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Least Squares Volatility Change Point Estimation
for Partially Observed Diffusion Processes

ALESSANDRO DE GREGORIO
AND STEFANO M. IACUS

Dipartimento di Scienze Economiche, Aziendali e Statistiche,
Milan, Italy

A one-dimensional diffusion process X = !Xt" 0 ≤ t ≤ T#, with drift b$x% and
diffusion coefficient &$'" x% =

√
'&$x% known up to ' > 0, is supposed to switch

volatility regime at some point t∗ ∈ $0" T%. On the basis of discrete time observations
from X, the problem is the one of estimating the instant of change in the volatility
structure t∗ as well as the two values of ', say '1 and '2, before and after the change
point. It is assumed that the sampling occurs at regularly spaced times intervals
of length (n with n(n = T . To work out our statistical problem we use a least
squares approach. Consistency, rates of convergence and distributional results of
the estimators are presented under an high frequency scheme. We also study the
case of a diffusion process with unknown drift and unknown volatility but constant.

Keywords Change point problem; Diffusion process; Discrete observations;
Nonparametric estimator; Volatility regime switch.

Mathematics Subject Classification Primary 60K99; Secondary 62M99.

1. Introduction

Change-point problems have originally arisen in the context of quality control,
but the problem of abrupt changes in general arises in many contexts like
epidemiology, rhythm analysis in electrocardiograms, seismic signal processing,
study of archeological sites, and financial markets.

Originally, the problem was considered for i.i.d samples (see Csörgő and
Horváth, 1997; Hinkley, 1971; Inclan and Tiao, 1994) and it moved naturally into
the time series context as economic time series often exhibit prominent evidence for
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Least Squares Volatility Change Point Estimation 2343

structural change in the underlying model (see, for example, Chen et al., 2005; Kim
et al., 2000; Lee et al., 2003; the papers cited therein).

In this article, we deal with a change-point problem for the volatility of a
diffusion process observed at discrete times. The instant of the change in volatility
regime is identified retrospectively by the method of the least squares along the lines
proposed in Bai (1994). For continuous time observations of diffusion processes
Lee et al. (2006) considered the change point estimation problem for the drift. In the
present work, the drift coefficient of the stochastic differential equation is assumed
known and if not it is estimated nonparametrically.

The article is organized as follows. Section 2 introduces the model of
observation and the estimator of the change point instant and the estimators of the
volatilities before and after the change. Section 3 analyzes the asymptotic properties
of the estimators. In Sec. 4, we consider the case when the drift is unknown and the
diffusion coefficient does not depend on the state of the process. All the proofs of
the theorems are contained in the Appendix.

2. The Least Squares Estimator

We denote by X = !Xt" 0 ≤ t ≤ T# the diffusion process, with state space
I = $l" r%"−& ≤ l ≤ r ≤ +&, solution of the stochastic differential equation:

dXt = b$Xt%dt +
√
'&$Xt%dWt" (2.1)

with X0 = x0 and !Wt" t ≥ 0# a standard Brownian motion. We suppose that
the value of ' is '1 up to some unknown time t∗ ∈ $0" T% and '2 after, i.e.,
'= '11!t≤t∗# + '21!t>t∗#. The parameters '1 and '2 belong to ), a compact set of
!+. The coefficients b *I → ! and & * I → $0"&% are supposed to be known with
continuous derivatives. The continuity of the derivatives of b$·% and &$·% assures
that it exists a unique continuous process solution to (2.1), which is defined up an
explosion time (see Arnold, 1974). Let s$x% = exp!−

∫ x

x0
2b$u%/&2$u%du# be the scale

function (where x0 is an arbitrary point inside I).

A1. limx1→l

∫ x

x1
s$u%du = −&, limx2→r

∫ x2
x s$u%du = +&, where l < x1 < x <

x2 < r.

Condition A1 guarantees that the exit time from I is infinite (see Karatzas and
Shreve, 1991).

The process X is observed at n+ 1 equidistant discrete times 0 = t0 < t1 < · · · <
tn = T" with ti = i(n, n(n = T . For the sake of simplicity we will write Xi = Xti

and
Wti

= Wi. The asymptotic framework is a high frequency scheme: n → &, (n → 0
with n(n = T . Given the observations Xi, i = 0" 1" + + + " n" the aim of this work is to
estimate the change time t∗ as well as the two quantities '1" '2.

In order to obtain a simple least squares estimator, we follow the same approach
proposed in Bai (1994). To this end, we make use of Euler approximation to the
solution of (2.1), i.e.,

Xi+1 = Xi + b$Xi%(n +
√
'&$Xi%$Wi+1 −Wi%"
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2344 De Gregorio and Iacus

and introduce the quantities

Zi =
Xi+1 − Xi − b$Xi%(n√

(n&$Xi%
=

√
'
Wi+1 −Wi√

(n

" i = 1" + + + " n"

which represent n independent standard normal variables.
We denote by k0 = ,n-0. and k = ,n-., -" -0 ∈ $0" 1%, where ,x. is the integer part

of the real value x. Given that (n → 0, without loss of generality, we can assume
that the process switches volatility regime exactly at time ti = tk0 = k0(n = t∗.
The least squares estimator of the change point is obtained as follows:

k̂0 = argmin
k

(
min
'1"'2

{ k∑

i=1

$Z2
i − '1%2 +

n∑

i=k+1

$Z2
i − '2%2

})

= argmin
k

{ k∑

i=1

$Z2
i − '̄1%2 +

n∑

i=k+1

$Z2
i − '̄2%2

}
" (2.2)

where

'̄1 = argmin
'1

k∑

i=1

(
Z2

i − '1
)2 = 1

k

k∑

i=1

Z2
i =

Sk
k

'̄2 = argmin
'2

n∑

i=k+1

(
Z2

i − '2
)2 = 1

n− k

n∑

i=k+1

Z2
i =

Sn−k

k

and k = 1" + + + " n− 1+ We introduce the following quantity:

U 2
k =

k∑

i=1

(
Z2

i − '̄1
)2 +

n∑

i=k+1

(
Z2

i − '̄2
)2
/

then we have that:

k̂0 = argmin
k

U 2
k

To study the asymptotic properties of U 2
k it is better to rewrite it in the following

way:

U 2
k =

n∑

i=1

(
Z2

i − Zn

)2 − nV 2
k

where Zn = 1
n

∑n
i=1 Z

2
i = 1

n
Sn and

Vk =
(
k$n− k%

n2

) 1
2

$'̄2 − '̄1% =
SnDk√
k$n− k%

with Dk = k/n− Sk/Sn+
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Least Squares Volatility Change Point Estimation 2345

This representation of U 2
k is obtained by lengthy but straightforward algebra

and it is rather useful because minimization of U 2
k is equivalent to the maximization

of Vk and hence Dk. So it is easier to consider the following estimator of k0:

k̂0 = argmax
k

)Dk) = argmax
k
$k$n− k%%

1
2 )Vk)+ (2.3)

As a side remark, it can be noticed that for fixed k (and under suitable
hypothesis), Dk can be seen as an approximate likelihood ratio statistics for testing
the null hypothesis of no change in volatility (see, e.g., Inclan and Tiao, 1994).
We do not discuss approximate likelihood approach in this article.

Once k̂0 has been obtained, the following estimator of the parameters '1 and '2
can be used:

'̂1 =
Sk̂0
k̂0
" '̂2 =

Sn−k̂0

n− k̂0
+ (2.4)

We will prove consistency of k̂0, '̂1, and '̂2 and also distributional results for these
estimators.

Our first result concerns the asymptotic distribution of the statistic Dk under the
condition that no change of volatility occurs during the interval ,0" T..

Theorem 2.1. Assume that H0: '1 = '2 = 1, then we have that:

√
n

2
)Dk)

d→ )W 0$-%)" (2.5)

where !W 0$-%" 0 ≤ - ≤ 1# is a Brownian bridge.

Corollary 2.1. From Theorem 2.1 we derive immediately that for 0 ∈ $0" 1/2%:
√
n

2
sup

0n≤k≤$1−0%n
)Dk)

d→ sup
0≤-≤$1−0%

)W 0$-%)" (2.6)

√
n

2
sup

0n≤k≤$1−0%n
)Vk)

d→ sup
0≤-≤$1−0%

$-$1− -%%−1/2)W 0$-%)+ (2.7)

The last asymptotic results are useful to test if a change point occurred in
,0" T.. In particular, it is possible to obtain the asymptotic critical values for the
distribution (2.7) by means of the same arguments used in Csörgő and Horváth
(1997, p. 25).

3. Asymptotic Properties of the Estimator

We study the main asymptotic properties of the least squares estimator k̂0.
We start analyzing the consistency and the rate of convergence of the change-point
estimator (2.3). It is convenient to note that the rate of convergence is particularly
important not only to describe how fast the estimator converges to the true value,
but also to get the limiting distribution. The next Theorem represents our first result
on the consistency.
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2346 De Gregorio and Iacus

Theorem 3.1. The estimator -̂0 = k̂0
n
satisfies

)-̂0 − -0) = n−1/2$'2 − '1%−1Op$
√
log n%+ (3.1)

Theorem 3.1 implies consistency of our estimator, in fact we have that
n1$-̂0 − -0%→ 0 in probability for any 1 ∈ $0" 1/2%. We are able to improve the rate
of convergence of -̂0.

Theorem 3.2. We have the following result:

-̂0 − -0 = Op

(
1

n$'2 − '1%2
)
+ (3.2)

It is also possible to derive the asymptotic distribution of -̂0 under our limiting
framework for small variations of the rate of change of the direction. The case
2n = '2 − '1 equal to a constant is less interesting because when 2n is large the
estimate of k0 is quite precise.

A2. Assume that:

2n → 0"
√
n2n√
log n

→ &+

Under A2 the consistency of -̂0 follows immediately either from Theorem 3.1 or
Theorem 3.2. In order to obtain the next result, it is useful to observe that:

k̂0 = argmax
k

V 2
k = argmax

k
n
(
V 2
k − V 2

k0

)
(3.3)

and to define a two-sided Brownian motion " $u% in the following manner:

" $u% =
{
W1$−u%" u < 0

W2$u%" u ≥ 0
" (3.4)

where W1"W2 are two independent Brownian motions. Now we present the following
convergence in distribution result.

Theorem 3.3. Under Assumption A2 we have that:

n22
n$-̂0 − -0%
2'̃2

d→ argmax
v

{
" $v%− )v)

2

}
" (3.5)

where W$v% is a two-sided Brownian motion and '̃ is a consistent estimator for '1 or '2.

Let '0 be the limiting value of both '1 and '2. Using the consistency result,
we are able to obtain the asymptotic distributions for the estimators '̂1" '̂2, defined
in (2.4).
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Theorem 3.4. Under Assumption A2 we have that:

√
n

(
'̂1 − '1
'̂2 − '2

)
d→ N$0" 3%" (3.6)

where

3 =
(
2-−1

0 '
2
0 0

0 2$1− -0%−1'20

)
+ (3.7)

Remark 3.1. It is easy to verify that the Theorems presented in this section are also
true if we consider an horizon time tending to infinite, i.e., (n → 0, n(n = T → &
as n → &.

Remark on Ergodic Case. If the Euler approximation is not admissible, it is worth
to consider the ergodic case. Let m$u% = $&2$u%s$u%%−1 be the speed measure of the
diffusion process Xt. We introduce the following assumptions:

A3.
∫ r

l m$x%dx < +&.

A4. X0 = x0 has distribution P0.

Assumptions A1, A3, and A4 imply that the process Xt is also ergodic and strictly
stationary with invariant distribution P0$dx% = 4$x%dx, 4$x% = m$x%/

∫ r

l m$u%du.
Under the additional condition:

A5. limx→0 &$x%4$x% = 0 or limx→& &$x%4$x% = 0 and

lim
x→0

∣∣∣∣
&$x%

2b$x%− &$x%&′$x%

∣∣∣∣ < & or lim
x→&

∣∣∣∣
&$x%

2b$x%− &$x%&′$x%

∣∣∣∣ < &

the observed data Xi" i = 0" 1" + + + " n" is a strictly stationary 1-mixing sequence
satisfying k01k → 0 as k → & for some fixed 0 > 1 (see, e.g., Aït-Sahalia, 1996).

Under this setup and n(n = T → &, similar results to the ones presented in the
above can be obtained using the same techniques of Chen et al. (2005).

4. Estimation of the Change Point with Unknown Drift

We want to analyze the change point problem for a diffusion process Xt, when the
drift coefficient b$·% is unknown, while the diffusion coefficient is supposed unknown
but independent from the state of the process Xt. In other words, the process Xt is
the solution of the following reduced stochastic differential equation:

dXt = b$Xt%dt +
√
' dWt" (4.1)

and the observation scheme and the asymptotics are as in Sec. 2. Let K≥ 0
be a kernel function, i.e., K is symmetric and continuously differentiable,
with

∫
! uK$u%du = 0,

∫
! K2$u%du < & and such that

∫
! K$u%du = 1+ We start

introducing the following quantities:

Ẑi =
Xi+1 − Xi − b̂$Xi%(n√

(n
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2348 De Gregorio and Iacus

where

b̂$x% =
∑n

i=1 K
(Xi−x

hn

)Xi+1−Xi

(n∑n
i=1 K

(Xi−x
hn

) (4.2)

is a nonparametric estimator of the drift constructed using the full sample and hn is
the bandwidth defined as in Silverman (1986). The estimator (4.2) is a particular case
of the nonparametric estimator studied in Bandi and Phillips (2003). Unfortunately,
for fixed T the drift coefficient cannot be estimated consistently. So in this section
we assume that n(n = T → &, (n → 0 as n → &. Moreover, some relationship
between the bandwidth of the kernel and the mesh (n should be required. Let X be
a solution of dXt = b$Xt%dt + &$Xt%dWt and define as:

LX$t" x% =
1

&2$x%
lim
5→0

1
25

∫ t

0
1!x"x+5#$Xs%&

2$Xs%ds

the chronological local time of X. For the model (4.1), the chronological local time
is simply:

LX$t" x% = lim
5→0

1
25

∫ t

0
1!x"x+5#$Xs%ds+

Bandi and Phillips (2003) showed that under the following additional assumption a
consistent estimator of b$·% is given by (4.2).

A6. Assume that:

LX$T" x%

hn

√

(n log
(

1
(n

)
= oa+s+$1%

and hnLX$T" x%
a+s+→ &, with n(n = T → & and (n → 0 as n → &. In the stationary

case, A6 may be replaced by T
hn

√
(n log

(
1
(n

)
= oa+s+$1% and standard results on the

estimation of first moments for discrete-time series hold (see Härdle, 1990; Pagan
and Ullah, 1999).

The least squares estimator now takes the following form:

k̃0 = argmin
k

{ k∑

i=1

(
Ẑ2

i − '̄∗1
)2 +

n∑

i=k+1

(
Ẑ2

i − '̄∗2
)2
}
" (4.3)

where

'̄∗1 =
Ŝk
k
" '̄∗2 =

Ŝn−k

n− k
"

with Ŝk =
∑k

i=1 Ẑ
2
i " Ŝn−k =

∑n
i=k+1 Ẑ

2
i . From (4.3), by the same steps considered in

Sec. 2, we derive:

V̂k =
(
k$n− k%

n2

) 1
2

$'̄∗2 − '̄∗1% (4.4)
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We are able to show that the asymptotic properties of the estimator k̃0 defined
in (4.3), are equal to the ones of k̂0.

Theorem 4.1. Under the additional condition A6, the same results presented in
Theorems 3.1–3.4 hold for the estimator k̃0.

Remark 4.1. In order to apply the theoretic results, an important issue in the
nonparametric context is the selection of bandwidth. As shown by Bandi and
Phillips (2003), for the practical implementation is often sufficient to choose the
bandwidth proportional to n−6" 6 ∈ $0" 1/2%. In other words, we can fix hn = cn−6,
where the proportionality constant c might be obtained by means of the methods
for bandwidth selection in density estimation (see, for example, Härdle, 1990; Pagan
and Ullah, 1999).

Another way to work out this problem is a cross-validation method as
considered in Chen et al. (2005). Hence, the optimal bandwidth ĥn is obtained in the
following manner:

ĥn = argmin
hn

n∑

i=0

(
Xi+1 − Xi

(n

− b̂$Xi%

)2

w$Xi%"

where w$·% is a weight function.

Appendix

As in Chen et al. (2005), some of the proofs are based on the ones in Bai (1994).
We adapt Bai’s theorems making the appropriate (but crucial) adjustments when
needed, skipping all algebraic calculations which can be found in the original article
of the author.

Proof of Theorem 2.1. By setting 7i = Z2
i − 1" under H0 we note that E$7i% = 0 and

Var$7i% = 2+ Let us introduce the quantity

Yn$-% =
1√
2n

#,n-. + $n-− ,n-.%
1√
2n
7,n-.+1"

where #n =
∑n

i=1 7i. It’s not hard to see that

∣∣∣∣
1√
2n

,n-.∑

i=1

7i −
√
-

√
2,n-.

,n-.∑

i=1

7i

∣∣∣∣
p→ 0" (5.1)

and Var
( √

-√
2,n-.

∑,n-.
i=1 7i

)
= -. Since the Lindeberg condition is true:

,n-.∑

i=1

E!1)7i)≥8
√
2n#7

2
i #

2n
→ 0" (5.2)

we can conclude that:

1√
2n

#,n-.
d→ N$0" -%+ (5.3)
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2350 De Gregorio and Iacus

By Donsker’s theorem we have Yn
d→ W$-% that implies Yn$-%− -Yn$1%

d→ W 0$-%,
where W$-% and W 0$-% are, respectively, a standard Brownian motion and a
Brownian bridge. Let ,n-. = k" k = 1" 2" + + + " n" then:

Yn$-%− -Yn$1% =
1√
2n

#,n-. −
-√
2n

#n + $n-− ,n-.%
1√
2n
7,n-.+1

= 1√
2n

[
#k −

k

n
#n

]
+ $n-− ,n-.% 1√

2n
7,n-.+1+ (5.4)

Now, by observing that:

#k −
k

n
#n =

[ k∑

i=1

$Z2
i − 1%− k

n

n∑

i=1

$Z2
i − 1%

]
= −Dk

n∑

i=1

Z2
i "

from (5.4) we have that:
√
n

2
)Dk)

∑n
i=1 Z

2
i

n
=

∣∣∣∣Xn$-%− -Xn$1%−
$n-− ,n-.%√

2n
7,n-.+1

∣∣∣∣+ (5.5)

As n → &" (n → 0 we get that
∑n

i=1 Z
2
i

n
→ 1 and $n-−,n-.%√

2n
7,n-.+1

p→ 0+ Hence the thesis
of Theorem 3.1 follows. !

Proof of Theorem 3.1. By the same arguments of Bai (1994), Sec. 3 and by using
the formulas (10)–(14) therein, we have that:

)-̂0 − -0) ≤ C-0$'2 − '1%−1 sup
k

)Vk − EVk)" (5.6)

where C-0 is a constant depending only on -0. Furthermore,

Vk − EVk =
1√
n

√
k

n

1√
n− k

n∑

i=k+1

(
Z2

i − '2
)
+ 1√

n

√
1− k

n

1√
k

k∑

i=1

(
Z2

i − '1
)
/

then we can write

)Vk − EVk) ≤
1√
n

{
1√
n− k

∣∣∣∣
n∑

i=k+1

(
Z2

i − '2
)∣∣∣∣+

1√
k

∣∣∣∣
k∑

i=1

(
Z2

i − '1
)∣∣∣∣

}
+ (5.7)

By applying Hajék–Renyi inequality for martingales we have that:

Pr

{
max
1≤k≤n

∣∣∣∣

∑k
i=1$Z

2
i − '1%

ck

∣∣∣∣ > 9
}
≤ 1
92

n∑

k=1

E$Z2
k − '1%2
c2k

= 2'21
92

n∑

k=1

1
c2k
+ (5.8)

Choosing ck =
√
k and observing that

∑n
k=1 k

−1 ≤ C log n, for some C > 0 (see, e.g.,
Bai, 1994), we have that:

max
1≤k≤n

1√
k

k∑

i=1

Zi = Op

(√
log n

)
+ (5.9)
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The same result holds for 1√
n−k

∣∣∑n
i=k+1$Z

2
i − '2%

∣∣; then from the relationships (5.7)
and (5.9) we obtain the result (3.1). !

Proof of Theorem 3.2. We use the same framework of the proof of the
Proposition 3 in Bai (1994), therefore we omit the details.

We choose a 0 > 0 such that -0 ∈ $0" 1− 0%. Since k̂0/n is consistent for -0, for
every 8 > 0, Pr!k̂0/n +∈ $0" 1− 0%# < 8 when n is large. In order to prove (3.2), it is
sufficient to show that Pr!)-̂0 − -0) > M$n22

n%
−1# is small when n and M are large,

where 2n = '2 − '1. We are interested to study the behavior of Vk for n0 ≤ k ≤
n$1− 0%, 0 < 0< 1. We define for any M > 0 the set Dn"M = !k * n0 ≤ k ≤ n$1−
0%" )k− k0) > M2−2

n #. Then we have that:

Pr
{
)-̂0 − -0) > M

(
n22

n

)−1} ≤ 8+ Pr
{

sup
k∈Dn"M

)Vk) ≥ )Vk0
)
}
"

for every 8 > 0+ Thus, we study the behavior of Pr!supk∈Dn"M
)Vk) ≥ )Vk0

)#. It is
possible to prove that:

Pr
{

sup
k∈Dn"M

)Vk) ≥ )Vk0
)
}
≤ Pr

{
sup

k∈Dn"M

Vk − Vk0
≥ 0

}
+ Pr

{
sup

k∈Dn"M

Vk + Vk0
≤ 0

}

= P +Q+

(5.10)

Furthermore,

Q ≤ 2Pr
{

sup
k≤n$1−0%

1
n− k

∣∣∣∣
n∑

i=k+1

(
Z2

i − '2
)∣∣∣∣ ≥

1
4
EVk0

}
(5.11)

+ 2Pr
{
sup
k≥n0

1
k

∣∣∣∣
k∑

i=1

(
Z2

i − '1
)∣∣∣∣ ≥

1
4
EVk0

}
+

By observing that
∑&

i=m i−2 = O$m−1%, the Hajék–Renyi inequality yields:

Pr

{
max
k≥m

∣∣∣∣
1
k

k∑

i=1

(
Z2

i − '1
)∣∣∣∣ > 9

}
≤ C1

92m
" (5.12)

for some constant C1 < &. The inequality (5.12) implies that (5.11) tends to zero as
n tends to infinity.

Let d$k% =
√
$$k/n%$1− k/n%%" k = 1" 2" + + + " n" for the first term in the

right-hand of (5.10) we have that:

P ≤ Pr

{
sup

k∈Dn"M

n

)k0 − k) )G$k%)>
2nC-0
2

}
+Pr

{
sup

k∈Dn"M

n

)k0 − k) )H$k%)>
2nC-0
2

}
"

= P1 + P2"

(5.13)

where

G$k% = d$k0%
1
k0

k0∑

i=1

(
Z2

i − '1
)
− d$k%

1
k

k∑

i=1

(
Z2
i − '1

)
(5.14)
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H$k% = d$k%
1

n− k

n∑

i=k+1

(
Z2

i − '2
)
− d$k0%

1
n− k0

n∑

i=k0+1

(
Z2

i − '2
)
+ (5.15)

We prove that P1 tends to zero when n and M are large. Thus, we consider
only k≤ k0 or more precisely those values of k such that n0 ≤ k ≤ n-0 −M2−2

n .
For k≥ n0, we have:

)G$k%) ≤ k0 − k

n0k0

∣∣∣∣
k0∑

i=1

(
Z2

i − '1
)∣∣∣∣+ B

k0 − k

n

1
n0

∣∣∣∣
k∑

i=1

(
Z2

i − '1
)∣∣∣∣+

1
n0

∣∣∣∣
k0∑

i=k+1

(
Z2

i − '1
)∣∣∣∣"

(5.16)

where B ≥ 0 satisfies )d$k0%− d$k%) ≤ B)k0 − k)/n. By means of (5.8), (5.12), and
(5.16), we obtain:

P1 ≤ Pr

{
1
n-0

∣∣∣∣
,n-0.∑

i=1

(
Z2

i − '1
)∣∣∣∣ >

02nC-0
6

}

+ Pr

{
sup
1≤k≤n

1
n

∣∣∣∣
k∑

i=1

(
Z2

i − '1
)∣∣∣∣ >

02nC-0
6B

}

+Pr

{
sup

k≤n-0−M2−2
n

1
n-0 − k

∣∣∣∣
,n-0.∑

i=k+1

(
Z2

i − '1
)∣∣∣∣ >

02nC-0
6

}

≤ 36'21
$0C-0%

2-0n22
n

+ 36'21B
2

$0C-0%
2n22

n

+ 36'21
0C2

-0
M
+

When n and M are large, the last three terms are negligible. Analogously, we derive
the proof of P2. !

Proof of Theorem 3.3. The proof follows the same steps in Bai (1994, Theorem 1),
hence we only sketch the parts of the proof that differ. We consider only v ≤ 0
because of symmetry. Let Kn$v% = !k * k = ,k0 + v2−2

n ."−M ≤ v ≤ 0"M > 0# and

:n$v% = n
(
V 2
k − V 2

k0

)
(5.17)

with k ∈ Kn$v%+ We note that:

n
(
V 2
k − V 2

k0

)
= 2nEVk0

$Vk − Vk0
%+ 2n$Vk0

− EVk0
%$Vk − Vk0

%+ n$Vk − Vk0
%2 (5.18)

The last two terms in (5.18) are negligible on Kn$v%. Since
√
n$Vk0

− EVk0
% is

bounded by (5.7), we have to show that
√
n)Vk − Vk0

) is bounded. In particular, we
can write:

√
n)Vk − Vk0

) ≤ √
n)G$k%+H$k%) + √

n)EVk − EVk0
)"
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where G$k% and H$k% are defined, respectively, in (5.14) and (5.15). The upper
bound (5.16) is op$1%, because the first term is such that:

√
n
k0 − k

n0k0

∣∣∣∣
k0∑

i=1

$Z2
i − '21%

∣∣∣∣ ≤
M

0-0n22
n

∣∣∣∣
1√
n

k0∑

i=1

$Z2
i − '1%

∣∣∣∣

= Op$1%
n22

n

= op$1%" (5.19)

similarly for the second term and for the third term we apply the invariance
principle (5.3). Now we explicit the limiting distribution for

2nEVk0
$Vk − Vk0

% = 2
√
-0$1− -0%n2n$V,k0+v2−2

n . − Vk0
%+ (5.20)

For simplicity we shall assume that k0 + v2−2
n and v2−2

n are integers. We observe
that:

n2n$Vk − Vk0
% = n2n$G$k%+H$k%%− n2n$EVk0

− EVk%" (5.21)

where G$k%"H$k% are defined in the expressions (5.14), (5.15). We can rewrite G$k%
as follows:

G$k% = d$k0%
k− k0
kk0

k0∑

i=1

(
Z2

i − '1
)
+ d$k0%− d$k%

k

k∑

i=1

(
Z2
i − '1

)

+ d$k0%
1
k

k0∑

i=k+1

(
Z2

i − '1
)
+ (5.22)

By the same arguments used to prove (5.19), we can show that the first
two terms in (5.22) multiplied by n2n are negligible on Kn$M%. Furthermore,
d$k0%=

√
-0$1− -0% and n/k → 1/-0 for k ∈ Kn$M%, then we get that:

n2nG
(
k0 + v2−2

n

)
= n2nd$k0%

1
k

k0∑

i=k+1

$Z2
i − '1%+ op$1%

= d$k0%
n

k

{
2n

)v)2−2
n∑

i=1

(
Z2

i+k − '1
)}

+ op$1%

d→
√
$1− -0%-0
-0

√
2'1W1$−v% (5.23)

where in the last step we have used the invariance principle (5.3). Analogously,
we can show that:

n2nH$k0 + v2−2
n %

d→
√
$1− -0%-0
1− -0

√
2'1W1$−v%+ (5.24)
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Since

n2n$EVk0
− EVk%→

)v)
1
√
-0$1− -0%

(5.25)

we obtain that:

:n$v%
d→ 2

{√
2'1W1$−v%− )v)

2

}
+ (5.26)

In the same way, for v > 0, we can prove that:

:n$v%
d→ 2

{√
2'1W2$v%−

)v)
2

}
+ (5.27)

By applying the continuous mapping theorem and Theorem 3.2,

n22
n$-̂0 − -0%
2'̃2

d→ 1
2'21

argmax
v
:n$v%+ (5.28)

Since aW$v%
d= W$a2v%" a ∈ !, a change in variable transforms argmaxv :n$v% into

2'21 argmaxv
{
W$v%− )v)

2

}
" which concludes the proof. !

Proof of Theorem 3.6. We start noticing that:

√
n$'̂1$k̂0%− '̂1$k0%%

= √
n

(
1

k̂0

k̂0∑

i=1

Z2
i −

1
k0

k0∑

i=1

Z2
i

)

= 1!k̂0≤k0#

(√
n
k0 − k̂0

k0k̂0

k0∑

i=1

(
Z2

i − '1
)
−√

n
1

k̂0

k0∑

i=k̂0

(
Z2

i − '1
))

+ 1!k̂0>k0#

(√
n
k0 − k̂0

k0k̂0

k0∑

i=1

(
Z2

i − '1
)
+√

n
1

k̂0

k̂0∑

i=k0

(
Z2

i − '2
)
+√

n2n

k̂0 − k0

k̂0

)
+

(5.29)

Since k0 = ,-0n., k̂0 = k0 + Op$2
−2
n %, and n22

n → &, we have that (5.29) is
$
√
n2n%

−1Op$1%, which converges to zero in probability. Then '̂1$k̂0% and '̂1$k0% have
the same limiting distribution. Obviously, the same result holds for '̂2. Now it is easy
to show that the limiting distribution of

√
n$'̂1$k0%" '̂2$k0%% is equal to (3.6). !

Proof of Theorem 4.1. To prove our thesis it is sufficient to show that:

√
n$V̂k − V̂k0

− $Vk − Vk0
%%

p→ 0" (5.30)
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where Vk and Vk0
in this proof are the statistics obtained by setting &$Xt% = 1 into

Eq. (2.1). We rewrite the left-hand side of (5.30) as follows:

√
n

√
k

n

(
1− k

n

)[
1

n− k
$̂Sn−k − Sn−k%−

1
k
$̂Sk − Sk%

]

−√
n

√
k0
n

(
1− k0

n

)[
1

n− k0
$̂Sn−k0

− Sn−k0
%− 1

k0
$̂Sk0 − Sk0%

]
+ (5.31)

The first term of (5.31) is equal to:

√
n

√
k

n

(
1− k

n

)[
1

n− k
$̂Sn−k − Sn−k%−

1
k
$̂Sk − Sk%

]

= √
n

√
k

n

(
1− k

n

)[
1

n− k

n∑

i=k+1

$Ẑ2
i − Z2

i %−
1
k

k∑

i=1

$Ẑ2
i − Z2

i %

]

=
√

n

n− k

√
k

n

(
1− k

n

)
1√
n− k

n∑

i=k+1

$Ẑ2
i − Z2

i %

−
√
n

k

√
k

n

(
1− k

n

)
1√
k

k∑

i=1

$Ẑ2
i − Z2

i %+ (5.32)

We observe that:

1√
k

k∑

i=1

(
Ẑ2

i − Z2
i

)
= 2√

k

k∑

i=1

Zi$Ẑi − Zi%+
1√
k

k∑

i=1

$Ẑi − Zi%
2

= 2$1 +$2+ (5.33)

The next step is to prove that (5.33) tends to zero in probability. In fact, by simple
calculations we can write:

$1 =
√
'1
√
(n√

k

k∑

i=1

$b$Xi%− b̂$Xi%%
Wi+1 −Wi√

(n

=
√
'1
√
(n√

k

k∑

i=1

$Wi+1 −Wi%√
(n

∑n
j=1 K$

Xj−Xi

hn
%$b$Xi%− Xj+1−Xj

(n
%

∑n
j=1 K$

Xj−Xi

hn
%

+

Then we have that:

E$$1%
2 = '1(n

k
E

( k∑

i=1

$Wi+1 −Wi%√
(n

∑n
j=1 K$

Xj−Xi

hn
%$b$Xi%− Xj+1−Xj

(n
%

∑n
j=1 K$

Xj−Xi

hn
%

)2

+
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We note the following fact:

E$Xj+1 − Xj − b$Xi%(n%
2

= E

(√
'1$Wj+1 −Wj%+

∫ tj+1

tj

,b$Xs%− b$Xi%.ds

)2

≤ 2
{
'1E$Wj+1 −Wj%

2 + E

( ∫ tj+1

tj

,b$Xs%− b$Xi%.ds

)2}

= 2
{
'1(n + E

( ∫ tj+1

tj

,b$Xs%− b$Xi%.ds

)2}
+ (5.34)

Furthermore, the drift coefficient b$·% has continuous derivatives, therefore it is
locally Lipschitz (see, e.g., Aït-Sahalia, 1996) and this bound follows:

E

( ∫ tj+1

tj

,b$Xs%− b$Xi%.ds

)2

= O
(
(2

n;
2
n

)
(5.35)

where

;n = max
j≤n

sup
j(n≤s≤$j+1%(n

)Xs − Xj)+

By Levy’s modulus of continuity for diffusions (see Karatzas and Shreve, 1991),

Pr

{
lim sup
(n→0

;n
$(n log$1/(n%%1/2

= C0

}
= 1

with C0 a suitable constant, we derive that:

;n = O$$(n log$1/(n%%
1/2%+ (5.36)

Then by means of relationships (5.34), (5.35), and (5.36) we can claim that:

Xj+1 − Xj − b$Xi%(n

(n

= Op$1%+ (5.37)

The expression (5.37) allows us to write

E$$1%
2 ≤ C

'1(n

k
E

( k∑

i=1

$Wi+1 −Wi%√
(n

)2

= C'1(n → 0

for some real constant C. The same arguments permit us to obtain that:

$2 =
(n√
k

k∑

i=1

$b$Xi%− b̂$Xi%%
2 p→ 0+

Similarly, we can develop the second term of (5.31), so the proof is complete. !
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