
Theoretical Computer Science 294 (2003) 103–149
www.elsevier.com/locate/tcs

Combining word problems through rewriting
in categories with products

Camillo Fiorentini, Silvio Ghilardi 1

Dipartimento di Scienze dell’Informazione; Universit�a degli Studi di Milano; via Comelico 39;
20135 Milano; Italy

Abstract

We give an algorithm solving combined word problems (over non-necessarily disjoint signa-
tures) based on rewriting of equivalence classes of terms. The canonical rewriting system we
introduce consists of few transparent rules and is obtained by applying Knuth–Bendix comple-
tion procedure to presentations of pushouts among categories with products. It applies to pairs
of theories which are both constructible over their common reduct (on which we do not make
any special assumption). c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Combined word problems; Rewrite systems; Functorial semantics

1. Introduction

An essential problem in automated deduction consists in integrating theorem provers
which are able to perform separated tasks. In the 5eld of equational logic, this leads in
particular to the following question: suppose that you are able to solve word problems
for theories T1; T2; can you solve word problem for T1 ∪T2? Moreover, can one design
an algorithm taking as input two arbitrary algorithms for word problems for T1 and T2
and realizing a decision procedure for word problem for T1 ∪T2?

In the case where T1; T2 have disjoint signatures the positive answer was known
since long time [13], although it was only more recently discovered within automated
deduction community (see e.g. [12]). In the general case, combining decidable word
problems may lead to undecidability, even if we suppose that T1; T2 are both conserva-
tive over their common reduct T0. To this aim, consider the following example. Let T0
be the theory of join-semilattices with zero (i.e. of commutative idempotent monoids)
and let T1 be the theory of Boolean algebras. As T2 we take the theory of semilattice-
monoids, which are algebras having both a monoid and a join-semilattice with zero

1 Lavoro svolto nell’ambito del progetto MURST “Logica”.
E-mail addresses: 5orenti@dsi.unimi.it (C. Fiorentini), ghilardi@dsi.unimi.it (S. Ghilardi).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00248 -1

104 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

structure and which satisfy the further equation:(
n∨
i=1

xi

)
◦
(

m∨
j=1

yj

)
=

n∨
i=1

m∨
j=1

(xi ◦ yj):

T2 clearly has decidable word problem (elements in a free algebra are 5nite sets of
lists of the generators), as well as T1. The union theory (which we indicate better
with T1 +T0 T2) corresponds to the “distributive linear logic” of [9] and falls within the
undecidability results of [1].
Clearly something must be assumed in order to have positive solution to combined

word problems; in the literature it is usually assumed that T1; T2 share a set of con-
structors (we prefer the terminology “they are both constructible over T0”). There are
various de5nitions of constructors and depending on such de5nitions there are variable
strength results. Main papers on the subject are [5] and [3]: the second has a weaker
de5nition and consequently, a stronger result. Quite recently, Baader and Tinelli, work-
ing independent of us, were able to strengthen their previous work in [3] by extending
the related methods to the case in which T0 may not be collapse-free. The general
result they obtained was presented at FROCOS2000 and will appear in extended full
version in the detailed paper [4]. The statement of their result coincides with the re-
sult we have in the present paper 2 (which is a very remarkable fact, given that we
worked independently and given that—as it will appear from the remarks below—we
used quite diLerent methods, both in the formulation of the combination algorithm and
in its mathematical justi5cation).
In [3, 4], the combined decision algorithm is obtained through a complex refutation

technique manipulating equations according to certain non-deterministic rules. As such
it has the advantage of being more Mexible, although it does not provide normal forms.
On the contrary, in [5] (and in the similar method of [12] for the disjoint case) one
can directly manipulate terms by abstracting and collapsing alien subterms and the sug-
gested algorithm follows a rigidly preassigned procedure. Our method is more similar
to that of [5] (in the sense that it manipulates terms), but has the same Mexibility
advantages as the method of [3, 4]. The idea is simple: we build a canonical rewriting
system which is able to normalize paths of mixed pure terms.
The realization of such a plan looks very hard at a 5rst glance: terms from com-

bined signatures are quite unreliable datatypes, basically because they can compose,
decompose and even collapse in many uncontrolled and overlapping ways. However,
we shall put such a complex combinatorics under the control framework provided
by the categorical approach to equational logic: such an approach goes back to the
classical pioneering paper of Lawvere [10] in functorial semantics. 3 Basically, equa-
tional theories are identi5ed with categories with products, so that in our situation we
need to manipulate presentations of pushouts among such categories. We get a 5rst

2 See Section 7:3 of [4] for comparison details.
3 We recall that there is another quite interesting category-theoretic approach to universal algebra, namely

the monads approach (which has also been signi5cantly used in questions related to rewriting, see e.g. [11]).

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 105

general and simple presentation of these pushouts in Section 3 by means of two-sides
rewrite rules. To this presentation we apply, in Section 5, Knuth–Bendix completion
procedure and get the desired rewriting system, under some “constructors” hypothesis
for our theories.
This constructors hypothesis is formulated within a categorical framework in

Section 5 by means of (weak) factorization systems and translated in symbolic terms
in Section 10: roughly speaking, Ti is said to be constructible over T0 iL there is a
class Ei of terms (including variables and closed under renamings) in the signature �i

of Ti so that any �i-term t(x1; : : : ; xn) decomposes uniquely (up to provable identity) as
u(v1; : : : ; vk), where the vi(x1; : : : ; xn) are (always up to provable identity) distinct terms
from Ei and u is a k-minimized term in the signature �0 of T0 (a term u(x1; : : : ; xk)
is said to be k-minimized iL it is not provably identical to any term in which only
variables coming from a proper subset of {x1; : : : ; xk} occur). Thus, u is a kind of
T0-head normal form of t. Examples are provided in Section 10 (a typical example is
the case of commutative rings with unit which are constructible over abelian groups).
We brieMy describe here the rewriting system R that we obtained. R consists of

only four rules (for technical reasons concerning “colours” of terms, two of such rules
are “duplicated”). The 5rst rule (called composition rule) simply allows to compose
equally coloured consecutive (equivalence classes of) terms. The second rule (called
�-extraction rule) minimizes terms by “moving left” projections (i.e. n-tuples of dis-
tinct variables). The fourth rule (called products rule) is suggested by the completion
procedure and has the following meaning: any projection (i.e. any tuple of distinct
variable terms) appearing in an internal position of a path of pure terms represents a
“hole” and the normalization process is supposed to 7ll such a hole by “moving right”
genuine terms (i.e. terms which are not projections). In addition, the normalization
algorithm propagates to the right of the path the T0-chunks of terms coming from
extraction of T0-head normal forms: this is done by the third rule (called �-extraction
rule). The complete table of rules of R is given in Section 5.
Although R is a quite simply described system, the conMuence proof requires lot

of work, because all critical pairs must be examined. This leads to a large amount of
details, all consisting of elementary computations (in fact, once the technical tools are
appropriately settled, single cases are treated in the most natural way).
The paper is organized as follows: in Section 2, we recall the necessary background

and 5x notations; in Section 3, we get a 5rst presentation of pushouts among Lawvere
categories. In Sections 4 and 5, we apply completion procedure and get the appropriate
rewriting system R. In Section 6, we provide local conMuence and termination for
a simple subsystem R0 of R. In Section 7, a third rewriting system, called R+ is
introduced (R+ is equivalent to R, it normalizes slower but it is easier to manage);
in addition, useful technical facts are collected. In Section 8, R+ is proved to be
locally conMuent, whereas in Section 9 termination of both R and R+ is established.
Finally, equivalence between R and R+ and canonicity of the former are obtained.
Section 10 provides examples of constructible theories and of normalizations of paths of
terms.

106 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Sections 6–9 can be skipped in a 5rst reading by people mostly interested in our
results (and less interested in their proofs).
For space reasons, some routine work is omitted in this paper; the reader may 5nd all

the details in the technical report [6]. We assume a certain familiarity with rewriting (for
some unexplained notions readers may consult [2]) and with the elementary formalism
of categories with products.

2. Preliminaries

An (equational) theory T = 〈�; Ax〉 is just an ordinary signature � endowed with a
set of pairs of terms (“the axioms” of T). We use letters t; u; v; : : : for terms and letters
x1; x2; : : : for variables; t(x1; : : : ; xn) means that the term t contains at most the variables
x1; : : : ; xn. Notation t(u1=x1; : : : ; un=xn) (or simply t(ui=xi) or again t(u1; : : : ; un)) is used
for substitutions; when we write t(u=xi) we mean t(x1=x1; : : : ; u=xi; : : : ; xn=xn). Notations
like �T t1 = t2 refer to some sound and complete deduction system (e.g. equational
logic). Deciding �T t1 = t2 is just the (uniform) word problem for T . In order to avoid
irrelevant cases, we shall always assume that our theories T match the following two
requirements:
• � always contains a constant symbol c0 (this is harmless, because adding a free

constant—if needed—does not change the nature of word problems);
• T is non-degenerate, namely 	�T x1 = x2.
A basic point in categorical logic consists in treating theories as (small) categories.
In our case, we have the notion of Lawvere category. Basically, this is nothing but
any one-sorted (5nite products) category. 4 Formally, a Lawvere category is a category
having objects {X n}n¿0, in which X n (endowed with speci5ed projections �i :X n→X)
is the product of X =X 1 with itself n-times. In our context, (see below) �i will be
the (equivalence class of) the variable xi. We 5x the following convention about a
Lawvere category: arrows X n→Xm of the kind 〈�i1 ; : : : ; �im〉 (where i1; : : : ; im6n) are
called
• (pure) projections iL the i1; : : : ; im are all distinct (in this case we must have m6n);
• diagonals iL {i1; : : : ; im} includes {1; : : : ; n} (in this case we must have m¿n);
• renamings iL i1; : : : ; im are just a permutation of 1; : : : ; n (in this case we must have
n=m).

Lawvere categories are essentially in one-to-one correspondence with equational theo-
ries (we said “essentially” because two equational theories diLering in only the choice
of the language and of the axioms are collapsed into the same “invariant” Lawvere
category). In this paper, we need only one side of this correspondence, which we
are going to recall. Let T =(�; Ax) be a theory; we build a Lawvere category T in

4 In this paper, by “category” we always mean a category with 5nite products and by “functor” we always

mean a 5nite products preserving functor. We use � ◦ � to denote the composition of �→ �→ (contrary to
some more customary notation).

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 107

the following way. We take as arrows X n→Xm the m-tuples of equivalence classes
of terms containing at most the variables x1; : : : ; xn (equivalence is intended through
provable identity in T); composition is substitution and identity of X n is the n-tuple
of equivalence classes of x1; : : : ; xn. As a consequence of its de5nition, T has 5nite
products and the equivalence classes of the variables xi are the speci5ed projections
�i :X n→X .

3. Basic equations

We now 5x our main data for the paper: we have three theories

T0 = (�0; Ax0); T1 = (�1; Ax1); T2 = (�2; Ax2);

such that T1 and T2 are conservative extensions of T0 and �0 =�1 ∩�2; taking (non-
disjoint) union of signatures and axioms we get a further theory which we call T1+T0T2.
We suppose that we are able to solve the word problem for T1; T2; in general, as
explained in the introduction, this is not enough for solving the word problem for
T1 +T0 T2 however, we may look for suRcient conditions yielding a positive solution.
The category T1 +T0 T2 can be built as usual, by using terms; however, we can

characterize it intrinsically in terms of T0;T1;T2 as the pushout of T1;T2 over T0. Hence,
we can try to describe it directly through its universal property. For this description we
do not use terms anymore, but a more algebraic notion, namely mixed paths of arrows
from T1;T2. To make the notation simpler, we act as if the syntactic expansion functors
I1 :T0 →T1 and I2 :T0 →T2 (which are faithful by conservativity hypothesis) were just
inclusions. Formally, a path K :X n→Xm is a non-empty list of arrows coming from
either T1 or T2 (or both)

K = �1; : : : ; �k

such that
(i) the domain of �1 is X n;
(ii) the codomain of �k is Xm;
(iii) for every i=1; : : : ; k − 1, the codomain of �i is equal to the domain of �i+1.
Paths are just words (with “typing” restrictions). Equivalence relations on paths (stable
with right and left concatenation) can be introduced by two-side rewrite rules. The plan
is quite simple: identify such rules, orient and complete them into a canonical rewrite
system.
In the remaining part of the paper, we make the following conventions:

• we shall use letters �; �; : : : for arrows from T1 ∪T2, letters �1; �1; : : : for arrows from
T1, letters �2; �2; : : : for arrows from T2 and letters �0; �0; : : : for arrows from T0;
notice that any arrow like �1 may happen to come from T0;

• instead of indicating types (i.e. objects of Lawvere categories) with X n, Xm; : : : we
may use letters Y; Z; U; : : : if the knowledge of the exponent does not matter; letter
X however can only indicate X 1;

108 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

• Roman letters can be used to indicate arrows having codomain X , that is a1 for
instance, stands for an arrow in T1 (which might belong to T0 too) having as
domain some Y =X n, but whose codomain can be only X =X 1.

Next, we give our main de5nitions for path rewriting. Let S be a set of pairs of paths;
we write
(i) K⇒S L (or simply K⇒L, leaving S as understood from the context) iL K =K1;

L′; K2 and L=K1; R′; K2 for some pair 〈L′; R′〉 ∈S;
(ii) K⇔S L (or simply K⇔L) iL K =K1; L′; K2 and L=K1; R′; K2 for some pair

〈L′; R′〉 such that either 〈L′; R′〉 ∈S or 〈R′; L′〉 ∈S;
(iii) K⇒∗

S L (or simply K⇒∗ L) for the reMexive-transitive closure of ⇒S;
(iv) K⇔∗

S L (or simply K⇔∗ L) for the smallest equivalence relation containing ⇒S.
Clearly ⇔∗ is the least stable equivalence relation extending S. Pairs 〈L; R〉 ∈S will
be directly written as L⇒R and called rules of S; alternatively, they might be written
as L⇔R (and called basic equations of S), but in such a case we tacitly assume that
S is symmetric, i.e. that S contains 〈R; L〉 in case it contains 〈L; R〉 (in such a case
e.g. relations ⇒ and ⇔ obviously coincide).
The next theorem accomplishes our 5rst goal (“5nding appropriate basic equations”):

Theorem 3.1. Let P be the set of the following two kinds of pairs of paths:

�i; �i ⇔ �i ◦ �i (i = 1; 2)
1× �2; �1 × 1 ⇔ �1 × 1; 1× �2

(where in the last pair we have �1 :Y1 →Z1; �2 :Y2 →Z2 and so e.g. 1× �2 :Y1 ×Y2 →
Y1 ×Z2). We have that T1 +T0 T2 is isomorphic to the Lawvere category having as
arrows the equivalence classes of paths under the relation ⇔∗

P.

Proof. Let P be the category having {X n}n¿0 as objects and as arrows X n→Xm the
equivalence classes (wrt ⇔∗

P) of paths of domain X n and codomain Xm. Composition
of {K} and {L} is {K; L}. Identity of X n turns out to be just {1X n}.
We 5rst show that P has 5nite products. X 0 = 1 is obviously terminal. Given objects

Y1 =X n1 ; Y2 =X n2 , we take Y1 ×Y2 (i.e. X n1+n2) as binary product and {�Y1}; {�Y2} as
projections (here, �Y1 ; �Y2 are obviously the projections in T0). Let us now take two
paths K1; K2 of domain Z and codomains Y1; Y2, respectively. Suppose for instance that

K1 = �1; : : : ; �r ; K2 = �1; : : : ; �s:

Let 〈K1; K2〉 be the path:

Z
〈1Z ;1Z〉→ Z × Z 1Z×K2→ Z × Y2

K1×1Y2→ Y1 × Y2;

where 1Z ×K2 is (1Z × �1); : : : ; (1Z × �s) (K1 × 1Y2 is de5ned analogously). We leave
the reader to show that {〈K1; K2〉} enjoys the universal property for pairs.
In order to check that P is isomorphic to T1 +T0 T2, it is suRcient to observe it has

the universal property of pushouts.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 109

In the applications, we should keep in mind that the isomorphism of categories
between T1 +T0 T2 and P is the unique expansion to the signature �1 ∪�2 of the
internal models F1 :T1 →P, F2 :T2 →P associating with �i the equivalence class {�i}.
This means the following: given an �1 ∪�2-term t, the universal model (isomorphism)
U :T1 +T0 T2 →P interprets it as the equivalence class of any path obtained by
expressing t as an iterated composition of terms which are pure, i.e. which are either
�1 or �2-terms. Such a path (called a splitting path for t) can be eLectively computed
from t in many ways (possibly yielding not the same path, but yielding in any case ⇔∗

P-
equivalent paths); one might for instance adopt the usual abstraction of alien subterms,
or alternatively make use of the following simply described inductive procedure (which
applies to any tuple 〈t1; : : : ; tn〉 of terms having variables included in some 5xed list
x1; : : : ; xm):
• if t1; : : : ; tn are all �1 or �2-terms, a splitting path is the singleton path

〈{t1}; : : : ; {tn}〉;
having domain Xm and codomain X n;

• otherwise, we have e.g. that ti =f(u1; : : : ; uk); a splitting path K of

〈t1; : : : ; ti−1; u1; : : : ; uk ; ti+1; : : : ; tn〉;
is given (we apply multiset induction on term complexities) and it has codomain
X n−1+k , so we can take

K; 〈{x1}; : : : ; {f(xi; : : : ; xi+k−1)}; : : : ; {xn−1+k}〉;
as a splitting path for 〈t1; : : : ; tn〉.

It is now clear how we can deal with word problems: to decide whether t and u are
T1+T0 T2-equal, it is suRcient to split them into paths K and L according to one of the
above-mentioned procedures and then check whether K ⇔∗

P L holds or not. Of course,
this will become convenient only after turning our basic equations into a canonical
rewriting system.

4. Adjusting datatypes

Before beginning orientation and completion, we make some modi5cations to our
“datatypes”. First, we do not want to bother distinguishing paths that are mere alpha-
betic variants of each other. Consider e.g. the paths

1
〈c;d〉→ X 2 f(x1 ;x2)→ X;

1
〈d;c〉→ X 2 f(x2 ;x1)→ X;

where f is a binary function symbol from �2 and c; d are constants from �1. 5 Clearly
the two paths are splitting paths of the same term f(c; d) and the system P is indeed

5 Recall that paths are formed by equivalence classes of terms; however, in the examples, our practice is
that of directly indicating equivalence classes by terms representing them.

110 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

able to deduce their equivalence, but in order to do it, it needs to extract a renaming,
for instance as follows:

〈c; d〉; f(x1; x2) ⇔P 〈c; d〉; 〈x2; x1〉; f(x2; x1) ⇔P 〈d; c〉; f(x2; x1);

where 5rst basic equation of Theorem 3.1 has been used twice. What is wrong with this
is that this “extraction of a renaming”, no matter in which precise form it is allowed,
immediately produces non-termination. As it seems that there is no way of deducing the
equivalence of paths 〈c; d〉; f(x1; x2) and 〈d; c〉; f(x2; x1) without extracting a renaming,
we shall just consider them to be “the same path”. To do this, we need some further
de5nitions.
Let K be the path Y1

�1→· · · �k→Yk+1 and let L be the “parallel” path Y1
�1→· · · �k→

Yk+1, with �i; �i equally coloured and having the same domain and codomain;
• K is said to be a &-renaming of L (where &= {&i : Yi →Yi}16i6k+1 is a list of

renamings) iL the following squares

commute for i=1; : : : ; k (otherwise said, we have �i = &−1
i ◦ �i ◦ &i+1 for all i); we

write L= &(K) in order to express that K is (the) &-renaming of L;
• K is said to be the &-alphabetic variant of L (where &= {&i :Yi →Yi}16i6k+1

is a list of renamings) iL it is the &-renaming of L and moreover &1 = 1Y1 and
&k+1 =1Yk+1 (the reason for this de5nition is that variables in internal equivalence
classes of terms in a path are considered bounded).

Example. For every permutation ' on the n-elements set, we have that the path

K1; 〈a1; : : : ; an〉; �; K2

is an alphabetic variant of the path

K1; 〈a'(1); : : : ; a'(n)〉; 〈�'−1(1); : : : ; �'−1(n)〉 ◦ �; K2

(here K1; K2 might be empty). Thus applying alphabetic variants allows permuting the
components of an arrow in a path (provided such an arrow is not the last arrow of the
path).

Example. Path

W K1→Y × Z × U
〈�;�Z〉−−→V × Z K2→T;

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 111

is an alphabetic variant of the path

W
K1◦〈�Y ;�U ;�Z〉−−−−−−−→Y × U × Z

〈〈�Y ;�Z ;�U 〉◦�;�Z〉−−−−−−−−−→V × Z K2→T

(here only K2 might be empty and K1 ◦ 〈�Y ; �U ; �Z〉 is K1 with last arrow composed
with 〈�Y ; �U ; �Z〉). Thus, applying alphabetic variants allows to assume that certain
projections (located not in the 5rst arrow of the path) project, say, on last components
of their domains.

We shall apply rewriting on equivalence classes of paths modulo “being an alphabetic
variant of”: thus, from now on, a “path” will be an equivalence class of paths, two
paths being considered the same in case they are alphabetic variants of each other.
This needs an additional convention on our rules:

Convention. We stipulate that the renaming of any rule is always supposed to be
available as a rule: by this, we mean that whenever we introduce a rule K⇒K ′, we
tacitly suppose that &(K)⇒ &′(K ′) is also a rule, for any list &; &′ of renamings such
that 5rst and last components of &; &′ are, respectively equal. 6

The reader may check that the following property is a direct consequence of the
above convention: if K rewrites to L by means of a certain rule, then any alphabetic
variant of K rewrites to some alphabetic variant of L by means of the same rule (this
means, in particular, that it does not matter which path, within a given equivalence
class of paths, we use for reduction and normalization). As a concrete example of
application of our convention, notice that the passage from

Y1 × Z × Y2
1×�×1−−−→Y1 × Z ′ × Y2

�1×1×�2−−−−→Y ′
1 × Z ′ × Y ′

2

to

Y1 × Z × Y2
�1×1×�2−−−−→Y ′

1 × Z × Y ′
2
1×�×1−−−→Y ′

1 × Z ′ × Y ′
2 ;

is now legal in P, on the basis of the basic equations (i.e. of the two-side rules) of
Theorem 3.1 (notice that we do not need any extraction of a renaming to justify the
equivalence of these two paths).
A side eLect of the choice of rewriting modulo alphabetic variants is that the normal

forms we eventually obtain, are unique only up to alphabetic variants. Checking whether
two paths are alphabetic variants of each other, in case we know they are both in normal
form, does not substantially aLect eRciency, given the particular structure of normal
forms (we shall turn to that in Section 10).

6 We shall of course always deal with rules K⇒K ′ such that K and K ′ agree on domains and codomains.
Thus, our Convention says that &(K)⇒ &′(K ′) is a rule in case K⇒K ′ is a rule, &= {&1; : : : ; &n},
&′ = {&′1; : : : ; &′m} and &1 = &′1 and &n = &′m.

112 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Before going on, we need another preliminary indispensable decision about our
datatypes. Notice that terms like f(t1; t2), where f∈�0 and where ti(x1) is a pure
�i-term, have (at least) two diLerent splitting paths, namely

X
〈t1(x1);x1〉−−−−→X 2 f(x1 ;t2(x2))−−−−−→X and X

〈x1 ;t2(x1)〉−−−−→X 2 f(t1(x1);x2)−−−−−→X:

Our 5nal aim is that of having (uniqueness of) normal forms for paths, so we must
decide once and for all which one has to be considered in normal form. This choice
is clearly conventional, but has to be done one way or another: we choose the former
path and declare the latter path to be illegal. This yields the following notion: we say
that a path is well-coloured iL it has the form K; �2 (where K is possibly empty). This
means that the last arrow in a well-coloured path must come from T2 (which does not
exclude that it might come from T0 as well).
We modify our basic equations so that we need to consider only well-coloured paths.

For a path K :Y →Z , let K+ be the well-coloured path K; 1Z .
Let us reformulate our basic equations as follows:

(E1)1 �1; �1; * ⇔ �1 ◦ �1; *
(E1)2 �2; �2 ⇔ �2 ◦ �2

(E2) 1× �2; �1 × 1; � ⇔ �1 × 1; 1× �2; �:

These new equations do not allow to rewrite a well-coloured path into a non-well-
coloured path; notice also that the “interchange basic equation” 1× �2; �1 × 1⇔ �1 × 1;
1× �2 now does not apply anymore in the last position of a path.
As we said, we shall consider from now on only well-coloured paths subject to the

new basic equations (E1)i ; (E2). 7 There is no loss of generality in that because for
well-coloured paths K; L, we have K ⇔∗ L (according to the old basic equations) iL
K ⇔∗ L (according to the new basic equations). In fact, one side is trivial; for the
other side, let us consider a ⇔-chain like

K = K0 ⇔ K1 ⇔ · · · ⇔ Kn = L;

obtained according to the old basic equations. We thus have

K+ = K+
0 ⇔ K+

1 ⇔ · · · ⇔ K+
n = L+;

according to the new basic equations; now two applications of (E1)2 yield K⇔K+

and L⇔L+, because K; L are well-coloured. Thus, K⇔∗ L holds by using the new
equations too.

7 Of course, this means also that, when computing the splitting path of a term, identity should be added
at the end in case the top symbol of the term has the wrong colour.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 113

5. Completion

The above modi5ed basic equations (E1)1; (E1)2; (E2) can be turned into a canonical
rewriting system R by applying Knuth–Bendix completion procedure. Details of such a
completion process are fully given in [6]; to save considerable space, here, we content
ourselves by giving the 5nal result and some hints.
First of all, equations (E1)1; (E1)2 are obviously oriented as follows:

(R1
c) �1; �1; *⇒ �1 ◦ �1; *

(R2
c) �2; �2 ⇒ �2 ◦ �2

and are called composition rules.
In order to deal with critical pairs like

we need to introduce factorization systems (because any naif orientation in one sense
or in the other immediately produces in5nite rewriting). There is a standard notion of
factorization system in category theory (see [7]), however, such a notion is too strong
in the present context, so that we weaken it.
Let C be any category; by a weak factorization system in C, we mean a pair of

classes of arrows (E;M) from C such that:
(1) both E and M contain identities and are closed with respect to left and right

composition with arrows in E∩M;
(2) for every �∈C, there are �∈E; �∈M such that �= � ◦ �;
(3) whenever we have a commutative square

with �1; �2 ∈E; �1; �2 ∈M, there is a unique &∈E∩M such that �2 ◦ &= �1 and
&◦�1 = �2 (this condition denotes that the factorization given by (2) is essentially
unique).

From the above axioms, it follows that arrows &∈E∩M are invertible (because they
have two trivial factorizations, namely & ◦ 1 and 1 ◦ &, hence: : :); such arrows will be
just renamings in our cases. A weak factorization system becomes a usual factorization
system when the classes E and M are required to be closed under composition and to

114 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

contain all the isomorphisms. Observe that in this case, property (3) of weak factor-
ization systems implies that every two morphisms e∈E and m∈M are “orthogonal”
in the usual sense of factorization systems. 8

Main Example. For any equational theory T =(�; Ax), the corresponding Lawvere cat-
egory T always has a weak factorization system (E;M) (which we call the standard
weak factorization system for T):
• arrows in E are just projections (i.e. tuples of distinct variables in symbolic presen-
tations);

• arrows in M are those � such that in case it happens that �= � ◦ �′ (with �∈E),
we must have that � is just a renaming.

The factorizations �= ��◦�� (with �� ∈E; �� ∈M) are obtained as follows. Let t̃(x1; : : : ;
xn) be a tuple of terms containing at most the variables x1; : : : ; xn; consider that this
tuple is n-minimized iL for no i=1; : : : ; n we have �T t̃= t̃(c0=xi). 9 Now it is not
diRcult to see that the m-tuple of terms t̃ is n-minimized i; the arrow � :X n→Xm

belongs to M, where � is the vector of the equivalence classes of terms represented
by the m components of t̃ (if, say, t̃= 〈t1; : : : ; tm〉, then � is 〈{t1}; : : : ; {tm}〉).

Now, let � be arbitrary; in order to get the factorization �= �� ◦ �� (where �� ∈E

and �� ∈M), it is suRcient to take any vector of terms in the equivalence classes
of � containing a minimal set of variables: if such a vector is t̃(xi1 ; : : : ; xik), then
the factorization is �= 〈�i1 ; : : : ; �ik 〉 ◦ �, where � is represented by the vector of terms
t̃(x1; : : : ; xk). Notice that this process is eLective, in case word problem for T is solvable:
one takes any t̃ representing � and then go on by replacing variables in it by c0; the
procedure stops when only terms not provably equal to t̃ can be obtained.

Uniqueness of the above factorization (up to a renaming) is easily established.

Example. Let G be the group theory (we use ∗ for product, i for inverse, e for neutral
element). Consider the standard weak factorization system of the associated Lawvere
category G. Notice 5rst that there are isomorphisms which are not renamings, e.g.

X
i(x1)→ X : this term is in M, but not in E. Moreover, terms

X
〈x1 ;i(x1)〉−−−−→X 2 x1∗x2−−−→X;

are both minimized (i.e. are in M), however their composition, i.e. the term x1 ∗ i(x1)
is not in M anymore, it factorizes as

X → 1 e→X

(where 5rst component is the unique arrow into the terminal, i.e. the empty list of
terms).

8 We thank the anonymous referee for this observation.
9 Notations like �T ũ= ṽ, for ũ= 〈u1; : : : ; um〉 and ṽ= 〈v1; : : : ; vm〉, mean that �T

∧m
j=1 uj = vj . Recall that

in Section 2, we assumed that there is at least one ground term c0 in our signatures.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 115

Let C be a subcategory of C′ and let (E;M) be a weak factorization system in C.
A weak factorization system (E′;M) in C′ (notice that M is the same!) is said to be
a left extension of (E;M) iL the following hold:
• E′ ∩C=E;
• if �1; �2 ∈E and if e∈E′, then �1 ◦ e∈E′ and e ◦ �2 ∈E′ (whenever compositions

make sense).
Notice that this implies that E—not necessarily E′—is closed under composition. Let
us say that Ti is constructible over T0 iL in Ti there is a left extension (Ei ;M0) of the
standard weak factorization system (E0;M0) of T0.

Assumption. We assume that T1; T2 are both constructible over T0.

We postpone to Section 10 a symbolic translation of this assumption as well as the
analysis of some examples (and counterexamples). For the moment, let us underline
that, as an eLect of the above assumption, we now have that any arrow �i admits two
factorizations, namely:
• it can be factored as �i� ◦ �im according to the standard weak factorization system
(E0;Mi) of Ti (we recall that here E0 is formed by arrows which are projections,
whereas Mi is formed by arrows represented by minimized—in the sense of the
theory Ti—vectors of terms);

• it can be factored as �ie ◦ �i� according to the left extension (Ei ;M0) of the stan-
dard weak factorization system of T0 (here, the class Ei is axiomatically given by
the above assumption, whereas M0 is the class of arrows from T0 represented by
minimized vectors of terms—in the sense of the theory T0). 10

The constructibility assumption over T0 we made for T1; T2 essentially denotes that
terms from Ti have a kind of “head normal form” relative to T0; in terms of arrows
�i from Ti, this head normal form is just �i�. Notice the following fact (which will
be repeatedly used within the paper, especially in the most technical parts): suppose
that we want to factorize an arrow like �i ◦ �0 in the left extension. This is done as
follows (see Fig. 1): we 5rst take the factorization �ie ◦ �i� of �i, then we decompose
�i� ◦ �0 as � ◦ � in T0 (according to the standard weak factorization system of T0) and
then we take (�ie ◦ �) ◦ �; this decomposition is just (�i ◦ �0)e ◦ (�i ◦ �0)� (up to a
renaming), by uniqueness and by the second condition of being a left extension. Easy
counterexamples show that the decomposition �ie ◦ (�i� ◦ �0) may not be okay, because
�i� ◦ �0 may not be minimized (i.e. may not belong to M0): minimization may delete
some components of �ie, which is exactly what happens by taking the composition
�ie ◦ �, which is the good e-component of the arrow �i ◦ �0.

The above-mentioned critical pairs are treated by the following pairs of rules:

(R�) �; � ⇒ � ◦ ��; �m;
(R�) �; � ⇒ �e; �� ◦ �;

10 These vectors of terms are also minimized in the sense of Ti , given that Ti is conservative over T0.

116 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Fig. 1. Factorization of �i ◦ �0 according to (Ei ;M0).

called �-extraction and �-extraction rules, respectively. 11 Let us call R0 the rewriting
system formed by rules (Ri

c); (R�); (R�). Notice that our notation says that only the
“Greek parts” of a term �i are exchanged during rewriting: precisely, �i� is exchanged to
the left, whereas �i� is exchanged to the right. In fact, the reduction process propagates
to the right the T0-head normal forms of the kind �i�. Such a propagation may have
side eLects, because �i� composed to the right with the consecutive term �j may cause
the extraction of a certain �0 ∈E0 from �i� ◦ �j. Such an extraction may in its turn
delete certain components of �ie, thus possibly collapsing �ie to a tuple of variables, a
fact which might make consecutive terms now composable by (Ri

c), etc. Anyway, in
Section 6 we shall prove that

Theorem 5.1. R0 is canonical (i.e. con<uent and terminating).

In order to 5nish our completion process we need only to treat Eq. (E2). This is a
more technical point; we just mention that, after suitable orientation, superposition, sim-
pli5cation and deletion steps, we get a couple of rules (R1

p) and (R2
p) (called products

rules) which are so described. First member of rule (Ri
p) is

(I) Y
〈*i ;.i〉−−→Y1 × Z

〈�;�Z〉−−→Y2 × Z
�i→U

(/)→V;

whereas second member is

(II) Y
〈*i ;.i ;.i�〉−−−→Y1 × Z × Y ′ �×1Y ′−−−→Y2 × Y ′ (1Y2×.im)◦�i−−−−−−→U

(/)→V

(the extra arrow / is needed only if i=1). We add a provisio for these two rules:
.i =∈E0 (that is, .i cannot be a projection). The reason for this last proviso is that, in
case .i is a projection, it may happen that the second member of (Ri

p) can be re-written
to the 5rst (thus causing termination problems).
In conclusion, we obtain the rewriting system R which is described by Table 1

(in the last two rules of the table, Z; Y ′ and Y2 are the codomains of .i; .i� and �,
respectively, as in the fully displayed paths (I) and (II) above).

11 It goes without saying that such rules do not apply in case of trivial factorizations (i.e. when ��—
resp. ��—are, up to a renaming, just identities). Concerning this, recall from the previous Section that the
exchange of a renaming simply produces an alphabetic variant.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 117

Table 1
The system R

(R1
c) �1; �1; *⇒ �1 ◦ �1; *

(R2
c) �2; �2 ⇒ �2 ◦ �2

(R�) �; �⇒ � ◦ ��; �m
(R�) �; �⇒ �e; �� ◦ �

(R1
p) 〈*1; .1〉; 〈�; �Z 〉; �1; /⇒〈*1; .1; .1� 〉; �× 1Y ′ ; (1Y2 × .1m) ◦ �1; /

where .1 =∈E0

(R2
p) 〈*2; .2〉; 〈�; �Z 〉; �2 ⇒〈*2; .2; .2� 〉; �× 1Y ′ ; (1Y2 × .2m) ◦ �2

where .2 =∈E0

We also stipulate that if L⇒R is a rule, then L′ ⇒R′ is a rule too, where L′ is any
alphabetic variant of L and R′ is any alphabetic variant of R. 12

The content of the present section is summarized in the following lemma (which
comes from the fact that R can be obtained through Knuth–Bendix completion from
P, but which we prove directly):

Lemma 5.2. For well-coloured paths K1; K2; we have K1 ⇔∗
R K2 i; K1 ⇔∗

P K2 (where
P is the system introduced in the proof of Theorem 3:1; as modi7ed with the new
basic equations (E1)1; (E1)2 and (E2) of Section 4).

Proof. Let us show that the two members of (Ri
p) are ⇔∗

P-equivalent. This is obtained

as follows. We let Z 0Z→Z ×Z to be 〈1Z ; 1Z〉, moreover, (for space reasons) we leave
out of the pictures the fourth arrow / which is needed in case i=1:

Y
〈*i ;.i〉−−→Y1 × Z

〈�;�Z〉−−→Y2 × Z
�i→U

=

Y
〈*i ;.i〉−−→Y1 × Z

(1Y1×0Z)◦(�×1Z)−−−−−−−−−−−−−−−−−→
⇔∗

P two applications of (E1)i
Y2 × Z

�i→U

Y
〈*i ;.i〉◦(1Y1×0Z)−−−−−−−−→Y1 × Z × Z �×1Z−−→Y2 × Z

�i→U
=

Y
〈*i ;.i ;.i〉−−−→Y1 × Z × Z �×1Z−−−−−−−−→

⇔P by (E1)i
Y2 × Z

�i→U

Y
〈*i ;.i ;.i�〉−−−→Y1 × Z × Y ′ 1Y1×1Z×.im−−−−−−−−→

⇔P by (E2)i
Y1 × Z × Z �×1Z−−−→Y2 × Z

�i→U

12 Given that the rules of R are all closed under the operation of composing 5rst (or last) arrow in
each member by the same single renaming, this stipulation is automatically suRcient to ensure the (slightly
stronger) Convention we made in Section 4, namely that “the renaming of any rule is available as a rule”.

118 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Fig. 2. Factorization of �Y2 ◦ �i2.

Y
〈*i ;.i ;.i�〉−−−→Y1 × Z × Y ′ �×1Y ′−−−−−−−−→

⇔P by (E1)i
Y2 × Y ′ 1Y2×.im−−−→Y2 × Z

�i→U

Y
〈*i ;.i ;.i�〉−−−→Y1 × Z × Y ′ �×1Y ′−−−→Y2 × Y ′ (1Y2×.im)◦�i−−−−−−→U

(notice that the last application of (E1)i is correct because for i=1 the further arrow
/ belongs to the path).
Conversely, let us show that the two members

(I) Y1 × Y2
1Y1×�2−−−→Y1 × Z2

�1×1Z2−−−→Z1 × Z2
�→U;

(II) Y1 × Y2
�1×1Y2−−−→Z1 × Y2

1Z1×�2−−−→Z1 × Z2
�→U;

of (E2) are joinable in R. This is clear when �1; �2 are equally coloured; otherwise,
let e.g. �2 and � have same colour i. 13 Notice that in case �∈T1\T0, there must be,
in a well-coloured path, a further arrow /: for space reasons, we do not indicate it in
the displayed paths below, but it should be remarked that, just because of its presence,
it is in any case possible to apply rule (Ri

p) to (I) and rule (Ri
c) to (II). We have for

5rst member (I)

Y1 × Y2
1Y1×�i2−−−→Y1 × Z2

�j1×1Z2−−−→Z1 × Z2
�i→U;

=

Y1 × Y2
〈�Y1 ;�Y2◦�i2〉−−−−−−→Y1 × Z2

〈�Y1◦�
j
1 ;�Z2 〉−−−−−−→Z1 × Z2

�i→U: (1)

Let us suppose that �i2 factorizes in �=m-components as �◦ T�i (see Fig. 2); by uniqueness,
�Y2 ◦ �i2 factorizes in �=m-components as (�Y2 ◦ �) ◦ T�i.
An application of (Ri

p) to (1) yields

Y1 × Y2
〈�Y1 ;�Y2◦�i2 ;�Y2◦�〉−−−−−−−−−→Y1 × Z2 × Y ′′ (�Y1◦�

j
1)×1Y ′′−−−−−−−→Z1 × Y ′′ (1Z1× T�i)◦�i−−−−−→U: (2)

13 In case it is �1 which shares the same colour as �, the argument is the same (we need below an obvious
alphabetic variant of (Ri

p)). Notice that if �∈T0, we choose among �1; �2 the arrow having colour 2 in
order to be able to apply (R2

p).

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 119

Now,

Y1 × Z2 × Y ′′ (�Y1◦�
j
1)×1Y ′′−−−−−−−→Z1 × Y ′′;

=

Y1 × Z2 × Y ′′ 〈�Y1 ;�Y ′′ 〉◦(�
j
1×1Y ′′)−−−−−−−−−−−→Z1 × Y ′′;

hence,

Y1 × Z2 × Y ′′ 〈�Y1 ;�Y ′′ 〉◦(�
j
1×1Y ′′)�−−−−−−−−−−−→W

(�j1×1Y ′′)m−−−−−→Z1 × Y ′′;

is, by uniqueness, the �=m-factorization of (�Y1 ◦ �j1)× 1Y ′′ . Thus, by applying an (R�)-
step to (2), we get

Y1 × Y2
〈�Y1 ;�Y2◦�i2 ;�Y2◦�〉◦〈�Y1 ;�Y ′′ 〉◦(�

j
1×1Y ′′)�−−−−−−−−−−−−−−−−−−−−−−→W

(�j1×1Y ′′)m−−−−−→Z1 × Y ′′ (1Z1× T�i)◦�i−−−−−→U
=

Y1 × Y2
〈�Y1 ;�Y2◦�〉◦(�

j
1×1Y ′′)�−−−−−−−−−−−−→W

(�j1×1Y ′′)m−−−−−→Z1 × Y ′′ (1Z1× T�i)◦�i−−−−−→U:

Composing the 5rst two arrows by (Rj
c), we get

Y1 × Y2
〈�Y1 ;�Y2◦�〉◦(�

j
1×1Y ′′)−−−−−−−−−−−→Z1 × Y ′′ (1Z1× T�i)◦�i−−−−−→U

=

Y1 × Y2
�j1×�−−→Z1 × Y ′′ (1Z1× T�i)◦�i−−−−−→U:

Let us assume that (1Z1 × T�i) ◦ �i factorizes in �=m-components as follows:

An (R�)-step produces

Y1 × Y2
(�j1×�)◦1−−−−→ S

T�i→U: (K)

Let us now operate on second member (II). We 5rst apply an (Ri
c)-step thus getting

Y1 × Y2
�j1×1Y2−−−→Z1 × Y2

(1Z1×�i2)◦�i−−−−−−→U: (3)

Let us consider the commutative diagram in Fig. 3.

120 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Fig. 3. Factorization of 1Z1 × �i2.

By uniqueness, 〈�Z1 ; �Y2 ◦ �〉 ◦ 1 and T�i are the �=m-components of (1Z1 × �i2) ◦�i. An
(R�)-step applied to (3) leads to

Y1 × Y2
(�j1×1Y2)◦〈�Z1 ;�Y2◦�〉◦1−−−−−−−−−−−−→ S

T�i→U;

which is precisely (K).

In Section 9, we shall prove our main result, namely that

Theorem 5.3. R is canonical.

6. Local con,uence, I

In this section, we will prove the canonicity of the system R0 which, we recall, is
the system described by Table 2.
We begin by showing that R0 is locally conMuent: we single out all critical pairs

arising from superpositions between the rules of R0 and we prove that they are joinable.
Most of the cases can be reduced to the critical pairs treated in the following lemma.

Lemma 6.1. The paths �i ◦ '0; �j and �i; '0 ◦ �j are joinable in R0.

Table 2
The system R0

(R1
c) �

1; �1; * ⇒ �1 ◦ �1; *

(R2
c) �

2; �2 ⇒ �2 ◦ �2

(R�) �; � ⇒ � ◦ ��; �m
(R�) �; � ⇒ �e; �� ◦ �

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 121

Proof. Let �ie and �i� be the e=� components of �i and let us consider the following
commutative diagram, where �1 ◦� corresponds to the �=� factorization in T0 of �i� ◦'0
and �2 ◦ .jm is the �=m factorization of � ◦ �j in Tj.

Since �ie ◦ �1 belongs to Ei (recall the de5nition of left extensions of factorization
systems) and .jm belongs to Mj, we have (up to a renaming):

(�i ◦ '0)e = �ie ◦ �1; (�i� ◦ '0 ◦ �j)� = �1 ◦ �2;

(�i ◦ '0)� = �; (�i� ◦ '0 ◦ �j)m = .jm:

We can do the following rewriting steps:

�i ◦ '0; �j ⇒R� �
i
e ◦ �1; � ◦ �j ⇒R� �

i
e ◦ �1 ◦ �2; .jm;

�i; '0 ◦ �j ⇒R� �
i
e; �

i
� ◦ '0 ◦ �j ⇒R� �

i
e ◦ �1 ◦ �2; .jm

and this proves the lemma.

Theorem 6.2. R0 is locally con<uent.

Proof. We must show that all critical pairs arising from rules of R0 are joinable. For
this, we need a systematic analyses of the cases: treating (R1

c) and (R2
c) together, there

are 12 such cases, which are either easy or reducible to the above lemma. We just
consider the most relevant one.

122 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

In the 5rst member, we use the fact that the following diagram is commutative

Thus, reasoning as usual (by uniqueness of factorizations—up to a renaming), we can
state that �e= �� ◦ (�m)e and ��=(�m)�. We can apply Lemma 6.1, with '0 = ��.

It remains to show the termination of R0 (then Newman’s Lemma applies, showing
canonicity of R0). This result is a consequence of Theorem 9.7, however, here we give
a direct proof, which uses less machinery. We need a complexity measure for paths
which decreases with application of our rules. At this aim, we de5ne:

�(�i) =

{
0 if �i ∈ Ei ;

1 otherwise;
�(�i) =

{
0 if �i ∈ Mi ;

1 otherwise:

Let K be the path �1; : : : ; �n. We de5ne

�(K) = 〈�(�1); : : : ; �(�n)〉; �(K) = 〈�(�n); : : : ; �(�1)〉

(notice that �(K)= �(K ′) and �(K)= �(K ′) hold in case K and K ′ are alphabetic
variants of each other).
Finally, we introduce the following order relation � between paths K; L:

• K �L if and only if either (i) or (ii) hold:
(i) |K |¿|L| (where |K | denotes the length of K);
(ii) |K |= |L| and 〈�(K); �(K)〉¿l〈�(L); �(L)〉

(where ¿l denotes the lexicographic order between n-tuple of integers).

Theorem 6.3. R0 is terminating.

Proof. It is a standard fact that � is a terminating transitive relation. Moreover, it is
easily shown that � is stable, in the sense that K �K ′ implies L; K; R�L; K ′; R (for
all L; R). It remains to prove that if L⇒L′ is a rule of R0, then L�L′. This is not
diRcult and is left to the reader.

This concludes the proof of Theorem 5.1.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 123

7. The system R+

Proving directly local conMuence of R leads to unnecessary complications, this is
why we prefer to introduce another system (which we call R+) and prove local conMu-
ence of the latter. In Section 9, we shall prove termination of both R and R+ and then
we shall make a more precise comparison between R and R+: from this comparison,
canonicity of R follows immediately. In order to introduce R+ we 5rst consider slight
modi5cations of rules (R�) and (Ri

p).
Rule (R�) is enlarged as follows:

(R�)+ 〈�; �〉; *⇒ 〈�e; �〉; (�� × 1) ◦ *

(notice that in case vector � is empty, we get ordinary (R�)-rule).
Rules (Ri

p) are on the other hand, restricted so that only 1-component arrows are
“moved to the right” (let us call (Ri

p)
+ the rules obtained by this restriction). In

conclusion, we let R+ be the rewriting system of Table 3.
It should be noticed that (as for R) even R+ alphabetic variants of the above rules

are available as rules. For instance, rule (Ri
p)

+ has the following alphabetic variant:

Y
〈*i1 ;di ;*i2〉−−−−→Y1 × X × Y2

〈�1 ;�X ;�2〉−−−−→Z1 × X × Z2
�i→U

⇓
Y

〈*i1 ;di ;di� ;*i2〉−−−−−→Y1 × X × Y ′ × Y2
〈�◦�1 ;�Y ′ ;�◦�2〉−−−−−−−−→Z1 × Y ′ × Z2

(1×dim×1)◦�i−−−−−−→U

(where a further arrow must be inserted to the right in case i=1, where Y ′ is
the codomain of di� and where � is the projection Y1 ×X ×Y ′ ×Y2 →Y1 ×X ×Y2).
Other alphabetic variants are possible, e.g. by permuting the components of 〈*i1; di;
di� ; *

i
2〉.

In the remaining part of this section we collect useful technical facts. We 5rst analyse
the relationship between old and new �-extraction rules.

Table 3
The system R+

(R1c) �1; �1; *⇒ �1 ◦ �1; *
(R2c) �2; �2 ⇒ �2 ◦ �2
(R�) �; �⇒ � ◦ ��; �m
(R�)+ 〈�; �〉; *⇒〈�e; �〉; (�� × 1) ◦ *
(R1p)

+ 〈*1; d1〉; 〈�; �X 〉; �1; /⇒〈*1; d1; d1� 〉; �× 1; (1× d1m) ◦ �1; /
where d1 =∈E0

(R2p)
+ 〈*2; d2〉; 〈�; �X 〉; �2 ⇒〈*2; d2; d2� 〉; �× 1; (1× d2m) ◦ �2
where d2 =∈E0

124 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Lemma 7.1. If K⇒K ′ by a single (R�)+-step; then there is K ′′ such that K ′ rewrites
to K ′′ by (at most) 2 (R�)+-rewrite steps and K rewrites to K ′′ by a single (R�)-
rewrite step.

Proof. We have the following three (R�)+-rewrite steps:

〈�; �〉; *⇒〈�e; �〉; (�� × 1) ◦ * ⇒ 〈�e; �e〉; (�� × ��) ◦ *

⇒〈�e; �e〉e; 〈�e; �e〉� ◦ (�� × ��) ◦ *:

We need only to show that 〈�e; �e〉e= 〈�; �〉e and 〈�e; �e〉� ◦ (��× ��)= 〈�; �〉�. Let us
consider the factorization

and let us put 〈�; �〉�= 〈'; 5〉. We have

�e ◦ �� = � = 〈�; �〉 ◦ �Z1 = 〈�; �〉e ◦ 〈'; 5〉 ◦ �Z1 = (〈�; �〉e ◦ '�) ◦ '�;

hence, (by uniqueness of factorization)

〈�; �〉e ◦ '� = �e and �� = '�

and similarly

〈�; �〉e ◦ 5� = �e and �� = 5�:

Thus,

(∗) 〈�; �〉 = 〈�; �〉e ◦ (〈'�; 5�〉 ◦ (�� × ��)):

The arrow 〈'�; 5�〉 ◦ (��× ��) belongs to M0 as it is equal to 〈'; 5〉= 〈�; �〉�; so if we
factorize 〈'�; 5�〉 as � ◦ � and then � ◦ (��× ��) as �′ ◦ �′, we get that � ◦ �′ is the identity
(being equal to the 5rst component of the �=�-factorization of an arrow in M0, namely
〈'�; 5�〉 ◦ (��× ��)). This can happen only if � itself (which is a projection) is in fact
identity (up to a renaming); we thus established that 〈'�; 5�〉 belongs to M0—which
means that

(∗)′ 〈'�; 5�〉 is a diagonal

(this is clear as '�; 5� are both projections). From 〈�; �〉e ◦ '�= �e and 〈�; �〉e ◦ 5�= �e,
we get

〈�e; �e〉 = 〈�; �〉e ◦ 〈'�; 5�〉

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 125

As 5rst component is in Ei and second component is in M0, we get by uniqueness of
factorization,

〈�e; �e〉e = 〈�; �〉e
and

(∗)′′ 〈�e; �e〉� = 〈'�; 5�〉
which gives the claim (combined with 〈�; �〉�= 〈'�; 5�〉 ◦ (��× ��) coming from (∗)).

The above lemma guarantees that there is no need in the local conMuence proof to
compute superpositions between rule (R�)+ and the other rules ((R�)+ itself included):
it is suRcient to compute superpositions between (R�) and the other rules. 14 Using
(R�)+ instead of (R�) allows us to apply a less restrictive rule during conMuence
proofs; this makes some passages shorter (the only little price we pay for that is that
we shall need to prove termination of (R�)+ too). The next corollary will be used in
Section 9 and is a slightly more accurate reformulation of what comes from the proof
of Lemma 7.1: recall that, according to (∗)′ and (∗)′′, the third step was in fact an
(R�)-step moving to the right a diagonal (we call such (R�)-steps “diagonalization”
steps):

Lemma 7.2. Let (R�)+1 be the following special case of rule (R�)+:

(R�)+1 〈a; �〉; � ⇒ 〈ae; �〉; (a� × 1) ◦ �:
If K ⇒ K ′ by a single (R�) or (R�)+-rewrite step; then K rewrites to K ′ by using a
7nite number of (R�)+1-rewrite steps followed by a single diagonalization step.

In words, the e=� factorization of 〈a1; : : : ; an〉 is obtained by taking the component-
wise e=� factorizations and then by applying a diagonalization step. The following fact
is useful:

Lemma 7.3. If 〈ei1; : : : ; ein〉 ∈Ei ; then the eij are pairwise distinct.

Proof. As Ei is closed under composition with projections, all eij are in Ei. Let 〈eij1 ; : : : ;
eijm〉 be a list of distinct arrows containing exactly all the arrows among ei1; : : : ; e

i
n. By

the previous Lemma, 〈eij1 ; : : : ; eijm〉 ∈Ei. According to the de5nition of 〈eij1 ; : : : ; eijm〉, there
is a diagonal . such that

〈eij1 ; : : : ; eijm〉 ◦ . = 〈ei1; : : : ; ein〉:

14 If K⇒K ′ and K⇒K ′′ give rise to the critical pair (K ′; K ′′) and, say, K⇒K ′ is a (R�)+-step, we
can 5nd K0 such that K ′ ⇒+

R+K0 and the pair (K0; K ′′) is a critical pair generated by rule (R�) (instead of
rule (R�)+).

126 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

As .∈M0, by uniqueness of e=�-factorizations, . is a renaming (thus showing the
claim).

Corollary 7.4. �i ∈Ei i; the components of �i are pairwise distinct and all belong
to Ei.

A consequence of the above results is that e=�-factorizations are stable under certain
pullbacks, in the sense of the following:

Lemma 7.5. If � :Y1 →Y2 has factorization �e ◦ ��; then for every Z; �× 1Z has fac-
torization (�e× 1Z) ◦ (��× 1Z).

Proof. It is suRcient to show that the components of �Y1 ◦ �e cannot be equal to the
components of �Z . This is clear, otherwise we would have in our theories provable
equations of the kind t= xi, where t is a term not containing the variable xi: this cannot
be, otherwise (after making the term t a ground term by a substitution, if you like)
we would obtain degeneration, i.e. that all terms are provably equal.

We now show that rule (Rip) also can be roughly achieved by 5nitely many (Rip)
+-

rewrite steps. Let us use the notation K↘L in order to express that there is K ′ such
that K⇒∗

R+ K ′ and K ′ ⇔∗
R0
L.

Lemma 7.6. Let L be the path

L = Y
〈*i ;.i〉−→ Y1 × Z

〈�;�Z〉−→ Y2 × Z
�i→ U

(8)→ V

(where the arrow 8 is missed if i=2) and let R; R′ be the following paths:

R = Y
〈*i ;.i ;.i�〉−−−→ Y1 × Z × Y ′ �×1Y ′−−−→ Y2 × Y ′ (1Y2×.im)◦�i−−−−−−→ U

(8)→ V;

R′ = Y
〈*i ;.i ;1Y 〉−−−−→ Y1 × Z × Y �×1Y−−−→ Y2 × Y

(1Y2×.i)◦�i−−−−−→ U
(8)→ V

(where we supposed that Y ′ is the codomain of .�). We have:
(i) R⇔∗

R0
R′;

(ii) If .i ∈T0; then L⇔∗
R0
R;

(iii) In the general case; L↘R (and consequently L↘R′).

Proof. (i) and (ii) are easy. (iii) is proved by induction on the number of components
of .. If such a number is 1, there is nothing to prove (because either (Rip)

+ or (ii)
applies). So suppose it is bigger than 1. If .∈T0, we just proved a stronger claim;
otherwise L and R (up to an alphabetic variant) are

(1) Y
〈*;.;d〉−−−→ Y1 × Z × X

〈�;�Z ;�X 〉−−−−→ Y2 × Z × X
�→ U

(8)→ V

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 127

and

(2) Y
〈*;.;d;〈.;d〉�〉−−−−−−→ Y1 × Z × X × Y ′ �×1Y ′−−−→ Y2 × Y ′ (1Y2×〈.;d〉m)◦�−−−−−−−−→ U

(8)→ V;

respectively (with d =∈T0). To the former, we can apply a (Rip)
+-rewrite step thus

getting (we leave (8) as understood in displayed paths from now on)

(3) Y
〈*;.;d;d�〉−−−−→ Y1 × Z × X × Y ′′

0

〈�;�Z〉×1Y ′′
0−−−−−→ Y2 × Z × Y ′′

0
(1Y2×1Z×dm)◦�−−−−−−−−→ U

(where we called Y ′′
0 the codomain of d�). By induction hypothesis, there is path K ′′

such that (3) ⇒∗
R+ K ′′ and K ′′ ⇔∗

R0
(4), where (4) is the path (let Y ′

0 be the codomain
of .�):

Y
〈*;.;d;.�;d�〉−−−−−→ Y1 × Z × X × Y ′

0 × Y ′′
0

�×1Y ′
0
×1Y ′′

0−−−−−−→ Y2 × Y ′
0 × Y ′′

0
(1Y2×.m×dm)◦�−−−−−−−−→ U:

As 〈*; .; d; .�; d�〉 is equal to 〈*; .; d; 1Y 〉 ◦ (1Y1 × 1Z × 1X ×〈.�; d�〉), we can move right
1Y1 × 1Z × 1X ×〈.�; d�〉 by ⇔∗

R0
-equivalence, thus getting from (4) the path

(5) Y
〈*;.;d;1Y 〉−−−−→ Y1 × Z × X × Y �×1Y−→ Y2 × Y

(1Y2×〈.;d〉)◦�−−−−−−−→ U;

which we know from (i) that it is ⇔∗
R0
-equivalent to (2). In conclusion, we have

(1) ⇒R+ (3) ⇒∗
R+ K ′′ ⇔∗

R0
(4) ⇔∗

R0
(5) ⇔∗

R0
(2)

thus showing the claim.

We need a 5nal lemma for the next Section (the proof is left to the reader):

Lemma 7.7. We have R1↘R2; where R1; R2 are the paths

R1 = Y × Z1
〈�i1 ;�i2〉×1−−−−→ Y1 × Y2 × Z1

�Y1×�j−−−→ Y1 × Z2
*i→ W

(8)→ V;

R2 = Y × Z1
1×�j−→ Y × Z2

(�i1×1)◦*i−−−−→ W
(8)→ V

(8 is missed in case i=2).

8. Local con,uence, II

In this section, we prove that R+ is locally conMuent. In order to show conMuence
of a pair of paths (R1; R2), we shall use the following schema: we 7nd L1; L2 such that
R1↘L1 and R2↘L2 and L1 ⇔∗

R0
L2. Canonicity of R0 (which was proved in Section 6)

guarantees that in such a condition R1; R2 are joinable.

128 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Throughout this section we shall mention arrows *; d; �; �; /; 8 whose domains and
codomains are 5xed as follows:

Y
〈*;d〉→ Y1 × X

〈�;�X 〉→ Y2 × X
�→U /→ V 8→ T:

We also assume that d factorizes in �=m-components as follows:

We 5rst analyse some situations which are very frequent during local conMuence proofs.

Lemma 8.1. Let Ki (i∈{1; 2}) be the following path:

Ki = Y
〈*i ;di ;di�〉−−−−→ Y1 × X × Y ′ �j×1Y ′−−−→ Y2 × Y ′ (1Y2×dim)◦�0◦/i−−−−−−−−→ V

(8)→ T

(where 8 lacks in case i=2). Then:
(i) The path

K ′
i = Y

〈*i ;di〉−→ Y1 × X
(〈�j ;�X 〉◦�0)e−−−−−−→ W

(〈�j ;�X 〉◦�0)�◦/i−−−−−−−−→ V
(8)→ T;

is joinable with Ki in R+.
(ii) The path

K ′′
i = Y

〈*i ;di〉−→ Y1 × X
〈�j ;�X 〉◦�0−−−−−→ U /i→ V

(8)→ T;

is joinable with Ki in R+.

Proof. (ii) is trivially reduced to (i) (just apply (R�) in K ′′
i to decompose 〈�j; �X 〉 ◦ �0).

To prove (i), we have to factorize the arrow 〈�j; �X 〉 ◦ �0 in components e=�. We
5rst factorize 〈�j; �X 〉: by Lemmas 7.2 and 7.3, such a factorization is obtained by 5rst
factorizing �j in e=� components and then diagonalizing with �X in case �X appears
among the components of �je . We leave to the reader the easier case in which �X is
not among the components of �je ; so let �j have the following factorization in e=�-
components:

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 129

It follows that the diagram in Fig. 4 is commutative, thus

(1) 〈�j; �X 〉 = 〈 T�j; �X 〉 ◦ (1S × 0X) ◦ (�j� × 1X):

Fig. 4. Commutative diagram.

We have two cases, depending on whether �X appears in the �-component of (1S ×0X)
◦ (�j�× 1X) ◦ �0 or not (again the easier negative case is left to the reader); let (1S ×
0X) ◦ (�j�× 1X) ◦ �0 factorize in T0 as in Fig. 5.

Fig. 5. Factorization of (1S ×0X) ◦ (�j� × 1X) ◦ �0.

By (1), it follows that

〈�j; �X 〉 ◦ �0 = 〈 T�j; �X 〉 ◦ (�S′ × 1X) ◦ �:
By the fact that 〈 T�j; �X 〉 ◦ (�S′ × 1X) belongs to Ej and by the uniqueness of decompo-
sition we have:

(〈�j; �X 〉 ◦ �0)e = 〈 T�j; �X 〉 ◦ (�S′ × 1X) = 〈 T�j ◦ �S′ ; �X 〉;
(〈�j; �X 〉 ◦ �0)� = �:

It follows that K ′
i coincides with the path (we leave arrow (8) as understood in dis-

played paths)

Y
〈*i ;di〉−→ Y1 × X

〈 T�j◦�S′ ;�X 〉−−−−−→ S ′ × X
�◦/i−→V:

We can apply Lemma 7.6(iii) (in fact, if i=1; the arrow 8 belongs to the path) and
we obtain that K ′

i ↘L1, where L1 is the path

(L1) Y
〈*i ;di ;1Y 〉−−−−→ Y1 × X × Y

(T�j◦�S′)×1Y−−−−−−→ S ′ × Y
(1S′×di)◦�◦/i−−−−−−−→ V:

130 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Fig. 6. Commutative diagram.

Let us consider Ki. We 5rst observe that �j × 1Y ′ can be decomposed in e=� components
as (�je × 1Y ′) ◦ (�j�× 1Y ′) by Lemma 7.5; therefore, an application of (R�) (which, we
recall, is a special case of (R�)+) yields

Y
〈*i ;di ;di�〉−−−−→ Y1 × X × Y ′ �je×1Y ′−−−→ S × X × Y ′ (�

j
�×1Y ′)◦(1Y2×dim)◦�0◦/i−−−−−−−−−−−−−−→ V

=

Y
〈*i ;di ;di�〉−−−−→ Y1 × X × Y ′ 〈�◦ T�j ;�X ;�Y ′ 〉−−−−−−→ S × X × Y ′ (�

j
�×1Y ′)◦(1Y2×dim)◦�0◦/i−−−−−−−−−−−−−−→ V;

where Y1 ×X ×Y ′ �→Y1 ×X .
We can apply Lemma 7.6(iii) on 〈di; di�〉 and we get (recall that if i = 1, arrow 8

belongs to the path):

Ki
↘

Y
〈*i ;di ;di� ;1Y 〉−−−−−→ Y1 × X × Y ′ × Y

(�◦ T�j)×1Y−−−−−→ S × Y
(1S×〈di;di�〉)◦(�j�×1Y ′)◦(1Y2×dim)◦�0◦/i−−−−−−−−−−−−−−−−−−−−−→ V

=

Y
〈*i ;di ;di� ;1Y 〉−−−−−→Y1 × X×Y ′×Y (�◦ T�j)×1Y−−−−−−→

= (see Fig: 6):
S×Y (1S×〈di;di�〉)◦(1S×1X×dim)◦(�j�×1X)◦�0◦/i−−−−−−−−−−−−−−−−−−−−−−−→V

Y
〈*i ;di ;di� ;1Y 〉−−−−−→Y1 × X × Y ′ × Y

(�◦ T�j)×1Y−−−−−−−→
= (see Fig: 5)

S × Y
(1S×di)◦(1S×0X)◦(�j�×1X)◦�0◦/i−−−−−−−−−−−−−−−−−−→V

Y
〈*i ;di ;di� ;1Y 〉−−−−−→Y1 × X × Y ′ × Y

(�◦ T�j)×1Y−−−−−→ S × Y
(1S×di)◦(�S′×1X)◦�◦/i−−−−−−−−−−−−→V

=

Y
〈*i ;di ;di� ;1Y 〉−−−−−→Y1 × X × Y ′ × Y

(�×1Y)◦(T�j×1Y)−−−−−−−−→
⇔∗

R0

S × Y
(�S′×1Y)◦(1S′×di)◦�◦/i−−−−−−−−−−−−−→V

Y
〈*i ;di ;di� ;1Y 〉◦(�×1Y)−−−−−−−−−−→Y1 × X × Y

(T�j×1Y)◦(�S′×1Y)−−−−−−−−−→ S ′ × Y
(1S′×di)◦�◦/i−−−−−−−→V

which coincides with (L1), and this proves (i).

Lemma 8.2. Let Kj (j∈{1; 2}) be the following path:

Kj = Y
〈*i ;di ;di�〉−−−−→Y1 × X × Y ′ �j×1Y ′−−−→Y2 × Y ′ (1Y2×dim)◦�0−−−−−−→U /j→V

(8)→T

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 131

Fig. 7. Factorization of 1Y2 × dim.

(where 8 lacks in case j=2). Then the path

K ′′′
i = Y

〈*i ;di〉−−−→Y1 × X
〈�j ;�X 〉◦�0◦/j−−−−−−−→V

(8)→T;

is joinable with Kj in R+.

Proof. Here, we cannot apply the products rule on K ′′′
i , therefore, we have to act on

Kj; thus we have to decompose (1Y2 ×dim) ◦ �0 in e=� components. Suppose that the
e=�-components of dim are

Then by Lemma 7.5:

(1Y2 × dim)e = 1Y2 × .i;

(1Y2 × dim)� = 1Y2 × s0:

We decompose (1Y2 ×dim) ◦ �0 as in Fig. 7.
Since 1Y2 × .i belongs to Ei, we can state that

((1Y2 × dim) ◦ �0)e = (1Y2 × .i) ◦ (�Y ′
2
× �S′) = �Y ′

2
× (.i ◦ �S′);

((1Y2 × dim) ◦ �0)� = 90:

By (R�), Kj rewrites to the following path (hereafter, we will leave out the last ar-
row (8)).

Y
〈*i ;di ;di�〉−−−−→Y1 × X × Y ′ �j×1Y ′−−−→Y2 × Y ′ �Y ′2×(.i◦�S′)−−−−−−→Y ′

2 × S ′ 9
0◦/j−→V:

132 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Lemma 7.7 yields (by a ↘-step): 15

Y
〈*i ;di ;di�〉−−−−→Y1 × X × Y ′ 1Y1×1X×(.i◦�S′)−−−−−−−−−→Y1 × X × S ′

((�j◦�Y ′
2
)×1S′)◦90◦/j−−−−−−−−−−−→V

⇔∗
R0

Y
〈*i ;di ;di�〉−−−−→Y1 × X × Y ′ 1Y1×1X×.i−−−−−→Y1 × X × S

(1Y1×1X×�S′)◦((�j◦�Y ′
2
)×1S′)◦90◦/j−−−−−−−−−−−−−−−−−−−−→V

⇔∗
R0

Y
〈*i ;di ;di�◦.i〉−−−−−→Y1 × X × S

(�j×1S)◦(�Y ′
2
×�S′)◦90◦/j−−−−−−−−−−−−−→V

= (see Fig: 7)

Y
〈*i ;di ;di�◦.i〉−−−−−→Y1 × X × S

(�j×1S)◦(1Y2×s0)◦�0◦/j−−−−−−−−−−−−−→V
=

Y
〈*i ;di ;di�◦.i〉−−−−−→Y1 × X × S

(1Y1×1X×s0)◦(�j×1X)◦�0◦/j−−−−−−−−−−−−−−−→V
⇔∗

R0

Y
〈*i ;di ;di�◦.i〉◦(1Y1×1X×s0)−−−−−−−−−−−−−→Y1 × X × X

(�j×1X)◦�0◦/j−−−−−−−→V
=

Y
〈*i ;di ;di〉−−−−→Y1 × X × X

(�j×1X)◦�0◦/j−−−−−−−→V
=

Y
〈*i ;di〉◦(1Y1×0X)−−−−−−−−→Y1 × X × X

(�j×1X)◦�0◦/j−−−−−−−→V
⇔∗

R0

Y
〈*i ;di〉−→ Y1 × X

(1Y1×0X)◦(�j×1X)◦�0◦/j−−−−−−−−−−−−−→V

which, with the addition of (8), coincides with K ′′′
i .

Theorem 8.3. R+ is locally con<uent.

Proof. To prove local conMuence of R+, by Section 6 results, it suRces to study the
superpositions between the rule (Ri

p)
+ and the other rules, itself included (see also

the observation following the proof of Lemma 7.1). There are 4 superpositions among
(Ri

p)
+ and each of the rules (Rj

c), (R�) and (R�); in addition, there are 3 superpositions
among (Ri

p)
+ and itself. For space reasons, we only consider some cases. The relevant

tools for conMuence are provided by Lemmas 7.6, 8.1 and 8.2.

Example of superposition between (Ri
p)

+ and (Rj
c). We have a path of three arrows

/1; /2; /3 and we apply (Rj
c) on /2; /3 and (Ri

p)
+ on the whole path. Everything com-

poses if i= j; otherwise /3 must belong to T0. As i 	= j, either i = 1 or j = 1, hence
the table of rules of R+ requires in any case a fourth arrow /4 (/4, in its turn, must
be followed in a well-coloured path by a further arrow 8 in case /4 belongs to T1\T0).

15 We have a projection �Y ′
2
: Y2 → Y ′

2 , hence � j must be a pair (of vectors), whose component having

codomain Y ′
2 is obviously � j ◦ �Y ′

2
.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 133

We have

If /∈Tj\T0, we compose 〈�j; �X 〉 ◦ �0 with / and then apply Lemma 8.2. If /∈Ti\T0,
we compose (1Y2 ×dim) ◦ �0 with / and the conMuence immediately follows by
Lemma 8.1(ii). If /∈T0, we can in any case apply one of the two previous solu-
tions (because either i or j must be 2, hence lack of 8 does not matter).

Example of superposition between (Ri
p)

+ and (Rj
c). We have a path of four arrows

/1; /2; /3; /4 and we apply (Rj
c) on /3; /4 and (Ri

p)
+ on /1; /2; /3. Suppose j= i; that

is:

Then we can reduce both 5rst member (by (Ri
p)

+) and second member (by (Ri
c)

+) to
the path

〈*i; di; di�〉; �× 1Y ′ ; (1Y2 × dim) ◦ �i ◦ /i; (8):

Suppose that i 	= j; in this case /3 ∈T0 and we have

134 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Fig. 8. Factorization of 〈*i; di〉.

If �∈Ti, the two members are ⇔∗
R0
-equivalent. The relevant case is when �∈Tj: here

we can rewrite 5rst member by (Rj
c) to 〈*i; di〉; 〈�j; �X 〉◦�0 ◦/j; (8) and then we apply

Lemma 8.2.

Example of superposition between (Ri
p)

+ and (R�). We have three arrows, (R�) is ap-
plied to the 5rst two and (Ri

p)
+ to the whole path:

where we suppose 〈*i; di〉 to factorize in components e=� as in Fig. 8.
We apply (R�)+ on the second member to the component 〈*i; di〉 of 〈*i; di; di�〉 and

we obtain (we leave arrow / out of displayed paths)

Y
〈1i ;di�〉−−−→Z × Y ′ (〈'0 ;s0〉×1Y ′)◦(�×1Y ′)−−−−−−−−−−−−→Y2 × Y ′ (1Y2×dim)◦�i−−−−−−→U

=

Y
〈1i ; di�〉−→ Z × Y ′ (〈'0 ; s0〉◦�)×1Y ′−−−−−−−−−−−−−−−−−−−→

⇔∗
R0

(by Lemma 7:6(i) and (ii))
Y2 × Y ′ (1Y2×dim)◦�i−−−−−−→U

Y
〈1i ; 1Y 〉−−−→Z × Y

(〈'0 ; s0〉◦�)×1Y−−−−−−−−→Y2 × Y
(1Y2×di�)◦(1Y2×dim)◦�i−−−−−−−−−−−−→U

=

Y
〈1i ; 1Y 〉−−−→Z × Y

(〈'0 ; s0〉◦�)×1Y−−−−−−−−→Y2 × Y
(1Y2×di)◦�i−−−−−→U: (L1)

We need to factorize s0 in components �=� in T0.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 135

Fig. 9. Commutative diagram.

where Z ′ ×Z ′′ =Z . This implies that 1i has the form 〈1i1; 1i2〉, where Y
1i1→Z ′ and

Y
1i2→Z ′′. By applying (R�)+ on the 5rst member to the arrow 〈'0; s0〉 ◦ 〈�; �X 〉=〈〈'0; s0〉

◦ �; s0〉, in order to decompose s0, we obtain

Y
〈1i1 ; 1i2〉−−−→Z ′ × Z ′′ 〈〈'0 ;s0〉◦�;�Z′′ 〉−−−−−−−→Y2 × Z ′′ (1Y2×t0)◦�i−−−−−→U;

which, by Lemma 7.6(iii), becomes (through a ↘-step)

Y
〈1i1 ; 1i2 ;1Y 〉−−−−→Z ′ × Z ′′ × Y

(〈'0 ;s0〉◦�)×1Y−−−−−−−→Y2 × Y
(1Y2×1i2)◦(1Y2×t0)◦�i−−−−−−−−−−−→U

=

Y
〈1i ; 1Y 〉−−−→Z ′ × Z ′′ × Y

(〈'0 ;s0〉◦�)×1Y−−−−−−−→Y2 × Y
(1Y2×1i2◦t0)◦�i−−−−−−−→U: (L2)

Since the diagrams in Figs. 9 and 8 are commutative, we have

1i2 ◦ t0 = 1i ◦ s0 = di

and this implies that (L2) coincides with (L1).

9. Termination

In order to show termination of R and of R+, we shall associate with our paths
certain commutative labelled trees. Such trees are represented as terms built up from
the countable set of variables {xi}i¿1 by using four 16 constructors fi (i∈{0; 1}2) of
type TermMultiset→Term.

R-trees (or, brieMy, trees) are inductively de5ned as follows:
• xi is an R-tree for every i¿1;
• if {T1; : : : ; Tn} is a multiset of R-trees and i∈{0; 1}2, then fi(T1; : : : ; Tn) is an R-tree.
As a next step, we introduce a relation ¿ among our trees; we have T1¿T2 iL one

of the following two conditions is satis5ed:
• T1 is fi(T ′

1 ; : : : ; T
′
n), T2 is fj(T ′′

1 ; : : : ; T
′′
k) and {T ′

1 ; : : : ; T
′
n}¿m{T ′′

1 ; : : : ; T
′′
k };

16 Actually, only three such constructors will be really used (f〈0;1〉 is useless).

136 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

• T ′
1 is fi(T ′

1 ; : : : ; T
′
n) and T2 is fj(T ′

1 ; : : : ; T
′
n) and i¿j (in the lexicographic

sense).
Some comments are in order. First ¿m is the multiset extension of ¿; secondly, the
de5nition is by induction on the height h(T1) of the tree T1. It is easily seen that T1¿T2
implies h(T1)¿h(T2). In the following, we use ¿ for the reMexive closure of ¿.
We have the following

Lemma 9.1. ¿ is a transitive and terminating relation.

As our trees are represented as terms, it makes sense to speak about substitutions.
Substitutions are compatible with ¿ in the following sense:

Lemma 9.2. Let a succession {Ti}i¿1 of trees be given and let T ′; T ′′ be such that
T ′¿T ′′; we then have T ′(Ti=xi)¿T ′′(Ti=xi).

Let us now turn to our paths. First, we need a de5nition. For an arrow �i, let us put

e(�i) =
{
0 if �i ∈ E0;
1 otherwise;

m(�i) =
{
0 if �i ∈ Ei ;
1 otherwise;

;(�i) = 〈m(�i); e(ai)〉

Lemma 9.3. For every arrow � and for every �∈E0; we have ;(� ◦ �)= ;(�) (when-
ever composition makes sense).

Proof. If e(�)= 0 then clearly e(� ◦ �)= 0 too; vice versa, if e(� ◦ �)= 0, then the
two �=m factorizations (� ◦ �)◦ 1= (� ◦ ��)◦ �m of � ◦ � must be equal so that �m is the
identity; hence �= ��, that is �∈E0. The proof of m(�)= 0 iL m(� ◦ �)= 0 is similar.

For a path K :Y →Z and for �0 :Z→V , let K ◦ �0 be the path obtained by com-
posing the last arrow of K with �0 (that is, if K =K ′; �, then K ◦ � is K ′; � ◦ �0).

With a path K :X n→X (resp. L :X n→Xm), we now associate an R-tree T (K)
(resp. a multiset of R-trees T (L)) as follows (de5nition is by induction on the lengths
|K |, |L| of K and L):

T (a) = f;(a)(xi1 ; : : : ; xik); if a� = 〈�i1 ; : : : ; �ik 〉;
T (〈a1; : : : ; am〉) = {T (a1); : : : ; T (am)};
T (K ′; a) = f;(a)(T (K ′ ◦ a�));
T (L′; 〈a1; : : : ; am〉) = {T (L′; a1); : : : ; T (L′; am)}:

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 137

Lemma 9.4. Let L :Y →X n and K :X n→Xm. We have that

T (L; K) = T (K)(T (L1)=x1; : : : ; T (Ln)=xn);

where L1 =L ◦ �1; : : : ; Ln=L ◦ �n.

From Lemma 9.4 it is possible to establish that T (K)=T (K ′), in case K ′ is an
alphabetic variant of K .

Lemma 9.5. Let .= 〈d1; : : : ; dn〉 :Xm→X n be an arrow which is not in E0 (i.e. it is
not a projection); suppose that .�= 〈�i1 ; : : : ; �ik 〉 :Xm→X k . We have that T (.; 1X n)¿
T (.�; 1X k).

Proof. We have

T (.�; 1X k) = {f〈0;0〉(f〈0;0〉(xs))}s=i1 ;:::;ik
and

T (.; 1X n) = {f〈0;0〉(f;(dj)(xij(1) ; : : : ; xij(lj)))}j=1;:::;n;

where we supposed that (dj)�= 〈�ij(1) ; : : : ; �ij(lj)〉. Now elements of the former multiset
are all distinct and for every s= i1; : : : ; ik , there is j such that s is among j(1); : : : ; j(lj)
(otherwise �s would be missed in .�). This means in particular that for such s; j we
have f〈0;0〉(xs)6 f;(dj)(xij(1) ; : : : ; xij(lj)) (where this inequality is strict in case the same j
corresponds to diLerent s). Consequently, the former multiset is less than or equal to
the latter. It is strictly less indeed; in fact, . cannot be in E0 for two independent
reasons: some of the ;(dj) is not 〈0; 0〉 or some projection among 〈�i1 ; : : : ; �ik 〉 appears
at least twice in .. In both cases, this is a suRcient reason for the latter multiset to
be bigger.

For a path K = �1; : : : ; �k , we de5ne c(K) to be the vector

〈T (�1; : : : ; �k); T (�1; : : : ; �k−1); : : : ; T (�1)〉
and for paths K; L, we put

K ¿ L iL c(K) ¿ c(L)

where second member refers to the lexicographic extension of ¿m. The next lemma
says that c is “almost stable by concatenation” as a complexity measure:

Lemma 9.6. Let K :Xm→X n and K ′ :Xm→X n be two paths such that K¿K ′ (notice
that they agree on domains and codomains); then
(i) for every path L having codomain Xm; we have L; K¿L; K ′;
(ii) suppose that K =K0; 〈a1; : : : ; an〉; K ′ =K ′

0; 〈a′1; : : : ; a′n〉 and that T (K0; ai)¿ T (K ′
0;

a′i) holds for all i=1; : : : ; n; then for every path R having domain X n; we have
K; R¿K ′; R.

138 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Proof. By Lemmas 9.4, 9.2 and by induction on |R|.

Theorem 9.7. R and R+ are terminating.

Proof. If we have K⇒K ′ by rules (Ri
c), then K¿K ′ always holds, because such

rules are length-reducing (recall that in lexicographic orders for variable length vectors,
length is the principal parameter).
According to the above lemma, it is suRcient to show that for every other rule

L⇒R of R+ ∪R, we have both

(1) T (L ◦ �i)¿ T (R ◦ �i)
for every i=1; : : : ; n (here, X n is the common codomain of L; R) and

(2) c(L) ¿ c(R):

Notice that any (R�)-rewrite step is a special case of an (Rpr)∗-rewrite step, where
(Rpr)∗ is the rewrite rule

(Rpr)∗ �; � ◦ � ⇒ � ◦ �; �
(here � is any projection which is not a renaming). Moreover, we know from Lemma 7.2
that any (R�) or (R�)+-rewrite step is a composition of a 5nite number of (R�)+1 and
of (Rdi+1)∗-rewrite steps, where (R�)+1 is (any alphabetic variant of)

(R�)+1 〈�; a〉; � ⇒ 〈�; ae〉; (1× a�) ◦ �
and (Rdi+1)∗ is (any alphabetic variant of)

(Rdi+1)∗ 〈�; a; a〉; � ⇒ 〈�; a〉; (1× 0X) ◦ �:
Consequently, it is suRcient to prove (1) and (2) for rules (Rpr)∗, (R�)+1, (Rdi+1)∗

and (Ri
p). We show the argument for (Rpr)∗ and (Ri

p) and leave the remaining cases
to the reader. 17

Proof of (1) for rule (Rpr)∗:

�; � ◦ � ⇒ � ◦ �; �:
Let b be any component of �; as (� ◦ b�) ◦ bm is the factorization of � ◦ b, we have
(taking into account Lemma 9.3):

T (�; � ◦ b) = f;(b)(T (� ◦ � ◦ b�)) = T (� ◦ �; b);
as required.
Proof of (2) for rule (Rpr)∗: By the previous point, we have T (�; �◦�)=T (�◦�; �);

however, T (�)¿T (� ◦ �) because the projection is strict.

17 We only observe that the second clause in the de5nition of order for trees is used to deal with (R�)+1.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 139

Notice that the above established fact that T (�; � ◦ �) and T (� ◦ �; �) are componen-
twise equal (together with Lemma 9.4), yields the following important information to
be used in the sequel: let us write K⇒∗

� K
′ in order to express that K ′ is obtained

from K by a sequence of (Rpr)∗-rewrite steps; we have that

(∗) K ⇒∗
� K

′ implies T (K) = T (K ′):

Proof of (1) for rule (Ri
p): We recall that the 5rst member of (Ri

p) is

Y
〈*;.〉−→Y1 × Z

〈�;�Z〉−→ Y2 × Z
�→U;

whereas the second member is

Y
〈*;.;.�〉−−−→Y1 × Z × Y ′ �×1Y ′−−−→Y2 × Y ′ (1Y2×.m)◦�−−−−−→U

(with an extra arrow to the right in case i=1). This rule is subject to the proviso that
. cannot be a projection. Let b be any component of �; we 5rst assume that b� is the
identity (and then reduce to this case). We have that

T (〈*; .〉; 〈�; �Z〉; b) =f;(b)(T (〈*; .〉; 〈�; �Z〉))

=f;(b)(T (〈*; .〉; �)∪T (.; 1Z));
where ∪ refers to multiset union (notice that we used (∗) above in the missed inter-
mediate passages). We do not know what is ((1 × .m) ◦ b)�: let us then consider the
worst case (it is identity) and proceed as follows by using (∗) again:

T (〈*; .; .�〉; �× 1; (1× .m) ◦ b)6f;((1×.m)◦b)(T (〈*; .; .�〉; �× 1))

= f;((1×.m)◦b)(T (〈*; .〉; �) ∪ T (.�; 1Y ′)):

This tree is indeed smaller than f;(b)(T (〈*; .〉; �)∪T (.; 1Z)) (by the 5rst clause of the
de5nition of trees order): in fact, by Lemma 9.5 we have T (.; 1Z)¿T (.�; 1Y ′).
Let us now turn to the general case (b� may not be identity). In such a case, let us

transform both

Y
〈*;.〉−→Y1 × Z

〈�;�Z〉−→ Y2 × Z b→X

and

Y
〈*;.;.�〉−−−→Y1 × Z × Y ′ �×1Y ′−−→Y2 × Y ′ (1Y2×.m)◦b−−−−−→X;

by ⇒∗
� -rewriting and then apply (∗). Suppose that we have Y2 =Y ′

2×Y ′′
2 and Z =Z ′×Z ′′

(consequently, . and � are also splitted as .′; .′′ and �′; �′′, respectively); let b factor
as follows:

Y ′
2 × Y ′′

2 × Z ′ × Z ′′ b�−→Y ′′
2 × Z ′′ bm−→X;

where b� is the obvious projection. We then have for the 5rst member

〈*; .〉; 〈�; �Z〉; b⇒∗
� 〈*; .′; .′′〉; 〈�′′; �Z′′〉; bm:

140 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Let us also split .m : Y ′ →Z ′×Z ′′ as /′; /′′ (as a consequence, from 〈.′; .′′〉= .= .� ◦
.m, we have in particular .� ◦ /′′ = .′′); an analogous transformation on the second
member gives

〈*; .; .�〉; �× 1; (1× .m) ◦ b ⇒∗
� 〈*; .′; .′′; .�〉; �′′ × 1; (1× /′′) ◦ bm:

Let us now factorize /′′ = /′′� ◦ /′′m; from .� ◦ /′′ = .′′, by uniqueness of factorizations,
we get .′′� = .� ◦ /′′� and .′′m= /′′m; thus, by further ⇒∗

� -rewrite steps, we get

〈*; .′; .′′; .�〉; �′′ × 1; (1× /′′) ◦ bm ⇒∗
� 〈*; .′; .′′; .′′� 〉; �′′ × 1; (1× .′′m) ◦ bm:

Now

〈*; .′; .′′〉; 〈�′′; �Z′′〉; bm
and

〈*; .′; .′′; .′′� 〉; �′′ × 1; (1× .′′m) ◦ bm;

are the 5rst and second member of an (Ri
p)-rewrite rule and (bm)� is the identity. We

can thus reduce the above particular case, except that now there is no guarantee that
.′′ is not a projection: this further case has to be considered separately. However, in
such a case, 1× .′′m is the identity, .′′� = .′′ and all that we need is to prove that trees
corresponding to the paths

Y
〈*;.′ ;.′′〉−−−−→Y1 × Z ′ × Z ′′ 〈�′′ ;�Z′′ 〉−−−−→Y ′′

2 × Z ′′;

Y
〈*;.′ ;.′′ ;.′′〉−−−−−→Y1 × Z ′ × Z ′′ × Z ′′ �′′×1−−−→Y ′′

2 × Z ′′;

are the same. Indeed, they are both equal to T (〈*; .′; .′′〉; �′′)∪T (.′′; 1Z′′) (again by
(∗)).
Proof of (2) for rule (Ri

p): By the previous point, we have that the multiset of trees
corresponding to the 5rst member of the rule is greater or equal to the multiset of trees
corresponding to the second member. This does not prevent them from being equal, in
some cases; in such cases it is suRcient to observe that

T (〈*; .〉; 〈�; �Z〉) ¿ T (〈*; .; .�〉; �× 1Y ′)

by Lemma 9.5.

From the previous section results, we immediately get:

Corollary 9.8. R+ is canonical.

We now compare rewrite systems R+ and R: it will turn out that they are essentially
the same, hence in particular, canonicity of R will follow.

Lemma 9.9. If K⇒∗
R+ K ′; then there exists K ′′ such that K ′ ⇒∗

R+ K ′′ and K⇒∗
R K

′′.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 141

Proof. The statement is proved by noetherian induction on K (with respect to the order
¿ among paths which has been used in the termination proof), by using Lemma 7.1
and conMuence of R+.

Lemma 9.10. If K⇒∗
R K

′; then K⇔∗
R+ K ′.

Proof. The statement is again proved by noetherian induction on K . The only relevant
case is when we have K⇒R K ′ by a single (Ri

p)-rewrite step, which is covered by
Lemma 7.6(iii).

We can 5nally complete the

Proof of Theorem 5.3. As we know from Proposition 9:7 that R is terminating, we
only have to prove its conMuence. If we have that K⇒∗

R K
′ and K⇒∗

R K
′′, then

K ′ ⇔∗
R+ K ′′ by Lemma 9.10; as R+ is canonical, K ′ and K ′′ both ⇒∗

R+-rewrite to
their common normal form N . Now it is suRcient to apply Lemma 9.9.

10. Examples

In this Section, we illustrate our results in concrete cases. First, we gave in
Section 5 a de5nition of constructibility for theories referring to their associated Law-
vere categories. Now we give a useful equivalent purely symbolic de5nition:

Proposition 10.1. A theory T ′ = 〈�′; Ax′〉 is constructible over a theory T = 〈�; Ax〉
i; T ′ is a conservative extension of T and there exists a class E′ of �′-terms such
that:
(i) E′ contains the variables and is closed under renamings of terms;
(ii) for every �′-term t(x1; : : : ; xn) there are a k-minimized �-term u(x1; : : : ; xk) and

pairwise distinct (with respect to provable identity in T ′) �′-terms

v1(x1; : : : ; xn); : : : ; vk(x1; : : : ; xn)

belonging to E′ such that

�T ′ t = u(v1; : : : ; vk);

(iii) whenever u; u′ are k (resp. k ′)-minimized �-terms and we have

�T ′ u(v1; : : : ; vk) = u′(v′1; : : : ; v
′
k′)

for pairwise distinct (wrt T ′-provability) terms v1; : : : ; vk ∈E′ and pairwise distinct
(wrt T ′-provability) terms v′1; : : : ; v

′
k′ ∈E′; then k = k ′ and there is a permutation

' acting on the k-elements set; such that

�T ′ v′'(i) = vi (i=1; : : : ; k) and �T u′ = u(x'(i)=xi):

142 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Proof. We give the relevant hints and leave the details to the reader. If T ′ is con-
structible over T , in T′ there is a left extension (E′;M) of the standard weak factor-
ization system (E;M) of T. In order to 5nd E′ ful5lling the above requirements it is
suRcient to take the set of terms t(x1; : : : ; xn) such that the equivalence class of t (seen
as an arrow X n→X in T′) belongs to E′.

Vice versa, suppose that a class E′ of �′-terms ful5lling the above requirements is
given. We de5ne a left extension (E′;M) of the standard weak factorization system
(E;M) of T by taking as E′ the set of arrows 〈e1; : : : ; em〉 : X n→Xm such that the ei
are represented by distinct (up to provable identity in T ′) terms in E′.

We say that T ′ is e;ectively constructible over T iL it is constructible over T and
moreover for every term t, terms u; v1; : : : ; vk satisfying (ii) above are provided by a
total recursive function. As an immediate corollary to our main Theorem 5.3, we have:

Theorem 10.2. Suppose that T1; T2 are both e;ectively constructible over T0 and that
word problems for T1; T2 are solvable; then word problem for T1 +T0 T2 is solvable
too.

Proof. By Theorem 3.1, Lemma 5.2 and Theorem 5.3, it is suRcient to observe that
applicability of rules of R is eLective whenever a path is given as a list of terms,
representing their respective equivalence classes (in order to be able to compare normal
forms, we also need the obvious fact that it is eLectively recognizable whether two
paths are alphabetic variants of each other).
For rules (Ri

c) we need to be able to recognize whether a certain arrow i comes from
T0: this happens iL �e ∈E0 (by uniqueness of e=� factorization and by the fact that
E0 ⊆ Ei), a fact which is eLective by appealing to the solvability of word problem for
Ti. 18 For rule (R�) we already observed in Section 5 that �-extraction is eLective in
case word problem is decidable. For rule (R�), one just uses eLective constructibility,
together with the fact that the e=� factorization of 〈a1; : : : ; an〉 can be reduced to the
e=� factorization of components, see Lemma 7.2. Finally, in order to apply rules (Ri

p)
(and checking the relative proviso) it is suRcient to be able to recognize projections,
a fact which is reduced once again to solvability of the input word problems.
Finally, we show that it is eLectively recognizable whether two paths are alphabetic

variants of each other. In case they are both in normal form (which is the relevant
case), there is a quick procedure for that. First, for �1; : : : ; �k to be an alphabetic variant
of �1; : : : ; �k′ we need k = k ′; secondly, as the components of �1 and �1 are distinct
(because paths are in normal form and (R�) does not apply), it is easily computed—
provided it exists—the renaming &1 such that �1 ◦&1 = �1; at this point, we recursively
need to check whether &−1

1 ◦ �2; : : : ; �k is an alphabetic variant of �2; : : : ; �k and so on.

18 Clearly if the term t represents a : X n →X , then a is a projection iL t collapses to (i.e. it is provably
equal to) a variable xi (for i=1; : : : ; n); a similar observation applies to a vector of terms.

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 143

Example 1. Commutative rings with unit are constructible over abelian groups. In fact,
terms t(x1; : : : ; xn) in the theory of abelian groups can be represented as homogeneous
linear polynomials in the indeterminates x1; : : : ; xn with integer coeRcients (they are
minimized iL no coeRcient is zero); terms in the theory of commutative rings with
unit can be represented as arbitrary polynomials with integer coeRcients. Class E′

needed for constructibility is formed by monic monomials (1 included): in fact, every
integer polynomial can be uniquely expressed as a linear combination (with integer
non-zero coeRcients) of distinct monic monomials.

Example 2. Let T be the theory of join-semilattices with zero and let T ′ be the theory
of semilattice-monoids we had seen in the Introduction. T ′ is constructible over T :
class E′ is given by terms of the form xi1 ◦ · · · ◦ xik (for k ¿ 0).

Example 3. The theory of abelian groups endowed with an endomorphism f is con-
structible over the theory of abelian groups: class E′ is given by terms of the form
fn(xi) (for n¿ 0).

Example 4. DiLerential rings (i.e. rings endowed with a diLerentiation operator @ sat-
isfying usual laws for derivatives of sums and products) are constructible over com-
mutative rings with unit: class E′ is given by terms of the form {@kxi} (for k ¿ 0).

Notice that in the above examples the smaller theory is not collapse-free. Additional
examples of diLerent nature can be found in [3, 4]. In order to build counterexamples,
a useful tool is given in the following proposition (clearly inspired from [3]):

Proposition 10.3. If T ′ is constructible over T; then the T -reduct of any free T ′-
algebra is a free T -algebra (on a bigger set of generators).

Proof. Let FT ′(G) be the free T ′-algebra on the set G of generators; we show that its
T -reduct is free over the set of elements of the form u(g1; : : : ; gn), where u(x1; : : : ; xn)∈
E′ and g1; : : : ; gn are distinct elements from G. Clearly, the claim follows from the case
in which G is 5nite. To have a quick proof we translate everything in the terminology
of functorial semantics.
Let (E;M) be the standard weak factorization system of T and let (E′;M) be its

left extension to T′. For any functor F having domain T′ let us call |F | its restriction
to T; for any type Y let E′(Y; X) be T′(Y; X)∩E′. Fix a type Y and a T -algebra
A :T → Set; we need to 5nd a bijective natural correspondence between set-theoretic
functions

TN : E′(Y; X) → A(X)

and natural transformations

N : |T′(Y;−)| → A:

144 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Given N , let TN be the restriction of NX to E′(Y; X) in the domain. Conversely, if TN
is given, we de5ne for every Z and � :Y → Z

NZ(�) = A(��)(TN (e1); : : : ; TN (ek));

where �e= 〈e1; : : : ; ek〉.

Counterexample 5. Boolean algebras are not constructible over join-semilattices with
zero. In fact, the free join-semilattice with zero over an in5nite set G of generators
is just the set of 5nite subsets of G; in this algebra, clearly the strict part of the
partial order relation associated with the join is terminating. It is not so however in
the countably generated free Boolean algebra, which is atomless.

Counterexample 6. Modal algebras (also K4-modal algebras, interior algebras, diago-
nalizable algebras, etc.) are not constructible over Boolean algebras: in fact, in such va-
rieties, 5nitely generated free algebras are atomic and in5nite, 19 whereas free Boolean
algebras are either 5nite or atomless.
Proposition 10.3 can be inverted, thus giving another characterization of

constructibility: 20

Proposition 10.4. Let T ′ be a conservative extension of T . We have that T ′ is con-
structible over T i; the T -reduct of any T ′-free algebra FT ′(G′) is a free T -algebra
over a set of generators G such that
(i) G′ ⊆ G;
(ii) G is invariant under the T ′-isomorphisms of FT ′(G′) which are the extension of

a bijection on the set of free generators G′.

Proof. The “only if” side is covered by Proposition 10.3 and its proof. For the “if ”
side, take as G′ a countable set like {g1; g2; : : :}. Let E′ be the set of terms e(x1; : : : ; xn)
such that e(g1=x1; : : : ; gn=xn)∈G (here we made a slight abuse of notation, clearly
e(g1=x1; : : : ; gn=xn) means the result of the function interpreting the term e in FT ′(G′)
applied to g1; : : : ; gn). Notice that for all a∈G there is e(x1; : : : ; xn)∈E′ such that
a= e(g1; : : : ; gn). We show that E′ matches all requirements from Proposition 10.1.
Clearly E′ is closed under renamings and contains variables by (i) and (ii). Let us

5rst show uniqueness of factorizations. Suppose that we have k (resp. k ′)-minimized
terms (in the signature of T) u; u′ and that we have

(1) �T ′ u(v1; : : : ; vk) = u′(v′1; : : : ; v
′
k′)

for pairwise distinct (wrt T ′-provability) terms v1; : : : ; vk ∈E′ and pairwise distinct (wrt
T ′-provability) terms v′1; : : : ; v

′
k′ ∈E′. Notice that if two terms in E′ are distinct (wrt

T ′-provability) and if we “replace” in them the variables xj by the corresponding free

19 These are well-known results. For a proof making use of normal forms, see [8].
20 It is an interesting question whether there exists a more conceptual characterization of constructibility

(e.g. in terms of monads).

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 145

generators gj, then we get distinct elements of FT ′(G′). Let w1; : : : ; ws be the terms
which are common to the lists v1; : : : ; vk and v′1; : : : ; v

′
k′ . For simplicity, let us also

rearrange such lists as

v1; : : : ; vk = w1; : : : ; ws; r1; : : : ; rl;

v′1; : : : ; v
′
k′ = w1; : : : ; ws; r′1; : : : ; r

′
l′ :

Let us call a1; : : : ; as; b1; : : : ; bl; b′1; : : : ; b
′
l′ the elements of FT ′(G′) which we get by,

respectively, “replacing” in w1; : : : ; ws; r1; : : : ; rl; r′1 ; : : : ; r
′
l′ the variables by the corre-

sponding free generators. From (1), we get

u(a1; : : : ; as; b1; : : : ; bl) = u′(a1; : : : ; as; b′1; : : : ; b
′
l′);

as the ai; bj; b′j′ ’s are all distinct elements of G which freely generates the T -reduct,
we can abstract them by distinct variables thus getting

�T u(x1; : : : ; xs; y1; : : : ; yl) = u′(x1; : : : ; xs; z1; : : : ; zl′);

which cannot be (unless l= l′ =0, yielding what we need) because u and u′ are
minimized.
Let us now show the existence of factorizations. Take any T ′-term t(x1; : : : ; xn); as

the T -reduct of FT ′(G′) is free over G, there is T -term s(x1; : : : ; xk) and a1; : : : ; ak ∈G
such that t(g1; : : : ; gn)= s(a1; : : : ; ak). Without loss of generality, we can furthermore
assume that a1; : : : ; ak are distinct and that s is k-minimized. As a1; : : : ; ak are distinct
and in G, there are pairwise distinct (up to T ′-provability) terms r1; : : : ; rk ∈E′ such
that (we suppose that r1; : : : ; rk contain at most the variables x1; : : : ; xn; : : : ; xn+m)

aj = rj(g1; : : : ; gn; : : : ; gn+m)

for all j=1; : : : ; k. Being the gi’s free generators, we get

�T ′ t(̃x) = s(r1(̃x; ỹ); : : : ; rk (̃x; ỹ));

where we used the abbreviations x̃ for x1; : : : ; xn and ỹ for xn+1; : : : ; xn+m. Although
s is minimized and r1; : : : ; rk are distinct terms from E′, this is not yet good, be-
cause we must eliminate the extra variables ỹ (they are not in principle allowed by
Proposition 10.1(ii)). Let z̃ be a renaming of ỹ (away from ỹ); we get

�T ′ t(̃x) = s(r1(̃x; z̃); : : : ; rk (̃x; z̃))

hence,

�T ′ s(r1(̃x; ỹ); : : : ; rk (̃x; ỹ)) = s(r1(̃x; z̃); : : : ; rk (̃x; z̃)):

As s is minimized and r1(̃x; ỹ); : : : ; rk (̃x; ỹ) (consequently, even r1(̃x; z̃); : : : ; rk (̃x; z̃)) are
pairwise distinct up to provable identity in T ′, uniqueness of factorization just proved

146 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

denotes that we must have

�T ′ ri (̃x; ỹ) = ri (̃x; z̃)

for all i=1; : : : ; k (possibly up to a permutation). Replacing all the ỹ by ground terms
c̃ (we may use the same ground term for all of them), we get

�T ′ ri (̃x; c̃) = ri (̃x; z̃) = ri (̃x; ỹ):

Now ri (̃x; c̃) is provably equal to ri (̃x; ỹ), hence as the latter is in E′ so the former is
(E′ is closed under provably identical terms according to its de5nition). For the same
reason, all the ri (̃x; c̃) are pairwise distinct (with respect to provable identity in T ′)
because the ri (̃x; ỹ) are. We 5nally get

�T ′ t(̃x) = s(r1(̃x; c̃); : : : ; rk (̃x; c̃))

which is a factorization matching all the requirements from Proposition 10.1(ii).

Let us now give examples of normalization through our rewriting system R. In order
to apply normalization to paths of equivalence classes of terms, algebraic notation for
rules must be converted into ordinary symbolic notation. This is not diRcult (all needed
information is contained in Section 2 above), however, some care is needed. Suppose
that e.g. you want to apply products rule to the path

X 3 〈t;u〉−→X 2 〈v;x2〉−→ X 2 w→X:

First u(x1; x2; x3) has to be minimized (this is the factorization .= .� ◦.m of Table 1 of
Section 5). Suppose that it minimizes as u′(x1; x3); the pair of projections 〈x1; x3〉 stays
in the 5rst position, whereas u′(x1; x2) is moved to the third position. However, the term
moved to the last position for composition with w(x1; x2) (the arrow 1×.m of Table 1),
requires a renaming away from x1 and consequently it is the pair 〈x1; u′(x2; x3)〉. Thus,
the products rule rewrite step produces

X 3 〈t;u;x1 ;x3〉−−−−→X 4 〈v;x3 ;x4〉−−−→X 3 w(x1 ;u
′(x2 ;x3))−−−−−−−→X:

In the examples below, we consider the following theories, leaving the reader to check
that T1; T2 are both constructible over T0 (for the choice of appropriate E1 and E2 just
imitate Examples 1 and 3 above):

T0 = Abelian groups with period 2:

T1 = BBoolean rings:

T2 = T0 + aan idempotent endomorphism f (i:e: f(f(x1)) = f(x1)):

Example. Let us consider the following instance of word problem in the theory
T1 +T0 T2:

f(x1 · x2 + x2 + f(x2))
?=f(x1 · x2):

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 147

Let us rewrite a splitting path of 5rst member in R.

X 2 〈x1 ;x2 ;f(x2)〉−−−−−−→X 3 x1·x2+x2+x3−−−−−−−−−−−−−−−→
⇓R� (see (F1) of Table 4)

X
f(x1)−→ X

X 2 〈x1 ;x2 ;f(x2)〉−−−−−−→X 3 〈x1·x2 ;x2 ;x3〉−−−−−→
⇓(R2p)

X 3 f(x1+x2+x3)−−−−−−→X

X 2 〈x1 ;x2 ;f(x2);x2〉−−−−−−−→X 4 〈x1·x2 ;x2 ;x4〉−−−−−−−−−−−−−−−→
⇓R� (see (F2) of Table 4)

X 3 f(x1+x2+f(x3))−−−−−−−−→X

X 2 〈x1 ;x2 ;x2〉−−−−→X 3 〈x1·x2 ;x2 ;x3〉−−−−−→
⇓(R1c)

X 3 f(x1+x2+f(x3))−−−−−−−−→X

X 2 〈x1·x2 ;x2 ;x2〉−−−−−→X 3 f(x1+x2+f(x3))−−−−−−−−−−−−−−−→
⇓R� (see (F3) of Table 4)

X

X 2 〈x1·x2 ;x2〉−−−−→X 2 f(x1+x2+f(x2))−−−−−−−−−−−−−−−→
⇓R� (see (F4) of Table 4)

X

X 2 x1·x2−−−→X
f(x1)−→ X;

where the last path corresponds to the splitting path of the term f(x1 · x2).

Example. Let us consider the following instance of word problem for T1 +T0 T2:

f(x1) · f(x2) + f(x1) · (f(x1) + f(x2))
?=f(x1):

We rewrite the 5rst member as follows.

X 2 〈f(x1);f(x2);f(x1)+f(x2)〉−−−−−−−−−−−−−−−−−−−→
⇓R� (see (F1) of Table 4)

X 3 〈x1·x2 ;x1·x3〉−−−−−→X 2 x1+x2−−−→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 〈x1 ;x2 ;x1+x3〉◦〈x1·x2 ;x1·x3〉−−−−−−−−−−−−−→
=

X 2 x1+x2−−−→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 〈x1·x2 ;x1·(x1+x2)〉−−−−−−−−−−−−−−−→
⇓R� (see (F6) of Table 4)

X 2 x1+x2−−−→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 〈x1·x2 ;x1〉−−−−→
=
X 2 〈x1 ;x1+x2〉◦(x1+x2)−−−−−−−−−→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 〈x1·x2 ;x1〉−−−−−−−−−−−−−−−→
⇓R� (see (F7) of Table 4)

X 2 x1+x1+x2−−−−→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 〈x1·x2 ;x1〉◦x2−−−−−−→
=

X x1→X

X 2 〈f(x1);f(x2)〉−−−−−−→X 2 x1−→
⇓(R2c)

X x1→X

X 2 f(x1)−→ X;

where the last path coincides with the second term of the problem.

148 C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149

Table 4
Examples of factorizations

To conclude, let us mention some possible directions for future research. Of course,
there is the problem of extending our results to combined uni5cation. Secondly, one
may try to generalize combined word problems to the case in which the de5nition of
constructibility is related to a weak factorization system of the smaller theory which
may not be the standard one (that is, class E0 is supposed to be larger than the class of
projections). Results from Section 6 are still valid, however it is not clear what happens
with critical pairs arising from superpositions with products rule. Such enlargements
of the de5nition of constructibility are important because they could cover additional

C. Fiorentini, S. Ghilardi / Theoretical Computer Science 294 (2003) 103–149 149

mathematically relevant examples. Finally, although quite diRcult, it would be essential
to be able to deal with theories extending T1+T0T2 to further axioms. In principle, as
our combination algorithm is obtained through rewriting, one may try to apply some
form of Knuth–Bendix completion to get decision procedures in such situations too.

Acknowledgements

We wish to thank F. Baader and C. Tinelli for the fruitful e-mail correspondence
we had with both of them after the submission of the present paper. We also thank
the anonymous referee for his careful comments.

References

[1] H. AndrUeka, UA. Kurucz, I. NUemeti, I. Sain, A. Simon, Causes and remedies for undecidability in
arrow logics and in multi-modal logics, in: M. Marx, L. Polos, M. Masuch (Eds.), Arrow Logic and
Multi-modal logic, CSLI Publ., Stanford, CA, 1996, pp. 63–99.

[2] F. Baader, T. Nipkow, Term Rewriting and all that, Cambridge University Press, Cambridge, 1998.
[3] F. Baader, C. Tinelli, Deciding the word problem in the union of equational theories sharing constructors,

in: P. Narendran, M. Rusinowitch (Eds.), Rewriting Techniques and Applications (Trento, 1999),
Springer, Berlin, 1999, pp. 175–189.

[4] F. Baader, C. Tinelli, Deciding the word problem in the union of equational theories, Inform. and
Computation, Special issue of selected papers from RTA’99, in preparation.

[5] E. Domenjoud, F. Klay, C. Ringeissen, Combination techniques for nondisjoint equational theories, in:
A. Bundy (Ed.), Proc. CADE-12, Lecture Notes in Arti5cial Intelligence, Vol. 814, Springer, Berlin,
1996, pp. 48–64.

[6] C. Fiorentini, S. Ghilardi, Path Rewriting and combined word problems, Technical Report 250-00,
Dipartimento di Scienze dell’Informazione, UniversitVa degli Studi di Milano, 2000, Available at
http:==gongolo.usr.dsi.unimi.it=∼fiorenti=download=tr 250-00.ps.gz.

[7] P.J. Freyd, G.M. Kelly, Categories of continuous functors. I, J. Pure Appl. Algebra 2 (1972) 169–191.
[8] S. Ghilardi, An algebraic theory of normal forms, Ann. Pure Appl. Logic 71 (3) (1991) 189–245.
[9] S. Ghilardi, G.C. Meloni, Modal logics with n-ary connectives, Z. Math. Logik Grundlag. Math. 36 (3)

(1990) 193–215.
[10] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. USA. 50 (1963) 869–

872.
[11] C. LYuth, Categorical term rewriting: monads and modularity, Ph.D. Thesis, University of Edinburgh,

1997.
[12] T. Nipkow, Combining matching algorithms: the regular case, J. Symbolic Comput. 12 (6) (1991)

633–653.
[13] D. Pigozzi, The join of equational theories, Colloq. Math. 30 (1974) 15–25.

