‘reverse en-

gineering’ strategy. However, differently from the example I discussed in the previous

section, its goal is not to determine the structure of molecular interactions underlying a

particular behavior. Instead, one starts with the structure of a network and tries to make

inferences on function. The search for motifs ideally begins with a complete description

of the network’s topology, that is, a map containing all the nodes and edges, and then ap-

plies a criterion of statistical significance to identify recurring patterns within subgraphs

of the network. In order to find such a criterion, the network under study is compared to

a computer-generated ensemble of randomized networks. These randomized networks

share general characteristics, such as number of nodes and edges, with the real network,

but the connections between their nodes are made at random. Network motifs are those

patterns of connections that are found much more often in the real network than in the

randomized networks. Their overrepresentation suggests that they are biologically mean-

ingful and might play specific roles in the network, an idea that Alon supports with an

evolutionary argument:

[E]dges in network motifs must be constantly selected in order to survive ran-

domization forces. This suggests that if a network motif appears in a network

much more often than in a randomized network, it must have been selected

based on some advantage it gives to the organism. If the motif did not offer

a selective advantage, it would be washed out and occur about as often as in

randomized networks. (Alon 2007, 29), emphasis in original)

To illustrate the basic idea of the approach, I will discuss the example of the autoregu-

lation motif in the transcription network of the bacterium E. coli (Rosenfeld et al. 2002);

Alon 2007, Chapter 3). This bacterium is one of the best studied organisms at the level

of gene regulation, and a substantial amount of information regarding the interactions

of regulatory proteins and their associated binding sites, as well as the organization of

regulatory features have been integrated in the database RegulonDB (Huerta et al. 1998).

Transcription networks essentially consist of genes and transcription factors. By bind-

ing to specific regions of DNA, transcription factors, which are gene products themselves,

can regulate the rate of transcription of a set of target genes. The bacterial transcription

network can be understood as a sensory network, that is, its overall task is to respond to
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signals such as changes in nutrient concentrations and external stresses. The autoregu-

lation motif is very simple; it consists of only one node with an edge that originates and

ends in that very node. At the biological level this corresponds to a transcription factor

that directly regulates the transcription of its own gene. Alon and co-workers observed

that the autoregulation motif occurs 40 times in the bacterial transcription network, in

contrast with an expected number of one in a corresponding randomized network. The

large overrepresentation of this motif translates into a statistically significant difference of

32 standard deviations! This finding suggests that the autoregulation motif is biologically

meaningful.

One of the points that Alon stresses repeatedly is the fact that only a small number

of all possible network motifs can be found in biological networks. This can best be ap-

preciated when considering motifs consisting of several nodes. For instance, there are

13 possible three-node directed subgraphs, of which the simple feedback and the feed-

forward loop (FFL) are well-known examples (Figure 3.4). By applying the same strategy

used to discover the autoregulation motif, Alon and co-workers were able to show that

the feed-forward loop is the only significant motif among the 13 possible three-node pat-

terns in the bacterial transcription network. Even more striking is the case of four nodes:

there are 199 possible four-node patterns, but only two of them turn out to be significant

motifs in the transcription network. Apparently, among the many conceivable patterns,

biological networks make use of only a few, or, as Alon puts it, “these networks are much

simpler than they could have been” (Alon 2007, 45). A more exhaustive analysis shows

that overall only four families of network patterns appear to be significantly represented

in sensory transcription networks. The same kind of simplicity is found in other types of

biological networks, such as developmental, signal transduction, or neuronal networks,

even though they differ as to which are the significant families of motifs.

Functional Analysis of Network Motifs

Naturally, the question arises why it is that particular motifs are highly overrepresented in

biological networks, while others are suspiciously absent. Addressing this question, how-

ever, forces biologists to go beyond a purely topological perspective on networks. The

biological systems described as networks are obviously not static structures, but systems
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Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24 ).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of
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Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
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Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Figure 3.4: All types of three node connected subgraphs, including the feed-forward (5)
and the feedback (9) motifs. Source: Milo et al. (2002)

whose components dynamically interact and thereby carry out complex functions, such

as responding to environmental changes or controlling developmental processes. There-

fore, in order to get at the putative biological significance of network motifs, one must

focus on dynamic properties. By comparing the dynamic behavior of isolated motifs to

dynamics produced by alternative possible structures, one might understand what func-

tional benefit a particular motif provides for the whole network. This strategy was devel-

oped under the name of ‘mathematically controlled comparison’ in the 1970s and applied

in the theoretical study of biochemical systems (Savageau 1976; see also Wall et al. 2004).

Today, it can be applied on the basis of experimentally characterized systems, which has

led to a complementary strand of the analysis of network motifs. To illustrate this type of

analysis, I will again focus on the motif of autoregulation (Alon 2007, Chapter 3).

In our discussion we have so far neglected the fact that the edges in networks some-

times carry signs. These signs can become relevant when we turn to a functional analysis

of network motifs. The directed edges in transcription networks, for example, can either

represent activation or repression, based on the observation that a transcription factor

can either increase or decrease the rate of transcription of a target gene. The large ma-

jority of the 40 autoregulatory proteins in E. coli have been found to repress their own

transcription and are thus examples of negative autoregulation. In order to understand

the putative functional significance of this motif, it is useful to compare it to the case of

a simply regulated gene. Simple regulation means that a gene product Y is produced at a

constant rate βY and degraded at a rate αY ·Y proportional to its own concentration. The
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change in concentration over time can be expressed by the simple differential equation:

dY

d t
=βY −αY ·Y . (3.1)

It can be shown that in the absence of external perturbations, a steady state is reached

whose level is given by the ratio of the production and degradation rates:

Yss = αY

βY
. (3.2)

A further quantity of interest is the response time of a variable in a dynamic process, de-

fined as the time it takes to reach the halfway level between the initial and the final state.

Regarding the regulation of a gene, one is usually interested in two cases: the process to

reach the steady state from an initial concentration of zero, or the reverse case in which

the concentration drops to zero after the production has been ‘switched off.’ It turns out

that in the case of simple regulation, the response time for both processes is the same and

given by:

T Y
1/2 =

log(2)

αY
. (3.3)

Now consider the case of a negatively autoregulated protein X . Autoregulation means

that the production rate is dependent on the level of X itself. Its dynamics can therefore

be described by the following type of equation,

d X

d t
= f (X )−αX ·X , (3.4)

with some function f that describes this dependence. The simplest way to capture the

idea of negative autoregulation is to use a logical approximation for the form of f . This

means that if X is below a certain threshold K , its promoter is ‘on’ and X is produced at

a constant rate, or f (X < K ) = βX . As soon as X reaches the threshold, the promoter is

‘switched off’ and the protein production instantaneously drops to zero, or f (X ≥ K ) = 0.

It can be shown that a more realistic description of the production rate, for instance using

Michaelis-Menthen kinetics for promoter activity, yields very similar results. A protein

whose dynamics comes close to the logical approximation has a steady state that is equal
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to the threshold value of its own promoter:

Xss = K , (3.5)

and the response time to reach half of the steady state level starting from zero is given by:

T X
1/2 =

K

2βX
. (3.6)

Comparing these expressions with the steady state and the response time of a simply

regulated gene, one can draw several conclusions. One reason why the design of negative

autoregulation might have been selected for is the robustness of its steady state level to

fluctuations in other biological parameters. For a simply regulated gene, the steady state

linearly depends on its production rate which can substantially fluctuate over time due

to different stochastic effects, the availability of nucleotides and amino acids, the number

of ribosomes, etc. The repression threshold K of a promoter, by contrast, is a ‘hardwired’

parameter since it depends only on the chemical structure of specific molecules and as

a result shows much less fluctuation. Negative autoregulation has increased robustness

because the steady state level depends only on K (Eq. 3.5).

Becskei and Serrano (2000) studied the dynamic properties of negative autoregula-

tion experimentally by constructing a synthetic circuit in E. coli that could be directly

compared to its simply regulated counterpart. The construct consisted of a fusion of the

fluorescent protein GFP with TetR, a transcription factor that represses its own produc-

tion. Simply regulated control circuits were produced either by mutating the DNA bind-

ing domain of the repressor, or by replacing the operator elements in the promoter. Their

experiments revealed that autoregulation can dramatically reduce the variation in protein

levels among different cells, thus confirming the robustness property of the motif.

A second possible advantage of autoregulatory design is its potential to speed up the

kinetics of transcription. The response time in the simply regulated case is slow, especially

for long lived genes since, according to Eq. (3.3), it is inversely proportional to the rate of

degradation. Increasing degradation in order to achieve faster response times would re-

quire constant production and turnover of the protein and, therefore, impose substantial

energy costs on the cell. For a negatively autoregulated gene, by contrast, the response



Studying Large Networks q 129

time is proportional to the promoter threshold K and inversely proportional to the pro-

duction rate βX (Eq. 3.6), and. Therefore, the response time can be speeded up, inde-

pendently of the degradation rate, by using a strong promoter and a suitable threshold.

The promoter guarantees a fast initial increase in concentration, but the repressor shuts

off the production as soon as the desired steady-state level has been reached. Working

with the same experimental system that Becskei and Serrano had used, Rosenfeld et al.

(2002) showed that the response time of the negative autoregulatory circuit is indeed

much shorter than that of the simply regulated one. Strikingly, the response time is re-

duced to about one fifth for the autoregulatory circuit, which matches the theoretically

predicted (parameter-free) value of 0.21 for Michaelis-Menthen kinetics in the limit of

strong autosuppression.

This brief discussion shows how the statistically identified network motifs can be ana-

lyzed with respect to their potential function in a biological context. Similar analyses have

been carried out for other types of network motifs, and there is evidence that these have

been selected due to their specific functional properties as well.

Recomposing the Network

The functional analysis of network motifs reveals aspects in the architecture of networks

that appear beneficial from an engineering standpoint. It shows, for instance, that certain

features convey robustness to perturbations, reduce detrimental variability, or are energy

efficient solutions to a given task. However, with this result in mind, the question of how

to explain the working of large networks is merely reformulated: How do we explain the

behavior of the whole network in terms of the properties of the motifs? People advocating

the network motif approach attempt to show that there is a tractable relationship between

the behavior of individual motifs and the overall behavior of a network.

Alon (2007) argues that only four families of network motifs can be found in sensory

transcriptional networks such as the one of E. coli. What is more, these families seem to

cover virtually all of the genes in the network. Aside from the discussed example of the

autoregulation motif, one finds feed-forward loops (FFLs), single-input modules (SIMs),

and dense overlapping regulons (DORs). By aggregating the single nodes of the network

into these four groups, one can achieve a relatively compact representation of the whole
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network (Figure 3.5).

letter
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Fig. 3 Part of the network of direct transcriptional interactions in the E. coli data set, represented using network motifs. Nodes represent operons, and lines represent transcriptional regulation, directed so that the regulating tran-
scription factor is above the regulated operons. Network motifs are represented by their corresponding symbols (Fig. 1). The DORs are named according to the common function of their output operons. Each transcription factor
appears in only a single subgraph, except for transcription factors regulating more than ten operons (‘global transcription factors’), which can appear in several subgraphs. For an image of the entire network, see Web Fig. A online.

© 2002 Nature Publishing Group  http://genetics.nature.com

Figure 3.5: Top: Full representation of the transcriptional network of E. coli. Source:
Freyre-Gonzalez and Trevino-Quintanilla (2010). Bottom: Compact representation of the
same network using network motifs. Source: Shen-Orr et al. (2002).

DORs are considered to be the main ‘computing’ units of the network since each of
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them regulates a whole set of ‘output’ genes by combining the incoming signals from a

large group of transcription factors. A first important observation derived from the visual

representation of the network is that it contains only one layer of DORs (represented by

the big boxes in Figure 3.5, bottom). This is to say that there are no DORs regulating other

DORs: “[M]ost of the computation done by the network is done at a cortex of promot-

ers within the DORs” (Alon 2007, 90). Moreover, most of the other motifs appear to be

integrated within this layer:

The FFLs and SIMs are integrated within the DORs. Many of the FFLs are

multi-output, with the same X and Y regulating several output genes. Negative

autoregulation is often integrated within FFLs and also decorates the master

regulators of SIMs. Overall, the rather simple way in which the network mo-

tifs are integrated makes it possible to understand the dynamics of each motif

separately, even when it is embedded within larger patterns. (Alon 2007, 90),

emphasis added)

Thus the structural analysis of a network in terms of motifs reveals a very particular and

hierarchical organization of the whole network which also suggests modularity in func-

tional terms: One can interpret the smaller motifs as carrying out particular dynamical

subroutines, while the larger chunks in the network generate the complex computational

responses that the cell employs to cope with environmental stimuli. This picture is fur-

ther supported when taking into account the biological function of the output genes of

the network. As the compact representation in Figure 3.5 shows, each of the DORs can

be assigned to a particular biological function such as carbon utilization, osmotic stress

etc. Overall, an idea of comprehensive understanding of the behavior of the whole net-

work emerges, even though many details, notably the functional analysis of the less sim-

ple modules, still need to be filled in.

Heuristic Aspects of the Network Motif Approach

As we have just seen, the strategies of searching for network motifs and analyzing their

dynamical properties serve the broader epistemic task of explaining the behavior of large

networks. I have described them in some detail in order to give an impression of the way

in which they reduce the complexity of this task.
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Differently from the modeling strategies discussed in Section 3.2, the network motif

approach does not apply the heuristics of decomposition and localization—apart from

the fact that it takes the network as a whole as responsible for a particular function of the

whole organism. Even though the aim is ultimately to explain the behavior of a complex

system, this behavior does not directly guide the investigation as in the case of the tradi-

tional approach. Instead, the first step is to represent the structure of the complete system

topologically and to look for peculiarities in this structure. The success of this strategy re-

lies on several assumptions about the system, and the best way to reveal these is perhaps

to discuss some of the criticisms that have been put forward against the network motif

approach.

These criticisms come from various directions. Some scholars object to specific tech-

nical issues, while others raise more substantive concerns. As we will see, however, they

are all related since the technical assumptions are often inseparable from the way in

which the underlying biological system is conceived and represented. Evidence under-

mining the biological significance of network motifs is often produced with the help of

computer simulations of network evolution, while other types of studies are based on the

analysis of existing empirical data, or on targeted experiments.

The work by Artzy-Randrup et al. (2004), for instance, scrutinizes the network motif

approach from a statistical perspective, interpreting Alon’s strategy as an instance of hy-

pothesis testing. The null-hypothesis in this context is that a particular structure in the

network has no functional significance. The authors argue that the method of finding

motifs based on comparison with randomized graphs “can lead to the wrong interpreta-

tions if the underlying null-hypothesis is not posed carefully” (Artzy-Randrup et al. 2004,

1107). In order to illustrate the potential dangers, they construct ‘toy networks’ with dif-

ferent generation rules and show that these can reveal significant abundance of network

motifs when compared to the random graphs used, for instance, by Milo et al. (2002),

even though they clearly have no function. One of their networks, for example, is based

on a neighbor relation between different nodes, which can be interpreted as resulting

from a spatial arrangement of the nodes, like that of neurons on a neural connectivity-

map. In the generation of this network, the nodes are connected to nearby neighbors with

higher probability. Another model follows the rule of ‘preferential attachment,’ which has



Studying Large Networks q 133

been argued to apply to various biological scale-free networks. According to this rule,

new nodes connect preferentially to nodes that are already well-connected. In both of

these cases the authors found that some motifs, notably the FFL, are significantly over-

represented. Since these toy networks do not include any selective rules, they are alterna-

tive candidates for null-models in the search for network motifs. As the authors suggest,

the choice of a different model for comparison potentially leads to very different results.

Their overall point, however, is not to dismiss the network motif approach completely,

but merely to point out the technical difficulties concerning the choice of the right null-

model:

As such, the actual process by which a network is generated, even if it is free of

selection for or against particular motif functions, can strongly bias an anal-

ysis that seeks to determine the quantitative significance of motifs. (Artzy-

Randrup et al. 2004, 1107)

They conclude with the cautious remark that “these techniques need to be developed

further before design principles can be deduced with confidence” (Artzy-Randrup et al.

2004, 1107).

Other critics have objected more directly to the biological perspective underlying the

network motif approach. The arguments they put forward, however, focus on the same

basic issue of the right model for comparison and simply push the point further. The net-

work motif approach presupposes that the processes generating the randomized and the

real networks are equivalent in all relevant respects, except for the occurrence of selective

pressures to which only the real network is subjected. Deviations in structural proper-

ties from the randomized networks are then interpreted as direct consequences of these

selective pressures. Consequently, the overabundance of certain network motifs is taken

as a strong indicator of adaptive value. This line of reasoning has been criticized on the

grounds that the randomized models might be inadequate representations of the actual

processes of network growth and evolution in the absence of selective pressures. In a

short review article, called Are network motifs the spandrels of cellular complexity?, Solé

and Valverde (2006) argue that network motifs are likely to be by-products of the rules

of genome growth. This means that the motifs are indeed examples of spandrels, in the

terminology that was introduced in a famous article by Stephen Jay Gould and Richard
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Lewontin (1979). Originally, ‘spandrel’ is an architectural term that refers to the triangu-

lar space between two arches (Figure 3.6), and it was discussed by Gould and Lewontin

Figure 3.6: One of the spandrels of St. Mark’s cathedral in Venice. Source: Gould and
Lewontin (1979).

as an analogy for a particular type of evolved organismal feature. With reference to the

particularly impressive exemples of spandrels that can be found in St. Mark’s Cathedral in

Venice, they write:

The design is so elaborate, harmonious and purposeful that we are tempted to

view it as the starting point of any analysis, as the cause in some sense of the

surrounding architecture. But this would invert the proper path of analysis.

The system begins with an architectural constraint: the necessary four span-

drels and their tapering triangular form. They provide a space in which the

mosaicists worked; they set the quadripartite symmetry of the dome above.

(Gould and Lewontin 1979, 582)
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By means of this analogy, Gould and Lewontin wanted to draw attention to the weak-

nesses of an exaggerated ‘adaptationist program,’ according to which each apparently

useful feature of an organism requires an adaptive explanation. Against this view, which

they perceived as mainstream in evolutionary biology, they pointed out that there were

many organismal features that owed their existence to processes other than selection for

adaptive value. Like the spandrels of St. Mark’s cathedral, many traits appear simply as

by-products of other, genuine adaptations.

Applying this term in the context of network motifs, Solé and Valverde directly object

to the idea that motifs have been individually selected due to their functional benefits.

While Artzy-Randrup et al. merely wanted to direct attention to the possible biases in-

troduced by inadequate statistical methods, Solé and Valverde make the much stronger

claim that network motifs are no more than epiphenomena of the process of network evo-

lution. In support of this position, they cite recent work on artificial regulatory networks

(ARNs) by Kuo et al. (2006). Such networks are generated by processes that simulate the

evolution of real gene networks, involving, for instance, genome duplication events and

sequence divergence. The resulting networks are found to share global features, such as

the property of being scale-free, with real biological networks. But more importantly, they

show distributions of network motifs that are very similar to those found in the regulatory

networks of E. coli or S. cerevisiae. Since no selective processes were simulated in the

generation of the ARNs, the authors conclude:

[T]he topologies obtained are directly related to the method of construction.

This might indicate that such topologies in natural networks may be a result

of the way they are created rather than being explicitly molded by evolution.

(Kuo et al. 2006, 192)

A complementary approach to study the functional role of network motifs in silico,

simulating the application of selective pressures on artificial networks, was adopted by

Knabe et al. (2008). They evolved groups of ARNs to exhibit particular behavioral re-

sponses and subsequently compared them among each other and to a group of randomly

evolved networks. The initial expectation was that the algorithm would lead to the selec-

tion of useful motifs specific to the imposed functional requirements. Contrary to this ex-

pectation, however, they observed considerable variation of subgraph patterns between



136 q Strategies of Systems Biology

the networks in each condition. Moreover, the differences in pattern distribution between

the different conditions were not statistically significant. Reflecting on their results, the

authors note:

[O]ne might expect that motifs reflect evolved function. However our results

show this view may be too naive—there was no convergence on the same sin-

gle motif or a small set of switching motifs, and uniqueness of motifs was

not observed. Instead a wide variety of network patterns and topologies was

found. (Knabe et al. 2008, 73)

These results support the idea that network motifs are by-products of the network

generating process and do not reflect design features that have been optimized by natural

selection. By itself, however, this does not imply that they are functionally meaningless.

In fact, the very comparison to ‘spandrels’ alludes to the possibility of playing particular

roles within the network, in spite of not having been selected for these roles.3

Another article cited in Solé and Valverde’s review, however, makes the even stronger

claim that network motifs are not functional units. Mazurie et al. (2005) created and

analyzed an ‘integrated network representation’ of S. cerevisiae, containing information

about both transcriptional regulation and protein-protein interactions. Their analysis

reveals that only four instances of motifs occur in isolation, whereas the large majority

(= 500) are integrated into larger sub-networks. Furthermore, they studied “in detail the

role of motifs in the case of the best-documented genetic sub-networks and biological

functions where such motifs are found” (Mazurie et al. 2005, R35.5). In virtually all of

the pathways and subsystems they looked at, they found that the motifs do not seem to

play any central regulatory role. Considering these findings, they stress that usually sev-

eral layers of regulation must be taken into account to get an adequate idea of biological

function:

At the moment, it is a fact that all the examples studied highlight the high

level of integration of different regulatory mechanisms acting altogether [sic].

Reception and processing of cellular signals cannot be reduced to transcrip-

tional regulation and protein-protein interaction switches. Other mechanisms

3One of the central points stressed by Gould and Lewontin was that there could be features with adaptive
value that are not adaptations, the latter comprising only those that have been selected for their adaptive
value.
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such as phosphorylation, triggered degradation, protein sequestration and

transport, and higher-order multimerization are central to the logic of the

sub-networks . . . . A qualitative impression surmised from the visible aggre-

gation and nesting of the motifs with the rest of the network is that a ‘pure’

modular functional behavior is not very likely to occur. (Mazurie et al. 2005,

R35.8–9)

This suggests that the network motif perspective underestimates the complexity of the

actual system because it focuses only on some properties while ignoring others. In fact,

this reveals the studied system as an ‘interactionally complex’ one (Wimsatt 1972; for fur-

ther discussion see Chapter 1). Mazurie et al.’s results suggest that in order to understand

its behavior, it is necessary to complement the network perspective with a molecular ap-

proach that is able to incorporate additional types of interactions.

The perhaps most interesting piece of evidence regarding the functional significance

of network motifs was directly produced in the laboratory.4 In an impressive series of ex-

periments, Isalan et al. (2008) constructed 598 E. coli strains carrying artificial gene con-

structs to create the effect of network rewiring due to gene duplication events. Each of the

constructs consisted of (the transcribed region of) a gene, coding either for a transcrip-

tion factor or for a transcription initiation factor, fused to a new promoter. In this way

new network paths were created connecting the inputs of the regulatory region to differ-

ent outputs. Many of these insertions created radical changes in the network topology

since they affected connections “at the top of the network hierarchy” (Isalan et al. 2008,

840), including transcription factors regulating hundreds of other genes. Strikingly, they

observed that 95% of the new networks were well tolerated by the bacteria, and contrary

to commonly held assumptions they found that, “at least when it comes to altering regu-

latory inputs, the hub genes do not appear to be the Achilles’ heel of the network” (Isalan

et al. 2008, 840). Even though the author’s main interest was to assess the potential of such

rewired networks for evolvability, they also addressed implications for the viability of the

network motif approach:

Overall, the results indicate a very complex rewired network response, sug-

4The work of Isalan et al. has also been discussed from a philosophical perspective by O’Malley and Soyer
(2012), with a focus on the role of integration in systems biology.
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gesting that dissection into small network motifs may only lead to useful in-

sights in some cases. (Isalan et al. 2008, 841)

And again towards the end of the article:

[P]artition of a network into small modules (negative feedback, feed-forward,

and so on) could in some cases be misleading, as the behaviour of these mod-

ules is affected to a large extent by the rest of the network in which they are

embedded. (Isalan et al. 2008, 844)

The idea that a network can somehow respond ‘globally’ to dampen the effect of pertur-

bations is in general not easily reconciled with a modular perspective. The sometimes

puzzling nature of biological robustness is surely part of the reason why it is such a widely

discussed topic in systems biology (e.g. Kitano 2004). In Chapter 4 the issue of explaining

such robustness will be taken up again and discussed in more depth.

Overall, the discussion has revealed a variety of criticisms of the network motif ap-

proach. Some of them can be read as a request to be more careful in choosing a null-

model, or at least to be more cautious about the interpretation of the results. These types

of criticisms have inspired more refined strategies to prove the significance of network

motifs. Other critics, as we have seen, more generally question the applicability of ‘inverse

approaches’ to biological networks. Studies like the one by Knabe et al. (2008) suggest that

a mapping from network topology to function is not obvious, and that often many differ-

ent topologies are able to perform the same function. In response to this, there have re-

cently been very detailed investigations of the potential complexity of ‘function-topology

maps’ in biological networks. Ma et al. (2009), for example, systematically explored circuit

architectures that are capable of a particular behavior called ‘adaptation,’ the ability of a

sensory network to respond to a change in input stimulus and then to return to the initial

level, even when the stimulus persists.5 They computationally investigated the complete

set of 13 608 three-node topologies and for each of these searched through 10 000 sets

of kinetic parameters in order to find circuits displaying adaptation. With respect to the

general idea of heuristics, it is interesting to see how they justify their exclusive focus on

small topologies:

5Adaptation is a common feature of sensory systems in biology. A well-studied example is the phe-
nomenon of chemotaxis in E. coli (e.g. Barkai and Leibler 1997). An analysis of this case study from a
philosophical perspective can be found in Braillard (2010).
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Although most biological circuits are likely to have more than three nodes,

many of these cases can probably be reduced to these simpler frameworks,

given that multiple molecules often function in concert as a single virtual

node. By constraining our search to three-node networks, we are in essence

performing a coarse-grained network search. This sacrifice in resolution, how-

ever, allows us to perform a complete search of the topological space. (Ma

et al. 2009, 762)

Their method thus involves an explicitly acknowledged trade-off between computability

and resolution. As a result of their analysis, they find that there are only two classes of

solutions that achieve robust adaptation: A negative feedback loop with a ‘buffer’ node

and an incoherent feedforward loop with a ‘proportioner’ node. The fact that there is

only a limited number of solutions for a particular functional task revives the hope of

understanding network behavior in terms of motif decompositions.

The network motif approach is valuable as it suggests a way in which we can under-

stand the behavior of large biological systems. It reduces the complexity of this task by

assuming a particular organization that is, similar to the traditional approach, heavily

based on functional modularity. However, some of the criticisms that I discussed seem to

point towards the fundamental worry that the decomposition into modules is not a good

heuristic strategy for the understanding of large biological networks. If modularity—as a

topological property—turns out to be a mere by-product of network growth, and not the

result of an explicit selection for specific motifs, then a separate argument is needed to li-

cense the inference from structural to functional decompositions. In the absence of such

an argument, one might still hold that decomposition is the only way to obtain tractable

representations of networks. Yet, one can also find approaches in systems biology that

aim at an understanding of global network behavior without relying on any functional

decomposition. One of these will be discussed in the following section.

3.3.2 Tracing Global Network Behavior: Cell Fate Attractors

In his 2004 article Back to the biology in systems biology: What can we learn from biomolec-

ular networks?, the systems biologist Sui Huang draws attention to ‘globalist’ approaches

within systems biology. He observes a clear divide between two camps of biologists in
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general (Fig. 3.7) and argues that, regarding their vision of biological complexity, even

systems biologists mostly remain within a ‘localist’ perspective that continues in the path

of molecular biology:

networks,8–10 has led to a recent spate of
publications in which the topology
(‘wiring diagram’) of molecular networks
was analysed.11–18 When reading the
literature, however, it is important to be
aware of two camps of researchers with
philosophically opposite mindsets and,
hence, disparate motivation. These two
camps can be labelled the ‘globalists’ (or,
‘generalists’) and the ‘localists’ (or,
‘particularists’) (Table 1). Historically, a
similar polarisation existed in brain
research, with globalists emphasising the
idea that the entire network of neurons in
the brain collectively determine
behaviour by distributed information
processing, while the localists believed
more in localising a brain function to a
particular anatomical region.19 It is now
known that both were right.
The first wave of work on genome-

wide networks was conducted mostly by
physicists in the globalist’s perspective, so
that networks were analysed in a more

general sense, ie as an entity in their own
right.11,12,14,15,20 In this globalist’s
abstraction the identification of individual
genes and their relationships and functions
were not the primary objectives of
analysis. Thus, this early work on
networks failed to attract the attention of
scientists in the localists’ camp, which
consists largely of mainstream molecular
biologists habituated to characterising
specific genetic pathways one at a time.
There is a sharp, natural, but

unarticulated intellectual disconnect
between the two camps because of the
fundamentally different motivation of the
two groups of scientists. The globalists are
typically interested in ‘deeper’ principles
of complex systems,21–24 they are attracted
to biology as a new source of complexity,
which led to the notion of
‘biocomplexity’.25–28 They now seek
molecule-specific data, made possible by
technological advances, to validate their
ideas.

A similar polarisation
between ‘localists’ and
‘globalists’ existed in
brain research

Table 1: Polarity of two points of view in network biology. The table represents a caricature of extreme positions for
illustration purposes.

The ‘localist’ (‘particularist’) view
(Those who see the trees first)

The ‘globalist’ (‘generalist’) view
(Those who see the forest first)

Level of original focus Gene- and pathway-centric Network-centric
New field created ‘Systems biology’ ‘Biocomplexity’
Use of hypothesis Hypothesis at level of individual pathways. No systems-

level hypothesis: research becomes ‘discovery-driven’.
Example hypotheses:
‘Gene A inhibits Gene B, is required for function X, etc.

Hypothesis at systems level concerning generic design
of network and network position of genes
Example hypotheses:
‘Hub proteins are important’
‘Power-law architecture favours ordered dynamics’

Philosophy System is complicated
Properties of systems lie in the property of the
components
Comprehensiveness.
The whole equals the sum of the parts

System is complex
Higher-order system properties emerge from
collective behaviour of components
Holism
The whole is different from sum of parts

Practical aims of study To characterise exhaustively the biochemistry of (all)
individual pathways and their ‘functions’
To describe idiosyncrasy

To understand generic aspects of genome-scale
networks as an entity with its higher-order properties
To understand universality

Gene identity in models Of primary interest. Specific models with nominal genes
and their idiosyncratic properties

Of secondary interest. Models with anonymous genes
as generic entities may sometime suffice

Network topology Precise biochemical characterisation and categorising of
physical and regulatory interactions in specific pathways

Analysis of large scale features, based on global
statistics of local network features (degree distribution,
modularity, clustering)

Network dynamics Detailed modelling of individual small circuits (modules)
in separation as a low-dimensional dynamic system

Global dynamics of network
maps into whole cell behaviour (cell fates)

Function Focus on local cellular functions (eg protein synthesis,
vesicle transport, filopodia extension, DNA repair, etc)
associated with a specific pathway

Emphasise emergent whole-cell behaviour, such as
switch between discrete cell phenotypes (cell fates)

Typical non-biologist partners Computer scientists, engineers Physicists
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Huang

Figure 3.7: Huang’s distinction between localist and globalist views in biology. Source:
Huang (2004).

[T]he localists’ view is rooted in classical molecular biology, hence is shaped

by decades of devotion to the study of individual cellular pathways that repre-

sent to them linear causal relationships. But the prevalence of pleiotropy and

convergence in cell signalling, and of crosstalk between pathways, has led to

the increasing awareness that understanding gene function requires that one

reaches beyond the narrow focus on individual pathways. (Huang 2004, 284)

According to Huang, a ‘globalist’ approach is necessary to capture higher-order properties

of genome-scale behavior. Following such an approach, however, implies leaving behind

the ‘engineering perspective’ inherited from traditional molecular biology with its focus

on small circuits and its assumptions of local optimization. He urges instead that systems

biologists move towards a ‘physics perspective’ that investigates the generic properties of

large complex systems in the spirit of Stuart Kauffman (e.g. Kauffman 1969, 1974, 1993).

The results of the application of network theory to biological systems play an important
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role in his own approach. However, he appears unconvinced of the network motif ap-

proach and above all emphasizes those features of large biological networks that defy the

localists’ efforts of decomposing them into small modules. An example of such a fea-

ture is the existence of so-called giant components in many biological networks. In the

yeast protein-protein interaction network, for instance, a significant fraction (> 75%) of

all proteins belong to one large cluster of connected nodes (e.g. Yook et al. 2004), a find-

ing which, even though it does not conflict with network modularity per se, points to the

relevance of coordinated behavior at the systemic level. Moreover, differently from the

network motif approach, which took network structure as the exclusive starting point,

Huang underlines the importance of system behavior. A global approach is necessary,

on his view, to account for the fact that complex wholes, such as cells, tissues, or organs,

often show a coherent behavior that appears to be both simple and robust. The prime

example for Huang is cellular differentiation:

[C]ells in multicellular organisms exhibit a simple, coherent whole-cell be-

haviour which may precisely reflect a higher-order dynamics of the global net-

work: the switching between cell fates. This strictly regulated, rule-based sys-

tems behaviour is robust and remarkably simple compared with the complex-

ity of the underlying molecular network. (Huang 2004, 291), emphasis added)

Huang’s strategy to understand this simple behavior at the cellular level, is to apply the

conceptual apparatus of dynamical systems theory to the representation of large net-

works. The basic idea is to describe the state of the network at a given moment as a vector

S(t ) in a high-dimensional state space, whose elements are the states of all the individual

components of the network (e.g. molecular concentrations). The state of the system can

thus be thought of as a point that moves in the state space, along a trajectory that is dic-

tated by the dynamical rules. It has to be admitted that the idea of directly investigating

the dynamic properties of whole-cell models consisting of thousands of variables is, at

least at present, far-fetched (for the state of the art, see Section 3.4). On the one hand,

because precise measurements of most of the kinetic parameters to build such a model

are missing, on the other hand—and more importantly perhaps—because the investiga-
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tion of such a model would by far exceed the currently available computational powers.6

In spite of these obvious shortcomings, the theoretical framework of dynamical systems

theory can nevertheless be of use as it provides a number of conceptual tools for the ra-

tionalization of qualitative systems behavior. Perhaps the most prominent of these is the

notion of an attractor. An attractor is a set in state space towards which the system evolves

if it is initially within a nearby region (called the attractor’s basin of attraction). The most

straightforward examples of attractors are stable equilibrium states (point attractors) and

periodic orbits such as limit cycles, but more complicated cases have been found, such

as the strange attractors, with fractal structure, that are investigated in chaos theory. At-

tractors are stable by definition, which is to say that a system will remain in or near an

attractor, even if it is slightly perturbed. This property is especially interesting when it

comes to understanding the robustness of biological phenomena.

Huang’s aim is to show that the concepts of dynamical systems theory, notably the no-

tion of attractor, can be productively applied to the investigation of cellular development:

[T]he dynamics of a network with attractor states naturally captures the es-

sential properties of cell fate dynamics, including mutual exclusivity, robust-

ness and all-or-none transitions between cell fates in response not to a single

‘specific’ instructive signal but to a large variety of signals. (Huang 2004, 292)

At the same time, it is a perspective on networks that goes beyond the purely ‘topological’

approaches that mainly focused on the patterns of connections between nodes:

Most functional interpretation of networks has been based on their topology

alone . . . . Much of the topology-based reasoning about function rests on the

unarticulated premise that the molecular network acts like a communication

network in which some information ‘flows’ in the links from node to node.

(Huang 2004, 289)

6In an earlier article, called The practical problems of post-genomic biology, Huang makes the following
estimate: “Take the human genome with 100,000 genes and let every gene be simply either ‘on’ (expressed)
or ‘off’ (silent). This minimal, idealized, and discrete setting alone would lead to the astronomical num-
ber of 1030,000 possible gene expression profiles! The computing and testing of all these patterns with the
existing serial computers would take more time than the age of the universe” (Huang 2000, 471). The fact
that the number of genes in the human genome is nowadays known to be substantially smaller (≈ 30,000)
does not affect the general conclusion of the argument. Another, very thoroughly derived, estimation of the
computing power necessary to simulate complete models of biological networks, with the same qualitative
conclusion, can be found in Gatherer (2010).



Studying Large Networks q 143

Discussing the mathematical models of the spindle assembly checkpoint in Section 3.2, I

noted how dynamic features put in question the use of the informational perspective on

biological systems by revealing how different activities in a process can be dependent on

each other. This becomes even more pronounced when considering even larger dynami-

cal systems. The movement towards a high-dimensional attractor, for instance, does not

correspond to a well-defined sequence of molecular events. In theory, there are an infinity

of possible ways in which the attractor state can be reached.

Historical Precursors of the Attractor View in Systems Biology

The idea of describing cell fates as attractor states of a dynamical system reveals a di-

rect connection with ideas that had been entertained as early as in the 1930s by theo-

retically minded biologists, notably by Conrad H. Waddington (1905–1975).7 Waddington

was considered the leading British embryologist and geneticist from the 1930s throughout

the 1950s, and is today best known for coining the visual metaphor of the ‘epigenetic land-

scape.’ This metaphor is often used to illuminate processes of biological development by

comparing them to a marble rolling down an inclined surface (Figure 3.8). The partic-

ular shape of the surface, with hills and valleys, creates preferred paths and branching

points for the marble, corresponding to developmental trajectories and decision points

that eventually lead the developing system towards one of several possible end points

or ‘fates.’ The relationship to concepts from dynamical systems theory becomes obvi-

ous when considering that the landscape in the picture corresponds to a potential energy

surface for the marble in a gravitational field. The local minima on such a surface are

straightforward examples of attractor states.

Waddington himself was very interested in a mathematical formalization of his ideas

on development and inspired other scholars to engage with him in this task. Among them

was René Thom, a French mathematician, who is considered one of the founders of ‘catas-

trophe theory’ which gained considerable popularity in the 1970s. Thom attended the

famous Bellagio conferences on theoretical biology that were organized by Waddington,

and he developed many of the notions of catastrophe theory, such as the attractor con-

cept, in close correspondence with Waddington (Aubin 2004).

7Others who entertained similar ideas are the physicist Max Delbrück and the biologist Jacques Monod
(for more on the historical background, see e.g. Keller 2002, Chapter 5).
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Figure 3.8: Representation of Waddington’s epigenetic landscape. Source: Waddington
(1957)

Another scholar who was directly inspired by Waddington’s ideas was Stuart Kauff-

man, who has already been mentioned several times. A participant at the Bellagio meet-

ings like Thom, he started investigating the properties of large Boolean genetic networks

in the late 1960s (Kauffman 1969, 1974, 1993). Differently from Waddington and Thom,

however, he directly built on knowledge that by then had been accumulated by molecular

biology. For example, he made explicit reference to Jacob and Monod’s work on gene reg-

ulation to motivate an analogy between genetic switching circuits and computers and to

defend his use of a Boolean approximation in building his models (Kauffman 1969, 438).

When Kauffman developed his first models, there was, however, virtually no empiri-

cal information about the overall architecture of genetic networks. Hence, his idea was

to build virtual networks from possible ‘small scale elements,’ even if the details were

not fully known, and to see whether such networks would predict some of the large scale

properties observed in biological organisms. He deemed such a perspective on large scale

properties necessary since by trying to understand the system piece by piece one might

end up missing important aspects:

[W]e should consider ways to construct an adequate picture of the architec-

ture of cell control systems whose full details may never be directly known.

In addition, incomplete knowledge of those control systems poses the critical

problem that there are likely to be dynamic properties of central biological

importance which depend in some way on large portions or on the whole
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organization of the control system, not on small isolatable fragments of it.

(Kauffman 1974, 168)

Thus one might say that by neglecting the specific molecular details of biological net-

works, Kauffman was simply making a virtue of necessity. His main heuristic move was

thus to tentatively interpret the dynamics of living systems as guided by what Weaver

(1948) called ‘disorganized complexity’ (see Chapter 1). Just like theoretical physicists

had been able to master the apparent complexity of large disordered systems, one might

be able to find conceptual tools to reduce the complexity of large biological systems. Con-

sequently, Kauffman referred to his strategy as an “ensemble approach” (Kauffman 1974),

adopting this terminology from statistical mechanics.

The networks he investigated are randomly generated Boolean networks with nodes

representing genes that can be in two different states, ‘on’ or ‘off.’ In these networks the

dynamics unfold by updating the state of each gene at successive discrete time steps. The

state of each gene is determined by the states of a specific set of ‘input genes’ at the pre-

ceding time step. These can be interpreted as transcription factors regulating the activity

of a common target gene. Formally, each gene involves mapping of set of binary argu-

ments on a single binary value, that is, it realizes a Boolean function. A particular network

is constructed by first specifying the number N of genes and the number K of inputs

to each of them. To each gene then are assigned K inputs and one of the 22K
possible

Boolean functions. Starting from an arbitrary initial condition, the state of the network

develops by evaluating the Boolean function for each gene at each time step t = 0,1,2, . . .,

and by assigning to it the resulting value at t + 1. Kauffman’s model only considers the

interactions between genes in the network and does not take into account any external

inputs. Since the system is deterministic and has a finite number of possible states, it

will unavoidably return to a state that it has already previously passed, and from then on

repeat the same sequence, or cycle. To each cycle (which may consist of only one state)

corresponds a set of states leading into that cycle, which Kauffman refers to as a confluent.

These cycles are examples of attractors in a discrete dynamical system, and the confluents

are their basins of attraction.

Investigating networks of low connectivity (K = 2 or K = 3), both analytically and nu-

merically, Kauffman found some of their properties reminiscent of the behavior of biolog-
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ical cells. In most networks he found a surprisingly small number of cycles, compared to

what would have been combinatorially possible. Moreover, these cycles tended to be very

short. He interpreted these cycles as corresponding to the different ‘cell types’ that can be

exhibited by genetically identical cells. Extrapolating from the relationship between the

size of the network and the number of cycles derived from his simulations, he was able

to predict reasonable estimates for the number of different cell types in various species of

multicellular organisms (Kauffman 1969).

Kauffman’s approach relies on the assumption that by investigating typical instances

of a random collection virtual networks, one can get an understanding of the particular

instances found in nature. This in turn presupposes that, during the process of their evo-

lution, these networks have retained, or acquired, an essentially random structure at the

large scale. If, on the contrary, we assumed that the structure of biological organisms was

precisely specified by the influence of natural selection, it would be of little use to study

networks created at random. Encouraged by his results, Kauffman turns this line of rea-

soning around: the fact that random networks explain many aspects of living organisms,

such as stability, multicellularity, etc., suggests that nature exploits the orderly properties

of random structures:

Large, randomly assembled nets of binary elements behave with simplicity,

stability, and order. It seems unlikely that Nature has made no use of such

probable and reliable systems, both to initiate evolution and protect its progeny.

(Kauffman 1969, 466)

Seemingly complex behaviors of biological systems might thus find an explanation that

does not require uncovering all of the underlying molecular details.

Kauffman’s theoretical work has exerted a direct influence on contemporary systems

biology, and researchers like Sui Huang see their work in direct continuity with his mod-

eling efforts.8 However, the increasing interest in global perspectives on cellular behavior

has also been due to findings in experimental stem cell biology.

8In fact, there are a number of articles that are the result of a direct collaboration between the two re-
searchers (e.g. Huang et al. 2009, Foster et al. 2009).
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Connections with Contemporary Stem Cell Biology

Waddington’s ideas on biological development have also been revisited in the recent ex-

perimental literature on stem cell biology and cellular differentiation. Observations of

cellular plasticity, de-differentiation, trans-differentiation, and notably, the ‘reprogram-

ming’ of terminally differentiated cells into a pluripotent state, have led to a major re-

thinking of some of the basic ideas of the field. A quote by stem cell biologist Peter An-

drews may serve as an illustration of this phenomenon:

[T]he recent reports of stem cells from different adult tissue, displaying quite

unexpected plasticity and apparent lack of specific commitment, [suggest]

that perhaps the concepts of unidirectional, irreversible differentiation along

distinct cell lineages should be revised. (Andrews 2002, 412)

The fact that plasticity and lack of commitment is perceived as a ‘quite unexpected’ find-

ing reveals a number of implicit assumptions in the traditional picture of cellular devel-

opment. Assuming ‘unidirectionality’ and ‘irreversibility’ suggests the idea of cellular dif-

ferentiation as a deterministically executed program. The roots of this view can be traced

back to the early period of molecular biology:

During the 1950s and 1960s, many [molecular geneticists] treated differentia-

tion in terms of the regulation of protein synthesis. The underlying hypothesis

was that differentiation is an irreversible commitment of a cell lineage to the

manufacture of a coordinated set of “luxury” proteins—i.e., specialized pro-

teins not needed to maintain the life of the cell. Thus, the primary differences

among nerve, kidney, skin, and blood cells were thought to depend on the

specialized sets of proteins that they make, which, in turn, affect their mor-

phologies, interactions with other cells, and responses to biological signals

and stimuli. (Burian 1993, 391)

In this perspective, we clearly see the heuristics of decomposition and localization at

work. First of all, genes are identified as the locus of control of differentiation, essen-

tially following Jacob and Monod’s suggestion that “differentiation operates at the genetic

level, using elements basically similar to those found in bacteria” (Jacob and Monod 1963,

as cited in Keller 2002, 166). Differentiation is conceived in terms of the ‘switching on’ or



148 q Strategies of Systems Biology

‘off’ of specific genes. The distinct phenotypes and observed behaviors of differentiated

cell types are localized in the activities of disjunct sets of specialized genes. This allows bi-

ologists to understand cellular differentiation as the execution of a ‘genetic program,’ and

to reduce the epistemic complexity of understanding differentiation by assuming that this

program controls distinct modules, or subsystems of genes, and is triggered in response

to external stimuli via specific signaling pathways.

The observed cellular plasticity challenges the notion of a differentiation program

since it implies that the cell can deviate from, and even revert, its typical path of differen-

tiation. In order to accomodate these findings, it is necessary, according to Andrews, to

adopt a broader perspective on the mechanisms of cell differentiation:

When considering the factors that regulate cell behaviour, whether commit-

ment and determination, or differentiation, attention commonly focuses on

individual signalling pathways by which cells respond to external cues, e.g.

growth factors, the extracellular matrix, or interactions with other cells. To

keep the analysis simple, such signalling pathways within a cell are often con-

sidered in isolation, and are also considered as simple switches—either ‘on’ or

‘off’. However, any molecules within a signalling pathway will obey the nor-

mal chemical laws affecting reaction rates and equilibria. The activity of par-

ticular regulatory molecules will be influenced by the overall state of all the

other regulatory and metabolic reactions taking place within the cell. (An-

drews 2002, 412)

This suggests moving away from a conception of ‘genetic regulation’ towards one of ‘cel-

lular regulation’ (cf. Keller 2002, Chapter 5). Even though Waddington’s image emphasizes

the stability of developmental pathways, it also lends itself to intuitive ideas of plasticity

and reprogramming. The hills between the branching valleys are not necessarily insur-

mountable obstacles, and one can easily imagine that the marble, when given the right

kind of ‘push,’ can end up in a different valley, or even back at the beginning of the track.

The metaphor of the epigenetic landscape, therefore, provides an important tool for stem

cell biologists to conceptualize their experimental findings (cf. Figure 3.9).

The question that arises in the context of systems biology, however, is whether such

an updated picture of the epigenetic landscape can go beyond the role of a metaphor and
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Figure 3.9: Contemporary interpretation of the epigenetic landscape, adding stochasticity
and recent concepts and ideas from stem cell biology to Waddington’s picture. Source:
Goldberg et al. (2007).

suggest more concrete ways towards a global understanding of cellular development. Can

network models, such as Kauffman’s, provide an adequate ‘mathematization’ of Wadding-

ton’s landscape? And can such models be brought into contact with the experimental

activities of contemporary stem cell biologists?9

Empirical Investigations of Cell Attractors

A theoretical model like Kauffman’s is very attractive because it proposes to explain a va-

riety of observed properties at the macroscopic level while making only very few assump-

tions about the processes at the molecular level. Yet, it is not clear whether the adequacy

of the proposed explanations can be established in practice since all simulations are per-

formed on statistical ensembles of generic models. The ideal test, presumably, would be

9An interesting discussion of the integrative role of Waddington’s Metaphor in current stem cell and sys-
tems biology can be found in a recent article by Fagan (2011). However, the article’s conclusion regarding
systems biology, according to which the landscape “is a derivational consequence of the ODE framework
for representing molecular interactions, which visualizes the predictions of mathematical models in an ac-
cessible way” (Fagan 2011, 211), seems to understate much of the complexity of mathematical modeling.
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to construct a complete and realistic dynamic model of a cell and to show that the attrac-

tor states of this model coincide with the measured molecular properties of the different

cell fates. Of course, such a model is currently not available, for reasons that have already

been discussed several times.

What is currently feasible, however, is to adopt a ‘phenomenological’ approach that

takes advantage of the ability to study whole systems at the molecular level by means of

high-throughput experimentation. Notably DNA microarrays, whose development dates

back to the mid-1990s, have revolutionized the analysis of gene expression.10 They allow

biologists to monitor the expression of thousands of genes at the transcriptional (mRNA)

level simultaneously. In this way the dynamics of gene expression can be tracked via time-

series data of the transcriptional state. If the entire network of gene regulation is repre-

sented as one large dynamical system, one might consider such microarray experiments

as a proxy for the state vector of this system. By studying the behavior of experimentally

observed trajectories in the ‘gene expression space,’ one might be able to investigate the

attractor landscape of cellular differentiation:

[E]ven in the absence of knowledge of the specific network architecture, it

is possible to use genome-wide gene expression profiling to probe the state

space structure of a natural complex network and extract characteristic sig-

natures of a stable high-dimensional attractor. (Huang et al. 2005, 3)

In order to illustrate this strategy, I will discuss an experiment that investigates the dif-

ferentiation of neutrophils (Huang et al. 2005). Neutrophils are the most abundant type of

white blood cells in mammals, and they are derived from a particular type of progenitors,

called promyelocytic cells. It has been observed that these progenitors can be induced in

vitro to differentiate into neutrophils by a variety of different stimuli. The starting point

of Huang et al.’s study was the idea that monitoring different trajectories of the transcrip-

tional state during the process of differentiation might reveal coherent genome-wide dy-

namics. Interpreted within the dynamical systems perspective, the state of the progeni-

tor cell is initially a stable attractor. The different stimuli provide external perturbations

that drive the system away from this initial state and towards the basin of attraction of

10Even though it seems that high-throughput sequencing techniques, such as RNA-Seq, are displacing
microarrays as experiments of choice for transcriptome analysis.
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the differentiated neutrophil state. One might understand the basic idea better by think-

ing of a marble that is trapped in a small depression on (a slightly modified version of)

Waddington’s landscape. An external ‘push’ can help it to continue its path along one

of the valleys. Different kinds of pushes from the same starting position might result in

very different trajectories, even though the eventual ‘fate’ of the marble is the same. What

Huang et al. showed is that cellular differentiation towards the same cell fate can occur

along different trajectories, just like the movement of the marble.

They induced the differentiation of neutrophil cells using two biochemically distinct

stimuli (called atRA and DMSO), and monitored the transcriptional state of the cells over

time with microarrays. An obvious difficulty consisted in the interpretation of the large

and high-dimensional gene expression datasets that were thereby produced. Most com-

monly, microarray experiments are used to generate lists of ‘signature genes’ for a par-

ticular phenotype, that is, one looks for individual genes that significantly change in ex-

pression between different experimental conditions. However, Huang et al. started with

the assumption that information about the behavior of individual genes would not reveal

any clues about the global dynamics of differentiation. Moreover, such information is not

very reliable due to the high levels of noise and intrinsic variability at the level of the single

measurements.11 There are, however, statistical techniques of dimensionality reduction

that can be used to transform large datasets into a more manageable form, while retain-

ing information about global behavior. Many of these methods rely on ‘distances’ in state

space, which are calculated as straightforward generalizations of distance measures in

geometrical spaces. One of the methods that was used by Huang et al. was principal com-

ponent analysis (PCA), in which correlations within a large set of variables are exploited

in order to find a representation in terms of a smaller set of uncorrelated variables (the

principal components). If there is substantial correlation in the dataset, then two or three

of the principal components can be sufficient to explain most of the variation between

different datasets. A second method involved self-organizing maps, which are essentially

artificial neural networks that are trained to produce low-dimensional representations

while preserving some of the topological properties of the initial data. They can be used

to create visual representations of large datasets that allow for a qualitative comparison

11Wimsatt (2007a) provides an interesting discussion of high-throughput experiments and ways to cope
with their unreliability.
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of different transcriptional states by eye.

Huang et al. applied these methods to the transcriptional data obtained from the two

differently induced neutrophil populations. As can be inferred from the representations

in Figure 3.10, the trajectories initially separate and move towards different regions of the

state space. After a certain time, however, they begin to converge until the two popula-

tions show virtually identical expression patterns. From this the authors conclude:

Figure 3.10: Convergence of two gene expression trajectories for a subset of N = 2773
genes during neutrophil differentiation. (a) The genes are clustered by a self-organizing
map. Each of the ‘mosaics’ represents a snapshot of S(t ). Tile colors indicate the ex-
pression levels. (b) Principal component analysis. Each point represents an individual
expression profile S(t ) within one of the two differentiation processes (red circles: atRA;
blue squares: DMSO) projected onto the first two principal components (PC1 and PC2).
Source: Huang et al. (2005).

The convergence of trajectories from different directions across a large num-

ber of gene dimensions is a necessary condition for a high-dimensional at-

tractor state and cannot be easily explained by the existing notion of a spe-

cific, unique “differentiation pathway” as the common target of the two drugs.

(Huang et al. 2005, 1–2)

Thus they suggest that cellular differentiation should not be understood as driven by a

‘program’ that specifies the exact sequence of steps in the process. The alternative they
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put forward instead conceives of it as a spontaneous relaxation process towards a state of

‘minimal energy’ at which all components of the system are in dynamic equilibrium.12

How ‘Holistic’ are Attractors?

Earlier, I introduced the attractor perspective as being in opposition to a ‘localist’ view

that looks for understanding in terms of individual components or small modules of a

system. In this regard, it is an interesting aspect of Huang et al.’s analysis that the iden-

tity of individual genes appears to be completely irrelevant. Genes and their products are

treated as ‘anonymous’ particles of a system whose interactions generate regular behavior

at a higher level of observation, almost like the molecules in a gas. Huang considers this as

one of the characteristic features of a global approach (cf. Figure 3.7). The statistical data

analysis in the neutrophil experiment revealed that “convergence occurred with respect

to a large portion of the genome, i.e., to a high number of state space dimensions” (Huang

et al. 2005, 2-3), and one might be tempted to infer that the global dynamics of the sys-

tem is due to spontaneous self-organization of the parts in the spirit of Stuart Kauffman’s

theoretical analyses. It must be noted, however, that the experimental evidence provided

by Huang et al. (2005) is purely correlational. Even if the low-dimensional description of

the results, obtained e.g. by the principal component analysis, reveals that “thousands

of genes in the complex network exhibit a globally coherent dynamic pattern of attrac-

tion to a common stable state” (Huang et al. 2005, 3), this does not imply the absence

of hierarchical organization in the network. It might be that there are a small number of

‘master regulator genes’ that enslave large portions of the network, thereby causing them

to follow their dynamics. At any rate, it is not obvious how one might distinguish between

the two possibilities, hierarchy or self-organization, by solely observing the behavior of

the trajectories in state space. Experiments of this kind, therefore, do not show that the

strategy of localizing specific contributions to the behavior of a system in single genes or

small modules is doomed to failure. As with the network motif approach, the utility of the

attractor perspective depends on particular assumptions about biological organization.

Kauffman called his strategy an ‘ensemble approach’ since it uses the idea of statistical

12The interpretation of the epigenetic landscape as a potential energy surface is not straightforward. A
potential function can only be found if the set of equations defining the system has very special proper-
ties. For an attempt to interpret it as a quasi-potential landscape that describes ‘altitude’ in terms of the
probability of noise-induced transitions between attractor states, see Wang et al. (2010).
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mechanics to acquire knowledge about a system even if many of the details are not known

or impossible to incorporate in a tractable model:

The trick of statistical mechanics is not to study a single system, but a large

collection or ensemble of systems. Where understanding a single system is

often impossible, one can often calculate the behavior of a large collection of

similarly prepared systems. (Sethna 2006, 1)

It might help to illustrate this with an example. A theoretical model in statistical physics

with widespread applications are random walks. These are processes with successive

steps going in random directions. While it is impossible to predict the behavior of an indi-

vidual instance of a random walk, one can nevertheless derive simple relationships about

the statistical properties of an ensemble of random walks. For example, the endpoint of

a random walk has a probability distribution that can be described in terms of the diffu-

sion equation. Since such behaviors at the ensemble level are largely independent from

the microscopic details of individual walks, physicists refer to them as universal (Sethna

2006, Chapter 2). Kauffman’s theoretical analyses attempted to show that the number of

cell types in a multicellular organism and their stability can be understood as universal

properties of a particular type of network.

Researchers advocating the attractor view can potentially pursue different lines of re-

search. First, they might try to turn Kauffman’s speculative models into an actual explana-

tion of cellular behavior. In order to do so, they must show that real biological networks,

which are not necessarily approximated well by Boolean models and whose patterns of

connectivity are expected to be different from those assumed by Kauffman, are neverthe-

less typical members of a statistical ensemble. Since the time of Kauffman’s early works,

biologists have accumulated considerable knowledge about transcriptional regulation in

gene networks and might now be in the position to revise some of Kauffman’s assump-

tions. In this context, Roger Sansom (2008) has recently challenged the applicability of

Kauffman’s models on empirical grounds, arguing that it is more adequate to describe

them as connectionist models, known from artificial intelligence and cognitive science.

Ultimately, there seem to be competing views about the primary explanatory role of nat-

ural selection in shaping the behavior of biological networks. In a recent article, Kauffman

summarizes the alternative positions as follows:
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There is a fundamental ontological assumption underlying [the ensemble]

approach, and it is not known if that assumption is true or false. Is it the case

that the genetic network in an organism, or a species, or family of species, af-

ter 3.8 billion years of natural selection and evolution, is a highly crafted, “one

off” design, brilliantly tuned by selection to achieve its functions? Or might

it be the case that real genetic regulatory networks are more or less “typical”

members of some class, or ensemble, of networks which selection has mod-

ified to some degree? In the latter case, we may be able to gain very consid-

erable insight into the structure, logic, and dynamics of gene regulatory net-

works by examining the typical, or generic properties, of ensemble members.

(Kauffman 2004, 582)

Even though I will not pursue this line of reasoning further, this strongly suggests that

fundamental questions about biological evolution can be of considerable importance for

debates on complexity in systems biology.

An alternative strategy for systems biology is to suspend the issue of whether attractors

in networks are truly generic features, but nevertheless try to understand the behavior of

large networks from a dynamical systems perspective. The recent work by researchers

like Sui Huang mainly illustrates this second strategy. However, it seems that in order to

obtain a more realistic picture of the dynamical system that underlies the processes of

cellular development, biologists must zoom into smaller sections of the whole network

and at least partly give up their ‘globalist’ ambitions and the anonymity of the genes. An

example of this is provided by recent investigations of binary cell fate decisions.

Binary Cell Fate Decisions

The pool of specialized cells in vertebrate tissues is maintained due to the presence of

stem cells and progenitor cells. Within the landscape metaphor, the progenitor states can

be interpreted as ‘branching points’ at which a cell can commit to either of two distinct

lineages. An example in the context of blood cell development is the common myeloid

precursor cell (CMP) that can continue its differentiation path either in the erythroid/me-

gakaryocyte lineage or in the myelomonocytic lineage. Two transcription factors, GATA1

and PU.1, have been shown to control the lineage specification for these developmental
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paths (Orkin 2000). For instance, overexpression of either factor induces the differenti-

ation towards one of the lineages. Moreover, each of the two factors can suppress the

expression of the other. This simple schema of mutual inhibition supports the idea of a

‘cell fate switch’ that underlies the decision between mutually exclusive, distinct and ro-

bust cell fates. Even though the image of the switch appears to be perfectly compatible

with the attractor view, it gives rise to several questions. One question regards the way in

which the decision between the two fates is made. For instance, is it caused by a specific

external stimulus or is the process essentially stochastic? Another question regards the

progenitor state itself. Should it be considered an attractor state as well, and if so, how

can its stability be explained given the tendency of the switch to push the cell towards a

specific lineage?

In order to address these questions Huang et al. (2007) built dynamic models of the

GATA1-PU.1 circuit. The first model they investigated described only the mutual inhibi-

tion of the transcription factors. Here they observed, as expected, a bistable behavior: the

system has two stable attractor states in which the level of one factor is high while the level

of the other is low, and one unstable equilibrium state with similar levels for both. These

attractors can be interpreted as the erythroid lineage and the myelomonocytic lineage,

respectively. Huang et al. then showed that adding positive autoregulation to this model

can create a basin of attraction for the formerly unstable equilibrium state, turning it into

a third attractor state. This state can be interpreted as the CMP progenitor state, which

fits the observation that the progenitor cells express both GATA1 and PU.1 at intermediate

levels (Cross and Enver 1997) and provides a possible explanation for the stability of the

progenitor state.

Next, Huang et al. turned to the question of how the system manages to leave the

progenitor attractor in the process of cell fate commitment. They hypothesized that the

differentiation signal corresponds to a parameter change in the model and thus acts by

affecting the topology of the attractor landscape. They envisaged that this could happen

in two different ways. The signal might correspond to a directed, or asymmetric, param-

eter change that enlarges one of the basins of attraction of the differentiated states and

thereby causes the system to ‘drop’ into that state. In this scenario the external signal is

considered instructive because it clearly determines the fate, and trajectories leading to
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different fates would be expected to initially go in opposite directions. Alternatively, the

signal might lead to a symmetric modification of the attractor landscape, in which the

progenitor state is destabilized by being transformed from a ‘well’ into a ‘hill top’ or ‘wa-

tershed.’ In this scenario the initial transcriptional changes should be similar for both

fates: after receiving the signal, the progenitor cell remains for some time in an unstable

state ‘on the top of the hill.’ In order for the cell to subsequently ‘drop’ into one of the

remaining attractor valleys, a symmetry breaking event is needed. In the real system such

an event might occur due to stochastic fluctuations of regulatory factors inside the cell.

Huang et al. went on to study the qualitative behavior of the model when simulat-

ing the two hypothesized kinds of signals. They found that the resulting trajectories in

the GATA1-PU.1 phase space could be classified into qualitatively distinct types. Notably,

when they triggered differentiation with the symmetric destabilization of the progenitor

attractor, they found a characteristic loop in one of the two trajectories (Figure 3.11, A).

Using microarrays, they experimentally monitored the trajectories of differentiating cells

in the GATA1-PU.1 plane and compared them to the theoretically obtained results. Inter-

estingly, they observed that the real cells show the same kind of loop that was predicted

by the model with symmetric destabilization (Figure 3.11, B).

P around the center [GATA1∼ PU.1] to differentiate to either
one of the two cell fates (M, E) upon bifurcation, some
asymmetry had to be introduced with respect to either S0
(paracentral position) or λ (λ1≠λ2) or both. When this enforced
asymmetry produced trajectory pairs in which the two
trajectories that started from a same paracentral point reached
different terminal attractor (either M or E), one of the two
trajectories exhibited a characteristic loop as exemplarily shown
in Figs. 4E, F. Specifically, numerical analysis revealed that for
type I bifurcation, given the imposed asymmetry, if a trajectory
SM leading to the myelomonocytic attractor [PU.1≫GATA1]
exhibited a loop (not all trajectories do), then it was always in
the counterclockwise direction (Fig. 4E). In contrast, trajectories
undergoing type II bifurcation, if they produced loops before
reaching the M [PU.1≫GATA1] attractor state, they were
always in the clockwise direction (Fig. 4F). (Since the model is

‘cell fate neutral’, scenarios with the inverse trajectory assign-
ment, i.e., with the SE instead of the SM trajectory containing
the loop, are also generated, but are not relevant for comparison
with data.)

Fig. 5A shows the typical predicted trajectories for a type II
bifurcation that start from the same initial, but not precisely
central state S0 (PU.1>GATA1), with bias introduced by
asymmetric control parameters λ (λ1≠λ2) tuned so that the two
trajectories move towards either one of the two final attractors.
Experimentally observed trajectories obtained from three
independent microarray measurements of mRNA levels of
GATA1 and PU.1 in differentiating FDCP-mix cells displayed a
characteristic clockwise loop in the myelomonocyte differentia-
tion trajectory (Figs. 5B–D), consistent with a type II
bifurcation. The characteristic trajectory course for myelomo-
nocyte differentiation in the phase–plane translates into a non-

Fig. 5. State space trajectories during type II bifurcation: model and experimental data. (A) Typical trajectory for a system starting from one non-central initial state S,
differentiating into either the erythroid fate (red) or the myelomonocytic fate (blue) because of asymmetry in λ; λ1=−0.3, λ2=−0.5, with parameters as in Fig. 2E.
(B–D) Three independently observed trajectories for mRNA levels of GATA1 and PU.1 (as log2 of ratio, with 0 h value as reference) measured by microarrays (Bruno
et al., 2004) during erythroid and myelomonocytic differentiation of the FDCP-mix cells. Each dot represents a time point for a microarray measurement (0 h, 4 h,…,
168 h – the same time points as in Fig. 6). (E, F) GATA1 (red) and PU.1 (blue) levels during myeloid differentiation for model vs. measurement, displayed as average
of time course. Error bars indicate standard error (n=3).

703S. Huang et al. / Developmental Biology 305 (2007) 695–713

Figure 3.11: Predicted and observed trajectories during binary cell fate decisions. A: Typi-
cal trajectories for system differentiating into the myeloid fate (blue) or the erythroid fate
(red). B: Observed trajectories using mRNA levels of GATA1 and PU.1 during differentia-
tion.

The similarity of predicted and observed behavior thus supports the idea that lineage

commitment is caused by a (near-) symmetric destabilization of the progenitor attrac-

tor. Other possible scenarios seem less likely because they lead to qualitatively different

predicted behaviors in the model. In particular, the idea of a directly instructive signal
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is rendered implausible since the trajectories corresponding to different lineage fates ini-

tially both remain in the central area of the phase plane and only later diverge towards

their respective attractor states. The model thus suggests an explanation for the observed

stochasticity in cell fate regulation, while at the same time allowing for the possibility that

specific signals sometimes ‘tip the balance’ in favor of one particular fate.

Even though the model provides an attractive mechanistic account of cell fate deci-

sions in terms of the competition between two transcription factors, Huang et al. em-

phasize that it is not built on the basis of known biochemical interactions. Instead, they

think of their model as describing the “functional relationships of nodes in an influence

network” (Huang et al. 2007, 698). These relationships are inferred from in vivo experi-

ments and, therefore, incorporate the systemic context of the modeled components. The

contrast with the ‘structure-centered’ network motif perspective comes out well in the

following quote:

A network topology motif, such as the 2-gene circuit . . . is not necessarily a

functionally independent module. The transcription factors GATA1 and PU.1

regulate and are regulated by many other genes and hence, are embedded

in an almost genome-wide gene regulatory network (“giant component”). . . ,

which establish and maintain the cell-type-specific transcriptomes. (Huang

et al. 2007, 704)

On this view, it would be wrong to consider the whole-cell behavior as an epiphenomenon

of the activity of a few master regulators. On the contrary, the effective behavior of small

circuits is determined by the systemic context.

In order to take the behavior of the whole network into account, the authors went on

to study the differentiation trajectories of the transcriptional state of the whole network.

They observed roughly the same behavior as that shown by the key regulators GATA1

and PU.1: The trajectories do not immediately diverge into opposite directions of the

state space, but show an initial transient phase in which they behave very similarly. Even

though the authors stress that it would be highly desirable to have models that describe

the process in a higher-dimensional state space, they bring themselves to a conciliatory

remark in the end, acknowledging the value of localist strategies:

Nevertheless, it appears that the dynamic properties of local circuits of 2-3
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genes considered in isolation can have biological relevance. (Huang et al.

2007, 711)

3.3.3 Concluding Remarks on Networks

The theoretical tools of network theory provide potentially powerful heuristics for an un-

derstanding of large and complex systems. Representing such a system as a collection of

nodes and edges can reveal interesting features that might go unnoticed when working

with a more detailed model. At the same time, the network representation can strongly

bias the analysis of a system by neglecting important features of the system. The following

quote nicely illustrates this point with regards to biological systems:

[A] graph is a static projection of possible interactions. The analysis of regula-

tory processes varying in space and time requires additional information not

usually included in the topology of biological networks. Indeed, the very rep-

resentation in the form of a unique network entails the integration in space

and time of the interactions taking place during the cellular lifetime. Some of

the patterns of interaction might then be spuriously due to a projection effect,

whereas they actually take place at different times and/or locations within the

cell. (Mazurie et al. 2005, 6)

This indicates that the network perspective should be complemented with other strate-

gies that can reveal potential ‘projection effects.’ Alternatively, given sufficient data, one

might try to circumvent bias by building networks that include many layers of informa-

tion. A recent study in the context of the ENCODE project has investigated the prop-

erties of a ‘meta-network’ of human transcriptional regulation that includes non-coding

RNA regulation, protein-protein interaction, and protein phosphorylation (Gerstein et al.

2012).

Both approaches discussed in this section go beyond the general topological perspec-

tive in order to gain understanding of functional aspects of biological networks. Uri Alon’s

search for network motifs is based on the idea that networks are decomposable into func-

tional units, but he gives up Bechtel and Richardson’s strategies of decomposition and

localization (discussed in Chapter 2). Instead of functionally decomposing system behav-
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ior and subsequently localizing the hypothetical sub-operations in system structure, his

starting point is a structural analysis of network topology. The guiding idea is that struc-

tural differences in the comparison with randomized networks can reveal clues about bi-

ological function. Generic features of large networks serve as a null-model for the detec-

tion of biologically meaningful patterns. Sui Huang’s attractor perspective is diametri-

cally opposed to the network motif approach since it precisely emphasizes the biological

importance of generic features. On his view, the right way to approach the study of bio-

logical networks is to focus on simplicity that emerges at the level of the whole system.

Such behavior might be explainable without getting into the gory details of the network’s

structure.

As we have seen, however, both camps deem it necessary to complement their gen-

eral approaches with more fine-grained analyses. Alon analyzes the dynamical properties

of motifs in order to substantiate claims about their functional role, while Huang tries to

demonstrate the utility of the attractor view by modeling small networks of transcription

factors. This suggests that the use of small mathematical models is the common denom-

inator of many approaches in systems biology. It leaves open the question, however, of a

proper way of accounting for systemic context. But shouldn’t this be one of the aims of an

endeavor that calls itself ‘systems biology?’

3.4 Whole Cell Modeling

Up to now we have exclusively dealt with ‘partial’ models of living organisms. The spindle

assembly checkpoint models discussed in Section 3.2 captured only a small aspect of cell

cycle regulation, which in turn is only one among many processes occurring inside a cell.

The sensory network of E. coli and the gene regulatory networks underlying cellular dif-

ferentiation encompass a much larger number of components, but still account for only

some aspects of the overall behavior of an organism. The systems that are modeled in all

of these cases are thus treated as functionally independent modules that can be studied

in isolation, even though they are clearly embedded in a larger ‘super-system’ and must

be integrated in some way or other to produce the behavior of the whole organism.

William Bechtel and Adele Abrahamsen have recently emphasized the importance of
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recomposing as one of the tasks of mechanistic research:

Reductionist inquiry, which involves decomposing a mechanism into its parts

and operations, is only one of the tasks of mechanistic research. A second

task (which may be undertaken largely simultaneously) is recomposing it—

conceptually reassembling the parts and operations into an organized arrange-

ment that constitutes the mechanism. (Bechtel and Abrahamsen 2009, 177)

In Chapter 2 we have seen that molecular biologists do not simply decompose mecha-

nisms into parts but also elaborate organizational schemes to explain how the parts pro-

duce the behavior of interest. However, it seems that the recomposition of different mech-

anisms into an integrated account of the organism is largely missing from the project of

traditional molecular biology. The idea of producing a ‘complete model’ of a biological or-

ganism has considerable allure, and even though we have seen that modeling in systems

biology is employed to address a wide variety of specific explanatory tasks, arguably the

achievement of completeness would for many systems biologists represent the most im-

pressive way in which their field could fulfill its promises. However, one may ask what the

purpose of such a model would actually be. Is there actually an interest in explaining the

behavior of a whole organism in terms of the whole organism? Would a successful model

represent something like a proof of principle or consistency check, licensing biologists to

proceed by showing that all the pieces nicely fit together? Or would it rather serve as a

tool that can be interrogated for the generation of new hypotheses and the motivation of

interesting experiments? The Japanese systems biologist Masaru Tomita calls whole-cell

simulation a “grand challenge for the 21st century,” and notes:

Suppose that a certain organism’s genome has been completely sequenced.

Then suppose that structures and functions of all its gene products have been

thoroughly identified. Suppose further that a giant map of the entire metabolic

pathways has been drawn flawlessly. Then what? Would we have conquered

the cell? The answer is clearly ‘no’ because the overall ‘behavior’ of the cell

would still not be understood. (Tomita 2001, 205)

Framing the issue in this way suggests that whole-cell simulations are actually the only

way to understand the integrated behavior of a cell. Provocative statements like this and
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notably Hiroaki Kitano’s idea of the ‘Human Systeome Project,’ whose ambition is “to

complete a detailed and comprehensive simulation model of human cells at an estimated

error margin of 20% by the year 2020 and to finish the identification of the system profile

for all genetic variations, drug responses, and environmental stimuli by the year 2030” (Ki-

tano 2002a), have led some philosophers to question the epistemic value of such efforts.

Krohs and Callebaut, for instance, criticize “the project of a ‘realistic’ representation of all

metabolic processes in a 1:1 manner as lacking explanatory power and, more generally, as

being epistemologically misguided” (Krohs and Callebaut 2007, 209). More specifically,

they argue:

The systeome project aims to collect data without providing a strategy to ar-

rive at explanatory models. Though coming under the label of systems biol-

ogy, it turns out to be a purely ‘omic’ project, as is also made clear in its name.

The only improvement with respect to other ‘omic’ projects is that it integrates

a dynamic perspective, but instead of taking explanatory advantage from this

perspective as systems biology proper does, the systeomic project degrades

network dynamics to another source of large data sets. (Krohs and Callebaut

2007, 207–208)

In order to get a better impression of the scope and value of whole-cell projects, it might

be helpful to look at an example of how such projects are actually pursued in practice.

This reveals that the ambition of whole-cell models is not so much a ‘realistic’ represen-

tation of a cell, but rather to integrate existing partial models of a cell in order to account

for the organization of processes at the organismal level.

In July 2012, a joint group of researchers from Stanford University and from the J. Craig

Venter Institute published in the journal Cell the first whole-cell model for a complete or-

ganism based on detailed and exhaustive empirical information (Karr et al. 2012). A truly

astonishing achievement, this model describes the life-cycle of the pathogen Mycoplasma

genitalium by including all known molecular components and interactions. Incidentally,

M. genitalium is one of the bacterial species that were used in Venter’s spectacular ex-

periments of synthesizing and transplanting entire genomes (Gibson et al. 2010), and it

is also the experimental organism for his ‘minimal genome project’ which seeks to de-

termine the minimal set of genes that can sustain life. Clearly, among the reasons for
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choosing this particular organism as a target for the whole-cell model is the fact that M.

genitalium’s genome, which consists of only 525 genes, is the smallest of any known func-

tioning cell found in nature. Moreover, systematic research efforts have accumulated vast

amounts of data about the transcriptome, proteome, and metabolome of bacteria of the

genus mycoplasma. Most of the necessary information for building a complete model

was therefore already available. One of the biggest challenges, however, consisted in in-

tegrating the very different and heterogeneous kinds of datasets. Another integrative and

non less important task was the coordinated connection of the various different compu-

tational methods that are normally used for the ‘small’ models of specific processes and

conditions.

In what follows I will describe the general modeling strategy and discuss the goals and

possible value of such a project. Since the model itself is very large and complex, I will

not be able to explain it in full detail, but restrict myself to discussing some broader issues

that are of relevance for the questions addressed in this thesis.

3.4.1 Modularity formalized

The key concept underlying Karr et al.’s modeling strategy is modularity. Differently from

what some might perhaps expect from a complete model, they did not simply lump all the

molecular components together to create one big system of equations. Instead, they con-

structed the model—very much in the spirit of Simon’s watchmaker—by first putting to-

gether sub-assemblies, each comprising a substantially smaller number of parts in com-

parison with the whole system. The decomposition into these sub-assemblies was of

course not arbitrary, but based on prior knowledge about the functional processes inside

the cell:

Our approach to developing an integrative whole-cell model was to divide the

total functionality of the cell into modules, model each independently of the

others, and integrate these submodels together. (Karr et al. 2012, 389–390)

Aside from reducing the complexity of the overall modeling task, the modular approach

had the further crucial advantage of facilitating the integration of different methods. As

already mentioned, building the whole-cell model required the integration of very dif-
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submodels together. We defined 28 modules (Figure 1A) and
independently built, parameterized, and tested a submodel of
each. Some biological processes have previously been studied
quantitatively and in depth, whereas other processes are less
well characterized or are hardly understood. Consequently,
each module was modeled using the most appropriate mathe-
matical representation. For example, metabolism was modeled
using flux-balance analysis (Suthers et al., 2009), whereas
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Figure 1. M. genitalium Whole-Cell Model
Integrates 28 Submodels of Diverse Cellular
Processes
(A) Diagram schematically depicts the 28 sub-

models as colored words—grouped by category

as metabolic (orange), RNA (green), protein

(blue), and DNA (red)—in the context of a single

M. genitalium cell with its characteristic flask-

like shape. Submodels are connected through

common metabolites, RNA, protein, and the

chromosome, which are depicted as orange,

green, blue, and red arrows, respectively.

(B) The model integrates cellular function sub-

models through 16 cell variables. First, simulations

are randomly initialized to the beginning of the cell

cycle (left gray arrow). Next, for each 1 s time step

(dark black arrows), the submodels retrieve the

current values of the cellular variables, calculate

their contributions to the temporal evolution of the

cell variables, and update the values of the cellular

variables. This is repeated thousands of times

during the course of each simulation. For clarity,

cell functions and variables are grouped into five

physiologic categories: DNA (red), RNA (green),

protein (blue), metabolite (orange), and other

(black). Colored lines between the variables and

submodels indicate the cell variables predicted by

each submodel. The number of genes associated

with each submodel is indicated in parentheses.

Finally, simulations are terminated upon cell divi-

sion when the septum diameter equals zero (right

gray arrow).

RNA and protein degradation were
modeled as Poisson processes.
A key challenge of the project was to

integrate the 28 submodels into a unified
model. Although we and others had
previously developed methods to inte-
grate ODEs with Boolean, probabilistic,
and constraint-based submodels (Covert
et al., 2001, 2004, 2008; Chandrasekaran
and Price, 2010), the current effort
involved so many different cellular func-
tions and mathematical representations
that a more general approach was
needed. We began with the assumption
that the submodels are approximately
independent on short timescales (less
than 1 s). Simulations are then performed
by running through a loop in which the

submodels are run independently at each time step but
depend on the values of variables determined by the other
submodels at the previous time step. Figure 1B summarizes
the simulation algorithm and the relationships between the
submodels and the cell variables. Data S1 (available
online) provides a detailed description of the complete
modeling process, including reconstruction and computational
implementation.

390 Cell 150, 389–401, July 20, 2012 ª2012 Elsevier Inc.

Figure 3.12: Depiction of the 28 submodels and their integration in a M. genitalium cell.
Source: Karr et al. (2012)

ferent styles of mathematical modeling. The reason underlying this necessity lies in the

insight that apparently one size doesn’t fit all, as far as such methods are concerned:

[N]o single computational method is sufficient to explain complex pheno-

types in terms of molecular components and their interactions. The first ap-

proaches to modeling cellular physiology, based on ordinary differential equa-

tions . . . , were limited by the difficulty in obtaining the necessary model pa-

rameters. Subsequently, alternative approaches were developed that require

fewer parameters, including Boolean network modeling . . . and constraint-

based modeling . . . . However, the underlying assumptions of these methods

do not apply to all cellular processes and conditions, and building a whole-

cell model entirely based on either method is therefore impractical. (Karr et al.

2012, 389)

The decomposition allowed the researchers to construct the model by choosing for each

module the most adequate style of mathematical representation. However, the real tech-

nical problem was the next step: to integrate the modules and to allow them to interact.

In order to achieve integration, they drew on the assumption that the processes by which

different functional modules interact can be described on a much longer time scale than

the processes occurring within each module. The way in which they describe their strat-
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egy reads almost as if it was directly inspired by Herbert Simon’s reasoning about near-

decomposability:

We began with the assumption that the submodels are approximately inde-

pendent on short timescales (less than 1 s). Simulations are then performed

by running through a loop in which the submodels are run independently at

each time step but depend on the values of variables determined by the other

submodels at the previous time step. (Karr et al. 2012, 390)

The processes communicate with each other by accessing and updating shared state vari-

ables. These state variables hold the information about the different kinds of entities in-

side the cell and their configurations. In the supplementary material to the article, the

authors compare their method to the numerical algorithms that are used to solve systems

of ordinary differential equations. The 28 cellular processes can be considered as ‘meta-

equations’ that are solved independently for each time step, while the 16 state variables

figure in different processes, like variables in a set of equations, and therefore represent

interfaces between these processes. Of course, the state variables are not simply real num-

bers as in the case of ‘ordinary’ ODEs. The Chromosome state, for instance, “represents

the polymerization, winding, modification, and protein occupancy of each nucleotide of

each strand of each copy of the M. genitalium chromosome, and the (de)catenation status

of the two sister chromosomes following replication” (Karr et al. 2012, S10). Mathemat-

ically speaking, this object is a set of 12 tensors (multi-dimensional arrays of numbers),

each of which stores specific information about every nucleotide of the M. genitalium

genome. Most of the other states, such as the RNA, Metabolite, or Polypeptide states, are

of similar complexity.

3.4.2 The Purpose of Whole-Cell Modeling

Karr et al. consulted over 900 primary sources, reviews, and databases in order to gather as

much information as possible. More than 1900 observed parameters were incorporated

to specify the organization of the M. genitalium chromosome, the structure and func-

tion of each gene product, metabolite, and their interactions and reactions. The sheer

amount of detail should, however, not lead to the impression that the model is in some
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submodels together. We defined 28 modules (Figure 1A) and
independently built, parameterized, and tested a submodel of
each. Some biological processes have previously been studied
quantitatively and in depth, whereas other processes are less
well characterized or are hardly understood. Consequently,
each module was modeled using the most appropriate mathe-
matical representation. For example, metabolism was modeled
using flux-balance analysis (Suthers et al., 2009), whereas
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Figure 1. M. genitalium Whole-Cell Model
Integrates 28 Submodels of Diverse Cellular
Processes
(A) Diagram schematically depicts the 28 sub-

models as colored words—grouped by category

as metabolic (orange), RNA (green), protein

(blue), and DNA (red)—in the context of a single

M. genitalium cell with its characteristic flask-

like shape. Submodels are connected through

common metabolites, RNA, protein, and the

chromosome, which are depicted as orange,

green, blue, and red arrows, respectively.

(B) The model integrates cellular function sub-

models through 16 cell variables. First, simulations

are randomly initialized to the beginning of the cell

cycle (left gray arrow). Next, for each 1 s time step

(dark black arrows), the submodels retrieve the

current values of the cellular variables, calculate

their contributions to the temporal evolution of the

cell variables, and update the values of the cellular

variables. This is repeated thousands of times

during the course of each simulation. For clarity,

cell functions and variables are grouped into five

physiologic categories: DNA (red), RNA (green),

protein (blue), metabolite (orange), and other

(black). Colored lines between the variables and

submodels indicate the cell variables predicted by

each submodel. The number of genes associated

with each submodel is indicated in parentheses.

Finally, simulations are terminated upon cell divi-

sion when the septum diameter equals zero (right

gray arrow).

RNA and protein degradation were
modeled as Poisson processes.
A key challenge of the project was to

integrate the 28 submodels into a unified
model. Although we and others had
previously developed methods to inte-
grate ODEs with Boolean, probabilistic,
and constraint-based submodels (Covert
et al., 2001, 2004, 2008; Chandrasekaran
and Price, 2010), the current effort
involved so many different cellular func-
tions and mathematical representations
that a more general approach was
needed. We began with the assumption
that the submodels are approximately
independent on short timescales (less
than 1 s). Simulations are then performed
by running through a loop in which the

submodels are run independently at each time step but
depend on the values of variables determined by the other
submodels at the previous time step. Figure 1B summarizes
the simulation algorithm and the relationships between the
submodels and the cell variables. Data S1 (available
online) provides a detailed description of the complete
modeling process, including reconstruction and computational
implementation.

390 Cell 150, 389–401, July 20, 2012 ª2012 Elsevier Inc.

Figure 3.13: Basic flow chart of the whole-cell model. The number in parentheses after
each process indicates the number of genes associated with each submodel. Source: Karr
et al. (2012)

sense complete with respect to molecular detail, and that the behavior is produced as a

self-organized product of all the individual molecular interactions. As Harvard systems

biologists Jeremy Gunawardena puts it:

The expectation that, with enough details, a model will miraculously spring

to life . . . is the stuff of fiction. (Gunawardena 2012a, 839)

Instead, the model can only recapitulate biological processes to the extent that they are

currently understood. ‘Completeness’ in the case of this model, therefore, does not refer

primarily to the amount of molecular detail that is incorporated, but rather to the fact that

all known higher-level processes are taken into account. The way in which the individual

modules are represented is not necessarily more advanced than the models we have dis-

cussed in the previous sections. The pragmatic spirit of the project is well expressed in

the following commentary:

For every module, there will likely be some expert who will present a fair crit-

icism of the module’s mathematical representation or parameter estimation,

even though at present they appear to represent the best available attempt
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at balancing realism, computational complexity, and number of free parame-

ters. (Freddolino and Tavazoie 2012, 249)

Clearly, the regulation of the processes that are incorporated in the individual modules

does not simply emerge ‘from the bottom up.’ Moreover, there are many processes that

are simply ‘black-boxed’ or represented in a very coarse-grained way because they are

currently not understood well enough. The Protein Folding process, for example, repre-

sents the three-dimensional configuration of each protein as a two-state Boolean vari-

able: ‘folded’ or ‘unfolded.’ The folding rate is a Boolean valued function that incre-

ments the copy number of folded protein depending on the amount of unfolded protein,

of metabolites, and of chaperones that assist the folding. On the other hand, processes

that are better understood, such as chromosome replication, are modeled in consider-

able detail. Every single process is implemented according to the best available modeling

strategy, but all of them heavily rely on simplifications, and there are many remaining

gaps in the model. What is more, the virtual cell does not simply start ‘living’ once all the

empirical information is fed in. Despite the available information, the parameter values

for many processes are still not known well enough. These parameters, therefore, have to

be fit or adjusted in order to fulfill certain basic observational constraints and to be con-

sistent with the other processes. For example, the Metabolism process, that describes the

import of nutrients and their conversion into building blocks for macromolecules, was

fit to match the observed mass doubling time of M. genitalium by means of flux balance

analysis (FBA).

While this might come as a disappointment to those who are dreaming of virtual or-

ganisms that are complete in every respect, the result of Karr et al.’s modeling efforts is far

from a trivial aggregation of smaller models. Instead, it is a strategy that has the poten-

tial to overcome the biases of decomposition and localization. When we discussed small

mechanistic models in Section 3.2, we noticed that biologists mostly investigate mecha-

nisms as individual modules and treat the rest of the organism as simply providing an in-

put for, and receiving an output from, the particular mechanism under study. In this way,

the epistemic task is considerably simplified because any complexity that results from the

communication between modules is ignored. In Karr et al.’s model, by contrast, the inter-

module communication is explicitly taken into account. Thus the whole-cell model is not
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simply a digital summary of everything that is currently known about a certain small par-

asite, but it provides a consistency check of the way in which biologists currently grasp

the organization of living organisms:

[W]e anticipate that the construction of whole-cell models and the iterative

testing of them against experimental information will enable the scientific

community to assess how well we understand integrated cellular systems.

(Karr et al. 2012, 399)

An integrated representation of a whole organism imposes additional constraints on the

included models of individual processes. The synthesis of enzymes, for instance, consists

of several steps each of which involves a number of chemical reactions that require the

presence of particular metabolites. These metabolites in turn have to be produced by

other processes that require the presence of particular enzymes. The organism as a whole

can sustain itself only if all of the different processes occur in a coordinated fashion such

that the output of each process matches the demand of those processes that depend on

it. This is precisely what a whole-cell model has to account for.

With regard to integrated behavior, the model makes some interesting predictions.

The authors noticed, for instance, that the overall length of the cell cycle in the simula-

tion showed considerably less variability than the single stages of the cycle alone. Thus

cell cycle length appears to be regulated in some way, even though no regulation was

explicitly incorporated in the model. By analyzing the output of their simulations, Karr

et al. found that the availability of single DNA nucleotides seems to be responsible for this

phenomenon. They observed that the lengths of two stages of the cell cycle, replication

initiation and replication, are inversely related to each other. If replication initiation is

slow, a large pool of nucleotides builds up in the meantime which in turn speeds up the

subsequent replication process:

The whole-cell model . . . presents a hypothesis of an emergent control of cell-

cycle duration that is independent of genetic regulation. (Karr et al. 2012, 393)

In a commentary on Karr et al.’s work systems biologist Mark Isalan, emphasizing espe-

cially this result, writes:
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So perhaps the most exciting thing about a whole-cell model is that it may

allow us to look beyond the direct molecular ‘cogs and wheels’ that drive bi-

ology and into the emergent properties of biological systems. (Isalan 2012,

41)

Note that ‘emergent’ here is not taken in a strong sense, as something that cannot be

explained or predicted on the basis of underlying molecular processes. Instead, what is

meant is the fact that the cell cycle control can be understood only when different mod-

ules of the system are integrated. This suggests that what systems biologists call ‘emer-

gent’ are often those behaviors that are left out of the traditional picture of molecular

biology due to the biases of decomposition and localization.

Karr et al. further tested their model by comparing its ‘phenotypic’ behavior against

direct experimental observations. The most impressive result in this regard seems at first

glance to be the model’s ability to predict the essentiality of genes with 79% accuracy.

However, this result has to be put into perspective. Among the experimentally tested

genes, about 85% turned out to be essential for the bacterium, compared to 71% in the

model. If we randomly assigned the genes in the model to the two groups ‘essential’/‘non-

essential,’ while keeping group sizes constant, we would obtain an accuracy of 65% by

chance!13 This is not to say that Karr et al.’s result isn’t highly statistically significant (that

is, it cannot be explained by chance alone), but it is maybe not as striking as it might seem

at first. Rather than to celebrate this as a big predictive success of the model, it might

therefore be more useful to focus on the reasons for deviations between the model and

the real system. The authors suggest that such deviations can be exploited for “model-

driven biological discovery” (Karr et al. 2012, 396). In particular, they looked more closely

at three genes whose disruption resulted in discrepancies between model prediction and

observation. In one of the cases this prompted them to consider an additional enzymatic

reaction that had not been included in the model before, while the other cases suggested

slight parameter changes, consistent with the rest of the model’s performance. Overall,

they found:

In each of these three cases . . . , identifying a discrepancy between model pre-

13The expected overlap was calculated using the hypergeometric distribution, which is a discrete proba-
bility distribution that describes the probability of k successes in n draws from a finite population of size N
containing m successes without replacement.
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dictions and experimental measurements led to further analysis, which re-

solved the discrepancy and also provided insight into M. genitalium biology.

(Karr et al. 2012, 397)

The real strength of whole-cell modeling might therefore lie in its ability to accelerate

biological discovery by including additional constraints that are invisible when looking

at individual chunks of a system. Deviations between prediction and model can provide

clues on where our knowledge about a system is incorrect or incomplete.

3.5 Conclusion: Alternative Heuristics?

In this chapter I looked at several case studies corresponding to what I take to be different

perpectives on the problem of biological complexity. In doing so, I have mainly focused

on the contribution of systems biology to discovery. As I have discussed at length in Chap-

ter 1, it is useful to distinguish between the ‘epistemic complexity’ of a particular scientific

task and the ‘intrinsic complexity’ of the system under study. These two can differ mainly

because the researcher’s information about the system is usually incomplete. I have con-

sidered cases where the scientific task consists in identifying the relevant components

and interactions of a mechanism and in explaining how these bring about the behavior of

interest. Heuristics are used as tools to simplify this task. I will now summarize how the

different approaches discussed in this chapter tackle the problem of complexity and how

they differ from the traditional approach of molecular biology.

3.5.1 Small Models: Catalysts of Search

The models discussed in Section 3.2 both target the spindle assembly checkpoint mech-

anism. Even though molecular biology has acquired considerable knowledge about this

mechanism, many open questions remain. The two kinds of models, that I have classified

as ‘thick’ and ‘thin,’ respectively, can be understood as tools applied at different stages in

the discovery process. Both, as I have shown, should be understood as mainly addressing

the problem of finding the structure of the mechanism, and only secondarily as tools for

understanding its behavior.
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The case of thin modeling (Doncic et al. 2005) largely abstracts from molecular de-

tail and focuses on the role of physical constraints. Radical idealizations are introduced,

partly to keep calculations tractable, but mainly to sufficiently constrain the model be-

havior. By evaluating model performance with respect to quantitative empirical con-

straints, this strategy allows the authors to exclude large classes of possible mechanisms.

This strategy involves a clear trade-off: The models incorporate additional information

with respect to the mechanistic accounts of molecular biology (reaction kinetics, diffu-

sion, geometry) and thus are in certain respects more sensitive tools to detect deviations

between predicted behavior and observation. On the other hand, the idealizations that

are introduced might make the candidate models questionable representatives of the tar-

get system. For this reason, thin models are usually inadequate to directly find the right

mechanism. However, their value might lie in raising the standard for candidate expla-

nations by adding additional requirements. For example, every account of the spindle

assembly checkpoint mechanism that relies on an autocatalytic loop (as in Doncic et al.’s

‘Self-Propagating Inhibition Model’) must explain how the system manages to shut off the

inhibition fast enough.

Thick modeling is possible when sufficient molecular detail about a mechanism is

available, and promises to circumvent some of the problems of the thin approach. Usu-

ally, the relevant molecular components have been identified and the basic scheme of the

mechanism established, but the precise way in which the components fill in this scheme

has not yet been figured out. Discussing Doncic et al. (2009)’s strategy, we saw that the

problem of search for the mechanism is reduced to a problem of search through param-

eter space. Unless sufficiently constrained, this search itself requires heuristic strategies.

The idiosyncratic way in which the problem is solved in the example suggests that gen-

eral strategies to approach the parameter problem in systems biology have yet to be de-

veloped. In this regard, Jeremy Gunawardena notes that systems biology will need to

start “harmonizing [the] cacophony” of “concepts and techniques that are coming into

the subject from the physical sciences and computer science” (Gunawardena 2010, 42).

Both strategies can be seen as complementing the traditional approach and heavily

rely on its results. There is thus no question of replacing molecular biology in this con-

text. The models retain the general framework of decomposition and localization, but can
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afford to drop some of the more specific heuristics of molecular biology (see Chapter 2),

owing to a quantitative mode of representation. Doncic et al. (2005), for instance, go be-

yond purely sequential models by considering the role of an autocatalytic loop. Further-

more, biochemical constraints and population (i.e. concentration) effects are explicitly

taken into account. We have seen, however, that in order to be efficient, modelers have

to make use of alternative heuristics, mainly in the form of simplifications that allow for

analytical or numerical tractability and make the modeling problems well-constrained.

3.5.2 Large Networks: Struggling with Modularity

The challenge posed by large networks is that they do not easily allow for the application

of decomposition and localization in the traditional way described in Chapter 2. Large

systems often cannot be functionally decomposed in an intuitive way. The examples I

discussed in Section 3.3 represent two different perspectives on networks that lead to dif-

ferent strategies of understanding network behavior.

The network motif approach discussed in 3.3.1 relies on the idea of functional mod-

ularity, just like the heuristics of decomposition and localization. But instead of starting

with system behavior, it applies a structural criterion to identify modules in the network.

As discussed at length, this strategy can only work if a number of assumptions on the

evolution of networks are justified. In particular, it requires that the freedom of natural

selection in ‘engineering’ functional units is not unlimited:

Evolution appears to have converged on the same network motifs again and

again in different systems, suggesting that they are selected because of their

function. (Alon 2007, 233, emphasis in original)

Thus, the idea is that a given biological activity constrains the set of possible topologies

that can produce it. The way biological evolution produces such networks and the mate-

rial properties of the components it uses, on this view, give rise to an inherent simplicity

of biological networks which may ultimately allow us to understand them:

There is no a priori reason that immensely complex biological systems would

be understandable. But despite the fact that biological networks evolved to
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function and not to be comprehensible, simplifying principles can be found

that make biological design understandable to us. (Alon 2007, 233)

In spite of its slightly different interpretation of the effects of biological evolution, the net-

work motif approach retains a general informational perspective on biological systems.

Even if networks contain feedback and feed-forward loops and thus cannot be forced into

the sequential schemes of traditional mechanistic accounts, they are understood as ‘in-

formation processing’ or ‘computing’ devices. As we have seen, these metaphors suggest

intuitive ways in which different functional units can be combined to produce the overall

functionality of the network.

The attractor perspective (3.3.2) is in many respects diametrically opposed to this vi-

sion of biological organization. Sui Huang stresses precisely those ways in which networks

might be more complex than the proponents of a ‘localist’ vision assume. Since his ‘philo-

sophical reflections’ address the heuristic aspects of this vision, I will quote him in some

detail:

Much of the topology-based reasoning about function rests on the unarticu-

lated premise that the molecular network acts like a communication network

in which some information ‘flows’ in the links from node to node. Although

this may be appropriate for metabolic reaction networks, it certainly does not

apply to networks of regulation, like the protein or transcription networks,

where a link represents an influence rather than a flow. (Huang 2004, 289)

The relevant processes in a network should not be understood as chains of signaling reac-

tions, but rather as coherent movements of the state of the whole system along a trajectory

in the state space. As a result, instances of the same higher-level process can be radically

different at the molecular level. This puts into question the traditional approach of un-

derstanding a system by accumulating detail about its molecular parts. In a more recent

article, Huang writes:

It is obvious to many biologists that increasing the density of the molecular

fuzzball by ceaseless discovery of new regulatory relationships . . . is inapt for

providing an intuitive grasp of the observable, emergent stem cell behaviours

that are actually quite simple and readily described in few words. The concep-
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tual simplicity of such nested binary choices at the cell behaviour level stands

in stark contrast to the vastly complicated molecular network with countless

circular control loops which, one naively hopes, may offer linear causal expla-

nations when carefully combed. (Huang 2011, 2247–2248, emphasis added)

This sounds as if the need for an alternative perspective arises not so much from a partic-

ular idea of biological organization, but from the limitations of our cognitive abilities:

An explanation of a phenomenon that exceeds in complexity the phenomenon

itself that it seeks to explain will not afford a natural, satisfactory understand-

ing. There is no understanding without simplification . . . . Thus, we propose

that any efforts to achieve satisfactory explanation for how a cell-fate deci-

sion ultimately results from the collective action of the molecular interac-

tions must be dedicated to the identification of more abstract, generalizable

patterns or principles that are simple enough to be grasped by the human

mind notwithstanding the complexity of the impenetrably entangled network

of molecular interactions. (Huang 2011, 2248–2249)

According to Huang, the idea of an ‘attractor landscape’ provides the adequate theoret-

ical framework to understand simplicity at the macrolevel in terms of “well-known ‘first

principles’ of mathematics and physics of dynamical systems” (Huang 2011, 2249). It pro-

vides a natural explanation of the robustness of cell types and differentiation processes.

However, we have seen that it is not obvious whether a perspective that largely abstracts

from molecular details can provide more than a very general idea of these processes. Ul-

timately, Huang calls for an integration of different perspectives:

It is of course still necessary to work out the molecular details of the specific

pathways that were faulted as not being explanatory in the opening of this

paper. Knowledge of the precise molecular pathway diagrams with specific

details is still indispensable for designing methods to interfere with cell-fate

regulation in order to steer their development into a particular, useful state. If

characterization of specific pathway diagrams provides a road map, the study

of the state space will one day reveal the topography, exposing the valleys in

hidden dimensions and the possibly surmountable hills between them. Such
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information on the structure of the epigenetic landscape will be needed for

harnessing the natural forces and constraints that drive cell state changes in

order to reprogramme cell fates. (Huang 2011, 2256–2257)

Thus despite appearing as a harsh critic of the traditional approach, Huang does not think

that it is without value. What he suggests, though, is that it should be complemented and

possibly counterbalanced by a global perspective that keeps an eye on the features that

might be lost by decomposing a system.

3.5.3 Whole-Cell Models: The Future?

Both the small mechanism and the large network models retain the problem of neglecting

the organismal context in one way or another. I have emphasized the potential of ‘com-

plete’ models to take into account the interactions between the modules. In this way,

whole-cell models promise to escape the biases of decomposition and localization, and

at the same time do not rely on the alternative assumptions of the network approaches.

So are whole-cell (or whole-organism) models a way to pursue unbiased mechanistic dis-

covery in biology? There are several problems that must be mentioned. The first is prac-

tical: It might simply exceed any available computational power in the foreseeable future

to scale up from M. genitalium to more complex organisms. An obvious next project for

whole-cell modelers would be the standard model bacterium E. coli. Yet, this step would

already correspond to a ten fold increase in genome size. Putting this concern aside, there

are also some more principled issues that have to be taken into consideration. Karr et al.’s

example shows us where some of the weaknesses of such approaches may hide. One

problem is due to the size of the model. Even if investigating a model is usually a much

more tractable problem than studying the real system directly, it is not obvious whether

one can easily localize the cause of a deviation between prediction and observation in the

model. With larger and larger models, one will eventually need heuristics for this prob-

lem of search as well. Moreover, there is the general risk that one will always find changes

in some of the parameter values to obtain a fit with the empirical data, even if the actual

cause of the deviation lies in the structure of the model. In this regard, one might ex-

pect that the in-built modularity of the model can greatly facilitate the ‘debugging’ of the

model. Yet, how can we test this assumption of modularity itself? The authors do not pro-
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vide any further justification for their particular interpretation of biological modularity

and confine themselves in this regard to the following statement:

Because biological systems are modular, cells can be modeled by the follow-

ing: (1) dividing cells into functional processes; (2) independently modeling

each process on a short timescale; and (3) integrating process submodels at

longer timescales. (Karr et al. 2012, 399)

However, even if it is true that biological systems are modular, it is an altogether different

question of whether a particular decomposition into modules is correct. To construct

their model, Karr et al. had to build on a particular organismal decomposition that was

based on the results of previous biological research. For this reason, the model might

have inherited some of the biases of the strategies of decomposition and localization. It

is difficult to imagine how one could make the model sensitive enough to detect these

biases, unless all the molecular properties were known with very high precision.

Whole-cell modeling appears to be a very promising approach to integrate smaller

models, to test the consistency of our current knowledge, and to detect some of the biases

hidden in approaches that focus on individual mechanisms. However, it has to be taken

into account that this approach is not without bias itself.

3.5.4 Alternative Strategies in Systems Biology?

One of the key roles of mathematical modeling in systems biology at present lies in the

contribution to the development of mechanistic models of biological behavior. Clearly,

we are not yet at a stage where all the parts of biological systems have been identified and

the remaining task consists in reproducing the behavior from their interactions. Instead,

systems biology continues the project of discovering the causal structures underlying var-

ious biological phenomena. The different approaches that I have discussed follow differ-

ent strategies to tackle the complexity of discovery. These strategies rely on different, and

at times competing assumptions about the organization and intrinsic complexity of liv-

ing systems. With the help of growing amounts of available empirical data and powerful

analytical and computational methods it becomes increasingly feasible to directly study

the tenability and scope of these assumptions. We have seen examples of this in the con-
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text of large network approaches. Importantly, such endeavors often need to integrate an

evolutionary perspective on biological systems.

All the discussed examples heavily rely on the previous and ongoing experimental

work of molecular biologists, even though they reveal some of the shortcomings of the

traditional approach. What all of them have in common is that they relax some of the as-

sumptions implicit in the heuristics of traditional molecular biology. On the other hand,

we have seen that all approaches have to introduce strong simplifications in order to ar-

rive at formal and tractable representations of the systems under study. Even though it is

probably not possible to make a rigorous claim about this, my case studies suggest that

the gain in overcoming the shortcomings of the traditional approach has to be paid by

introducing other potential biases. However, my discussion has revealed on several oc-

casions that a combination of different approaches can be productive at reducing bias,

provided that the scientists acknowledge the heuristic character of their approaches and

allow to be criticized by those who follow alternative strategies. The formulation of math-

ematical models enables researchers working with different strategies to speak a ‘com-

mon language,’ or at least to find points of contact between their accounts. This possi-

bility is demonstrated in integrative projects such as the whole-cell model. Moreover, a

formal mode of representation, whether quantitative or not, forces researchers to make

their assumptions explicit which can lead to constructive criticism instead of pointless

battles.





4

THE RELEVANCE OF IRRELEVANCE:

EXPLANATION IN SYSTEMS BIOLOGY

Summary

After having discussed strategies of developing and revising mechanistic explanations, I

now return to the topic of mechanistic explanation itself. In particular, I investigate ex-

planations in systems biology that rely on the tools of dynamic modeling. I argue that

accounts of mechanistic explanation that are based on ‘change-relating relationships’

between the components of a mechanism do not easily make sense of certain features

of dynamical patterns that mathematical models can account for. Moreover, I suggest

that when investigating the use of such models, one should distinguish between the ideas

of ‘causal relevance’ and ‘explanatory relevance.’ I show that the explanatory function of

mathematical models often consists in elucidating relationships of non-dependence. No-

tably, the robustness of biological systems is often best accounted for in this way, and not

by invoking separate mechanistic features. Drawing on examples from the literature in

systems biology, I show that an important aspect of explaining the behavior of a biologi-

cal mechanism consists in elucidating how in the systemic context components are not,

or only weakly, dependent on each other.1

1An earlier version of this chapter has been accepted for publication (Gross, forthcoming).
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4.1 Introduction

The starting point of my analysis in the preceding chapters was that scientists make use

of heuristic strategies to facilitate the discovery of mechanisms. I mentioned that heuris-

tics go along with particular assumptions about the organization and complexity of the

system under study. Some of these assumptions are openly acknowledged by scientists to

be ‘working hypotheses,’ or even known to be wrong, while others are so entrenched that

they are rarely put into question. Moreover, they are often heavily influenced by the social

context and can change over time:

From the universe of the Timaeus, through the Archimedian analogues of

Galileo and the clockwork universe of Newton, to the recent focus on servo-

mechanisms and computers, the available analogues were important factors

in determining which mechanistic models scientists advanced. (Bechtel and

Richardson 1993, 17–18)

Systems biology, as we have seen, challenges some of molecular biology’s fundamental

assumptions about the organization of living systems. In particular, it emphasizes the im-

portance of dynamic features of biological mechanisms. Bechtel and Abrahamsen (2010)

recently argued for the importance of such features and proposed an account of ‘dynamic

mechanistic explanation:’

A mechanism is a structure performing a function in virtue of its component

parts, component operations, and their organization. The orchestrated func-

tioning of the mechanism, manifested in patterns of change over time in prop-

erties of its parts and operations, is responsible for one or more phenomena.

(Bechtel and Abrahamsen 2010, 323, emphasis in original)

The patterns of change over time are accounted for by building a quantitative model in

which the properties of known components and operations figure as variables and pa-

rameters. Such a model can explain phenomena, such as oscillations, that are not easily

understood by “mental simulation of the mechanism’s functioning” (Bechtel and Abra-

hamsen 2010, 332). I fully agree with the observation that mathematical models can al-

low scientists to explain the behavior of very complex mechanisms. Here, I want to draw
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attention to a further feature of dynamic modeling. In line with my general focus on the

ways in which scientist attempt to reduce complexity, I want to suggest that dynamical

models often account for unexpected simplicity.

It is perhaps as a result of the hype around chaos theory that ‘nonlinearity’ is usually

associated with the idea that small changes can have large effects. However, in nonlinear

dynamical systems the converse is also possible: large changes with negligible or small

effects. In systems biology such cases are widely studied under the label of ‘robustness’

(e.g. Barkai and Leibler 1997, Carlson and Doyle 2002, Kitano 2004, Daniels et al. 2008, Gu-

nawardena 2010). Molecular biologists, by contrast, usually focus on relationships where

a change in one factor leads to a change in another. This goes back to the very intuitive

idea of understanding causation in analogy with manipulation, that is, with the idea of

bringing about a change by intervening on some object. This idea has been developed

into a philosophical conception of causation and causal explanation by James Woodward

(2003). More recently, Carl Craver (2007) elaborated on it in his manipulationist account

of mechanistic explanation. The claim I want to defend in this chapter is that such an

account relies on a clock-like picture of biological mechanisms by assigning importance

solely to change-relating relationships. I argue instead for the explanatory value of rela-

tionships that are not change-relating,2 especially when it comes to the explanation of

the behaviors of seemingly very complex mechanisms. Examples of explaining biological

robustness in systems biology will provide the right kind of illustrations for this point.

The chapter is organized as follows. In the next section I discuss some general intu-

itions about biological robustness. Next, in section 4.3, I introduce the manipulationist

account of mechanistic explanation and discuss how biological robustness might be ac-

counted for from its perspective. In Section 4.4 I turn to examples of explanation in sys-

tems biology. The first is a simple model of gene expression. Here my aim is to show that

the significance of non change-relating relationships arises especially in the context of

dynamic modeling. Dynamic (or steady-state) equilibrium is arguably the simplest case

of dynamic stability, and it reveals some important features of the explanations that are

given in systems biology. Afterwards, I present a real case study from systems biology that

illuminates how information about non-dependence plays an essential role in our under-

2I will synonymously speak of “non change-relating relationships” and “relationships of non-
dependence”.
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standing of biological mechanisms. Finally, in section 4.5, these issues are connected to a

general perspective on robustness and the global architecture of living systems.

4.2 Biological Robustness

The molecules inside a living cell do not behave like the molecules in a gas. In a gas the

individual particles freely move around and interact randomly (if at all), while showing no

apparent organization. A gas seems to be the perfect example of a simple aggregate (Wim-

satt 1997, 2007b) whose macro-level properties are invariant under many changes at the

micro-level. Obviously, the cell is not such a simple aggregate. However, a cell does not

appear to behave like a mechanical clock either. The mechanism of a clock almost cer-

tainly breaks down if we remove one part or try to exchange two different components,

whereas living systems are often surprisingly stable under a wide range of perturbations.

An impressive example of such robustness is revealed, for instance, in the experiments of

rewiring the E. coli network by Isalan et al. (2008) that I discussed in Chapter 3. From such

observations one may infer that, with respect to organization, cells assume a position on

a spectrum somewhere between gases and clocks, between what Warren Weaver called

“disorganized” and “organized complexity” (Weaver 1948, see Chapter 1). Arguably, how-

ever, some people would object to this classification. Aren’t biological systems much more

complex and organized than the artifacts of mechanical engineering? And aren’t there

very specific kinds of perturbations, such as mutations, to which living systems can react

in very sensitive ways? Taking this into account, one might conclude that living systems

are very complex mechanisms, but differently from clocks they have additional features

that account for their particular ways of resisting perturbations.

The coexistence of extreme complexity and robustness is undoubtedly one of the most

fascinating features of life. As the physiologist Walter Cannon remarked:

When we consider the extreme instability of our bodily structure, its readiness

for disturbance by the slightest external forces and the rapid onset of its de-

composition as soon as favoring circumstances are withdrawn, its persistence

through many decades seems almost miraculous. (Cannon 1932, 20)

The scientific work by people like Cannon has shown that the stability of many physiolog-
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ical processes can be explained by specific mechanisms. For example, the homeostasis

of blood sugar levels can be explained with reference to a simple feedback mechanism

that involves the hormones insulin and glucogen. Systems biology has recently started

to investigate similar phenomena at a more fine-grained level, such as the robustness of

genetic or metabolic networks. Can these phenomena be understood in the same way

as the homeostatic processes at the organismal level studied by physiologists? In what

follows I want to show how some of the insights gained by systems biologists challenge

widely held intuitions about mechanistic explanations in the life sciences. By doing so, I

do not want to suggest that systems biology will eventually give rise to an alternative, non-

mechanistic paradigm of explanation in biology, but merely draw attention to certain is-

sues that mechanistic accounts will need to address in order to capture the explanatory

ambitions of systems biologists.

4.3 Manipulation and Mechanistic Explanation

It seems natural that real understanding of a system implies the ability to predict how it

will respond to various kinds of interventions. To understand a phenomenon means to

know how changes in it can be brought about, and this idea seems, at least implicitly, to

underlie many of the recent conceptions of mechanistic explanation in the philosophy

of science. The relationship between intervention and explanation has been made most

explicit by James Woodward (2002, 2003) in his manipulationist account of causation and

explanation which was subsequently adopted and further developed by some of the main

proponents of mechanistic explanation (e.g. Glennan 2002, Craver 2007). On Woodward’s

account a causal relationship holds between two variables or events if it is possible (at

least in principle) to systematically bring about changes in one by intervening on the

other. The importance of these relationships for explanation, according to Woodward,

lies in the fact that they allow us to answer a range of counterfactual what-if-things-had-

been-different questions about the explanandum. We may, for instance, explain why a

particular person has contracted lung cancer by referring to the fact that the person was a

heavy smoker. The causal knowledge that the occurrence of cancer can be influenced by

intervening on smoking behavior increases our understanding since it allows us to infer
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the counterfactual claim that the person (probably) wouldn’t have gotten the cancer if she

hadn’t smoked.

However, mechanistic explanations are not simply explanations of effects in terms of

their causes, but usually are understood as explanations of the properties of a whole in

terms of the properties of its parts. This distinction can be further illuminated by invoking

the different types of questions that explanations are supposed to answer. While explana-

tions of effects in terms of their causes are directed towards why-questions, such as ‘why

did this person get lung cancer?’, the description of the mechanism underlying a behavior

may be understood most intuitively as answering a how-question, such as ‘how does the

heart pump blood?’. In this context, Wesley Salmon referred to explanations in terms of

underlying structure as constitutive and distinguished them from etiological explanations

that cite the causal history of an event or phenomenon (Salmon 1984, 275). More recently,

Craver (2007) has argued that constitutive dependencies between mechanisms and their

components are metaphysically distinct from causal dependencies holding between ob-

jects at the same level. He argues, however, that usually both causal and constitutive re-

lationships are employed in mechanistic descriptions, and that both can be understood

within Woodward’s general manipulationist perspective.

4.3.1 Manipulationist and Explanatory Relevance

In Chapter 1 I already discussed the most influential accounts of scientific explanation.

In particular, I mentioned nomological and causal conceptions of explanation. Accord-

ing to the deductive-nomological model (e.g. Nagel 1961), explaining consists in logically

deriving the explanandum from premises that include law-like generalizations. Among

the second category, we find the traditional accounts of causal-mechanical explanation

(e.g. Railton 1981, Salmon 1984), according to which an explanation has to show how

the explanandum was produced by citing its causal history, where ‘cause’ is understood,

roughly, as physical influence.

The manipulationist conception proposes an alternative to both nomological and cau-

sal-mechanical accounts of explanation. It promises to solve some important conceptual

problems, notably the question of how to exclude irrelevant factors from an explanation.

According to the nomological account, for instance, the following logically valid argument
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is an acceptable explanation:

This sample of table salt dissolves in water, for it has had a dissolving spell

cast on it, and all samples of table salt that have had dissolving spells cast on

them dissolve in water. (Kyburg 1965, 147)

But clearly, mentioning the spell is not explanatory since all samples of table salt—whe-

ther or not they have had a spell cast on them—dissolve in water.3 The traditional causal-

mechanical accounts struggle with a slightly different, though no less worrying problem:

If everything that has had a causal influence has to be cited in the explanation of an event,

where do we stop? Do we, for instance, have to include the gravitational influence of

remote stars when explaining a car accident?

The manipulationist conception proposes a solution to these problems of irrelevance

by referring to a counterfactual criterion, according to which only those factors are rele-

vant that could have made a difference to the explanandum:

[W]e see whether and how some factor or event is causally or explanatorily

relevant to another when we see whether (and if so, how) changes in the for-

mer are associated with changes in the latter. (Woodward 2003, 14)

For instance, the spell is irrelevant because by modifying or omitting it we cannot change

the dissolving of salt in water. Similarly, manipulating the position of a remote star, apart

from being difficult to achieve, is not expected to make a difference to the occurrence of

a particular car accident (unless one believes in astrology).

Carl Craver has recently argued that an analogous criterion can provide an account of

explanatory relevance in mechanistic explanations of phenomena exhibited by a system.

The core idea can be illustrated with the following quote:

One need not be able to derive the phenomenon from a description of the

mechanism. Rather, one needs to know how the phenomenon is situated

within the causal structure of the world. That is, one needs to know how the

phenomenon changes under a variety of interventions into the parts and how

the parts change when one intervenes to change the phenomenon. When one

3More generally, the problem arises from the fact that if P ⇒C is valid, then also P∧Q ⇒C is valid, where
Q can be any proposition.
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possesses explanations of this sort, one is in a position to make predictions

about how the system will behave under a variety of conditions. Furthermore

when one possesses explanations of this sort, one knows how to intervene

into the mechanism in order to produce regular changes in the phenomenon.

(Craver 2007, 160)

Craver thus thinks of explanatory relevance (which components and relationships should

figure in a mechanistic explanation) in terms of manipulationist relevance (which factors

can be manipulated to change the phenomenon).

If one conceives of biological systems as clock-like, it is plausible to equate manip-

ulationist relevance with explanatory relevance. In a clock it seems that exactly those

interventions that bring about changes in the overall behavior are the ones that reveal

the relationships one needs to know in order to grasp the underlying mechanism. For

instance, if the balance spring in a clock is replaced by an otherwise similar spring with

greater stiffness, the balance wheel will oscillate with increased frequency, and, as a con-

sequence, the hands of the clock will move faster. Generalizing from this example, one

may say that machines like clocks are fragile in a certain sense because changes in the

components are connected with systemic behavior in a ‘rigid’ way. The observation that

clocks do not easily fall apart, in spite of this fragility, is explained by the fact that the

properties of the parts are not easily changed in the first place. Consider the effect of tem-

perature on a clock. A clock made of metal can work reliably in most climates because the

temperatures that could significantly deform its components lie far beyond the typically

encountered range. Similarly, most mechanical devices owe their robustness to the fact

that properties of their parts are insensitive to a wide range of external perturbations or

changes in external conditions.

It seems that biological systems are not fragile in the same sense. Robustness in bio-

logical contexts is often taken to mean roughly “that some property of the system remains

the same under perturbation” (Gunawardena 2010, 35). In this context, however, ‘pertur-

bation’ is usually understood as a change in the components or the structure of the system

itself. In other words, robustness implies that certain interventions on the components

do not bring about changes in a phenomenon, which implies that there are relationships

between properties of the system and its components that are not change-relating. What
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role do such relationships play in our attempts to understand biological systems? And

how could they be interpreted within a manipulationist account of mechanistic explana-

tion?

There seem to be two strategies of dealing with such relationships within a manipu-

lationist framework. On the one hand, one may argue that they simply fail to meet the

criterion for explanatory relevance. For example, a clock’s behavior will not be altered by

changing the color of the balance spring. Consequently, the color of the spring is consid-

ered irrelevant when it comes to explaining how the clock works. However, there might

be occasions where the fact that something doesn’t change itself is of explanatory interest.

The manipulationist will then set out to look for an explanation of this behavior in terms

of underlying relationships that actually are change-relating, such as in the case of blood

sugar homeostasis. Insofar as robustness is a somehow “surprising” or “almost miracu-

lous” (Cannon 1932) property of living systems, she will attempt to explain it by looking

for specific mechanisms that are responsible for the resistance to change. To sum up, for

the manipulationist change-relating relationships are the fundamental building blocks of

mechanistic explanations. Relationships that are not change-relating are either irrelevant

for our understanding, or themselves have to be explained in terms of change-relating

relationships.

By investigating examples of dynamical modeling in systems biology, I will show that

relationships that are not change-relating (relationships of non-dependence) point to

something deeper and draw our attention to complementary aspects of scientific under-

standing and explanation that have been neglected in recent discussions on mechanistic

explanation. Before turning to these examples, I will discuss in more detail the connection

between change-relating relationships and explanation according to the manipulationist

picture.

4.3.2 Explanation and Invariance

To illustrate his counterfactual account of causal explanation, James Woodward (2003,

187) makes use of a simple example from physics that probably can be found in any

textbook on electrostatics (Figure 4.1). A very long straight wire carries a uniformly dis-

tributed electric charge with density λ. The explanandum in this example is the force
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Figure 5.1.1

We can think of the wire as divided into short segments of length dx, each
of which may be treated as a point charge dq (see figure 5.1.1). The resultant
intensity at any point will then be the vector sum of the fields set up by all
these point charges. By Coulomb's law, the element dq will set up a field of
magnitude

at a point P a distance s from the element. Integrating the x- and {/-components
of dE separately, we have

If X is the charge per unit length along the wire, we have dq = 'Xdx, and

The integration will be simplified if we integrate with respect to dQ rather than
dx. From figure 5.1.1

and thus,

Making these substitutions, we obtain:

Figure 4.1: Woodward’s example of the charged wire. Source: Woodward (2003)

of the electric field on a test charge at position P at a perpendicular distance r from the

wire. Woodward describes a derivation that is based on Coulomb’s law and determines

the strength of the field at P by summing up the contributions d q from all the infinitesi-

mal sections d x of the wire. As a result he obtains the following expression:

E = 1

2πε0

λ

r
. (4.1)

Woodward argues that this relationship, together with its derivation, explains the field

intensity at P because it allows us to predict how the value of E changes if we intervene

on the system in various ways. For instance, if we increase the distance between the wire

and the test charge, the formula tells us that the field intensity decreases proportionally to

the reciprocal of the distance. Changing the relative charge λ, on the other hand, results

in a proportional change in intensity.

Generalizing from this example, Woodward proposes that explanation amounts to ex-

hibiting the systematic patterns of counterfactual dependence that can be expressed as

functional relationships between variables. In doing so, however, he restricts himself to

relationships that are change-relating, that is, to those relationships in which an interven-

tion on one variable brings about a change in the other. If we consider the derivation of

(4.1), however, we notice that it also elucidates relationships that are not change-relating.

For instance, we learn that moving the test charge to a new position P ′ at the same dis-

tance from the wire will not change the value of the field intensity because, as can easily be
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shown, such a transformation would not affect the result of the calculation. Likewise, we

can infer that the x-component Ex of the field vector will never change to a value different

from zero, no matter how we intervene, provided that we do not destroy the symmetry of

the geometrical setup.

In Woodward’s picture information about such non change-relating relations plays no

direct role in explanation. However, the notion of invariance, that figures prominently

in his account, seems closely related. He argues that causal claims are always associated

with claims about invariant relationships:

Invariance under at least one testing intervention (on variables figuring in the

generalization) is necessary and sufficient for a generalization to represent a

causal relationship or to figure in explanations. (Woodward 2003, 250)

The idea is roughly the following. The generalizations on which causal claims are based

can be described as functional relationships between two variables of the type Y =G(X ).

It is not necessary that a generalization holds under all circumstances, instead it is re-

quired only that there are some possible changes of X under which it continues to hold.

Invariance obviously comes in degrees, but as long as there is a minimum of invariance,

a relationship is causal and, therefore, potentially explanatory. Highly invariant general-

izations, such as the fundamental laws of physics, do not necessarily give rise to better

explanations, even though they might have other desirable features.

In a more recent article Woodward uses the terms of invariance and stability inter-

changeably, and gives a slightly different characterization in terms of background circum-

stances. He argues that in order to qualify as causal, it is sufficient that a relationship of

counterfactual dependence holds in some set of circumstances Bi . He then states:

The stability of this relationship of counterfactual dependence has to do with

whether it would continue to hold in a range of other background circum-

stances Bk different from the circumstances Bi . (Woodward 2010, 291-292,

emphasis in original)

According to this characterization, a claim of invariance or stability can be formally ex-

pressed as:

Y =G(X ,Bi ) =G(X ,Bk ) for all k in some set K , (4.2)
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which implies the existence of a relationship F (B) = G(X ,B) of non-dependence, that is,

F (Bk ) = F (Bl ) even if Bk 6= Bl . Woodward’s account, therefore, relies on both change-

relating and non change-relating relationships! However, the two seem to play very dif-

ferent roles in an explanation. Change-relating relationships, on Woodward’s view are the

crucial elements; they provide the content of the explanation, so to speak, and elucidate

the features of the explanandum phenomenon by giving information about what would

have changed if things had been different. Relationships of invariance, by contrast, largely

keep in the background. They are necessary for specifying the range of application, or

generality, of an explanatory claim, but strictly speaking do not provide any explanatory

information.

There is thus a clear conceptual separation between the two types of functional re-

lationships reflecting Woodward’s distinction between causal explanatory claims, on the

one hand, and claims about invariance, on the other hand. However, if we think of the

derivation of the field strength in the wire example, we observe that it implicitly also pro-

vides information about relationships of non-dependence. If we keep track of both the x-

and y-components of the field strength, we notice that all the infinitesimal contributions

to Ex exactly cancel out, independently of the position P at which the field is evaluated.

The relationship

Ex(P ) = 0 for all P, (4.3)

however, does not seem to be irrelevant in the same way as, for instance, the color of the

wire. We are therefore inclined to conclude that both change-relating and non change-

relating relationships are potentially important for our understanding of mathematical

structures like the one given in the example. It is not clear why one type of relationship

should be somehow more interesting or informative than the other. The reason why non-

change-relating relationships are often neglected might be due to the following feature:

information about non-dependence can be represented in a very compressed way—and

we have seen that it is often left implicit. As Herbert Simon put it: “Mother Hubbard did

not have to check off the list of possible contents to say that her cupboard was bare” (1962,

478). But it is important to see that this property pertains to the way in which we describe

a phenomenon, and it should not be conflated with explanatory irrelevance.

Woodward’s account implies that change-relating relationships exhaust all that is nee-
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ded for explaining the behavior of a system. But if relationships of non-dependence can

contribute to our understanding of mathematical models, why shouldn’t they be taken

as contributing to our understanding of phenomena that are explained by means of such

models? As will be further illustrated later in this chapter, the functional relationships

that play a role in the models of systems biology often are change-relating in some partic-

ular range of values while being non-change relating in a different range. I will show that

usually both types of information are crucial for an understanding of complex behavior,

without one necessarily being reducible to the other.

By that I do not want to deny the important role that change-relating relationships

play in determining the causal or constitutive links within a mechanism. There is no

doubt that these relationships provide explanations by allowing us to answer to why-

questions of a particular type. But this alone does not entail the equivalence of infor-

mation about manipulationist relevance and explanatory information when it comes to

more complex mechanistic explanations.

A related issue, that Woodward’s account leaves unclear, is how invariance or stability

itself is explained. As Robert Batterman notices:

Woodward stresses the importance for explanation of a kind of invariance and

robustness that may be present in a given regularity to some degree or other.

Thus, he discusses how “nonlaw-like” regularities may, because of their ro-

bustness, play crucial explanatory roles. Woodward is not concerned to an-

swer why-questions about the universality or degree of universality of the reg-

ularities that he discusses. That is, he does not, as far as I can tell, ask the

question why the regularity has the robustness that it has or has it to the de-

gree that it has. (Batterman 2002, 59)

Batterman argues that in the explanation of a phenomenon one has to distinguish be-

tween two different kinds of why-questions:

A type (i) why-question asks for an explanation of why a given instance of a

pattern obtained. A type (ii) why-question asks why, in general, patterns of a

given type can be expected to obtain. Thus, a request to explain an instance

of universality is a request to provide an answer to a type (ii) why-question.

(Batterman 2002, 23)
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Batterman’s ambition to explain universality and Woodward’s efforts to elucidate expla-

nation in terms of contingent causal generalizations point to different but possibly com-

plementary aspects of scientific curiosity. These may be seen as loosely related to the

different types of questions that are typically asked in the physical and the biological sci-

ences, respectively. It is a philosophically interesting question how the new field of sys-

tems biology locates itself on this spectrum since, with regards to its methodological and

explanatory resources, it has often been perceived as pushing biology more towards a

physics attitude (see e.g. Poon 2011). A closer look at some examples may help to shed

light on this issue.

4.4 Explaining Robustness in Systems Biology

4.4.1 Explaining Equilibrium

Let us start with a very simple case and consider the following minimal model of gene

expression. The system consists of a protein with concentration X that is synthesized at

a constant rate S = σ, while its degradation rate, D = δ · X , is proportional to the con-

centration. Figure 4.2 graphically represents the qualitative features of this model. The

dynamics of X is captured by the following differential equation:

d X

d t
= S −D(X ) =σ−δ ·X . (4.4)

Solving this equation allows us to obtain the temporal behavior of X depending on a given

initial concentration X0 at time t = 0. As can be checked, its explicit solution is given by:

X (t , X0) =
(

X0 − σ

δ

)
exp(−δt )+ σ

δ
. (4.5)

After sufficient time, the value of the exponential will become very small and the first part

of the right hand side of (4.5) can be neglected. Formally,

X (t , X0) → σ

δ
for t →∞ . (4.6)
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We notice that the expression to which X converges does not contain X0. This means

that the protein concentration in the long run does not depend on its initial value, but as-

sumes an equilibrium (or steady state) value XS =σ/δ that depends only on the protein’s

rates of synthesis and degradation. A further consequence is that, whenever the system is

perturbed by changing the concentration to some value X 6= XS , it will always return to XS

eventually. At least at first sight this derivation seems to provide a perfectly satisfactory

explanation of equilibrium.

Degradation

Synthesis

0 XS

Concentration

R
at

e

Figure 4.2: Rate balance plot for the simple gene expression model. Synthesis is constant,
while degradation depends linearly on protein concentration. Both can be represented
as straight lines. The intersection of the two lines corresponds to the equilibrium state.
The stability of the equilibrium can be inferred from the sign of the resulting rate when
subtracting degradation from synthesis.

The model just described is very similar to an example that Elliott Sober (1983) used

to raise some questions about causal-mechanical approaches to explanation. He refers to

an explanation given by R. A. Fisher for the 1:1 sex ratio observed in many sexually repro-

ducing species. Instead of providing a particular causal history for the occurrence of the

ratio, Fisher points out why the long run ratio in many sexually reproducing populations

does not depend on particular causal details. As Sober reports:

Fisher’s account shows why the actual initial conditions and the actual se-

lective forces don’t matter; whatever the actual initial sex ratio had been, the

selection pressures that would have resulted would have moved the popula-

tion to its equilibrium state. Where causal explanation shows how the event
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to be explained was in fact produced, equilibrium explanation shows how the

event would have occurred regardless of which of a variety of causal scenarios

actually transpired. (Sober 1983, 202)

Sober concludes that equilibrium explanations are not causal explanations in the tradi-

tional sense:

The causal explanation focuses exclusively on the actual trajectory of the pop-

ulation; the equilibrium explanation situates that actual trajectory (whatever

it may have been) in a more encompassing structure. It is in this way that

equilibrium explanations can be more explanatory than causal explanations

even though they provide less information about what the actual cause was.

This difference arises from the fact that explanations provide understanding,

and understanding can be enhanced without providing more details about

what the cause was. Equilibrium explanations are made possible by theories

that describe the dynamics of systems in certain ways. (Sober 1983, 207)

Sober thus hints at a discrepancy between information about particular causal events and

information that is relevant for explanation. He seems to suggest that to explain equilib-

rium means to show why particular causal facts do not make a difference to the outcome.

The question thus arises how this idea relates to Woodward’s account according to which

such facts are simply explanatorily irrelevant. Is it straightforward to capture equilibrium

explanations within the manipulationist framework?

Before trying to determine what kinds of explanations they are—or aren’t, we should

clarify what it is that equilibrium explanations are supposed to explain. Regarding the sex

ratio, the general question is ‘Why is there an equilibrium at a sex ratio of 1:1 in so many

species?.’ However, this can be interpreted as including actually three different calls for

explanation, depending on where we put the stress in the sentence. First, it can be read

as the question of why it is one and the same ratio that is observed across a wide range

of sexually reproducing species. In other words, why does the rate not assume different

values for different species? Second, it may express an interest in explaining why the ra-

tio has the particular numerical value of r = # males/# females ≈ 1, and not some other

number in the interval (0,∞). Third, one may ask why the observed ratio represents an

equilibrium point, that is, why it is stable and adjusts itself after perturbations.
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Each way of interpreting the question calls for an account that makes use of different

explanatory resources. The first interpretation, even though interesting in its own right,

is not relevant for the current discussion since it seems to mainly depend on empirical

facts that are specific to evolutionary biology. For this reason, my focus will be on the

differences between the second and the third interpretation that more directly pertain to

the phenomenon of equilibrium in general, and roughly correspond to Batterman’s type

(i) and type (ii) why-questions. I will discuss these differences in more detail using the

particularly clear example of the gene expression model.

Let us look at the explanation-seeking question and the two relevant interpretations

when transferred to this example. The general question is, ‘Why is there an equilibrium

at a concentration X = XS?’, and it can be interpreted as expressing an interest either

in the particular numerical value or in the fact that there is an equilibrium. Respond-

ing to the first, the derivation of (4.6) can be taken to show why the protein concen-

tration at steady state is given by the particular ratio σ/δ. This seems to represent a

paradigmatic case of a Woodwardian explanation since the steady state concentration is

explained in terms of the dependency relations characterizing the system. It clearly allows

us to answer a range of counterfactual what-if-things-had-been-different questions. For

instance, we can predict how the steady state value would change if we were to intervene

on the synthesis or degradation constants. Differently from the type of causal explana-

tion that are the target of Sober’s argument, however, this explanation refers to structural

features of the model rather than to causal history. In the terminology introduced ear-

lier, this explanation might, therefore, best be understood as constitutive. This is the way

in which Kuorikoski (2007) interprets equilibrium explanation within a manipulationist

framework:

If explanations indeed track dependencies instead of persistence, the inter-

esting explanatory relationship cannot be the one between the initial con-

ditions and the equilibrium state, as might first be surmised, and indeed as

seems to have been Sober’s view. Instead, what the equilibrium state does de-

pend on are the structural features of the system. Equilibrium explanations

are not causal explanations of events but structural or constitutive explana-

tions of system-level properties. (Kuorikoski 2007, 154, emphasis in original)
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However, stating the dependency relations between parameters and steady state value

alone arguably does not give an answer to Batterman’s type (ii) question of why the pat-

tern, in this case equilibrium, obtains in the first place. Instead, as we have seen, equilib-

rium seems to be explained precisely by deriving a relation of non-dependence between

the initial conditions and the long-run concentration. Is there another way in which we

can understand this aspect of equilibrium within a manipulationist framework of causa-

tion while avoiding Sober’s puzzle about the irrelevance of particular causal facts?

To maintain a contrastive focus, one might try to interpret the existence of a single

stable equilibrium as a property that systems either do or do not possess, and determine

exactly what this property depends on. It turns out that in the present example this prop-

erty depends only on the structure of the model.4 This dependency may be expressed in

terms of a binary variable P ∈ {0,1} in the following way:

P ({S,D}, {X }, {σ,δ}) = 1, (4.7)

where S = σ and D = δ · X represent the particular types of functions used to express the

dynamic relationships, while {X } and {σ,δ} stand for the sets of variables and parame-

ters that appear in the model. By modifying this structure in particular ways, one may

obtain a different model for which P = 0, that is, a model without an equilibrium state,

or perhaps with more than one. An example of such a modification is the complete dis-

ruption of degradation, i.e. setting D = 0, or the addition of a more complex dependency

S(X ) of synthesis on the concentration. This reasoning suggests that in principle it might

be possible to find a representation of the (potentially very complicated) dependency re-

lation between P and the structural properties of the model. Subsequently, one could

make use of this relation to explain why a particular instance of the model does or does

not possess the equilibrium property P . Furthermore, one may argue that P ’s structural

dependency explains equilibrium by showing how it appears when the structural param-

eters are changed in particular ways. But have we thereby really explained equilibrium? It

seems that by using the complex dependency relation, we have at best been able to give

a more sophisticated answer to a type (i) why-question. That is to say, we have explained

4Since the equilibrium is global it does, for instance, not depend on the initial concentration being within
a particular range. However, similar arguments can be made for cases of non-global equilibrium.
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that a particular system shows equilibrium because it belongs to a particular structural

class. If we intervene on the structure of the system in such a way that it no longer be-

longs to this class, it will exhibit qualitatively different behavior. In the theory of dynam-

ical systems the investigation of equilibrium states when varying the parameter values is

known as bifurcation analysis. However, this type of analysis is carried out to investigate

the circumstances under which a system shifts between qualitatively different behaviors,

not to explain the behaviors themselves. By using a manipulationist strategy, we do not

reach beyond the explanation of instances of equilibrium.

To summarize, a satisfactory explanation of equilibrium in causal terms fails for the

reasons discussed in Sober’s paper. In order to explain equilibrium constitutively, the

manipulationist may invoke relationships that relate quantitative or qualitative changes

in behavior to changes in structural features of the system, but she thereby fails to give

an account of how the behavior is produced in the first place. As I argue, and as Sober

suggests, equilibrium is best explained by referring to a relationship of non-dependence.

As mentioned several times, Woodward’s manipulationist account implies that only

change-relating relationships are doing real explanatory work. Mathematically speaking,

this amounts to restricting oneself to injective functional relationships that are defined by

the property that

for x 6= y ⇒ f (x) 6= f (y) . (4.8)

The mathematical derivation of the equilibrium state, however, makes use of a relation-

ship between possible initial conditions and the long term behavior of the system that is

non-injective in the limiting case of T →∞, that is, for large times T we have that for two

initial concentrations X0 and Y0

X (T, X0) ≈ Y (T,Y0) , even if X0 6= Y0 . (4.9)

The case of equilibrium shows how knowledge about such relationships can be relevant

information for the explanation of a phenomenon.

I briefly discussed in Section 4.3.2 that the manipulationist picture might be defended

by maintaining that a relationship of non-dependence simply expresses the fact that some

element is explanatorily irrelevant. For instance, even though physics tells us that the cur-
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rent positions of remote stars exert a non-vanishing gravitational force on objects on the

earth, we do not mention them in our accounts of biological phenomena because we

do not think that they make a difference. But I propose that there are interesting ‘non-

dependencies’ just as there are uninteresting dependencies. Many phenomena depend

on factors that we would not want to include in their explanations. The croaking of a

frog, for instance, depends on whether the frog has just been run over by a car, but we

do not cite facts about cars when we explain how a frog croaks. Craver (2007) points out

that this problem of ‘extravagant causes’ follows automatically once one allows for neg-

ative causation, and he admits that he does not have a general solution to deal with it.

However, extravagant causes seem to be threatening only if one insists on equating the

notions of manipulationist and explanatory relevance. If it is true that information about

causal irrelevance can be explanatory, then obviously the line between what is relevant

for explanation and what is not must be drawn elsewhere. Craver in the end has to resort

to a pragmatic notion of changes that typically occur in a system. But if one is forced to

acknowledge that pragmatic criteria are necessary anyway in order to distinguish rele-

vant from irrelevant factors, the objection that information about non-dependence only

points to explanatorily irrelevant factors seems much less convincing. Why not accept

the pragmatic criteria as primary and consider both relationships of dependence and of

non-dependence as potentially providing explanatorily relevant information?

4.4.2 Dissecting a Dynamic Switch

After these initial considerations about dynamical equilibrium, one may ask whether they

are of any importance for the description of actual scientific explanations. For this reason

I will now turn to a real example taken from the scientific literature. The biological phe-

nomenon I will discuss is an instance of so-called bistable switching which plays a role

in many important biological processes, for instance in the control of gene expression, in

cellular differentiation, cell-cycle progression, and in neural signaling. It is thus represen-

tative for a class of phenomena that are biologically relevant and widely discussed among

theoretically minded molecular biologists (see e.g. Bhalla and Iyengar 1999, Ferrell and

Xiong 2001, Savageau 2001, Novak et al. 2007). My aim is to show how in the explanatory

practice of systems biology manipulationist reasoning about causal mechanisms is inte-
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grated with dynamical modeling. Notably, it will become clear that relationships of non-

dependence are crucial to understand systemic behavior, and not only used to establish

the invariance of the causal or constitutive relationships. Conveniently, the philosophi-

cally interesting features of this example can be elucidated without going too much into

the mathematical details.

At a particular stage during the process of egg formation in the frog Xenopus lae-

vis, oocytes are arrested in an immature state. When exposed to the hormone proges-

terone, they undergo maturation and complete the first meiotic division. The matura-

tion of oocytes has been observed to occur in a switch-like manner, which is to say that

cells are either in the immature or in the mature state, but apparently cannot be in inter-

mediate states for extended periods of time (Ferrell and Machleder 1998). A crucial step

in triggering maturation is the phosphorylation of the protein kinase p42 MAPK. When

treating individual oocytes with intermediate doses of progesterone, Ferrell and Mach-

leder observed either very high (> 90%) or very low levels (< 10%) of phosphorylated p42

MAPK. In the following they were interested in understanding how “a continuously vari-

able stimulus—the progesterone concentration—is converted into an all-or-none biolog-

ical response” (Ferrell and Machleder 1998, 895). The all-or-none character of the phe-

nomenon subsequently led them to the hypothesis that the underlying process is char-

acterized by bistability, that is, it can be understood as a system shifting between two

alternative stable equilibrium states. In what follows I will present the way in which these

and other scientists have explained the switching behavior in oocyte maturation.

Bistability can arise in certain types of dynamical systems that involve nonlinear rela-

tionships between their variables. It is easy to see how the existence of multiple equilibria

is possible when we consider a rate balance plot in which we do not restrict ourselves to

straight lines (cf. Figure 4.3). The concentrations of the unphosphorylated and the phos-

phorylated protein are denoted by A and A∗, respectively, and the total concentration,

which is assumed to be constant, by Atot = A + A∗. The particular nonlinear behavior

of the forward reaction curve shown in the figure may, for example, be due to the pres-

ence of positive feedback. If for small proportions A∗/Atot the slope of this curve is less

steep than the slope of the back reaction curve, there can be three intersections of the two

curves and hence three equilibrium points. The one in the middle is unstable, however,
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creased, but then level off due to saturation and be overcome
by the feedback !Figs. 5"a# and 5"b#$. The back reaction can
more than keep up with the first increments of feedback, but
then is overwhelmed as the feedback continues to rise.

These two ways of endowing the off-state with
stability—ultrasensitivity in the feedback loop and back
reaction-saturation—are not mutually exclusive. Other things
being equal, having both of these mechanisms operating to-

gether will produce a more robust, decisive, and complete
bistable switch than either mechanism alone would.

V. BISTABILITY WITHOUT POSITIVE FEEDBACK

Bistability can also arise in systems that do not possess
positive feedback. For example, suppose that A* negatively
regulates the phosphatase that dephosphorylates it. The re-
sulting circuit is a ‘‘double-negative’’ feedback loop. Like
the positive feedback system described above, this double-
negative system may be able to switch between two discrete
states: one with A phosphorylated and the A* phosphatase
inhibited, and one with A dephosphorylated and the A* phos-
phatase disinhibited. One example of a biologically impor-
tant double-negative system is the Notch/Delta system,
where Notch and Delta mutually antagonize each other’s ex-
pression in pairs of neighboring cells.25

The common feature of the double-negative circuit and
the positive feedback circuit is that both possess a ‘‘vicious
cycle’’ type of logic—the more A* there is, the faster A gets
phosphorylated "the positive feedback case# or the slower A*
gets dephosphorylated "the double-negative feedback case#.
Other variations on positive and negative feedback that can
give rise to bistability are discussed elsewhere.17,26,27

VI. SWITCHING FROM THE OFF-STATE TO THE
ON-STATE
A. Getting over the threshold

So far we have constructed a bistable system two ways
!Figs. 4"a# and 5"b#$, and in both cases we have ignored any
contribution from the basal activity of the kinase, or from
any feedback-independent stimulus that could promote the
forward reaction. We have produced systems that can reside
in either a stable off-state or a stable on-state, but we have
not provided a mechanism for the systems to make a transi-
tion from one state to the other. One way of flipping the
switch to send the system from the off-state to the on-state is
to continuously increase the feedback-independent stimulus.
The bistable system then converts this continuous change in
the activity of an enzyme "the stimulus# into a discontinuous
change in the steady state output of the system "the concen-
tration of A*#.

This is shown in a rate balance plot in Fig. 6"a#, which
starts with the bistable system described in Fig. 4 "ultrasen-
sitive feedback, no saturation of the back reaction#. How-
ever, instead of showing a single curve for the forward reac-
tion rate as a function of !A*$/!A tot$ , we now show a family
of seven such curves, each corresponding to a different level
of the continuously variable stimulus. The lowest of the
seven curves corresponds to the case of no stimulus; the
other curves correspond to six successive increments of
stimulus.

Suppose that the stimulus is initially zero, and the sys-
tem is starting out in the off-state, with the steady state con-
centration of !A*$ being zero. There is an on-state too,
where !A*$/!A tot$ would be approximately 0.72, but it
would take a mighty perturbation to drive the system out of
the off-state, past the threshold "at !A*$/!A tot$%0.28), and
into the territory of the on-state.

FIG. 4. Steady state responses of a simple system with ultrasensitive "sig-
moidal# feedback. "a# Schematic depiction of the system. "b# Forward reac-
tion rate. The total forward reaction rate "thick line# has two components:
one due directly to the stimulus "no feedback# and the other due to the linear
feedback "feedback alone#. "c# Rate balance plot. The shark-fin-shaped for-
ward reaction rate curve can intersect the back reaction rate curve at three
points. The lowest point corresponds to a stable off-state. The highest point
corresponds to a stable on-state. The middle point is an unstable threshold.

FIG. 5. Steady state responses of a simple system with a back reaction
operating near saturation. "a# Schematic depiction of the system. "b# Rate
balance plot. The forward and back reaction rate curves can intersect at three
points, corresponding to a stable off-state, an unstable threshold, and a
stable on-state.
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Figure 4.3: Rate balance plot for the oocyte maturation model. Due to non-linearities
the forward reaction is not a straight line. The three intersections correspond to three
equilibrium points. The one in the middle is unstable. Note that, instead of balance of
degradation and synthesis, equilibrium in this case requires equal rates of the forward
and the backward phosphorylation reaction. Source: Ferrell and Xiong (2001).

since in its vicinity the resulting rate will always drive the system away from it, towards

one of the two outer equilibria. Ferrell and Xiong (2001) suggest that in oocyte matura-

tion several mechanisms are probably jointly responsible for the bistability. Notably, p42

MAPK is involved in a positive feedback loop by contributing to the accumulation of Mos,

its upstream activating kinase.

In my description I have so far established only that there can be two stable equilibria

at low and high concentrations of phosphorylated kinase, respectively. These can be in-

terpreted as off and on states of a switch; but how can the maturation process be switched

on? It turns out that such a shift from off to on can occur at a critical level of progesterone

concentration. This is because the basal rate of the reaction is proportional to the level

of the activating progesterone stimulus. The basal rate is the rate at which the reaction

would proceed in the absence of the feedback mechanism, and its dependence on the

stimulus also affects the shape of the total forward reaction curve. Figure 4.4 illustrates

how different levels of progesterone correspond to curves with different shapes. With this

representation we can grasp what happens when the level changes: As the stimulus in-

creases, the off state and the unstable equilibrium point come closer together until, at
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a certain critical level, the two points coalesce. The curves corresponding to even higher

levels of stimulus have each only one intersection with the back reaction curve. Therefore,

if the system was initially in the off state, it will at some level of stimulus jump to the on

state which then is the only remaining equilibrium. This shows that the all-or-none be-

havior is due to the existence of a particular threshold level at which one of the equilibria

is destabilized.

Now add one increment of stimulus to the system. The
stimulus provides an additional component to the total for-
ward reaction rate, skewing the curve upward !Fig. 6"a#$.
Now the off-state has shifted upward slightly, to
!A*$/!A tot$%0.06, and the threshold has shifted down
slightly, to !A*$/!A tot$%0.26. The off-state and threshold
are beginning to approach each other.

Add one more increment of stimulus to the system. The
total forward reaction rate curve skews upward a little farther
!Fig. 6"a#$. The off-state shifts to !A*$/!A tot$%0.12, and the
threshold shifts down a little further to !A*$/!A tot$%0.23.
With one more increment of stimulus, the off-state and the
threshold have become about equal at !A*$/!A tot$%0.19.
The total forward reaction curve and the back reaction line
are barely touching at this value of !A*$/!A tot$ . If the stimu-
lus is increased any further, the off-state and the threshold no
longer exist. There is now only a single possible steady state
for the system, the on-state. The system leaves the off-state
and aims for the on-state. Initially the driving force for this
transition will be very small; the difference between the for-

ward reaction rate and back reaction rate will be small. As
the stimulus increases further, the driving force for the tran-
sition to the on-state becomes higher.

B. Switching implies hysteresis
So far, by increasing the stimulus we have gotten the

system out of the off-state and into the on-state. What hap-
pens if we now lower the stimulus back down? Once the
stimulus is lowered to three units, the off-state will reappear.
But there will be no driving force for the system to leave the
on-state and make the transition back to the off-state. The
on-state is stable, and the system is stuck in it. Thus, the
stimulus-response curve you get when the stimulus is rising
is not the same as the one you get when the stimulus is
falling !Fig. 6"b#$; the system exhibits hysteresis.26–28 For
the example shown here, the hysteresis is so substantial that
the transition from the off-state to the on-state is irreversible.

The potential significance of hysteresis in biological
switching is twofold. First, it decreases the likelihood that a
system will repeatedly switch back and forth between two
states "a possibility termed ‘‘chattering’’ by Thron17# when
the stimulus that drives the switching is hovering near its
threshold value. Second, it is a potential mechanism for a
type of biochemical memory. Unless something happens to
fundamentally change "e.g., break# the positive feedback
loop, a system like those shown in Figs. 4 and 6 can remain
on indefinitely. A bistable signaling system could be the
mechanism through which cells ‘‘remember’’ that they are
differentiated long after the differentiation stimulus has been
withdrawn, and even long after all of the protein molecules
that make up the feedback loop have been replaced by new
protein molecules.

VII. THE STEADY STATE BALANCE PLOT

Another commonly used way of representing bistable
systems is the steady state balance plot. This type of plot is
particularly useful when one can identify two key enzymes
in a feedback system that mutually activate each other "A*
promotes the activation of B, and B* in turn promotes the
activation of A; a positive feedback system# or mutually in-
activate each other "A* promotes the inhibition of B*, and
B* in turn promotes the inhibition of A*; a double-negative
feedback system#. Here we will consider the positive feed-
back system !Fig. 7"a#$.

For the moment we will ignore the feedback reactions
and consider only the direct activation of B by A* !desig-
nated ‘‘1’’ in Fig. 7"a#$. The steady state response of B* to
A* will be described by a stimulus-response curve of some
shape; here we have assumed it is a Michaelian curve !Fig.
7"b#$. For the whole system to be in steady state, !B*$ must
be unchanging with respect to time. The curve shown in Fig.
7"b# constitutes the only pairings of !A*$/!A tot$ and
!B*$/!B tot$ where this can be true.

Now we will consider only the feedback reactions !des-
ignated ‘‘2’’ in Fig. 7"a#$. In these reactions, the steady state
level of !A*$/!A tot$ is a function of !B*$ . Again, some sort
of stimulus-response curve will describe the dependence of
!A*$/!A tot$ upon !B*$/!B tot$; here we have assumed that

FIG. 6. Graphical derivation of the stimulus-response curve for the system
depicted in Fig. 4"a#. "a# Rate balance plot. The total forward reaction rate
curves represent seven levels of stimulus. For low levels of stimulus, there is
an off-state, an on-state, and a threshold. As the stimulus increases, the
off-state shifts up toward the threshold and the threshold shifts down to-
wards the off-state. Eventually the off-state and threshold disappear and the
system has only an on-state. "b# Stimulus-response curve. The intersection
points from panel "a# are plotted as a function of stimulus. When the stimu-
lus is increased, the system can switch from the off-state to the on-state.
However, when the stimulus is decreased back to zero, the system remains
stuck in the on-state.
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Figure 4.4: Rate balance plot for varying progesterone concentration. Above a critical level
of stimulus, the off state disappears. Source: Ferrell and Xiong (2001).

The behavior of the switch can be further illustrated by representing the position of

the stable equilibria as a function of the stimulus (Figure 4.5). This plot elucidates another

important property of the switch: After the system has been driven from the off state to

the on state by continuously increasing the stimulus, it will remain in the on state even if

the stimulus is subsequently decreased again, a behavior known as hysteresis. In this way

the system is prevented from shifting back and forth between the two states. As a conse-

quence of hysteresis, once the oocyte receives a hormonal stimulus of sufficient size, it is
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irreversibly committed to maturation even if the stimulus is later withdrawn. This kind of

irreversibility is of course crucial for the reliability of developmental pathways.

Now add one increment of stimulus to the system. The
stimulus provides an additional component to the total for-
ward reaction rate, skewing the curve upward !Fig. 6"a#$.
Now the off-state has shifted upward slightly, to
!A*$/!A tot$%0.06, and the threshold has shifted down
slightly, to !A*$/!A tot$%0.26. The off-state and threshold
are beginning to approach each other.

Add one more increment of stimulus to the system. The
total forward reaction rate curve skews upward a little farther
!Fig. 6"a#$. The off-state shifts to !A*$/!A tot$%0.12, and the
threshold shifts down a little further to !A*$/!A tot$%0.23.
With one more increment of stimulus, the off-state and the
threshold have become about equal at !A*$/!A tot$%0.19.
The total forward reaction curve and the back reaction line
are barely touching at this value of !A*$/!A tot$ . If the stimu-
lus is increased any further, the off-state and the threshold no
longer exist. There is now only a single possible steady state
for the system, the on-state. The system leaves the off-state
and aims for the on-state. Initially the driving force for this
transition will be very small; the difference between the for-

ward reaction rate and back reaction rate will be small. As
the stimulus increases further, the driving force for the tran-
sition to the on-state becomes higher.

B. Switching implies hysteresis
So far, by increasing the stimulus we have gotten the

system out of the off-state and into the on-state. What hap-
pens if we now lower the stimulus back down? Once the
stimulus is lowered to three units, the off-state will reappear.
But there will be no driving force for the system to leave the
on-state and make the transition back to the off-state. The
on-state is stable, and the system is stuck in it. Thus, the
stimulus-response curve you get when the stimulus is rising
is not the same as the one you get when the stimulus is
falling !Fig. 6"b#$; the system exhibits hysteresis.26–28 For
the example shown here, the hysteresis is so substantial that
the transition from the off-state to the on-state is irreversible.

The potential significance of hysteresis in biological
switching is twofold. First, it decreases the likelihood that a
system will repeatedly switch back and forth between two
states "a possibility termed ‘‘chattering’’ by Thron17# when
the stimulus that drives the switching is hovering near its
threshold value. Second, it is a potential mechanism for a
type of biochemical memory. Unless something happens to
fundamentally change "e.g., break# the positive feedback
loop, a system like those shown in Figs. 4 and 6 can remain
on indefinitely. A bistable signaling system could be the
mechanism through which cells ‘‘remember’’ that they are
differentiated long after the differentiation stimulus has been
withdrawn, and even long after all of the protein molecules
that make up the feedback loop have been replaced by new
protein molecules.

VII. THE STEADY STATE BALANCE PLOT

Another commonly used way of representing bistable
systems is the steady state balance plot. This type of plot is
particularly useful when one can identify two key enzymes
in a feedback system that mutually activate each other "A*
promotes the activation of B, and B* in turn promotes the
activation of A; a positive feedback system# or mutually in-
activate each other "A* promotes the inhibition of B*, and
B* in turn promotes the inhibition of A*; a double-negative
feedback system#. Here we will consider the positive feed-
back system !Fig. 7"a#$.

For the moment we will ignore the feedback reactions
and consider only the direct activation of B by A* !desig-
nated ‘‘1’’ in Fig. 7"a#$. The steady state response of B* to
A* will be described by a stimulus-response curve of some
shape; here we have assumed it is a Michaelian curve !Fig.
7"b#$. For the whole system to be in steady state, !B*$ must
be unchanging with respect to time. The curve shown in Fig.
7"b# constitutes the only pairings of !A*$/!A tot$ and
!B*$/!B tot$ where this can be true.

Now we will consider only the feedback reactions !des-
ignated ‘‘2’’ in Fig. 7"a#$. In these reactions, the steady state
level of !A*$/!A tot$ is a function of !B*$ . Again, some sort
of stimulus-response curve will describe the dependence of
!A*$/!A tot$ upon !B*$/!B tot$; here we have assumed that

FIG. 6. Graphical derivation of the stimulus-response curve for the system
depicted in Fig. 4"a#. "a# Rate balance plot. The total forward reaction rate
curves represent seven levels of stimulus. For low levels of stimulus, there is
an off-state, an on-state, and a threshold. As the stimulus increases, the
off-state shifts up toward the threshold and the threshold shifts down to-
wards the off-state. Eventually the off-state and threshold disappear and the
system has only an on-state. "b# Stimulus-response curve. The intersection
points from panel "a# are plotted as a function of stimulus. When the stimu-
lus is increased, the system can switch from the off-state to the on-state.
However, when the stimulus is decreased back to zero, the system remains
stuck in the on-state.
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Figure 4.5: Stimulus response curve for the oocyte maturation model. Once the stimulus
has reached the threshold level, the system is locked in the on state in which the concen-
tration of the phosphorylated kinase A∗ is always high. Source: Ferrell and Xiong (2001).

Let us now try to understand in more detail how the given account explains the ini-

tiation of maturation. If we first consider only the “switching on” part of the story, we

can represent the mechanism in terms of a simple causal relationship between two bi-

nary variables: A stimulus variable that can take on the values ‘below threshold’ or ‘above

threshold’, and a kinase activity variable that accordingly assumes either of the values ‘on’

or ‘off’. Obviously, this is exactly what we expect from a simple switch. Note, however, that

this behavior is exhibited by a system with a high number of degrees of freedom. The sim-

plicity of the behavior, as will be shown, arises from the fact that possible dependencies

among the variables are removed or attenuated.

Let us go back to Figure 4.4 from which we can infer how the total forward reaction

rate curve changes as the stimulus is varied. The first thing to notice is that the important

changes concern only the lower left portion of the plot.5 Which are the relevant features

for the behavior of the switch? First of all, it is necessary, as we have seen, that there exists

a threshold level for the stimulus above which the curves do not intersect in this region

of the graph. The value of this threshold is biologically important since it determines the

sensitivity of the switch. A very low threshold, for instance, would cause the system to

5This is because the stimulus significantly affects the forward reaction only if most of p42 MAPK is still
in its unphosphorylated form A.
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shift already at small levels of hormone, which might lead to premature differentiation.

Second, it is crucial that the threshold level of A?, that is, the highest value it can reach

while still in the off state, is not so high as to activate the maturation process. Otherwise,

the oocyte would start the maturation process even before the system switches. As long

as these conditions are met, however, the details of the relationship between stimulus

and off state concentration do not matter. The organization of the mechanism, notably

the particular type of feedback involved, ensures that there is a range within which A?

depends only weakly on the stimulus. Note here, that the role of feedback is not merely to

confer robustness to particular features of the system. Instead, it is an integral part of the

switching mechanism since in its absence the system would not show bistability in the

first place.

Similar considerations can be made for the on state. Once the system is switched on,

the level of A? is practically independent from the level of hormone, as can be seen in

Figure 4.5. This is once more due to the fact that the stimulus affects the forward reaction

only at very low A?. The hysteresis or memory effect is, therefore, best understood in

terms of the loss of a dependency relation.

To sum up, what this example shows is that the explanation of complex dynamical be-

haviors requires information both about relations of dependence and of non-dependence.

In order to understand features of persistence, such as robustness or memory, we have to

illuminate how some variables in certain ranges do not or do only weakly depend on oth-

ers. Moreover, this kind of knowledge allows us to explain how systems built of many

parts may show behaviors that can be described in comparatively simple terms. The sim-

plicity of the behavior at the level of the whole mechanism is due to the fact that many

changes at the level of the components are not constitutively relevant, in the sense of not

being change-relating. We cannot fully comprehend how this behavior is brought about if

we restrict ourselves to information about manipulationist relevance. This suggests that

the manipulationist conception of mechanistic explanation is insufficient to account for

many aspects of phenomena that involve dynamical patterns.

As already noted, the description of the switching behavior itself can be taken as rep-

resenting a change-relating generalization. Therefore, it can be used as a basis for further

explanations. For example, one may explain why one particular oocyte did not initiate
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maturation by referring to this generalization plus the fact that the given hormonal stimu-

lus was not sufficient. Relationships of non-dependence partly account for the invariance

of this generalization. They illuminate, for instance, why different oocytes initiate matu-

ration even when given slightly different doses of stimulus. It might be argued, therefore,

that information about change-relating generalizations is sufficient to explain the phe-

nomenon of interest, and that information about non-dependence comes into play only

if we want to generalize for further purposes of explanation. But as I hope to have shown,

both kinds of relationships are in fact already used in the explanation of the basic features

of the switch. The mechanistic explanation that shows how the system brings about the

behavior contains answers to both of Batterman’s types of why-questions. Systems biol-

ogists want to understand the factors on which changes in observed dynamical patterns

depend, but they also want to explain why these patterns are the way they are.

The discussion of this particular mechanism has touched upon the concept of robust-

ness on several occasions. In the following section I will return to the idea of robustness as

a fundamental property of living system and show that relationships of non-dependence

play an important explanatory role here as well.

4.5 Robustness and the Architecture of Living Systems

Investigating robustness is often invoked as one of the key motivations for research in sys-

tems biology. Hiroaki Kitano, for instance, holds that “[it] is one of the fundamental and

ubiquitously observed systems-level phenomena that cannot be understood by looking

at the individual components” (Kitano 2004, 826). How does this idea of robustness as a

fundamental property of living systems connect to the discussion about relations of non-

dependence in the preceding sections? We have seen in the example of the switch that

the particular dynamical organization of a mechanism can lead to weak relationships be-

tween variables or components, which in turn confers reliability and robustness to the

system as a whole. However, in the just cited article Kitano notes:

Robustness is often misunderstood to mean staying unchanged regardless of

stimuli or mutations, so that the structure and components of the system,

and therefore the mode of operation, is unaffected. In fact, robustness is the
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maintenance of specific functionalities of the system against perturbations,

and it often requires the system to change its mode of operation in a flexible

way. (Kitano 2004, 827)

This seems to imply that it would be overly simplistic to explain robustness by referring

to the causal or the constitutive irrelevance of particular factors under certain conditions.

Instead, the quote suggests that the reliable performance of a system requires sophisti-

cated underlying structures. A more refined view of the mechanistic structure of living

systems would, therefore, consist in holding that robustness can be explained by invok-

ing particular ‘robustness mechanisms.’ Indeed, Kitano mentions four different features

that could play the role of such mechanisms: system control, redundancy, modularity,

and decoupling (Kitano 2004, 827). Even though it may not have been his intention, the

fact that Kitano is speaking of “mechanisms that insure the robustness of a system” (Ki-

tano 2004, 827) suggests a very particular biological picture: A living system may at its

core be clock-like, but reliable functioning in environments that are characterized by un-

certainty and noise is guaranteed by an intricate machinery of additional features that has

evolved around this core. If this picture were accurate, the general strategy of understand-

ing mechanisms in terms of change-relating generalizations alone might be justified after

all. Robustness would not be a fundamental property of the mechanisms themselves,

but rather a separate phenomenon that could be explained by referring to independent

mechanistic features. Yet, we have seen in the previous section that there are at least some

cases where it is not possible to separate the explanation of a behavior from an explana-

tion of its robustness. Moreover, a closer look at Kitano’s alleged robustness mechanisms

suggests that this conceptual separation might in general not be obvious. What he means,

for example, by ‘systems control’ is the use of certain control strategies in the building of

biological circuits, something that also fits the example discussed in the previous sec-

tion. One therefore gets the idea that his robustness ‘mechanisms’ are probably better

understood as ‘design features’ of biological mechanisms. Just as in the case of oocyte

maturation, robustness is in-built and not in any obvious way added to the mechanism.

Redundancy, on the other hand, is often taken as a straightforward mechanism that

can explain the observed robustness of large biological networks to perturbations in indi-

vidual elements. However, the idea that redundancy can explain most of the robustness
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of biological networks has recently been challenged. Since this debate sheds some ad-

ditional light on the distinction I wish to draw in this chapter, I will address it in some

detail.

4.5.1 Redundancy and Degeneracy

In systems with redundancy the overall performance can be maintained even if a compo-

nent is broken or damaged because of the presence of structurally identical or sufficiently

similar features that compensate for the loss in function. Redundancy explains, for in-

stance, why people can survive after one of their kidneys has been removed. Similarly,

redundancy at the molecular level has often been invoked as an explanation for the ro-

bustness of genetic networks. In a large scale perturbation study in yeast cells in which all

genes on chromosome V were systematically rendered dysfunctional one by one, Smith

et al. (1996) report that almost 40% of their mutants do not show any significant fitness

defects. Given that large duplicated chromosomal regions have been found in the yeast

genome (Seoighe and Wolfe 1999), this surprising result appears to be most naturally ex-

plained by redundancy. Like in the kidney case, one may expect that the effect of knocking

out a gene will be mitigated if there is a functional copy of that gene at a different location

in the genome. However, as Andreas Wagner (2005) has pointed out, many of the genes

whose elimination does not lead to a decrease in system performance are genes without

duplicates. He argues that a principal cause of mutational robustness is due to what he

calls ‘distributed robustness:’

In distributed robustness, many parts of a system contribute to system func-

tion, but all of these parts have different roles. When one part fails or is changed

through mutations, the system can compensate for this failure, but not be-

cause a “back-up” redundant part takes over the failed part’s role. Distributed

robustness is a fairly poorly understood cause of mutational robustness, be-

cause it requires a detailed, quantitative understanding of the inner workings

of a genetic network. (Wagner 2005, 176)

Wagner’s main interest are the consequences of mutational robustness for the evolvabil-

ity of biological systems, and not primarily a mechanistic explanation of this property. He
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starts from the idea that a system with a null-effect mutation represents an alternative

‘solution’ to the problem of matching a particular behavior. He holds that it is a common

feature of biological architecture that the same phenotype can be realized by a vast num-

ber of different genotypes. The existence of such alternative states, that can be reached

by ‘neutral’ changes, promotes evolvability because it gives a population quick access to

large amounts of phenotypic variation. A particular genotype is robust if it lies within

a ‘neutral network,’ a large connected set of alternative genotypes with the same phe-

notype. A similar view has been expressed by Ralph Greenspan in an article called ‘The

Flexible Genome:’

In [a network], the same output can be produced in various ways. This prop-

erty, particularly when discussed in the context of knockout mutations with

no apparent effect, has often been called redundancy. But the compensation

that occurs in a network after removal of elements is not redundancy. Redun-

dancy implies substitution of identical elements to preserve the same overall

structure, as well as the same outcome. (Greenspan 2001, 385)

Greenspan proposes to talk about degeneracy instead, whereby he means “the capacity to

produce the same result by different strategies” (Greenspan 2001, 385). This idea connects

robustness at the level of larger systems to the discussion about relationships of non-

dependence in the previous sections. Degeneracy implies that a property of the system

at the level of the observed phenotype is independent from certain changes at the level of

the components.

Degeneracy can, however, still be interpreted in different ways. On the one hand, we

may take Greenspan’s talk of ‘different strategies’ seriously and hold that a system main-

tains performance by shifting between different modes of operation depending on the

particular type of perturbation it encounters. Consider as an example the capacity of a

yeast cell to produce energy using different metabolic pathways depending on whether

or not oxygen is present. Systems that are robust in this sense arguably have evolved (or

are designed) to respond by adjusting their behavior in specific ways. On the other hand,

degeneracy is sometimes understood as an even more fundamental property of complex

systems. In line with Wagner’s idea of a neutral network, degeneracy may be taken as in-

variance of performance with respect to a large class of changes in the underlying struc-
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ture. In other words, the system might maintain performance, not because it has evolved

to cope with particular situations, but because the space of solutions realizing this per-

formance is generically large and connected. An organism would then be protected from

a wide range of possible perturbations, even if it has never encountered them before. It is

of course nevertheless legitimate to ask whether this architecture is the result, or the by-

product, of an evolutionary process, or whether it is “order for free” in Stuart Kauffman’s

sense (Kauffman 1996), that is, a typical property of a certain class of networks. In the

remainder of this section, I will illustrate how mathematical modeling has recently been

applied to elucidate the features underlying biological robustness of this kind. There is

evidence that the more fundamental idea of degeneracy might play a substantial role in

the architecture of living systems.

4.5.2 The Sloppiness of Biological Networks

In the attempt to simulate the interactions among the genes responsible for segmentation

in Drosophila, von Dassow et al. (2000) developed a dynamical model and systematically

investigated its behavior under changes in parameters. The segment polarity network

described by this model generates a periodic expression pattern across cells early in de-

velopment. Initially, von Dassow et al. had hoped that the requirement to reproduce the

behavior of the target system would impose sufficient constraints on the model to ob-

tain reasonable estimates for the nearly 50 parameters of the model. Consequently, they

expected that only a relatively small subset among all the states in the high-dimensional

parameter space would lead to biologically meaningful versions of their model. Strikingly,

however, they found that solutions in this space were not rare at all:

Among 240,000 randomly-chosen parameter sets we found 1,192 solutions

(∼1 in 200). This is very frequent; as this search involved 48 parameters, on

average a random choice of parameter value has roughly a 90% chance of be-

ing compatible with the desired behaviour.

(von Dassow et al. 2000, 189)

Apart from their abundance, solutions are apparently not isolated in parameter space. For

many of them the model was found to be tolerant to variation of individual parameters
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over several orders of magnitude. Thus the scientists concluded that the model’s abil-

ity to reproduce the target behavior is “intrinsic to its topology rather than to a specific

quantitative tuning” (von Dassow et al. 2000, 189).

The case of the segment polarity network, therefore, supports the idea that robust be-

havior is not always achieved by adding structural components to an otherwise fragile

mechanism. Robustness, therefore, cannot necessarily be analyzed as a separate feature,

but instead appears to be entangled with a system’s overall functionality. We have seen

this clearly in the example of the bistable switch in Section 4.4.2, where the particular

feedback, that certainly has an influence on robustness, is necessary for the basic be-

havior of the mechanism. In general, one gets the idea that the particular organization of

many biological systems somehow weakens the dependence of the behavior of the system

on the detailed behavior of the components. Note that this does not imply redundancy,

according to which some of the system’s components are simply dispensable for the be-

havior. The following quote nicely illustrates how the scientists’ initial assumptions about

robustness were overturned by their detailed investigation of the mathematical model:

We originally expected the core topology to be frail and easily perturbed, and

expected to achieve robustness only by adding additional complexity; we ex-

pected the reconstitution approach to tell us which architectural features con-

fer robustness. Confounding that expectation, the simplest model that works

at all emerged complete with unexpected robustness to variation in parame-

ters and initial conditions. (von Dassow et al. 2000, 191)

Robustness of this kind does not seem to be restricted to the generation of develop-

mental patterns in Drosophila. Gutenkunst et al. (2007) investigated 17 different systems

biology models and systematically examined the sensitivity of their behavior to parameter

changes. The set of models covered a wide range of different biological systems and, aside

from von Dassow et al.’s network, included models of circadian rhythm, metabolism, and

signaling. In all of them they found what they call ‘sloppy parameter spectra:’ the behav-

ior of the model is sensitive to variation along a few ‘stiff’ directions in parameter space,

but insensitive along a large number of ‘sloppy’ directions. It is important to empha-

size that these directions do not correspond to individual model parameters but rather to

combinations of parameters:
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Naively, one might expect the stiff eigenvectors to embody the most impor-

tant parameters and the sloppy directions to embody parameter correlations

that might suggest removable degrees of freedom, simplifying the model. Em-

pirically, we have found that the eigenvectors often tend to involve significant

components of many different parameters. (Gutenkunst et al. 2007, 1873)

This means that the systems do not react in a clock-like fashion to most perturbations on

individual components. Therefore, in order to bring about significant changes in systemic

behavior, it is necessary to intervene on multiple components simultaneously. Obviously,

such a feature provides resilience towards many disturbances at the molecular level, but

this does not automatically imply that it is an evolved feature of living systems. Daniels

et al. (2008), for example, conjecture that sloppiness might be a universal property of a

particular class of dynamical models which naturally accounts for many types of robust

behavior with no need to invoke separate robustness mechanisms. With regard to von

Dassow et al.’s case of the segment polarity network they state:

The model is robust in these [sloppy] directions not because of evolution and

fitness, but because of the mathematical behavior of chemical reaction net-

works, which are naturally weakly dependent on all but a few combinations

of reaction parameters. (Daniels et al. 2008, 393)

In general, however, it is clear that the investigation of biological robustness must pay

attention both to evolved robustness mechanisms and to generic features of biological

organization such as the one discussed in this section.

All of the models investigated by Gutenkunst et al. rely on mechanisms whose organi-

zation is essentially well-known. The principal issue, therefore, is not about whether the

proposed components and interactions do in fact bring about the observed behavior of

the system. The question is rather how well one needs to know the precise structural fea-

tures of these components in order to understand the overall working of the mechanism

and to be able to make predictions about its behavior. Their results suggest that the rela-

tion between components and system behavior is not as straightforward as analogies to

machine-like mechanisms would make us believe. Robustness is not just an interesting

feature of living systems that requires mechanistic explanation. Instead, thinking about
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robustness may have a profound influence on the way in which we should conceive of

mechanistic explanations in the life sciences.

4.6 Conclusion

In this chapter I have tried to assess particular accounts of mechanistic explanation, ac-

cording to which explanatory relevance relies on change-relating generalizations, by look-

ing at dynamical modeling in systems biology. The motivating question was whether this

framework can adequately account for what we know about the robustness of living sys-

tems, a property that is extensively studied by systems biologists. I have argued that cer-

tain aspects of the explanation of dynamical patterns, first and foremost simple dynami-

cal equilibrium, are not captured by approaches that solely focus on change-relating re-

lationships. Instead, the explanation of such features relies on information about rela-

tionships of non-dependence, that is, on information about factors or relationships that

are irrelevant from a manipulationist standpoint. Next, by presenting the example of a

bistable switch in oocyte maturation of Xenopus, I have shown that this kind of reasoning

is actually applied in mechanistic explanations as they are found in the scientific litera-

ture on systems biology. I have tried to illuminate how in the case of this mechanism the

discussion of robustness cannot be separated from its functional behavior. I have then

turned to a discussion of robustness in larger systems and distinguished between differ-

ent versions of the concept. There is evidence that at least some of the robustness we find

in biological systems cannot be accounted for by invoking separate ‘robustness mecha-

nisms.’ Instead, it might often be explained by the fact that the interactions among the

components are reducible to only a few significantly sensitive dependencies. Therefore,

if we want to mechanistically explain how these systems work, we have to understand

how the direct dependencies between the parts are weakened due to their organization

and how this results in coherent behavior and robustness at the systemic level.

Robustness is often presented as one of the paradigmatic examples of an emergent

property; at least systems biologists frequently describe it as such. The ideas discussed in

this chapter may shed some light on the reasons for this usage of the term. Philosophical

accounts of emergence have mostly focused on system properties that somehow ‘exceed’
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the capacities of the components, or are unpredictable based on information about in-

dividual parts (e.g. Bedau 1997, Kim 1999, Boogerd et al. 2005). However, as the french

philosopher Edgar Morin has noticed, a system is not only more than the sum of its parts,

it is also less than the sum of its parts in certain respects (Morin 2008). The behavior of

the components is constrained in various ways by the structure and organization of the

system, which keeps them from exhibiting many of the properties that they might show in

isolation or in different contexts. Robustness is thus a striking example of the reduction of

possibilities. Consequently, what scientists mean by emergence might often simply be the

idea that the system is different from the sum of its parts. Restricting ourselves to change-

relating relationships may prevent us from understanding how such kinds of emergent

behavior are brought about.



CONCLUSIONS

Overview of the Results

The main goal of my thesis was to understand, from a philosophical perspective, what

systems biology is and how it differs from the traditional approach of molecular biology.

Chapter 1 prepared the ground for my philosophical analysis an introduced some nec-

essary concepts and distinctions. The upshot was that the philosophically relevant differ-

ences between molecular biology and systems biology should be investigated by focusing

on the discovery and development of mechanistic explanations. Moreover, I argued that

it is illuminating to frame this analysis in terms of heuristics which I defined as strategies

to reduce the epistemic complexity of a given research task.

In Chapter 2 I showed that the traditional approach of molecular biology can be char-

acterized sufficiently well in terms of a particular set of heuristic strategies. Some of these

heuristics, such as the strategies of decomposition and localization, are fairly general and

not only applied in molecular biology but across a wide range of different scientific fields.

Others are more specific and not likely to be found outside the current domain of molecu-

lar biology. These more specific heuristics correspond to a particular picture of the organi-

zation of living systems at the molecular level, notably on the idea of biological processes

as information transmitting sequences. Central to this picture is the assumption, which

goes back to Jacques Monod’s idea of ‘gratuity,’ that the organization of biological pro-

cesses is in a certain sense unconstrained by the underlying principles of biochemistry.

This allows molecular biologists to investigate single steps in a mechanism independently
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from each other. Another crucial and closely related assumption of traditional molecular

biology is that (non-trivial) population effects can be neglected, which is implicit in the

habit of molecular biologists to represent the steps in a mechanisms in terms of individual

molecules or molecular complexes, even though it is clear that many of these processes

involve large populations of molecules. The idea of biological organization that emerges

from these assumptions licenses a focus on simple sequential processes that can be de-

scribed in qualitative terms. As I have emphasized, my ambition was not to provide an

exhaustive list of the research strategies utilized in molecular biology. Undoubtedly, one

will find even more specific strategies when going to a more fine-grained level of describ-

ing scientific discovery, and in the end one will probably have to focus on the individual

research group as the right unit of analysis. Moreover, I am aware that by not talking in

any detail about the practice of working with experimental systems, I have neglected an

entire dimension of scientific activity with its own strategies and related epistemic prob-

lems (e.g. Rheinberger 1997b). My primary aim, however, was to find a number of heuris-

tics that are sufficiently general to be found in most of molecular biology, and at the same

time relevant for the intended comparison with approaches in systems biology.

Heuristic strategies can create bias if some of the underlying assumptions about the

system under study are not met. In Chapter 3 I looked at a number of different approaches

in systems biology that all promise to remove some of the biases of the traditional ap-

proach by relaxing some of its assumptions. The systems analysis of the spindle assembly

checkpoint mechanism revealed that mechanistic models proposed by molecular biolo-

gists can turn out to be inadequate once additional physical and biochemical constraints

are taken into account. Systems biologists can include these constraints by formulating

quantitative models of molecular processes. In general, due to their ability to incorpo-

rate more background knowledge and empirical information than traditional accounts,

mathematical models can serve as sensitive tools to detect deviations between predicted

and observed behavior. This suggests that one of the central roles for mathematical mod-

eling lies in its potential to accelerate the development of mechanistic explanations. We

have seen, however, that there are limits to the complexity that can be handled by math-

ematical models, and their efficient use relies on strong idealizations. It is important to

note, therefore, that the achieved gain in analytic power usually goes along with a loss in
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empirical adequacy.

Systems approaches to the study of large networks propose alternatives to the more

fundamental strategies of decomposition and localization. The approach of network mo-

tifs provides a structural criterion for the decomposition of networks, whereas the attrac-

tor perspective proposes to resist decomposition and to focus on global behavior. Both of

these approaches have heuristic character insofar as they rely on the idea that biological

networks are simple in some sense. The approach of network motifs, as we have seen,

relies on strong assumptions about the evolution of functional modularity in biological

networks. The attractor view, on the other hand, presupposes that some properties of

biological networks are typical—in the sense that they are generic properties of a statis-

tical ensemble of networks. Both approaches suggest interesting directions for further

research, but to the extent that the underlying assumptions are not warranted it might be

useful to complement them with other modeling methods.

The last case study in Chapter 3 can be seen as a brute-force approach to reliev-

ing some of the potential biases introduced by decomposition and localization. I dis-

cussed the impressive work by Karr et al. (2012) who created a model that incorporates

all known processes and components of the small microbe Mycoplasma genitalium. Even

though the model achieves completeness in a certain sense, it is far from a ‘realistic’ rep-

resentation of an organism, and its main merit lies in a clever way of integrating a set of

smaller models that are formulated with different mathematical techniques. Obviously,

the whole-cell model inherits the idealizations and assumptions on which the component

models are built, and the strategy of integrating them relies on a strong assumption of

modularity. Nevertheless, by taking into account the communication between the mech-

anistic modules in an organism, this model can act as a tool to test the consistency of ex-

isting mechanistic accounts, and it allows scientists to investigate behaviors that emerge

at the interface of the modules. The main drawbacks of the whole-cell model are due to

its size, which is likely to impede the localization of modeling errors and the assessment

of possible adverse effects of the introduced simplifications. Moreover, one should keep

in mind that Karr et al. were able to build a manageable model mainly because they chose

the simplest organism found in nature—a parasite with only 525 genes. At present, it is

not evident whether the whole-cell approach can easily be scaled up to more complex
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organisms.

In Chapter 1 I introduced the distinction between ‘epistemic complexity’ and ‘intrin-

sic complexity.’ Epistemic complexity refers to the difficulty of a given scientific task,

while intrinsic complexity is a feature of the systems that scientists study. Even though

it is useful to distinguish between the two concepts, it should have become clear from my

analysis of discovery that scientists often simplify their epistemic task by making assump-

tions about the intrinsic complexity of the system under study. Herbert Simon (1962)

suggested that hierarchical organization and decomposability are the principal features

that scientists project onto the systems they are trying to understand. However, it is im-

portant to see that biological systems might be simple in very different ways. The risk to

underestimate the real complexity of a system is not the only danger when making use

of heuristic strategies. It is perhaps equally problematic when heuristics make us over-

look unexpected simplicity, and using them incautiously can be even more detrimental

when underlying assumptions sneak into our conceptions and standards of scientific ex-

planation. In Chapter 4 I have illustrated this phenomenon by discussing the concept

of biological robustness. The focus on ‘change-relating relationships,’ although perhaps

appropriate for the explication of causal relationships, can hide important aspects of the

role of quantitative models when it comes to explaining the behavior of biological sys-

tems. Dynamical modeling in systems biology suggests that some higher level features

that might look as if they require the presence of additional mechanisms can be explained

in terms of ‘non-change-relating’ relationships. As I have illustrated with several concrete

examples, mathematical models can often explain why particular lower level details do

not matter. Systems biology, therefore, has the potential to justify the autonomy of higher

level descriptions—not by invoking anti-reductionist arguments, but by explicitly show-

ing how macro-simplicity can emerge from the molecular level.

The Sum of the Parts

Obviously, at the end of this discussion one might still ask ‘What is systems biology?’

My analysis in terms of heuristic strategies characterized systems biology negatively, by

pointing to specific deviations from the traditional approach of molecular biology. My
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main goal was to develop a framework that allows for the detection of such deviations

and can thereby replace the vague talk of a divide between molecular biology and sys-

tems biology with a more precise account. But is there something more fundamental that

different systems approaches have in common, apart from all being different from some-

thing else? It seems that the diversity of approaches, in spite of systems biology’s pro-

grammatic calls for integration (e.g. Ideker et al. 2001), renders the ‘epistemic landscape’

of biology more heterogeneous than before.

Based on my analysis, I want to suggest that the plurality of approaches results from

the fact that there are many different ways of reducing epistemic complexity. Perhaps one

of the most important merits of systems biology so far has been to draw attention to such

alternative ways. I have argued in Chapter 2 that the traditional approach of molecular bi-

ology was based on a very specific idea of how we can reduce epistemic complexity. The

main components are the ‘divide and conquer’ approach of decomposition and localiza-

tion plus an informational vision on how individual molecular processes are organized.

This picture is well reflected in a recent article by Sidney Brenner, one of the pioneers of

molecular biology, from which I permit myself to quote at some length:

Any mammalian cell has about 20 000 active genes each producing a polypep-

tide chain, and we may ask how are we to understand the function of cells

through these molecules and their interactions? It is unlikely that we can find

a set of differential equations governing these activities and which might al-

low us to calculate the behaviour of the system. I have always found it advis-

able when confronted by such questions to analyse how the biological system

itself has solved the problem. We first notice that single polypeptide chains

hardly ever act alone, but are assembled with others into molecular devices

that perform the function. . . . . If we assume that the average number of com-

ponents is 10, then such assemblages immediately provide an order of mag-

nitude reduction in complexity and allow us to deal with about 2000 devices

instead of 20 000 polypeptide chains. Furthermore, the cell is not a homoge-

neous solution of molecular entities but is divided into compartments . . . , and

this provides another order of magnitude reduction in complexity. Thus, in

each compartment, on average, we need to focus only on about 200 devices,
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the interactions among them and their communications with other compart-

ments. Several features of this organization should be emphasized: firstly,

we can make a distinction between strong interactions which govern the as-

sembly of the devices and weak ones which are involved in the interactions

between devices. . . . . The whole may therefore be pictured as a communica-

tion system, with devices transforming and passing information to each other.

(Brenner 2010, 209–210)

Even though Brenner is not opposed to the use of mathematical modeling in biology, and

in this respect leaves the confines of the qualitative approach of molecular biology, he

seems to uphold the idea there is a natural way of exploiting the simplicity of living sys-

tems.

Brenner’s attempt to find simplicity should be contrasted by the opinion of some sys-

tems biologists who suggest that the central aim of their field is to confront biological

processes in their full complexity:

With the present understanding of Life, and of the limitations that biochem-

ical processes have, it is possible to estimate the minimum number of pro-

cesses required to sustain Life. Living systems function essentially at a non-

equilibrium steady state. To maintain this steady state they need to import

Gibbs free energy, use some of that to drive thermodynamically uphill pro-

cesses, and dissipate the rest to speed up the process rates . . . . An important

example of such a process is the breakdown of glucose to alcohol and car-

bon dioxide by yeast. The solution that evolution has generated is a series

of steps in a metabolic pathway that are each catalyzed by a protein. This

leads to a requirement of at least 10 proteins. The information needed to

specify these proteins must be stored in an information molecule, in practice

requiring a nucleic acid of at least 3 kbp. The information has to be translated

into protein, which requires a nucleic-acid informed protein-synthesizing en-

zyme system . . . . The nucleotides and amino acids out of which these macro-

molecules consist, need to be made from what is available outside the cell.

The corresponding biosynthetic pathways require at least 88 additional en-

zymes . . . . It is important that all these components of Life are held together.
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The evolutionary solution for this has been a phospholipid-based membrane,

adding a requirement for phospholipid synthesis and transport proteins, re-

quiring another 20 proteins at least. With such an argumentation one readily

comes to a minimum requirement for Life of more than 120 proteins, hence

more than 120 genes. Genome sequencing has shown that the smallest known

genome has some 450 genes . . . , subsequent knock-out experimentation sug-

gesting that the minimum number of genes required for Life is slightly in ex-

cess of 375 . . . . All these genes are apparently necessary to maintain each

other. . . . . Three hundred and seventy-five is certainly not in the realm of

simplicity. . . . . Using Occam’s razor we might . . . wish to explain biological for-

mation of ATP in terms of the action of 14 proteins . . . . The above implies that

this is impossible, as the 14-enzyme pathway cannot be disentangled from the

functioning of 361 other gene products. (Westerhoff et al. 2009, 3884–3885)

The important point is not that Westerhoff et al.’s and Brenner’s numerical exercises lead

to numbers of the same order of magnitude.6 Rather, one should appreciate their tenden-

cies towards diametrically opposed methodological recommendations. Westerhoff et al.

conclude from their reasoning that the traditional way of reducing epistemic complexity

is misleading:

With respect to Occam’s razor, we propose a new paradigm, i.e. that an expla-

nation in terms of fewer than 300 gene products is less likely to be true and

complete than an explanation making a provision for the possible influence

of more than 300. (Westerhoff et al. 2009, 3887)

Given this statement, it would be natural to expect that the alternative ‘paradigm’ of sys-

tems biology should be one that can do without any reduction of epistemic complexity.

However, when considering the authors’ own strategy of creating a model of metabolism

in the yeast Saccharomyces cerevisiae, that is presented in the same article, one cannot

help but notice that it is full of heuristics itself:

To determine what is most important for the organism itself, as well as for the

use mankind makes of it, we consider yeast leavening dough and yeast mak-

6Note, however, that Brenner talks about mammalian cells, while Westerhoff et al.’s estimate refers to
minimal forms of life.
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ing wine. We simplify to an idealized growth medium. Then we anticipate

that under these conditions, S. cerevisiae only makes use of a small part of its

network. To examine which parts of the network it might use theoretically, we

implemented standard flux balance analysis for this condition, which indeed

led to a greatly reduced number of fluxes in the network. . . . . And then there is

the strategy of modularization, where the hope is that intracellular networks

are composed of a number of subnetworks that are heavily networked within

themselves but have very few connections between them. To the extent that

intracellular networks are indeed scale free . . . this strategy seems unlikely to

be realistic, but on the other hand the concept of pathways and elementary

modes . . . suggests that if one would look at dynamic pathways with the fluxes

in them, then this simplification through modularization may work. (Wester-

hoff et al. 2009, 3888)

The main difference with respect to Brenner’s account is that Westerhoff et al. do not as-

sume that there is one natural way of simplifying the task of figuring out how living things

work. Instead, they seem to draw from a whole toolkit of different heuristic strategies

for the tentative reduction of epistemic complexity, while being aware that each of these

might introduce distortions in the model. At present, systems biology cannot do without

reducing epistemic complexity, in spite of the availability of large amounts of data and

sophisticated mathematical tools. However, it enriches biology by providing a variety of

alternative strategies. In this light, the set of heuristics of traditional molecular biology

represents only one among different possible ways of approaching the study of living sys-

tems.

At first glance, this perspective on the plurality of systems biology appears to be in

the spirit of those philosophers who more generally take a stance against monism and for

pluralism in science (e.g. Dupré 1993, Mitchell 2003, Kellert et al. 2006). Usually, these

scholars argue for pluralism by referring both to the diversity of human interests and to

the complexity of the world (cf. the discussion in Meunier 2011). Here I do not want to

take a strong position on science in general, but only briefly address the question of unity

in systems biology. First of all, it can certainly not be denied that different biologists have

different interests and are working on different problems. However, the diversity of in-
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terests should not be overrated, and one should keep in mind that one overarching aim

that is frequently expressed by both molecular biologists and systems biologists consists

in understanding how living organisms work. I have mentioned in Chapter 1 that the

application of a heuristic strategy corresponds to a transformation of the original prob-

lem. Thus it may often seem that scientists approaching the same fundamental question

with different strategies are in fact working on different problems. A molecular biologist,

for instance, might not share the systems biologist’s interest in robustness, even though

the concept might turn out to help to explain other behaviors that she is interested in.

Awareness of the heuristic character of scientific discovery might reveal the relationships

between seemingly unrelated problems and create room for dialogue and constructive

criticism.

Regarding the issue of complexity, I have based my explanation of the plurality of sys-

tems approaches on the idea that there are different strategies of dealing with epistemic

complexity. This does not exclude that the intrinsic complexity of biological systems can

eventually be managed by means of a unified approach. Of course, this is impossible to

know at present, especially given that biologists, as I have shown, often do not agree about

the organization and the level of intrinsic complexity of living systems. Indeed, the goal

of many of the heuristics that we have discussed is not only to simplify problems, but also

to find patterns of hidden simplicity in reality. The concepts that are fashionable among

systems biologists, such as modularity, robustness, principles (of design, organization, or

optimization), or even laws of systems biology all have this double character of reflecting

both intellectual needs and possible features of reality.

Systems biology provides a great opportunity of unifying biological knowledge, by cre-

ating formal models that make underlying heuristic assumptions explicit and facilitate

the integration of different approaches. Unification seems to be an important ideal, not

necessarily as an aim in itself, but definitely as a further tool for the development of ad-

equate mechanistic accounts. With reference to the field of neuroscience, Carl Craver

has spoken of a “mosaic unity” of different perspectives (Craver 2007, Chapter 7). The

epistemic role of this conception of unity is that it enables scientists to use “constraints

from different fields to shrink the space of plausible mechanisms” (Craver 2007, 269). In a

similar way, integration in systems biology can move the field beyond the coexistence of
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individual approaches since it creates the potential to exploit further constraints and to

correct heuristic biases. The whole-cell model of Mycoplasma genitalium provides a first

glimpse of what the sum of the parts might look like.
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