
ESBC: an application for computing

stabilization bounds

Alessandro Avellonea Mauro Ferrarib,1 Camillo Fiorentinic

Guido Fiorinoa Ugo Moscatoa

a Dipartimento di Metodi Quantitativi per le Scienze Economiche Aziendali, Università
Milano-Bicocca, piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy

b Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, via Mazzini
5, 21100 Varese, Italy

c Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, via Comelico 39,
20135 Milano, Italy

Abstract

We describe the application ESBC to perform the timing analysis of a combinatorial circuit. The
circuit is described by formulas of Classical Logic and the delays of propagation of the signals in a
gate are represented by a kind of valuation form semantics. ESBC computes the exact stabilization
times at which the output signals stabilize.

Keywords: Valuation form semantics, timing analysis, intermediate logics

1 Introduction

Valuation forms provide an intensional semantics of formulas inspired to the
BHK explanation of constructive connectives (see e.g., [3,8]). Roughly speak-
ing, a valuation form for a formula A is an “object” providing a constructive

justification for the truth of A. In recent years, several families of valuation
forms have been devised to formalize different problems in logic and computer
science. As an example we cite [6] where valuation forms are studied from a
purely logical point of view; [5] where they are used to formalize databases;

1 Contacting author: mauro.ferrari@uninsubria.it.

Electronic Notes in Theoretical Computer Science 153 (2006) 23–33

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.08.004

http://www.elsevier.com/locate/entcs


[4] where valuation forms characterize stabilization bounds in combinatorial
circuits and [7] where valuation forms provide the semantics of CML, a Con-
structive Modeling Language for Object Oriented systems.

One of the interesting aspects of valuation forms is that they are compatible
with classical semantics. In the framework of formal methods one can use
formulas with the intended classical meaning to formalize the system at hand
and valuation forms to characterize some intensional property of the system.
As an example, in the context of timing analysis formulas describe the usual
functional behavior of the circuit components while valuation forms are the
functions describing the delays of the circuit components. We remark that in
this context valuation forms provide a partial semantical justification of the
truth of the formulas since they only characterize the correctness of the circuit
up to stabilization bounds.

All the above mentioned families of valuation forms characterize construc-
tive superintuitionistic logics with constructive negation and any of these logics
is a superset of the logic E studied in [6]. This means that the natural deduc-
tion calculus NdE for logic E devised in [6] is valid for all these semantics. This
allows us to define a parametric extraction procedure that, selected the family
of valuation forms of interest, extracts from an NdE proof of A1, . . . , An � B

a function computing the valuation form justifying B, having as inputs the
valuation forms for A1, . . . , An.

In this paper we describe the stabilization bound semantics and an applica-
tion built to compute and evaluate the valuation forms describing stabilization
bounds of combinatorial circuits. This application consists of a C++ theorem
prover for the propositional logic E based on tableau calculi (fully described in
[1]), a Java package translating tableau proofs into NdE proofs, a Java package
extracting the function computing the stabilization bound from a correctness
NdE-proof of the circuit and the Java package which evaluates the function.

The paper is structured as follows: in Section 2 we discuss the stabilization
bounds semantics, in Section 3 we briefly describe the tableau calculus, the
theorem prover and the translation into NdE-proofs and finally in Section 4
we describe the implementation of the valuation form extractor and provide
an example.

2 Exact Stabilization Bounds

In the logical approach to circuit analysis a semantics represents an abstraction
from the physical details. To give an example, let us consider the gates INV
and NAND of Figure 1. Their behavior is specified by the following formulas
of classical logic

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–3324



INV(x, y)≡ (x →∼y) ∧ (∼x → y)

NAND(x, y, z)≡ (x ∧ y →∼z) ∧ (∼x∨ ∼y → z)

Indeed, the truth table of INV(x, y) represents the input/output behavior of
the INV gate having x as input and y as output. Analogously, NAND(x,y,z)
represents the NAND gate, where x and y are the inputs and z is the output.
Similarly, the classical behavior of the XOR circuit can be specified by the
formula

XOR(x, y, z)≡ ((x∧ ∼y) ∨ (∼x ∧ y) → z) ∧ ((x ∧ y) ∨ (∼x∧ ∼y) →∼z)

where x and y represent the inputs and z the output.
a

b

c

d

e

f

g 0 0 0
0 1 1
1 0 1
1 1 0

a b g
z

NAND

INV

x y z

0 0 1
0 1 1
1 0 1
1 1 0

x y

0 1
1 0

x

y

x y

Fig. 1. The XOR circuit and its components

Classical semantics allows us to study the input/output behavior of com-
binatorial circuits, but does not allow us to represent temporal information
about the stabilization properties of the circuits. A more realistic description
of the XOR circuit of Figure 1 should consider the instant at which the signals
become stable and the delays in the propagation of signals; e.g., an “informal”
characterization of the behavior of the above circuit should be as follows:

(a stable to 1 at t1) and (b stable to 0 at
t2)

or

(a stable to 0 at t1) and (b stable to 1 at
t2)

⇒ (g stable to 1 at F (t1, t2))

(a stable to 1 at t1) and (b stable to 1 at
t2)

or

(a stable to 0 at t1) and (b stable to 0 at
t2)

⇒ (g stable to 0 at G(t1, t2))

where F and G are functions from N2 to N and N represents discrete time.

To formalize these aspects, we recall the main notions introduced in [4].
A signal is a discrete timed boolean function σ ∈ N → B. A circuit is char-
acterized by a set of observables S = {a, b, c1, c2, . . .} (the atomic formulas of
our language); for instance, to represent the XOR circuit of Figure 1, we need
the set of observables {a, b, c, d, e, f, g} representing the connections between
the gates of the circuit. A waveform is a map V ∈ S → (N → B) associating
with every observable a signal. A waveform represents an observable property

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–33 25



of a circuit C, whereas an observable behavior of C is described by a set of
waveforms. A signal V (a) is stable to 1 at time t iff V (a)(k) = 1 for all k ≥ t;
similarly, V (a) is stable to 0 at t iff V (a)(k) = 0 for all k ≥ t. We only consider
eventually stable waveforms V , namely: for every a ∈ S, there is t such that
the signal V (a) is stable at time t (to 0 or to 1). Figure 2 describes a possible
eventually stable waveform for the NAND circuit. Here, the input signal V (x)
stabilizes to 1 at time t4, while the input signal V (y) stabilizes to 1 at time
t5; the output signal V (z) stabilizes to 0 at time t6, with a certain delay with
respect to the time t5 where both the inputs are stable to 1.

y

z

x

S

0 t1 t2 t3 t4 t5 t6 N

1

1

1

0

0

0

Fig. 2. A waveform for NAND

To express stabilization properties of waveforms and behaviors we use a
propositional language LS based on a denumerable set of observables S. For-
mulas of LS are inductively defined as follows: for every a ∈ S, a is an atomic

formula of LS; if A, B ∈ LS, then A ∧ B, A ∨ B, A → B and ∼A belong to
LS. Temporal information is represented by stabilization bounds which is a
variant of the valuation form semantics introduced in [6]. Let A be a formula
of LS; the set of stabilization bounds 	A
 for A is inductively defined on the
structure of A as follows:

• If A = a or A =∼a, with a ∈ S, then 	A
 = N.

• 	B ∧ C
 = 	B
 × 	C
.

• 	A1 ∨ A2
 = 	A1
 ⊕ 	A2
 = {(i, αi) | i ∈ {1, 2} and αi ∈ 	Ai
}.

• 	B → C
 = {f | f : 	B
 → 	C
}.

• 	∼(A1 ∧ A2)
 = 	∼A1
 ⊕ 	∼A2
 = {(i, αi) | i ∈ {1, 2} and αi ∈ 	∼Ai
}.

• 	∼(B ∨ C)
 = 	∼B
 × 	∼C
.

• 	∼(B → C)
 = 	B
 × 	∼C
.

• 	∼∼B
 = 	B
.

Intuitively, a stabilization bound α ∈ 	A
 intensionally represents a set of
waveforms that validate A for the “same reasons” and with the “same de-
lay bounds”. The main concern of timing analysis is to determine the exact

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–3326



time instant where an output signal of a circuit becomes stable, and this is
performed by computing exact stabilization bounds. Let A be a formula, let
α ∈ 	A
 and let V be an eventually stable waveform; α is exact for V and A

if one of the following conditions holds:

- A = a and α = min{t | V (a) is stable to 1 at t}.

- A =∼a and α = min{t | V (a) is stable to 0 at t}.

- A = B ∧C, α = (β, γ), β is exact for B and V , and γ is exact for C and V .

- A = B1 ∨ B2, α = (i, βi), with i ∈ {1, 2}, and βi is exact for V and Bi.

- A = B → C and, for all β ∈ 	B
, if β is exact for V and B, then α(β) is
exact for V and C.

- A =∼(B1 ∧B2), α = (i, βi), with i ∈ {1, 2}, and βi is exact for V and ∼Bi.

- A =∼ (B ∨ C), α = (β, γ), β is exact for V and ∼B, γ is exact for V and
∼C.

- A =∼ (B → C), α = (β, γ), β is exact for V and B, γ is exact for V and
∼C.

- A =∼∼B and α is exact for V and B.

To give an example, let us consider the above INV and NAND gates. A
stabilization bound for INV(x, y) is a pair of functions from N to N. Let us
assume that the INV gate has the following observable behavior: if the signal
V (x) stabilizes to 1 at t, then the signal V (y) stabilizes to 0 at t + δ0; if V (x)
stabilizes to 0 at t, then V (y) stabilizes to 1 at t + δ1. In our semantical
framework, this is described by the exact stabilization bound (f−

INV, f+
INV) for

V and INV(x, y) defined as follows:

f−

INV(t) = t + δ0 f+
INV(t) = t + δ1

Similarly, a stabilization bound for NAND(x, y, z) is a pair of functions

f−

NAND : N × N → N f+
NAND : N ⊕N → N

An exact stabilization bound (f−

NAND, f+
NAND) for the waveform V of Figure 2

and NAND(x, y, z) must satisfy

f−

NAND((t4, t5)) = t6

which formalizes the fact that, if V (x) stabilizes to 1 at t4 and V (y) stabilizes
to 1 at t5, then V (z) stabilizes to 0 at t6.

To give a picture of our extraction algorithm, let C be a circuit consisting
of the gates G1, . . . , Gn, where each Gi is described by a formula Ai, and let B

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–33 27



∼Ai

I∼∧i i∈{1,2}

∼ (A1 ∧ A2)
∼ (A ∧ B)

[∼A]
·
·
·
π1

C

[∼B]
·
·
·
π2

C
E∼∧

C
A

I∼∼

∼∼A

∼∼A
E∼∼

A

∼A ∼B
I∼∨

∼ (A ∨ B)

∼ (A1 ∨ A2)
E∼∨i i∈{1,2}

∼Ai

A ∼B
I∼→

∼ (A → B)

∼ (A → B)
E∼→1

A

∼ (A → B)
E∼→2

∼B

Table 1
The negation rules of the calculus NdE

be the formula describing the input/output behavior of C (see the examples
above). A formal correctness verification of the circuit amounts to providing a
classical proof π : A1, . . . , An � B, where A1, . . . , An are the open assumptions
of π and B is the proved formula. Moreover, let Vi (1 ≤ i ≤ n) be the
waveform corresponding to the observable behavior of Gi and let αi be an
exact stabilization bound for Ai and Vi (namely, αi describes the behavior of
Gi); finally, let V be the waveform corresponding to the observable behavior of
C (V describes the temporal information about the input/output signals of the
whole circuit). To determine V , it suffices to compute an exact stabilization
bound for V and B. As fully described in [4], this can be accomplished by
considering proofs of the constructive calculus NdE obtained by adding to the
usual natural deduction calculus for intuitionistic logic the rules of Table 1,
where we put between square brackets the discharged assumptions.

As a matter of fact, the main result of [4] states:

Theorem 2.1 Let π : A1, . . . , An � B be a proof of the calculus NdE. There is

a recursive function Fπ : 	A1
×· · ·×	An
 → 	B
 such that, for all α1 ∈ 	A1
,
. . . , αn ∈ 	An
 and for every eventually stable waveform V , if α1 is an exact

stabilization bound for V and A1, . . . , αn is an exact stabilization bound for

V and An, then Fπ(α1, . . . , αn) is an exact stabilization bound for V and B.

The function Fπ is defined according to the structure of π. Here we only
provide some cases. If π : A � A only consists of an assumption introduction,
Fπ is the identity function. If π is the proof

A1, . . . , Ak
·
·
·

π1

B

Ak+1, . . . , An

·
·
·

π2

C
I∧

B ∧ C

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–3328



then Fπ(α) = (Fπ1(α1, . . . , αk), Fπ2(αk+1, . . . , αn)).

If π terminates with an implication introduction

A1, . . . , An, [B]
·
·
·

π1

C
→I

B → C

then Fπ(α) is the function f : 	B
 → 	C
 such that f(β) = Fπ1(α, β).

If π is the proof

A1, . . . , Ak

·
·
·

π1

B

Ak+1, . . . , An

·
·
·

π2

B → C
→E

C

then Fπ(α) = Fπ2(αk+1, . . . , αn)(Fπ1(α1, . . . , αk)).

3 Building NdE proofs

To apply our extraction procedure, we need a NdE proof of correctness of
the circuit. However, it is well-known that natural deduction calculi are not
adequate for proof search. For this reason we use a tableau based theorem
prover to build up the correctness proof and then we translate it into a NdE

proof. In this section we give a quick overview of both the tableau calculus
and the translation rules.

Our theorem prover implements the tableau calculus Tab of [1] which
has the “same deductive power” of NdE. Differently from natural deduc-
tion, tableaux are goal-oriented calculi; this feature makes them suitable for
automated deduction (see [2] for an account of the wide of applicability of
tableau systems).

The tableau calculus Tab uses an object language with the signs T, F, Fc

and Tc and is equivalent to NdE in the following sense:

• π : A1, . . . , An � B ∈ NdE iff there exists a tableau proof in Tab of
{TA1, . . . ,TAn,FB}.

The depth of every proof table is linearly bounded by the length of the input
formulas, moreover there exists an “efficient” strategy in the application of the
rules which strongly bounds the backtracking. The theorem prover described
in [1] implements an O(n2)-SPACE proof search procedure for proofs of Tab.

To simplify the translation from tableau proofs into natural deduction

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–33 29



proofs, we add to the calculus NdE the following cut-rules

A1, . . . , Ak

·
·
·

π1

B

Ak+1, . . . , An, [B]
·
·
·

π2

C
Cut1

C

A1, . . . , Ak

·
·
·

π1

B

Ak+1, . . . , Ah

·
·
·

π2

C

Ah+1, . . . , An, [B], [C]
·
·
·

π2

D
Cut2

D

Here we give two examples of translation. Let Γ = {H1, . . . , Hn} and let
S = {TH1, . . . ,THn}.

The rule S,FC,T(A∧B)
S,FC,TA,TB

T∧, is translated as

A ∧ B
E∧1

A

A ∧ B
E∧2

B

Γ, [A], [B]
·
·
·

π

C
Cut2

C

The rule S,FD,T(A∧B→C)
S,FD,T(A→(B→C))

T→∧ is translated as

[A]1 [B]2
I∧

A ∧ B A ∧ B → C
E→

C
I→(2)

B → C
I→(1)

A → (B → C)

Γ, [A → (B → C)]3
·
·
·

π

D
Cut1(3)

D

In the above proofs, the number beside the rule name indicate the points
where the assumptions are discharged.

The translation of the proof generated by the tableau theorem prover (im-
plemented in C++ language) is performed by a JAVA package of the applica-
tion.

4 The system ESBC

In this section we discuss the implementation issues. The system software
ESBC performs all the steps to compute stabilization bounds of combinatorial

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–3330



circuits discussed in the previous sections. It consists of the following indepen-
dent modules: (i) the tableau theorem prover, (ii) the translator from proofs
of Tab into proofs of NdE, (iii) the tool which computes stabilization bounds
exploiting proofs produced by (ii).

As a summarizing example, let us consider the Full Adder Circuit of Fig-
ure 3. The gates in the circuit are represented by the formulas in the set:

C = {XOR(y, z, a), XOR(a, x, s), AND(y, z, b), AND(x, y, c),

AND(x, z, d), OR(b, c, e), OR(e, d, r)}

The behavior of AND, OR and XOR gates are specified by the formulas:

AND(x, y, z)≡ (x ∧ y → z) ∧ (∼x∨ ∼y →∼z)

OR(x, y, z)≡ (∼x∧ ∼y →∼z) ∧ (x ∨ y → z)

XOR(x, y, z)≡ ((x∧ ∼y) ∨ (∼x ∧ y) → z) ∧ ((x ∧ y) ∨ (∼x∧ ∼y) →∼z)

The input/output behavior of the signals of the circuit is specified by the
formula:

S ≡ (∼x∧ ∼y∧ ∼z →∼s∧ ∼r) ∧ (∼x∧ ∼y ∧ z → s∧ ∼r) ∧

(∼x ∧ y∧ ∼z → s∧ ∼r) ∧ (∼x ∧ y ∧ z →∼s ∧ r) ∧

(x∧ ∼y∧ ∼z → s∧ ∼r) ∧ (x∧ ∼y ∧ z →∼s ∧ r) ∧

(x ∧ y∧ ∼z →∼s ∧ r) ∧ (x ∧ y ∧ z → s ∧ r)

Fig. 3. The Full Adder Circuit

Firstly, we search for a proof π : C � S of NdE, by using modules (i)
and (ii) of ESBC. Then, (iii) uses π to compute stabilization bounds of the
circuit. We have to provide the stabilization bound of the elementary gates.
As discussed in Section 2, a stabilization bound for AND(x, y, z) is a pair of
functions (f−

AND, f+
AND), where

f−

AND : N ⊕ N → N f+
AND : N × N → N

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–33 31



Let us assume that the output signal of the AND gate stabilizes to 1 with delay
2 after the stabilization to 1 of both the input signals and that it stabilizes to
0 with delay 5 after the stabilization to 0 of either of the input signals. Then,
we have to set

f−

AND(i, t) = t + 5 f+
AND(t1, t2) = max{t1, t2} + 2, i ∈ {1, 2}

Similarly, a stabilization bound for OR(x, y, z) is a pair of functions (f−

OR, f+
OR),

where

f−

OR : N × N → N f+
OR : N ⊕ N → N

We assume that behavior of OR gate corresponds to the following exact sta-
bilization bound:

f−

OR(t1, t2) = max{t1, t2} + 6 f+
OR(i, t) = t + 10, i ∈ {1, 2}

Finally, a stabilization bound for XOR(x, y, z) is a pair of functions (f−

XOR, f+
XOR),

where

f−

XOR : (N× N) ⊕ (N × N) → N f+
XOR : (N × N) ⊕ (N ×N) → N

We choose f−

XOR and f+
XOR as follows:

f−

XOR(i, (t1, t2)) = max{t1, t2} + 1, i ∈ {1, 2}

f+
XOR(i, (t1, t2)) = max{t1, t2} + 5, i ∈ {1, 2}

We compute the exact stabilization bounds of output signals assuming that
input signals are stable at time 0. By applying the above exact stabilization
bounds to the function Fπ associated with π, ESBC produces the results given
in the following table where for every input we put in evidence the truth value
of the signal and for every output both the truth value and the stabilization
bounds are provided. For instance, if the signals V (x), V (y) and V (z) sta-
bilizes to 1 at time 0, we have that V (s) stabilizes to 1 at time 6 and V (r)
stabilizes to 1 at time 12 (see the last row of the table).
x y z s r

false false false (false,10) (false,17)
false false true (true,2) (false,17)
false true false (true,2) (false,17)
false true true (false,10) (true,22)
true false false (true,6) (false,17)
true false true (false,6) (true,12)
true true false (false,6) (true,22)
true true true (true,6) (true,12)

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–3332



References

[1] A. Avellone, C. Fiorentini, G. Fiorino, and U. Moscato. A space efficient implementation of a
tableau calculus for a logic with a constructive negation. In J. Marcinkowski and A. Tarlecki,
editors, Computer Science Logic, 18th International Workshop, CSL 2004, volume 3210 of
Lecture Notes in Computer Science, pages 488–502, 2004.

[2] M. D’Agostino, D.M. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of tableau methods.
Kluwer Academic Press, 1999.

[3] M.A.E. Dummett. Elements of Intuitionism. Claredon Press, Oxford, 1977.

[4] M. Ferrari, C. Fiorentini, and M. Ornaghi. Extracting exact time bounds from logical proofs.
In A. Pettorossi, editor, Logic Based Program Synthesis and Transformation, 11th International
Workshop, LOPSTR 2001, Selected Papers, volume 2372 of Lecture Notes in Computer Science,
pages 245–265. Springer-Verlag, 2002.

[5] P. Miglioli, U. Moscato, and M. Ornaghi. A constructive logic approach to database theory. In
Logic Programming-Proceeding of the First Russian Conference on Logic Programming, pages
302–321, 1990.

[6] P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti. Some results on intermediate
constructive logics. Notre Dame Journal of Formal Logic, 30(4):543–562, 1989.

[7] M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A constructive modeling
language for object oriented information systems. CLASE, 2005.

[8] A.S. Troelstra. Aspects of constructive mathematics. In J. Barwise, editor, Handbook of
Mathematical Logic. North-Holland, 1977.

A. Avellone et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 23–33 33


	Introduction
	Exact Stabilization Bounds
	Building NdE proofs
	The system ESBC
	References



