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Numerical Analysis of Volatility Change Point
Estimators for Discretely Sampled Stochastic

Differential Equations
STEFANO M. IACUS∗ – NAKAHIRO YOSHIDA†

In this paper, we review recent advances on change point estimation
for the volatility component of stochastic differential equations under
different discrete sampling schemes. We consider both ergodic and non-
ergodic cases, and present a Monte Carlo study on the change point
estimator to compare the three methods under different setups.

(J.E.L.: C58, C13).

1. Introduction

In finance, the volatility of the market or of the asset prices plays a
crucial role in many aspects. For example, in option pricing, although the
very basic Black and Scholes (1973) and Merton (1974) model assumes
a constant volatility, it is well known that this assumption is unrealistic
when one works with real financial data. This fact causes well-known
effects like implied volatility and volatility smiles. Change point analysis
was initially introduced in the framework of independent and identically
distributed data (see, e.g., Hinkley, 1971; Inclan and Tiao, 1994; Bai, 1994,
1997; Csörgö and Horváth, 1997), and quickly applied to the analysis of
time series (see, e.g., Kim et al., 2000; Lee et al., 2003; Chen et al., 2005).
Kutoyants (1994, 2004) and Lee et al. (2006) studied structural change
point problems for the drift term for continuous observations from ergodic
diffusion processes. Due to the fact that volatility can be estimated without
error in continuous time, the change point analysis in this setup is not very
interesting.

∗Corresponding author: Stefano M. Iacus, Department of Economics, Business and Statistics,
University of Milan, Via Conservatorio 7, 20122 Milan, Italy. E-mail: stefano.iacus@unimi.it

†University of Tokyo, and Japan Science and Technology Agency, Graduate School of
Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

We thanks two anonymous referees and the two Editors for the valuable comments to improve
the paper.
C© 2010 The Authors
Economic Notes C© 2010 Banca Monte dei Paschi di Siena SpA. Published by Blackwell
Publishing Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



108 Economic Notes 1/2-2010: Review of Banking, Finance and Monetary Economics

In this paper, we review recent advances for the problem of time-
change point for the volatility component of a process satisfying a
stochastic differential equation based on discrete observations. We con-
sider the case of both ergodic and non-ergodic processes under different
sampling schemes and compare the different approaches via Monte Carlo
experiments. This review is based on the recent works of De Gregorio
and Iacus (2008), Song and Lee (2009) and Iacus and Yoshida (2009).
To the authors’ knowledge the above references represent the state of the
art on change point estimation for the volatility term of continuous time
processes solutions to stochastic differential equations from discrete time
observations.

The paper is organized as follows. Section 2 reviews the least squares
approach for diffusions as in De Gregorio and Iacus (2008); Section 3
reviews the results based on the CUSUM approach as in Song and
Lee (2009); Section 4 reviews the quasi-maximum likelihood approach
from Iacus and Yoshida (2009). All the proofs and technical conditions
are contained in the original papers of the respective authors. Section 5
concludes the paper with a numerical analysis on the performance of the
different methods to identify the change point.

2. Least Squares Approach

This section reviews the results of De Gregorio and Iacus (2008)
without proofs. We denote by X = {Xt, 0 ≤ t ≤ T } the diffusion process,
with state space X = (l, r), −∞ ! l ! r ! +∞, such that

Xt =






X0 +
∫ t

0
b(Xs) ds +

∫ t

0

√
θ1σ (Xs) dWs, 0 ≤ t ≤ τ ∗

Xτ ∗ +
∫ t

τ ∗
b(Xs) ds +

∫ t

τ ∗

√
θ2σ (Xs) dWs, τ

∗ < t ≤ T

(1)

with X0 = x0, 0 < θ1, θ2 < ∞ and {Wt, t ≥ 0} a standard Brownian mo-
tion. The value τ ∗ ∈ (0, T ) is the change point instant. The parameters θ1
and θ2 belong to $, a compact set of R+. The coefficients b : X → R
and σ : X → (0, ∞) are supposed to be known, continuous with contin-
uous derivatives and regular so that (1) is well defined and the process
X is unique and such that the process posseses the ergodic property.
Let s(x) = exp{−

∫ x

x∗
2b(u)/σ 2(u)du} be the scale function (where x∗ is

an arbitrary point inside X ). The following condition will be required
throughout this section:

A1. lim
x1→l

∫ x

x1
s(u)du = +∞, lim

x2→r

∫ x2

x
s(u)du = +∞, where l < x1 < x <

x2 < r
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Condition A1 guarantees that the exit time from X is infinite (see
Karatzas and Shreve, 1991). In Section 2.2, we will also consider the case
where b(·) is unknown and estimated non-parametrically.

The process X is observed at n + 1 equidistant discrete times 0 = t0 <
t1 < . . . < tn = T , with ti = i%n. For the sake of simplicity we assume
T = 1 and with little abuse of notation, we will write Xi instead of Xti and
Wi instead of Wti . The asymptotic framework is an high frequency scheme:
n → ∞,%n → 0 with n%n = T with T fixed. Given the observations
Xi, i = 0, 1, . . . , n, the aim of this work is to estimate the change time τ ∗

as well as the two parameters θ1, θ2.
In order to apply the least-squares approach of Bai (1994), the

standardized residuals are constructed using Euler’s approximation, that
is,

Zi = Xi+1 − Xi − b(Xi)%n√
%nσ (Xi)

, i = 1, . . . , n

We denote by k0 = [nτ ∗] and k = [nτ ], τ, τ ∗ ∈ (0, 1), where [x] is the
integer part of the real value x. The least squares estimator of the change
point is given by

k̂0 = arg min
k

(

min
θ1,θ2

{
k∑

i=1

(
Z2

i − θ1
)2 +

n∑

i=k+1

(
Z2

i − θ2
)2

})

= arg min
k

{
k∑

i=1

(
Z2

i − θ̄1
)2 +

n∑

i=k+1

(
Z2

i − θ̄2
)2

}(2)

where

θ̄1 = 1
k

k∑

i=1

Z2
i =:

Sk

k
and θ̄2 = 1

n − k

n∑

i=k+1

Z2
i =:

S∗
n−k

n − k

It is easy to show that the problem (2) is equivalent to the following

k̂0 = arg max
k

|Dk|(3)

where

Dk = k

n
− Sk

Sn

Once k̂0 has been obtained, the following estimator of the parameters θ1
and θ2 can be used

θ̂1 =
Sk̂0

k̂0
, θ̂2 =

S∗
n−k̂0

n − k̂0
(4)

The quantity Dk also serves as a test statistics to verify the presence/absence
of a change point in the usual way. Indeed, it is possible to show
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that, under no change point, H0: ‘θ1 = θ2 for all τ ∈ (0, 1)’, for any
δ ∈ (0, 1/2), the test statistic

√
n
2 supδn≤k≤(1−δ)n |Dk| converges in distri-

bution to supδ≤τ≤(1−δ) |B0(τ )|, where {B0(τ ), 0 ! τ ! 1} is a Brownian
bridge. The distribution of the test under the alternative hypothesis H1:
‘θ1 *= θ2 for one τ ∗ ∈ (0, 1)’, was not considered in the original paper. The
motivation is that, even in the simple i.i.d. case, this distribution depends
on the change point instant τ ∗ and the distance between the two values of
θ . In general such results require additional regularity conditions on the
model (see, e.g. section 1.5. in Csörgö and Horváth, 1997). The same issue
arises for the CUSUM test statistic presented in Section 3. Nevertheless,
one can easily see that the proposed test is consistent. In order to prove
consistency, we just need to show that under H1, for at least one k the
statistic

√
n
2 |Dk| diverges. Looking at Dk and the definitions of Sk and Sn

we can see that

√
n

(
k

n
− Sk

Sn

)
=

√
n

k

n



1 − 1
k

[nτ ]∑

i=1

Z2
i

(
1
n

n∑

i=1

Z2
i

)−1




+
√

nτ
(1 − τ )(θ2 − θ1)
τθ1 + (1 − τ )θ2

(5)

for k = [nτ ]. Now, obviously, supδn≤k≤(1−δ)n
√

n|Dk| diverges.

2.1. Contiguous Alternatives

Denote by W(v) the two-sided Brownian motion, that is,

W(u) =
{

W1(−u), u < 0
W2(u), u ≥ 0

(6)

where W1, W2 are two independent Brownian motions. Let ϑn = |θ2(n) −
θ1(n)| *= 0 for finite n. Under the additional condition that ϑn → 0 and√

nϑn√
log n

→ ∞, the change point estimator τ̂ ∗
n = k̂0/n is consistent and such

that

nϑ2
n

(
τ̂ ∗
n − τ ∗)

2θ̃2

d→ arg max
v

{
W(v) − |v|

2

}
(7)

for any consistent estimator θ̃ for the common limiting value θ0 of θ1(n)
and θ2(n). The condition ϑn → 0 corresponds to the setup of contiguous
alternatives (Roussas, 1972), that is, the two parameters θ1 = θ1(n) and
θ2 = θ2(n) are allowed to be closer and closer as the sample size increases.
Thus, in order to discriminate the two regimes a sufficiently large number
n of observations (or rate of convergence ϑn) is required. In other words,
ϑn is the smallest distance between θ1 and θ2 such that the two parameters
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can be distinguished from a sample of at least n observations. Under the
conditions above, the estimators θ̂1, θ̂2 are

√
n-consistent and such that

√
n

(
θ̂1 − θ1

θ̂2 − θ2

)
d→ N (0,() , where ( =




2
θ2

0

τ ∗ 0

0 2
θ2

0

1 − τ ∗



(8)

The above results hold in the high frequency case %n → 0 with n → ∞
and n% = T fixed, but also in the case where n%n = T → ∞ with rapidly
increasing design satisfying n%2

n → 0.
The distribution of the change point estimator k̂0 in case of non-

contiguous alternatives has not been obtained in the original paper while
consistency still holds. The estimators θ̂k, k = 1, 2 have the same properties
as in (8) with limiting variance–covariance matrix with θ0 replaced by
θk, k = 1, 2. The same considerations apply to the results in the next
section.

2.2. Change Point Estimation with Non-Parametric Estimation of Drift

We assume now to observe a diffusion process that is a solution to the
reduced stochastic differential equation

dXt = b(Xt ) dt +
√
θdWt

where b(·) is unknown and estimated using non-parametric methods.
Let K " 0 be a kernel function, that is, K is symmetric and continu-
ously differentiable, with

∫
R uK(u)du = 0,

∫
R K2(u)du < ∞ and such that∫

R K(u)du = 1. We consider the new standardized residuals

Ẑi = Xi+1 − Xi − b̂(Xi)%n√
%n

(9)

where

b̂(x) =

∑n
i=1 K

(
Xi−x

hn

)
Xi+1−Xi

%n

∑n
i=1 K

(
Xi−x

hn

)(10)

is a non-parametric estimator of the drift constructed using the full sample
and hn is the bandwidth defined as in Silverman (1986). The estimator
(10) used in De Gregorio and Iacus (2008) is a particular case of the non-
parametric estimator for the drift in Bandi and Phillips (2003) although
similar non-parametric estimators can be found in the earlier papers by
Pham (1981), Florens-Zmirou (1993) or Stanton (1997). Unfortunately,
for fixed T the drift coefficient cannot be estimated consistently (for a
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recent account, see also, Wang et al., 2010). So it is assumed that n%n =
T → ∞,%n → 0 as n → ∞. In addition, some relationship between the
bandwidth of the kernel and the mesh %n should be required. Let

L̄X(t, x) = lim
ε→0

1
ε

∫ t

0
1[x,x+ε)(Xs) ds

be the chronological local time of X. Bandi and Phillips (2003) have shown
that under the following additional assumption

L̄X(T , x)
hn

√

%n log
(

1
%n

)
= o(1) a.s.

and hnL̄X(T , x)
a.s.−→∞, b̂(·) is a consistent estimator of b(·). In the

stationary case, the above condition may be replaced by

T

hn

√

%n log
(

1
%n

)
= o(1) a.s.

Now, substituting the new residuals Ẑi from (9) in place of the Zi’s in
(2), we obtain all the results in the previous section. This mixed result of
parametric and non-parametric estimation is quite useful in applications
because in practice there is no need to fully specify the data generating
model for the observed data. The change point analysis for this reduced
model identifies a change in the scale (or intensity) in the volatility
levels. De Gregorio and Iacus (2008) discuss also about the choice of
the bandwidth selection problem for hn.

Under additional mild regularity conditions, it is also possible to obtain
the same results as in the above in the case of a data generating model
of this form dXt = b(Xt )dt +

√
θσ (Xt )dWt and the diffusion coefficient

σ (x) > 0 is known, although the original paper does not contain such
result. Note that the point of the approach presented in this section is to
use it in real applications without assuming too much information about
the data generating model. This means that, such an instrument can be
used to check where the scaling factor θ in the volatility component has
changed. A drift may exist, but is considered as nuisance in this setup and,
in this view, a specification of σ (x) will be a little strange.

An extensive application of this method to the analysis of financial
markets has been carried out in Smaldone (2009) both on daily and intra-
daily data. In particular, the analysis of the global financial crisis of 2008
was reread via change point analysis using data from different markets. It
emerged that the global structural change in 2008 could have been predicted
through the analysis of some assets and market indexes.

Figure 1 reports a summary of the empirical analysis performed in
Smaldone (2009) using the method presented in this section. This analysis

C© 2010 The Authors
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involved the change point detection in the volatility of several market
indexes including Nyse, Dow Jones, S&P 500 and Nasdaq; Dow Jones
Stoxx 600, Nikkei, Dow Jones Global 1800, MSCI World, FTSE (UK),
DAX (Germany), S&P/Mib (Italy), CAC (France), Ibex (Spain) and SMI
(Switzerland). The analysis also considered several indexes for the bank
compartment like Dow Jones Stoxx Global 1800 Banks (worldwide), Dow
Jones Stoxx Americas 600 Banks (USA), Dow Jones Stoxx Asia-Pacific
600 Banks (Asia), Dow Jones Stoxx 600 Banks (Europe). Individual
stock prices from the USA, UK, Italy, France, Germany, Spain and Japan
stock exchanges were also considered. The evidence from this analysis is
interesting as it shows how the crisis (measured here by uncertainty) affects
the different markets at different dates (e.g., more protected markets, like
the Italian case, reacts slowly to the crisis). Figure 1 reports only the largest
volatility changes for some of the above time series. For more details, see
Smaldone (2009).

3. The CUSUM Approach

Song and Lee (2009) considered the following data generating model

dXt = b(Xt ) dt + σ (Xt, θ) dWt, 0 ≤ t ≤ T , X0 = x0

under the sampling scheme n%n = T → ∞,%n → 0 as n → ∞. The
function b(·) and σ (·, θ) are supposed to be known up to θ ∈ $ ⊂ R. The
object is to consider only the problem of hypotheses testing of a change
point rather than estimating the change point itself. In particular, they
considered the test H0 : θ does not change in [0, T ] versus H1: ‘θ1 *= θ2
for one time instant τ ∗T , τ ∗ ∈ (0, 1)’. So the problem is equivalent to the
test based on the statistics Dk of the previous section, although in this
setup the change point moves with T as τT . The process X is assumed to
be ergodic and the model is supposed to satisfy the regularity conditions
such that the minimum contrast estimation procedure described in Kessler
(1997) is valid. Let θ0 be the true value of θ under the null hypothesis H0.
Consider the following CUSUM test statistics

Tn = max
1≤k≤n

k2

n
(θ̂n,k − θ̂n,n)2Ĵn(11)

where θ̂n,k is the minimum contrast estimator based on the first k ob-
servations and θ̂n,n the one based on all the observations up to n. These
estimators are obtained using the contrast function proposed in Kessler
(1997). In this setup θ1 and θ2 are not contiguous alternatives. The quantity

Ĵn = 2
n

n∑

i=1

{
∂θσ (Xi−1, θ̂n,k)

σ (Xi−1, θ̂n,k)

}2

C© 2010 The Authors
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is a consistent estimator of

J = 2
∫ (

∂θσ (x, θ0)
σ (x, θ0)

)2

dµ0(x)

where µ0 is the invariant law of the process X and J is assumed to be
positive. The first result concerns the estimation of θ . Indeed, suppose that
n%

p
n → 0 and n%

q
n → ∞ for some p > q > 1. Then, under H0 (no change

point), max[n1/q ]≤k≤n |θ̂n,k − θ0| → 0 with probability 1, so consistency
of estimators is established under H0. Further, under slightly stronger
conditions, provided that n%

p
n → 0 and n%

q
n → ∞ for some p > q > 4,

under H0,

J
1
2

[ns]√
n

(
θ̂n,[ns] − θ0

) d−→ Ws in D[0, 1]

where Ws is a Wiener process. Therefore, Tn
d−→ sup0≤s≤1 B2

0 (s).
As Song and Lee (2009) explained, the condition q > 4 is essential in

order to get the asymptotic results, but this indicates a very sparse sampling
and, at the same time, a large number of observations in order to have n%n

to diverge. In particular, they show that this method is not feasible for daily
data.

Note that, for the reasons explained in the previous and next sections,
the assumptions of a completely specified drift function is a bit unrealistic
in applications. There is some possibility to apply a mixed parametric/non-
parametric approach as in Section 2.2 although the original authors did not
consider such situation.

As a final remark we note that the proof of the consistency of the
CUSUM test statistics under the alternative hypothesis H1 is much more
involved due to misspecification. Indeed, in the presence of the change
point, for k < nτ, θ̂n,k is a consistent estimator of θ1 while θ̂n,n cannot
estimate θ2 because it uses the complete set of observations from 1 to n.
So a misspecification problem arises.

4. Quasi-maximum Likelihood Approach

De Gregorio and Iacus (2008) and Song and Lee (2009) paved the
way for the volatility change point analysis for discretely observed diffusion
processes. Both papers considered one-dimensional diffusion processes and
both approaches have benefits and limits. For example, in the first paper
the limit comes from the fact that the model is very simple though this
is compensated by the non-parametric approach and by the fact that the
regularity conditions are very mild. The second paper considers a more
general setup, but the CUSUM test statistics does not allow study of the
properties of a change point estimator because it is just a tool to detect

C© 2010 The Authors
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changes but does not provide an estimator of the change point. The sparsity
of the data collection may also be a limit in some applications as well as
the complete specification of the drift function.

Iacus and Yoshida (2009) considered a general model which includes
as special cases the ones presented in the previous sections. Consider a
d-dimensional Itô process described by the stochastic differential equation

dYt = btdt + σ (Xt, θ) dWt, t ∈ [0, T ],(12)

where Wt is an r-dimensional standard Wiener process, on a stochastic
basis, bt and Xt are vector valued progressively measurable processes and
σ (x, θ) is a matrix valued function.

As in the previous sections, it is assumed that there is a time τ ∗ ∈ (0, T )
at which the diffusion coefficient changes from σ (x, θ1) to σ (x, θ2). More
precisely, (Y , X) satisfy the following stochastic integral equation

Yt =






Y0 +
∫ t

0
bs ds +

∫ t

0
σ
(
Xs, θ

∗
1

)
dWs for t ∈ [0, τ ∗)

Yτ ∗ +
∫ t

τ ∗
bs ds +

∫ t

τ ∗
σ
(
Xs, θ

∗
2

)
dWs for t ∈ [τ ∗, T ]

The change point τ ∗ ∈ (0, T ) is unknown and is to be estimated from the
observations sampled from the path of (X, Y ). We denote by X the state
space of X. The coefficient σ (x, θ) is assumed to be known up to the
parameter θ , while bt is completely unknown and unobservable, therefore
possibly depending on θ and τ ∗. In this framework the interest is purely
on τ ∗ and the estimation of θ is secondary. In the first part, it is assumed
that consistent estimators exist for θk and then some possible construction
of the estimators are provided. Note that diffusion models are included in
this framework by simply taking Y = X in equation (12).

The sample consists of (Xti , Yti ), i = 0, 1, . . . , n, where ti = i%n for
% = %n = T /n. Time T is fixed, so this scheme is purely high frequency
and asymptotic results are of mixed normal type. The parameter θ belongs
to $ which is a bounded domain in Rd0, d0 ≥ 1. As already mentioned, the
parameter θ is a nuisance in estimation of τ ∗. Denote by θ∗

k the true value
of θk for k = 1, 2 and let ϑn = |θ∗

1 − θ∗
2 |. In order to obtain the desired

results some conditions should be further assumed on the regularity of the
coefficient σ , on the Hölder continuity of the trajectories and the behaviour
of the process bt , that is, the process itself cannot be too irregular in order
to discover changes in the structure. The process bt can have jumps. Before
introducing formal mathematical conditions we need additional notation.
We denote the modulus of continuity of a function f : I → Rd0 by

wI (δ, f ) = sup
s,t∈I , |s−t |≤δ

|f (s) − f (t)|

C© 2010 The Authors
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For a matrix A, we denote by A′ the transpose of A, Tr(A) the trace of
A, A⊗2 = AA′ and by A−1 the inverse of A, further we use the notation
A[B] =

∑
ij aij bij = Tr(AB ′). Let S(x, θ) = σ (x, θ)⊗2.λ1(M) denotes the

minimum eigenvalue of a symmetric matrix M. We now introduce the
regularity conditions.

[H]j (i) σ (x, t) is a measurable function defined on X × [0, T ] satisfying

(a) inf(x,θ)∈X×$ λ1(S(x, θ)) > 0,

(b) derivatives ∂,θ σ (0 ≤ , ≤ j+[d0/2]) exist and those functions are
continuous on X × $,

(c) there exists a locally bounded function L : X × X × $ → R+ such
that

|σ (x1, θ) − σ (x2, θ)| ≤ L(x1, x2, θ)|x1 − x2|α (x1, x2 ∈ X , θ ∈ $)

for some constant α > 0.
(ii) (Xt )t∈[0,T ] is a progressively measurable process taking values in
X such that

w[0,T ]

(
1
n
, X

)
= op(ϑ1/α

n )

as n → ∞.
(iii) (bt )t∈[0,T ] is a progressively measurable process taking values in
Rd such that (bt − b0)t∈[0,T ] is locally bounded.

The term ‘locally bounded’ in [H]j (i) (c) means, as usual, being
bounded on every compact set. The case where the drift bt changes its
structure at time τ ∗, or at any other time, is included in our context because
bt admits jumps. The following two different asymptotics are considered:

(A) θ∗
1 and θ∗

2 are fixed and do not depend on n.
(B) θ∗

1 and θ∗
2 depend on n, and as n → ∞, θ∗

1 → θ∗
0 ∈ $,ϑn → 0 and

nϑ2
n → ∞.

In Case (A), ϑn is a constant ϑ0 independent of n. Usual identifiability
conditions should be assumed in addition to [H]1. In Case (B) condition
[H]2 is required.

As θ is considered as a nuisance parameter at this stage, the assumption
that |θ̂k − θ∗

k | = op(ϑn) as n → ∞ for k = 1, 2 is necessary to validate the
estimating procedure for the change point. In case the parameters are
known, θ̂k should be read as θ∗

k , and this condition is not required. Section
4.2 presents an example of estimator for θk which satisfies this condition.

C© 2010 The Authors
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4.1. Estimator of the Change Point

Let %iY = Yti − Yti−1 and define

.n(t ; θ1, θ2) =
[nt/T ]∑

i=1

Gi(θ1) +
n∑

i=[nt/T ]+1

Gi(θ2)(13)

with

Gi(θ) = log det S(Xti−1, θ) + %−1
n S(Xti−1, θ)−1[(%iY )⊗2](14)

The contrast function in (13) is a version of the one in Genon-Catalot and
Jacod (1993). Suppose that there exists an estimator θ̂k for each θk, k = 1, 2.
Each estimator is based on (Xti , Yti )i=0,1,...,n. The change point estimator
of τ ∗ is

τ̂n = arg min
t∈[0,T ]

.n(t ; θ̂1, θ̂2)

The estimator τ̂n has a structure similar to the estimator k̂0 in equation (2).
It is possible to prove that, in both cases (A) and (B), the change point
estimator τ̂n is consistent for τ ∗ at the rate of convergence of order nϑ2

n .
More precisely, suppose that, in case (B), the limit η = limn→∞ ϑ−1

n (θ∗
2 −

θ∗
1 ) exists. Let 0 be the positive-definite matrix

0(x, θ) =
(
Tr((∂θ (i1)S)S−1(∂θ (i2)S)S−1)(x, θ)

)d0

i1,i2=1 θ = (θ (i)).

Define further,

H(v) = −2
(
1

1
2
η W(v) − 1

2
1η|v|

)

for 1η = (2T )−10(Xτ ∗, θ∗
0 )[η⊗2], where W is a two-sided standard Wiener

process independent of Xτ ∗ . Then,

nϑ2
n (τ̂n − τ ∗) →ds (FT ) →d argmin

v∈R
H(v)

as n → ∞. This result is the analogue of (7) although in the present case,
the double sided Brownian motion W is pre-multiplied by the random
Fisher information 1η, so this results involves mixed normal limit. In
order to use it in practice a studentization procedure is required, that is,
the quantity nϑ2

n (τ̂n − τ ∗) has to be normalized with 1η evaluated at the
change point estimator τ̂n and at θ̂1. In this case, the limit above is similar
to the one of (7). The joint convergence of the normalized τ̂n and Xτ̂n

can
also be proved.

A similar result can be obtained in case (A) but the limit involves Chi-
squared random variables instead of Gaussians and the limit distribution
is not known in closed form. For details see the original paper Iacus and
Yoshida (2009).
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4.2. How to Construct Estimators of θ

We will briefly discuss the construction of the initial estimators for θ1
and θ2 (more details can be found in Iacus and Yoshida, 2009). We construct
the estimators θ̂1, θ̂2 using the data over the time interval [0, an], [T −
an, T ], respectively, for some sequences an tending to zero. We assume
that there exists a constant β ∈ (0, 1/2) such that an ≥ 1/(nϑ1/β

n ) and that
|θ̂k − θ∗

k | = op((nan)−β) for k = 1, 2. In case (A), clearly nϑ2
n → ∞. We

further assume that nan → ∞, which is a natural requirement because it
requires that the number of data has to be proportional to nan. To obtain
θ̂k , we need the identifiability condition that σ (θ, x) = σ (θ ′, x) implies
θ = θ ′; it is a strong condition like monotonicity of σ (θ, x) in θ . The first
stage estimator θ̂1 (resp. θ̂2) of θ∗

1 (resp. θ∗
2 ) is obtained using the first nan

observations from the left (resp. nan from the right) via quasi-maximum
likelihood estimation, that is,

θ̂1 = arg min
θ

[nan]∑

i=1

Gi(θ), θ̂2 = arg min
θ

n∑

i=[n(1−an)]

Gi(θ)

where Gi(θ) is given in (14). Once the first stage estimators θ̂1 and θ̂2 are
available, the first stage estimator τ̂n of τ ∗ is obtained so as

.n(τ̂n; θ̂1, θ̂2) = min
t∈[0,T ]

.n(t ; θ̂1, θ̂2)

Then, with the first stage estimator of τ ∗ in hands, we calculate the second
stage estimators of θ∗

i using observations in the interval [0, τ̂n − bn] for θ∗
1

and observations in the interval [τ̂n + bn, T ] for θ∗
2 , where (bn) is a certain

sequence of positive numbers tending to 0. We denote the second stage
estimators of θ∗

i by θ̌i . Finally, the second stage estimator of τ ∗, that is,
τ̌n, is obtained as

.n(τ̌n; θ̌1, θ̌2) = min
t∈[0,T ]

.n(t ; θ̌1, θ̌2)(15)

Under certain assumptions, θ̌k are consistent and the asymptotic properties
of τ̌n are the same as for τ̂n. Both the estimators τ̂n and τ̌n are consistent,
but the two stage procedure is suggested only to increase the performance
of the change point estimator in finite samples.

4.3. Modified Quasi-maximum Likelihood

The quasi-maximum likelihood approach does not take into account
the estimation of the drift term bt . This approach can be widely applied
because there is no need to specify the drift term, however, for small
sample sizes or not sufficiently small %, the presence of the drift may
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affect the estimation. Note also that, in this high-frequency setup, the drift
term cannot be estimated consistently for the reasons already mentioned in
Section 2.2.

To take small samples effects into account, it is possible to consider a
new contrast function

.′
n(t ; θ1, θ2) =

[nt/2T ]∑

i=1

G′
i(θ1) +

[n/2]∑

i=[nt/2T ]+1

G′
i(θ2)(16)

where the term %iY in Gi(θ) of (14) is replaced by

%̃Yi = Y2i+1 − 2Y2i + Y2i−1√
2

to define

G′
i(θ) = log det S(Xt2i−1, θ) + %−1

n S(Xt2i−1, θ)−1[(%̃iY )⊗2](17)

It can be proved that the first and second stage estimators obtained by
this new contrast function have the same properties of the estimators in the
previous sections. Intuitively, the use of %̃iY has the effect of compensating
for the unknown drift. Indeed, the term %̃iY reduces to

%̃iY =

(∫ t2i+1

t2i
bs ds −

∫ t2i

t2i−1
bs ds

)
+
(∫ t2i+1

t2i
σ (Xs,θ) dWs −

∫ t2i

t2i−1
σ (Xs,θ) dWs

)

√
2

We will compare this estimator with the one obtained on the original
contrast function (13).

5. Numerical Study

In this section, we give simulation studies to asses the quality of the
estimators of the change point. We compare the change point estimated by:
(i) the least squares methods via non-parametric estimation of the drift as
in Section 2.2 (τ̂n in the tables); (ii) the change point (τ̃n) obtained via the
CUSUM statistics as the point at which the statistics Tn in (11) reaches
its maximum; (iii) the quasi-likelihood maximum approach via the second
stage estimator (τ̌n) as in (15) and the second stage estimator (τ̌ ′

n in the
tables) based on the modified contrast function (16).

We first consider the following diffusion model without drift

Xt =






X0 +
∫ t

0

(
1 + X2

s

)θ∗
1 dWs for t ∈ [0, τ ∗)

Xτ ∗ +
∫ t

τ ∗

(
1 + X2

s

)θ∗
2 dWs for t ∈ [τ ∗, T

(Mod1)

C© 2010 The Authors
Economic Notes C© 2010 Banca Monte dei Paschi di Siena SpA.



S. M. Iacus and N. Yoshida: Numerical Analysis of Volatility Change Point 121

and the same model (Mod1) with drift

Xt =






X0 +
∫ t

0
Xs ds +

∫ t

0

(
1 + X2

s

)θ∗
1 dWs for t ∈ [0, τ ∗)

Xτ ∗ +
∫ t

τ ∗
Xs ds +

∫ t

τ ∗

(
1 + X2

s

)θ∗
2 dWs for t ∈ [τ ∗, T ]

(Mod1B)

Models (Mod1) and (Mod1B) are particular cases of the short-term interest
rates models used in, for example, Aıt-Sahalia (1996). Further, we consider
also the famous linear Vasicek’s (1977) model

Xt =






X0 +
∫ t

0
(2 − Xs) ds + θ∗

1 dWs for t ∈ [0, τ ∗)

Xτ ∗ +
∫ T

τ ∗
(2 − Xs) ds + θ∗

2 dWs for t ∈ [τ ∗, T ]
(Mod2)

We also consider this model with cyclic volatility

Xt =






X0 +
∫ t

0

√
2 + θ∗

1 sin(4πs) dWs for t ∈ [0, τ ∗)

Xτ ∗ +
∫ t

τ ∗

√
2 + θ∗

2 sin(4πs) dWs for t ∈ [τ ∗, T ].
(Mod3)

In all models τ ∗ is the true change point assumed to be τ ∗ = 0.6 · T .
The true value of the parameters are θ∗

1 = 0.2 and θ∗
2 = θ∗

1 + n−γ , with γ =
1
4 , n is the sample size and %n = T /n. The initial value for all simulation
experiments is X0 = 5. We construct different combinations of the sample
size n = 500, 1000, 2000 and time horizon T = 1, 2, 5, 10 as reported in
Tables 1–3 which correspond to the different %n = 0.01, 0.001. Clearly
this setup also produces different values of ϑn = |θ∗

2 − θ∗
1 |. For (Mod3) the

initial value is X0 = 1 and the true change point τ ∗ is set to τ ∗ = 0.5 · T
to ensure completeness of the volatility cycle.

Table 1: Average Results After 1000 Replications. In Parentheses Monte Carlo Standard
Errors. Results for (Mod1)

τ̂n τ̌n τ̃n τ̌ ′
n

n %n T = n%n τ ∗ L.S. Q.MLE CUSUM Modified Q.MLE.

1000 0.001 1 0.6 0.606 0.602 0.609 0.604
(0.061) (0.012) (0.020) (0.031)

2000 0.001 2 1.2 1.202 1.205 1.208 1.214
(0.196) (0.095) (0.082) (0.109)

500 0.01 5 3 3.020 3.024 3.038 3.075
(0.698) (0.512) (0.533) (0.623)

1000 0.01 10 6 5.981 6.087 6.207 6.129
(1.122) (1.617) (1.182) (1.296)
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Table 2: Average Results After 1000 Replications. In Parentheses Monte Carlo Standard
Errors. Results for (Mod1B)

τ̂n τ̌n τ̃n τ̌ ′
n

n %n T = n%n τ ∗ L.S. Q.MLE CUSUM Modified Q.MLE

1000 0.001 1 0.6 0.609 0.600 0.607 0.602
(0.018) (0.005) (0.010) (0.011)

2000 0.001 2 1.2 1.230 1.200 1.204 1.202
(0.049) (0.005) (0.007) (0.010)

500 0.01 5 3 3.644 2.977 3.017 3.002
(0.320) (0.020) (0.067) (0.052)

1000 0.01 10 6 8.179 3.607 6.004 6.001
(0.221) (0.375) (0.007) (0.011)

Table 3: Average Results After 1000 Replications. In Parentheses Monte Carlo Standard
Errors. Results for (Mod2).

τ̂n τ̌n τ̃n τ̌ ′
n

n %n T = n%n τ ∗ L.S. Q.MLE CUSUM Modified Q.MLE

1000 0.001 1 0.6 0.604 0.601 0.601 0.602
(0.008) (0.007) (0.007) (0.015)

2000 0.001 2 1.2 1.204 1.202 1.201 1.204
(0.009) (0.009) (0.009) (0.017)

500 0.01 5 3 3.030 3.033 3.001 3.013
(0.051) (0.084) (0.055) (0.145)

1000 0.01 10 6 6.036 6.027 6.001 6.022
(0.076) (0.078) (0.078) (0.146)

Model (Mod1) and model (Mod1B) have been chosen in order to
show the performance of change point estimators for highly nonlinear
parametric models. Model (Mod1) differs from Model (Mod1B) in that
the latter has a drift term. This choice has been made to show that the
modified quasi-maximum likelihood estimator τ̌ ′

n is able to remove the
drift effect for small sample size as explained in Section 4.3. As explained
below, both models (Mod1) and (Mod1B) do not satisfy the assumptions
of the least squares estimator τ̂n. For this reason, in order to make a
fair comparison between all estimators we also introduced model (Mod2),
which is a mean reverting process with constant diffusion coefficient.
Finally, (Mod3) fits the assumptions of both quasi-maximum likelihood
and CUSUM approaches only.

While to be rigorous for model (Mod1) and (Mod1B) we can only
apply the quasi-maximum likelihood approach of Section 4, model (Mod2)
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Table 4: Average Results After 1000 Replications. In Parentheses Monte Carlo Standard
Errors. Results for (Mod3).

τ̂n τ̌n τ̃n τ̌ ′
n

n %n T = n%n τ ∗ L.S. Q.MLE CUSUM Modified Q.MLE

1000 0.001 1 0.5 0.588 0.479 0.597 0.497
(0.210) (0.259) (0.233) (0.300)

2000 0.001 2 1.0 1.076 0.947 1.137 0.967
(0.448) (0.582) (0.389) (0.615)

500 0.01 5 2.5 2.516 2.483 2.850 2.574
(1.056) (1.356) (1.292) (1.520)

1000 0.01 10 5 5.102 4.940 5.721 4.995
(2.216) (2.848) (2.332) (3.108)

is a simple Ornstein–Uhlenbeck model which fits also the setup of Sections
2 and 3. Model (Mod1) is a misspecified case for the assumptions in Section
2.2 on the least-squares approach: dXt = b(Xt ) dt +

√
θdWt . In this case,

the estimators θ̄i in Section 2 estimate the quadratic variation rather than
the true value of θ , but the change in the quadratic variation is sometimes
enough to identify the change point.

Tables 1–4 report the results of 1000 replications of the experiments
under the different conditions. The average values of the estimators
τ̂n, τ̌n, τ̃n and τ̃ ′

n are reported along with their Monte Carlo standard errors
(in parentheses). Although the third decimal point is not significant we
report it just for comparison purposes.

The behaviour of the CUSUM test statistics has been discussed already
in Song and Lee (2009), so we do not consider this problem in our
experiments but we report the value of the CUSUM change point estimator
τ̃n. For the estimators of the θ’s in the CUSUM test statistics, we used the
contrast function in Kessler (1997) using derivatives up to order 2 like
in the original paper of Song and Lee (2009). Note that the application
of the CUSUM statistic requires the additional knowledge of the drift
function, while all other methods do not use this information. This is
a small advantage for the CUSUM test statistic in a simulation study,
although unrealistic in practical daily analysis of financial data.

Our numerical analysis mainly focuses on the problem of change point
estimation rather than on the tests for the existence of a change point.
Indeed, all methods presented here correctly identify the presence of a
change point in all the simulations performed. Differences emerge (and are
usually of interest in applications) in the identification (estimation) of the
change point time instant. In fact, the estimation of the parameters in the
volatility term of the stochastic differential equation can be done separately
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for the two sub-series identified by the change point estimate and estimators
of these parameters are consistent and asymptotically normal at the usual
rate

√
n, with n the number of observations as shown in the previous

sections.

5.1. Numerical Evidence

From the Monte Carlo experiments summarized in Tables 1–4 it
emerges that the CUSUM estimator behaves well only in the case of Model
(Mod2), that is, when the model is mean reverting and when the drift can
be completely specified in the construction of the Kessler’s likelihood (see
Table 3).

The least squares estimator τ̂n seems to have a good performance in
term of bias and variability for models with constant or bounded drift
(Tables 1 and 3), while it behaves badly in the presence of unbounded drift
when time T grows (see Table 2). CUSUM statistics do not work well in
the cyclic case of Model (Mod3) at all frequencies (see Table 4).

Quasi-maximum likelihood estimator τ̌n and its modified version τ̌ ′
n

both behave well, although τ̌n has lower variance than τ̌ ′
n due to the

fact that the latter uses less (actually half) observations to construct the
contrast function. In some cases, and when the drift plays a role in
the stochastic differential equation, the estimator τ̌ ′

n based on the modified
quasi-likelihood has better properties as expected. For example, in Table 2
for sample size n = 500 and low frequency %n = 0.01 the estimator τ̌ ′

n is
preferable to τ̌n.

The conclusion from this analysis is that the estimator τ̌n and in
particular its modified version τ̌ ′

n behave almost uniformly better or equally
well than other methods proposed in the literature so far. Moreover, it
applies to a wide class of models (one or multi-dimensional) and does not
require the unrealistic specification of the drift term.

All the analysis has been done using the R statistical environment (R
Development Core Team, 2009) and the package sde (see Iacus, 2008) and
Yuima (see, Yuima Project Team, 2010). Code is available on request to
the authors.
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Non-technical Summary

In financial markets it is crucial to have an accurate description of the
volatility of the market and/or the different financial products. All pricing
formulas make use of the historical values of the volatility as a fundamental
ingredient. It is well known, however, that volatility is not constant over
time, even short time, and thus the monitoring of the volatility is one of
the primary tasks in empirical finance.
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The statistical way to monitor structural changes is called change
point analysis or change point estimation. Stochastic differential equations
are among the most used stochastic models to describe continuous time
financial time series. Although data are collected in discrete time, the
underlying structure of the continuous model allows for very detailed
analysis of these data.

This paper reviews recent advances on change point estimation for
the volatility component of stochastic differential equations under different
discrete sampling schemes, namely the rapidly increasing design and the
pure high frequency sampling.

Both ergodic and non-stationary models are considered and different
techniques have been developed to handle the different cases. In particular,
the method presented are the least squares, the CUSUM and the quasi-
maximum likelihood methods.

To corroborate the theoretical results, an extensive Monte Carlo anal-
ysis under different sampling schemes and stochastic models is performed
with the aim of comparing the different statistical approaches to the
identification of the change point instant.

An analysis of the recent financial crisis has been performed retro-
spectively using the above techniques. The result show that monitoring of
the volatility, although it cannot provide an explanation, can conversely
provide interesting insights about instability of the market.
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