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Abstract. We present CoMA (Conformance Monitoring by Abstract
State Machines), a specification-based approach and its supporting tool
for runtime monitoring of Java software. Based on the information ob-
tained from code execution and model simulation, the conformance of the
concrete implementation is checked with respect to its formal specifica-
tion given in terms of Abstract State Machines. At runtime, undesirable
behaviors of the implementation, as well as incorrect specifications of the
system behavior are recognized.
The technique we propose makes use of Java annotations, which link the
concrete implementation to its formal model, without enriching the code
with behavioral information contained only in the abstract specification.
The approach fosters the separation between implementation and speci-
fication, and allows the reuse of specifications for other purposes (formal
verification, simulation, model-based testing, etc.).

1 Introduction

Runtime software monitoring has been used for software fault-detection and re-
covery, as well as for profiling, optimization, performance analysis. Software fault
detection provides evidence whether program behavior conforms with its desired
or specified behavior during program execution. While other formal verification
techniques, such as model checking and theorem proving, aim to ensure univer-
sal correctness of programs, the intention of runtime software-fault monitoring
is to determine whether the current execution behaves correctly; thus, monitor-
ing aims to be a lightweight verification technique that can be used to provide
additional defense against failures and confidence of the system correctness.

In most approaches dealing with runtime monitoring of software, the required
behavior of the system is formalized by means of correctness properties [11] (often
given as temporal logic formulae) which are then translated into monitors. The
monitor is then used to check if the properties are violated during the execution of
a system. The properties specify all admissible individual executions of a system
and may be expressed using a great variety of different formalisms. Some of
these approaches are, for example, language oriented formalisms like extended
regular expressions or tracematches by Allan et al. [1]. Temporal logic-based
formalisms, which are well-known from model checking, are also very popular in



runtime verification, especially variants of linear temporal logic, such as LTL, as
seen for example in [13,5].

Our approach requires a shift from a declarative style of monitoring to an
operational style. Declarative specifications are used to state the desired prop-
erties of a software system by using a descriptive language. Examples of such
notations are logic formulae, JML [16] or the LTL temporal logic. An operational
specification describes the desired system behavior by providing a model imple-
mentation or model program of the system, generally executable. Examples of
operational specifications are abstract automata and state machines. In [19], for
instance, the specification is given in the Z language and it describes the system
state and the ways in which it changes.

Specification styles (and languages) may differ in their expressiveness and
very often their use depends on the preference and taste of the specifier, the
availability of supporting tools, and so forth. Up to now, descriptive languages
have been preferred for runtime software monitoring, while the use of operational
languages has not been investigated with the same strength. Section 2 presents
the current state of the art.

In this paper, we assume that the desired system behavior is given in an
operational way by means of an Abstract State Machine (ASM), whose notation
is presented in Section 3. We also assume that the implementation is a Java
program and the technique we propose makes use of Java annotations. However,
annotations do not contain the specification of the correct behavior (like in
JML [16]) but they are used only to link the concrete implementation to its
formal model, keeping separated the implementation of the system and its high-
level specification. The approach has, therefore, the advantage of allowing the
reuse of abstract formal specifications for other purposes, like formal verification,
model simulation, model-based testing, and so forth. Indeed, the result of this
work has to be also viewed towards the goal of engineering and building an
environment able to support the major software life cycle activities by means of
the integration of several tools that can be used for different purposes on the base
of the same specification model. We are trying to achieve this goal through the
open project ASMETA (ASM mETAmodeling) [3], which permits the integrated
use of different tools for ASM model development and manipulation. Currently,
the ASMETA tool-set allows creation, storage, interchange, Java representation,
simulation, testing, scenario-based validation, model checking, and model review
of ASM models for software systems3.

In Section 4, we present the theoretical framework of CoMA (Conformance
Monitoring by ASMs), in which we explain the relationship between the Java
implementation and its ASM specification. This relationship defines syntactical
links or mappings between Java and ASM elements and a semantical relation
which represents the conformance. In Section 5, we introduce the actual im-
plementation of our conformance monitoring approach which is based on Java
annotations and AspectJ. A particular form of non-determinism is dealt with in
Section 6. In Section 7, we discuss some advantages and limits of our approach;

3 See the Asmeta web site http://asmeta.sourceforge.net, 2011
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by means of diverse examples, we evaluate performance, expressiveness and us-
ability of different ways (compiled vs built-in) of using CoMA, as well as w.r.t.
other approaches for runtime monitoring, while Section 8 concludes the paper.

2 Related Work

Complete surveys about runtime verification can be found in [9,18,11].

Our work has been inspired by the work presented in [19], in which the
authors describe a formal specification-based software monitoring system. In their
system they check that the behavior of a concrete implementation (a Java code)
complies with its formal specification (a Z model). We share with their work
the fact that the concrete implementation is separated from the specification. In
their monitoring system, a user of the Java program must use a specific tool to
define the sequence of methods to execute. Therefore, their monitoring system is
useful at testing and debugging time, but can not be used in the deployed system
in which the monitoring system should be hidden to the final user. The final user,
indeed, could be different from the developer of the code: he could be a normal
user who wants to execute the code or another developer who wants to reuse the
code. In both cases the user should be unaware of the formal specification; he
could only be aware that some kind of monitoring is performed. In our system,
instead, a developer can deploy a Java code linked with its formal specification.
The final user can use the monitored code without knowing anything about the
formal specification; the only thing that he must know is that, if he wants to
enable the monitoring to the code, he must execute it with AspectJ.

Monitored-oriented programming (MOP) [7] permits to execute runtime mon-
itoring by means of annotating the code with formal property specifications. The
specifications can be written in any formalism for which a logic plug-in has been
developed (LTL, ERE, JML, . . . ). The formal specifications are translated (in
two steps) in the target programming language. The obtained monitoring code
can be used in an in-line mode in which the monitoring code is placed in the
monitored program, and in an out-line mode in which it is used to check traces
recorded by adequate probes. Similarly to us, they use AspectJ to weave the
monitoring code into the monitored code; in particular AspectJ gives them the
ability to execute the monitoring code before or after some methods invocations.
A similar approach is taken by Lime [15]. This tool permits to monitor the invo-
cations of the methods of an interface by defining pre and post conditions, called
call specifications (CS) and return specifications (RS). Specifications can be writ-
ten as past/future LTL formulas, as regular expressions and as nondeterministic
finite automata. The specifications are then translated into deterministic finite
state automata encoded in Java that function as observers. AspectJ is used to
weave the observer code into the original program that is being tested.

Another approach that uses ASMs as formal specification for system moni-
toring purpose is presented in [4]. That approach shares with ours many common
features as using operational specifications (called model programs) and dealing
with method calls ordering. However, the approach is mainly applied to spec-
ify all of the traditional design-by-contract concepts of pre- and post-conditions
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and invariants. The technological framework is completely different, since .NET
components are considered.

Different approaches exist for system monitoring that are based on runtime
verification of temporal properties. In [5], traces of programs are examined in
order to check if they satisfy some temporal properties expressed in LTL3, a
linear-time temporal logic designed for runtime verification.

3 Abstract State Machines

Abstract State Machines (ASMs), whose complete presentation can be found in
[6], are an extension of FSMs, where unstructured control states are replaced
by states with arbitrary complex data. The states of an ASM are multi-sorted
first-order structures, i.e. domains of objects with functions and predicates de-
fined on them. ASM states are modified by transition relations specified by
“rules” describing the modification of the function interpretations from one
state to the next one. There is a limited but powerful set of rule constructors
that allow to express guarded actions (if-then), simultaneous parallel actions
(par) or sequential actions (seq). Appropriate rule constructors also allow non-
determinism (existential quantification choose) and unrestricted synchronous
parallelism (universal quantification forall).

An ASM state is a set of locations, namely pairs (function-name, list-of-
parameter-values). Locations represent the abstract ASM concept of basic object
containers (memory units). Location updates represent the basic units of state
change and they are given as assignments, each of the form loc := v, where loc
is a location and v its new value.

Functions may be static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment), and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . . of
states of the machine, where s0 is an initial state and each sn+1 is obtained from
sn by executing its (unique) main rule. An ASM can have more than one initial
state. It is possible to specify state invariants. Because of the non-determinism
of the choose rule and of moves of the environment, an ASM can have several
different runs starting in the same initial state.

Code in Fig. 1 reports the ASM specification of a counter limited to 10
(according to the invariant) and initialized to the monitored value initValue;
counter and initValue are both 0-ary functions.

The ASMETA tool set is a set of tools around the ASMs [3]. They can assist
the user in developing specifications and proving model correctness by checking
state invariants and temporal logic properties. For instance, the invariant in Fig.
1 can be proved invalid if initValue is greater than 10 by model checking.

Among the ASMETA tools, those involved in our conformance analysis pro-
cess are: the textual notation AsmetaL, used to encode fragments of ASM models,
and the simulator AsmetaS, used to execute ASM models.
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asm counterMax10
signature: dynamic controlled counter: Integer

dynamic monitored initValue: Integer

definitions: invariant inv a over counter: counter <= 10

main rule r Main = if counter < 10 then counter := counter + 1 endif

// initizialize counter
default init s0: function counter = initValue

Fig. 1. ASM Counter in AsmetaL

Fig. 2. The CoMA runtime monitor for Java

4 Runtime conformance monitoring based on ASMs

A runtime software-fault monitor, or simply a monitor, is a system that observes
and analyzes the states of an executing software system. The monitor checks the
correctness of the system behavior by comparing an observed state of the system
with an expected state. The expected behavior is generally provided in terms of a
formal specification. We here intend runtime monitoring as conformance analysis
at runtime and we propose CoMA, runtime Conformance Monitoring of Java
code by ASM specifications.

The CoMA monitor allows online monitoring, namely it considers executions
in an incremental fashion. It takes as input an executing Java software system
and an ASM formal model. The monitor observes the behavior of the Java system
and determines its correctness w.r.t. the ASM specification working as an oracle
of the expected behavior. While the software system is executing, the monitor
checks conformance between the observed state and the expected state.

As shown in Fig. 2, the monitor is, therefore, composed of: an observer that
evaluates when the Java (observed) state is changed (1), and leads the abstract
ASM to perform a machine step (2), and an analyzer that evaluates the step
conformance between the Java execution and the ASM behavior (3). When the
monitor detects a violation of conformance, it reports the error. It can also
produce a trace in form of couterexample, which may be useful for debugging.
Note that the use of CoMA can be twofold: also faults in the specification can be
discovered by monitoring software. For instance, by analysing and re-executing
counterexamples, faults in the model can be exposed.

In the following sections, we introduce the theoretical basis of our monitoring
system. We, therefore, formally define what is an observed Java state, how to
establish a conformance relation between Java and ASM states, and, therefore,
step conformance and runtime conformance between Java and ASM executions.
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4.1 Observable Java elements and their link with ASM entities

In order to mathematically represent a class and the state of its objects, we
introduce the following definitions.

Definition 1. Class A class C is a tuple 〈c, f,m〉 where c denotes the non-
empty set of constructors, f is the set of all the fields, m is the set of methods.

We denote the public fields of C as fpub while the public methods are denoted
as mpub . Among the methods of a class, we distinguish also the pure methods:

Definition 2. Pure method Pure methods mpure are side effect free, with re-
spect to the object/program state. They return a value but do not assign values
to fields. mpub

pure denotes the set of all pure public methods in m.

Pure methods [10] are useful and common specification constructs. By mark-
ing a method as pure, the specifier indicates that it can be treated as a function
of the state (as in JML [16]). We consider only pure methods without arguments.

Definition 3. Virtual State Given a class C = 〈c, f,m〉, the virtual state,
VS (C), is given by VS (C) = fpub ∪mpub

pure .

Definition 4. Observed State We define observed state, OS (C) ⊆ VS (C),
as the subset of the virtual state consisting of all public fields, and pure public
methods of the class C the user wants to observe.

Therefore, OS (C) is the set of Java elements monitored at runtime. For con-
venience, we can see OS (C) = OF (C) ∪ OM (C) to distinguish between the
subset of observed fields OF (C) and the subset of observed methods OM (C) of
OS (C). Note that OF (C) ⊆ fpub and OM (C) ⊆ mpub

pure . The (returned) values
of the elements of OS (C) can change by executing any not pure method (in
m¬pure = m−mpure).

Definition 5. Changing Method Given a Java class C, we define changing
methods, changingMethods(C) ⊆ m¬pure , all methods of C whose execution is
responsible for changing an element of OS (C) and that the user wants to observe.

Linking observable Java elements to ASM entities. In order to be run-
time monitored, a Java class C = 〈c, f,m〉 should have a corresponding ASM
model, ASM C , abstractly specifying the behavior of an instance of the class C.

Observable elements of a class C must be linked to the dynamic functions
Funcs ASM C of the ASM model ASM C . The function

link : OS (C )→ Funcs ASM C (1)

yields the set of the ASM dynamic functions linked to the observable Java ele-
ments of C. The function link is not surjective because there are ASM dynamic
functions that are not used in the conformance analysis.
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Execution step in Java and ASM. In order to define a step of a Java class
execution, we rely on the concept of machine step and last state of execution
sequence defined in the Unifying Theories of Programming (UTP) [14]. A Java
state of an instance of a class C is the set of the actual values of its fields.

Definition 6. Java Step Let m be a method of a Java class. A Java step is
defined as the relation (s,m,s’) where s is the starting state of the execution of
m and s′ the last state of this execution.

Definition 7. Change Step Let C be a Java class. A change step is defined
as a Java step for m ∈ changingMethods(C).

Note that, choosing the granularity of the Java step at the level of class
method and not at the level of single assignment, allows the designer to tune the
desired granularity of the monitoring.

ASM state and ASM computation step have been defined in Section 3.

4.2 State Conformance, Step Conformance and Run Conformance

We have formally related a Java class and the execution of a Java class instance
with the corresponding abstract ASM model and relative execution(s). In the
following definitions, let C be a Java class, OC any instance of C, and ASMC

its corresponding ASM abstract model.
We assume that the function valJava(e, s) yields the value of a Java element

e ∈ VS (C ) of C in a given state s of OC , while the value of an ASM function
l in a state S is given by valASM (l, S). Moreover we assume that there exists a

conformance
conf
= relation among Java and ASM values [2].

Definition 8. State Conformance We say that a state s of OC conforms to
a state S of ASMC if all observed elements of C have values in OC conforming
to the values of the locations in ASMC linked to them; i.e.

conf (s, S) ≡ ∀e ∈ OS (C) : valJava(e, s)
conf
= valASM (link(e), S) (2)

Definition 9. Step Conformance
We say that a change step (s,m, s′) of
an instance OC , with m a method of C,
conforms with a step (S, S′) of ASMC

if conf (s,S ) ∧ conf (s ′,S ′).

ASMC S
step // S′

OC s

conf

OO

m // s′

conf

OO

Definition 10. Runtime Conformance Given an observed computation of
a Java instance OC , we say that C is runtime conforming to its specification
ASMC if the following conditions hold:

– the initial state s0 of the computation of OC conforms to the initial state
S0 of the computation of ASMC , i.e. it yields conf (s0, S0);

– every observed change step (s,m, s′) with s the current state of OC , con-
forms with the step (S, S′) of ASMC with S the current state of ASMC ;

– no specification invariant of ASMC is ever violated.
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ASMC
init // S0

+3 Sj
step // Sj+1

step //

OC
inst // s0

OO

+3 sk

OO

CM // sk+1

OO

notCM∗
// sk+2

bb

CM //

Fig. 3. Runtime conformance

Fig. 3 depicts the co-simulation of an instance OC and its specification
ASMC . Def. 10 requires conformance between s0 and S0. If OC is in state sk,
executes a change method CM , and moves to state sk+1, then sk must conform
to the current ASM state Sj and sk+1 must conform to the next ASM state
Sj+1. Then, no conformance check is performed until the next observed state
sk+2 when a changing method is invoked again. Note that the final state of a
Java change step and the initial state of the subsequent change step are both
state conforming to the same abstract state of the ASM.

5 Monitor Implementation

We here describe how CoMA works. We provide technical details on how the run-
time monitor is implemented by exploiting the mechanism of Java annotations
to link observable Java elements to corresponding ASM entities, and AspectJ to
observe code execution and establish conformance relation.

5.1 Using Java Annotations

Java annotations are meta-data tags that can be used to add some information
to code elements as class declarations, field declarations, etc.

In addition to the standard ones, annotations can be defined by the user
similarly as classes. For our purposes we have defined a set of annotations in
order to link the Java code to its abstract specification. The retention policy, i.e.
the way to signal how and when the annotation can be accessed, of all of our
annotations is runtime – annotations can be read by the compiler and by the
monitor at run-time through reflection.

In order to link a Java class C with its corresponding ASM model ASMC ,
the class must be annotated with the @Asm annotation having the path of the
ASM model as string attribute. Fig. 4 reports the Java class Counter linked to
its ASM specification (see Fig. 1).

To establish the mapping defined by the function link, we annotate each
observed field f ∈ OF (C) by @FieldToFunction, and each observed method
m ∈ OM(C) by @MethodToFunction; both these annotations have a string
attribute yielding the name of the corresponding ASM function. In the example,
the Java field counter and the Java pure method getCounter are both linked
to the counter ASM function.

All methods of changingMethods(C) are annotated with the @RunStep. In
the example, the observed method is inc() that simply increments the counter.

Finally, the user has to decide the starting point of the monitoring. The
annotation @StartMonitoring is used to select a proper (not empty) subset
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of constructors4. All or some constructor parameters (if any) can be annotated
with the @Init annotation that permits to link a parameter with a monitored
function (i.e. only read, as events provided by the environment) of the ASM
model. This allows initializing the ASM model with the same values used to
create the Java instance. In the example there is just one constructor whose
parameter is linked with the ASM monitored function initValue which fixes the
initial value of the counter (see the specification in Fig. 1).

@Asm(”counterMax10.asm”)
class Counter {

@FieldToFunction(”counter”)
public int counter;

@StartMonitoring
Counter(@Init(”initValue”) int x){counter = x;}

@MethodToFunction(”counter”)
public int getCounter(){ return counter;}

@RunStep
public void inc(){ counter ++; }}

Fig. 4. Java Counter Annotated

Our use of the annotation mech-
anism requires a very limited code
modification and differs from that
usually exploited in other approaches
for system monitoring. Usually anno-
tations are used to enrich the code
with extra formal specifications to ob-
tain behavioral information about the
target program [7,15]. This leads to
the lack of separation between the im-
plementation of the system and its
high-level requirements specification.
In our approach, the few annotations are only used to link the code to its speci-
fication, but keeping them separate. Furthermore, annotations are statically type
checked and since the annotations are read reflectively at runtime, the monitor-
ing setup can be carried out very easily. This is much more convenient than
inserting special comments (like JML) and writing our own parser for them.
Moreover, Java annotations make the links more robust when code refactoring
is applied. Our approach fosters the reuse of specifications when code changes.

5.2 Runtime monitor and AspectJ

The runtime monitor (see Fig. 2) is implemented through the facilities of AspectJ
that permits to easily observe the execution of Java objects. AspectJ allows
programmers to define special constructs called aspects.

(1) Observer By means of an aspect, AspectJ allows to specify different
pointcuts, that are points of the program execution one wants to capture; for
each pointcut it is possible to specify an advice, that is the actions that must be
executed when a pointcut is reached. AspectJ permits to specify when to execute
the advice: before or after the execution of the code specified by the pointcut.

The CoMA tool supports two different ways, built-in and compiled, of devel-
oping an aspect.

Built-in In this approach there is just one aspect that permits to monitor all
the objects of the classes that must be monitored: (i) the pointcuts are general
enough to capture the instantiations and the method executions of all the objects

4 We do not consider the default constructor. If the class does not have any con-
structor, the user has to specify an empty constructor and annotate it with
@StartMonitoring.
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that must be monitored; (ii) the advices are able to dynamically inspect the Java
and the ASM state in order to do the conformance checking.

The main advantage of this approach is that the developer does not have
to care about building the aspect: after having written the Java class and the
ASM specification, and after having linked them properly, he/she can execute
the code immediately.

The main disadvantage of this approach is that, since the aspects are very
general, they introduce an overhead in the pointcuts and in the advices that
execute the conformance checking. For instance, the pointcuts to detect the
creation of an observed object and to capture the execution of a changing method
(we do not consider changing methods that are executed in the scope of other
changing methods) are reported below.

pointcut objCreated(): call(@StartMonitoring ∗.new(..));
pointcut runStepCalled(): call(@RunStep ∗ ∗.∗(..))

&& !cflowbelow(call(@RunStep ∗ ∗.∗(..)));

In order to read the values of the fields that are monitored, we have imple-
mented two techniques: (i) reading them through reflection at the beginning and
at the end of the execution of a changing method; (ii) using the AspectJ pointcut
set in order to capture all their updates.

The main advantage of using reflection is that we can get their values just
once for each changing method execution; using the set pointcut, instead, ev-
ery time a monitored field is updated we collect its value: if a field is updated
frequently (e.g. in a loop), using the set pointcut the performances of the mon-
itoring module can get worse. However, the set pointcut can read private fields
without programmatically changing their visibility.

Compiled In this approach, for each Java class that must be monitored, a
suitable aspect is built. The main advantage of this approach is that the aspect
definitions (pointcuts and advices) can be more precise (e.g. the pointcut that
captures the execution of the changing methods can specify exactly the methods
whose execution must be captured: in the built-in approach, instead, we must
capture all the methods annotated with @RunStep). The main disadvantage is
that the developer, before running his code, must build the aspect: if the Java
code and/or the ASM specification change, the aspect may need to be rebuilt.
For instance, the pointcuts for the CounterDec class are:

pointcut objCreated(): call(CountercDec.new(..));
pointcut methodCalled(): call(@RunStep public void CountercDec.inc()) ||

call(@RunStep public void CountercDec.dec());
pointcut runStepCalled(CountercDec target): methodCalled() &&

!cflowbelow(methodCalled()) && target(target);

(2) Simulator Upon a Java change step signaled by the observer, the simu-
lator performs an ASM step by AsmetaS [12]. Before a change step, an advice
reads the values of the monitored fields, sets the ASM monitored functions, and
executes a state conformance check (conf (s, S) in Def. 9). After a change step,
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@Asm(”CounterDec.asm”)
class CounterDec {
@FieldToLocation(”counter”)
public int counter;

@RunStep(setFunction = ”action”, toValue = ”dec”)
public void dec() {

counter −−; }

@RunStep(setFunction = ”action”, toValue = ”inc”)
public void inc() {

counter ++; } }

asm CounterDec
signature:

controlled counter: Integer
monitored action: String

definitions:
main rule r Main =

if action = ”inc” then
counter := counter + 1

else if action = ”dec” then
counter := counter −1

endif endif

Fig. 5. Counter with decrement

another advice simulates a step of the ASM and forces the Analyzer to check
again the state conformance (conf (s′, S′) in Def. 9).

(3) Analyzer The analyzer compares the Java and the ASM state. To check
state conformance (see Def. 8), we have implemented the conformance relation
conf
= among Java and ASM values as a string comparison. Therefore, the Java

and the ASM values are both transformed into strings for comparison.

6 Dealing with multiple changing methods

Definition 10 is adequate for runs where the next state of a Java class C and of its
specification ASMC are unique. Thus, nondeterminism is limited to monitored
quantities, which, once not deterministically fixed by the environment, make the
evolution of the system deterministic. In this Section, we extend our conceptual
framework to deal with a limited form of nondeterminism due to the presence of
more than one changing method, each of which takes C to a possible different
correct next state in a deterministic way; however, the choice of the changing
method that causes a change step is non-deterministic.

In this case, the observer must signal to the ASM under simulation, which
step has been chosen by the program. To this scope, we introduce two fields in the
@RunStep annotation: setFunction permits to specify the name of a monitored
function of the ASM model, and toValue the value to whom it must be set.

In the Java code in Fig. 5, the @RunStep annotations of the changing meth-
ods dec() and inc() specify that the monitored function action must be set,
respectively, to dec and inc.

7 Evaluation

In order to assess the viability of our approach, we have taken several examples
in literature and checked whether we were able to apply our approach to existing
runtime case studies, including the Railroad Gate [9], the Initialization Fiasco
problem [5], a robotic assembly system [19], the Knight’s Tour problem [20]. We
have written the Java code, if not available, and their ASM specifications (see
[2] for details). We applied also CoMA to several Java programs borrowed from
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Java JML JavaMOP CoMA
AsmetaS compiled set reflection

Counter 4 280 (FSM) 109 4837 + 783 + 825 + 898
Iterator 8 N/A (FSM) 91 866306 + 1439 + 1812 + 1820
Initialization Fiasco 7 N/A (LTL) 72 870719 +1914 + 2235 + 2366

Table 1. Execution time in the experiments (in secs)

JavaMOP [7], like Iterator and FileWriter. Overall we found our approach
applicable to all the considered case studies.

Execution time In order to evaluate the runtime overhead of our approach, we
have considered three examples, the Counter, the Iterator and the Initialization
Fiasco, and we have monitored them with CoMA, JavaMOP (FSM or LTL), and
JML, when applicable. A comparison with [19] is not possible. They use, like
CoMA, interpretation of formal specifications, but their tool is not available and
no time data are published.

Table 1 reports the average of the time required for 20 runs with 100 instances
running in parallel for 1000 steps. JML cannot be used with the Iterator and the
Initialization Fiasco. For the CoMA, Table 1 reports the time for the three kinds
of aspects described in Section 5.2; we have divided the overall time between the
time taken by the simulator (column AsmetaS) and the time taken by the code
under analysis and the monitor module.

It is apparent that most of the time is taken by the simulator, which is based
on the Eclipse Modelling Framework, widely uses reflection and visitor design
patterns, and has never been optimized for performance. On the average, using
reflection or using the set pointcut is almost equivalent. However, set point-
cuts may perform worst when an observed field is updated frequently. Instead,
compiled pointcuts provide the best results.

Although our approach seems not competitive with others in terms of time
overhead, we believe that it provides several advantages (explained below) and
it can be used when performances are not critical. As a future work, we plan
to decrease the running time of the simulation by translating the ASM machine
directly into Java code (similarly of what is done in JavaMOP and in Lime).
However, encoding ASM into Java would require the semantic correctness proof
of the translation. Approaches translating to Java/AspectJ are more efficient
but the preservation of the semantics by the translation may become an issue.

At the current development stage of our framework, we have been more
interested in assessing the usability and expressiveness of our approach than its
time performance.

Usability and expressiveness Although any comparison of our approach with
others in terms of usability and expressiveness may be disputable, since it may
depend on the expertise and taste of the user, some general considerations follow.

In comparison with JML, CoMA can be used to express the behavior of a
single method call and also the interaction among calls, while JML concentrates
on single methods. There exist JML extensions that allow the specification of
temporal aspects of Java interfaces (like LIME [15] and trace assertions of Jass).
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Another difference is that CoMA has a model separated from the implemen-
tation, while JML follows a unique model paradigm in which the code itself
contains its specification. The advantage of CoMA is that the specification can
exist even before its implementation and can be used for several preliminary
activities (like model simulation, model review, and formal verification).

The expressiveness of CoMA is greater than approaches using plain FSMs,
since ASMs can have infinite states and can be viewed as pseudo-code over
abstract data type. In many approaches, like in JavaMOP and in JavaMAC
(which uses automata with auxiliary variables) [17], FSMs are enriched with
state variables. For instance, the FSM for the counter in JavaMOP becomes:

CheckCounter(Counter c) {
// counter value
int count = 0;
// inc call event
event inc before(Counter c): call(∗ Counter.inc()) && target(c) {count ++;}
// error event
event err after(Counter c): call(∗ Counter.inc()) && target(c) &&

condition(c.getCounter() != count) {}
// the FSM
fsm: safe [ inc −> safe err −> error] error []

@error { System.out.println(”Counter not incremented”); }}

Since JavaMOP specifications are compiled into AspectJ, JavaMOP can include
and use all the power of AspectJ. However, we believe that mixing implementa-
tion and specification notations may encourage the user to insert implementation
details in the specification at the expense of abstractness. An important feature
of our methodology is the clear separation between the monitored implementa-
tion and the high level specification also in terms of notation, as in [17,19].

Comparison with property-based approaches An objective comparison
with approaches based on the use of properties is more questionable. In this
paper, we assume that the specification is given in operational style instead of the
more classical declarative style. There has been an endless debate about which
style fits better the designer needs: some argue that with an operational style
the designers tend to insert implementation details in the abstract specifications,
others observe that practitioners feel uncomfortable with declarative notations
like temporal logics. The scope of this paper is to provide evidence that also
abstract operational notation can be effectively used for runtime monitoring.
Sometimes, operational specifications are easier to write and understand; other
times, declarative specifications are preferable. For instance, LTL and PLTL
can describe correct sequences of method calls with ease. The correct order of
calls for an Iterator, is specified by the following PLTL formula: �(next =⇒⊙

hasNext), where the operator
⊙

means in the previous time step. However,
properties about states are more difficult (and sometimes impossible) to write.
For instance, the fact that an unbounded counter is correctly incremented is
not expressible by LTL. Indeed, LTL does not allow variable quantifiers and,
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therefore, formulas like ∀x �(counter = x =⇒ ©(counter = x + 1)) are
incorrect.

8 Conclusions and Future work

We have presented and briefly evaluated CoMA, a framework for runtime confor-
mance monitoring of Java code with respect to its specification given in terms
of Abstract State Machines. The source code must be annotated to link Java
elements to ASM elements. The CoMA monitor, based on AspectJ, checks run-
time conformance between Java executions and ASM specifications. While the
software executes, the monitor simulates step by step the ASM specification and
checks the state conformance.

Our approach has some limits. The use of an operational specification can
lead the designer into inserting implementation details in the specification. Since
each class is linked to its specification, monitoring safety properties involving col-
lections of two or more objects [8] is not possible, but we plan to extend CoMA to
support also these scenarios. We deal only with restricted forms of nondetermin-
ism, but we are working on supporting more generic forms of it [2]. Monitoring
real time requirements seems problematic: we believe that a monitored function
time may model the real time and would allow its measurement, but further
experiences are needed and the runtime overhead may be an issue. Since CoMA
currently checks conformance by interpreting the ASM, it performs much slower
than other approaches. We plan to optimize the monitoring process to reduce
the temporal overhead.

Despite these limits, we believe that our approach presents a viable technique
for checking conformance of an implementation (as Java program) with respect
to its formal and abstract operational specification (as ASM). Although it is
difficult to give a definitive evaluation, we believe that the operational style
should be appealing for those preferring executable models instead of properties
and that an operational abstract style of describing system behavior may be
more easy to write and understand. In our approach, specifications are developed
independently from the implementations and they are linked by Java annotations
which however contain minimal behavioral information.

There are some advantages not related to runtime verification in using ex-
ecutable specifications (as also discussed in [4]), including that a specification
can be executed in isolation, even before its implementation exists. CoMA fos-
ters the reuse of specifications for further purposes thanks to its integration in
the ASMETA framework [3], which supports editing, type checking, simulation,
review, formal verification, and test case generation for ASMs.
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