
An Eclipse-based SCA design framework to
support coordinated execution of services

Fabio Albani1 Elvinia Riccobene2 Patrizia Scandurra1

1 Università degli Studi di Bergamo, DIIMM, Dalmine (BG), Italy
patrizia.scandurra@unibg.it

2 Università degli Studi di Milano, DTI, Crema (CR), Italy
elvinia.riccobene@unimi.it

Abstract. This paper presents a design framework for coordinated ex-
ecution of service-oriented applications. The framework is based on the
OSOA open standard model Service Component Architecture (SCA) for
heterogeneous service assembly and on the formal method Abstract State
Machine (ASM) for modeling notions of service behavior, interactions,
orchestration, and compensation in an abstract but executable way. The
framework was developed by integrating the Eclipse-based SCA Com-
posite Designer, the SCA runtime platform Tuscany, and the simulator
AsmetaS of the ASM toolset ASMETA.

1 Introduction

Service-oriented applications are playing an important role in several applica-
tion domains (e.g., information technology, health care, robotics, defense and
aerospace, to name a few) since they offer complex and flexible functionalities
in widely distributed environments by composing, possibly dynamically “on de-
mand”, different types of services. Web Services is the most notable example of
technology for implementing such components. On top of these service-oriented
components, business processes and workflows can be (re-)implemented as com-
position of services – service orchestration or service coordination.

However, early designing, prototyping, and testing of the functionality of
such assembled service-oriented applications is hardly feasible since services are
discoverable, loosely-coupled, and heterogeneous (i.e. they differ in their im-
plementation/middleware technology) components that can only interact with
others on compatible interfaces. Concurrency and coordination aspects that are
already difficult to address in component-based system design (though exten-
sively studied), are even more exacerbated in service-oriented system design. In
order to support the engineering of service-oriented applications, to withstand
inevitable faults, and to improve the service quality (such as efficiency and re-
liability), established foundational theories and high-level formal notations and
analysis techniques traditionally used for component-based systems should be
revisited and integrated with service development technologies.

This paper proposes a formal framework for coordinated execution of hetero-
geneous service-oriented applications. It relies on the SCA-ASM language [21]



that combines the OSOA open standard model Service Component Architecture
(SCA) [18] for heterogeneous service assembly in a technology agnostic way, with
the formal method Abstract State Machine (ASM) [8] able to model notions of
service behavior, interactions, orchestration, and compensation [6, 5, 7] in an ab-
stract but executable way. The framework is based on the Eclipse environment.
It was developed by integrating the Eclipse-based SCA Composite Designer [22],
the SCA runtime platform Tuscany [25], and the simulator AsmetaS of the ASM
analysis toolset ASMETA [2].

A designer may use the proposed framework to provide abstract implemen-
tations in SCA-ASM of (i) mock components (possibly not yet implemented
in code or available as off-the-shelf) or of (ii) core components containing the
main service composition or process that coordinates the execution of other com-
ponents (possibly implemented using different technologies) providing the real
computation. He/she can then validate the behavior of the overall assembled
application, by configuring these SCA-ASM models in place within an SCA-
compliant runtime platform as implementation of (mock or core) components
and then execute them together with the other (local or remote) components
implementations according to the chosen SCA assembly.

This paper is organized as follows. Section 2 provides background on SCA
and ASMs. Section 3 describe the proposed framework. Section 4 surveys some
related work. Finally, Section 5 concludes the paper.

2 Background on SCA and ASMs

Service Component Architecture is an XML-based metadata model that
describes the relationships and the deployment of services independently from
SOA platforms and middleware programming APIs (as Java, C++, Spring,
PHP, BPEL, Web services, etc.). SCA is supported by a graphical notation (a
metamodel-based language developed with the Eclipse-EMF) and runtime en-
vironments (like Apache Tuscany and FRAscaTI) that enable to create service
components, assemble them into a composite application, provide an implemen-
tation for them, and then run/debug the resulting composite application.

Fig. 1 shows an SCA composite (or SCA assembly) as a collection of SCA
components. Following the principles of SOA, loosely coupled service components
are used as atomic units or building blocks to build an application.

An SCA component is a piece of software that has been configured to provide
its business functions (operations) for interaction with the outside world. This
interaction is accomplished through: services that are externally visible functions
provided by the component; references (functions required by the component)
wired to services provided by other components; properties allowing for the con-
figuration of a component implementation with externally set data values; and
bindings that specify access mechanisms used by services and references accord-
ing to some technology/protocol (e.g. WSDL binding to consume/expose web
services, JMS binding to receive/send Java Message Service, etc.). Services and
references are typed by interfaces. An interface describes a set of related oper-



Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec.)

ations (or business functions) which as a whole make up the service offered or
required by a component. The provider may respond to the requester client of
an operation invocation with zero or more messages. These messages may be
returned synchronously or asynchronously.

Assemblies of components deployed together are called composite compo-
nents and consist of: properties, services, services organized as sub-components,
required services as references, and wires connecting sub-components.

Abstract State Machines ASMs are an extension of Finite State Machines
(FSMs) [8] where unstructured control states are replaced by states comprising
arbitrary complex data. The states of an ASM are multi-sorted first-order struc-
tures, i.e. domains of objects with functions and predicates (boolean functions)
defined on them. The transition relation is specified by rules describing how
functions change from one state to the next. There is a limited but powerful set
of ASM rule constructors, but the basic transition rule has the form of guarded
update “if Condition then Updates” where Updates is a set of function updates
of the form f(t1, . . . , tn) := t which are simultaneously executed3 when Condi-
tion is true. Distributed computation can be modeled by means of multi-agent
ASMs: multiple agents interact in parallel in a synchronous/asynchronous way.
Each agent’s behavior is specified by a basic ASM.

Besides ASMs comes with a rigorous mathematical foundation [8], ASMs can
be read as pseudocode on arbitrary data structures, and can be defined as the
tuple (header, body, main rule, initialization): header contains the signature4

(i.e. domain, function and predicate declarations); body consists of domain and
function definitions, state invariants declarations, and transition rules; main rule
represents the starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body); initialization defines initial values for
domains and functions declared in the signature.

3 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule to a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si only in the new interpretation of the function f .

4 Import and export clauses can be also specified for modularization.



Executing an ASM M means executing its main rule starting from a specified
initial state. A computation M is a finite or infinite sequence S0, S1, . . . , Sn, . . .
of states of M , where S0 is an initial state and each Sn+1 is obtained from Sn

by firing simultaneously all of the transition rules which are enabled in Sn.
A lightweight notion of module is also supported. An ASM module is an

ASM (header, body) without a main rule, without a characterization of the set
of initial states, and the body may have no rule declarations.

An open framework, the ASMETA tool set [2], based on the Eclipse/EMF
platform and developed around the ASM Metamodel, is also available for editing,
exchanging, simulating, testing, and model checking models. AsmetaL is the
textual notation to write ASM models within the ASMETA tool-set.

The SCA-ASM modeling language By adopting a suitable subset of the
SCA standard and exploiting the notion of distributed multi-agent ASMs, the
SCA-ASM modeling language [21] complements the SCA assembly model with
the ASM model of computation to provide ASM-based formal and executable
description of the services internal behavior, services orchestration, interactions,
and compensations. According to this implementation type, a service-oriented
component is an ASM endowed with (at least) one agent (a business partner or
role instance) able to interact with other agents by providing and requiring ser-
vices to/from other service-oriented components’ agents. The service behaviors
encapsulated in an SCA-ASM component are captured by ASM transition rules.

Fig. 2. SCA-ASM component shape

Fig. 2 shows the shape of an SCA-ASM component A using the graphical
SCA notation, and the corresponding ASM modules for the provided interface



computation and coordination

Skip rule skip do nothing

Update rule f(t1, . . . , tn) := t update the value of f at t1, . . . , tn to t

Call rule R[x1, . . . , xn] call rule R with parameters x1, . . . , xn
Let rule let x = t in R assign the value of t to x and then execute R

Cond rule it φ then R1 else R2 if φ is true, then execute R1, otherwise R2

Iterate rule while φ do R execute rule R until φ is true

Seq rule seq R1 . . . Rn endseq rules R1 . . .Rn are executed in sequence
without exposing intermediate updates

Parallel rule par R1 . . . Rn endpar rules R1 . . .Rn are executed in parallel

Forall rule forall x with φ do R(x) forall x satisfying φ execute R

Choose rule choose x with φ do R(x) choose an x satisfying φ and then execute R

Split rule forall n ∈ N do R(n) split N times the execution of R

Spown rule spawn child with R create a child agent with program R

communication

Send rule wsend[lnk,R,snd ] send data snd to lnk in reference to rule R
(no blocking, no acknowledgment)

Receive rule wreceive[lnk,R,rcv ] receive data rcv from lnk in reference to rule
R (blocks until data are received, no ack)

SendReceive wsendreceive send data snd to lnk in reference to rule R
rule [lnk,R,snd,rcv ] waits for data rcv to be sent back (no ack)

Reply rule wreplay[lnk,R,snd ] returns data snd to lnk, as response of R
request received from lnk (no ack)

Table 1. SCA-ASM rule constructors for computation, coordination, communication

AService (on the left) and the skeleton of the component itself (on the right)
using the textual AsmetaL notation of the ASMETA toolset. Details on the
meaning of these concepts can be found in [21].

The ASM rule constructors and predefined ASM rules (i.e. named ASM rules
made available as model library) used as basic SCA-ASM behavioral primitives
are recalled in Table 1. In particular, communication primitives provide both
synchronous and asynchronous interaction styles (corresponding, respectively,
to the request-response and one-way interaction patterns of the SCA standard).
Communication relies on a dynamic domain Message that represents messages
managed by an abstract message-passing mechanism: components communicate
over wires according to the semantics of the communication primitives and a
message encapsulates information about the partner link, the referenced service
name, and data. We abstract, therefore, from the SCA notion of binding. Indeed,
we adopt the default SCA binding (binding.sca) for message delivering, i.e. the
SOAP/HTTP or the Java method invocations (via a Java proxy) depending if
the invoked services are remote or local, respectively.



3 The SCA-ASM design framework

The SCA-ASM framework5 allows to design, assembly, and execute SCA-ASM
models of components in an unique Eclipse-based environment.

The framework consists of a graphical modeling front-end and of a run-time
platform as back-end. The graphical front-end is the SCA Composite Designer
that is an Eclipse-based graphical development environment for the construction
of SCA composite assemblies. An SCA metamodel (based on the Eclipse Mod-
eling Framework (EMF) [11] – a platform for Model-driven Engineering) is at
the core of such a graphical editor. We extended the SCA Composite Designer
and the SCA metamodel to support ASM elements like component and interface
implementation. Fig. 3 shows a screenshot of the tool. Appropriate ASM icons
(see the right side of Fig. 3) may be used to specify ASM modules as (abstract)
implementation of components and interfaces of the considered SCA assembly;
alternatively, ASM modules files can be selected from the explorer view (on
the left side of Fig. 3) and then dragged and dropped on the components and
interfaces of the SCA assembly diagram.

The back-end is the open Apache Tuscany SCA runtime [25] – to run and
test SCA assemblies of components developed with different implementation
technologies and spread across a distributed environment (cloud and enterprise
infrastructures) – combined with the ASMETA toolset to support various forms
of high-level functional analysis via ASMs. In particular, we extended (as better
described in the next Section) the Tuscany runtime platform to allow the execu-
tion of ASM models of SCA components through the simulator ASMETA/As-
metaS (as shown by the console output in Fig. 3) within Tuscany.

SCA-ASM makes it possible to specify abstract components, to compose
them, and to simulate them and check various functional properties with the
help of the ASMETA analysis toolset and of the Tuscany platform. Basically, the
following two functional analysis scenarios are supported. Offline analysis: First,
designers are able to exploit the ASMETA analysis toolset (also based on the
Eclipse environment) to validate and verify SCA-ASM models of components in
an off line manner, i.e. ASM models of such abstract (or mock) components may
be analyzed in isolation. As analysis techniques, the ASMETA toolset includes
simulation, scenario-based simulation, model-based testing and model checking.
In-place simulation: Then, an in-place simulation scenario may be also carried
out to execute early the behavior of the overall composite application. In this
case, the AsmetaS simulator is directly invoked within the SCA runtime platform
to execute the ASM specifications (intended as abstract implementations) of
mock components together with the other real and heterogeneous (non ASM-
implemented) components according to the chosen SCA assembly.

Several case studies of varying sizes and covering different uses of the SCA-
ASM constructs have been developed. These include application examples taken
from the SCA Tuscany distribution, a Robotics task coordination case study [15]
of the EU project BRICS [10], and a scenario of the Finance case study of the

5 https://asmeta.svn.sourceforge.net/svnroot/asmeta/code/experimental/SCAASM



EU project SENSORIA [23] related to a credit (web) portal application of a
credit institute that allows customer companies to ask for a loan to a bank. Fig.
3 shows the SCA assembly of this last finance application. More details and
functional requirements on this scenario can be found in [4].

Fig. 3. SCA-ASM tool screenshot

3.1 Framework implementation

This subsection provides some details on how we extended the Eclipse-based SCA
composite designer (the frontend) and the SCA Tuscany runtime (the backend)
to support the SCA-ASM component implementation type.
Extending the Eclipse-based SCA composite designer First, we extended
the SCA metamodel [22], an extensible EMF Ecore-compliant metamodel that
represents concepts of the Open SOA SCA specifications 1.0 [18] plus different
extending concepts to support open SCA runtimes (Apache Tuscany and Fras-
cati). Extending the SCA metamodel to add new concepts to SCA and extend
the tools to include them is straightforward. Fig. 4 shows the two basic concepts,
implementation and interface, that we added to the SCA metamodel to support
the editing of SCA-ASM components within standard SCA assembly files.

Then, we extended the SCA Composite Designer (see Figure 3), a graph-
ical (GMF) development environment for the construction of SCA composite
applications. This required us to develop Eclipse plug-ins to allow the use of the
ASMInterface and the ASMImplementation creation tools from the palette or
the contextual menu, to allow the setting of properties values in the Properties
view for each created element, etc..
Extending the Tuscany SCA runtime SCA-ASM components use annota-
tions to denote services, references, properties, etc. With this information, as



Fig. 4. A fragment of the SCA metamodel extension to support SCA-ASM

better described below, an SCA runtime platform (Tuscany in our case) can cre-
ate a composition (an application) by tracking service references (i.e. required
services) at runtime and injecting required services into the component when
they become available.

Creating a new extension in Tuscany required to us two distinct steps. First,
we developed the extension code (using the Java programming language) to
handle the new technology implementation.asm. The UML package diagram in
Fig. 5 shows the high-level structure and classes of this extension code. In the
second step, the Tuscany runtime was configured to load, invoke, and manage the
new extension through the Tuscany extension point mechanism. An extension
point is the place where the Tuscany runtime collects the information required
for handling an extension. Specifically, we had to do the following: (i) define how
the extension can be used and configured in an SCA composite (assembly) file,
by defining an XML schema implementation-asm.xsd that defines the XML
syntax for the extension implementation.asm of the SCA implementation type6

– XML schema validation extension point; (ii) define how to create an Java
model that represents the in-memory version of the configured ASM extension by
providing the code for a processor (the Java class ASMImplementationProcessor
in Fig. 5) that knows how to transform the XML representation in the composite
file into an in-memory Java model and vice versa – XML processor extension

point; (iii) enable the Tuscany runtime to invoke and manage the ASM extension
by adding the code, the ASM extension provider7, that the Tuscany runtime will
use to locate, invoke, and manage the extension at runtime – Provider factory

extension point.

The ASM extension provider delegates the handling of the ASM compo-
nent implementation to AsmetaS. To this purpose, the Tuscany runtime calls
the ASMImplementationProviderFactory (see Fig. 5) to create an instance
of the ASMImplementationProvider for each component implementation in-

6 For example, implementation.asm adds the location attribute for the pathname
of the ASM file (an AsmetaL file) that implements the underlying component.

7 The Tuscany core delegates the start/stop of component implementation instances
and related resources, and the service/reference invocations, to specific implementa-
tion providers that typically respond to these life-cycle events.



stance. The ASMImplementationProvider’s start() method is invoked to set
up the implementation instance when the component is started. Tuscany also
calls the ASMImplementationProvider’s createInvoker() method to create
an ASMInvoker for each service operation and add it to the incoming invoca-
tion chain. When the request comes in, the ASMImplementationInvoker will be
called to dispatch the request to the ASM instance and get the response back to
the caller. When the component is stopped, the ASMImplementationProvider’s
stop() method is triggered to clean up the resources associated with the im-
plementation instance. An SCA service can offer multiple operations. Below, we
describe the mechanism (technology dependent) adopted by the invoker specific
to ASM (the ASMInvoker) for dispatching (through the invoke method) requests
to the appropriate operation.

Fig. 5. The classes that define the implementation.asm extension

In-place ASM execution mechanism. Fig. 6 illustrates how the ASM imple-
mentation provider sets up the environment (the ASM container) within Tus-
cany for instantiating and handle incoming/outgoing service requests to/from
an ASM component implementation instance (like component A in the figure)
by instrumenting the ASM simulator AsmetaS. Currently, the implementation
scope of an SCA-ASM component is composite, i.e. a single component instance
– a single main ASM instance (see the main ASM for component A in Fig. 6)
– is created within AsmetaS for all service calls of the component. This main
ASM is automatically created during the setting up of the connections and it
is responsible for instantiating the component agent and related resources, and
for listening for service requests incoming from the protocol layer and forward
them to the component’agent instance (see component A in Fig. 6). Executing
an ASM component implementation means executing its main ASM.



Fig. 6. Instantiating and invoking ASM implementation instances within Tuscany

For each reference, another entity (i.e. another ASM module) is automatically
created (and instantiated as ASM agent within the main ASM of the compo-
nent) as “proxy” for a remote component (see the ASM proxy for component
B in Fig. 6) for making an outbound service call from the component. Using a
terminology adopted in the Java Remote Method Invocation (RMI) API, this
proxy ASM plays the role of stub to forward a service invocation (and their asso-
ciated arguments) to an external component’s agent, and to send back (through
the ASM rule r replay) the result (if any) to the invoker component’agent (the
agent of the component A in Fig. 6). The main ASM, instead, plays the role of
skeleton, i.e. a proxy for a remote entity that runs on the provider and forward
(through the ASM rule r sendreceive) client’s remote service requests (and
their associated arguments) to the appropriate component’s agent (usually the
main agent of the component), and then the result (if any) of the invoked service
is returned to the client component’agent (via stubs).

When an ASM implementation component is instantiated, the Tuscany run-
time also creates a value for each (if any) externally settable property (i.e. ASM
monitored functions, or shared functions when promoted as a composite prop-
erty, annotated with @Property). Such values or proxies are then injected into
the component implementation instance. A data binding mechanism also guar-
antees a matching between ASM data types and Java data types, including
structured data, since we assume the Java interface as IDL for SCA interfaces.

4 Related work

Some visual notations for service modeling exist, such as the OMG SoaML UML
profile [17] and the UML4SOA [20] defined within the EU project SENSORIA
[23]. SoaML, like SCA, is focused on architectural aspects of services. UML4SOA
is more focused on modeling service orchestrations as an extension of UML2
activity diagrams. In order to make UML4SOA models executable, code gen-
erators towards low-level orchestration languages (such as BPEL/WSDL, Jolie,
and Java) were developed [19]; however these target languages do not provide
the same preciseness of a formal method necessary for early design and analysis.



Some works devoted to provide software developers with formal methods
and techniques tailored to the service domain also exist for the service com-
position problem), mostly developed within the EU projects SENSORIA [23]
and S-Cube [16]. Several process calculi for the specification of SOA systems
have been designed (see, e.g., [12, 13]). They provide linguistic primitives sup-
ported by mathematical semantics, and verification techniques for qualitative
and quantitative properties [23]. Still within the SENSORIA project, a declar-
ative modeling language for service-oriented systems, named SRML [24], has
been developed. Compared to the formal notations mentioned above, the ASM
method has the advantage to be executable. In [14], the analysis tool Wombat for
SCA is presented; the tool is used for simulation and verification tasks by trans-
forming SCA modules into composed Petri nets. There is not proven evidence,
however, that this methodology scales effectively to large systems.

An abstract service-oriented component model, named Kmelia, is formally
defined in [1, 3] and is supported by a prototype tool (COSTO). Our proposal
is similar to the Kmelia approach; however, we have the advantage of having
integrated our SCA-ASM component model and the ASM-related tools with an
SCA runtime platform for a practical use and an easy adoption by developers.

Within the ASM community, the ASMs have been used for the purpose of
formalizing business process notations and middleware technologies related to
web services, such as [9, 6] to name a few. Some of these previous formalization
efforts, as explained in [21], are at the basis of our work.

5 Conclusion and future directions

We presented a framework for service design and prototyping that combines the
SCA open standard model for service assembly and the ASM formal support
to assemble service-oriented components as well as intra- and inter- service be-
havior. The framework is supported by a tool that exploits the SCA runtime
Tuscany and the toolset ASMETA for model execution and functional analysis.

We plan to support more useful SCA concepts, such as the SCA callback in-
terface for bidirectional services. We want also to enrich the SCA-ASM notation
with interaction and workflow patterns based on the BPMN specification and
with specific actions to support an event-based style of interaction. We also plan
to extend the language with pre/post-conditions defined on services (transition
rules) for contract correctness checking in component assemblies.

References

1. P. André, G. Ardourel, and C. Attiogbé. Composing components with shared
services in the kmelia model. In C. Pautasso and É. Tanter, editors, Software
Composition, volume 4954 of LNCS, pages 125–140. Springer, 2008.

2. The ASMETA toolset website. http://asmeta.sf.net/, 2006.
3. C. Attiogbé, P. André, and G. Ardourel. Checking component composability. In

W. Löwe and M. Südholt, editors, Software Composition, volume 4089 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2006.



4. F. Banti, A. Lapadula, R. Pugliese, and F. Tiezzi. Specification and Analysis of
SOC Systems Using COWS: A Finance Case Study. Electr. Notes Theor. Comput.
Sci., 235:71–105, 2009.

5. A. P. Barros and E. Börger. A compositional framework for service interaction
patterns and interaction flows. In K.-K. Lau and R. Banach, editors, ICFEM,
volume 3785 of LNCS, pages 5–35. Springer, 2005.

6. E. Börger. Modeling Workflow Patterns from First Principles. In Proc. of the 26th
Int. Conf. on Conceptual Modeling - ER 2007, pages 1–20, 2007.

7. E. Börger, O. Sörensen, and B. Thalheim. On defining the behavior of or-joins in
business process models. J. UCS, 15(1):3–32, 2009.

8. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

9. E. Brger, O. Srensen, and B. Thalheim. On defining the behavior of or-joins in
business process models. Journal of Universal Computer Science, 15(1):3–32, 2009.

10. EU project BRICS (Best Practice in Robotics), www.best-of-robotics.org/.
11. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2008.
12. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. : A calculus for service

oriented computing. In A. Dan and W. Lamersdorf, editors, ICSOC, volume 4294
of LNCS, pages 327–338. Springer, 2006.

13. I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orchestra-
tion and conversation in service-oriented computing. In SEFM’07, pages 305–314.
IEEE, 2007.

14. A. Martens and S. Moser. Diagnosing SCA Components Using Wombat. In Busi-
ness Process Management, 4th International Conference, BPM 2006, Vienna, Aus-
tria, September 5-7, 2006, Proc., pages 378–388, 2006.

15. EU project BRICS, Tech. Rep. A Coordination Use Case. March 24, 2011. www.
best-of-robotics.org/wiki/images/e/e0/coordinationusecaseubergamo.pdf.

16. EU project S-Cube http://www.s-cube-network.eu/.
17. OMG. Service oriented architecture Modeling Language (SoaML), ptc/2009-04-01,

april 2009 http://www.omg.org/spec/soaml/1.0/beta1/.
18. Service Component Architecture (SCA) www.osoa.org.
19. P. Mayer, A. Schroeder, and N. Koch. A model-driven approach to service orches-

tration. In IEEE SCC (2), pages 533–536. IEEE, 2008.
20. P. Mayer, A. Schroeder, N. Koch, and A. Knapp. The UML4SOA Profile. In

Technical Report, LMU Muenchen, 2009.
21. E. Riccobene and P. Scandurra. A modeling and executable language for designing

and prototyping service-oriented applications. In EUROMICRO Conf. on Software
Engineering and Advanced Applications (SEAA 2011).

22. SCA Tools. http://eclipse.org/stp/sca/.
23. EU project SENSORIA, www.sensoria-ist.eu/.
24. SRML: A Service Modeling Language. http://www.cs.le.ac.uk/srml/, 2009.
25. Apache Tuscany. http://tuscany.apache.org/.


