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Abstract

For a one-dimensional diffusion process X = {X (¢); 0 <t < T}, we suppose that X (¢) is hidden if it is
below some fixed and known threshold t, but otherwise it is visible. This means a partially hidden diffusion
process. The problem treated in this paper is the estimation of a finite-dimensional parameter in both drift
and diffusion coefficients under a partially hidden diffusion process obtained by a discrete sampling scheme.
It is assumed that the sampling occurs at regularly spaced time intervals of length #; such that nh, = T.
The asymptotic is when h; — 0, T — oo and nh% — 0 asn — oo. Consistency and asymptotic normality
for estimators of parameters in both drift and diffusion coefficients are proved.
© 2008 Elsevier B.V. All rights reserved.

MSC: primary 62F12; 62MO0S5; secondary 60J60
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1. Introduction

We consider the estimation of the unknown parameter 6 = (61, 6>) characterizing a one-
dimensional diffusion process defined by the stochastic differential equation

dX () = b(X (1), 02)dt + o (X (¢), 61)dW;, X©0) =xp, tel0,T],
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where W is a one-dimensional standard Brownian motion, b and o are supposed to be regular
enough to ensure the existence of a (strong) solution to the above stochastic differential equation.
In the situation where discrete observations are X,, = {X(#;); i = 0,1, ...,n} witht;, = ih,,
nh, = T, the estimation problem for the parameter 6 has been considered by several authors,
see [2,11,12,16,17,9]. In this paper, however, we generalize it to a different setup. We suppose
that X (¢) is observable if X () > t for some threshold 7, and that X () cannot be observed if
X (t) < 7. This means that the original process becomes a partially hidden diffusion process
based on a threshold t, and the discretized trajectory X, is also influenced by a threshold t. This
type of observation naturally arises in the study of stochastic resonance and has been treated
so far in the statistical context for the i.i.d. case in [4], for continuous time ergodic diffusion
processes in [6] and for a class of continuous time mixing processes in [7]. In signal theory
this corresponds to the problem of signal detection when the signal is so faint that it is not
always receivable by some detector. This scheme of observation frequently appears in radio
and CCD astronomy in the problem of identification of faint perturbed signals originated by
astronomical sources (see e.g. [14]). A partially observed diffusion model also arises in the
context of financial markets (see e.g. [18]) and in neuronal activation analysis (see e.g. [10]). In
stochastic resonance context the original observation is altered by adding some noise with known
structure to the channel in order to have full (but eventually quite noisy) observations, hence the
problem is the one of determining the optimal level of noise. In the approach used in this paper,
only the available observations are retained and used to estimate 6. In this setup, we need to
build a contrast function which is different from the one proposed in the literature of estimation
for discretely observed diffusion processes cited above. Other different approaches based on
particle filters (see e.g. [1]) and observation augmentation (see e.g. [13]) have been also recently
proposed in the literature but our approach and asymptotic scheme adopted are substantially
different from these references. Nevertheless, after some refinement it is still possible to prove
consistency and asymptotic normality of the proposed estimators along the lines of e.g. [15,16,3,
9]. The organization of the paper is as follows. Section 2 introduces the model, the assumptions
and two contrast functions. Section 3 contains the statement of the main result on consistency
and asymptotic normality of estimators. Section 4 is devoted to the proofs of the results in
Section 3.

2. Model of observation and assumptions

Let X = {X(¢); 0 <t < T} denote a diffusion process satisfying
dX (1) = b(X (1), 2)dt + o (X (1), 61)dW;, X(0) =xo, r€[0,T]. (D

The parameter of our interest is 0 = (61, 6,), 0 € © and O is a compact rectangle in R2. The
true value is denoted by 8y = (01,0, 62,0) and it is assumed that 6y € Int(6). Let X; = X (1;),
ti =ih,andnh, =T.Fori =0,1,...,n, we assume that X; is observable if X; > t for some
threshold 7, and that X; is unobserved if X; < 7. The asymptotics will be investigated when
h, — 0, nh, — oo and nh% — 0 as n — oo. In order to simplify the description, we use the
following notation

oi =0 (X;, 61), bi = b(Xi, 62), AiX =X; — Xi—1.
When the coefficients are evaluated at the true value of the parameter, we will write
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We further define dp, f = % f. For any real sequence u, € (0, 1], R(u,, x) represents a function
such that

IRty x)| < uyC(1 + |x])€, (2)

where C is a positive constant independent of n and x (and eventually 6 when x is X (¢)). In the
proof, K and/or C denote generic constants independent of 6, x and n.

Assumptions

A1l There exists K > 0 such that for every x, y € R,
1b(x, 02,0) — b(y, 02,0)| + o (x,01,0) —o(y, 01,0 < K|x —yl,

so that (1) has a unique solution for 6 = 6.

A2 The process X is stationary and ergodic for 6 = 6y with its invariant measure denoted by vy, .

A3 Forall p > 0,E[|X(0)”] < oo.

A4 inf, g, 0%(x,0;) = K4 > 0.

AS (Polynomial growth) The coefficients b and o are continuously differentiable with respect to
x up to order 2 for all 61 and 6,. These coefficients and their derivatives up to order 2 are of
polynomial growth in x, uniformly in 6.

A6 (Polynomial growth) The coefficients b and o and all their x derivatives up to order 2,
are three times continuously differentiable with respect to 6 for all x. Moreover, these 6-
derivatives are of golynomial growth in x and uniformly on 6.

A7 (Identifiability) o“(x, 61) = 02(x, 01,0) for vy, a.s. all x = 61 = 61 0,

b(x,62) = b(x, 0) for vg, a.s. all x = 6, = 61 0.

The contrast function

The main idea of this paper is to fix a new threshold 7’ (>7) as follows. We fix a number
a € (0,1/2) and take a sequence 7, (>7) such that hy/(t, — t) = O(1); for example,
7, = T + h% We use t’ instead of 7,. Notice that t/ — 7 slowly. Thus, we introduce the
following contrast functions

n
gn(0) =Y _gli.i —1;0)X(x,_ 7. X, 1) 3)
i=1
n
0n(0) = L0 — 10X, >0 X, 1) 4)
i=1
where x is the indicator function and
A X)?
g(i,i —1;6y) =logo? | + ( B ) ,
oi_1hn
AiX — bi_1hp)?
E(i,i—l;@):logai2_1+( A n”
oi_1hn

3. Consistent and asymptotically normal estimators

As in [16], we first estimate the parameter belonging to the diffusion coefficient, i.e. 01,
because, as usual, the estimator of 6; has a faster rate of convergence than the one of 6,. Let
01 ., denote an estimator of ; satisfying
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gn(el,n) = 1élfgn(el) (5)
1

The measurable selection theorem ensures the existence of such a measurable mapping.

Theorem 3.1. Under assumptions A1-A7, as h,, — 0 and nh, — o0,

A p
91,,1 — 91,0.

We consider an estimator éz, . of 6> that satisfies

£y B0, 020) = igfen(él,n, 62). (6)
2

Theorem 3.2. Under assumptions A1-A7, as h, — 0 and nh, — oo,

br.n > 020.
Let
2/ (M)ZX{x>f}veo(dX) 0
5 o (x, 61,0) i
0 / (%) X Vi ()

The next theorem is the main result in this paper.

Theorem 3.3. Suppose that the assumptions A1-A7 are satisfied. If X' is non-singular, then as
h,, — 0, nh,, - o0 andnh% — 0,

V@i, —610) \ d —1
(v nhy (02, — 92,0)) - NOS.

Remark 1. (i) As seen from the proof of (14), stationarity of the diffusion is used in order to
show that P(t" < X;—; < 7) = o(1) and that P(t” < X;_; < t’) = o(1), where T =t/ + h¢
and t” = v’ — h&% fora € (0, 1/2). If we suppose Al and A2 except for stationarity, the moment
condition satisfying that sup, E [| X ()| ] < ooforall p > 0, and A4—A7 together with regularity
conditions for which the above estimates hold, Theorems 3.1-3.3 still hold true. (ii) It seems true
that under some regularity conditions, Theorem 3.1 still holds even if T (= nh,,) is fixed. For the
case that 7 is fixed, consistency and asymptotically mixed normality of the estimator will be a
future work.

4. Proofs
Proof of Theorem 3.1. First, we will show that

1
sup [~ g, (61) — G(61)| >0, )
IR
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where

G(G)—f o 02(x9)+m Vg, (dx)

1) = " g » U1 O’z(x,el) X{x>1}V8, .

Noting that

X{Xi_1>t,Xi>t) — X{Xi—1>t} = —X{Xi_1>1,X;<t}> (8)
one has

1 [

—gn01) = — > _gii = 100 X(x,1>7) ©)

i=1
1 n

== 8l i = L)X, o X <), (10)

i=1
In order to show the uniform convergence of (10) to zero, we consider the estimate that
E {sup
01
n

1 1
< - E P(Xi—1>1,X; <1)a

n
i=1

I & ..
— Zg(l, i —1; 91)X{X,»,1>r’,X,-§r}
i3

A; X)?
10g(71'2—1 + (h 2)

n0;_1

sup
01

p
forl < p,g <ocowithl/p+ 1/g = 1. Since A4 and AS imply that

sup
01

1

log o7, | = max(|log(Ky)?|, suplo 1) < K} + C(1+ Xi1)C,
01
it follows from A3 that

sup |log aiz_l‘ < 00.

01

p

By A4 and the estimate that E| X; — Xi_1|*? < ChP forp > 1,

p p

= 0(1).
p

(A X)?
sup
o hnoi_

(A X)?
B

x|

Moreover, for k > 0,

supP(X;_1>1,X; <1) <supP(Xi_1—X;|>1 —1)
' i

l
1 \K
k
( ; ) sup E|[X;—1 — Xi|
T —7T i

he N\ 1ma
<c(=—) ™™
T

[A

—0 (h,?”‘“”‘) 50 (11)
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because 7% /(t' — 1) = O(1) for « € (0, 1/2). Thus, we obtain

sup =op(1).

Zg(t = 10)x(x; > x;<7)
i=1

In order to prove the uniform convergence of (9) to G, it is enough to show that

- Zg(z i = 1:00)x(x,_,>) = G(01) (12)

1—1
i| < Q. (13)

For details, see the proof of Theorem 4.1 in [15]. As in the proof of the uniform convergence of
(10), we can obtain (13). For the proof of (12), we will prove

for each 0y, and

Zaelgo i—1;01)

sup £ |:sup
n

1 & »

;Zlogal?_lx{xi_pf/}—>AlogGZ(x,e)X{x>,}v90(m), (14)
i=1
L g A4ix)° p [ o3, 610)

For the proof of (14), we set I; = f” log Uiz_IX{X,»,1>r/}dS fori =1, ..., n. Note that

ti—1
X{Xi_1>t'} = X{ inf X(s)>t} — X{r< inf X(s)<t'}- (16)
Se(l‘i_l,tiJ Se(ti_l!ti]
We first estimate /; for the case that log al.z_l > 0. Let J; = X{logo? =0} fori =1,...,n.

15
liJ; = Ji/ 10g0i2_1X{2X,~_1>r’}ds
ti—1

L
> Ji/ log o 1 X(Xi_1>1') [X{ ot ]X(s)>r}_X{1:< inf X(s)ft/}] ds

se ti_l,l‘i sg(ti*l’ti]

> —Ji 10g0 1 X{X;_1>t} X{r< inf X(s)ft’}ds

se(ti_q.t;]

+Ji loga 1 X{X;_ 1>r/}X{ (1nf X(s)>r}X{X(s)>1:}ds

i—1:4i1

SE(tl'_] ,ti

+ J; loga Xi_1>17'} [X{ inf  X(s)>t} — 1} X(X (5)>7)ds

se(ti _1,t;]

= / lOgO’ 1 X{Xi—1>t} X{r< inf X(s)fr’}ds

17
+Ji loga Xy — 1]X{X(s)>r}ds+Jif log o2 | X(x (s)>7)ds.
ti—1
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Hence,

[N

1
1
J; (I,- —/ loga?(X (s), 91)X{X(s)>t}ds> > Ji ,~( ),
tiq

where

(1
:l.() 10g<7 Xio1>t} X{r< inf X(s)<r}ds

A‘G(ti_l ,Ii]

10g0 XX > X in X (s)<7} X{X (5)>7}dS

se(ti_1.1;]

/ logff, 1 X{X;_ 1<r/}X{X(s)>f}dS

logf’z | — loga?(X(s), 91)} (X(s)>7}ds.

Next, noting that

A‘G(ti_l ,tl']

IiJiIJz/ 10g<7 >t X{ inf X(s)>7)ds
J;

l/ IOgO’l 1 X{X;_ 1>t’}X{ (mf ]X(S)S‘L'}ds

li—1:0

ti t
< Jif 10g0,-2_1X{X(s)>r}dS + Ji/ 10g0,-2_1X{Xi_1>z/}X{ inf
L

li—1

we obtain that

1
—(2
J; (I,- —/ loga?(X (s), 91)X{X(s)>t}d5) =< J,-:l.( ),
L1
where

L
Ei(Z) = / [10g0i2—1 —10g02(X(S),91)] X(X(s)>7)ds
ti—1

15
+/ 1080 1X{Xi 1>1:’}X{ inf ]X(s)gr}ds.
ti—1

et 1.4

It follows from (17) and (22) that

1 —(2
< max{|5"], 15P)).

t
Ji (L‘ —/ 1080'2(X(S),91)X{X(s)>r}d8)
ti—1

For the estimate of (18), we set T = 7’ + h%, where « € (0, 1/2).

gl |

17
<E |:f logo-iz_l‘ {X{X,-_1>r’} - X{Xi,1>f}} X{z< inf X(s)fr’}ds:|
ti—1

xe(ti_l ,tl'J

ti
/ 10g0i2_1X{Xi_1>r/}X{z< inf X(s)ft’}ds
ti—

se(ti _q.t;]

Se(ti*l ,ti]

X(s)ft}dS,

7

(18)

(19)

(20)

21

(22)
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t
+ E [/
ti—1
t
<]
Li—1

t
+E[/ )logaiz_l‘x{x,-,1>f})({ inf X(s)sr’}ds]
ti—1

se(ti_1.t;]

log 0,-2_1 ‘ X{X;i_1>T) X{t< inf X(s)gr/}ds]

Se(tl'_l,ti]

logo;” ‘ X{r’<X,~_lsf}dS]

< h,C [P(r’ <Xio1 <D+ P( sup X1 — X ()| > hz)l/z} = o(hy).

se(ti—1,t]

In order to estimate (20), we set t”/ = v — h%, where a € (0, 1/2).

t; 5
li—1
L
o]
li—1

t; t;
=E U 10801-2_1‘ X{X,-lsr"}X{X<s>>r}dS] +E U
ti—1 L1

< h,C [P( sup  |X(s) — Xi—1| > B2+ P(r" < X;-1 < r/)”z} = o(hy).

s€(ti—1,t]

Concerning the estimate of (19),

gl

<h,CP( sup |Xio1—X(9)| > k' =o(hy).

s€(ti—1,1]

1
/ 10g 07 X(X:_ =1 X1 Jf X (s)<t) X{X(s)>7)dS
1 se

i—1 14

1
/ loggiz—lX{Xi71§f’}X{X(S)>r}dS
ti—1

log Uiz—l ‘ X{v'<Xi_4 5r’}X{X(s)>T}dS]

log Uiz—l ‘ Xt <X it’}ds]

As for the estimate of (21),

gl

Thus, we obtain

I
/ {logol-z_1 — logGZ(X(s), 91)} ds
ti—1

] < Ch)* = o(hy).

E[151] = o). (23)
Moreover,
t
E[1571] < E[ | fogo, = togo? (). 00| xuxio-aids
L

]
| |

— o(hy). (24)

17
f logo'i2_1X{Xi_1>r’}X{ inf X(s)fr}ds
ti_1 se(ti _1.4;]
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It follows from (23) and (24) that

gl

For the case that log al.z_ 1 < 0, set Ji = X

t
Jif {10g0i2_1X{Xi_1>‘c’} - 10g02(X(S),91)X{X(s)>T}}dS
L1

i| = o(hy,).

2
logo~ <

upper bound of /; J; together with (16),

1; J;

Therefore,

[A

[A

t; - t;
_Jif (—logo? Dxix;_ =rds = _Ji/ (—logaiz_l)x{zxi,ln/}ds
ti—1 L

1
—Ji/ (—IOgGiz_l)X{X,-_1>r'} [X{ inf  X(s)>t} — X{r< inf X(s)gr/}]ds
ti—1

s€(ti_1,t;] se(tj_1.t]

se(t_1.1;

t
Ji/ (_logo—iz_l)X{Xi,1>r’}X{r< (inf ]X(s)gr/}ds
li—1

t
_Jif (—10g0,-2_1)X{x,»,1>r/}X{ inf ]X(s)>7:}X{X(s)>1:}ds
L1

S€(ti71 N

1
Ji/ (—10g0,~2_1)X{X,-_1>r/}X{r< inf ]X(s)gr/}ds
li—1

Selli—1:4

li

- Ji/ (—10g0,-2_1)X{X,-_]>T/} [X{ gt X)>1) T 1} X(X(s)>7)ds
ti—1 selti_1:4

- Ji/ (—logo/ D) [Xixiy=v1 — 1] xx(s)>7}ds
ti—1

= [ 2 2

—Ji/ (—logo;_; +logo(X(s), 01) x(x(s)>r)ds

li—1

ti
y / (—1og o2(X (5), 01) X(x(s)~0)ds.
ti—1

t
=~ _d
J; (I,- —f logGZ(X(S),91)X{X(s)>1:}d5) < i:i( ).
ti—1

Moreover, since

I; J;

v

t
_Jif (—10g0i2_1))({x,-_1>r/})({ inf  X(s)>7)ds
li—1

se(li*] ,[l']

17
—Jif (—10g<7,-2_1)X{X,~_1>r/}X{ inf  X(s)<r)ds
ti—1

se ti—l’li]

L
_J / (—log o2 | +log (X (), 01)) xpx (syoryds
i

i—1

t
_Ji/ (—IOgUZ(X(S),91))X{X(s)>z}ds
fi—1

13
—Ji/ (—IOgG,-z_l)X{Xi_lx/}X{ inf  X(s)<r)ds,
ti—1

s€ti_1,4;]

(25)

0) fori = 1,...,n.In a similar way as the

(26)



S.M. lacus et al. / Stochastic Processes and their Applications 119 (2009) 1580-1600 1589

one has that
t; -
J; (1,- - / log (X (s), eommn}ds) > J;5%. 27)
ti—1
It follows from (26) and (27) that

~(1 —~(2
< max{| 5], 1I57)).

1
Ji (L’ —f 10g02(X(S),91)X{X(s)>z}dS)
li—1

By (23) and (24), one has that

Z
E H(l - Ji)/ {log o XX, =) — log o ? (X (s), 91)X{X(s)>r}} ds } =o(hy). (28)
ti—1

Therefore, by (25) and (28),

gl

and consequently,

t
/ {log U,~2_1X{X,~,l>r/} —log o ?(X (s), 91)X{X(s)>r}} ds
ti—1

] = o(hy)

1

nhy,

= 0,(1). (29)

) f flog o x(x,_) — 102 02 (X (), 6D X)) | ds
i=1ti-1

Moreover, by the ergodic theorem,

nhy
/ log Uz(X(s), 91)X{X(s)>r}ds i f IOgUZ(X, 91)X{x>1’}v90 (dx),
nhy Jo R

which completes the proof of (14). For the proof of (15), we set

1 (4;X)2
T 3 X{Xi>t)

nhn of

—

—i

By Lemma 9 of [3], it is enough to show that

1 2
= p o (x’el,())

;E@o {:ilﬂ—l}%/l;m)({x>f}vgo(dx% (30)

- =2 p

> Ea {@21F ] Bo, o

i=1

where F;_1 denotes the history up to the time #;_1. In order to evaluate Eg, {(AiX )2 |Fi1 } , We
can use a well-known Ito—Taylor expansion:

Egy (@ (Xi, Xi— )| Fi—1)

1
= ¢(Xi1, Xi) + huLogd (Xim1, Xi1) + Sh Lo ¢ (Xic1, Xic1)

t; t
w [ B B xion - e X0 | dsar
ti—1 Jti—
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for appropriate functions ¢ (x, y), where Log(x,y) = ro(x, 91)£C—ZZ¢(X, ) + b(x,00) L
(x, y). Hence

Eoy {02 1Fi 1} = hao, + RGZ, Xi0), (32)
where R(-, -) is defined in (2). Thus, as in the proof of (14),
I & (O'i*_])z

n _ h n
Y Eg{S|Fioi} = ” > 7 KXoyt 7” D R, X))
i=1 i=1

i=1 i—1

2 f o2 (x, 61,0) X(ro1) Vg, (dx)
R O'z(x, 91) {x>1}Vo,
and in a similar way, we can show (31). This completes the proof of (7).
Next, we see that G attains its minimum only at 6 ¢ by noting that

i(logx+ﬁ):l_i:x—a

dx x x  x2 x2
Hence, for any € > 0, infy,:j9, ¢, |>¢ G(61) > G(01,0). This implies that if [0; — 61 9| > €, then
G(61) > G(01,0) + n for some 1 > 0. Therefore,

P (1 =610 = €) < P(G@1) > Ge10) + 1)

1
—gn(01) — G(61)
n

<2P (sup > n/3) (33)

01
| BN 1
+ P | =8:01,n) — —gn(61,0) > n/3 ).
n n
By using (7), the probability of (33) converges to 0. Furthermore, it follows from (5) that
| I 1 | I 1
P <;gn(91,n) - ;gn(el,o) > 77/3> <P (;gn(el,n) > ;gn(91,0)) — 0.

This competes the proof. [

Proof of Theorem 3.2. We need to prove that

sup | —— (€201, 62) = £ B1.0, 620)) = L8| 50, (34)
6> n
where
b(x,62) — b(x, 62,0)\*
L(6) = . dx).
) fR ( S Xrm Vi ()

An easy computation together with (8) yields that
1 A A
W (En (Ql,na ‘92) - Kn (Ql,na 92,0)) = wl,n(QZ) + 1;02,n(92) + 1//3,11 (02) + Ry (02)’
n
where 6; = o (X;, QALn),

n(bio1 = b)) [i o (X(s), 61,0)dW;

2
6,) = — R
V1.n(62) s 62 X(Xi_ 1>}

i=1
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2 2 (ot = b)) [T b(X(s), 62,0)ds
9 - _ i—1 ) n,
V2.n(62) i, ?:1: 52 X(Xi1>7'}
n 2 b*2

1 i—1 Py
Y3.0(60) = ; Z %X{Xi—l>t/}’

i=1 i—1

{(A X —bisthy)®  (AiX —b} ik

)2
n
52 h, } X{Xi—1>7' X; <t}

R, (6h) =
(2) Ul]h 11

nh

We first estimate R, (92).

,11/2
(AiX = bi—1hy)* = (AiX = b} hy)?

~2
0;_1hn

1 n
E [sup|R,(02)] | < E | sup
|: 6 " nhn 1221 6>

x P(X;_1 > 1, X; <1)!/?

1 he N\ s
= 172 XC(.L./ZT) (hn/ Ol)k/2
hn

— 0 (hlrcl/4—ozk/2—1/2> -0,

where we took k > 2/(1 — 2a) in (11). This yields that supy, |R,(62)] = 0p(1). Next, ¥2,,(62)
can be rewritten as

Y2.0(02) = 3 (62) + Y30 (02) + s (62),

where
1 (bj_1 — bF )b
W( )(9 )=—= Z — *; — 1X{Xi—1>t’}’
= 9
t
26 = — 2 2": (bi—1 = b)) [;7 (X (5),620) — b;“_l}dsx |
nhy, — Gi*—zl {(Xi_1>1'}>
(3) % fi 1 1
Yo (02) = i1 =bi_ ) | b(X(s),020ds | 57— — —5 | X(xi_i>1)-
fi-1 0/ 0,7

By noting that for p > 1 and K > 0,

L
f {b(X(5), 0200 = b7} ds| = Chi'”,
ti—1 14
1 1 *2
P » < Clo? — 67 ‘<|91n_910|K(1+|Xl ih*
i—1 -1

one has that for 1 < p,g <ocowithl/p+1/q =1,

1 & b;_1 — b¥
2) i—1
E [% ‘ _—
|:s;12P 2(02) i| nh, E

*2
i=1 0,1

A

sup
0>

p

X

1

/ {b(X(s),620) — bj_}ds

ti—1

C
nh3/2

nny

q

A

— 0,
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and

A K n
w2(32(92)‘ = ‘9]7;1 — 9170‘ Zsup |bi—1 _ b;k_1|
' nhn = 6>

sup
)

X (141X, DX

t
f b(X (5), 02,0)ds
t

—1

= 0,(1) x 0,(1) = 0,(1).

As in the proof of the uniform convergence of (9),

(1) (b(x,62) — b(x,620))b(x,62,0)
%) 2
P [V2n 2 / 2(x. 61.0)

X{x>t}V90(dx) = Op(l)-

Furthermore, since one estimates

1 &by — b2

sup (Y3,,(62) — — X{Xi_1>7')
62 n ; /2| 1
. K &
< |60 — 010 = D sup o2, — b2 | (41X, DF
ni= 6
= 0,(1) x 0,(1) = 0,(1),
we obtain
b(x,62)* — b(x, 62,0
6>) — . d = 1).
Sélzp V3,n(62) / +2(x. 01.0) X{x>7)Vey(dx)| = 0, (1)

Therefore, we see that

Y2.0(02) + ¥3.0(02) — L(62)| = 0p(1).

sup
)
To estimate 1 (61), we consider the following process

M,(0) = /Onhn Xn: (bi—1 = b )o (X (s), 01.0)
i=1

nhnal.z_1
where 1; (s) = x(x,_, >t} X{r_ <s<1;}- We will prove the following: there exists a constant 8 > 2
such that for any 6 and 6’,

1; (s)dWs,

M, (6) 20, (35)
EIM, ) <C, (36)
E|M,©0) — M,©"|" <clo -6, (37)

where C is a constant independent of 6, ' and n. If (35)—(37) are satisfied, by Theorem 20 in

the Appendix of [8] or Lemma 3.1 of [15], we can show that sup, | M, (6)] 20.1n fact, (36) and
(37) ensure that the family of distributions of {M,,(-)} on C(©) with sup-norm is tight. Hence, if
(35)—(37) are shown, one can prove that

sup 1110 (62)] = 25up [ My (61,0, 02)| < 25up M, (0)] L 0. (38)
62 ) 6
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The proof of (37) is as follows. Let us define
bi—1(62) = b},  bi_1(65) — b},

100,60 = —
@0 =74, o2 (6]
bi—1(02) — bi-1(0;) . 1 1
= + (bi_1(62) — b - .
o2 ,(6)) 162 = bic) (o,-z_lwo of_lwp)

By the Burkholder—Davis—Gundy inequality and the Jensen inequality,
E|My(0) — My(0"))°

. 1
 (nhy)P

< ¢ g Z / " (fi=1(6.6)0 (X (). 61.0))° 1;(s)ds
TP\ e T T

i B/2—1 . /ti : , 5 )
= (nhn)ﬁn ;E< - (fz—1(9,9)a(X(s),91’0)) ds

B
E

nh, n
/0 Y fim1(0.6"0 (X (s), 01,01 (5)dW,
i=1

[SThe

2]
2

_CB 1N /” e p )
< Gy ) ;E< 10000 x6.00]" a5 ).

i—1
Moreover, it follows from A5 to A6,
|fi-10.0)1° < K(1+|Xi-1D¥16 —6'17,

which completes the proof of (37). In a similar way, we can show (36). For the proof of (35), we
set g; = (b; — b)) /o’ and

R f
E (M, (0))* < Iy ZE {/ gr 0% (X (s), 91,0)ds} — 0,
n o=l li-1

which completes the proof of (35). Thus, we have (38) and this completes the proof of (34).
Finally, note that for any € > 0, infy,:j9,—¢, oj=¢ L(62) > 0 because L attains its minimum only

at 62 9. As in the proof of Theorem 3.1, we can show the consistency of éz,n. This completes the
proof. [J

Proof of Theorem 3.3. First, we study the asymptotic normality of the score function. Let

1 1
——39 g (9170) —_39 én(91,0)
El’l = \/ﬁl o ) Zl’l - \/’_/i 1 ’
Lt Bin o L AT
N 0, €n (01,1, 02,0) N 6> £n (60)

where

n
20 = gli.i —1;0)xx,_ >0

i=1

n
0n(0) =D G0 — 1:0)x(x,_ >71).
i=1
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In order to show that £, — £, = o p(1), it is sufficient to show that

1
An = (,60(01.0) = 40 8 @10) = 0p (D), (39)
1 A -
B i= e (0 Grn, 020) = 30,0 (80)) = 0 (1. (40)

For the proof of (39), one estimates

E|A,| < TZE |80, 8 — 1,13 01.0) XX, =2/, X, <7} |

891 ) ( (AiX)Z)
hnai*—zl

< cﬁhn % O (h,%”“‘“/z)"‘l) -0,

where we took k > 4/(1 — 2«) in (11). For the proof of (40), one has that for € > 0,

% O (hlgl/4—a/2)k)

Bal Xy, —6y01<e) < mzsup‘aeﬁezﬁ(ll 15 61,62.0)] [B1.0 = 61,0

W Z |892£(l i — 19 00)X{X1_1>T/,Xi§'f}| :

As in the proof of (39), \/HLT S 00,86, i — 1300 x(x,_ =7, x;<1}| = 0p(1). Next, letting

30, b*_, 39, 0 .
fi—1(61) = %9101 we estimate that for [ > 1

i—1
2l
E

sup |Jg, 99, £ (i, i — 15601, 62,0)
MZ 01 | b ‘

21
_(nhn)l [Z /t Suplfi—l(91)|6(X(S),91,o)dWs}

1 01

2
+(nh ) [ / sup | fi—1 (O |(b(X (s), 62,0) — b;_ 1)dS}
n 1,

i-1 01

14
(nhy)'~ IZE[ f sup | fi—1(01)[*o ZZ(X(S),Ql,o)dS]
1,

- ( h )l i-1 61
1
SR l(nh,»”—lZE f sup | fi—1 (0D * (b(X (s), 62.0) — b}_)*ds
(nhn) i—1 ti—1 01
= 0().

Consequently, one has that |B,| = o0,(1).
Next, we will prove that

2,5 N 4Y). 41)
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) X{Xi_l >‘L'/},

Let

2 0" (A; X)?

(1) .. 1¥%i—1 i

i Jn i LODX(Xic>) Vool ( hno 2,

g.(z) = Lag L@, i — 15 600) x(x "

- M 92 i—1 O’lﬂfl X{Xi—1>t }’
190, 0) 0
I 0 — ’ = 42.
( 0) ( 0 1(2,2) (90)

1595

In order to obtain (41), by the combination of Theorems 3.2 and 3.4 of [5], it is enough to prove

the following convergences.

n

Y Eg, {gi(’")m_l} 2o, m=1,2,
i=1

n 2

> [Ea g™ Lo, m=1.2,
i=1

n 2
ZEQO{(%(’“)) |ﬂ_1}$1<'"”">, m=12,
i=1

n
> B {867 1F ] 5o,
i=1

> Eq {(si""))4 |ﬁ_1}i 0, m=1,2

i=1

For the proof of (42), by using the Ito—Taylor expansion and (32), one has

n 1}’1 p
E {F“f_}:,/ 2. =S R X2 o.
;goslul nn;( i—1)

Moreover, since
Eoy(Xi — Xi—11Fi—1) = hab}_| + R(h, Xi—1),

we have
Z —2/nh3
Y B 71 Fo) = —L ) R(1L Xi_1) 5 0.
; n :
i=1 i=1
This completes the proof of (42). In a similar way,

> [Ba {6 1R ]| = 22 Y RO X B0,
i=1 i=1

Y @ 2 iy p
> B0 ==Y Ra. X Bo,
i=1 i=1

n

(42)

(43)

(44)

(45)

(46)
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which complete the proof of (43). For the proof of (44), noting that

2
E (1 (AiX)z) |F, 1+3h2 oty + RO Xio)
- i-1f =

0% hy o4 h2

zhnai*_z1 + R(h2, X;—1)
2
0" hn
=2+ vh,R(, X;_1),

one has

2
ZEGO{( (1)) i 1} = Z;( 9;*1 1) @+ VA R(L Xic))X(x;_1>7)
i=1 [

i—1

which proves (44) for m = 1. It follows from the Itd—Taylor expansion of Eg,{(X; — X;—1 —
hab} )?|Fi—1} that

® 4 (3,07 )
ZE {(S ) }Z oh Z (hn 0;_ 1+R(hn,Xz 1))X{X, 1>1'}

i=1 Gi—l

5 1% @)

and (44) is proved. For the proof of (45), we consider

4 g0  0,b" (A X)?
(D2 _ 19i-196:Y 1 i vk /
55 __n«/hn 0,-*_31 ) {AIX bi—lhn}X{Xi—1>T}'

0" hn

Since

Eoy { (A0 (AiX = bf_iha) 1Fict | = RORE, Xio1)

and
Eg {Ai X — b} halFiz1} = R(h2, Xi—1),
one has
n 0 0
D@ 6,0 o, b
ZEG() {%-,'( )%-,'( )|E—1] = __Z L 1 A 1X{X,~_1>T’}
i=1
1 haR(1, X;_1)
X h2R 1, X;_y) — —2"1=7
L)

Hence (45) is proved. For the proof of (46), using the estimate that for p > 1,

Eg, (A X)* | Fi1} = ki R(1, Xi_1),
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one has

4
n 4 C/ 1 n 89 O'«*_ )
Fo {Z (") 'fi—l} D ( L) el + RAL X2} 50,

which completes the proof of (46) for m = 1. For the case m = 2, by using the following estimate
4
B, {(4iX = b1 k) 171} = 2RO Xi0),
we have that

- 89219?_1

n 4 C/l
;Eeo {(Si(z)) |-7:i—1} = - Z( )

i=1 i—1
Thus (46) is proved. This completes the proof of (41). It follows from (39)—(41) that

4
p
) Xx;_ >R, X; 1) = 0.

LS N@©, 45). (47)
Next we consider asymptotic properties of the observed information. Let
1
~3,8n(61) 0 oy o
0 —— 32 £4 (610, 6) 2
nhy,
where

_ 95 o (X, 61)
G0 =2 [ T (P00 — (3. 610)) e (@)

302(x, 01.0) — 02(x, 01)) (39,0 (x, O1))
+2f ( )( 1 ) X{x>t}V00(dx)s
R

o4(x,0)
S 39, b(x, 62) \
L(6r) = sz (—a(x,Gl,o) ) X{x>1) V6, (dx)
, / (b(x, 62,0) — b(x, 62))95 b(x, 62)
R o2 (x, 01,0)

X{x>r}v90(dx)-

In order to prove that

sup |Dp(0) — D) = 0,(1), (48)

it is sufficient to show that

1 1,
sup |~ 97 gu(01) — =33 8 (01)| = 0, (1), (49)
6, 11 n
sup Lag 0,(6) — Lag 2,(0)] = 0,(1), (50)
1 _ -
sup ;aelgn(Gl)—Q(GO = op(D), (5D
01
1 _ A -
sup | — 85, £n (B, 02) — L(O2)| = 0,(1). (52)
6 I’lhn
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For the proof of (49), as in the proof of the uniform convergence of (10), one has that

E {sup
01
n

1
<-y P(Xi | >17.X; <7)? — 0.
L 2

1< .
- Z 89218(17 1 — 1’ 01)X{X1_1>T/,Xi§‘r}
i3

0 8,1 — 1560

sup
01

For the proof of (50), in a quite similar way as in the proof of (49), one has that

|

P(Xi-1>1,X; < T)%
2

E {sup
0

1 n
thn;

1 he \K/? _
<C 1/2 X ( / - > (hrlz/z Ol)k/z
h, -1

—0 <hﬁ/4—ak/2—l/2> -0,

where we took k > 2/(1 — 2«) in (11). For the proof of (51), we set

1 & .
v E 892160,1 — L0 xix;_>v . X, <1
ni=1

sup ‘8921£(i, i— 1 9)‘
6

L, ..
1O = ~05, 8,1 = 1300 X1x, >0
. 2
B nhn<7i4_1

x {BAX)? = a0l ) @B0y0i-1 + 011 (g = (A XD 011 | xx, o1,

It follows from standard arguments that
S Ea n@)IF- 1566, Y Ea, {171} 5o
i=1 i=1

Therefore one has that for each 6,
%aélgn @) 5 G®).

It is easy to show that sup,, E[supy, |%8931 gn(01)]|] < oo, which completes the proof of (51). For
the proof of (52), we set
1 - A - - -
— =03, (0 0 = 1301, 02) = Z1(62) + 2(00) + F3(60),
n

where

_ 2 & do.bi_1\2 (bF_ | —bi_1)dZ b
51(92) - ; Z {( 3 : ) - l - X{Xi_1>1'/}’

~2
01

2 L gbict [ 1b(X(9),620) — b} }ds

52(92) - ) X{X,’_1>f/}a
' 9
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2 W biot i o (X(s), 01,0)dW;

S50 =—-— - XX 1>}
nhn = Oi 4

In a quite similar way as in the proof of (34), one has that

sgp\51<92>—£’<92>|=op<1>, s3p|52(02>|=op(1), sup |Z3(62)] = 0, (1).
2 2

02
This completes the proof of (52). Thus, (48) is proved.
By the Taylor expansion, fol D, (6p + u(én — 6p))duS, = L, on an event with probability

tending to one, where §,, = (\/‘,{%9(‘92” __9‘9’20;)) . It follows from (47) that

L% N©,45). (53)
By (48) and the continuity of D(6) with respect to 6, one has

D, (60) 2 2%, (54)
IQS|UP | D, (60 + 0) — Dp(6p)| = 0p(1) (55)

for any sequence ¢, of positive numbers tending to zero. By using (53)—(55), it is easy to obtain
the desired result. This completes the proof. [
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