Chapter 1

Mobile Resource Guarantees
Evaluation Paper

Donald Sannelfg Martin Hofmanr, David Aspinalt, Stephen Gilmorg
lan Stark, Lennart Beringér, Hans-Wolfgang Loidl, Kenneth MacKen-
zie!, Alberto Momigliand, Olha Shkaravska

Abstract: This paper summarises the main outcomes of the Mobile Resource
Guarantees (MRG) project, which focused on a proof-carrying-code (PCC) in-
frastructure for resources to be applied to mobile code. MRG was a three year
project funded by the EC under the FET proactive initiative on Global Comput-
ing. We give an overview of the projects’ results, discuss the lessons learnt from
it and introduce follow-up work in new projects that will build on these results.

1.1 INTRODUCTION

The aim of the project was tdevelop an infrastructure needed to endow mobile
code with independently verifiable certificates describing its resource behaviour
These certificates are condensed and formalised mathematical proofs of resource-
related properties which are by their very nature self-evident, unforgeable, and
independent of trust networks. This is the “proof-carrying-code” (PCC) approach
to security [18], which has become increasingly popular in recent years [9, 1, 20].
Typical application scenarios for such an infrastructure include the following.

e A provider of a distributed computational power, for example a node in a
computational Grid, may only be willing to offer this service upon receiving
dependable guarantees about the required resource consumption.

1L aboratory for Foundations of Computer Science, School of Informatics, University
of Edinburgh, Edinburgh EH9 3JZ, Scotland

2|nstitut fir Informatik, Ludwig-Maximilians Universit, D-80538 Minchen,
Germany

¢ A user of a handheld device or another embedded system might want to know
that a downloaded application will definitely run within the limited amount of
memory available.

In the following section we will outline the initial objectives of the project
(Section 1.2) and then give an overview of the key techniques used, and newly
developed, to meet these objectives. We provide an overview of the design of our
proof and software infrastructure (Section 1.3 and 1.4). We summarise the main
results in Section 1.5, and discuss future work which builds on these results.

1.2 PROJECT OBJECTIVES

The objectives outlined in our initial proposal strike a balance between founda-
tional and more applied work. The foundational work develops a proof infras-
tructure built on type systems and program logics. The applied work creates a
software infrastructure in a PCC prototype which covers the entire path of mobile
code in a distributed system. A general overview of the project, developed about
half-way through the project, is presented in [4].

Objective 1 is the development of a framework in which certificates of resource
consumption exist as formal objects. This consists of a cost model and a program
logic for an appropriate virtual machine and run time environment.

Objective 2 consists of the development of a notion of formalised and checkable
proofs for this logic playing the role of certificates.

Objective 3 is the development of methods for machine generation of such cer-
tificates for appropriate high-level code. Type systems are used as an underlying
formalism for this endeavour. Since resource related properties of programs are
almost always undecidable, we aim — following common practice — for a con-
servative approximation: there will be programs for which no certificate can be
obtained although they may abide by the desired resource policy.

Objective 4 While proof-like certificates are generally desirable, they may some-
times be infeasible to construct or too large to transmit. We therefore study relax-
ations based on several rounds of negotiation between supplier and user of code
leading to higher and higher confidence that the resource policy is satisfied.

At the end of the project we conclude that we have fully achieved Objec-
tives 1-3, and we started work on Objective 4. Topics of Objective 4 that have not
yet been addressed will be covered in follow-up projects mentioned in Section 1.5.

1.3 AN INFRASTRUCTURE FOR RESOURCE CERTIFICATION

Developing an efficient PCC infrastructure is a challenging task, both in terms
of foundations and engineering. In this section we present the foundational tools

High-Level Type System Pyt

compile
Specialised Logic >"t7:D(Dd,1)
Termination Logic >T1{P} e |
I
Program Logic N>e:A
Operational Semantics Ehel N, vp

FIGURE 1.1. A family of logics for resource consumption

needed in such an infrastructure, in particular high-level type-systems and pro-
gram logics. In terms of engineering, the main challenges are the size of the
certificates, the size of the trusted code base (TCB) and the speed of validation of
the certificate.

1.3.1 Proof Infrastructure

In this section we describe the proof infrastructure for certification of resources.
This is based on aulti-layered logics approackshown in Figure 1.1), where

all logics are formalised in a proof assistant, and meta-theoretic results of sound-
ness and completeness provide the desired confidence in these components of the
trusted code base.

At the basis we have our (trustegf)erational semanticthat is extended with
general “effects” which encode the basic security-sensitive operations (for exam-
ple, heap allocation if the security policy is bounded heap consumption). Judge-
ments in the operational semantics have the farmh, el i, v,p, whereE maps
variables to values) represents the pre-heap amdhe post-heap, andis the re-
sult value, consuming resources. The Foundational PCC approach [1] performs
proofs directly on this level thereby reducing the size of the trusted code base.

On the next level there is our general-purppsegram logicfor partial cor-
rectness [2, 5]. Judgements in this logic have the fbrm e : A, where the con-
textl maps expressions to assertions, &ndn assertion, is a predicate over the
parameters of the operational semantics. The role of the program logic is to serve
as a platform on which various higher level logics may be unified. The latter pur-

pose makes logical completeness of the program logic a desirable property, which
has hitherto been mostly of meta-theoretic interest. Of course, soundness remains
mandatory, as the trustworthiness of any application logic defined at higher levels
depends upon it. Our soundness and completeness results establish a strong link
between operational semantics and program logic, as shown in Figure 1.1. Note
that, since we formalise the entire hierarchy of logics, we do not need to include
any of these logics in the TCB.

Whereas assertions in the core logic make statements about partial program
correctness, theermination logids defined on top of this level to certify termina-
tion. This separation improves modularity in developing these logics, and allows
us to use judgements of partial correctness when talking about termination. Judge-
ments in this logic have the form{P} e |, meaning an expressierterminates
under the preconditioR.

On top of the general-purpose logic, we definspecialised logiqfor ex-
ample the heap logic of [6]) that captures the specifics of a particular security
policy. This logic uses a restricted format of assertions, calext/ed assertions
which reflects the judgement of the high-level type system. Judgements in the
specialised logic have the form "t7: D(®, 1), where the expressidrt ™ is the
result of compiling a high-level terma down to a low-level language, and the
information in the high-level type system is encoded in a special form of asser-
tion D(®, 1) that relies on the contexb and typet associated ta. Depending
on the property of interest, this level may be further refined into a hierarchy of
proof systems, for example if parts of the soundness argument of the specialised
assertions can be achieved by different type systems. In contrast to the general-
purpose logic, this specialised logic is not expected to be complete, but it should
provide support for automated proof search. In the case of the logic for heap
consumption, we achieve this by inferring a system of derived assertions whose
level of granularity is roughly similar to the high-level type system. However, the
rules are expressed in terms of code fragments in the low-level language. Since
the side conditions of the typing rules are computationally easy to validate, auto-
mated proof search is supported by the syntax-directedness of the typing rules. At
points where syntax-directedness fails — such as recursive program structures —
the necessary invariants are provided by the type system.

On the top level we find high-level type systethat encodes information on
resource consumption. In the judgemeénty t : T, the termt has an (extended)
typet in a context®. This in an example of increasingly complex type systems
that have found their way into main-stream programming as a pa rial answer to
the un-feasibility of proving general program correctness. Given this complexity,
soundness proofs of the type systems become subtle. As we have seen, our ap-
proach towards guaranteeing the absence of bad behaviour at the compiled code
level is to translate types into proofs in a suitably specialised program logic.

The case we have worked out in [5] is the Hofmann-Jost type system for heap
usage [12] and a simpler instance is given in the rest of this section. In our work,
however, we give a general framework for tying such analyses into a fully for-
malised infrastructure for reasoning about resource consumption.

1.3.2 An Example of a Specialised Program Logic

We now elaborate our approach on a simple static analysis of heap-space con-
sumption based on [8]. The idea is to prove a constant upper bound on heap
allocation, by showing that no function allocates memory in a loop. The goal is to
detect such non-loop-allocating cases and separate them from the rest, for which
no guarantees are given. We use a fragment of a simple first-order, strict language
similar to Camelot [17] (see later in 1.4.1), with lists as the only non-primitive
data-type and expressions in ANF, meaning arguments to functions must be vari-
ables k are constants variables,f function names):

ecexpr &= k|x|nil|cons(Xy,X2) | f(X1,...,X) | let X=€1 in &
| match Xwith nil = €1; cons(X1,X2) = €

We now define a non-standard type system for this language, \&i&yés a type
signature mapping function namesNoas follows:

Fhe:n n<m VAR
H}—fﬁ]_ FH k:0 FH X 0 ()
H €.
(WEAK) (ConsT)
Fr f(X1,..., %) 1 Z(T) Fynil: O Fn cons(Xg,xp) : 1
(APP (NIL) (Cons)
Fuer:m Fue:n Fuer:n Fue:n
Fy let X=€1 ine:m+n Fu match Xwithnil = €);cons(X1,X2) = €:n
(LET) (MATCH)

Let us say that a function recursiveif it can be found on a cycle in the call graph.
Further, a functiorallocatesif its body contains an allocation, i.e., a subexpres-
sion of the formcons(x1,X2). One can show that a program is typeable iff no
recursive function allocates; moreover in this case the type of a function bounds
the number of allocations it can make.

In order to establish correctness of the type system and, more importantly,
to enable generation of certificates as proofs in our program logic, we will now
develop a derived assertion and a set of syntax-directed proof rules that mimic our
typing rules and permit the automatic translation of any typing derivation into a
valid proof.

Recall that™ > e: Ais the judgement of the core logic, and tias parame-
terised over variable environment, pre- and post-heap (see [2] for more details on
encoding program logics for these kinds of languages). Based on this logic, we
can now define aerived assertioncapturing the fact that the he&pafter the

execution is at most units larger than the hedpbefore executioh
D(n)=AE hH vp. |[domh’)|<|dom(h)| +n

We can now provelerived rulesof the canonical form>e: D(n) to arrive at a
program logic for heap consumption;

>e:D(n) n<m

>k: D(0) >x: D(0)
>e:D(m)
(DWEAK) (DConNsT) (DVAR)
> f(X1,...,%n,) 1 Z(F) >nil: D(0) >cons(Xg, X2) : D(1)
(DAPP) (DNIL) (DCoNY)
>e;:D(m) >ep:D(N) >e;:D(n) >er:D(n)
>let X=e€1 in € : D(m+n) >match Xwithnil = ep;cons(X1,X2) = € : D(n)
(DLET) (DMATCH)

We can now automatically construct a proof of bounded heap consumption,
by replaying the type derivation for the high-level type system and using the
corresponding rules in the derived logic. The verification conditions coming out
of this proof will consist only of the inequalities used in the derived logic. No
reasoning about the heaps is necessary at all at this level; this has been covered
already in the soundness proof of the derived logic w.r.t. the core program logic.

1.3.3 Modelling Reusable Memory

To tackle the issue of reusable memory, we introduce the model of a global “freel-
ist”. Heap allocations are fed from the freelist. Furthermore, our Camelot lan-
guage provides a destructive pattern match operator, which returns the heap cell
matched against to the freelist. This high-level memory model is the basis for ex-
tending the type system and the logic to a language where memory can be reused.

We can generalise our type system to encompass this situation by assigning a
type of the form(f) = (m,n) with m,n € N to functions and, correspondingly, a
typing judgement of the forméats e: (m,n). The corresponding derived assertion
D(m,n) asserts that if in the pre-heap the global freelist has a length greater than
or equal tom, then the freelist in the post-heap has a length greater than or equal
to n. Since the freelist, as part of the overall heap, abstracts the system’s garbage
collection policy, we have the invariant that the size of the post-heap equals the
size of the pre-heap.

2We do not model garbage collection here, so the size of the heap always increases.
This restriction will be lifted in the next section.

Now the type of an expression contains an upper bound on the space needed
for execution as well as the space left-over after execution. If we know thag:say,
(5,3) then we can execuafter filling the freelist with 5 freshly allocated cells,
and we will find 3 cells left-over, which can be used in subsequent computations.

The typing rules for this extended system are as follows; corresponding de-
rived rules are provable in the program logic.

Fpne:(mn) m>m+q n<n+q

Fn k: (0,0 Fu x: (0,0)
Fne:(m,n)

(WEAK) (ConNsT) (VAR)

Fu f(xg,... %) 1 Z(F) Fn nil: (0,0) FH cons(Xg,%2) : (1,0)

(APP (NIL) (CoNs)
Frer:(mn) Fyex:(nk) Fher:(mn) Fye:(m+1n)

FH let x=¢ in ey : (MK) Fy match Xwithnil = ej; cons(Xy,X2)@- = € : (m,n)
(LeT) (MATCH)

Notice that this type system does not prevent deallocation of live cells. Doing
so would compromise functional correctness of the code but not the validity of
the derived assertions that merely speak about freelist size.

In [6] we extend the type system even further by allowing for input-dependent
freelist size using an amortised approach. Here it is crucial to rule out “rogue
programs” that deallocate live data. There are a number of type systems capable
of doing precisely that; among them we choose the admittedly rather restrictive
linear typing that requires single use of each variable.

1.4 APCCINFRASTRUCTURE FOR RESOURCES

Having discussed the main principles in the design of the MRG infrastructure,
we now elaborate on its main characteristic features (a detailed discussion of the
operational semantics and program logic is given in [2]).

1.4.1 Proof Infrastructure

As an instantiation of our multi-layered logic approach, the proof infrastructure
realises several program logics, with the higher-level ones tailored to facilitate
reasoning about resource consumption. We mainly focus on heap-space consump-
tion here, but have in the meantime extended our approach to cover more general
resources in the form of resource algebras [3].

Low-level language: JVM bytecodeIn order to use the infrastructure in an en-
vironment for mobile computation, we focus on a common-place low-level lan-
guage: a subset of JVM bytecode. This language abstracts over certain machine-

specific details of program execution; being higher-level than assembler code fa-
cilitates the development of a program logic as basis for certification, but also
somewhat complicates the cost modelling. For our main resource of interest,
heap consumption, allocation is still transparent enough to account for accurate
prediction (as shown by the evaluation of our cost model for the JVM). For other
resources, in particular execution time, cost modelling is significantly more com-
plicated. In the follow-up work of the EmBounded project, we therefore deal with
lower-level languages down to assembler code.

The unstructured nature of JVM code usually gives rise to fairly awkward rules
in the operational semantics and in the program logic. We have therefore decided
to introduce a slight abstraction over JVM byteco@eail, an intermediate lan-
guage with a functional flavour, which is in a one-to-one correspondence with
JVM bytecode satisfying some mild syntactic conditions. Thus, we can perform
certification on the Grail level, and retrieve the Grail code from the transmitted
JVM bytecode on the consumer side.

The operational semantickr Grail is a resource-aware, big-step semantics
over this functional language. Resources are modelled in general terms by spec-
ifying a resource algebra over constructs of the language. Separating the rules
of the semantics from the propagation of resources makes it easy to model new
resources on top of this semantics.

The program logicfor Grail is a VDM-style partial correctness logic. Thus it
can make meaningful statements on heap consumption, provided that a program
terminates. To assure termination, we have also developed a separate termination
logic, built on top of the core program logic. It should be emphasised that the
latter does not rely in any way on the Grail code being compiled from a particular
high level language. It can be seen as a uniform language for phrasing properties
of interest as discussed in the previous section. However, the benefit of compiling
down from a higher-level language is that its additional structure can be used
to automatically generate the certificates that become statements in this program
logic.

High-level language: Camelot As high-level language we have defined a vari-

ant of SML: Camelot. It is a strict functional language with object-oriented ex-
tensions and limited support for higher-order functions. Most importantly, it is
endowed with an inference algorithm for heap-space consumption which we have
presented in [12]. This inference can derive linear upper bounds for Camelot pro-
grams fulfilling certain linearity constraints. Based on this inference, the compiler
can also generate a certificate for bounded heap consumption, and it emits a state-
ment in the Grail program logic, expressing this bound for the overall program.

Meta Logic: Isabelle/HOL In order to realise our infrastructure, we have to
select and use a logical framework in the implementation of our hierarchy of pro-
gram logics. Here we have chosen a very powerful system, Isabelle/HOL, and
to definitionally realise the program logic as an inductive definition into the meta

1 |
Producer I Network | Consumer
Camelot 1 1
1 1
1 |
1 ! 0Ok?
1 |
VM
1 |
1 |
1 |
1 |
I I Proof
1 1 Checker
) Resource I | (Isabelle)
P Grail Predicate 1 1
fOgram
+ 1 |
Proof 1 1 Proof Grail VM
Seript 1 | (Graily Program Program
1 |
| |
1 1 GF
1 Certificate !
Program I Code !
L I

FIGURE 1.2. PCC infrastructure for MRG

logic. To avoid the specification of a separate assertion language, we use a shal-
low embedding for assertions, which are simply meta-logical predicates over the
components of the operational semantics. This simplified approach comes at the
expense of an increased trusted code base, since we now have to use an entire
instance of Isabelle/HOL in the certificate validation phase, as we will see be-
low. However, we found this choice to be adequate for a prototype system in a
scenario of global computing with fairly powerful compute nodes. This choice
also enables us to use a very succinct representation of certificates as fragments
of Isabelle proof scripts. Even without any semantic compression we achieve cer-
tificate size of about 22-32% of the code size, close to the commonly quoted 20%
as an acceptable size for a certificate.

1.4.2 Software Infrastructure

The overall structure of our software infrastructure is depicted in Figure 1.2 and
is an instance of a general PCC infrastructure [18] with a code producer (left
hand side) and a code consumer (right hand side). The main components on the
producer side are eertifying compiler which translates high-level Camelot pro-
grams into the Grail intermediate code and additionally generates a certificate of
its heap consumption. The latter is formalised as a lemma in the heap space logic
for the Grail language [6]. The Grail code is processed by an assembler, the Grail

de-functionaliser (gdf), to generate JVM bytecode. This bytecode is transmitted
together with the Isabelle proof script as the certificate of its heap consumption
to the code consumer. On the consumer side, the Grail code is retrieved via a
disassembiler, the Grail functionaliser (gf). Then Isabelle/HOL is used in batch
mode to automatically check that the resource property expressed in the attached
certificate is indeed fulfilled for this program. Once this has been confirmed the
code can be executed on the consumer side.

It should also be noted that the current infrastructure does not represent a
closed system, in which all mobile code has to be compiled with the same com-
piler. While the preferred way of generating a code/certificate pair is to write the
program in Camelot and have the compiler automatically produce a certificate, it
is also possible to use another high-level language such as Java or Scheme that
compiles into the JVM, and to then manually generate a proof for the desired re-
source property. Since the logic has been formulated in Isabelle/HOL, the entire
development infrastructure for this prover is available in generating the certifi-
cates. As a mixture of both scenarios, it is also possible to write the top level
program in Camelot, and call other JVM code from Camelot. This is particu-
larly useful for accessing Java library functions, e.g. for GUI parts of the code.
In [21] an extension of Camelot with object-oriented features is described. These
extensions have been used in implementing a directory lookup application to be
executed on a PDA, based on the MIDP standard for small devices, which pro-
vides a restricted set of Java libraries and is partially based on Sun’s KVM. To
tackle resource consumption of such mixed code, the foreign function calls can
be annotated with their corresponding resource usage, and it becomes possible to
analyse and certify the Camelot level heap space consumption of the entire pro-
gram. Our work on estimating the costs of native methods studies this issue in
more detail [10].

A more detailed discussion of the software infrastructure, with worked exam-
ples of certificate generation and validation, links to exercises and a discussion
of the individual steps sketched here, is presented in [13]. This is a more tutorial
style presentation, and will shortly be available in the form of lecture notes for the
Marktoberdorf summer school 2005. An on-line version of a demo is available at
http://lionel.tcs.ifi.lmu.de/mrg/pcc4/index.php, together with a set
of exercises.

1.5 RESULTS

The most visible result of the project is a complete working infrastructure for gen-
erating and checking certificates describing the resource behaviour of programs
written in a high-level functional programming language. Although the nature
of the project was foundational, we emphasised from the start the importance of
producing prototypes for the components of the PCC infrastructure — partly as
a testbed for experimentation, but also as an on-line test of our techniques in a
realistic, distributed setting.

The main novel techniques in the development of the infra-structure are our

multi-layered logics approactor providing reasoning support tuned to, but not re-
stricted to, the automatic verification of resource properties, and the tsetiof
based certificateg order to reduce the size of the certificate, albeit at the cost
of increasing the TCB size. However, since we have established soundness of
all logics in the prover, only the operational semantics needs to be trusted. The
prover running on the consumer side merely acts as validation engine.

More specifically we have produced the following:

e A completely formalised virtual machine and cost mddg¢ffor a IVM-like
language. We have used Isabelle/HOL as the theorem proving platform for
this formalisation and for encoding the logics on top of it.

e A resource aware program logi2, 5] for the bytecode language of the above
virtual machine.

¢ A specialised logic for heap consumpti@j that is built on top of the program
logic.

o A certifying compilerfor the strict, first-order functional, object-oriented lan-
guage Camelot [17], integrated into a prototype proof-carrying-code infras-
tructure (available on-line [19]).

e Advanced reasoning principl¢s2, 15] for resources, based on high-level type
systems.

Our particular conclusions on the design of a PCC infrastructure are as follows:

e For automatic certificate generation it is crucial to make use of structural in-
formation on the high-level and to propagate this information down to the
program logic. In our design we have realised this as several layers of logics,
with the heap logic being tailored to the high-level type-system used to infer
information on heap space consumption. In particular, we deliberately depart
from the standard approach of splitting certificate validation into verification
condition generation and simplification. In our experience, the verification
conditions even for simple properties become too complex to be automati-
cally solved by a proof assistant. In contrast, by drawing on information from
the high level type inference, we can perform simplifications “on the fly” and
thus can keep proofs more manageable.

e The program logic serves as a common language to phrase program properties
in. Thus, program logics over low-level languages can be seen as the “assem-
bler code” for proofs of program properties and as the target language for a
compiler that realises high-level type systems to express such properties.

e Encoding the program logic in a proof assistant is not only useful for devel-
oping the logic and enforcing formal rigour; it can also serve as an immediate
platform for realising the required software infrastructure. While in terms of
the size of the TCB and the interoperability with other systems a more general
format of certificates as proof objects would be favourable, a direct embedding
into a proof assistant also yields certificates of small size.

e We found the VDM-style version of the program logic (for partial correct-
ness), with judgements of the forin> e : A, significantly easier to use than
an earlier Hoare-style version we had developed, with judgements of the form
I >{A} e {A'}. This confirms earlier observations on how the needfoqil-
iary variablesin a Hoare setting complicates its practical usability [14, 18].

New projects that build on the MRG infrastructure are:

e EmBounded, a FET-Open STREP projecti(p: //www.embounded.org/),
which aims to provide resource bounded computation for embedded systems,
using Hume [11] as the high-level programming language. Here we can draw
on our amortised costs approach for developing inferences on resource con-
sumption for Hume. In particular, we are interested in the heap and stack
space consumption, as well as execution time. The presented PCC infrastruc-
ture will be the basis for attaching certificates to library functions, ensuring
that resource bounded programs can be developed in a compositional way.

e MOBIUS, an Integrated Project of the FET-GC2 proactive initiative
(http://mobius.inria.fr/), deals with innovative trust management for
global computing, where the resources can be as diverse as network access
and the secure flow of information. In contrast to MRG, this project focuses
on Java as a high-level language, and thus will bring the results of our research
to a broader community.

e ReQueST, an EPSRC-funded projectt(ps: //wiki.inf.ed.ac.uk/ReQueST),
aims to develop methods, invent algorithms, and engineer software to equip
each request for a Grid service with an irrefutable and accurate certificate
which specifies the quantity and type of resources which will be consumed if
the request is serviced.

Last, but not least, visit our project web pages, where you can find project
summaries, published papers and an interactive demo of the developed infrastruc-
ture:http://groups.inf.ed.ac.uk/mrg/

ACKNOWLEDGEMENTS

This document summarises work in the MRG project (IST-2001-33149) which
was funded by the EC under the FET proactive initiative on Global Computing.

Bibliography

[1] A.W. Appel. Foundational Proof-Carrying Code. Symposium on Logic in
Computer Science (LICS’0lpages 247-258. IEEE Computer Society, June
2001.

[2] D. Aspinall, L. Beringer, M. Hofmann, H-W. Loidl, and A. Momigliano. A
Program Logic for Resource Verification. International Conference on
Theorem Proving in Higher Order Logics (TPHOLs2004lume 3223 of
LNCS pages 34-49, Heidelberg, September 2004. Springer.

[3] D. Aspinall, L. Beringer, and A Momigliano. Optimisation validation. Tech-
nical Report EDI-INF-RR-0509, LFCS, University of Edinburgh, December
2005.

[4] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile
Resource Guarantees for Smart Devices.Cbmstruction and Analysis of
Safe, Secure, and Interoperable Smart Devices (CASS|S/64ime 3362
of LNCS pages 1-26. Springer, 2005.

[5] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl,
and Alberto Momigliano. A program logic for resources. Technical Report
EDI-INF-RR-0296, LFCS, University of Edinburgh,, July 2005. Extended
version of [2], submitted for journal consideration.

[6] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Auto-
matic Certification of Heap Consumption. In Franz Baader and Andrei
Voronkov, editorsLogic for Programming, Atrtificial Intelligence, and Rea-
soning (LPAR’04) volume 3452 ofLNCS pages 347-362, Montevideo,
Uruguay, March 14-18, Feb 2005. Springer.

[7] L. Beringer, K. MacKenzie, and |. Stark. Grail: a functional form for im-
perative mobile code. IrRoundations of Global Computing: Proceedings of
the 2nd EATCS Workshppumber 85.1 in Electronic Notes in Theoretical
Computer Science. Elsevier, June 2003.

[8] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory
Usage Analysis. Iiinternational Symposium on Formal Methods (FM'05)
LNCS. Springer-Verlag, 2005.

13

[9] C. Colby, P. Lee, G.C. Necula, F. Blau, M. Plesko, and K. Cline. A Certifying
Compiler for Java. IFPLDI'00 — Conference on Programming Language
Design and Implementatiopages 95-107. ACM Press, 2000.

[10] S. Gilmore and O. Shkaravska. Estimating the cost of native method calls for
resource-bounded functional progamming languages. Submitted to Trends in
Functional Programming workshop, February 2005.

[11] Kevin Hammond and Greg Michaelson. Hume: a domain-specific language
for real-time embedded systems. GPCE '03: Proceedings of the sec-
ond international conference on Generative programming and component
engineeringpages 37-56, New York, NY, USA, 2003. Springer-Verlag New
York, Inc.

[12] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-
Order Functional Programs. ROPL'03 — Symposium on Principles of
Programming Languagegages 185-197, New Orleans, LA, USA, January
2003. ACM Press.

[13] M. Hofmann, H-W. Loidl, and L. Beringer. Certification of Quantitative
Properties of Programs. Ihogical Aspects of Secure Computer Systems
Marktoberdorf, Aug 2-13, 2005. I0S Press. Lecture Notes of the Marktober-
dorf Summer School 2005. To appear.

[14] T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and
Completeness Proaf®hD thesis, LFCS, University of Edinburgh, 1999.

[15] M. Konegny. Functional In-Place Update with Layered Datatype Sharing.
In Martin Hofmann, editorinternational Conference on Typed Lambda Cal-
culi and Applications (TLCA'03)volume 2701 ofLNCS pages 195-210,
Heidelberg, June 2003. Springer.

[16] H-W. Loidl, K. MacKenzie, and S. Jost. A Proof-carrying-code Infrastructure
for Resources. ICC06 — Intl Conf on Compiler Constructipiarch 25 —
April 2, Vienna, Austria, 2006. Submitted.

[17] K. MacKenzie and N. Wolverson. Camelot and Grail: Resource-aware Func-
tional Programming on the JVM. Ifrends in Functional Programingrol-
ume 4, pages 29-46. Intellect, 2004.

[18] G. Necula. Proof-carrying Code. POPL'97 — Symposium on Principles
of Programming Languagepages 106-116, Paris, France, January 15-17,
1997. ACM Press.

[19] D. Sannella and M. Hofmann. Mobile Resource Guarantees. EU OpenFET
Project, 2002. http://groups.inf.ed.ac.uk/mrg/.

[20] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping Proof Carry-
ing Code. In J.-J. Levy, E. Mayer, and J. Mitchell, editdgploring New
Frontiers of Theoretical Informaticpages 333—-347. Kluwer, 2004.

[21] N. Wolverson and K. MacKenzie. O'Camelot: Adding Objects to a Resource
Aware Functional Language. Tirends in Functional Programingolume 4,
pages 47-62. Intellect, 2004.

