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Abstract. The N × N trigonometric matrix P (ω) whose entries are P (ω)(i, j) = 1
2
(i + j −

2) cos(i−j)ω appears in connection with the design of finite impulse response (FIR) digital filters

with real coefficients. We prove several results about its eigenvalues; in particular, assuming

N ≥ 4 we prove that P (ω) has one positive and one negative eigenvalue when ω
π

is an integer,

while it has two positive and two negative eigenvalues when ω
π

is not an integer. We also show

that for ω
π

not being an integer and a sufficiently large N , the two positive eigenvalues converge

to α+N
2 and the two negative eigenvalues to α−N

2, where α± = (1 ± 2/
√
3)/8. Furthermore,

an equivalent transformation diagonalizing P (ω) is described.

Linear Algebra and Appl. 437(12), 2961–2972 (2012).

1. Introduction

Trigonometric matrices are widely used in various applications, such as image processing [3],

communication systems [7], filter design [6, 8, 9, 11], etc. In filter design, trigonometric matrices

arise in the formulation of certain design problems, such as the design of finite impulse response

(FIR) filters with low group delays and arbitrarily prescribed magnitude [6, 8, 9, 11]. In the

design of FIR filters with complex coefficients [8, 11], an eigenvalue problem of trigonometric

matrices associated with the reduction of the group delay of an FIR filter was posed in [8] and

investigated in [10]. In the design of FIR filters with real coefficients, the group delay of an FIR

filter to be designed is also associated with a trigonometric matrix [6, 9]. Hence, it is of interest,

both mathematically and practically, to investigate the eigenvalue problem of the trigonometric

matrix associated with an FIR filter having real coefficients.

To formulate the problem and provide some relevant background, let

H(z) :=
N−1∑
n=0

h(n)z−n

be the transfer function of an FIR filter of length N and with real coefficients. Note that H(z)

is the z-transform of the unit impulse response of the filter h(n). The frequency response H(ω),

phase response ϕ(ω) and group delay τ(ω) of the filter H(z) are given by

H(ω) =
N−1∑
n=0

h(n)e−jωn = hT
x (c(ω) + js(ω)),

ϕ(ω) := tan−1

(
hT
x s(ω)

hT
xc(ω)

)
± π, τ(ω) := − d

dω
ϕ(ω) = − d

dω
tan−1

(
hT
x s(ω)

hT
xc(ω)

)
,
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respectively, where ω ∈ R is the digital frequency variable and

hx :=
[
h(0) h(1) . . . h(N − 1)

]T
,

c(ω) :=
[
1 cosω . . . cos(N − 1)ω

]T
,

s(ω) :=
[
0 − sinω . . . − sin(N − 1)ω

]T
.

Let

c̃(ω) :=
dc(ω)

dω
=

[
0 − sinω . . . −(N − 1) sin(N − 1)ω

]T
,

s̃(ω) :=
ds(ω)

dω
=

[
0 − cosω . . . −(N − 1) cos(N − 1)ω

]T
.

With simple manipulations, we arrive at the following analytic expression for the group delay

τ(ω) =
hT
xP1(ω)hx

|H(ω)|2
,

where

P1(ω) := s(ω)c̃(ω)T − s̃(ω)c(ω)T.

The above derivation follows easily from [8] by restricting the discussion in [8] to the case with

real filter coefficients only. It could also be found in [9] but with slightly different notation. For

band-selective filters, it may be assumed that |H(ω)| ≈ 1 in the passbands. Furthermore, when

using the semidefinite programming (SDP) approach [8] or the second-order cone programming

(SOCP) approach [11], P1(ω) is required to be symmetric, which could be done by introducing

a new symmetric matrix P := 1
2(P1(ω) + P T

1 (ω)). Hence, the group delay of the filter in the

passbands is approximately given by

τ(ω) ≈ hT
xP (ω)hx

where P (ω) is of dimension N ×N and is expressed as

(1) P (ω)(i, j) :=
1

2
(i+ j − 2) cos(i− j)ω.

In order to design FIR filters with reduced group delays, i.e., to minimize τ(ω) in the passbands,

it is important to understand the structure and eigenvalues of P (ω). In particular, in the case

that P (ω) is not a positive definite matrix, it is required that the positive eigenvalues of P (ω)

are sufficiently larger than the absolute values of the negative eigenvalues for the optimization

techniques adopted in [8, 11] to be effective. In [10], the eigenvalue problem related to FIR filters

with complex coefficients was discussed. Here we focus on the same eigenvalue problem but for

FIR filters with real coefficients. Although the P (ω) matrix here already appears as one of the

block sub-matrices of the matrix in [10], their eigenvalues are quite different. Specifically, while

the eigenvalues of the matrix in [10] are independent of ω, those of P (ω) depend on ω in a quite

peculiar way, as we will show. In fact, we prove that for N ≥ 4, P (ω) has one positive and one

negative eigenvalue when ω
π is an integer, and two positive and two negative eigenvalues when ω

π

is not an integer. We also give an asymptotic property of the eigenvalues of P (ω) by showing that

for ω
π not being an integer and large enough N , the two positive eigenvalues are close to α+N

2
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and the two negative eigenvalues to α−N
2, where α± = (1± 2/

√
3)/8. We prove also a result on

an equivalent transformation of P (ω) into a diagonal matrix.

Before ending this section, we list the notation we use in the paper:

0m,l, In: the m× l zero and the n× n identity matrices;

∥x∥: the minimal distance of x to Z, i.e. min{|x− n| : n ∈ Z};
[n]a,

{
m
n

}
: the falling factorial symbol and the Stirling number of the second kind (see [1,

Ch. III]);

δ(l): the discrete function whose value at l = 0 is one, 0 otherwise;

O(f(x)): a function g(x) satisfying the inequality |g(x)| ≤ |f(x)|.

2. Main results

In this section, we first present new results on the eigenvalues and an equivalent transformation

of P (ω) in (1) for any N , then another result on the eigenvalues of P (ω) for a sufficiently large

N .

Theorem 1. For every N ≥ 4, we have

1): When ω
π is an integer P (ω) has one positive eigenvalue λ̃+ and one negative eigenvalue

λ̃− whose values are N
4

(
N − 1±

√
4N2−6N+2

3

)
; the other eigenvalues are zero.

2): When ω
π is not an integer P (ω) has two positive eigenvalues λ+,1(ω), λ+,2(ω) and two

negative eigenvalues λ−,1(ω), λ−,2(ω); the other eigenvalues are zero.

We have not been able to discover the general analytic form of a trigonometric matrix A(ω) such

that A(ω)P (ω)A−1(ω) is diagonal, but we have found a matrix A(ω) such that A(ω)P (ω)AT(ω)

is diagonal (see Thm. 2 here below). This suffices to prove the second part of Theorem 1 as a

consequence of the Sylvester’s law of inertia for symmetric matrices.

Theorem 2. For N ≥ 4, there exists a trigonometric matrix A(ω) with detA(ω) = −1, such

that

(2) A(ω)P (ω)AT(ω) = D(ω)

where D(ω) := diag{1,−1, sin4 ω,− sin4 ω, 0, . . . , 0} has dimension N .

Proof. We prove that a suitable matrix A(ω) is given as

(3) A(ω) :=

[
A4(ω) 04,N−4

F (ω)

]
where

A4(ω) :=


0 1 0 0
9
4 −3

2 cosω
1
4 0

9
4 cos

2 ω − 7
4 −3

2 cos
3 ω + 1

2 cosω
1
4 cos

2 ω + 1
4 0

−3
2 cosω 2 cos2 ω + 2 −7

2 cosω 1


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F (ω) :=


1 u v u 1 0 0 · · · 0

0 1 u v u 1 0 · · · 0

0 0 1 u v u 1 · · · 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 0 1 u v u 1

 with
u := −4 cosω

v := 4 cos2 ω + 2
.

Note that F (ω) is an (N − 4)×N matrix where each row is obtained by circularly shifting its

preceding row to the right by one position.

To simplify the notation, in the following we omit the argument ω and use PN , AN and DN to

denote the N ×N matrices P (ω), A(ω) and D(ω), respectively. Note that PN , AN and DN can

be obtained from PN+1, AN+1 and DN+1 by deleting the (N+1)-th row and column. The proof

is carried out by induction in a manner similar to what was done in [10].

Step I: When N = 4, F (ω) and 04,N−4 are zero dimensional and must be suppressed in (3).

Thus, A is just A4. It is then straightforward to verify that A4P4A
T
4 = D4 and detA4 = −1.

Hence, the theorem is true for N = 4.

Step II: For N ≥ 4, partition AN+1 and PN+1 as

AN+1 =

[
AN 0N,1

A1,N 1

]
PN+1 =

[
PN PN,1

PT
N,1 N

]
where

A1,N :=
[
0 · · · 0 1 u v u

]
,

PN,1 :=
1

2

[
N cosNω (N + 1) cos(N − 1)ω · · · (2N − 1) cosω

]T
.

Hence

AN+1PN+1A
T
N+1 =

[
AN 0N,1

A1,N 1

][
PN PN,1

PT
N,1 N

][
AT

N AT
1,N

01,N 1

]

=

[
ANPNAT

N AN (PNAT
1,N + PN,1)

(A1,NPN + PT
N,1)A

T
N A1,N (PNAT

1,N + PN,1) + PT
N,1A

T
1,N +N

]
.

Under the inductive assumption ofANPNAT
N = DN , the problem of provingAN+1PN+1A

T
N+1 =

DN+1 is reduced to that of proving

AN (PNAT
1,N + PN,1) = 0N,1(4)

A1,N (PNAT
1,N + PN,1) + PT

N,1A
T
1,N +N = 0.(5)

From (3) and the structure of F (ω), it is obvious that detAN = detA4 = −1 ̸= 0. Thus, AN is

invertible and Equations (4- 5) can be further simplified to

PNAT
1,N + PN,1 = 0N,1(6)

PT
N,1A

T
1,N +N = 0.(7)

Conditions (6-7) can be checked elementarily since only the last four entries of AT
1,N are nonzero;

we leave to the reader the necessary computations. �

We are now in a position to prove Theorem 1.
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Proof of Theorem 1.

1) As P (ω) is periodic with a 2π period, it suffices to consider P (0) and P (π). The claim for P (0)

has been proved in [10]. The claim for P (π) easily follows from this, since P (π) = WP (0)W =

WP (0)W−1, where W = diag{1,−1, 1,−1, . . .} has dimension N and detW = 1.

2) According to the Sylvester’s law of inertia (see [4, Ch. X, Sec. 2], [5, Ch. VIII, Sec. 6]), sym-

metric matrices B and C have the same number of positive/negative/zero eigenvalues, whenever

C = ABAT for any invertible matrix A. By (2), The matrices P (ω) and D(ω) satisfy this condi-

tion. Therefore the second claim of the theorem follows by noticing that when ω0
π is not an integer,

D(ω0) has exactly two positive eigenvalues, two negative eigenvalues and an (N − 4)-dimensional

kernel. �

Theorem 1 states that when ω
π is not an integer P (ω) has two positive and two negative

eigenvalues, but it does not tell what these four non-zero eigenvalues look like. This is somewhat

unsatisfactory since in the filter design problem discussed in [8, 11], it is required that the positive

eigenvalues of P (ω) must be sufficiently larger than the absolute values of the negative eigenvalues,

as already mentioned in the Introduction. To investigate further properties of the four non-zero

eigenvalues of P (ω), we numerically evaluate them for N = 4, 10, 50, 200 with ω ∈ [0, 2π] in a

step of 2π/100 and depict the results in Figure 1.
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Figure 1. Eigenvalues of P (ω) for N = 4, 10, 50, 200, normalized to N2.
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The figure shows that the two positive eigenvalues are quite close to each other and similarly

for the two negative eigenvalues when N = 50; for higher values of N this fact is even more

evident and for N = 200 they are almost identical. This asymptotic property of the eigenvalues

is stated in the next theorem.

Theorem 3. When ω
π is not an integer, the nonzero eigenvalues of P (ω) satisfy the inequalities

(8)
∣∣∣λ+,1,2 − α+N2

∣∣∣ ≤ √
1.05

∥ω/π∥
N3/2,

(9)
∣∣∣λ−,1,2 − α−N2

∣∣∣ ≤ √
0.61

∥ω/π∥
N3/2,

whenever ∥ω/π∥N ≥ 41, and where α± := (1± 2/
√
3)/8.

The proof of Theorem 3 requires the following lemmas.

Lemma 1. Let a, b > 0, then

aabb

(a+ b)a+b
≤ Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)
.

Proof. Let

f(a, b) :=
Γ(b+ 1)

Γ(a+ b+ 1)

(a+ b)a+b

bb
.

This map can be extended as a continuous map in b = 0 with f(a, 0) = aa/Γ(a + 1) for every

a > 0. Therefore the proposed inequality can be stated as f(a, b) ≥ f(a, 0) and can be proved

by proving that the partial derivative with respect to b of f(a, b) is nonnegative. The values of

f(a, b) are positive. Therefore the sign of ∂bf(a, b) coincides with that one of ∂b log f(a, b), which

is
Γ′(b+ 1)

Γ(b+ 1)
− Γ′(a+ b+ 1)

Γ(a+ b+ 1)
+ log(a+ b)− log b.

This function is equal to zero for a = 0. Hence, in order to prove that it is nonnegative for every

a, b > 0, it is sufficient to prove that its partial derivative with respect to a is nonnegative. Using

the representation −Γ′(x)/Γ(x) = γ+
∑∞

k=1(
1

x+k−1 −
1
k ) (see [2, Thm. 1.2.5]), this derivative can

be written as

∂a∂b log f(a, b) =
1

a+ b
−

∞∑
k=1

1

(a+ b+ k)2
.

Let c be a positive constant; then, adding the inequalities 1
c+k−1 − 1

c+k ≥ 1
(c+k)2

for k = 1, 2, . . .,

we see that 1
c ≥

∑∞
k=1

1
(c+k)2

, thus proving that ∂a∂b log f(a, b) ≥ 0 for a, b > 0. �

Lemma 2. Let ∆d(N) be the set {n ∈ Nd : n1 + · · · + nd ≤ N}. Let a1, . . . , ad ≥ 0 and let

a := a1 + · · ·+ ad. Then we have∣∣∣ ∑
n∈∆d−1(N)

na1
1 · · ·nad−1

d−1 (N − n1 − · · · − nd−1)
ad
∣∣∣

≤
∏d

m=1 Γ(am + 1)

Γ(a+ d)
Na

d−1∑
u=0

(
d− 1

u

)
[a+ d− 1]uN

d−1−u.
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Since [a+ d− 1]u ≤ (a+ d− 1)u, we deduce that∣∣∣ ∑
n∈∆d−1(N)

na1
1 · · ·nad−1

d−1 (N − n1 − · · · − nd−1)
ad
∣∣∣
≤

∏d
m=1 Γ(am + 1)

Γ(a+ d)
Na(N + a+ d− 1)d−1.

This result is essentially optimal under hypotheses as general as those ones assumed here. In

fact, the inequality holds as equality when d = 2 and a1 = a2 = 0, and as asymptotic equality

when N increases for every fixed set of exponents aj and every dimension. On the other hand, for

fixed N and nonzero exponents, tighter bounds are possible for the coefficients of the non-maximal

powers of N , but at the cost of a greater complexity of the result.

Proof. The proof is by induction on d. For d = 2 the claim states that

(10)
N∑

n=0

na(N − n)b ≤ Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
Na+b(N + a+ b+ 1)

for every a, b ≥ 0 and for every N . The inequality is evident if a = b = 0. Hence we can further

assume that a+b > 0. Under this hypothesis the function x → xa(N−x)b has a unique maximum

at N∗ := aN/(a+ b). Splitting the domain of the sum in integers n < N∗ and n ∈ [N∗, N ], and

using the comparison of the sum and integral in each domain we have that

N∑
n=0

na(N − n)b ≤
∫ N

0
xa(N − x)b dx+N∗a(N −N∗)b.

We get the claim firstly by substituting x → Nx in the integral and N∗ with aN/(a + b), then

recalling that
∫ 1
0 xa−1(1−x)b−1dx = Γ(a)Γ(b)/Γ(a+b) (see. [2, Thms. 1.1.4 and 1.8.1]) and using

the inequality in Lemma 1 to compare the second term to the first one.

For d > 2, the claim follows splitting the sum as∑
(n1,...,nd−1)∈∆d−1(N)

· · · =
N∑

n1=0

na1
1

[ ∑
(n2,...,nd−1)∈∆d−2(N−n1)

na2
2 · · ·nad−1

d−1 ((N − n1)− · · · − nd−1)
ad
]
,

using the inductive hypothesis to bound the inner sum and (10) to bound the remaining sum. �

Lemma 3. Let ω ̸= rπ (r ∈ Z) and let h ∈ N. Then∣∣∣ N∑
n=0

nh cos(ϕ+ 2nω)
∣∣∣ ≤ 1

4∥ω/π∥

h∑
k=0

{
h

k

} k∑
l=0

k!

l!
(1 + δ(l))

(N + 1)l

(4∥ω/π∥)k−l
,

where ϕ is an arbitrary function which is independent of n.

Proof. The elementary identity

N∑
n=0

[n]k z
n = zk

( d

dz

)k zN+1 − 1

z − 1
= zk

k∑
l=0

(
k

l

)
(zN+1 − 1)(l)

( 1

z − 1

)(k−l)

implies that ∣∣∣ N∑
n=0

[n]k e
2inω

∣∣∣ ≤ k∑
l=0

k!

l!
(1 + δ(l))

(N + 1)l

|e2iω − 1|k−l+1
.



8 Y. LIU, Z. LIN, G. MOLTENI, AND D. ZHANG

The result follows by the lower bound |e2iω−1| = 2| sinω| ≥ 4∥ω/π∥ and the identity
∑h

k=0

{
h
k

}
[n]k =

nh (See [1, Prop. 3.24]). �

Lemma 4. Let ω ̸= rπ (r ∈ Z), a1, . . . , ad ∈ N and let ϕ be an arbitrary function independent of

nd. Suppose that 4∥ω/π∥N ≥ c for a fixed parameter c > 0, independent of ω. Then∣∣∣ ∑
n∈∆d(N)

na1
1 · · ·nad

d cos(ϕ+ 2ndω)
∣∣∣ ≤ I(a1, . . . , ad)

(N + 1)a(N + a+ d)d−1

∥ω/π∥
,

where a is defined in Lemma 2 and

I(a1,. . ., ad) :=
1

4

ad∑
k=0

{
ad
k

} k∑
l=0

(1 + δ(l))
2ad−k

cad−l

k!
∏d−1

m=1 Γ(am + 1)

Γ(a1 +· · ·+ ad−1 + l + d)
.

Proof. This is a consequence of Lemmas 2-3 and of the hypothesis 4∥ω/π∥N > c which implies

that (4∥ω/π∥)−1 ≤ N/c and that N ≥ c/2. �

We are now in a position to prove the last theorem.

Proof of Theorem 3. Using an explicit form of the characteristic equation given in [4, Ch. 3,

Sec. 7], we have

(11) det(λIN − P (ω)) = λ4 − S1(ω)λ
3 + S2(ω)λ

2 − S3(ω)λ+ S4(ω) = 0,

where Sj(ω) (j = 1, . . . , 4) is the sum of the principal minors of order j of P (ω). Let Q4 be the

4× 4 symmetric matrix

Q4 :=
1

2


q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

q14 q24 q34 q44

 ,

where
q11 := 2n1 q13 := (2n1+n2+n3) cos(n2+n3)ω

q22 := 2n1+2n2 q14 := (2n1+n2+n3+n4) cos(n2+n3+n4)ω

q33 := 2n1+2n2+2n3 q23 := (2n1+2n2+n3) cosn3ω

q44 := 2n1+2n2+2n3+2n4 q24 := (2n1+2n2+n3+n4) cos(n3+n4)ω

q12 := (2n1+n2) cosn2ω q34 := (2n1+2n2+2n3+n4) cosn4ω

Each Sj can be computed as the determinant of the principal and upper minor of order j of

Q4 summed over every combination of nonnegative indexes n1, . . . , nj such that n1 + · · ·+ nj is

strictly lower than N and each nj but n1 is strictly positive. Thus for example

S1 =
1

2

N−1∑
n1=0

q11, S2 =
1

22

N−2∑
n1=0

N−1−n1∑
n2=1

det

[
q11 q12

q12 q22

]
.

Moreover, from the definition of Q4 it is clear that Sj can be written as∑
[abc]

∑
n∈∆j(N−1)
nk>0 ∀k ̸=1

P
(j)
[abc] cos(an2 + bn3 + cn4)ω
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where each P
(j)
[abc] is an homogeneous polynomial of degree j in the n1, . . . , n4 indeterminates for

a suitable set of multi-integers [abc]. The computation of P
(j)
[abc] is a bit tedious, the final result is

collected in Table 1.

Table 1. Polynomials P
(j)
[abc]

P
(1)
[··· ]
[000] n1

P
(2)
[··· ]
[000] 1

4 (2n
2
1 + 2n1n2 − 1

2n
2
2)

[200] 1
8 (2n1 + n2)

2

P
(3)
[··· ]
[000] 1

8 (−(n1 + n2)n
2
2 − (n1n2 + 3

2n
2
2)n3 − (n1 + 1

2n2)n
2
3)

[200] 1
16 ((2n1 + n2 + n3)n2 + 2n1n3)n3

[020] 1
16 (2n1 + 2n2 + n3)(n2 + n3)n2

[220] − 1
16 (2n1 + n2 + n3)n2n3

P
(4)
[··· ]
[000] 1

16 ((
1
4n

2
3 + 1

4n3n4 + 1
4n

2
4)n

2
2 + ( 1

2n
2
3 + 3

4n3n4 + 1
4n

2
4)n2n3 + ( 1

4n
2
3 + 1

2n3n4 + 1
4n

2
4)n

2
3)

[200] 1
16 ((−

1
4n

2
3 − 1

4n3n4)n
2
2 + (− 1

2n
3
3 − 3

4n
2
3n4 − 1

4n3n
2
4)n2 − 1

4n
4
3 − 1

2n
3
3n4 − 1

4n
2
3n

2
4)

[020] 1
16 (−8n4

1+(−24n2+(−16n3−8n4))n
3
1+(−24n2

2+(−32n3−16n4)n2+(−8n2
3−8n3n4−2n2

4))n
2
1+

(−8n3
2 + (−16n3 − 8n4)n

2
2 + (−8n2

3 − 8n3n4 − 2n2
4)n2)n1 + ((− 1

4n3n4 − 1
4n

2
4)n

2
2 + (− 1

4n
2
3n4 −

1
4n3n

2
4)n2))

[002] 1
16 (8n

4
1 + (24n2 + 16n3 + 8n4)n

3
1 + (24n2

2 + (32n3 + 16n4)n2 + (8n2
3 + 8n4n3 + 2n2

4))n
2
1 + (8n3

2 +

(16n3+8n4)n
2
2+(8n2

3+8n4n3+2n2
4)n2)n1+((− 1

4n
2
3− 1

4n4n3)n
2
2+(− 1

2n
3
3− 3

4n4n
2
3− 1

4n
2
4n3)n2+

(− 1
4n

4
3 − 1

2n4n
3
3 − 1

4n
2
4n

2
3)))

[202] 1
16 ((

1
8n

2
3 + 1

4n4n3 + 1
8n

2
4)n

2
2 + ( 1

4n
3
3 + 1

2n4n
2
3 + 1

4n
2
4n3)n2 + 1

8n
4
3 + 1

4n4n
3
3 + 1

8n
2
4n

2
3)

[20-2] 1
16 (

1
8n

2
3n

2
2 + ( 1

4n
3
3 + 1

4n4n
2
3)n2 + 1

8n
4
3 + 1

4n4n
3
3 + 1

8n
2
4n

2
3)

[242] 1
128n

2
2n

2
4

[220] 1
64n2n3n4(n2 + n3 + n4)

[022] 1
64n2n3n4(n2 + n3 + n4)

[222] 1
16 (2n

4
1 + (6n2 + (4n3 + 2n4))n

3
1 + (13/2n2

2 + (9n3 + 4n4)n2 + (3n2
3 + 3n4n3 + 1

2n
2
4))n

2
1 + (3n3

2 +

( 13
2 n3+

5
2n4)n

2
2+( 9

2n
2
3+4n4n3+

1
2n

2
4)n2+(n3

3+
3
2n4n

2
3+

1
2n

2
4n3))n1+( 1

2n
4
2+(3/2n3+

1
2n4)n

3
2+

( 13
8 n2

3 + n4n3 − 1
8n

2
4)n

2
2 + ( 3

4n
3
3 + 3

4n4n
2
3)n2 + ( 1

8n
4
3 + 1

4n4n
3
3 + 1

8n
2
4n

2
3)))

The main contribution to Sj comes from ∑
n∈∆j(N−1)
nk>0 ∀k ̸=1

P
(j)
[000]

which produces the polynomials

j = 1 1
2 N

2 − 1
2 N

j = 2 5
96 N

4 − 5
24 N

3 + 19
96 N

2 − 1
24 N

j = 3 −1
384 N

6 + 1
128 N

5 − 1
384 N

4 − 1
128 N

3 + 1
192 N

2

j = 4 1
36864 N

8− 1
7680 N

7+ 7
92160 N

6+ 1
3072 N

5− 11
36864 N

4− 1
5120 N

3+ 1
5120 N

2
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In each polynomial we retain only the main term and we estimate the contribution of the remain-

ing ones. Since for x ∈ [0, 1] we have

− 5
24 + 19

96x− 1
24x

2 ∈ (−5
24 , 0)

| 1
128 − 1

384x− 1
128x

2 + 1
192x

3| ≤ 1
128

− 1
7680 + 7

92160x+ 1
3072x

2 − 11
36864x

3 − 1
5120x

4 + 1
5120x

5 ∈ ( −1
7680 , 0),

these contributions can be estimated as

j = 1 1
2 N

2 +O(12 N) j = 2 5
96 N

4 + η N3 with η ∈ (−5
24 , 0)

j = 3 −1
384 N

6 +O( 1
128 N

5) j = 4 1
36864 N

8 + ξ N7 with ξ ∈ ( −1
7680 , 0)

The other sum contributing to Sj is∑
[abc]̸=[000]

∑
n∈∆j(N−1)
nk>0 ∀k ̸=1

P
(j)
[abc] cos(an2 + bn3 + cn4)ω

and here each inner term can be estimated using the explicit representations of P
(j)
[abc] contained

in Table 1 and Lemma 4 with c = 164 (since Theorem 3 assumes ∥ω/π∥N ≥ 41). After some

computations we get the following equalities:

S1 =
(
1
2 +O

(1/2
N

))
N2

S2 =
(

5
96 +O

(
η + 18677/161376

∥ω/π∥ (1 + 3
N )

)
1
N

)
N4

S3 =
(
− 1

384 +O
(

1
128 + 13655/1291008

∥ω/π∥ (1 + 5
N )2

)
1
N

)
N6

S4 =
(

1
36864 +O

(
ξ + 39558023933/3645909872640

∥ω/π∥ (1 + 7
N )3

)
1
N

)
N8.

The constant η in S2 is negative and, in absolute value, smaller than 18677/161376
∥ω/π∥ for every ω. Their

values are comparable in size when ∥ω/π∥ is close to 1/2, therefore in this case their sum shows a

considerable cancellation. However, this effect disappears when ∥ω/π∥ is close to zero: since this

is the most delicate part of the range for ω, there is essentially no convenience in keeping η, and

we bound the O(·) term in S2 simply with the greater O
(18677/161376

∥ω/π∥ (1 + 1
N )3

)
. An analogous

remark applies to the S4 term. Summing up, for N ≥ 82 (another consequence of the assumption

∥ω/π∥N ≥ 41) we deduce that

S1 =
(
1
2 +O

(
0.25

∥ω/π∥N
))

N2 S3 =
(
− 1

384 +O
(
0.01582
∥ω/π∥N

))
N6

S2 =
(

5
96 +O

(
0.11998
∥ω/π∥N

))
N4 S4 =

(
1

36864 +O
(
0.01388
∥ω/π∥N

))
N8.

Substituting these relations into (11) and simplifying, we have

det(λIN − P (ω)) = λ4 −
(1
2
+O

(
0.25

∥ω/π∥N
))

N2λ3 +
( 5

96
+O

(
0.11998
∥ω/π∥N

))
N4λ2

+
( 1

384
+O

(
0.01582
∥ω/π∥N

))
N6λ+

( 1

36864
+O

(
0.01388
∥ω/π∥N

))
N8.
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Letting y = λN−2, the characteristic equation det(λIN − P (ω)) = 0 becomes for y

y4 −
(1
2
+O

(
0.25

∥ω/π∥N
))

y3 +
( 5

96
+O

(
0.11998
∥ω/π∥N

))
y2

+
( 1

384
+O

(
0.01582
∥ω/π∥N

))
y +

( 1

36864
+O

(
0.01388
∥ω/π∥N

))
= 0.

Let qN (y) denote the polynomial appearing to the left hand side of the previous equation, and

let q∞(y) be that one we obtain setting N → ∞, so that

q∞(y) := y4 − 1

2
y3 +

5

96
y2 +

1

384
y +

1

36864
.

Then

(12) |qN (y)− q∞(y)| ≤ |0.01388 + 0.01582 y + 0.11998 y2 + 0.25 y3|
∥ω/π∥N

.

The polynomial q∞(y) factorizes as (y − α+)
2(y − α−)

2. Moreover, we have the elementary

inequality

(13) |0.01388 + 0.01582 y + 0.11998 y2 + 0.25 y3| < 1.05 |y − α−|2

for every complex y satisfying |y − α+| ≤ 0.16004. Under the hypothesis ∥ω/π∥N ≥ 41 we have

(1.05/∥ω/π∥N)1/2 < 0.16004, so that from (12-13) and the factorization of q∞ we get

|qN (y)− q∞(y)| < |q∞(y)| ∀ y ∈ C : |y − α+| =

√
1.05

∥ω/π∥N
.

By the Rouché’s Theorem we can conclude that for those N the polynomial qN (y) has in the

disk |y − α+| ≤ (1.05/(∥ω/π∥N))1/2 as many roots as q∞(y), which are exactly two if N is large

enough. This proves the claim for the positive eigenvalues as λ = yN2. The second claim for the

negative eigenvalues is proved with an analogous argument. �

Theorem 3 assures that for ω
π being not an integer, the two positive eigenvalues of P (ω)

approach α+N
2 asymptotically and similarly for the two negative eigenvalues approaching α−N

2.

As a result, for a sufficiently large N and for ω
π being not an integer, the ratio of the positive

eigenvalues to the absolute values of the negative eigenvalues is approximated by α+N
2/|α−N

2| ≈
14, which is sufficiently large to ensure the optimization techniques in [8, 11] to work well when

adopted for the design of real FIR filters.

We admit that the error bounds given in Theorem 3 are not tight, particularly for ω far away

from the central frequency π/2. For example, when ω = 0.1π, Theorem 3 requires the minimal

N to be 410 and the corresponding errors bound (the right hand side of (8)) for the positive

eigenvalues is about 26900, while the actual numerical errors (the left hand side of (8)) are only

about 405 and 213, respectively, because in this case the two positive eigenvalues are about 45488

and 44870, respectively, while α+410
2 ≈ 45275. Furthermore, for ω = 0.1π and N = 50, the two

positive eigenvalues are about 624 and 699, and the actual numerical errors (the left hand side

of (8)) are about 50 and 26, respectively, and α+50
2 ≈ 673. Hence, the maximum relative error

for the positive eigenvalues is about 7.4%. Similarly, for the same ω = 0.1π and N = 50, the

two negative eigenvalues are about −45.8 and −51.7, and the actual numerical errors (the left

hand side of (9)) are about 2.5 and 3.4, respectively, and α−50
2 ≈ −48.3. Hence, the maximum
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relative error for the negative eigenvalues is about 7.1%. The above numerical errors lead to the

difference between the approximate ratio of the positive eigenvalues to the absolute values of the

negative eigenvalues, 673/48.3 ≈ 14, and the actual ratio of the smaller positive eigenvalue to the

absolute values of the smaller negative eigenvalue, 624/51.7 ≈ 12.1. However, both ratios are still

large enough for ensuring the filter design techniques adopted in [8, 11] to perform well. To reduce

the error bounds further, some of the previous inequalities could be improved. For example we

could use the full strength of Lemma 2, and the fact that Lemma 3 holds with [N + 1]l in place

of (N +1)l; also the contributions to Sj coming from the whole main terms could be retained. In

this way we can prove Theorem 3 under the weaker hypothesis ∥ω/π∥N ≥ 35 and with slightly

smaller constants in the error bounds. In our opinion, such a small improvement is not worth the

more complicated formulas we need to prove it. A stronger improvement would certainly follow

if we could take account of the fact that in several polynomials P
(j)
[abc] there are more than one

oscillating cosine, so that some of these polynomials should show extra cancellation (at least when

there are no “1 to 1 resonances” between the frequencies), and that the contributes of different

P
(j)
[abc] polynomials have different sign. However, at this moment we do not see an easy way to

exploit these cancellations. In conclusion, we hope that the results presented in this paper provide

the theoretical support for adopting the optimization techniques in [8, 11] to the design of FIR

filters of real coefficients and would also motivate further study in reducing the error bounds in

estimating the asymptotical eigenvalues of the trigonometric matrix significantly under a much

weaker hypothesis.
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