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Abstract. We present a technique for checking the equivalence of NuSMV specifications. The
approach is founded on the notion of equivalence between Kripke structures. The necessity to
tackle this problem arisen working on using mutation to asses the static analysis fault detection
capability. Indeed, mutation, consisting into introducing simple syntactic changes – representing
typical mistakes designers often make – into specifications, may produce equivalent mutants,
namely models behaving as the original one. Equivalent mutants should be detected since they do
not represent actual faults. In program mutation, detecting equivalent mutants is an undecidable
problem and, when possible, is a time-consuming activity, difficult to automatize. In this work we
focus on how detecting equivalence of NuSMV specifications. The novel technique we propose,
consists in building a merging unique specification and proving by model checking a series of
CTL properties.

1 Introduction

The problem of detecting equivalent NuSMV specifications is connected to the problem of identifying
equivalent mutants. Mutation consists in introducing small modifications, called mutations, into mod-
els; these simple syntactic changes should represent typical mistakes a designer may make during the
modeling activity.

Mutation and the problem of checking equivalent mutants is well-known in the context of program,
and common fault classes have been defined by Kuhn in [10]. From fault classes it is easy to derive
mutation operators [1], that produce copies of the original program each containing a single fault:
these faulty programs are called mutants. More recently, mutation has been applied to specifications
like FSMs [6], Petri nets [7], Statecharts [8], Estelle specifications [5], Object-Z specifications [11],
etc. We have focused our attention on the mutation of Kripke structures and, in particular, of their
representation as NuSMV specifications [13].

Most mutation operators can produce equivalent mutants, namely models behaving as the original
one. Equivalent mutants pose a challenge, since they do not represent actual faults and cannot be
detected by observing the model behavior. Therefore, it is important to identify and remove from the
set of mutants the equivalent ones.

In program mutation, detecting equivalent mutants is an undecidable problem [1] and, when pos-
sible, is a time-consuming activity [9], difficult to automatize. In this work we focus on how detecting
equivalence of NuSMV specifications obtained by mutation. We propose a novel procedure for checking
the equivalence, which is based on the notion of equivalence between Kripke structures.

Section 2.1 presents the NuSMV syntax and Section 2.2 introduces some definitions about Kripke
structures. Section 3 presents the notion of equivalence between Kripke structures and how the problem
of proving the equivalence between two Kripke structures M1 and M2 can be reduced to the problem of
proving some properties over a single Kripke structure M12, obtained by merging M1 and M2; Section
4 shows how to build the merging specification when the Kripke structures are represented as NuSMV
specifications and how to prove the equivalence using some CTL properties.



2 Background

2.1 NuSMV and its notation

NuSMV [4,13] is known as a model checker derived from the CMU SMV [12]. It allows for the repre-
sentation of synchronous and asynchronous finite state systems, and for the analysis of specifications
expressed in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).

A NuSMV specification contains a VAR section for variable declarations. A variable type can be
Boolean, integer defined over intervals or sets, or an enumeration of symbolic constants. A state of the
model is an assignment of values to variables.

A NuSMV specification describes the behavior of a Finite State Machine (FSM) in terms of a
“possible next state” relation between states that are determined by the values of variables. Transitions
between states are determined by the updates of the variables declared in the ASSIGN section, that
contains the initialization (by the instruction init) and the update mechanism (by the instruction
next) of variables. A DEFINE statement can also be used as a macro to syntactically replace an
identifier with the expression it is associated with. There exist the following four ways to explicitly
assign values to a variable:

ASSIGN identifier := simple expression ´´ simple assignment
ASSIGN init(identifier) := simple expression ´´ init value
ASSIGN next(identifier) := next expression ´´ next value
DEFINE identifier := simple expression ´´ macro definition

where identifier is a variable identifier; simple expressions are built only from the values of variables
in the current state and they cannot have a next operation inside; next expression relates current and
next state variables to express transitions in the FSM (see the NuSMV User Manual [3] for more details
on the assignment syntax and restriction rules for assignments). In both simple- and next- expressions,
a variable’s value can be determined either unconditionally or conditionally, depending on the form of
the expression. Conditional expressions can be:

1. An if-then-else expression cond1? exp1: exp2 which evaluates to exp1 if the condition cond1
evaluates to true, and to exp2 otherwise.

2. A condition case expression:

case
left expression 1 : right expression 1 ;
...
left expression N : rightexpression N;

esac

which returns the value of the first right expression i such that the corresponding left expression i
condition evaluates to TRUE, and the previous i-1 left expressions evaluate to FALSE. The type of
expressions on the left hand side must be boolean. An error occurs if all expressions on the left hand
side evaluate to FALSE. To avoid these kinds of errors, NuSMV performs a static analysis and, if it
believes that in some states no left expression may be true, it forces the user to add a default case with
left expression equal to TRUE.

NuSMV offers another more declarative way of defining initial states and transition relations. Initial
states can be defined by the keyword INIT followed by characteristic properties that must be satisfied
by the variables values in the initial states. Transition relations can be expressed by constraints, through
the keyword TRANS, on a set of current state/next state pairs. Invariant conditions can be expressed
by the command INVAR.

Temporal properties are specified in the CTLSPEC (resp. LTLSPEC) section that contains the
CTL (resp. LTL) properties to be verified.
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2.2 Kripke structures

Definition 1 (Kripke structure).
A Kripke structure is a quadruple M “ xS, S0, T,Ly where

– S is a set of states;
– pS0 Ď Sq ‰ H is the set of initial states;
– T Ď S ˆ S is the transition relation that must be left-total, i.e., @s P S, Ds1 P S : ps, s1q P T ;
– L : S Ñ PpAP q is the proposition labeling function, where AP is a set of atomic propositions; we

require L to be injective, i.e., @s1, s2 P S, s1 ‰ s2 Ñ Lps1q ‰ Lps2q: this means that a state is
uniquely identified by its labels.

Definition 2 (Computation tree). Given a Kripke structure M “ pS, S0, T,Lq, a computation tree
of M is a tree structure where the root is an initial state s0 P S0, and the children of a node s P S in
the computation tree are all the states s1 P S such that there exists a transition ps, s1q P T .

Definition 3 (Structure equivalence).
Two Kripke structures M1 and M2 with the same set of atomic propositions are equivalent iff they

have the same computation trees.

Definition 4 (Path).
A path ψ is a sequence of states in S

ψ “ s1, s2, . . . , sn

such that

@i P r1, n´ 1s psi, si`1q P T

Let’s identify with Ψ the (infinite) set of all the paths in M .
Let’s identify with Ψ0 Ď Ψ the (infinite) set of all the paths such that the starting state s1 P S

0.

Definition 5 (Reachability).
A state s P S is reachable in M if there exists a path ψ0 “ s1, . . . , sn P Ψ

0 such that sn “ s, i.e.

isReachpsq fi Dψ0 “ s1, . . . , sn P Ψ
0 : sn “ s

We denote by reachpMq Ď S the set of reachable states of the machine M .

Definition 6 (Successor state).
A state s1 is a successor of another state s if ps, s1q P T . We denote by nextpsq the set of the

successor states of s, i.e.

nextpsq “ ts1 P S : ps, s1q P T u

3 Equivalence of Kripke structures

In this section we give the notion of equivalence between two Kripke structures [2].
Let M1 “ xS1, S

0
1 , T1,L1y and M2 “ xS2, S

0
2 , T2,L2y be two Kripke structures with the same set of

atomic propositions AP . A relation E can be defined on S1 ˆ S2 to express the equivalence between
states of the two structures M1 and M2; two states are equivalent if they have the same labels and
bring to next states having the same labels.

3



Definition 7 (State equivalence).
@s1 P S1@s2 P S2 we say s1Es2 iff the following condition holds:

L1ps1q “ L2ps2q ^

@s11 P nextps1q Ds
1
2 P nextps2q : L1ps

1
1q “ L2ps

1
2q ^

@s12 P nextps2q Ds
1
1 P nextps1q : L2ps

1
2q “ L1ps

1
1q

(1)

Theorem 1 (Structure equivalence).
Let M1 and M2 be two Kripke structures with the same set of atomic propositions. If the following

properties hold (initial states have same labeling and reachable states are equivalent):

@s01 P S
0
1 , Ds

0
2 P S

0
2 :

“

L1ps
0
1q “ L2ps

0
2q
‰

(2)

@s02 P S
0
2 , Ds

0
1 P S

0
1 :

“

L2ps
0
2q “ L1ps

0
1q
‰

(3)

@s1 P reachpM1q Ds2 P reachpM2q : s1 E s2 (4)

@s2 P reachpM2q Ds1 P reachpM1q : s2 E s1 (5)

then M1 and M2 are equivalent.

The problem of checking the equivalence of two Kripke structures M1, M2 can be reduced to the
problem of proving some properties over a new merging Kripke structure M12 derived from M1 and
M2. In Section 3.1 we show how to build M12.

3.1 Construction of merging Kripke structure M12

Let M1 “ xS1, S
0
1 , T1,L1y and M2 “ xS2, S

0
2 , T2,L2y be two Kripke structures with the same set of

atomic propositions AP .
Let M12 “ xS12, S

0
12, T12,L12y be a Kripke structure built upon M1 and M2, satisfying the following

conditions.

C1: condition over the states S12. There exist two projection functions:

π1 : S12 Ñ S1 (6)

π2 : S12 Ñ S2 (7)

such that
@s1 P S1,@s2 P S2, Ds12 P S12 rπ1ps12q “ s1 ^ π2ps12q “ s2s (8)

C2: condition over the initial states S0
12.

@s P S12

“

s P S0
12 ðñ π1psq P S

0
1 ^ π2psq P S

0
2

‰

(9)

C3: condition over the transition relation T12.

@s12 P S12,@s
1
12 P S12

„

s112 P nextM12ps12q ðñ
π1ps

1
12q P nextM1

pπ1ps12qq^
π2ps

1
12q P nextM2pπ2ps12qq



(10)

3.1.1 Corollary A state s12 P S12 is reachable in M12 iff its projections π1ps12q and π2ps12q are,
respectively, reachable in M1 and M2.

isReachM12
ps12q ðñ isReachM1

pπ1ps12qq ^ isReachM2
pπ2ps12qq (11)
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Proof Let’s suppose that

Ds12 P S12 risReachM12ps12q ^  isReachM2pπ2ps12qqs (12)

If s12 is reachable in M12, it means that there exists a path ψ0
12 “ s1, . . . , sn P Ψ

0
12 such that sn “ s12.

Let’s now consider the following sequence of states in M2:

π2ps1q, . . . , π2psnq

By Formula 12 we know that the projection of state sn inM2 is not reachable, i.e., isReachM2
pπ2psnqq

3;
this means that Di P r1, n´ 1s : π2psi`1q R nextpπ2psiqq. But this contradicts the condition on the con-
struction of T12 (formula 10). A similar contradiction is achieved if, at the beginning of the proof, we
suppose that

Ds12 P S12 risReachM12ps12q ^  isReachM1pπ1ps12qqs

3.2 Equivalence checking of Kripke structures

Definition 8 (Equivalence of the projections).

We say that a state s12 P S12 is labelly equivalent iff the labelings of the projections are equivalent,
i.e

leps12q fi L1pπ1ps12qq “ L2pπ2ps12qq (13)

We say that two states s12, s
1
12 P S12 are labelly equivalent with respect to the projection π1/π2 iff

the labelings of the projections are equivalent, i.e

le1ps12, s
1
12q fi L1pπ1ps12qq “ L1pπ1ps

1
12qq (14)

le2ps12, s
1
12q fi L2pπ2ps12qq “ L2pπ2ps

1
12qq (15)

Definition 9 (Mirror state).

For all states s12 P S12 we define the predicate mirror as:

mirrorps12q fi leps12q Ñ @s112 P nextps12q

ˆ

Ds212 P nextps12q rleps
2
12q ^ le1ps

1
12, s

2
12qs^

Ds312 P nextps12q rleps
3
12q ^ le2ps

1
12, s

3
12qs

˙

(16)

Theorem 2 (Equivalence between M1 and M2).

M1 and M2 are equivalent iff the following properties

@s012 P S
0
12, Ds

0
12
1
P S0

12 rleps
0
12
1
q ^ le1ps

0
12, s

0
12
1
qs (17)

@s012 P S
0
12, Ds

0
12
2
P S0

12 rleps
0
12
2
q ^ le2ps

0
12, s

0
12
2
qs (18)

@s12 P reachpM12q rmirrorps12qs (19)

hold in M12.

3 s12 “ sn

5



4 Equivalence checking of NuSMV specifications

Definition 10 (NuSMV model as Kripke structure).

A NuSMV model is a Kripke stucture M “ xS, S0, T y where each state of S is labeled by a pred-
icate

Źr
i“1pvi “ diq, being varpMq “ tv1, . . . , vru a finite fixed set of variables and td1, . . . , dru their

interpretation values over domains D1, . . . , Dr; the transition relation T expresses the updating of the
state variables interpretation by the syntax given in Section 2.1.

4.1 Mutated specification

Given a NuSMV model Mo “ xSo, S
0
o , Toy, we apply a mutation to it: we mutate the initial assignments

and/or the next state assignments of a set of variables, that is the way in which their initial/next value
is calculated. We obtain a machine Mmu “ xSmu, S

0
mu, Tmuy with the same state space and the same

variables, i.e., So “ Smu and varpMoq “ varpMmuq, but, maybe, with a different transition relation
Tmu and/or a different set of initial states S0

mu. If S0
o “ S0

mu ^ T 0
o “ T 0

mu, the two models Mo and
Mmu are said to be equivalent, otherwise they are not equivalent.

Partitioning of the variables The variables varpMoq can be decomposed in subsets depending on
the fact that they are affected by the mutation or not.

Let MV “ tṽ1, . . . , ṽku be the set of variables whose initial/next assignment has been mutated.
Let D̃1, . . . , D̃k be their domains.

Let NV be the set of variables whose initial/next assignment has not been mutated. NV can be
decomposed in two parts:

– the set of variables DV “ tvk`1, . . . , vnu: a variable vj P DV iff there is a variable vi PMV whose
value, in some state, is determined according to the value of vj in the current/previous state. Let
Dk`1, . . . , Dn be their domains;

– the set of variables IN that are not considered in the evaluation of the value of any variable in
MV .

The variables of Mo and of Mmu are the same, i.e.:

varpMoq “ varpMmuq “MV YNV “MV YDV Y IN

Example Model 1 shows a NuSMV specification and Model 2 another specification obtained from
the previous one applying a mutation to it: the relation operator ě in the second branch of the case
expression in the assignment of variable amPm has been replaced with the relational operator ą. The
obtained partition of the variables is:

– MV= {amPm}
– DV= {h}
– IN= {h12}

Model 3 shows the specification obtained from the merging of the original specification (Model 1)
and the mutated one (Model 2). Assignments of variables MV (amPm) and DV (h) are those defined
in the original specification. Variables MV 1 (amPmMut) have been obtained introducing a copy of
variables in MV , appending the suffix Mut to their names; their assignments are those defined in the
mutated specification. Variables in IN (h12) have not been exported.
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MODULE main
VAR

h: 0..23;
h12: 1..12;
amPm: {AM, PM};

ASSIGN
init(h) := 0;
next(h) := (h + 1) mod 24;
h12 :=

case
h in {1, 12}: h;
h > 12: h mod 12;
TRUE: 12;

esac;
amPm :=

case
h < 12: AM;
h >= 11: PM;

esac;

Model 1. Original specification

MODULE main
VAR

h: 0..23;
h12: 1..12;
amPm: {AM, PM};

ASSIGN
init(h) := 0;
next(h) := (h + 1) mod 24;
h12 :=

case
h in {1, 12}: h;
h > 12: h mod 12;
TRUE: 12;

esac;
amPm :=

case
h < 12: AM;
h > 11: PM;

esac;

Model 2. Equivalent mutant

MODULE main
VAR

h: 0..23;
amPm: {AM, PM};
amPmMut: {AM, PM};

ASSIGN
init(h) := 0;
next(h) := (h + 1) mod 24;
amPm :=

case
h < 12: AM;
h >= 11: PM;

esac;
amPmMut :=

case
h < 12: AM;
h > 11: PM;

esac;
I

Model 3. Merging specification

4.2 Merging specification

Given the NuSMV specifications Mo and Mmu, we define merging specification the NuSMV model
Me “ xSe, S

0
e , Tey built as follows:

– varpMeq “MV YMV 1 YDV , being
‚ MV “ tṽ1, . . . , ṽku the set of all variables of Mo whose initial assignment and/or next state

assignment has been mutated in Mmu. D̃1, . . . , D̃k are their domains.
‚ MV 1 “ tṽ11, . . . , ṽ

1
ku a renamed copy of MV . Their domains are the same of the variables in

MV , that is D̃1, . . . , D̃k. There exists a bijective function

mut : MV ÑMV 1

such that @ṽi PMV pmutpṽiq “ ṽ1iq.
‚ DV “ tvk`1, . . . , vnu the set of all non mutated variables of Mo upon which the value of some

mutated variable depends on.
– The initial state assignments of variables in MV YDV are those defined in Mo, while variables in
MV 1 have initial assignments as in Mmu.

– The next state assignments of variables in MV YDV are those defined in Mo, while variables in
MV 1 have next state assignments as in Mmu.

4.3 Equivalence of the projections and mirror state

Since a state in a NuSMV model is identified by the values of its variables, for NuSMV specifications,
the predicates le, le1 and le2 (see Definition 8) can be defined in the following way:

lepseq fi @v PMV rvvwse “ vmutpvqwses

fi
k
Ź

i“1

vṽiwse “ vṽ
1
iwse

(20)
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le1pse, s
1
eq fi @v P pMV YDV q

“

vvwse “ vvws1
e

‰

fi
k
Ź

i“1

vṽiwse “ vṽiws1
e
^

n
Ź

j“k`1

vvjwse “ vvjws1
e

(21)

le2pse, s
1
eq fi @v P pMV 1 YDV q

“

vvwse “ vvws1
e

‰

fi
k
Ź

i“1

vṽ1iwse “ vṽ
1
iws1

e
^

n
Ź

j“k`1

vvjwse “ vvjws1
e

(22)

Applying formulas 20 and 21, the formula leps1eq ^ le1pse, s
1
eq can be written in the following way:

leps1eq ^ le1pse, s
1
eq fi

k
Ź

i“1

vṽiws1
e
“ vṽ1iws1

e
^

k
Ź

i“1

vṽiwse “ vṽiws1
e
^

n
Ź

j“k`1

vvjwse “ vvjws1
e

fi
k
Ź

i“1

`

vṽiwse “ vṽiws1
e
^ vṽiwse “ vṽ

1
iws1

e

˘

^
n
Ź

j“k`1

vvjwse “ vvjws1
e

(23)

Applying formulas 20 and 22, the formula leps1eq ^ le2pse, s
1
eq can be written in the following way:

leps1eq ^ le2pse, s
1
eq fi

k
Ź

i“1

vṽiws1
e
“ vṽ1iws1

e
^

k
Ź

i“1

vṽ1iwse “ vṽ
1
iws1

e
^

n
Ź

j“k`1

vvjwse “ vvjws1
e

fi
k
Ź

i“1

`

vṽ1iwse “ vṽiws1
e
^ vṽ1iwse “ vṽ

1
iws1

e

˘

^
n
Ź

j“k`1

vvjwse “ vvjws1
e

(24)

Finally, the predicate mirror (see Definition 9) for NuSMV specifications can be defined using
formulas 20, 23 and 24.

mirrorpseq fi
ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@s1e P nextpseq
¨

˚

˚

˚

˚

˝

Ds2e P nextpseq

«

k
Ź

i“1

`

vṽiws1
e
“ vṽiws2

e
^ vṽiws1

e
“ vṽ1iws2

e

˘

^
n
Ź

j“k`1

vvjws1
e
“ vvjws2

e

ff

^

Ds3e P nextpseq

«

k
Ź

i“1

`

vṽ1iws1
e
“ vṽiws3

e
^ vṽ1iws1

e
“ vṽ1iws3

e

˘

^
n
Ź

j“k`1

vvjws1
e
“ vvjws3

e

ff

˛

‹

‹

‹

‹

‚

(25)

4.4 Equivalence checking through CTL properties

Definition 11 (Both and Either predicates).
Let

Bothpd̃ki“1, d
n
j“k`1q fi

k
Ź

i“1

´

d̃i “ ṽi ^ d̃i “ ṽ1i

¯

^
n
Ź

j“k`1

dj “ vj

Eitherpd̃ki“1, d
n
j“k`1q fi

ˆ

k
Ź

i“1

d̃i “ ṽi _
k
Ź

i“1

d̃i “ ṽ1i

˙

^
n
Ź

j“k`1

dj “ vj

be two predicates such that, given a n-upla of values d “ pd̃ki“1, d
n
j“k`1q, Bothpdq means that both

machines Mo and Mmu are in the same state d, while Eitherpdq means that at least one machine is in
state d.

Let’s see now how the formulas described in Theorem 2 can be checked through some CTL prop-
erties. Section 4.4.1 describes how to prove properties 17 and 18, Section 4.4.2 how to prove property
19.
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4.4.1 Condition on the initial states

Definition 12 (Initial state as tuple of values).
Let IS be the tuples of values of the variables in the initial states, i.e.,

IS “

$

’

’

&

’

’

%

´

d̃ki“1 P D̃i, d̃
1k
i“1 P D̃i, d

n
j“k`1 P Dj

¯

:

Dsoe P S
0
e

«

k
Ź

i“1

´

d̃i “ vṽiws0e ^ d̃
1
i “ vṽ

1
iws0e

¯

^
n
Ź

j“k`1

dj “ vvjws0e

ff

,

/

/

.

/

/

-

Let’s also define

ISMV “

#

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

: Dsoe P S
0
e

«

k
ľ

i“1

d̃i “ vṽiws0e ^
n
ľ

j“k`1

dj “ vvjws0e

ff+

ISMV 1 “

#

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

: Dsoe P S
0
e

«

k
ľ

i“1

d̃i “ vṽ
1
iws0e ^

n
ľ

j“k`1

dj “ vvjws0e

ff+

By definition of IS, ISMV and ISMV 1 , it holds that

@

´

d̃ki“1 P D̃i, d̃
1k
i“1 P D̃i, d

n
j“k`1 P Dj

¯

´

d̃ki“1, d̃
1k
i“1, d

n
j“k`1

¯

P IS ðñ

´´

d̃ki“1, d
n
j“k`1

¯

P ISMV ^

´

d̃1ki“1, d
n
j“k`1

¯

P ISMV 1

¯

First condition on the initial states Using formula 23, formula 17 becomes

@s0e P S
0
e , Ds

0
e
1
P S0

e

«

k
ľ

i“1

`

vṽiws0e “ vṽiws01
e
^ vṽiws0e “ vṽ

1
iws01

e

˘

^

n
ľ

j“k`1

vvjws0e “ vvjws01
e

ff

(26)

Formula 26 can be rewritten, substituting the quantification over the initial states with the quan-
tification over the values of the variables in the initial states (i.e., IS), in the following way

@pd̃ki“1, d̃
1k
i“1, d

n
j“k`1q P IS, Ds

0
e
1
P S0

e

«

k
ľ

i“1

´

d̃i “ vṽiws0e1 ^ d̃i “ vṽ
1
iws0e

1

¯

^

n
ľ

j“k`1

dj “ vvjws0e1

ff

(27)

Note that the interpretations of the variables in state se have been replaced with the actual values
of the variables in the state.

Formula 27 can be further simplified, observing that the values of the variables in MV 1 (i.e.,
d̃1ki“1) are not used in the propositional formula (matrix) of the existentially quantified subformula.
Quantifying over ISMV , formula 27 can be rewritten in the following way

@pd̃ki“1, d
n
j“k`1q P ISMV , Ds

0
e
1
P S0

e

«

k
ľ

i“1

´

d̃i “ vṽiws0e1 ^ d̃i “ vṽ
1
iws0e

1

¯

^

n
ľ

j“k`1

dj “ vvjws0e1

ff

(28)

9



Second condition on the initial states Using formula 24, formula 18 becomes

@s0e P S
0
e , Ds

0
e
2
P S0

e

«

k
ľ

i“1

`

vṽ1iws0e “ vṽiws0e2 ^ vṽ1iws0e “ vṽ
1
iws0e

2

˘

^

n
ľ

j“k`1

vvjws0e “ vvjws0e2

ff

(29)

Formula 29 can be rewritten, substituting the quantification over the initial states with the quan-
tification over the values of the variables in the initial states (i.e., IS), in the following way

@pd̃ki“1, d̃
1k
i“1, d

n
j“k`1q P IS, Ds

0
e
2
P S0

e

«

k
ľ

i“1

´

d̃1i “ vṽiws0e2 ^ d̃1i “ vṽ
1
iws0e

2

¯

^

n
ľ

j“k`1

dj “ vvjws0e2

ff

(30)

Formula 30 can be further simplified, observing that the values of the variables in MV (i.e., d̃ki“1)
are not used in the matrix of the existentially quantified subformula. Quantifying over ISMV 1 , formula
30 can be rewritten in the following way

@pd̃ki“1, d
n
j“k`1q P ISMV 1 , Ds0e

2
P S0

e

«

k
ľ

i“1

´

d̃i “ vṽiws0e2 ^ d̃i “ vṽ
1
iws0e

2

¯

^

n
ľ

j“k`1

dj “ vvjws0e2

ff

(31)

Unique formula for checking formulas 28 and 31 The matrices of the universally quantified
formulas 28 and 31 are the same. So, it is possible to prove both properties, using the following formula.

@pd̃ki“1 P D̃i, d
n
j“k`1 P Djq

¨

˚

˚

˚

˚

˝

Ds0e P S
0
e

«

ˆ

k
Ź

i“1

vṽiws0e “ d̃i _
k
Ź

i“1

vṽ1iws0e “ d̃i

˙

^
n
Ź

j“k`1

vvjws0e “ dj

ff

Ñ

Ds0e
1
P S0

e

«

k
Ź

i“1

´

d̃i “ vṽiws0e1 ^ d̃i “ vṽ
1
iws0e

1

¯

^
n
Ź

j“k`1

dj “ vvjws0e1

ff

˛

‹

‹

‹

‹

‚

(32)

The proof of the correctness is based on the following theorem.

Theorem 3. Being A, B and C three domains such that AYB Ď C, it holds that

@x P A rfpxqs ^ @y P B rfpyqs ” @z P C rpz P A_ z P Bq Ñ fpzqs

In our case ISMV Ď

´

Śk
i“1 D̃i ˆ

Śn
j“k`1Dj

¯

and ISMV 1 Ď

´

Śk
i“1 D̃i ˆ

Śn
j“k`1Dj

¯

. So, we

can take as C the domain
Śk

i“1 D̃i ˆ
Śn

j“k`1Dj .

Formula 32 can be rewritten using the Both and Either predicates (see Definition 11), in the
following way

@

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

˜

Ds0e P S
0
e vEitherpd̃ki“1, d

n
j“k`1qws0e Ñ

Ds01e P S
0
e vBothpd̃ki“1, d

n
j“k`1qws01

e

¸

(33)
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4.4.1.1 Checking equivalence of initial states in NuSMV In NuSMV, a CTL property ϕ is
true iff it is true starting from each initial state, i.e.,

M |ù ϕ iff @s0 P S
0 pM, s0q |ù ϕ

So, if we want to know if a property is true in at least an initial state, we must check  ϕ; if
M *  ϕ, it means that there exists an initial state in which ϕ is true, i.e.,

M *  ϕ iff Ds0 P S
0 pM, s0q |ù ϕ

So, in order to check the validity of Property 33, @
´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

, we first check the

CTL property  Either
´

d̃ki“1, d
n
j“k`1

¯

; if it is false, then we must also check that the CTL property

 Both
´

d̃ki“1, d
n
j“k`1

¯

is false.

Example In the following, we report some of the CTL properties that must be checked over the
specification shown in Model 3 in order to prove the equivalence in the initial states of the specifications
shown in Models 1 and 2.

CTLSPEC NAME isNotInitState 1 := !((AM = amPm | AM = amPmMut) & h = 0)
CTLSPEC NAME notEqInitState 1 := !((AM = amPm & AM = amPmMut) & h = 0)
CTLSPEC NAME isNotInitState 2 := !((AM = amPm | AM = amPmMut) & h = 1)
CTLSPEC NAME notEqInitState 2 := !((AM = amPm & AM = amPmMut) & h = 1)
´´...
CTLSPEC NAME isNotInitState 24 := !((PM = amPm | PM = amPmMut) & h = 0)
CTLSPEC NAME notEqInitState 24 := !((PM = amPm & PM = amPmMut) & h = 0)
CTLSPEC NAME isNotInitState 25 := !((PM = amPm | PM = amPmMut) & h = 1)
CTLSPEC NAME notEqInitState 25 := !((PM = amPm & PM = amPmMut) & h = 1)
...

We must check that, if a CTL property isNotInitState i is false, then also the CTL property
notEqInitState i is false. In the example, we checked that isNotInitState 1 and notEqInitState 1 are
false, and all the properties isNotInitState i, with i “ 2, . . . , 48, are true: so the two specifications are
equivalent in the initial states. Totally we had to check 49 over 96 properties.

4.4.2 Condition on the transitions

Definition 13 (Next state as tuple of values).
Let NSpsq be the set of tuples of values of the variables in the next states of s P S, i.e.

NSpsq “

$

’

’

&

’

’

%

´

d̃ki“1 P D̃i, d̃
1k
i“1 P D̃i, d

n
j“k`1 P Dj

¯

:

Ds1 P nextpsq

«

k
Ź

i“1

´

d̃i “ vṽiws1 ^ d̃1i “ vṽ
1
iws1

¯

^
n
Ź

j“k`1

dj “ vvjws1

ff

,

/

/

.

/

/

-

Let’s also define

NSMV psq “

#

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

: Ds1 P nextpsq

«

k
ľ

i“1

d̃i “ vṽiws1 ^

n
ľ

j“k`1

dj “ vvjws1

ff+

11



NSMV 1psq “

#

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

: Ds1 P nextpsq

«

k
ľ

i“1

d̃i “ vṽ
1
iws1 ^

n
ľ

j“k`1

dj “ vvjws1

ff+

By definition of NS, NSMV and NSMV 1 , it holds that

@s P S, @
´

d̃ki“1 P D̃i, d̃
1k
i“1 P D̃i, d

n
j“k`1 P Dj

¯

´

d̃ki“1, d̃
1k
i“1, d

n
j“k`1

¯

P NSpsq ðñ
´´

d̃ki“1, d
n
j“k`1

¯

P NSMV psq ^
´

d̃1ki“1, d
n
j“k`1

¯

P NSMV 1psq
¯

Condition in the transition relation Applying the definition of the predicate mirror (see formula
25), formula 19 becomes

@se P reachpMeq
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@s1e P nextpseq
¨

˚

˚

˚

˚

˝

Ds2e P nextpseq

«

k
Ź

i“1

`

vṽiws1
e
“ vṽiws2

e
^ vṽiws1

e
“ vṽ1iws2

e

˘

^
n
Ź

j“k`1

vvjws1
e
“ vvjws2

e

ff

^

Ds3e P nextpseq

«

k
Ź

i“1

`

vṽ1iws1
e
“ vṽiws3

e
^ vṽ1iws1

e
“ vṽ1iws3

e

˘

^
n
Ź

j“k`1

vvjws1
e
“ vvjws3

e

ff

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(34)

Formula 34 can be simplified, replacing the universal quantification over the next states of se with
the universal quantification over the values of the variables in the next states of se (i.e., NSpseq), in
the following way

@se P reachpMeq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@

´

d̃ki“1 P D̃i, d̃
1k
i“1 P D̃i, d

n
j“k`1 P Dj

¯

P NSpseq
¨

˚

˚

˚

˚

˝

Ds2e P nextpseq

«

k
Ź

i“1

´

d̃i “ vṽiws2
e
^ d̃i “ vṽ

1
iws2

e

¯

^
n
Ź

j“k`1

dj “ vvjws2
e

ff

^

Ds3e P nextpseq

«

k
Ź

i“1

´

d̃1i “ vṽiws3
e
^ d̃1i “ vṽ

1
iws3

e

¯

^
n
Ź

j“k`1

dj “ vvjws3
e

ff

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(35)

In formula 35, in the first existentially quantified subformula, the values of the variables MV 1 (i.e.,
d̃1ki“1) are never used, and, in the second existentially quantified subformula, the values of the variables
MV (i.e., d̃ki“1) are never used. So, formula 35 can be rewritten, splitting the universal quantification
over NSpseq in two universal quantification over NSMV pseq and NSMV 1pseq, in the following way

12



@se P reachpMeq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

@

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

P NSMV pseq,

Ds2e P nextpseq

«

k
Ź

i“1

´

d̃i “ vṽiws2
e
^ d̃i “ vṽ

1
iws2

e

¯

^
n
Ź

j“k`1

dj “ vvjws2
e

ff

^

@pd̃ki“1 P D̃i, d
n
j“k`1 P Djq P NSMV 1pseq,

Ds3e P nextpseq

«

k
Ź

i“1

´

d̃i “ vṽiws3
e
^ d̃i “ vṽ

1
iws3

e

¯

^
n
Ź

j“k`1

dj “ vvjws3
e

ff

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(36)

In formula 36, the matrices of the two universally quantified subformulas over NSMV pseq and
NSMV 1pseq are the same. According to Theorem 3, the conjunction of the two universally quanti-
fied subformulas can be replaced by a single formula universally quantified over the bigger domain
Śk

i“1 D̃iˆ
Śn

j“k`1Dj . Note that, for any se P Se,
Śk

i“1 D̃iˆ
Śn

j“k`1Dj Ě NSMV pseqYNSMV 1pseq.
This is the obtained formula:

@se P reachpMeq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@d “
´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

¨

˚

˝

pd P NSMV pseq _ d P NSMV 1pseqq Ñ

Ds2e P nextpseq

«

k
Ź

i“1

´

d̃i “ vṽiws2
e
^ d̃i “ vṽ

1
iws2

e

¯

^
n
Ź

j“k`1

dj “ vvjws2
e

ff

˛

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(37)

Formula 37 can be rewritten, transforming the antecedent of the rightmost implication, in the
following way

@se P reachpMeq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@d “
´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

¨

˚

˚

˚

˚

˝

Ds1e P nextpseq

«

ˆ

k
Ź

i“1

d̃i “ vṽiws1
e
_

k
Ź

i“1

d̃i “ vṽ
1
iws1

e

˙

^
n
Ź

j“k`1

dj “ vvjws1
e

ff

Ñ

Ds2e P nextpseq

«

k
Ź

i“1

´

d̃i “ vṽiws2
e
^ d̃i “ vṽ

1
iws2

e

¯

^
n
Ź

j“k`1

dj “ vvjws2
e

ff

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(38)
Using the Both and Either predicates (see Definition 11), formula 38 can be rewritten in the

following way

@se P reachpMeq

¨

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ

@

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

«

Ds1e P nextpseq vEitherpd̃ki“1, d
n
j“k`1qws1

e
Ñ

Ds2e P nextpseq vBothpd̃ki“1, d
n
j“k`1qws2

e

ff

˛

‹

‹

‹

‚

(39)

The inner universal quantifier can be extracted in the following way
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@

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

, @se P reachpMeq

¨

˚

˚

˚

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse

˙

Ñ
«

Ds1e P nextpseq vEitherpd̃ki“1, d
n
j“k`1qws1

e
Ñ

Ds2e P nextpseq vBothpd̃ki“1, d
n
j“k`1qws2

e

ff

˛

‹

‹

‹

‚

(40)

Finally the two implications can be simplified in the following way4

@

´

d̃ki“1 P D̃i, d
n
j“k`1 P Dj

¯

,

@se P reachpMeq

¨

˝

ˆ

k
Ź

i“1

vṽiwse “ vṽ
1
iwse ^ Ds

1
e P nextpseq vEitherpd̃ki“1, d

n
j“k`1qws1

e

˙

Ñ

Ds2e P nextpseq vBothpd̃ki“1, d
n
j“k`1qws2

e

˛

‚

(41)

4.4.2.1 Checking equivalence of the transition relation in NuSMV In NuSMV, checking
property 41 means checking that the following formula

AG

˜˜

k
ľ

i“1

ṽi “ ṽ1i ^ EX
´

Either
´

d̃ki“1, d
n
j“k`1

¯¯

¸

Ñ EX
´

Both
´

d̃ki“1, d
n
j“k`1

¯¯

¸

(42)

holds in Me, @pd̃
k
i“1 P D̃i, d

n
j“k`1 P Djq.

Formula 42 has been obtained from formula 41 simply applying the semantics of the CTL operators
AG and EX:

– M |ù AGpϕq iff @s P reachpMq ppM, sq |ù ϕq
– M, s |ù EXpϕq iff Ds1 P nextpsq ppM, s1q |ù ϕq

Example In the following, we report some of the CTL properties that must be checked over the
specification shown in Model 3 in order to prove the equivalence of the transition relations of the
specifications shown in Models 1 and 2.

CTLSPEC NAME transRelOk 1 :=
AG ((amPm = amPmMut & EX ((AM = amPm | AM = amPmMut) & h = 0)) ´>

EX ((AM = amPm & amPmMut = AM) & h = 0))
CTLSPEC NAME transRelOk 2 :=
AG ((amPm = amPmMut & EX ((AM = amPm | AM = amPmMut) & h = 1)) ´>

EX ((AM = amPm & amPmMut = AM) & h = 1))
...
CTLSPEC NAME transRelOk 24 :=
AG ((amPm = amPmMut & EX ((PM = amPm | PM = amPmMut) & h = 0)) ´>

EX ((PM = amPm & amPmMut = PM) & h = 0))
CTLSPEC NAME transRelOk 25 :=
AG ((amPm = amPmMut & EX ((PM = amPm | PM = amPmMut) & h = 1)) ´>

EX ((PM = amPm & amPmMut = PM) & h = 1))
...

We must check that all the CTL properties transRelOk i are true. As soon as we find a property
false, we can stop checking since we will have found that the two specifications are not equivalent. In
the example, we checked that all the properties transRelOk i, with i “ 1, . . . , 48 are true. So, the two
specifications are equivalent (in Section 4.4.1.1 we have also checked that they are equivalent in the
initial states): the specification shown in Model 2 is an equivalent mutant of the specification shown
in Model 1.
4 P Ñ pQÑ Rq ” pP ^Qq Ñ R
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