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Abstract. Several works showed that biomolecular data integration is a
key issue to improve the prediction of gene functions. Quite surprisingly
only little attention has been devoted to data integration for gene func-
tion prediction through ensemble methods. In this work we show that
relatively simple ensemble methods are competitive and in some cases
are also able to outperform state-of-the-art data integration techniques
for gene function prediction.

1 Introduction

The availability of an ever increasing amount of data sources due to recent
advances in high throughput biotechnologies opens unprecedented opportuni-
ties for genome-wide gene function prediction. Indeed several works showed
that biomolecular data integration play an essential role in the prediction of
genes/gene products functions.

Gene function prediction in its general formulation is a complex classification
problem characterized by the following items: a) each gene/gene product can be
assigned to multiple terms/classes (a multiclass, multilabel classification prob-
lem); b) classes are structured according to a predefined hierarchy (a directed
acyclic graph for the Gene Ontology [1] or a tree forest for FunCat [2]); c) classes
are usually unbalanced (with positive examples usually less than negatives); d)
known gene labels are in several cases be uncertain; e) multiple sources of data
can be used to predict gene functions.

In this paper we focus on the last item, considering the problem of the pre-
diction of a subset of FunCat classes in the model organism S. cerevisiae.

The main approaches proposed in the literature can be schematically subdi-
vided in three categories: functional linkage networks, vector subspace integra-
tion and kernel fusion methods [3]. Modelling interactions between gene products
using functional linkage networks is realized through graphs, where gene prod-
ucts are modeled as nodes and relationships between genes through edges [4].
In vector space integration (VSI) different vectorial data are concatenated [5],
while kernel methods, by exploiting the closure property with respect to the
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sum or other meaningful algebraic operators represent another valuable research
direction for the integration of biomolecular data [6].

All these methods suffer of limitations and drawbacks, due to their lim-
ited scalability to multiple data sources (e.g. Kernel integration methods based
on semidefinite programming [6]), to their limited modularity when new data
sources sources are added (e.g. vector-space integration methods), or when data
are not available as relational data (e.g. functional linkage networks).

Quite surprisingly, as observed by William Noble and Asa Ben-Hur [3], only
little attention has been devoted to ensemble methods as a mean to integrate
multiple biomolecular sources of data for gene function prediction. To our knowl-
edge only few works very recently considered ensemble methods in this specific
bioinformatics context: Naive-Bayes integration of the outputs of SVMs trained
with multiple sources of data [7], and logistic regression for combining the out-
put of several SVMs trained with different data and kernels in order to produce
probabilistic outputs corresponding to specific GO terms [8].

The main aim of this work consists in showing that simple ensemble methods
can obtain results comparable with state-of-the-art data integration methods, ex-
ploiting at the same time the modularity and scalability that characterize most of
the ensemble algorithms. Indeed biomolecular data differing for their structural
characteristics (e.g. sequences, vectors, graphs) can be easily integrated, because
with ensemble methods the integration is performed at the decision level, com-
bining the outputs produced by classifiers trained on different datasets. More-
over, as new types of biomolecular data, or updates of data contained in public
databases, are made available to the research community, ensembles of learning
machines are able to embed new data sources or to update existing ones by train-
ing only the base learners devoted to the newly added or updated data, without
retraining the entire ensemble. In other words ensemble methods scale well with
the number of the available data sources, and problems that characterize other
data fusion approaches are thus avoided.

2 Methods

2.1 Ensemble methods

Data fusion can be realized by means of an ensemble system composed by learn-
ers trained on different ”views” of the data and then combining the outputs of
the component learners. Each type of data may capture different and comple-
mentary characteristics of the objects to be classified and the resulting ensemble
may obtain better prediction capabilities through the diversity and the anti-
correlation of the base learner responses.

We programmatically considered simple methods:

Weighted majority voting [10], using linear or logarithmic weights, tuned
on the F-measure estimated from the training data, since gene functional
classes are usually unbalanced.
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Naive Bayes : a combination of classifiers assuming independence between
them, that estimates the class-conditional support given the observed vector
of categorized component classifiers outputs [11].

Decision Templates : a combination method based on the comparison of a
”prototypical answer” of the ensemble for the examples belonging to a given
class (the template) with the current answer of the ensemble to a specific
example whose class needs to be predicted (the decision profile) [12].

The decision profile DP(x) for an instance x is a matrix composed by dt,j ∈[0,1]
elements representing the support (e.g. the probability) given by the tth classifier
to class ωj . Decision templates DTj are the averaged decision profiles obtained
from Xj , the set of training instances belonging to the class ωj :

DTj =
1
|Xj |

∑
x∈Xj

DP (x) (1)

By computing the similarity S between DP (x) and the decision template
DTj for each class ωj , from a set of c classes, the final decision of the ensemble
is taken by assigning a test instance x to a class with the largest similarity [12]:

D(x) = arg max
j
Sj(x) (2)

It is easy to see that with dichotomic problems the decision templates are
reduced to two-columns matrices, and the similarity (S1) for the positive class
and the similarity (S2) for the negative class can be computed as 1 minus the
normalized squared euclidean distance:

S1(x) = 1− 1
n

n∑
t=1

[DT1(t, 1)− dt,1(x)]2 (3)

S2(x) = 1− 1
n

n∑
t=1

[DT2(t, 1)− dt,1(x)]2 (4)

where DT1 is the decision template for the positive and DT2 for the negative
class. The final decision of the ensemble is:

D(x) = arg max
{1,2}

(S1(x),S2(x)) (5)

2.2 Kernel fusion and vector space integration

Kernel fusion (KF) for data integration is based on the closure property of kernels
with respect to the sum or other algebraic operators [6]. In our experiments we
integrated the different data sets by simply summing their Gram matrices, and
then we trained the SVMs directly with the resulting matrix. Vector space inte-
gration (VSI) consists in concatenating the vectors of the different data sets [5].
The resulting concatenated vectors are used to train a SVM. Note that training
a linear SVM with concatenated vectors (VSI) is equivalent to kernel fusion with
linear kernels. In our experiments we used gaussian kernels.
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Table 1. Datasets

Code Dataset examples features description

Dppi1 PPI - STRING 2338 2559 protein-protein interaction data from [13]
Dppi2 PPI - BioGRID 4531 5367 protein-protein interaction data from the

BioGRID database [14]
Dpfam1 Protein domain log-E 3529 5724 Pfam protein domains with log E-values

computed by the HMMER software toolkit
Dpfam2 Protein domain binary 3529 4950 protein domains obtained from Pfam

database [15]
Dexpr Gene expression 4532 250 merged data of Spellman and Gasch exper-

iments
Dseq Pairwise similarity 3527 6349 Smith and Waterman log-E values between

all pairs of yeast sequences

3 Experimental results

Even if the growing rate of the amount of biomolecular data available for many
species was constantly increasing in the last years, the model organisms with a
consistent amount of literature inherent to data fusion based gene function pre-
diction are actually reduced to S.cerevisiae and M.musculus. Despite the avail-
ability of a well established public benchmark dataset, such as the one provided
during the MouseFunc contest [18], a recent comparison between many model
organisms showed that the fraction of genes annotated with experimental evi-
dence is about 30% larger in S.cerevisiae than in M.musculus (85.4% and 57.8%
respectively for the yeast and mouse model organisms) [19]. We thus decided
to use yeast data for our experiments. In order to maximize the effective use of
the larger experimental coverage of gene functional annotations available for the
yeast, we also adopted as a reference functional ontology, the MIPS Functional
Catalogue (FunCAT), which is composed by annotations mainly based on exper-
imental evidences [2], allowing us to minimize the impact of non experimental
functional annotations.

We predicted the top-level 15 functional classes of the FunCat taxonomy of
the model organism S. cerevisiae, using 6 different sources of data (Tab. 1). Each
dataset was split into a training set and a test set (composed, respectively, by the
70% and 30% of the available samples), considering yeast genes common to all
data sets (about 1900) and with at least 1 FunCat annotation. A 3-fold stratified
cross-validation has been performed on the training data for model selection,
using gaussian SVMs with probabilistic output [9] as base learners for ensemble
methods, and for VSI and KF data integration. We compared the performances
of single gaussian SVMs trained on each data set with those obtained with vector-
space-integration (VSI) techniques, kernel fusion through the sum of gaussian
kernels, and with the ensembles described in Sect. 2.1.

Table 2 shows the average F-measure, recall, precision and AUC across the
15 selected FunCat classes, obtained through the evaluation of the test sets
(each constituted by 570 genes). The four first columns refer respectively to the
weighted linear, logarithmic linear, decision template and naive Bayes ensembles;
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VSI and KF stands respectively for vector space integration and kernel fusion,
Davg represents the average results of the single SVMs across the six datasets,
and Dppi2 represents the single SVM that achieved the best performance, i.e.
the one trained using protein-protein interactions data collected from BioGrid.
Tab. 3 shows the same results obtained by each single SVM trained on a specific
biomolecular data set.

Looking at the values presented in Tab. 2, on the average, data integration
through simple ensemble methods provide better results than single SVMs, VSI
and Kernel fusion, independently of the applied combination rule. In particular,
Decision Templates achieved the best average F-measure, and ensemble methods
as a whole the best AUC. Among the ensemble of classifiers, with respect to
the AUC, the worst performing method is the Naive Bayes combiner albeit its
performances are still, on the average, higher than the ones reported for VSI,
Kernel fusion and the single classifiers. Precision of the ensemble methods is
relatively high: this is of paramount importance to drive the biological validation
of ”in silico” predicted functional classes: considering the high costs of biological
experiments, we need to obtain a high precision (and possibly recall) to be sure
that positive predictions are actually true with the largest confidence.

To understand whether the differences between AUC scores in the 15 di-
chotomic tasks are significant, we applied a non parametric test based on the
Mann-Whitney statistic [16], using a recently proposed software implementa-
tion [17]. Tab. 4 shows that at 0.01 significance level in most cases there is no
significant difference between AUC scores of the weighted linear and logarithmic
ensembles (Elin and Elog) and the Decision Template (Edt) combiner. A dif-
ferent behavior is observed for the Naive Bayes combiner: its performances are
comparable to the ones obtained by the other ensemble methods only in 2 over
15 classification tasks and worse in the remaining 13.

Most interestingly, ensemble methods significantly outperform the other data
integration methods. For instance, wins-ties-losses of Elin vs V SI are 13−2−0,
and 9 − 6 − 0 vs KF ; Naive-Bayes, the worst performing ensemble method,
achieves 9− 6− 0 wins-ties-losses with V SI and 5− 10− 0 with KF . It is worth
noting that, among the tested ensemble methods, Elin, Elog and Edt undergo no
losses when compared with single SVMs (Tab. 4, bottom): we can safely choose
any ensemble method (but not the Naive Bayes combiner) to obtain equal or

Table 2. Ensemble methods, kernel fusion and vector space integration: average F-
score, recall, precision and AUC (Area Under the Curve) across the data sets.

Metric Elin Elog Edt ENB V SI KF Davg Dppi2

F 0.4347 0.4111 0.5302 0.5174 0.3213 0.3782 0.3544 0.4818

rec 0.3304 0.2974 0.4446 0.6467 0.2260 0.3039 0.2859 0.3970

prec 0.8179 0.8443 0.7034 0.5328 0.6530 0.6293 0.5823 0.6157

AUC 0.8642 0.8653 0.8613 0.7933 0.7238 0.7775 0.7265 0.8170
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Fig. 1. Comparison of ROC curves between different data integration methods. Elin:
ensemble weighted majority voting; ENB : Naive-Bayes ensemble integration; KF : ker-
nel fusion; V SI: vector space integration.
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Table 3. Single SVMs: average F-score, recall, precision and AUC. Each SVM is iden-
tified by the same name of the data set used for its training (Tab. 1).

Metric Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq

F 0.3655 0.4818 0.2363 0.3391 0.2098 0.4493

rec 0.2716 0.3970 0.1457 0.2417 0.1571 0.5019

prec 0.6157 0.6785 0.7154 0.6752 0.3922 0.4162

AUC 0.7501 0.8170 0.6952 0.6995 0.6507 0.7469

Table 4. Results of the non-parametric test based on Mann-Whitney statistics to com-
pare AUCs between ensembles, VSI, Kernel fusion and single SVMs. Each entry rep-
resents wins-ties-losses between the corresponding row and column at 0.01 significance
level. Top: Comparison between ensemble methods, VSI and kernel fusion; Bottom:
Comparison between data integration methods and single SVMs.

V SI Elog Elin Edt ENB
Elog 13-2-0 - - - -
Elin 13-2-0 0-14-1 - - -
Edt 13-2-0 1-13-1 1-11-3 - -
ENB 9-6-0 0-2-13 0-2-13 0-2-13 -
KF 3-12-0 0-6-9 0-6-9 0-6-9 0-10-5

Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq
Elin 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Elog 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Edt 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
ENB 5-10-0 2-11-2 9-6-0 8-7-0 12-3-0 7-8-0
V SI 1-11-3 0-8-7 2-11-2 1-14-0 4-11-0 0-12-3
KF 1-14-0 0-9-6 5-10-0 5-10-0 11-4-0 3-12-0

better results than any of the single SVMs. On the contrary in many cases V SI,
ENB and the kernel fusion methods obtained worse results than single SVMs,
although performances achieved by the Naive Bayes combiner and the kernel
fusion methods are, in general, better than those obtained by VSI. Nevertheless,
we can observe that a single SVM trained with Ppi-2 data achieves good results
(11 ties with ensembles and an average AUC ' 0.81 w.r.t. 0.86 of the ensembles,
Tab. 2 and 4), showing that large protein-protein interactions data sets alone
provide information sufficient to correctly predict several FunCat classes.

Fig. 1 compares the ROC curves of the different data integration methods
used in our experiments. ROC curves of weighted majority voting (Elin) are
consistently above the corresponding ROC curves of kernel fusion and vector
space integration for all the considered FunCat classes. ROC curves of Naive
Bayes combiner are below those of kernel fusion only for four classes: “Energy”,
“Metabolism”, “Regulation”, “Cell rescue” and “Interaction with the environ-
ment”.
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4 Conclusions

The main objective of this contribution is to demonstrate that simple ensemble
methods are competitive with state-of-the-art methods for gene function predic-
tion based on heterogeneous biomolecular data integration.

It is well-known that gene function prediction methods need to take into
account the hierarchical relationships between classes to improve their predic-
tions [7, 8, 20]. Nevertheless, in this investigation we focused on data integration,
in order to study the improvement due to the usage of multiple sources of data,
without exploiting any knowledge about the hierarchical relationships between
classes. In this way we can separate the contribution due to data fusion tech-
niques from the improvement due to hierarchical methods.

Considering the increasing growing rate of available biomolecular data, the
modularity and scalability that characterize ensemble methods can favour an
easy update of existing sources of data and an easy integration of new ones.
Our preliminary experiments show that relatively simple ensemble methods are
competitive with kernel fusion and vector space integration, two of the most
largely applied machine learning data integration techniques for gene function
prediction. This could seem quite surprisingly, but considering the uncertainty
that characterize both annotations and measurements of data values, we can
expect that relatively simple methods are able to nicely work in a similar context.
Moreover it is worth noting that each type of data can only capture a particular
characteristic of a protein, and for different functional classes the same type of
data can be highly informative or completely unuseful to discriminate positive
and negative examples. For these reasons the inherent modularity and adaptivity
of ensemble systems can explain their effectiveness for the integration of multiple
biomolecular data sources. In particular we think that ensemble methods devoted
to biomolecular data integration can be a valuable research line to improve the
accuracy of gene function prediction problems.
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