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1 This study investigates the microvascular permeability changes in tracheal tissue of rats exposed
to hyperbaric oxygen (HBO).

2 Rats, following exposure to HBO or ambient air (control animals) for 1.5, 3 and 6 h, were
prepared for recording of nitric oxide exhaled (FENO) in air using a chemiluminescence analyser.
The level of FENO was not statistically di�erent in the two groups. Plasma exudation, evaluated by
measuring the leakage of Evans blue (EB) dye into the tracheal tissue, was signi®cantly elevated (48,
86 and 105% at 1.5, 3 and 6 h, respectively) in HBO-treated rats.

3 Plasma exudation in the trachea of control rats was signi®cantly increased (42%, P50.05) by
NG-nitro-L-arginine methyl ester (L-NAME), whereas it was signi®cantly reduced (31%, P50.05) in
rats exposed to HBO for 3 h.

4 N-acetylcysteine (NAC) and ¯unisolide signi®cantly prevented the increase in plasma leakage in
HBO-treated rats. In contrast, indomethacin was devoid of anti-exudative activity in these
experiments.

5 Western immunoblot showed a signi®cant increase in the level of inducible nitric oxide synthase
(iNOS) protein in the tracheal homogenates of HBO-treated rats, as compared to basal levels.

6 These results indicate that nitric oxide (NO) is involved in the maintenance of microvascular
permeability in tracheal tissue of rats. The protective e�ect observed with the steroid seems to
support this hypothesis. Furthermore, the bene®cial action of NAC underlines that reactive oxygen
species participate in the microvascular permeability changes observed in tracheal tissue of rats
exposed to HBO.
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Abbreviations: ATA, atmospheres absolute pressure; cNOS, constitutive nitric oxide synthase; EB, Evans blue; FENO,
fractional expired nitric oxide; HR, heart rate; HBO, hyperbaric oxygen; iNOS, inducible nitric oxide synthase;
IFNg, interferon gamma; LPS, lipopolysaccaride; MABP, mean arterial blood pressure; NAC, N-acetylcysteine;
D/L-NAME, NG-nitro-D/L-arginine methyl ester; p.p.b, parts per billion; p.p.m., parts per million; ROS, reactive
oxygen species

Introduction

It is known that the lungs are particularly sensitive to oxidant
damage during prolonged exposure to environments with
increased oxygen content at 1 a.t.m. (normobaric hyperoxia)

or when the exposure to pure oxygen is carried out at more
than 1 a.t.m. (hyperbaric oxygen) and for several days. In fact,
alterations in lung structure and function such as tissue and

alveolar oedema, surfactant dysfunction, lung in¯ammation
and decreased pulmonary compliance have been reported
(Amin et al., 1993; Jenkinson, 1993). In recent years, an
increasing number of patients has been subjected to HBO

therapy in order to supplement blood oxygen content to
control di�erent types of ischaemic organ damage with
particular reference to wound healing problems and infectious

diseases (Amin et al., 1993). However, increased oxygen
ambient pressure is a signi®cant factor that could aggravate
normobaric pulmonary oxygen toxicity and lead to the

development of chronic lung disease or death. Although the
exact mechanisms of pulmonary oxygen toxicity are unknown,
Gerschman (1964) ®rst suggested that oxygen toxicity may be
mediated in large part by the production of reactive oxygen

species (ROS) that act through peroxidation of membrane
lipids, oxidation of membrane proteins and breakage of DNA

strands (WispeÁ & Roberts, 1987). Acute HBO exposure of rats
markedly alters pulmonary vascular responses following
extravascular ¯uid accumulation (Amin et al., 1993). In

rabbits, HBO treatment for 1 h causes marked pulmonary
hypertension and lung weight gain (Jacobson et al., 1992). In a
recent study by our group (Radice et al., 1997) we reported an

impairment of vascular endothelium-dependent relaxant
mechanisms in coronary artery of isolated hearts obtained
from HBO exposed rats. This event, associated with a
worsening of myocardial ischaemia-reperfusion damage, was

attributed to increased free radicals formation and was
prevented by N-acetylcysteine (Rossoni et al., 1997).

Nitric oxide (NO) is a potent autacoid formed from L-

arginine and molecular oxygen by the constitutive nitric oxide
synthase (cNOS) in a variety of cells, particularly pulmonary
vascular endothelium and human lung epithelial cells (SzaboÁ

1995; Robbins et al., 1994). In addition, an inducible NO
synthase (iNOS) is expressed in di�erent models of in¯amma-
tion (Vane et al., 1994; Tomlinson et al., 1994; Hutcheson et
al., 1990). In rats, lipopolysaccaride (LPS) treatment results in

an increased expression of iNOS mRNA in homogenates of
whole lung (Liu et al., 1994) or in iNOS induction in tracheal
tissue (Bernareggi et al., 1997). Exposure of mice to

normobaric hyperoxia has been demonstrated to be associated
with a signi®cant increase in NO production, measured as total
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nitrite and nitrate in bronchoalveolar lavage ¯uid (Arkovitz et
al., 1997). Oxidant stress, as well, has recently been shown to
induce iNOS in pulmonary alveolar epithelial cells (Adcock et

al., 1994).
Plasma exudation in the tracheaeobronchial airways

represents a mucosal defence mechanism. However, under
certain conditions, plasma leakage from tracheobronchial

vessels may also result in in¯ammatory consequences that are
important in airway disease (Persson, 1986). In fact, it has been
demonstrated that when NO is constitutively present in the

airways it may play a protective role, but when iNOS is
expressed the increased production of NO may be responsible
of deleterious e�ects. In fact, the NOS inhibitor, L-NAME,

increases plasma leakage into the trachea in rat airways,
whereas it inhibits LPS-induced vascular damage (Bernareggi
et al., 1997).

Although several studies have demonstrated that the lungs
are particularly susceptible to oxidant injury during acute or
prolonged exposure to hyperbaric oxygen (Amin et al., 1993;
Jacobson et al., 1992), there is limited information regarding

what contribution NO and ROS may have on plasma leakage
in the large airways. We have, therefore, examined the
relationship between acute HBO exposure and the consequent

microvascular leakage in the tracheal tissue of rats. In
addition, we have investigated the relevance of NO and ROS
formations to the HBO-induced plasma exudation in the

airway tissues.

Methods

Hyperbaric oxygen treatment

Male albino rats of the Sprague-Dawley strain (Charles River
Italia, Calco, CO, Italy), weighing 250 ± 300 g were introduced
(two animals each time) into a small (25 cm diameter, 50 cm

long) hyperbaric chamber with one compartment (Sistemi
Iperbarici Integrati S.p.A., Rome, Italy) and exposed for a
period of 1.5, 3 and 6 h to HBO (100% oxygen; 2.5 atmos-

pheres absolute pressure, ATA). In order to eliminate carbon
dioxide accumulation, the chamber was ¯ushed with 100%
oxygen for 1 min every 30 min during exposure. All
experimental protocols were approved by the Review

Committee of the Department of Pharmacology and met the
Italian guidelines for laboratory animals which conform with
the European Communities Directive of November 1986 (86/

609/EEC).
At the end of HBO or ambient air exposure, the animals were

anaesthetized with pentobarbitone sodium (60 mg kg71 i.p.)

and prepared for recording of systemic blood pressure and heart
rate by placing a catheter in the right carotid artery. The trachea
was cannulated for mechanical ventilation with synthetic

ultrapure air (NO-free air, Air SP, Sapio, Monza, MI, Italy)
performed by a pump (mod. 29488, U. Basile, Comerio, VA,
Italy) operating on a partially closed circuit (10 ml kg71 stroke
volume; 70 cycles min71). To avoid spontaneous breathing, the

animals were treated with pancuronium bromide injected via
the jugular vein at a dose of 1 mg kg71 and heparin
(10 UI kg71) was then administered intravenously. Changes in

blood pressure were measured by pressure transducers (mod.
7016 U. Basile) and signals displayed on a two-channel pen
recorder (mod. Gemini, U. Basile).

After completion of the surgical procedure, expired NO
detection and vascular permeability measurements were
carried out in less than 20 min. Due to the short duration of
the experiment, the dose of pentobarbitone sodium used was

su�cient to maintain a deep anaesthesia throughout the
protocol.

Expired nitric oxide measurements

Fractional expired NO (FENO) was continuously measured
using a chemiluminescence analyser (Model 280A; Sievers,

Boulder, CO). This device uses ozone to oxidize NO to NO2 in
an excited state. Light is emitted when transition of NO2 from
excited to ground state occurs. The detection limit of the NO

analyser is 51 p.p.b. with a repeatability of +1 p.p.b over a
linear range 51 ± 500,000 p.p.b. The response time is 200 ms.
The analyser was designed for on-line recording of simulta-

neous measurements of the gas. This feature obviates the need
for collection in a reservoir, with its variable loss of reactive
NO and gives greater sensitivity and reproducibility (Khar-

itonov et al., 1994). A certi®ed standard mixture of
100.1 p.p.m. NO in nitrogen (N2) was used to calibrate the
instrument and linearity was checked by serial dilution with
N2. Ambient air NO concentration was recorded and the

absolute zero was adjusted before each measurement by
¯ushing the NO analyser with NO-free certi®ed compressed
air. The instrument permitted digital conversion of the

analogue signals for data storage and o�-line analysis. Gas
was drawn continuously from a te¯on catheter positioned
within the tracheostomy tube and recorded on a breath by

breath basis. The peaks average concentration of NO at end
expiration over 70+1 breaths was used as the FENO
concentration (expressed as p.p.b.).

Vascular permeability measurements

Protein leakage, a marker of vascular permeability, was

evaluated by measuring the leakage of Evans blue (EB) dye
(Belvisi et al., 1989) into the tracheal tissue. This method has
been previously shown to correlate well with the leakage of

radiolabelled albumin (Rogers et al., 1989) in guinea-pig
airways. Speci®cally, the EB dye (20 mg kg71) was injected in
the jugular vein at time 0 and its tissue content was determined

5 min after the injection by perfusing the systemic circulation
with saline to remove intravascular dye. Speci®cally, the left
ventricle was incised, a blunt ended needle inserted into the
aorta and the ventricles cross-clamped. Blood was expelled

from the incised right atrium at 100 mmHg pressure until the
perfusate was clear (125 ml infused). The trachea was
removed, blotted dry and weighed. EB dye was extracted in

formamide at 378C for 18 h and its concentration was
determined with a spectrophotometer (Shimadzu UV-160A
Shimadzu, Tokyo, Japan) at the absorbance maximum of

620 nm wavelength. The tissue content of the EB dye (ng EB
mg71 wet wt. tissue) was calculated from a standard curve of
EB dye concentration in the range of 0.12 ± 20 mg ml71.

Experimental protocol

E�ect of HBO treatment on time-dependent plasma leakage in

rat trachea After exposing rats to HBO or ambient air for
1.5, 3 and 6 h, EB dye (20 mg kg71 i.v.) was injected via a
jugular vein and plasma leakage was determined. The results

obtained from this experiment allowed us to choose the
optimal time of HBO treatment for use in the following
experiments.

E�ect of L-NAME, D-NAME and ¯unisolide on plasma leakage
into the trachea of control and HBO-treated rats To
investigate the role of NO in plasma leakage into the rat
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trachea under control and HBO-treated conditions, L-NAME
(100 mg kg71 i.p.), an inhibitor of both constitutive and
inducible isoforms of NOS (Rees et al., 1990), D-NAME

(100 mg kg71 i.p.), its inactive enantiomer, and isotonic sterile
saline (1 ml kg71 i.p.) were injected 1 h before exposure to
ambient air (3 h) or HBO (3 h).

In other experiments, rats were pre-treated for 1 h prior to

either ambient air exposure (3 h) or HBO exposure (3 h) with
¯unisolide (1 mg kg71 i.p.) or its vehicle (1 ml kg71 i.p.).

E�ect of N-acetylcysteine and indomethacin on plasma leakage
into the trachea of control and HBO-treated rats To
investigate the potential contribution of oxygen free radicals

to the increase in vascular permeability observed in rat trachea
after HBO treatment, animals received NAC (1 g kg71 p.o.) or
isotonic sterile saline (1 ml kg71 p.o.) once a day for 2 days and

immediately before exposure to ambient air (3 h) or HBO (3 h).
To assess the relative contribution of prostanoids to the

increased plasma leakage observed in trachea after HBO
treatment, rats were treated with indomethacin

(5 mg kg71 i.p.) or isotonic sterile saline (1 ml kg71 i.p.)
30 min before exposure to ambient air (3 h) or HBO (3 h).

Western immunoblot analysis

In separate experiments, iNOS protein expression was

measured in the trachea of six rats exposed to HBO or
ambient air for 3 h. At the end of exposure, the animals were
killed by cervical dislocation, tracheal tissue was then removed

and homogenates from tracheal tissues were centrifuged at
50006 g for 15 min at 48C. Proteins were boiled (10 min) in
gel loading bu�er in a ratio of 1 : 1 (v/v) and a determined
amount (10 mg) was subjected to electrophoresis on sodium

dodecyl sulphate 10% polyacrylamide gels according to the
method of Maizel (1979). Western immunoblot analysis was
performed as described by Towbin et al. (1979). The separated

proteins were transferred electrophoretically from the poly-
acrylamide gel to nitrocellulose sheet in a blotting bu�er
(25 mM Tris, 192 mM glycine and 20% methanol, pH 8.3),

using a mini-transblot apparatus. The proteins were trans-
ferred onto nitrocellulose membrane. The membrane was
saturated by incubation at 48C overnight with Marvell
(powered milk) solution (5% Marvell, 0.05% Tween 20) and

then primed with a primary polyclonal anti-iNOS. The
primary antibody was located with an alkaline phosphatase-
conjugated second antibody with BCIP (5-bromo-4-chloro-3-

indoylphosphate p-toluidine salt) and NTB (p-nitro blue
tetrazolium chloride) colour development reagents. All
antibodies were used at 1 : 1000 diluition.

Materials

The following drugs were used: formamide (Merck, Darstad,
FRG); Evans blue, indomethacin, NG-nitro-D/L-arginine
methyl ester (Sigma Chem. Co., St. Louis, MO, U.S.A);
pancuronium bromide (N.V. Organon, Oss, The Netherlands);

N-acetylcysteine (Zambon, Italia srl, Bresso, Milano, Italy);
¯unisolide idrate (Valeas SpA, Milan, Italy); pentobarbital
sodium (Abbott SpA, Campoverde di Aprilia, LT, Italy);

heparin (Squibb, LT, Italy); anti-iNOS antibody (Transduc-
tion Laboratories, Lexington, U.K.).

Statistics

Results are expressed as the mean+s.e.mean of n animals. In
all experiments, the di�erences between control and treatment

groups were analysed for statistical signi®cance using a one-
way analysis of variance (ANOVA) and Student's two tailed t-
test for paired or unpaired samples as appropriate; P50.05

was accepted as signi®cant.

Results

E�ect of HBO treatment on haemodynamic parameters

The exposure of rats to HBO regimen (1.5, 3 and 6 h) did not
induce a status of aggressivity to handling and did not modify
the haemodynamic parameters when measured in anaesthe-

tized animals. In fact, baseline values for MABP and HR of
control rats (147+4 mmHg; n=18; 418+8 b min71; n=18)
were not signi®cantly di�erent (P40.05) from those of rats

exposed to HBO (144+4 mmHg; n=18; 400+9 b min71;
n=18). These parameters were constant throughout the
duration of the experiment.

E�ect of HBO treatment on FENO concentrations

The HBO treatment did not provide any statistical modi®ca-

tion of the basal concentration of FENO when compared to
that in the expired gas of control rats (P40.05). In fact, the
basal FENO values in the control rats were 5.0+0.81 p.p.b

(n=13) and in HBO exposed rats were 5.0+0.75 p.p.b
(n=14).

E�ect of HBO treatment on plasma leakage in rat
trachea

Figure 1 shows plasma leakage in tracheal tissue of control and

HBO-treated rats at 1.5, 3 and 6 h. HBO exposure caused a
signi®cant increase in plasma leakage of 48, 86 and 105% in
HBO exposed animals compared with controls at 1.5, 3 and

6 h exposure, respectively. Since the HBO treatment at 3 h was
signi®cantly di�erent from 1.5 h (P50.05) but not from 6 h, a
3 h exposure was used in the following experiments.

Figure 1 E�ect of duration of exposure to hyperbaric oxygen on
plasma leakage in rat tracheal tissue. Rats were exposed to
hyperbaric oxygen (HBO, 100% oxygen; 2.5 ATA) treatment or
ambient air for 1.5, 3 and 6 h. At the end of the exposure rats were
anaesthetized and protein leakage was evaluated by measuring the
leakage of Evans blue (EB) dye into the tracheal tissue. Columns
represent the mean value+s.e.mean of six experiments at each time
point. CTR, rats not exposed to HBO; HBO, rats exposed to
hyperbaric oxygen. Signi®cant di�erences between control and HBO-
treated groups at each time points are demonstrated as *P50.05
according to one-way ANOVA. Signi®cant di�erences between 1.5
and 3 h HBO-treated rats are demonstrated as # P50.05 according
to one-way ANOVA.
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E�ect of L-NAME, D-NAME and ¯unisolide on tracheal
plasma leakage in control and HBO-treated rats

In the trachea of rats exposed for 3 h to ambient air L-NAME
signi®cantly increased plasma leakage by 42% (P50.05). In
contrast, L-NAME signi®cantly inhibited the HBO-induced
plasma leakage in the trachea by 31% (P50.05) (Figure 2). D-

NAME did not modify EB dye leakage in the trachea of control
(vehicle for D-NAME, 99.5+6.8 ng mg71, n=4; D-NAME-
treated, 108.3+19.3 ng mg71, n=6, P40.05) and HBO-

treated rats (vehicle for D-NAME, 195.8+10.5 ng mg71,
n=4; D-NAME-treated, 187.4+19.3 ng mg71, n=6, P40.05).

In the trachea of HBO-treated rats, ¯unisolide inhibited

plasma leakage by 41% (P50.05) so that the leakage
resembled that found in vehicle for ¯unisolide-treated control
rats. Flunisolide had no e�ect on leakage in control rats

(Figure 3).

E�ect of N-acetylcysteine and indomethacin on tracheal
plasma leakage in control and HBO-treated rats

In the trachea of HBO-treated rats, NAC signi®cantly
inhibited plasma leakage by 42% (P50.05) so that the

phenomenom resembled that found in vehicle for NAC-treated
control rats. NAC had no e�ect on tracheal leakage in control
rats (Figure 4).

Indomethacin had no e�ect on plasma leakage in the
trachea of either control rats (vehicle for indo-
methacin, 100.4+6.5 ng mg71, n=4; indomethacin-treated,

116.7+16.8 ng mg71, n=6, P40.05) or HBO-treated rats
(vehicle for indomethacin, 182.8+13.5 ng mg71, n=4; in-
domethacin-treated, 171.9+20.2 ng mg71, n= 6, P40.05).

Western immunoblot analysis

The levels of iNOS protein from tracheal homogenates of rats

exposed for 3 h to HBO were investigated by Western
immunoblot analysis. Low levels of iNOS protein expression
were detectable in control rats (lane b). The 3 h exposure to

HBO resulted in an increase of iNOS protein expression (lane
c) (Figure 5).

Discussion

Pulmonary oxygen toxicity is the primary limiting factor in the

therapeutic administration of oxygen (Winter et al., 1972;
Jenkinson, 1993). The di�use cellular in®ltration of lungs,
proteinaceous exudate and consequent hypoxemia concurrent
with high inspired concentration of O2 has been shown to be

harmful (Vacchiano & Tempel, 1994).
The present results clearly demonstrate that the micro-

vascular permeability of the large airways of rats is increased

when the animals are exposed for a limited period of time (3 h)
to HBO. The mechanism/s involved in this phenomenon is
di�cult to understand. However a large contribution of free

radicals appears a reasonable hypothesis. In fact, neutrophilis,
macrophages and vascular endothelial cells, all found in
abundance in airways, can produce a variety of free radicals

when appropriately stimulated (Radi et al., 1991). Rat lung
homogenates and mitochondrial particles exposed to high
oxygen concentration showed increased superoxide anion
(O7

2) and hydrogen peroxide (H2O2) production. In addition,

increased lipid peroxidation in the presence of hyperoxia has
been reported (Freeman et al., 1982; Turrens et al., 1982). The
fact that NAC administration to rats prior to HBO exposure

abolished the increase in plasma exudate indicates for a large
contribution of free radicals in the permeability changes of the
tracheal vasculature. Bene®cial e�ects of NAC in several

ischaemia reperfusion models have been mostly referred not
only to its antioxidant activity but also to its direct scavenging
action on hydroxyl radicals (Villa & Ghezzi, 1995; Brunet et

al., 1995).
Another ®nding emerging from the present experiments

refers to the opposite e�ect on plasma exudation observed in
rats treated with the inhibitor of NO synthase, L-NAME. This

compound given to control rats brings about a signi®cant
increase in plasma extravasation in tracheal tissue, whereas it
inhibits this event in rats exposed to HBO. The demonstration

that in the trachea under `physiological' conditions NOS

Figure 2 E�ect of L-NAME on plasma leakage of tracheal tissue in
control and HBO-treated rats. Rats were treated with L-NAME
(100 mg kg71 i.p.) 1 h prior to exposure to HBO or ambient air for
3 h. Columns represent the mean value+s.e.mean of 4 ± 6 experi-
ments. CTR, rats not exposed to HBO for 3 h. HBO, rats exposed to
hyperbaric oxygen for 3 h. Signi®cant di�erences between L-NAME-
treated and untreated rats in both control and HBO-treated groups
are demonstrated as *P50.05 according to one-way ANOVA.

Figure 3 E�ect of ¯unisolide on plasma leakage of tracheal tissue in
control and HBO-treated rats. Rats were treated with ¯unisolide
(FLUNIS, 1 mg kg71 i.p.) 1 h prior to exposure to HBO or ambient
air for 3 h. Columns represent the mean value+s.e.mean of 4 ± 6
experiments. CTR, rats not exposed to HBO for 3 h; HBO, rats
exposed to hyperbaric oxygen for 3 h. Signi®cant di�erences between
FLUNIS-treated and untreated rats in both control and HBO-treated
groups are demonstrated as *P50.05 according to one-way
ANOVA.
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inhibition causes plasma leakage suggests a possible role for
NO in the maintenance of microvascular integrity. In fact,
di�erent studies have suggested a protective role in the airways

for constitutively formed NO (Laszlo et al., 1995a). L-NAME,
for instance, increases plasma exudation into the trachea of
vehicle for LPS-treated rats (Bernareggi et al., 1997).
Furthermore, it has already been suggested that the

maintenance of intestinal microvascular and mucosal integrity
depends on the bene®cial actions of NO (Laszlo et al., 1995b).
On the contrary, as a consequence of HBO exposure, an

inducible NO synthase generate a greater amount of NO which
in turn is responsible for the increased tracheal vascular
permeability. This hypothesis is supported by at least two

observations from the present study: (1) the Western
immunoanalysis of tracheal homogenates from rats exposed
to HBO resulted in a signi®cant increase in inducible NO

synthase protein expression; (2) treatment of these animals
with ¯unisolide caused a complete inhibition of the increased
plasma extravasation, which is consistent with a well
recognized primary mode of action of the glucocorticoids

(suppression of inducible NO synthase expression) (Radomsky
et al., 1990).

The protective e�ect of NAC in limiting the HBO-induced

plasma leakage in rat trachea associated to the anti-exudative
activity shown by L-NAME in the same group of animals
suggests not also that oxygen free radicals and NO contribute

largely to the injury of the large airways but that they are both
related to each other. In fact, Adcock et al. (1994) have already
demonstrated that oxidative stress induce iNOS in pulmonary
alveolar epithelial cells. Even though we did not measure the

expression of iNOS protein by immunoblot analysis with
antibodies against iNOS in NAC-treated rats, and this should
be performed in the future experiments, still NAC has been

proven to signi®cantly inhibit NO production, iNOS activity
and iNOS gene expression in rat peritoneal macrophages
stimulated by endotoxin (Pahan et al., 1998). This inhibitory

e�ect was evident as early as 2 h pre-treatment and decreased

progressively with the increase in time interval. In our study,
NAC was given chronically once a day for 2 days and

immediately before HBO exposure. Therefore, we could
postulate that NAC would have decreased iNOS expression
in tracheal homogenates of HBO-treated rats.

In our study, we were expecting that the rats exposed to

HBO could demonstrate an increase in FENO, but this was
not the case. The basal level of FENO in control rats was not
di�erent from that recorded in HBO exposed animals. These

negative results are di�cult to explain. However, we could
speculate that the absence of NO in exhaled air depends on the
redox, pH and biochemical milieu in the mucosa and the lining

¯uid of the respiratory tract resulting in other nitrogen-oxygen
species than gaseous NO (Gaston et al., 1994; Cross et al.,
1994a, b). Other possible interpretations might be the e�ects of
the close relation to oxygenated haemoglobin in the lungs or

the presence of radicals in the lining ¯uid of the respiratory
tract that act as rapid scavengers for the NO formed. In fact,
Schedin et al. (1997) were unable to obtain accumulation of

NO during nose occlusion in the pig, perhaps due to local
inactivation of NO by e.g. superoxide or haemoglobin.
However, further experiments are needed in order to

investigate if chronic exposure to HBO could increase the
levels of FENO. The fact that we were able to show, indirectly,
the involvement of NO in the maintenance of a normal

vascular permeability does not necessarily mean that there
should exist a link between exhaled NO and systemic NO
production. In fact, Dillon et al. (1996) have already
demonstrated the absence of a correlation between oral NO

levels and plasma and urine nitrate and nitrite concentrations
in humans suggesting that breath NO re¯ects local rather
systemic NO production.

In this study we have found that indomethacin, a non-
speci®c cyclo-oxygenase-1 and -2 inhibitor (Mitchell et al.,
1993), was devoid of any inhibitory activity on the HBO-

induced increase in plasma leakage in rat trachea. In
agreement with our data, Mialon & Barthelemy (1991) have
shown that eicosanoids do not play a major role in HBO

seizures in rats. This is in contrast with another study which
demonstrated that indomethacin completely eliminated the
pulmonary hypertension and oedema induced by exposing
rabbits for 1 h to 100% oxygen at 4 a.t.m. barometric pressure

(Jacobson et al., 1992). Alternatively, the results presented here
suggest that cyclo-oxygenase products do not play a direct role
in the HBO-induced plasma leakage in tracheal tissue of rats

and the major role is imputable to oxygen free radicals and
NO. However, it is now recognized that cyclo-oxygenase, the
®rst enzyme in the pathway of prostaglandin and thromboxane

A2 biosynthesis from arachidonic acid, exists in both

Figure 5 Western immunoblot analysis of iNOS protein in tracheal
tissue of control and HBO-treated rats. Expression of iNOS protein
from cytosolic fraction of tracheal homogenates of rats exposed for
3 h to HBO or ambient air (control) was investigated by Western
blot analysis. The iNOS antibody recognized a protein at a molecular
weight of 130 kDa. The immunoblot presents mouse macrophage
cells stimulated with IFNg (10 ng ml71) and LPS (1 mg ml7) for 12
h (positive control; lane a), control (lane b) and HBO-treated (lane
c). This immunoblot is representative of six separate experiments.

Figure 4 E�ect of N-acetylcysteine (NAC) on plasma leakage of
tracheal tissue in control and HBO-treated rats. Rats were treated
with NAC (1 g kg71 p.o.) once a day for 2 days and immediately
prior to exposure to HBO or ambient air for 3 h. Columns represent
the mean value+s.e.mean of 4 ± 6 experiments. CTR, rats not
exposed to HBO for 3 h. HBO, rats exposed to hyperbaric oxygen
for 3 h. Signi®cant di�erences between NAC-treated and untreated
rats in both control and HBO-treated groups are demonstrated as
*P50.05 according to one-way ANOVA.
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constitutive (COX-1) and inducible (COX-2) isoforms (Mitch-
ell et al., 1995). Therefore, the development of further
experiments with COX-2 selective inhibitors should be

performed.
In summary, we have shown that acute exposure to HBO

induces increases in rat tracheal plasma leakage. The bene®cial
action of NAC underlines that reactive oxygen species

participate in the microvascular permeability changes observed

in rat tracheal tissue. Furthermore, the inhibitory action of
NOS inhibition in the HBO-induced vascular damage supports
the idea that the increased production of NO, as a consequence

of iNOS expression, leads to the deleterious e�ects observed.
However, the very recent development of a new selective iNOS
inhibitor, 1400W (Garvey et al., 1997), o�ers a new important
tool to better characterize the role of NO when induced by

HBO exposure in further experiments.
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