
A Constructive Object Oriented Modeling

Language for Information Systems

Mario Ornaghia,1 Marco Beninib Mauro Ferrarib

Camillo Fiorentinia Alberto Momiglianoa

a Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
via Comelico 39, 20135 Milano, Italy

b Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria,
via Mazzini 5, 21100 Varese, Italy

Abstract

One of the central aspects in an Information System is the meaning of data in the external world and
the information carried by them. We propose a Constructive Object Oriented Modeling Language
(COOML) for information systems, based on a constructive logic of pieces of information. The
focus is on the definition of a data model suitable for organizing the information stored in OO
systems. The underlying constructive logic supports a correct way of storing, exchanging and
elaborating information.

Keywords: Object Oriented Data Models, Constructive Logics.

1 Introduction

A software information system S allows users to store, retrieve and process
information about the external world, typically a data base. We can differ-
entiate two separate aspects in the data elaborated by S: the first concerns
data types, while the second is related to the information on the external “real
world” carried by the data. Precisely, a data type is a set of data together with
the associated manipulations where the focus is on operations. In contrast,
the information carried by the data stored in S is strongly related to their

1 Contacting author: ornaghi@dsi.unimi.it

Electronic Notes in Theoretical Computer Science 153 (2006) 55–75

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.08.006

http://www.elsevier.com/locate/entcs

meaning in the real world. The need for properly treating data according to
their meaning is becoming increasingly important, due to the wide quantity
of information that is exchanged in the Internet [6,15]. Quoting [15]: “One of
the recent unifying visions is that of Semantic Web, which proposed semantic
annotation of data, so that programs can understand it, and help in making
decisions [. . .] The scope of semantics-based solutions has also moved from
data and information to services and processes”.

The specification and correct processing of semantically annotated data
is the basic motivation of our work: we propose a Constructive Object Ori-
ented Modeling Language (COOML, in short), where semantical annotations
of data are formalized by a constructive semantics of pieces of information.
This provides us with a data model suitable for OOIS (standing for OO Infor-
mation System) and a constructive logic formalizing correct manipulation and
exchange of annotated pieces of information. We give here a brief explanation
of the main features of COOML, its data model and general architecture.

We distinguish among data types, information types and object types. As
usual, a data type introduces a set of data and of computable operations on
them. In COOML specifications, the choice of the data types is open. They
can be selected depending on the problem domain and on the programming
language adopted for implementing COOML specifications. A datum, say the
integer 2, does not carry any information by itself. To get an information, we
have to associate it with a problem domain sentence, such as “John owns 2
cars”. Structured sentences refer to structured pieces of information. For ex-
ample, the sentence “I know the number of cars of Ted and John” corresponds
to a data structure associating one integer with Ted and another with John.

The data model of COOML is based on information types, which we define
as a type of structured pieces of information related to a type of structured
sentences. The elements of an information type are called information val-
ues. COOML structured sentences are logical sentences of the constructive
logic E∗

cooml (for brevity denoted by E∗
c) explained in Section 4, a predicative

extension of the logic E∗ presented in [12].

We can formalize classes and objects by a special kind of E∗
c -formulas. As

usual, objects have dynamic life time and state; classes group objects with
common properties and methods. Our data model formalizes object states as
information values that can be interpreted in terms of the external world,
whose intended meaning (that is, of information values) is reflected in the
COOML specification of the corresponding classes. This allows us to auto-
matically extract pieces of information represented by the current state of an
OO system in a human readable way.

Since the logic E∗
c is constructive, a proof of S1 �E∗

c
S2 in the problem

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7556

Dictionary and

world properties

(meaning, ontology)

Pieces of information

(data structure)

COOML

Specification

real world

computation

programs DB
....

LOGIC
domain logic constructive

Fig. 1. COOML Architecture

domain implicitly contains an algorithm to correctly transform the information
values for a specification S1 into the information for another specification S2.
Thus, the inference engine of E∗

c supports information extraction according to
different information types (or views).

The possibility of dealing with with multiple views and different meanings
of information values is enhanced by the multi-layer architecture of COOML,
illustrated in Figure 1. The computational layer includes the data type level,
supporting basic data and operations, and the information type level, sup-
porting computations on information values. A COOML specification level
lays a bridge between the computation tower and the problem domain tower,
i.e., it enables us to understand the information values in terms of the problem
domain. On the top we have the COOML logical level, which allows us to
reason on specifications. COOML is open with respect to the problem domain
logic, i.e., reasoning on the problem domain can be based on different logics,
or it can even be informal. We do not commit here to a fixed language for
the problem domain, but, for the sake of concreteness, we sometimes use the
JML specification style [3], denoted by the keyword jml.

We present COOML using a Java-like (JL) syntax. In Section 2, we explain
the semantics of pieces of information and we introduce the language. In
Section 3, we show how a COOML specification translates into a set of Java
classes. In Section 4 we present a natural deduction calculus for E∗

c . We then
conclude with some comments about directions of future work.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 57

2 The Data Model of COOML

In this section, we explain the data model of COOML. We treat the various
aspects separately. In Subsection 2.1, we explain the minimal requirements
to be satisfied by the problem domain logic. Then, in Subsection 2.2, we
introduce information types and the related semantics. Next (Subsection 2.3),
we present class specifications in COOML and our approach to describe system
snapshots (Subsection 2.4). Finally, Subsection 2.5 introduces inheritance.

2.1 Problem Logics and Meaning

The link between the data stored in a software system and their meaning in the
“real world” is the result of the abstractions performed in the analysis phase.
Typically (see e.g., [8]), the analysis has to produce a dictionary containing the
abstract concepts used in specifications and choose the data types (possibly
depending on the implementation language). The analysis phase should result
in a (formal or informal) language to talk about the world and its states. We
call problem formulas the sentences of this language. A problem formula F
may depend on variables with sorts from the chosen data types and it can
be instantiated by grounding substitutions. World-states can be formalized
as classical interpretations. However, other problem logics can be used, and
even informal interpretations are allowed. We only need to assume that the
instances Fσ can be understood by the final user as properties that may hold or
not in a world-state w. In problem formulas we may have expressions related
to the implementation language. Since we are interested in an OO approach,
COOML introduces a specific syntax to deal with objects and classes. There
is a special predefined data type Obj for object-identities. Constants of sort
Obj identify objects and class predicates of the form o.C(), with the following
meaning: o.C() holds in a world-state w iff o is a live object of w. Since
objects are rarely isolated entities, we also use class predicates of the form
o.C(e1, . . . , en), linking an object o of class C to its external environment by
means of the environment variables e1, . . . , en.

Example 2.1 As an example, we consider a simple “cash-register problem
domain”. The dictionary provides terms such as:

• Cash Register, the class of the cash-register objects, with the class predicate
c.CashRegister().

• Receipt, the class of the receipt objects; since a receipt r is drawn by a
cash-register c, we introduce the class predicate r.Receipt(c).

• Item, the class of the items of a receipt, with the (self-explanatory) class
predicate i.Item(r) and the predicate i.inCatolog() (the item i is available).

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7558

• Cost, the cost of an item excluding VAT. We introduce the informal ex-
pression “\cost : float is the cost of \item : Obj”, where “\ . . .” indicates a
variable in an informal sentence.

• Price, the price of an item including VAT. We introduce the informal ex-
pression “\price : float is the price of \item : Obj”.

• Grand total, the total amount of a receipt. We introduce the informal
expression “\total : float is the grand total of \receipt : Obj”.

During the analysis, one also has to devise general properties of the world
that are of interest for the application at hand. In our example, we state
that the price p of an item is obtained from its cost c by the problem formula
p = c + c ∗ V AT/100 and that the grand total of a receipt is the sum of the
prices of its items. Although informal, the previous statements are rigorous
and enable us to reason about the problem domain. We call problem domain
logic the overall (formal or informal) result of the analysis phase, including the
language of the problem formulas and the general problem domain properties.

2.2 COOML Specifications

In COOML, objects contain information values that are structured according
to specifications (SP). We use a Java-like notation; τ x denotes a list of distinct
variables x1, . . . , xn of type τ1, . . . , τn respectively, and similarly for c : τ . The
syntax of SP is defined as follows:

AT ::= PF | �SP

BUP ::= for{ τ x | G(x) : SP}
SP ::= AT | BUP | and{SP . . . SP} | or{SP . . . SP} | exi{ τ x : SP}

Atoms (AT) consist of arbitrary problem formulas PF and �-formulas. The
latter (corresponding to the T-formulas of [12]) serve the purpose of em-
bedding classical truth in our constructive setting. In our language, as in
JML, universal quantification is bounded (bounded universal property (BUP)).
The generator G(x) is a particular problem formula, true for finitely many
ground instances c1, . . . , cm of closed terms; we call them the terms gen-
erated by G(x). We assume that terms generation is decidable, and this
stems from the analysis phase. We write exi{τ x : P1 . . . Pn} instead of
exi{τ x : and{P1 . . . Pn}} and a similar abbreviation for a for{. . . : and{. . .}}
specification; exi{ τ ! x : P} denotes unique existence.

We now address the informal semantics of atoms. The only information on
a world-state w carried by a problem formula Aσ is the elementary information
value true. It simply means that Aσ holds in w as explained in the previous
section. For a �-formula, �(or{P1 . . . Pn})σ holds in a world-state w iff at
least one of the Pjσ holds (in w), �(and{P1 . . . Pn})σ holds iff all the Pjσ hold,

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 59

�(exi{τ x : P (x)})σ holds iff P (x)δ holds for a reassignment δ of x in σ, and
�(for{τ x |G(x) : P (x)})σ holds in w iff P (x)δ holds for all the reassignments
δ of x such that G(x)δ holds.

For a specification P , the information type it(P) of P is defined as follows,
where information values are lists built starting from the primitive data types
of the problem domain:

it(A) = { true }, where A is an AT

it(and{P1 . . . Pn}) = { (i1, . . . , in) | ij ∈ it(Pj), 1 ≤ j ≤ n }
it(or{P1 . . . Pn}) = { (k, i) | 1 ≤ k ≤ n and i ∈ it(Pk) }

it(exi{τ x : P}) = {(c, i) | c : τ and i ∈ it(P)}
it(for{τ x | G : P}) = { ((c1, i1), . . . , (cm, im)) |

m ≥ 0 and, for 1 ≤ j ≤ m, cj : τ and ij ∈ it(P) }
That is, information types shape the information values according to the
logical structure of the corresponding specification. In particular, an infor-
mation value for a BUP is an association list L = ((c1, i1), . . . , (cm, im)),
where c1, . . . , cm are the tuples of terms generated by G(x). We denote by
dom(L) = {c1, . . . , cm} the domain of L. We point out that it(P) does not
depend on the free variables of P , i.e., it(P) = it(Pσ) for every substitution
σ.

A specification P gives meaning to the information values that belong to
it(P). A piece of information is a pair i : P , with i ∈ it(P). For every
ground substitution σ, the meaning of i : Pσ in a world-state w is given by
the relation w ||= i : Pσ (i : Pσ is true in w) defined as follows:

w ||= true : Aσ iff Aσ holds in w, where A is an AT

w ||= (i1, . . . , in) : and{P1 . . . Pn}σ iff w ||= ij : Pjσ, for all j = 1, . . . , n

w ||= (k, i) : or{P1 . . . Pn}σ iff w ||= i : Pkσ

w ||= (c, i) : exi{τ x : P (x)}σ iff w ||= i : P (c)σ

w ||= L : for{τ x | G(x) : P (x)}σ iff (c ∈ dom(L) iff G(c)σ holds in w)

and ((c, i) ∈ L entails w ||= i : P (c)σ)

One can easily check that w ||= i : Pσ implies that �Pσ holds in w. A
structured specification explains the truth of the specification in terms of the
truth of its parts, as shown by the following example.

Example 2.2 In the problem domain of Example 2.1, we can specify a generic
receipt by the following specification S (receipt).
Specification S(receipt):

and{ exi{float total : \total is the grand total of \receipt; }
for{Obj item | item.Item(receipt) :exi{float cost : \cost is the cost of \item; } } }

Let us assume that, for receipt = r31, we have the piece of information

((17.05 true) (((it1)(10 true)) ((it2)(5.5 true)))) : S(r31)

and that the VAT is 10%. We can automatically extract the following human
readable information: 17.05 is the grand total of r31, the items of r31 are

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7560

it1 and it2, the cost of it1 is 10 and the cost of it2 is 5.5 (we point out
that the prices of the items are 11 and 6.05 respectively).

To ensure human readability, the specification dictionary is crucial. It
should also be clear that we can use distinct equivalent dictionaries. This
follows from the fact that, in a piece of information i : P , the information
value i is separated from its meaning. We can associate it with a semantically
equivalent property P ′ with the same information type of P , without changing
the involved information values or methods.

A piece of information i : Ax for a set Ax of closed axioms is a set of pieces
of information iA : A, one for each axiom A of Ax. We say that w ||= i : Ax
iff w ||= iA : A, for every A ∈ Ax. In the next subsection we model the states
of an OO system S by the pieces of information for the axioms defined by S.

2.3 Class Specifications in COOML

In COOML we introduce classes via a o.C(e) class predicate for the problem
domain. The specification of the objects of class C is provided by a class
definition of the following form, where EC is a problem formula, SC is a
specification with name PtyName and MC is a list of methods prototypes,
possibly with pre and post-conditions:

Class C {
env{ τ e | this.C(e) : EC(this, e);}
PtyName : SC(this, e)
MC

}

We call EC the environment constraint of C, since it constrains the possible
objects instantiating the class C, depending on the environment. Its logical
meaning is expressed by the constraint axiom:

ConstrAx(C) : �(for{Obj this, τ e | this.C(e) : EC(this, e) })

We call SC(this , e) the information structure of C, since it describes the struc-
ture and the meaning of the information values carried by the instances of C,
according to the class axiom:

ClassAx(C) : for{Obj this, τ e | this.C(e) : SC(this, e) }

In the sequel, the self-reference this is implicitly universally quantified and
we use PtyName(this , e) for the corresponding formula SC(this , e). An OO
system is (specified by) a set S of class definitions. We associate with it the
set of first order axioms Ax(S) containing the environment constraints of all
classes and class axioms of all the classes of S.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 61

Example 2.3 Let’s go back to the cash-register system of Example 2.1. We
introduce the class specifications corresponding to the UML diagram of Fig-
ure 2.

CashRegister Receipt

total : float

Item

cost : float

code : String

price() : float

0..1

+receipt

0..*

+item

Fig. 2. The cash-register class diagram (A)

Class CashRegister {
CashRegisterPty: or{ exi{Obj !receipt : receipt.Receipt(this); }

The receipt is empty; }
}
Class Receipt {
env{ Obj cash | this.Receipt(cash) : true;}
ReceiptPty: and{for{Obj item | item.Item(this) : item.inCatalog(); }

exi{ float total : \total is the grand total of \this; } }
}
Class Item {
env{ Obj receipt | this.Item(receipt) : this.inCatalog();}
ItemPty: and{exi{ float cost : \cost is the cost of \this; }

exi{String code : \code is the code of \this; }
exi{ float price = price() : \price is the price of \this; } }

/* ensures \result = cost + cost*VAT/100 */
float price();
}

According to CashRegisterPty, a cash-register has just one receipt or an
empty one. A receipt provides the list of its items (the information associated
with the first sub-property of ReceiptPty) and the total, associated with
the second sub-property of ReceiptPty. Finally, an item is described by
its cost, its code and its price (the information associated with ItemPty).
With float price = price(), we indicate that price is not a class attribute,
but the value returned by the method price(). In contrast, cost and code are
attributes. The axiomatisation corresponding to the cash-register system is:

Constraint Axioms
ConstrAx(Receipt) �(for{Obj cash | this.Receipt(cash) : true; })
ConstrAx(Item) �(for{ Obj receipt | this.Item(receipt) : this.inCatalog(); })

Class Axioms

ClassAx(CashRegister) for{ | this.CashRegister() : CashRegisterPty(this)}
ClassAx(Receipt) for{Obj cash | this.Receipt(cash) : ReceiptPty(this, cash)}
ClassAx(Item) for{Obj receipt | this.Item(receipt) : ItemPty(this, receipt)}

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7562

2.4 System States

Assume that PC : ClassAx(C) is the piece of information of a class axiom
ClassAx(C). In fact, PC is a (possibly empty) list of information values of the
form ((o t) i), where o instantiates this and t is a tuple of terms instantiating
the environment variables e. We call PC a population of class C and treat it
as a set. The population P of an OO system is the union of the populations of
its classes. We say that an object o belongs to the population P iff there is an
information value ((o t) i) in P . A population P is finite (an OO system has
a finite set of objects) and each object o of P occurs in a unique information
value ((o t) i) in P (an object belongs to an OO system in a unique copy).

The environment constraints of Ax(S) do not contain information on the
current state because they are closed atoms and the only information carried
by w ||= true : A is that A holds in w. Thus, we leave them as understood,
we identify system states with populations, and we define the semantics of
system states as follows:

Definition 2.4 Let P be a population for an OO system S and w a world-
state. Then w ||= P : S iff:

(i) w ||= PC : ClassAx(C) for every class C of S, where PC is the population
of class C;

(ii) A holds in w for every environment constraint A of Ax(S).

We now show how to generate a population P for the cash-register system
and a world-state wcash for it. We start with a single CashRegister object cr1:

PCashRegister = (cr1 (1 (rcpt1 true)))

The specification CashRegisterPty (cr1) requires rcpt1.Receipt (cr1) to
hold in the world-state wcash we are generating. By ClassAx(Receipt), we
have to build the information value for rcpt1:

PReceipt = (rcpt1 (((it1 (1 true)) (it2 (1 true))) (17.05 true)))

This means that the predicates it1.Item (rcpt1) and it2.Item (rcpt1) hold
in wcash and that 17.05 is the grand total of rcpt1. We have to build the
information values for the items (where VAT is 10%):

PItem =

((it1 ((10 true) ("a15" true) (11 true))
(it2 ((5.5 true) ("b121" true) (6.05 true)))))

Namely, 10 is the cost of it1, "a15" is its code and 11 is its price, and so
on (note that the grand total of rcpt1 is actually the sum of the prices of
it1 and it2). The generated population is the union of the above popula-
tions. Populations correspond to UML object diagrams, also called system
snapshots [5]. For example, a UML snapshot corresponding to the above

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 63

rcpt1

tot= 17.05

it1

cost= 10

code=“a15”

it2

cost= 5.5

code=“b121”

cr1

Fig. 3. UML snapshot

population is shown in Figure 3.

In COOML, snapshots can be printed out in a human readable format,
by means of pieces of information that collate the information values to the
corresponding specifications. For example, a possible print-out of the infor-
mation contained in the previous population is shown in Figure 4. We remark

Receipt rcpt1:

env rcpt1.Receipt(cr1);
for it.Item(this): it1.inCatalog();

it2.Item(this): it2.inCatalog();
exi float 17.05: 17.05 is the grand total of rcpt1

Item it1:

env it1.Item(rcpt1)
exi float 10: 10 is the cost of it1

string "a15": "a15" is the code of it1
float 11: 11 is the price of it1

Item it2:

env it2.Item(rcpt1)
exi float 5.5: 5.5 is the cost of it2

string "b121": "b121" is the code of it2
float 6.05: 6.05 is the price of it2

Fig. 4. Print-out of the population

that the print-out contains more information than the corresponding UML
diagram; indeed, the latter can be derived by the pieces of information, while
the converse does not hold.

The ability to show snapshots is a useful tool in order to understand an OO
model and there are systems enabling snapshot generation (e.g., [7], based on
OCL [17]). In fact, one of the problems with OO specification is consistency.
For example, it is easy to build UML class diagrams with inconsistent multi-
plicities. In our approach, an OO system S is consistent iff it has a consistent
population P , and P is consistent iff there is at least a world-state w such
that w ||= P : S. For example, the previous population is consistent, since
there is a world-state wcash such that the constraint axioms of S hold in wcash
and:

wcash ||= PCashRegister : ClassAx(CashRegister)

wcash ||= PReceipt : ClassAx(Receipt)

wcash ||= PItem : ClassAx(Item)

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7564

In general, the consistency of a population is not decidable. We are study-
ing a partial solution based on extraction of atoms that are assumed to be true
from pieces of information. Provided that the problem domain rules have a
restricted syntax, we can exploit standard results such as consistency of Horn
theories.

2.5 Class Hierarchy

In COOML we can formalize sub-classing with inheritance and (possibly)
methods overriding:

Class C extends C1, . . . , Ck {
env{ τ e | this.C(e) : EC(this, e); x1.C1(t1); . . . ; xk.Ck(tk);}
PtyName : SEC(this, e)
MC

}

where the variables of the terms t1, . . . , tk belong to the environment variables
e. Note that now the environment constraint for C relates its environment e to
the environments of its superclasses C1, . . . , Ck. The specification SEC extends
the specifications inherited from the superclasses. The whole information
structure SC of C is defined as follows:

SC(this , e) = and{SEC(this , e) SC1(x1, t1) . . . SCk
(xk, tk) }

where the SCj
(xj, tj) may recursively inherit from further superclasses.

Example 2.5 Let’s add the class Discounted extending Item (Figure 5) to
the UML diagram of Figure 2:

CashRegister Receipt

total : float

Item

cost : float

code : String

price() : float

Discounted

discount : float

price() : float

0..1

+receipt

0..*

+item

Fig. 5. The cash-register class diagram (B)

Class CashRegister {
CashRegisterPty: . . .
}
Class Receipt {
env{ Obj cash | this.Receipt(cash) : true;}
ReceiptPty: . . .
}
Class Item {
env{ Obj receipt | this.Item(receipt) : this.inCatalog();}

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 65

ItemPty: . . .
}
Class Discounted extends Item {
env{ Obj receipt | this.Discounted(receipt) : this.Item(receipt) ; this.inCatalog();}
DiscountedPty: exi{float discount : \discount is the discount of \this; }
/* ensures \result = (cost - discount) + (cost * VAT /100) */

float price();
}
The axioms for the classes CashRegister, Receipt and Item remain unchanged.
The axioms for the new class are:
ConstrAx(Discounted) � (for{ Obj receipt | this.Discounted(receipt) :

this.Item(receipt); this.inCatalog(); })
ClassAx(Discounted) for{Obj receipt | this.Discounted(receipt) :

and{DiscountedPty(this, receipt); ItemPty(this, receipt); } }

3 Toward Deriving Java Programs

We outline a procedure to extract a skeleton Java program from a COOML
specification. This is similar in spirit to the way UML class diagrams may
generate Java code. To this aim, it is preferable to convert a specification into
a conjunctive normal form

exi{ τ x : and{B1 . . . Bn }}
where each Bj may be an atom, a BUP or a disjunction or{. . . } of atoms.
This form can always be obtained, provided that suitable new classes are
introduced. Every COOML class C in normal form is translated into a Java
class JC , which represents the environment and information values of C and
which has both the methods Info getInfo() to wrap up information values
and Explanation explain(Pty p) to extract human oriented explanations,
as we detail next. The variables τ x become attributes of JC . For every
formula Bj, we produce an attribute as follows: if Bj is a problem formula,
we insert a comment; if it is a BUP, an auxiliary class is generated, while if it
is or{. . .}, an int attribute is introduced. This is illustrated in Figure 6.

Classes generated in this way are regular Java classes that can be easily
understood by a Java programmer; methods can be implemented in the usual
way as well. Each class C has two associated classes CInfo and CPty that
are automatically generated. CInfo is a subclass of an abstract predefined
class Info and allows us to extract the information value i corresponding
to the current state of the Java program. The extracted i has information
type defined by CPty, a subclass of the predefined abstract class Pty, used to
represent COOML properties. More precisely, Pty and Info have several pre-
defined subclasses representing the COOML properties and the corresponding
information types. The Java programmer does not need to know about those

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7566

class CashRegister{

// Exi:

Obj receipt;

// Or:

int case;

// 1: receipt.Receipt(this);

// 2: The receipt is empty;

/**

* information extraction, automatically generated

**/

public Info getInfo(){

return new CashRegisterInfo(this);

}

/* assumes: p implied by CashRegisterPty */

public Explanation explain(Pty p){

return getInfo().explain(p);

}

}

class Receipt{

//env:

Obj cash; /* this.Receipt(cash) */

//Exi:

float total;

//And

// For{Obj item | item.Item(this): item.inCatalog();}

ReceiptInfo for_item;

// true: \total is the grand total of \this;

.... ‘‘information extraction as before’’

}

class Item{

//env:

Obj receipt; /* this.Item(receipt); this.inCatalog(); */

//Exi:

float cost;

String code;

// And

// price = price();

//true: \cost is the cost of \this;

//true: \code is the code of \this;

//true: \price is the price of \this;

/*@ requires cost>0;

ensures \result = cost + cost*VAT/100; @*/

float price(){

// TO DO

return 0;

}

.... ‘‘information extraction as before’’

}

Fig. 6. Sample derived Java program

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 67

classes, except for the classes extending the predefined subclass ForInfo of
Info, such as ReceiptInfo in the example. The programmer has to use the
attribute for item to wrap the information values associated up with the
items in the expected way. To this aim, ReceiptInfo contains suitable meth-
ods to retrieve and update the items stored by for item; in fact, this class
essentially contains the Java collection methods specialized to items.

For each class C, a CInfo object i has information type CPty and a method
i.explain(p) that builds an explanation of the information content according
to a property p; the latter is, in general, a singleton object cpty of class CPty
representing the property defined in the COOML specification of C. To sup-
port multiple views on data, we can use properties constructively entailed by
cpty. Thus, each Pty object p has a method implies such that p.implies(q)
returns null or an object m with a map method from it(p) into it(q). The
algorithm for extracting m is based on a suitable logical calculus NDc∗ , and it
uses a set of problem domain rules (pr). We explain those in the next section.
Here we give a first example that shows a possible use of the method implies

within the method explain. Let us assume that, in the context of the class
Item, we supply the following rule:

\price is the price of \this jml{price != cost + cost ∗ V AT/100}
pr

Error: \price should be jml{cost + cost ∗ V AT/100}

The entailment algorithm assumes that in the pr rules the basic operations
and predicates, such as in JML specifications, can be evaluated. In particular,
using the above rule, the algorithm can prove the following “error property”
in the class Receipt:
for{Obj item | item.Item(this) :

or{ok(this); Error: \price should be jml{ cost + cost ∗ V AT/100} } }

Invoking the explain(p) method of a receipt object rcpt, with p instanti-
ated to the above error property, the entailment is recognized by a call to the
implies method of the class ReceiptPty. The corresponding map is gen-
erated and transforms the input explanation into one containing the list of
the (possible) wrong items. Map and Explanation are predefined classes. A
Map object represents an algorithm to transform information values, while an
Explanation object represents a piece of information, collating an informa-
tion value to the corresponding property. This supports also correct exchange
of semantically annotated data. For example, the current state of an object
can be wrapped into a piece of information i : P and sent to different (possibly
remote) interfaces/contexts. Each one can use i in a different way, mapping
it according to its local problem domain rules.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7568

4 The Calculus

Our properties can be translated into a fragment of the predicative language
of the logic E∗ [12], a maximal intermediate constructive propositional logic
with a valid and complete calculus, whose full predicative extension has not
been studied yet. In E∗, atoms are represented by �-formulas having informa-
tion type true, while the logical connectives introduce structured information
types. If we represent each problem formula F by �F and we replace and,
or, exi, for by the corresponding logical connectives, each property becomes
an E∗-formula. For our fragment, E∗

c , we use a natural deduction calculus
NDc∗ , whose rules are described in Table 1 and 2. For the sake of brevity,
we only consider the binary version of propositional connectives, the n-ary
extension being obvious. Similarly, we give quantifiers rules for “singleton”
lists of variables, where you can read τ x for τ x.

NDc∗ is basically an intuitionistic calculus with bounded universal quan-
tification, a rule pr to introduce valid problem formulas entailments and a
bounded version of Grzegorczyk’s rule (gr), which can be used to perform
exhaustive search. Valid problem domain entailments are introduced by the
pr rule, while I-� allows us to infer arbitrary valid formulas. The � can be
eliminated only from the Harrop fragment of the calculus. The usual provisos
about parameters apply.

We now show the soundness of NDc∗ with respect to the semantics of
pieces of information given in Subsection 2.2. Let Γ be a set of formulas
{H1, . . . , Hn}. By π : Γ � C we denote a proof in the calculus NDc∗ having as
undischarged assumptions H1, . . . , Hn and as conclusion C; γ ∈ it(Γ) denotes
the set {i1, . . . , in}, where ij ∈ it(Hj) for all 1 ≤ j ≤ n; w ||= γ : Γσ means
that w ||= ij : Hjσ for all 1 ≤ j ≤ n.

Theorem 4.1 Let π : Γ � C be a proof in the calculus NDc∗ and let γ ∈
it(Γ). Then, there is i ∈ it(C) such that, for all world-state w and ground
substitutions σ, w ||= γ : Γσ entails w ||= i : Cσ.

Proof. The proof is by induction on the structure of π. We remark that the
proof is constructive, indeed we actually build an information value for the
proved formula. Thus, we implicitly define an algorithm which, given a proof
π and information values γ for its assumptions, outputs an information value
for the conclusion C of π. We only analyze some significant cases.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 69

Γ1··· π1

C1

Γ2··· π2

C2

I and
and{C1 C2}

Γ··· π

and{C1 C2}
E and j∈{1,2}

Cj

Γ··· π

Cj

I or j∈{1,2}
or{C1 C2}

Γ0··· π0

or{C1 C2}

Γ1, [C1]··· π1

D

Γ2, [C2]··· π2

D
E or

D

Γ··· π

C(t)
I exi

exi{τ x : C(x)}

Γ0··· π0

exi{τ x : C(x)}

Γ1, [C(p)]
··· π1

D
E exi

D

Γ, [G(p)]
··· π

C(p)
I for

for{τ x |G(x) : C(x)}

Γ0··· π0

G(t)

Γ1··· π1

for{τ x |G(x) : C(x)}
E for

C(t)

Γ, [G(p)]
··· π

or{C(p) B}
gr

or{for{τ x |G(x) : C(x)} B}

Table 1
The calculus NDc∗

The proof π is:

Γ1··· π1

C1

Γ2··· π2

C2

I and
and{C1 C2}

Suppose that w ||= γ : Γσ. By induction hypothesis on the subproofs π1

and π2, there are i1 ∈ it(C1) and i2 ∈ it(C2) such that w ||= i1 : C1σ and
w ||= i2 : C2σ. Let us take (i1, i2) ∈ it(and{C1 C2}); we have w ||= (i1, i2) :
and{C1 C2}σ as required.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7570

H1, . . . , Hn

pr if A is an atom and H1 ∧ . . . ∧ Hn→A is a valid PF
A

Γ··· π

C
I �

�C

Γ··· π

�A
E � A an atom

A

Γ··· π

�(and{C1 C2})
E �and j∈{1,2}

�Cj

Γ··· π

�(for{τ x |G(x) : C(x)})
E �for

for{τ x |G(x) : �C(x)}

Table 2
The calculus NDc∗ (continued): pr and � rules

The proof π is:
Γ0··· π0

or{C1 C2}

Γ1, [C1]··· π1

D

Γ2, [C2]··· π2

D
E or

D

Suppose that w ||= γ : Γσ. By induction hypothesis on π0, there is i ∈
it(or{C1 C2}) such that w ||= i : or{C1 C2}σ. Let us assume that i = (1, i1),
with i1 ∈ it(C1) (the case i = (2, i2) is similar). Then, by induction hypothesis
on π1, where we associate i1 with C1, there is iD ∈ it(D) such that w ||= iD :
Dσ, and this concludes the case.

The proof π is:
Γ, [G(p)]

··· π

C(p)
I for

for{τ x |G(x) : C(x)}
Suppose that w ||= γ : Γσ. Let c1, . . . , cm be the terms generated by G(x)
and let us consider, for all 1 ≤ j ≤ m, the proofs πj obtained from π by
instantiating the parameter p with cj. By induction hypothesis, where we
associate true with the atom G(cj), there is ij ∈ it(C(x)) such that w ||= ij :
C(cj)σ. Let us consider the list L = ((c1, i1), . . . , (cm, im)). One can easily
check that w ||= L : for{τ x |G(x) : C(x)}σ. �

With respect to completeness, we conjecture this to hold for the version of
NDc∗ with unbounded universal quantification, using the techniques of [12].

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 71

envass: receipt.Receipt(cr){
local 1: for{Obj item | item.Item(receipt) : item.inCatalog(); }
envass: [2] item.Item(receipt);{

prule: java{check(item);} item.Item(receipt); =⇒ interesting \receipt;
prove: or{ java{!check(item); } interesting \receipt; }

}
prove[gr 1,2]: or{for{Obj item | item.Item(receipt) : java{!check(item);} }

interesting \receipt; }
prule: for{Obj item | item.Item(receipt) : java{!check(item);} }

=⇒ non-interesting \receipt;

prove: or{non-interesting \receipt; interesting \receipt; }
}

Fig. 7. A contextual proof

The case we are considering here seems to be harder since finiteness cannot
be captured in first-order logic.

We aim to use the calculus NDc∗ in a modular way with respect to the
class hierarchy, e.g. proofs are developed in the context of the appropriate
class. A useful contextual proof-pattern is:

o.C(t) ClassAx(C)
··· π1

A1

o.C(t) ClassAx(C)
··· πn

An··· πloc

H

We say that o.C(t) is the environment assumption and the formulas A1,
. . . , An are local assumptions. The latter are obtained by repeated appli-
cations of elimination rules from the environment assumption and the axiom
ClassAx(C). Then, in order to develop a proof in the context of C, one has
only to choose the local assumptions and prove the final consequence H.

We are working on a modular calculus, dependent on COOML classes,
which allows us to contextualise proofs and to realize the proofs as programs
paradigm in our Java implementation, by translating proofs into regular Java
methods. The proof in Figure 7 shows the general idea (the syntax is pro-
visional); in particular, it illustrates the use of (run-time computable) Java
expressions inside a proof and an application of the rule gr. Here, we assume
that the class Item implements a method check to check whether an item
is of interest for us. The proof constructively shows that we can exploit the
stored information to state whether a receipt contains at least one interesting
item. The proof can be translated into a Java method of the class Receipt

performing the job.

The declaration “envass: o.C(t)” introduces the environment assump-
tion o.C(t) and automatically proves (if possible) the used local assump-
tions using the axiom ClassAx(C). In the inner proof (the one with

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7572

nested environment item.Item(receipt), receipt.Receipt(cr)), the declaration
“java{check(item); }” indicates that the entailment algorithm assumes

or{ java{check(item); } java{!check(item); } }
(namely, the run-time computability of check) to constructively prove the
consequence or{java{!check(item);} interesting \receipt; }. Then, we apply
the rule gr to this proof in the upper context receipt.Receipt(cr), discharging
the assumption “envass: [2] item.Item(receipt);”. We remark that the local
assumption 1 is needed to guarantee that item.Item(receipt) is a generator
for the eigenvariable item, as required for a sound application of the rule gr.

To conclude, we briefly comment on generators. We implement BUP’s via
collections and generators as Java iterators. This will allow us to implement
the proofs as programs paradigm in our modular calculus, since iterators pro-
vide the iterative computation implicit in the validity proof for the rules i for

and gr. Since the set of live objects of a system is always finite, every class
predicate could be used as a generator without any restriction; however, the
problem would be what to do with the garbage collector when accessing the
currently live objects. This is a common problem in OO specification lan-
guages, see for example the unclear semantical status of annotations such as
\allocated in JML [9].

5 Conclusion

Various logically based modeling languages of OO systems have been pro-
posed, using different formal contexts (e.g., [1,3,14,17]). Our aim is to design
a logically based OO modeling language for information systems, intended as
software systems to store and manipulate information with an external mean-
ing.

Our setup is the semantics of pieces of information and it is based on
the evaluation form semantics [11,12]. This is inspired by the BHK expla-
nation [16] of constructive connectives and gives rise to a constructive logic
E∗. More precisely, E∗ is related to Medvedev’s logic of finite problems [10]
and has been studied in [11,12]. It preserves the notion of truth of classical
model theory, which is a natural problem domain logic, where models represent
world-states and formulas express world properties. Although the logic E∗

c of
COOML is based on E∗, it does not commit to any specific problem domain
logic; concerning the latter, even informal reasoning is allowed. Moreover, E∗

c

is constructive and its notion of entailment supports methods for the correct
exchange and manipulation of pieces of information.

So far, we have concentrated our analysis on the way of organizing data
and meaning in terms of populations of an OOIS. Actually, it is possible to

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 73

translate an UML [5] class diagram D with OCL constraints into an OOIS SD,
and to represent the populations of SD as object diagrams instantiating D.
Thus, we have an adequate expressive power. Although the work presented
here is still a preliminary study, we believe that the approach is promising. In
fact, below we list some possible developments, which can turn it into useful
applications.

Methods and Proofs as Programs

So far, we have privileged the study of the data model and the use of
the calculus NDc∗ to extract and manipulate the information stored in an
OO system. It is possible to use it to derive the implementation of methods,
but we have not developed this idea yet, although this is closely related to
the well-known idea of proofs as programs [4]. This is in our future plans,
together with a suitable modular calculus. As briefly discussed in Section
4, this would allow us to base reasoning on the modular structure of classes
and to mix proofs and query methods (i.e., methods that do not change the
current state). Finally, E∗

c is a “static” logic, i.e., it works as far as building
system snapshots and reasoning on them, but it does not consider updates.
Updates and side effects can be modelled in the problem domain logic. We
may choose different logics, with the only restriction that a notion of truth
in a world-state is given, such as methods based on specification by contract
(see e.g. [2,9,13], the latter being based on constructive logics).

Correct Information Exchange

Information values and their meaning are distinct aspects. Pieces of infor-
mation i : P combine values according to multiple meanings. A similar idea
has been developed in XML technology, where XML documents can be inter-
preted according to different schemas [6]. It is possible to use this technology
to wrap up information values in XML documents and to define a suitable
XML formalism (similar to XML schemas) to represent properties. The con-
structive logical system underlying COOML would support correct exchange
of semantically annotated data, following the trend of Semantic Web [15].
This could be based on libraries of problem domain packages (see also next
paragraph) defining and classifying concepts.

Implementation Issues

Our reference language is Java, but other OO languages may be employed
as well. So far, we only have a partial prototypical implementation. The
translation from COOML classes into corresponding Java classes has been de-
fined but not implemented yet (we do it manually), and our JL-syntax is still

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–7574

unstable. We have implemented a hierarchy of classes to wrap information
values and properties (see Section 3). The method Pty.implies provides a
basic information transformation. To adapt it to different knowledge contexts,
different problem domain packages can be imported, containing (a represen-
tation of) valid problem rules.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.

[2] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski,
A. Roth, S. Schlager, and P. H. Schmitt. The KeY Tool. Software and System Modeling,
4:32–54, 2005

[3] A.L. Baker, C. Ruby, and G.T. Leavens. Preliminary design of JML: A behavioural interface
specification language for Java. Technical Report 98-06, Department of Computer Science,
Iowa State University, 1998.

[4] J.L. Bates and R.L. Constable. Proofs as programs. ACM Transactions on Programming
Languages and Systems, 7(1):113–136, January 1985.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, Reading, Massachusetts, USA, first edition, 1999.

[6] D. C. Fallside (Eds). XML Schema Part 0: Primer. W3C Recommendation, May 2001. http:
//www.w3.org/TR/xmlschema-0.

[7] M. Gogolla, M.Richters, and J. Bohling. Tool support for validating UML and OCL models
through automatic snapshot generation. In SAICSIT ’03, pages 248–257, 2003.

[8] C. Larman. Applying UML and Patterns. Prentice Hall, Upper Saddle River, NJ, 1998.

[9] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference
Manual (DRAFT), April 2005.

[10] Ju.T. Medvedev. Finite problems. Soviet Mathematics Doklady, 3:227–230, 1962.

[11] P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti. Some results on intermediate
constructive logics. Notre Dame Journal of Formal Logic, 30(4):543–562, 1989.

[12] P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on classical
truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

[13] I. Poernomo. Proofs-as-Imperative-Programs: Application to Synthesis of Contracts. In
Manfred Broy, Alexander Zamulin (Eds.), Proceedings of the 5th Ershov Conference, 2003,
Novosibirsk, Russia, LNCS 2890, 112–119, 2003.

[14] D. Rémy. Using, understanding, and unravelling the OCaml language. From practice to theory
and vice versa. Applied Semantics. Advanced Lectures. LNCS, 2395:413–537, 2002.

[15] A. Sheth. DB-IS research for Semantic Web and enterprises. Brief history and agenda. LSDIS
Lab, Computer Science, University of Georgia, 2002. http://lsdis.cs.uga.edu/SemNSF/
Sheth-Position.doc.

[16] A.S. Troelstra. Aspects of constructive mathematics. In J. Barwise, editor, Handbook of
Mathematical Logic. North-Holland, 1977.

[17] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling with UML.
Object Technology Series. Addison-Wesley, Reading/MA, 1999.

M. Ornaghi et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 55–75 75

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0
http://lsdis.cs.uga.edu/SemNSF/Sheth-Position.doc
http://lsdis.cs.uga.edu/SemNSF/Sheth-Position.doc

	Introduction
	The Data Model of COOML
	Problem Logics and Meaning
	COOML Specifications
	Class Specifications in COOML
	System States
	Class Hierarchy

	Toward Deriving Java Programs
	The Calculus
	Conclusion
	References

