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Abstract

We consider a multidimensional Itô process Y = (Yt )t∈[0,T ] with some unknown drift coefficient
process bt and volatility coefficient σ(X t , θ) with covariate process X = (X t )t∈[0,T ], the function σ(x, θ)
being known up to θ ∈ Θ . For this model, we consider a change point problem for the parameter θ in
the volatility component. The change is supposed to occur at some point t∗ ∈ (0, T ). Given discrete time
observations from the process (X, Y ), we propose quasi-maximum likelihood estimation of the change
point. We present the rate of convergence of the change point estimator and the limit theorems of the
asymptotically mixed type.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of change point has been considered initially in the framework of independent
and identically distributed data by many authors, see e.g. [9,7,5,13]. Recently, it naturally moved
to context of time series analysis, see for example, [15,18,3] and the papers cited therein.
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In fact, change point problems have originally arisen in the context of quality control, but the
problem of abrupt changes in general arises in many contexts like epidemiology, rhythm analysis
in electrocardiograms, seismic signal processing, study of archaeological sites and financial
markets. In particular, in the analysis of financial time series, the knowledge of the change in
the volatility structure of the process under consideration is of a certain interest.

In this paper we deal with a change-point problem for the volatility of a process solution to
a stochastic differential equation, when observations are collected at discrete times. The instant
of the change in volatility regime is identified retrospectively by maximum likelihood method
on the approximated likelihood. For continuous time observations of diffusion processes [19]
considered the change point estimation problem for the drift. In the present work we only
assume regularity conditions on the drift process. De Gregorio and Iacus [6] considered a least
squares approach following the lines of [1,2] of a simplified model also under discrete sampling
while [22] considered a CUSUM approach. Finally it should be noted that the problems of
the change-point for the drift function of ergodic diffusion processes have been treated by
Kutoyants [16,17], however the asymptotic results and the sampling schemes are different from
this paper. Notice also that, as usual in change point problems, due to non smoothness of the
statistical model with respect to the parameter to be estimated (the change point instant), the rate
of convergence of the change point estimator is faster than usual rate of estimators in regular
models [12].

The paper is organized as follows. Section 2 introduces the model of observation, the
regularity conditions and some notation. We shall treat two asymptotic settings: there are two
models before and after the change point. In one case (A) the two models remain distinct in
the limit (fixed alternatives), in the second case (B) they get closer and closer (contiguous
alternatives, see [20]). Section 3 studies consistency and the rate of convergence of estimator
of the change while asymptotic distributions are considered in Section 4. A mixture of certain
Wiener functionals appears as the limit of the likelihood ratio random field, and it characterizes
the limit distribution of the change-point estimator. Those sections assume that consistent
estimators of the volatility parameters are available. Section 5 contains a preliminary interesting
inequality which is used to study the asymptotic distribution of the change point estimator in
case (A). Section 6 presents some practical considerations and a proposal to obtain first stage
estimators of the volatility parameters which allow to obtain all asymptotic properties stated
in the previous sections. Finally, Section 7 presents some numerical analysis to assess the
performance of the estimators.

2. Estimator for the change-point of the volatility

Consider a d-dimensional Itô process Y = (Yt )t∈[0,T ] satisfying the stochastic differential
equation

dYt = bt dt + σ(X t , θ)dWt , t ∈ [0, T ]

on a probability space, where Wt is an r -dimensional standard Wiener process, on a stochastic
basis, bt and X t are vector valued progressively measurable processes, and σ(x, θ) : X × Θ →

Rd
⊗ Rr is a matrix valued function.
We assume that there is the time t∗ across which the diffusion coefficient changes from

σ(x, θ0) to σ(x, θ1). The change point t∗ ∈ (0, T ) is unknown and we want to estimate t∗

based on the observations sampled from the path of (X, Y ). The coefficient σ(x, θ) is assumed
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to be known up to the parameter θ , while bt is completely unknown and unobservable, therefore
possibly depending on θ and t∗.

The sample consists of (X ti , Yti ), i = 0, 1, . . . , n, where ti = ih for h = hn = T/n. The
parameter space Θ of θ is a bounded domain in Rd0 , d0 ≥ 1, and the parameter θ is a nuisance
in estimation of t∗. Denote by θ∗

i the true value of θi for i = 0, 1.
Let ϑn = |θ∗

1 − θ∗

0 |. We will consider the following two different situations.

(A) θ∗

0 and θ∗

1 are fixed and do not depend on n.
(B) θ∗

0 and θ∗

1 depend on n, and as n → ∞, θ∗

0 → θ∗
∈ Θ , ϑn → 0 and nϑ2

n → ∞.

In Case (A), ϑn is a constant ϑ0 independent of n.
We shall formulate the problem more precisely. It will be assumed that the process Y

generating the data is an Itô process realized on a stochastic basis B = (Ω ,F ,F, P) with
filtration F = (Ft )t∈[0,T ], and satisfies the stochastic integral equation

Yt =


Y0 +

 t

0
bsds +

 t

0
σ(Xs, θ

∗

0 )dWs for t ∈ [0, t∗)

Yt∗ +

 t

t∗
bsds +

 t

t∗
σ(Xs, θ

∗

1 )dWs for t ∈ [t∗, T ].

Here Wt is an r -dimensional F-Wiener process onB, and bt , X t and σ(x, θ) satisfy the conditions
below. Let X be a set in Rd1 (possibly X = Rd1 ) and denote the modulus of continuity of a
function f : I → Rd1 by

wI (δ, f ) = sup
s,t∈I,|s−t |≤δ

| f (s)− f (t)|.

For matrices M = (mi j ) and N = (ni j ) of the same size, we write M⊗2
= M t M , M[N ] =

i j mi j ni j = Tr(M t N ), and the Euclidean norm of M by |M | = (M[M])1/2. Set S(x, θ) =

σ(x, θ)⊗2. λ1(M) denotes the minimum eigenvalue of a symmetric matrix M . Let us denote by
∂ℓθ f the partial derivative of order ℓ of function f with respect to θ . Let α be a positive number.

[H] j (i) σ(x, θ) is a measurable function defined on X × Θ satisfying
(a) inf(x,θ)∈X×Θ λ1(S(x, θ)) > 0,
(b) derivatives ∂ℓθσ (0 ≤ ℓ ≤ j + [d0/2]) exist and those functions are continuous on

X × Θ ,
(c) there exists a locally bounded function L : X × X × Θ → R+ such that

|σ(x, θ)− σ(x ′, θ)| ≤ L(x, x ′, θ)|x − x ′
|
α (x, x ′

∈ X , θ ∈ Θ).
(ii) (X t )t∈[0,T ] is a progressively measurable process taking values in X such that

w[0,T ]


1
n
, X


= op(ϑ
1/α
n )

as n → ∞.
(iii) (bt )t∈[0,T ] is a progressively measurable process taking values in Rd such that
(bt − b0)t∈[0,T ] is locally bounded.

Remark 1. The term “locally bounded” in [H] j (i) (c) means, as usual, being bounded on every
compact set, i.e. bt is locally bounded if there exists a sequence of increasing stopping times sn
such that bsn∧t is bounded. The case where the drift bt changes its structure at time t∗, or any
time in force, is included in our context because bt admits jumps. The case of time dependent σ is
included by making X t have argument t , i.e. taking X t as a non-homogeneous process. Needless
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to say, if we set X or a part of X as Y , then our model can express a system with feedback, in
particular, a diffusion process. By [H] j (ii), t → X t is continuous a.s. Also, [H] j (ii) imposes a
restriction on the rate ϑn . For example, when α = 1, for a Brownian motion X , it suffices that
nϑ2

n/ log n → ∞, due to Lévy property. The additional [d0/2] time differentiability to j is used
only in Step (iii) of the proof of Theorem 1. If one can introduce a different set of conditions
that ensures the Hájek–Renyi type estimate before making use of inequality (4) below, then it is
possible to limit the range of ℓ from “0 ≤ ℓ ≤ j + [d0/2]” to “0 ≤ ℓ ≤ j”.

Write ∆i Y = Yti − Yti−1 and let

Φn(t; θ0, θ1) =

[nt/T ]
i=1

Gi (θ0)+

n
i=[nt/T ]+1

Gi (θ1),

where

Gi (θ) = log det S(X ti−1 , θ)+ h−1S(X ti−1 , θ)
−1

[(∆i Y )⊗2
].

Suppose that there exists an estimator θ̂k for each θ∗

k , k = 0, 1. Each estimator is based on
(X ti , Yti )i=0,1,...,n and so depends on n. See Section 6 for some discussion on how to obtain
consistent estimators θ̂k , k = 0, 1. To make our discussion complete, in case θ∗

k are known, we
define θ̂k just as θ̂k = θ∗

k . This article proposes

t̂n = argmin
t∈[0,T ]

Φn(t; θ̂0, θ̂1)

for the estimation of t∗. More precisely, t̂n is any measurable function of (X ti )i=0,1,...,n satisfying

Φn(t̂n; θ̂0, θ̂1) = min
t∈[0,T ]

Φn(t; θ̂0, θ̂1).

Remark that our quasi-likelihood approach generalizes previously proposed methods, see e.g. [8],
to the case of stochastic regression models with coordinates (Yt , X t ).

3. Rate of convergence

We introduce identifiability conditions in order to ensure consistent estimation. In Case (A)
we assume

[A] P

S(X t∗; θ

∗

0 ) ≠ S(X t∗; θ
∗

1 )


= 1;

In Case (B) we assume

[B] Ξ (X t∗ , θ
∗) is positive-definite a.s., where

Ξ (x, θ) =


Tr((∂θ (i1) S)S

−1(∂θ (i2) S)S
−1)(x, θ)

d0

i1,i2=1
, θ = (θ (i)).

Remark 2. Since Ξ (x, θ∗) is the Hessian matrix of the nonnegative function

Q(x, θ∗, θ) := Tr


S(x, θ∗)−1S(x, θ)− Id


− log det


S(x, θ∗)−1S(x, θ)


of θ at θ∗, Ξ (x, θ∗) is nonnegative-definite.

The following property will be necessary to validate our estimating procedure.

[C] |θ̂k − θ∗

k | = op(ϑn) as n → ∞ for k = 0, 1.



Author's personal copy

1072 S.M. Iacus, N. Yoshida / Stochastic Processes and their Applications 122 (2012) 1068–1092

In case the parameters are known, θ̂k should read θ∗

k , and then Condition [C] requires nothing.
Section 6 presents an example of estimator for θk which satisfies Condition [C].

Here we state the result on the rate of convergence of our change-point estimator.

Theorem 1. The family {nϑ2
n (t̂n − t∗)}n∈N is tight under any one of the following conditions.

(a) [H]1, [A] and [C] hold in Case (A).
(b) [H]2, [B] and [C] hold in Case (B).

In both Case (A) and (B) this result gives consistency of t̂n , since nϑ2
n → ∞ by assumption,

which is true also in Case (B).
The rest of this section will be devoted to the proof of Theorem 1. Define a stopping time

τ = τ(K ) by

τ(K ) = inf {t; |X t | + |bt | > K } ∧ T

for K > 0. X τ denotes the process X stopped at τ . Write Si (θ) = S(X τti , θ), and ∆i Y τ =

Y τti − Y τti−1
. Let

Ψn(t; θ0, θ1) =

[nt/T ]
i=1

gi (θ0)+

n
i=[nt/T ]+1

gi (θ1),

where

gi (θ) = 1{τ>0}


log det Si−1(θ)+ h−1Si−1(θ)

−1
[(∆i Y τ )⊗2

]


= 1{τ>0} log det Si−1(θ)+ h−1Si−1(θ)

−1
[(∆i Y τ )⊗2

].

Then supθ∈K |gi (θ)| ∈ L∞−
= ∩p>1 L p for any compact set K in Θ under [H]1. Denote by

E
θ∗

1
i−1 the conditional expectation with respect to Fti−1 under the true distribution for ti−1 ≥ t∗.

Lemma 1. For t > t∗,

Ψn(t; θ0, θ1)− Ψn(t∗; θ0, θ1) = Mn(t; θ0, θ1)+ An(t; θ0, θ1)+ ρn(t; θ0, θ1),

where

Mn(t; θ0, θ1) =

[nt/T ]
i=[nt∗/T ]+1


[gi (θ0)− gi (θ1)] − E

θ∗

1
i−1[gi (θ0)− gi (θ1)]


,

An(t; θ0, θ1) = 1{τ>0}

[nt/T ]
i=[nt∗/T ]+1


Tr


Si−1(θ0)
−1Si−1(θ1)− Id


− log det


Si−1(θ0)

−1Si−1(θ1)

,

ρn(t; θ0, θ1) = 1{τ>0}

[nt/T ]
i=[nt∗/T ]+1

Tr
 

Si−1(θ1)
−1

− Si−1(θ0)
−1


·


Si−1(θ1)− h−1 E

θ∗

1
i−1[(∆i Y τ )⊗2

]


.

The proof of Lemma 1 is straightforward and omitted.
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Remark 3. Later we will consider substitution of estimators θ̂k to θk , k = 0, 1. Then the
expectation E

θ∗

1
i−1[gi (θ0)− gi (θ1)] is taken before the substitution, and so

Mn(t; θ̂0, θ̂1) =

[nt/T ]
i=[nt∗/T ]+1


[gi (θ̂0)− gi (θ̂1)] − E

θ∗

1
i−1[gi (θ0)− gi (θ1)]|θ0=θ̂0,θ1=θ̂1


.

In particular, the second term in the braces is not necessarily Fti−1 -measurable.

We will need a uniform Hájek–Renyi inequality. Let D be a bounded open set in Rd . The
Sobolev norm is denoted by

∥ f ∥s,p =


s

i=0

∥∂ i
θ f ∥

p
L p(D)

1/p

for f ∈ W s,p(D), the Sobolev space with indices (s, p). Suppose that p > 1 and s > d/p. The
embedding inequality is the following

sup
θ∈D

| f (θ)| ≤ C∥ f ∥s,p ( f ∈ W s,p(D)) (1)

where C is a constant depending only on s, p and D. We will apply this inequality for
f ∈ Cs(D), and the validity of such an inequality depends on the regularity of the boundary of
D; the Garsia–Rodemich–Rumsey (GRR) inequality validates it if there exist positive numbers
a and ϵ0 such that

inf
θ∈D

ν(Bϵ(θ)) ≥ a ϵd for ϵ ∈ (0, ϵ0), (2)

where ν is the Lebesgue measure on D and Bϵ(θ) is the ϵ-ball centered at θ , see e.g. [24] for
details.

Lemma 2. Let (Ω ,F ,F = (F j ) j∈Z+
, P) be a stochastic basis. Let D be a bounded domain in

Rd admitting Sobolev’s inequality (1) for some p ∈ (1, 2] and s ∈ Z+ such that s > d/p. Let
(c j ) j∈Z+

be a nondecreasing sequence of positive numbers. Let X = (X j ) j∈Z+
be a sequence of

random fields on D for j ∈ Z+ satisfying the following conditions:

(i) For each (w, j) ∈ Ω × Z+, X j ∈ Cs(D);
(ii) For each (θ, i) ∈ D × {0, 1, . . . , s}, (∂ i

θ X j (θ)) j∈Z+
is a zero-mean L p-martingale with

respect to F.

Then there exists a constant C ′ depending only on s, p and D, not depending on X, such that

P


max
j≤n

1
c j

sup
D

|X j (θ)| ≥ a


≤
C ′

a p

n
j=0

1
cp

j
E

∥X j − X j−1∥

p
s,p


for all a > 0 and n ∈ Z+.

Proof. Let B = L p(D), then B is p-uniformly smooth; see Definition 2.2 of [23, pp. 245–246,
and Example 2.2, p. 247]. We apply Theorem in [21, p. 245], to conclude

P


max
j≤n

1
c j

∥∂ i
θ X j∥B ≥ a


≤

C1

a p

n
j=0

1
cp

j
E

∥∂ i
θ X j − ∂ i

θ X j−1∥
p
B


for i ∈ {0, 1, . . . , s} for some constant C1. Therefore (1) yields the result. �
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Proof of Theorem 1. For the proof, we may assume T = 1 for notational simplicity without
loss of generality.

(i) Let ϵ be an arbitrary positive number. Set

H(x) = 4Q(x, θ∗

0 , θ
∗

1 )ϑ
−2
0

in Case (A), and set H(x) = λ1(Ξ (x, θ∗)) in Case (B). We denote σ(t; θ) = σ(X τt , θ) and
h(t) = H(X τt ) in what follows. Those processes depend on K by definition while it is suppressed
from the symbols. Set BK = {τ = 1} and fix a sufficiently large K so that P[Bc

K ] < ϵ/4.
We notice that h(s) ≥ 0 and that h(t∗) > 0 a.s. on BK from the identifiability condition

[A]/[B] since X τt∗ = X t∗ on BK . We will show that there exists a positive constant cϵ such that

P


inf
t∈[t∗,1]

1
t − t∗

 t

t∗
h(s) ds ≤ 5cϵ


< ϵ.

Define the event Aδ by

Aδ =


inf

t∈[t∗,t∗+δ]
h(s) ≥

1
2

h(t∗)


for δ ∈ (0, 1 − t∗). On Aδ , it holds that

inf
t∈[t∗,t∗+δ]

1
t − t∗

 t

t∗
h(s) ds ≥

1
2

h(t∗) ≥
δ

2(1 − t∗)
h(t∗)

and also that, for t ∈ [t∗ + δ, 1],

1
t − t∗

 t

t∗
h(s) ds ≥

1
1 − t∗

 t

t∗
h(s) ds

≥
1

1 − t∗

 t∗+δ

t∗
h(s) ds

≥
δ

2(1 − t∗)
h(t∗).

Choose a δ so that P[Aδ] > 1−ϵ/2 by the continuity of h, and next choose a positive number
cϵ = c(ϵ, δ) such that

P


δ

2(1 − t∗)
h(t∗) > 5cϵ


≥ P


δ

2(1 − t∗)
h(t∗) > 5cϵ


BK


> 1 −

ϵ

2
.

Then

P


inf
t∈[t∗,1]

1
t − t∗

 t

t∗
h(s) ds ≤ 5cϵ


≤ P[Ac

δ]

+ P

Aδ, inf

t∈[t∗,1]

1
t − t∗

 t

t∗
h(s) ds ≤ 5cϵ


< ϵ.

(ii) With Lemma 1, we decompose Ψn(t; θ̂0, θ̂1)− Ψn(t∗; θ̂0, θ̂1) as follows:

Ψn(t; θ̂0, θ̂1)− Ψn(t∗; θ̂0, θ̂1) = Mn(t; θ̂0, θ̂1)+ An(t; θ̂0, θ̂1)+ ρn(t; θ̂0, θ̂1).
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Let M ≥ 1. We have

P[nϑ2
n (t̂n − t∗) > M] ≤ P


inf

t :nϑ2
n (t−t∗)>M

Φn(t; θ̂0, θ̂1) ≤ Φn(t∗; θ̂0, θ̂1)



≤ P


inf

t :nϑ2
n (t−t∗)>M

Ψn(t; θ̂0, θ̂1) ≤ Ψn(t∗; θ̂0, θ̂1)


+ P[Bc

K ] < P1,n + P2,n + P3,n + ϵ, (3)

where

P1,n = P


sup

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

Mn(t; θ̂0, θ̂1)

 ≥
cϵϑ2

n

3



P2,n = P


inf

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

An(t; θ̂0, θ̂1) ≤ cϵϑ2
n



P3,n = P


sup

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

ρn(t; θ̂0, θ̂1)

 ≥
cϵϑ2

n

3


.

Here we read inf ∅ = ∞ and sup ∅ = −∞. We will estimate these terms.
(iii) Estimate of P1,n . In Case (B), let

Mn(t; θ) =

[nt]
i=[nt∗]+1


∂θgi (θ)− E

θ∗

1
i−1[∂θgi (θ)]


.

Let Θ̇ be an open ball such that θ∗
∈ Θ̇ and Θ̇ ⊂ Θ . Since

sup
θ0,θ1∈Θ̇

|Mn(t; θ0, θ1)| |θ0 − θ1|
−1

≤ sup
θ∈Θ̇

|Mn(t; θ)| ,

one has

P1,n ≤ P


sup

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

Mn(t; θ̂0, θ̂1)

 |θ̂0 − θ̂1|
−1

≥
cϵϑn

6
, θ̂0, θ̂1 ∈ Θ̇


+ P[|θ̂0 − θ̂1| ≥ 2ϑn] + P[θ̂0 ∉ Θ̇] + P[θ̂1 ∉ Θ̇]

≤ P


sup

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

sup
θ∈Θ̇

|Mn(t; θ)| ≥
cϵϑn

6


+ P[|θ̂0 − θ̂1| ≥ 2ϑn] + P[θ̂0 ∉ Θ̇] + P[θ̂1 ∉ Θ̇].

By the uniform version of the Hájek–Renyi inequality in Lemma 2 applied to the case p = 2,
s = 2 + [d0/2] and D = Θ̇ , we see under [H]2 that

P


sup

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

sup
θ∈Θ̇

|Mn(t; θ)| ≥
cϵϑn

6


≤

C
c2
ϵM

=: ρϵ(M),

where C denotes a generic constant independent of n and M . Therefore

lim
n→∞

P1,n ≤ ρϵ(M) (4)
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thanks to

P

|θ̂0 − θ̂1| ≥ 2ϑn


≤ P


|θ̂0 − θ∗

0 | ≥
1
3
ϑn


+ P


|θ̂1 − θ∗

1 | ≥
1
3
ϑn


for large n.

In Case (A), Let Θ̇k be an open ball such that Θ̇k ⊂ Θ and θ∗

k ∈ Θ̇k for each k = 0, 1.

P1,n ≤ P

 sup
t :nϑ2

0 (t−t∗)>M

1
[nt] − [nt∗]

sup
θ0∈Θ̇0
θ1∈Θ̇1

|Mn(t; θ0, θ1)| ≥
cϵϑ2

0
3


+ P[θ̂0 ∉ Θ̇0] + P[θ̂1 ∉ Θ̇1].

We apply the Hájek–Renyi inequality for Mn(t; θ0, θ1), which is a difference of two random
fields on Θ̇k to be done with one by one, in order to obtain (4) under [H]1.

(iv) Estimation of P2,n . First we consider Case (B). There is a positive constant c2 independent
of n such that

Tr


Si−1(θ̂0)
−1Si−1(θ̂1)− Id


− log det


Si−1(θ̂0)

−1Si−1(θ̂1)


≥ Ξ (X τti−1
, θ∗)[(θ̂1 − θ̂0)

⊗2
] + rn,i−1|θ̂1 − θ̂0|

2

≥ {λ1(Ξ (X τti−1
, θ∗))+ rn,i−1}|θ̂1 − θ̂0|

2

for all i , where maxi |rn,i−1| ≤ c2ϑn , on the event

BK ,n = BK ∩ {θ̂0, θ̂1 ∈ Θ̇, |θ̂k − θ∗
| ≤ ϑn (k = 0, 1)}.

Thus

P2,n ≤ P


inf

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

An(t; θ̂0, θ̂1) |θ̂1 − θ̂0|
−2

≤ 4cϵ, BK ,n



+ P

|θ̂1 − θ̂0| ≤

1
2
ϑn


+ P[Bc

K ,n]

≤ P


inf

t :nϑ2
n (t−t∗)>M

1
[nt] − [nt∗]

[nt]
i=[nt∗]+1

{λ1(Ξ (X τti−1
, θ∗))+ rn,i−1} ≤ 4cϵ


+ ϵ

for large n. The scaled summation converges to the corresponding scaled integral uniformly in t
a.s., hence from Step (i) we have

lim
n→∞

P2,n ≤ P


inf
t∈[t∗,1]

1
t − t∗

 t

t∗
h(s) ds ≤ 5cϵ


+ ϵ < 2ϵ

for large n.
We will consider Case (A). There is a positive constant c2 independent of n such that

Tr


Si−1(θ̂0)
−1Si−1(θ̂1)− Id


− log det


Si−1(θ̂0)

−1Si−1(θ̂1)


≥ Tr


Si−1(θ
∗

0 )
−1Si−1(θ

∗

1 )− Id


− log det


Si−1(θ

∗

0 )
−1Si−1(θ

∗

1 )


− c2(|θ̂1 − θ∗

1 | + |θ̂0 − θ∗

0 |)
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for all i on the event B ′

K ,n = BK ∩ {θ̂0 ∈ Θ̇0, θ̂1 ∈ Θ̇1} because there exists a continuous
derivative ∂θσ by [H]1. In this way,

P2,n ≤ P


inf
t :n(t−t∗)>M

1
[nt] − [nt∗]

An(t; θ̂0, θ̂1) ≤ cϵϑ2
0 , B ′

K ,n


+ P


B ′c

K ,n

.

Therefore,

lim
n→∞

P2,n ≤ P


inf
t∈[t∗,1]

1
t − t∗

 t

t∗
h(s) ds ≤ 5cϵ


+ ϵ < 2ϵ

by Step (i).

(v) Estimation of P3,n . We have

sup
t∈[t∗,1]

S(X t , θ̂k)− S(X t , θ
∗

k )

 1
{|θ̂k−θ

∗
k |<2ϑn}∩BK

≤ Cϑn (k = 0, 1),

sup
t∈[t∗,1]

S(X t , θ̂k)
−1

− S(X t , θ
∗

k )
−1
 1

{|θ̂k−θ
∗
k |<2ϑn}∩BK

≤ Cϑn (k = 0, 1)

and

sup
i :≥[nt∗]+2

Si−1(θ
∗

1 )− h−1 E
θ∗

1
i−1[(∆i Y )⊗2

]

 1BK ≤ Cw[0,T ]


X,

1
n

α
.

In the last estimate, the local α-Hölder continuity of σ was used. Then on BK ∩ {|θ̂k − θ∗

k | ≤

2ϑn (k = 0, 1)},

sup
t :nϑ2

n (t−t∗)>M

1
[nt] − [nt∗]

ρn(t; θ̂0, θ̂1)

ϑ−2
n = op(1) (5)

because of [H] j (ii). Consequently, we see limn→∞ P3,n ≤ ϵ due to [C] and the localization
by BK .

(vi) From the estimates in Steps (ii)–(iv) and making K sufficiently large, we have

lim
n→∞

P[nϑ2
n (t̂n − t∗) > M] ≤ ρϵ(M)+ 5ϵ

for any M ≥ 1 and ϵ > 0. Therefore,

lim
M→∞

lim
n→∞

P[nϑ2
n (t̂n − t∗) > M] ≤ 5ϵ,

which shows the tightness of {nϑ2
n (t̂n − t∗)+}n . In a quite similar way, we can show that

{nϑ2
n (t̂n − t∗)−}n is tight, and hence the family {nϑ2

n (t̂n − t∗)}n is tight. �

4. Asymptotic distribution of the change point estimator

This section discusses limit theorems for the distributions of the estimators. The notion of the
stable convergence will be necessary. Given a probability space (Ω ,F , P) and a Markov kernel
P̂ from (Ω ,F) to a measurable space (Ω̂ , F̂), the extension (Ω̌ , F̌ , P̌) is defined as Ω̌ = Ω ×Ω̂ ,
F̌ = F × F̂ (product σ -field) and P̌(A × B) =


A P(dω)P̂(ω, B) for A ∈ F and B ∈ F̂ . Let

G be a sub σ -field of F and E a Polish space. Let Z be an E-valued random variable defined on
(Ω̌ , F̌). It is said that a sequence (Zn)n∈N of E-valued random variables defined on (Ω ,F) stably
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converges (in distribution) to Z if E[ f (Zn)G] → Ě[ f (Z)G] as n → ∞ for all f ∈ CB(E)1 and
all bounded G-measurable random variables G, where Ě stands for the expectation with respect
to P̌ and G is extended in a natural way to Ω̌ . The stable convergence is denoted by Zn →

ds (G) Z .
We simply write ds for ds(F).

First we consider Case (B). Let

H(v) = −2

Γ

1
2
η W(v)−

1
2
Γη|v|


for Γη = (2T )−1Ξ (X t∗ , θ

∗)[η⊗2
]. Here W is a two-sided standard Wiener process defined on

a probability space (Ω̂ , F̂, P̂). For (Ω̌ , F̌ , P̌), we consider the extension of (Ω ,F , P) by the
product of those spaces, i.e., P̌ = P × P̂ .

Theorem 2. Suppose that the limit η = limn→∞ ϑ−1
n (θ∗

1 − θ∗

0 ) exists. Suppose that [H]2, [C]
and [B] are fulfilled in Case (B). Then nϑ2

n (t̂n − t∗)→ds argminv∈R H(v) as n → ∞.

We will prove Theorem 2 and assume for a while that T = 1 to simplify the notation.
Introduce a new parameter v as t = tĎv := t∗ + v(nϑ2

n )
−1. Let

Dn(v) =


Ψn(tĎv ; θ̂0, θ̂1)− Ψn(t∗; θ̂0, θ̂1)


−


Ψn(tĎv ; θ

∗

0 , θ
∗

1 )− Ψn(t∗; θ∗

0 , θ
∗

1 )


= {Mn(tĎv ; θ̂0, θ̂1)− Mn(tĎv ; θ
∗

0 , θ
∗

1 )} + {An(tĎv ; θ̂0, θ̂1)− An(tĎv ; θ
∗

0 , θ
∗

1 )}

+ {ρn(tĎv ; θ̂0, θ̂1)− ρn(tĎv ; θ
∗

0 , θ
∗

1 )}.

Lemma 3. For every L > 0,

sup
v∈[−L ,L]

|Dn(v)| →
p 0

as n → ∞.

Proof. We assume that v > 0. We have

Mn(tĎv ; θ̂0, θ̂1)− Mn(tĎv ; θ
∗

0 , θ
∗

1 )

=

 1

0
ϑn∂θMn(tĎv ; θ

∗

0 + u(θ̂0 − θ∗

0 ), θ
∗

1 + u(θ̂1 − θ∗

1 )) du [ϑ−1
n (θ̂0 − θ∗

0 , θ̂1 − θ∗

1 )].

For k = 0, 1 and j = 1, 2,

E


sup

t∈[t∗,t∗+L(nϑ2
n )

−1]

|∂
j
θk

Mn(t; θ0, θ1)|
2


≤ 8E


|∂

j
θk

Mn(t∗ + L(nϑ2
n )

−1
; θ0, θ1)|

2


+ O(1)

≤ 8Lϑ−2
n sup

i≥1
E

|∂

j
θk

gi (θk)|
2


+ O(1)
≤ CLϑ−2

n .

1 The set of all bounded continuous functions on E.
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Then Sobolev’s inequality implies

ϑn sup
t∈[t∗,t∗+L(nϑ2

n )−1],

θ0,θ1∈Θ̇

|∂θMn(t; θ0, θ1)| = Op(1).

As a result,

sup
v∈[0,L]

|Mn(tĎv ; θ̂0, θ̂1)− Mn(tĎv ; θ
∗

0 , θ
∗

1 )| →
p 0

as n → ∞.
Set rn = |θ̂0 − θ∗

0 | + |θ̂1 − θ∗

1 |. Simple calculus yields

|{Tr y − log det(Id + y)} − {Tr x − log det(Id + x)}| ≤ c3|y − x |(|x | + |y − x |)

for d × d-symmetric matrices x and y whenever |x |, |y| ≤ c′

3, where c′

3 and c3 are some
positive constants independent of x, y. Indeed, the formula


exp(−2−1(Id + ϵx)[z⊗2

])dz =

(2π)d/2 det(Id + ϵx)−1/2 is convenient for explicit computation.
Applying this inequality to y = Si−1(θ̂0)

−1/2Si−1(θ̂1)Si−1(θ̂0)
−1/2

− Id and x = Si−1
(θ∗

0 )
−1/2Si−1(θ

∗

1 )Si−1(θ
∗

0 )
−1/2

− Id , we see that there exists a constant c4 such that for large
n, on BK ∩ {|θ̂k − θ∗

| < ϑn (k = 0, 1)},

|An(t; θ̂0, θ̂1)− An(t; θ∗

0 , θ
∗

1 )| ≤ c4

[nt]
i=[nt∗]+1

rn(ϑn + rn).

Therefore, for any ϵ > 0, if we take sufficiently large K , then

lim
n→∞

P


sup

t∈[t∗,t∗+L(nϑ2
n )

−1]

|An(t; θ̂0, θ̂1)− An(t; θ∗

0 , θ
∗

1 )| ≥ ϵ


≤ ϵ.

This implies

sup
v∈[0,L]

|An(tĎv ; θ̂0, θ̂1)− An(tĎv ; θ
∗

0 , θ
∗

1 )| →
p 0

as n → ∞. The convergence

sup
v∈[0,L]

|ρn(tĎv ; θ̂0, θ̂1)− ρn(tĎv ; θ
∗

0 , θ
∗

1 )| →
p 0

can be shown in the same way as (5).
A similar proof of the uniform convergence on [−L , 0] is possible. After all, we obtained the

desired result. �

Remark 4. When θ∗

k (k = 0, 1) are known, we do not need Lemma 3.

Thus we can focus only on Ψn(t
Ď
v ; θ

∗

0 , θ
∗

1 ) − Ψn(t∗; θ∗

0 , θ
∗

1 ). For simplicity, we write Ψ∗
n (t)

for Ψn(t; θ∗

0 , θ
∗

1 ). By assumption, there exists a limit η = limn→∞ ϑ−1
n (θ∗

1 − θ∗

0 ). D(I ) denotes
the D-space on an interval I of t , i.e. the space of càdlàg functions on I . Let

Hn(v) = Ψ∗
n


t∗ + v(nϑ2

n )
−1


− Ψ∗
n (t

∗).
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and

Hτ (v) = −2

Γ

1
2
η,τ W(v)−

1
2
Γη,τ |v|


for Γη,τ = 1{τ>0}(2T )−1Ξ (X τt∗ , θ

∗)[η⊗2
].

Lemma 4. Let η = limn→∞ ϑ−1
n (θ∗

1 − θ∗

0 ). Suppose that [H]2, [C] and [B] are fulfilled in Case
(B). Then Hn →

ds Hτ in D([−L , L]) as n → ∞ for every L > 0.

Proof. We will only consider positive v since the argument is essentially the same for negative
v. Let T = 1 as before. It follows from Lemma 1 that

Hn(v) = M∆
n (v)+ A∆

n (v)+ ρ∆
n (v),

where

M∆
n (v) = Mn(t∗ + v(nϑ2

n )
−1

; θ∗

0 , θ
∗

1 ),

A∆
n (v) = An(t∗ + v(nϑ2

n )
−1

; θ∗

0 , θ
∗

1 ),

ρ∆
n (v) = ρn(t∗ + v(nϑ2

n )
−1

; θ∗

0 , θ
∗

1 ).

The evaluation of these terms will be done in the following. As repeated previously, we may
proceed discussion on the event BK hereafter. First

M∆
n (v) = 1{τ>0}

[nt∗+ϑ−2
n v]

i=[nt∗]+1

Tr


Si−1(θ

∗

0 )
−1

− Si−1(θ
∗

1 )
−1


·h−1

 ti

ti−1

σ(X τt , θ
∗

1 )dWt

⊗2

− E
θ∗

1
i−1

 ti

ti−1

S(X τt , θ
∗

1 )dt


+ ōp(1) (6)

where Un(v) = ōp(1) means that supv∈[0,L] |Un(v)| →
p 0, and we used the hypothesis nϑ2

n →

∞ and the fact that |Si−1(θ
∗

0 )
−1

− Si−1(θ
∗

1 )
−1

| ≤ Cϑn with the localization. To obtain ōp(1),
L1-estimate helps. It follows from [H] j (i)(c) and (ii) thath−1

 ti

ti−1

S(X τt , θ
∗

1 )dt − E
θ∗

1
i−1

 ti

ti−1

S(X τt , θ
∗

1 )dt


=

h−1
 ti

ti−1

[S(X τt , θ
∗

1 )− S(X τti−1
, θ∗

1 )]dt

− E
θ∗

1
i−1

 ti

ti−1

[S(X τt , θ
∗

1 )− S(X τti−1
, θ∗

1 )]dt


≤ Cw[0,T ](n−1, X)α

= op(ϑn).

Moreover, with the Burkholder–Davis–Gundy inequality, the first terms on the right-hand side

of (6) equals M̄∆
n (v)+ ōp(1) with M̄∆

n (v) =
[nt∗+ϑ−2

n v]

i=[nt∗]+1 ξn,i , where
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ξn,i = 1{τ>0}Tr


tσi−1(θ
∗

1 )


Si−1(θ
∗

0 )
−1

− Si−1(θ
∗

1 )
−1

σi−1(θ

∗

1 )

×


h−1(∆i W )⊗2

− Ir


(7)

and σi−1(θ) = σ(X τti−1
, θ).

Now we introduce the backward approximation

ξ̃n,i = 1{τ>0}Tr


tσ(X τt∗−ϵn
, θ∗

1 )


S(X τt∗−ϵn
, θ∗

0 )
−1

− S(X τt∗−ϵn
, θ∗

1 )
−1

σ(X τt∗−ϵn

, θ∗

1 )

×


h−1(∆i W )⊗2

− Ir


to ξn,i for ϵn = 2Ln−1ϑ−2

n . After all, by M̃∆
n (v) =

[nt∗+ϑ−2
n v]

i=[nt∗]+1 ξ̃n,i , we have

M∆
n (v) = M̃∆

n (v)+ ōp(1). (8)

Since

1{τ>0}ϑ
−2
n v

tσ(X τt∗−ϵn
, θ∗

1 )


S(X τt∗−ϵn
, θ∗

0 )
−1

− S(X τt∗−ϵn
, θ∗

1 )
−1

σ(X τt∗−ϵn

, θ∗

1 )

2
= 1{τ>0}ϑ

−2
n vΞ (X τt∗−ϵn

, θ∗)[(θ∗

1 − θ∗

0 )
⊗2

] + ōp(1)

→
p 1{τ>0}Ξ (X τt∗ , θ

∗)[η⊗2
] v,

the central limit theorem ensures the convergence M̃∆
n →

d
−2Γ

1
2
η,τ W in D([0, L]). In the same

fashion, we can show M̃∆
n →

d
−2Γ

1
2
η,τ W in D([−L , 0]) if M̃∆

n is defined in a natural way for
negative v. Those convergence take place jointly and stably; apply Theorem 3-2 of [14] to the
triangular array with many zeros.

Easy calculations yield supv∈[−L ,L] |A
∆
n (v) − Γη,τ |v|| →p 0 and supv∈[−L ,L] |ρ

∆
n (v)| →

p 0
for extended A∆

n and ρ∆
n to [−L , L], which completes the proof. �

Proof of Theorem 2. We have supposed that T = 1 to state the lemmas, and we start with this
case. Write v̂ = argminv∈R H(v). For ϵ > 0, take large K so that P[τ = T ] > 1 − ϵ. It follows
from Lemma 4 that for every x ∈ R,

lim
n→∞

P[nϑ2
n (t̂n − t∗) ≤ x] − ϵ

≤ lim
n→∞

P[ inf
v∈[−L ,x]

Hτ
n(v) ≤ inf

v∈[x,L]
Hτ

n(v)] + sup
n

P[nϑ2
n (t̂n − t∗) ∉ [−L , L]}

= P[ inf
v∈[−L ,x]

Hτ (v) ≤ inf
v∈[x,L]

Hτ (v)] + sup
n

P[nϑ2
n (t̂n − t∗) ∉ [−L , L]}

≤ ϵ + P[v̂ ≤ x] + P[v̂ ∉ [−L , L]] + sup
n

P[nϑ2
n (t̂n − t∗) ∉ [−L , L]].

As L → ∞, the last two terms of the right-hand side of the above inequality tend to 0 thanks to
Theorem 1 (b). So we have obtained

lim
n→∞

P[nϑ2
n (t̂n − t∗) ≤ x] ≤ P[v̂ ≤ x].

The estimate of P[nϑ2
n (t̂n − t∗) ≤ x] from below can be done in a similar manner. It is easy to

see the stable convergence if we replace P by G · P̌ in expectations for bounded G-measurable
variables G, which completes the proof in case T = 1.



Author's personal copy

1082 S.M. Iacus, N. Yoshida / Stochastic Processes and their Applications 122 (2012) 1068–1092

For general T , we introduce a stochastic basis B̃ = (Ω ,F , F̃, P) with F̃ = (FT u)u∈[0,1], and
the processes b̃u = bT u , X̃u = XT u and Ỹu = YT u , u ∈ [0, 1], to scale the time as t = T u.
Those stochastic processes satisfy the stochastic integral equation

Ỹu = Ỹ0 +

 u

0
b̃r dr +

 u

0
σ̃ (X̃r , θ)dW̃r ,

where σ̃ (x, θ) =
√

Tσ(x, θ) and W̃ is an r -dimensional F̃-Wiener process. The sampling times
(iT/n)ni=0 now change to (i/n)ni=0 in the new setting after scaling time. For the change point
estimator ûn for u∗

= T −1t∗, we know

nϑ2
n (ûn − u∗)→ds argmin

ṽ∈R
H̃(ṽ), (9)

where H̃(ṽ) = −2

Γ̃ηW̃(ṽ)− 2−1Γ̃η|ṽ|


, Γ̃η = 2−1Ξ (X̃u∗ , θ∗)[η⊗2

] and W̃ is a two-sided

Wiener process independent of σ̃ (X̃u∗ , θ∗) =
√

Tσ(X t∗ , θ
∗). Since

T argmin
ṽ∈R

H̃(ṽ) = argmin
v∈R

H̃
 v

T


=

d argmin
v∈R

H(v)

thanks to W(·)=d T 1/2W̃(·/T ). Thus (9) gives the desired convergence of t̂n since t̂n =

T ûn . �
Let us investigate the limit distribution of the estimator in Case (A). Proposition 1 of Section 5

gives a result to obtain the asymptotic distribution of the change point presented in Theorem 3
below. By nature of the sampling scheme, only the set Gn = {kT/n; k ∈ Z} has essential meaning
for the optimization with respect to the parameter t . Without loss of generality, we modify t̂n so
that it takes values in Gn , and set k̂n = nt̂n/T . Let

K(v) =

v
i=1


Tr


tσ(X t∗ , θ
∗

1 )


S(X t∗ , θ
∗

0 )
−1

− S(X t∗ , θ
∗

1 )
−1

σ(X t∗ , θ

∗

1 )ζ
⊗2
i


− log det


S(X t∗ , θ

∗

0 )
−1S(X t∗ , θ

∗

1 )

,

where ζi are independent r -dimensional standard normal variables independent of FT .

Theorem 3. Suppose that [H]1, [C] and [A] are fulfilled in Case (A). Then k̂n − [
nt∗
T ] →

ds

argminv∈Z K(v) as n → ∞.

Proof. We change the definition of tĎv and newly set tĎv = [
nt∗
T ]

T
n +

T v
n . Lemma 3 is still valid

by essentially the same proof and hence we may only consider Ψn(t
Ď
v ; θ

∗

0 , θ
∗

1 )− Ψn(t∗; θ∗

0 , θ
∗

1 ).
Writing Ψ∗

n (t) for Ψn(t; θ∗

0 , θ
∗

1 ), we will investigate the behavior of the random field

Kn(v) = Ψ∗
n (t

Ď
v )− Ψ∗

n (t
∗)

on v ∈ Z. For a while, we consider nonnegative v. The argument is similar for negative v.
According to Lemma 1, we have the decomposition

Kn(v) = Mn(v)+ An(v)+ ϱn(v),

where Mn(v) = Mn(t
Ď
v ; θ

∗

0 , θ
∗

1 ), An(v) = An(t
Ď
v ; θ

∗

0 , θ
∗

1 ) and ϱn(v) = ρn(t
Ď
v ; θ

∗

0 , θ
∗

1 ).
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Now, Mn(v) admits a similar expansion as before:

Mn(v) =

[nt∗/T ]+v
i=[nt∗/T ]+1

ξn,i + ōp(1)

with ξn,i given by (7). Moreover, for ϵn = n−1/2 this time, we consider the backward
approximation of ξn,i , that is,

ξn,i = ξ̃n,i + ōp(1).

Here v ∈ [0, L] ∩ Z, however this approximation is available when we consider v ∈ [−L , 0]. let
L0 be the maximum integer in [0, L]. By continuity of σ and because W is an F-Wiener process,
Proposition 1 of Section 5 gives

G, X τt∗−ϵn
, (h−1(∆i W )⊗2)

[nt∗/T ]+L0
i=[nt∗/T ]−L0


→

d


G, X τt∗ , (ζ
⊗2
i )

L0
i=−L0


,

where G is any F-measurable function and ζi are independent r -dimensional standard normal
variables independent of FT ; we use the same symbol ζi as in the statement. Consequently,

(G,Mn(v))
L0
v=−L0

→
d(G,M∞(v))

L0
v=−L0

for all F-measurable random variables G, where

M∞(v) =

v
i=1

ξ∞,i

and ξ∞,i is given by

ξ∞,i = 1{τ>0}Tr


tσ(X τt∗ , θ
∗

1 )


S(X τt∗ , θ
∗

0 )
−1

− S(X τt∗ , θ
∗

1 )
−1

σ(X τt∗ , θ

∗

1 ) ·


ζ⊗2

i − Ir


.

For An , we have An(v) → A∞(v) with

A∞(v) = 1{τ>0}v


Tr


S(X τt∗ , θ
∗

0 )
−1S(X τt∗ , θ

∗

1 )− Id


− log det


S(X τt∗ , θ

∗

0 )
−1S(X τt∗ , θ

∗

1 )

.

On the other hand, ϱn(v) tends to 0 uniformly in v. Therefore,

(Kn(v))
L0
v=−L0

→
ds

Kτ (v)

L0
v=−L0

,

where Kτ (v) = M∞(v) + A∞(v). Removing τ by letting K → ∞, and using Theorem 1, we
obtain the limit distribution of t̂n . �

Remark 5. If we compensate ζ⊗2
i in the representation of K(v), it can be observed, with the

identifiability, that K(v) diverges a.s. as |v| → ∞. It is also clear that K has no tie a.s. Therefore,
the argmin-operation is well defined.

The results of this section include as a case previous results like, for example, the ones in [7]
if we take Y = X and one dimensional with bt = 0 and σ(x, θ) = θ .
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5. Mixing inequality and stable convergence

This section contains a result used in the proof of Theorem 3 of Section 4 but we present it
here to make it self-contained. Let Xn

= (ξ̇n,i )
[nt∗/T ]+L0
i=[nt∗/T ]−L0

with

ξ̇n,i = h−1(∆i W )⊗2
− Ir .

Let F denote any bounded F-measurable function and let G = E[F |FT ]. Since L{Xn
} does

not depend on n, {(Xn,G)}n∈N is tight. By the subsequence argument, we may assume that
(Xn,G)→d(X∞,G∞) as n → ∞ for the canonical process (X∞,G∞) on R2L0+2 equipped
with a probability measure P∞; the uniqueness of the limit will be found later. Thus we have
E[ f (Xn)G] → E∞[ f (X∞)G∞] for every f ∈ CB(R2L0+2), where E∞ denotes the expectation
with respect to P∞. Let W = (ζ⊗2

i − Ir )
L0
i=−L0

. If the equality

E∞[ f (X∞)G∞] = E∞[ f (X∞)]E∞[G∞] (10)

is obtained for FT -measurable functions G, we also have

E[ f (Xn)F] = E[ f (Xn)G]

→ E∞[ f (X∞)G∞]

= E∞[ f (X∞)]E∞[G∞]

= Ě[ f (W)]E[G]

= Ě[ f (W)]E[F]

= Ě[ f (W)F].

This characterizes the possible limit of the sequence {(Xn, F)}n∈N uniquely and implies the
stable convergence of Xn . In order to show (10), it is sufficient to establish it only for monomials.
Then the mixing property below serves to do this. Let us give the result in a slightly general
setting. In the following, we assume T = 1 without loss of generality.

For h = (h1, . . . , hm) ∈ L2([0, 1])m and α = (α1, . . . , αm) ∈ {1, . . . , r}
m , let

J (h, α)t =

 t

0
h1

s1
dWα1

s1

 s1

0
h2

s2
dWα2

s2
· · ·

 sm−1

0
hm

sm
dWαm

sm
.

Let

E(h1, α1, p1; · · · ; hk, αk, pk; G)t = E[J (h1, α1)
p1
t · · · J (hk, αk)

pk
t G],

where hi ∈ L2([0, 1])mi , αi ∈ {1, . . . , r}
mi , mi ∈ N and pi ∈ N for i = 1, . . . , k and k ∈ N. Let

E(∅) = 1. The following shows a mixing property.

Proposition 1. For an F1-measurable bounded function G,

sup
t∈[0,1]

|E(h1, α1, p1; · · · ; hk, αk, pk; G)t − E(h1, α1, p1; · · · ; hk, αk, pk; 1)t E[G]|

≤ C(p1, . . . , pk)

k
i=1


mi
j=1

∥h j
i ∥2

pi

max
i, j


E

 1

0
1
{(h j

i )s≠0}
d⟨E[G|Ft ]

c
⟩s

 1
2

,

where E[G|Ft ]
c is the continuous martingale part of the L2-martingale (E[G|Ft ])t∈[0,1], and

C(p1, . . . , pk) is a constant independent of h1, . . . , hk and G.
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Proof. For G, we have G = E[G|F1] = E[G|F0] + Mc
1 + Md

1 for some continuous L2-
martingale Mc with Mc

0 = 0 and some purely discontinuous L2-martingale Md with Md
0 = 0.

First,

E(h1, α1, p1; · · · ; hk, αk, pk; E[G|F0])t = E(h1, α1, p1; · · · ; hk, αk, pk; 1)t E[G] (11)

by the independence of F0 and the Wiener processes.
Next, thanks to Itô’s formula,

E(h1, α1, p1; · · · ; hk, αk, pk; G)t

=

k
i=1

E
 t

0
pi J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s

× · · · J (hk, α1)
pk
s J (h(−1)

i , α
(−1)
i )s(h1

i )sdW
α1

i
s G


+


i, j :i< j

pi p j

 t

0
E

· · · ; h(−1)

i , α
(−1)
i , pi − 1; · · · ; h(−1)

j , α
(−1)
j , p j − 1; · · · ;

× h(−1)
i , α

(−1)
i , 1; h(−1)

j , α
(−1)
j , 1; G


s
(h1

i )s(h
1
j )s d⟨Wα1

i ,Wα1
j ⟩s

+


i

pi (pi − 1)
 t

0
E

· · · ; h(−1)

i , α
(−1)
i , pi − 2; · · · ; h(−1)

i , α
(−1)
i , 2; G


s
(h1

i )
2
s ds (12)

where h(−1)
i = (h2

i , . . . , hmi
i ) and for hi = (h1

i , h2
i , . . . , hmi

i ) and α(−1)
i = (α2

i , . . . ., α
mi
i ) for

α
(−1)
i . We read x0

= 1 and x−n
= 0 for n ∈ N.

We haveE  t

0
J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s · · · J (hk, α1)

pk
s J (h(−1)

i , α
(−1)
i )s(h1

i )sdW
α1

i
s Mc

1


≤

E t

0
J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s

· · · J (hk, α1)
pk
s J (h(−1)

i , α
(−1)
i )s(h1

i )sd⟨Wα1
i ,Mc

⟩s


≤


E
 t

0


J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s · · · J (hk, α1)

pk
s J (h(−1)

i , α
(−1)
i )s(h1

i )s

2
ds
 1

2

×


E
 t

0
1
{(h1

i )s≠0}
d⟨Mc

⟩s

 1
2

(13)

and

E
 t

0


J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s · · · J (hk, α1)

pk
s J (h(−1)

i , α
(−1)
i )s(h1

i )s

2
ds


≤ E


sup

s∈[0,t]


J (h1, α1)

p1
s · · · J (hi , αi )

pi −1
s · · · J (hk, α1)

pk
s J (h(−1)

i , α
(−1)
i )s

2


∥h1
i ∥

2
2

≤ C(p1, . . . , pk)

k
i=1


mi
j=1

∥h j
i ∥2

2pi

(14)
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for all t ∈ [0, 1], where C(p1, . . . , pk) denotes a generic constant depending only on
p1, . . . , pk and varying from line to line. The last inequality used the Hölder inequality and
the Burkholder–Davis–Gundy inequality.

Applying (12) to G = Mc
1 and using (13) and (14), we obtain

sup
t∈[0,1]

E(h1, α1, p1; · · · ; hk, αk, pk; Mc
1)t


≤ C(p1, . . . , pk)

k
i=1


mi
j=1

∥h j
i ∥2

pi

max
i


E

 1

0
1
{(h1

i )s≠0}
d⟨Mc

⟩s

 1
2

+ C(p1, . . . , pk)

× sup
t∈[0,1]

E · · · ; h(−1)
i , α

(−1)
i , pi − 1; · · · ; h(−1)

j , α
(−1)
j , p j − 1; · · · ;

× h(−1)
i , α

(−1)
i , 1; h(−1)

j , α
(−1)
j , 1; Mc

1


t

 ∥h1
i ∥2∥h1

j∥2

+ C(p1, . . . , pm)

× sup
t∈[0,1]

E · · · ; h(−1)
i , α

(−1)
i , pi − 2; · · · ; h(−1)

i , α
(−1)
i , 2; Mc

1


t

 ∥h1
i ∥

2
2. (15)

We apply (15) repeatedly together with E[Mc
1 ] = 0 to obtain

sup
t∈[0,1]

E(h1, α1, p1; · · · ; hk, αk, pk; Mc
1)t


≤ C(p1, . . . , pk)

k
i=1


mi
j=1

∥h j
i ∥2

pi

max
i, j


E

 1

0
1
{(h j

i )s≠0}
d⟨Mc

⟩s

 1
2

. (16)

If apply (12) for G = Md
1 instead of Mc

1 , the first term on the right-hand side of (12) vanishes,
and we obtain

E(h1, α1, p1; · · · ; hk, αk, pk; Md
1 )t = 0 (17)

by the orthogonality between a continuous martingale and Md . The desired inequality follows
from (11), (16) to (17). �

6. Remarks on estimation of the nuisance parameters θk

When the values of the parameters θk (k = 0, 1) are unknown, our estimating function for the
change point requires certain estimators for θk . In this section, we will briefly discuss estimation
of the nuisance parameters θk . There are two situations according to the prior knowledge of the
parameter space T of the change point. The first one is the case where T = [t0, t1] ⊂ (0, T ) for
given numbers t0 and t1. In this case, the structural change occurs in neither interval [0, t0) nor
(t1, T ], and we can use this knowledge to construct estimators for θk . Contrarily, in the second
case, we do not assume any prior information about the location of the change point t∗. Due
to lack of information, we cannot use data over any interval of fixed length. However, as we
will see later, it is still possible to construct estimators for θk by shrinkage of the sampling time
intervals.
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Let

Φ0
n(t; θ0) =

[nt/T ]
i=1

Gi (θ0) and Φ1
n(t; θ1) =

n
i=[nt/T ]+1

Gi (θ1).

Suppose that t0 and t1 are known. Let us consider estimators θ̂k for θk such that

Φk
n (tk; θ̂k) = min

θk
Φk

n (tk; θk)

for k = 0, 1. Obviously, θ̂0 is a function of the data up to t0, and θ̂1 is that of after t1; they take
advantage of the prior knowledge about T.2 Under suitable regularity conditions as well as the
identifiability conditions that t0

0
Q(X t , θ

∗, θ) dt > 0 a.s. and
 T

t1
Q(X t , θ

∗, θ) dt > 0 a.s. (18)

for every θ ≠ θ∗, it is possible in general to show that θ̂k − θ∗

k = Op(n−1/2), then Condition
[C] is satisfied in both cases (A) and (B); see the references given in Introduction for estimation
of diffusion coefficients. Based on θ̂k , the estimator t̂n are defined. According to the previous
sections, t̂n possesses nϑ2

n -consistency and the asymptotic distribution in each case is already
known.

We can also construct the second stage estimators. Let bn be a sequence of positive numbers
such that nϑ2

n bn → ∞ as n → ∞. Construct θ̌k so that

Φk
n (t̂n + (−1)k+1bn; θ̌k) = min

θk
Φk

n (t̂n + (−1)k+1bn; θk)

for k = 0, 1.3 The new estimators θ̌k are expected to improve θ̂k since they utilize data from each
end point to a sampling time near t∗. Further, we can construct a new change-point estimator
with those estimators. Based on θ̌k , we define ťn for t∗ as

ťn = argmin
t∈[0,T ]

Φn(t; θ̌0, θ̌1).

Since it is usually easy to verify Condition [C] for θ̌k , we will be able to obtain the same
asymptotic results for ťn as t̂n .

Next, let us consider the second situation. The knowledge of the distance from t∗ to each end
point is not available and it means that any data set sampled over a fixed time interval [0, a] is
useless for estimating θ0 since t∗ may be less than a and then the data over (t∗, a] causes bias
in general. A similar note also applies to estimation of θ1. This consideration suggests the use of
estimators θ̂k based on the data over time interval [0, an] for θ0 and the data over [T − an, T ]

for θ1, respectively, for some sequence an tending to zero. We assume that there exists a constant

2 To validate asymptotic properties of the estimators, it is sufficient that these relations are satisfied asymptotically. It is
possible and rather routine to prove asymptotic properties for the estimator of θk , as they are necessary for the discussions
here, in a fairly general setting even for possibly moving targets θk .

3 The estimating functions depend on the unknown parameters in a mild way as sequence bn satisfies the mentioned
condition. However, such a situation is quite common in asymptotic statistics; recall, for example, the smoothness
assumption for the true density in the kernel density estimation. The theory has a meaning only when the condition
is satisfied even though it is impossible to verify from the data.
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β ∈ (0, 1/2) such that an ≥ 1/(nϑ1/β
n ) and that |θ̂k − θ∗

k | = op((nan)
−β) for k = 0, 1. When

limn→∞ϑn > 0, we also assume nan → ∞. In particular, the first condition implies nϑ2
n → ∞.

The second condition is natural because the number of the available data over each time interval
is proportional to nan . To obtain consistent θ̂k , we may need at least an identifiability condition
such that σ(θ, x) = σ(θ ′, x) implies θ = θ ′; it is a strong condition like monotonicity of σ(θ, x)
in θ , however it is necessary because the sampling interval is shrinking to an end point, by lack
of knowledge of T.

Here we show how to obtain an initial estimator of θ∗, considering only the one-dimensional
case for notational simplicity. Usual regularity of the functions involved are also assumed
to hold true. In order to obtain desired rate of convergence, it is for example assumed that
infθ |∂θ S(x, θ)| ≥ p(x) (θ ∈ Θ) for some positive continuous function p in a neighborhood
of the initial value X0 = x0 ∈ R. Let θ̂m

0 be a root to the estimating equation ψn(θ) = 0, where

ψn(θ) :=
1
an


j :t j ≤an

(∆ j Y )2 −
T

ann


j :t j ≤an

S(X t j−1 , θ).

Under the usual regularity conditions, it is straightforward to prove that

ψn(θ
∗

0 ) = Op


1

√
nan


as n → ∞. Then the nondegeneracy of ∂θ S(x, θ) near x0 with the Taylor formula yields the
stochastic order θ̂m

0 − θ∗

0 = Op(nan)
−1/2. This is the case of a moment-type estimator, however,

a similar argument applies to the quasi maximum likelihood estimator based on the data on
[0, an] as, intuitively, this method is locally a kind of moment-type method.

Under the assumptions, [C] holds and after that it is possible to construct t̂n , θ̌k and ťn in
turn as mentioned above. The asymptotic properties of ťn are the same as t̂n because θ̌k’s satisfy
Condition [C]. It is expected that the new estimator ťn possesses equal or better precision than
t̂n , as suggested by the numerical studies in Section 7. Some proposals of first stage explicit and
consistent estimators are given in [11].

7. Numerical analysis

This section contains results of a Monte Carlo analysis performed to assess the quality of the
estimator of the change point and of the unknown volatilities under two different models. As the
process bt does not play a relevant role in the framework of this paper, only models without drift
are considered. Moreover, the observed process Yt and the coordinate process X t are the same,
i.e. Yt = X t .

7.1. First experiment

The first model considered is a diffusion process solution to the following stochastic
differential equation

X t =


X0 +

 t

0
(1 + X2

s )
θ∗

0 dWs for t ∈ [0, t∗)

X t∗ +

 t

t∗
(1 + X2

s )
θ∗

1 dWs for t ∈ [t∗, T ]

(19)
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Table 1
Monte Carlo estimates for model (19) over 10,000 replications. True values: θ∗

0 = 0.2, θ∗
1 = 0.378, 0.350, and 0.319 for

different sample sizes n = 1000, 2000 and 5000. True change point t∗ = 0.6.

n an t̃n θ̂0 θ̂1 t̂n θ̌0 θ̌1 ťn

5000 0.1189 0.601 0.200 0.319 0.601 0.200 0.319 0.601
(0.005) (0.009) (0.014) (0.011) (0.005) (0.013) (0.012)

2000 0.1495 0.601 0.200 0.349 0.601 0.200 0.349 0.601
(0.008) (0.013) (0.020) (0.014) (0.008) (0.017) (0.015)

1000 0.1778 0.601 0.199 0.377 0.601 0.200 0.377 0.602
(0.011) (0.017) (0.025) (0.019) (0.011) (0.026) (0.018)

where t∗ is the true change point assumed to be t∗ = 0.6. The true value of the parameters
are θ∗

0 = 0.2 and θ∗

1 = θ∗

0 + n−γ , with γ =
1
4 , n is the sample size and T = nh = 1.

The initial value is X0 assumed to be constant, in particular we take X0 = 5. The sequences
an = bn =

1
nϑδn

with δ = 3 so that they satisfy the properties required in Section 6. The
first stage estimator of θ∗

0 (resp. θ∗

1 ) is obtained using the first nan observations from the left
(resp. nan from the right). We denote the first stage estimators with θ̂i , i = 0, 1. Once the first
stage estimators of θ∗

0 and θ∗

1 are available, the first stage estimator of t∗, i.e. t̂n is obtained
via

Φn(t̂n; θ̂0, θ̂1) = min
t∈[0,T ]

Φn(t; θ̂0, θ̂1).

Then, with the first stage estimator of t∗ in hands, we calculate the second stage estimator of θ∗

i
using observations in the interval [0, t̂n − bn] for θ∗

0 and observations in the interval [t̂n + bn, T ]

for θ∗

1 . We denote the second stage estimators of θ∗

i by θ̌i . Finally, the second stage estimator of
t∗, i.e. ťn , is obtained as

Φn(ťn; θ̌0, θ̌1) = min
t∈[0,T ]

Φn(t; θ̌0, θ̌1).

For comparison, we also report the value of the estimator t̃n obtained plugging the true parameter
values in the contrast function, i.e. when the volatilities are supposed to be known

Φn(t̃n; θ∗

0 , θ
∗

1 ) = min
t∈[0,T ]

Φn(t; θ∗

0 , θ
∗

1 ),

and this can be considered as a benchmark. For the Monte Carlo setup, we consider different
sample sizes n = 1000, 2000, 5000 and for each sample size n, we run M = 10, 000 Monte
Carlo replications. Under this choice of n the value of θ∗

1 = 0.378, 0.350, and 0.319 respectively.
The values of the sequences an and bn are reported in Table 1.

Data are generated according to the Euler–Maruyama scheme with predictor corrector
method for stability (see, e.g. Chapter 2, [10]) using a double discretization approach: first
the simulated paths are generated with a mesh of size 10−5 and then data are subsampled
at rate h = 1/n to produce statistical data which are used to construct the quasi-likelihood
function and to perform the inference. The CIR model is simulated using the exact conditional
distribution.

Table 1 also reports Monte Carlo estimates (i.e. average over the M replications) of the
volatility parameters θ0 and θ1 and the change point t∗. In parenthesis are the standard deviations
of the Monte Carlo estimates.
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Table 2
Monte Carlo estimates for model (20) over 10,000 replications. True values: θ∗

0 = 0.2, θ∗
1 = 0.378, 0.350, and 0.319 for

different sample sizes n = 1000, 2000 and 5000. True change point t∗ = 0.7.

n an t̃n θ̂0 θ̂1 t̂n θ̌0 θ̌1 ťn

5000 0.1189 0.701 0.200 0.319 0.701 0.200 0.319 0.701
(0.010) (0.012) (0.018) (0.011) (0.018) (0.012) (0.010)

2000 0.1495 0.702 0.200 0.350 0.701 0.200 0.350 0.701
(0.016) (0.016) (0.029) (0.024) (0.009) (0.030) (0.021)

1000 0.1778 0.703 0.200 0.378 0.701 0.200 0.377 0.701
(0.025) (0.021) (0.040) (0.038) (0.012) (0.056) (0.040)

7.2. Second experiment

The second model considered is the [4] diffusion model solution to the following stochastic
differential equation

X t =


X0 +

 t

0


θ∗

0 XsdWs for t ∈ [0, t∗)

X t∗ +

 t

t∗


θ∗

1 XsdWs for t ∈ [t∗, T ]

(20)

with change point t∗ = 0.7 and all remaining experimental conditions are the same as in previous
experiment. The results are reported in Table 2. The difference in the two experiments is in the
regularity of the diffusion coefficient term and in the fact that, in the second experiment, the true
change point instant τ ∗ is closer to the right border of the interval (0, T ). Comparing the two
simulation results, it is possible to see that the second stage estimators in the second experiment
performs slightly better in term of the standard deviation.

7.3. Asymptotic distribution of the change point estimator

This section analyzes the empirical distribution of the second stage change point estimator
τ̌ and compares it with its theoretical counterpart. The empirical distribution is considered for
a sample size of n = 5000 observations under the setup of the first experiment. Due to mixed-
normal type limit, in order to obtain the limiting distribution, a preliminary studentization of the
sequence nθ2

n (ťn − t∗) is required. Therefore, the limiting distribution of the following sequence
is studied

Zn = nθ2
n (ťn − t∗)Γ̂ (X t∗ , θ0),

with Γ̂ (X t∗ , θ0) = (log(1 + X2
t∗))

2. Then Zn converges in distribution to W(v) −
1
2 |v| with

density

f (x) =
3
2

e|x |


1 − Φ


3
2


|x |


−

1
2


1 − Φ


1
2


|x |


and distribution function

F(x) =


g(x), x > 0,
1 − g(−x), x ≤ 0.
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Fig. 1. Histogram versus theoretical density function (up) and empirical distribution function versus theoretical
distribution function (bottom) for the second stage change point estimator. Results of 10, 000 Monte Carlo replications
and sample size n = 5000 for the first model.

Here Φ(x) the distribution function of the Gaussian random variable, and

g(x) = 1 +


x

2π
e−

x
8 −

1
2
(x + 5)Φ


−

√
x

2


+

3
2

exΦ


−
3
2
√

x


(see e.g. [5]). Fig. 1 reports the graphical representation of the histogram and empirical
distribution function of Z (over 10,000 Monte Carlo replications) against their theoretical
counterparts. The empirical results are inline with the expected theoretical quantities.
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Annales Institute H. Poincaré Probability Statistics 29 (1993) 119–151.
[9] D.V. Hinkley, Inference about the change-point from cumulative sum tests, Biometrika 58 (1971) 509–523.

[10] S.M. Iacus, Simulation and Inference for Stochastic Differential Equations, With R Examples, Springer, NY, 2008.
[11] S.M. Iacus, N. Yoshida, Numerical analysis of volatility change point estimators for discretely sampled stochastic

differential equations, Economic Notes 39 (1/2) (2010) 107–127.
[12] I.A. Ibragimov, R.Z. Hasminskii, Statistical Estimation: Asymptotic Theory, Springer, Berlin, 1981.
[13] C. Inclan, G.C. Tiao, Use of cumulative sums of squares for retrospective detection of change of variance, Journal

of the American Statistical Association 89 (1994) 913–923.
[14] J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, in: Séminaire de
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