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Abstract
Epigenetic deregulation contributes to diseases including cancer, neurodegeneration, osteodystrophy, cardiovascular

defects, and obesity. For this reason, several inhibitors for histone deacetylases (HDACs) are being validated as novel

anti-cancer drugs in clinical studies and display important anti-proliferative activities. While most inhibitors act on both

class I, II, and IV HDACs, evidence is accumulating that class I is directly involved in regulation of cell growth and death,

whereas class II members regulate differentiation processes, such as muscle and neuronal differentiation. Here, we show

that the novel class II-selective inhibitor MC1568 interferes with the RAR- and peroxisome proliferator-activated receptor

g (PPARg)-mediated differentiation-inducing signaling pathways. In F9 cells, this inhibitor specifically blocks endodermal

differentiation despite not affecting retinoic acid-induced maturation of promyelocytic NB4 cells. In 3T3-L1 cells, MC1568

attenuates PPARg-induced adipogenesis, while the class I-selective MS275 blocked adipogenesis completely thus

revealing a different mode of action and/or target profile of the two classes of HDACs. Using in vivo reporting PPRE-Luc

mice, we find that MC1568 impairs PPARg signaling mostly in the heart and adipose tissues. These results illustrate how

HDAC functions can be dissected by selective inhibitors.
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Introduction

In the past years, epigenetic therapies have come of
age. The finding that histone deacetylases (HDACs)
often are more expressed in tumor cells gave credit
to the application of HDAC inhibitors (HDACIs) to
target cancer cells, without affecting the normal
ones. In humans, HDACs class I – the RPD3/HDA1
family – comprises HDAC1, HDAC2, HDAC3, and
HDAC8, whereas class IIa includes HDAC4, HDAC5,
HDAC7, and HDAC9, and class IIb includes HDAC6
and HDAC10. Members of class I are homologous to
yeast RPD3, while class II HDACs are related to the
yeast HDA1. HDAC11, which shows homology to both
RPD3 and HDA1, has been allocated to the separate
class IV. The third HDAC class includes sirtuins,
characterized by NADC-dependent activity, diffe-
rently from the other HDACs. With their ability to
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deacetylate histones, HDACs compact chromatin, thus
regulating heterochromatin formation and mainten-
ance. In addition, many HDACs have ‘non-histone’
targets, such as p53 (Bode & Dong 2004), NFKB
(Chen et al. 2002, Furia et al. 2002), several nuclear
receptors (NRs; Wang et al. 2001), and cofactors
(Rodgers et al. 2005). In this context, it is interesting
to note that acetylation modulates NR binding to
chromatin and/or to factors involved in mediating NR
functions. The implication of HDACs in cancer
etiology and therapy has been revealed in both solid
tumors and leukemias (Monneret 2005, Nebbioso et al.
2005). For example, suberoylanilide hydroxamic acid
(SAHA), a class I–II HDACI, has been approved in
2006 by the FDA for the treatment of cutaneous T-cell
lymphomas.

The HDACI MC1568 selectively inhibits the HDAC
classes IIa and b (Mai et al. 2005, Nebbioso et al. 2009).
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Class II HDACs appear to be mainly involved in the
regulation of differentiation, such as myogenesis (Lu
et al. 2000), neuronal differentiation (Chawla et al.
2003), and osteogenesis (Hug 2004). Mechanistically,
class IIa members may compete with the histone
acetyltransferase p300 for direct binding to the
myocyte enhancer factor 2 (MEF2), thus potentially
modulating myocyte differentiation. Moreover, HDAC4
null mice display skeletal defects possibly linked to
altered Runx2 action (Vega et al. 2004), while knock-
out of HDAC5 or HDAC9 displays cardiac hypertrophy
(Chang et al. 2004, McKinsey & Olson 2004, 2005). The
class IIb HDAC6 displays distinct functionality, as its
inhibition stimulates tubulin acetylation and influ-
ences cell motility (Hubbert et al. 2002, Palazzo et al.
2003, Zhang et al. 2003).

Both class I and II HDACs are involved in the
regulation of transcription by NRs such as ERa (ESR1),
RARa, or peroxisome proliferator-activated receptor g
(PPARg). The binding of HDACs to NR-recruited
co-repressors, such as SMRT and NCOR, is thought to
mediate the repression of target genes seen in the
absence of agonists. The multi-subunit complex formed
by the co-repressors HDAC4 or HDAC5 and HDAC3
has been studied extensively in several cellular systems
(Karagianni & Wong 2007).

Here, we report on the effects of the selective
inhibition of class II HDAC activity in three models of
NR-regulated differentiation. The first comprises the
F9 mouse embryonic carcinoma cells, derived from an
experimentally induced teratocarcinoma (Berstine
et al. 1973). Upon treatment with all-trans retinoic
acid (ATRA), F9 cells differentiate into endodermal-
type cells in monolayer cultures. By various criteria,
these cells have been shown to correspond to parietal
endodermal cells. The efficiency of differentiation of
parietal endoderm-like cells can be stimulated by
adding dibutyryl cyclic AMP to the culture medium. F9
cells can also differentiate into visceral endoderm-type
cells in the presence of retinoic acid under non-
adherent condition. The second model comprises
NB4 cells, a prototypic model for human acute
promyelocytic leukemia (Altucci & Gronemeyer
2001). The third is the murine 3T3-L1 adipogenesis
model. The master regulator of this latter process is
the NR PPARg, the absence of which totally abrogates
differentiation (Liao et al. 2007). Finally, in order to
reveal the action of MC1568 in vivo, we have used
engineered PPARg ‘reporter’ mice to investigate the
possible regulation of PPARg signaling by class II
HDACs. Altogether our results reveal an as yet
unrecognized activity spectrum of class II HDACs, as
MC1568 inhibits F9 cell endodermal, but not NB4
promyelocytic, differentiation by retinoids and attenu-
ates PPARg activity both in cell lines and in vivo.
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Materials and methods

Ligands and chemicals

MS275 (Bayer-Schering) was dissolved in ethanol and
used at 5 mM; MC1568 HPLC purified was synthesized
as described (Mai et al. 2005, Nebbioso et al. 2009),
dissolved in DMSO, and used at 1, 5 or 10 mM as indicated.
Troglitazone was a gift of Bristol-Myers-Squibb, rosigli-
tazone (BRL 49653) was a gift of Novo Nordisk (Rome,
Italy); dibutyryl cAMP, ATRA, dexamethasone, and
insulin were obtained from Sigma.
Cell lines and cultures

F9 cells were maintained in DMEM supplemented with
10% FCS and 1 mg/l gentamicin and 2 mM glutamine.
The F9 cells periodically were grown in bacteria plates
like aggregates for 2–3 days and after put in plates
coated with 0.1% gelatin. The 3T3-L1 cells were
propagated and differentiated using a differentiation
cocktail consisting of isobutylmethylxanthine, dexa-
methasone, and insulin (MDI) as previously described
(Nielsen et al. 2008, Kim et al. 2009). From the second
day post-confluence and throughout the differentiation
period of 8 days, the cells were subjected to either
DMSO, 5 or 10 mM MC1568, or 5 mM MS275. For the
experiments where the three differentiation media
were compared, the 3T3-L1 mouse fibroblasts were
kept as follows: i) no induction: at post-confluence and
throughout the differentiation period of 8 days, the
cells were incubated with DMSO, 5 or 10 mM MC1568,
or 5 mM MS275. Medium was renewed every second day.
ii) Induction with troglitazone: at post-confluence and
throughout the differentiation period of 8 days, the
cells were induced with 5 mM troglitazone, 5 mM
MC1568, or both. iii) Induction by rosiglitazone: at
post-confluence and throughout the differentiation
period of 8 days, the cells were incubated with 1 mM
of rosiglitazone and either DMSO, 5 or 10 mM MC1568,
5 mM MS275, or 125 nM trichostatin A(TSA). Medium
was renewed every second day. iv) Induction by
rosiglitazone and dexamethasone: at post-confluence,
the cells received 1 mM of rosiglitazone and 390 ng/ml
dexamethasone dissolved in abs. EtOH. Throughout
the differentiation period of 8 days, the cells were
induced with 1 mM of rosiglitazone and either DMSO,
5 or 10 mM MC1568, 5 mM MS275, or 125 nM TSA.
Medium was renewed every second day.
Fluorimetric human recombinant HDAC1 and HDAC4
in vitro assays

HDAC1 and 4 assays were performed as previously
described (Lahm et al. 2007, Nebbioso et al. 2009). For
HDAC4, the non-histone substrate ‘trifluoroacetyl
lysine’ was used as in Lahm et al. (2007).
www.endocrinology-journals.org
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Oil red O staining

This assay was performed following standard proce-
dures. 3T3-L1 cells were fixed with 3.7% formaldehyde
for 10 min and then stained with oil red O for 1 h
followed by washing with 70% methanol and water.
NBT assay

For the NBTreduction assay, 500 ml medium containing
1!106 cells were mixed with 500 ml of 0.2% NBT and
200 ng 12-O-tetradecanoylphorbol-13-acetate (Sigma).
After incubation for 30 min at 37 8C, the liquid was
discarded, cells and formazan deposits were lysed by
500 ml of lysis buffer (50% dimethylformamide and 20%
SDS, pH 7.4), and optical density was measured on a
spectrophotometer at 570 nm.
RT-PCR, real-time PCR, and primers

Total RNA was extracted from 3T3-L1 cells and F9 cells
(Trizol). Two micrograms of total RNA were reverse
transcribed using superscript VILO (Invitrogen). For
amplification, we used the following primers: laminin
B1, forward (5 0-ACAACACCAAAGGCCTGAAC-3 0) and
reverse (5 0-TGCCAGTAGCCAGGAAGACT-3 0); collagen
IV, forward (5 0-ACAACAGARGACCCACTGTG-3 0) and
reverse (5 0-GTGTGCATCACGAAGGAATA-3 0); SPARC,
forward (50-GTCCCACACTGAGCTGGC-30) and reverse
(5 0-AAGCACAGAGTCTGGGTGAGTG-3 0); adiponec-
tin, forward (5 0-AGGGTGAGACAGGAGATGTTGG-
AAT-3 0) and reverse (5 0-GCCAGTAAATGTAGAG-
TCGTTGACGT-30); A-FABP (aP2), forward (50-AACACC-
GAGATTTCCTTCAAACTG-30) and reverse (50-TCACG-
CCTTTCATAACACATTCCA-30); actin, forward (50-GAC-
GGCCAGGTCATCACTAT-30) and reverse (50-CCACCG-
ATCCACACAGAGTA-30);PPARg, forward(50-TCTCTCCG-
TAATGGAAGACC-30) and reverse (50-GCATTATGAGACA-
TCCCCAC-30); thrombomodulin, forward (50-TGGAGCA-
TGAGTGCTTCGC-30) and reverse (50-GGTGTTGTAGGT-
ACTAGAGA-30); GAPDH, forward (50-TCAACGGGAAG-
CCCATCACCA-30) and reverse (50-ACGGAAGGCCATGC-
CAGTGA-30). Real-time PCR was performed with the
following primers: TFIIB, forward (50-GTTCTGCTCCAA-
CCTTTGCCT-30) and reverse (50-TGTGTAGCTGCCATC-
TGCACTT-30);A-FABP (aP2), forward (50-CTG GGCGTGG-
AATTCGAT-30) and reverse (50-GCTCTTCACCTTCCT-
GTCGTCT-30); adiponectin, forward (50-TGACTGCA-
ACTACCCATAGC-30) and reverse (50-TTAATGAACAAGT-
GAGTACACG-30); leptin, forward (50-TGTGCTGCAGATA-
GCCAATGA-30) and reverse (50-AGATGGAGGAGGTCTC-
GGAGA-30);C/EBPa, forward(50-CAAGAACAGCAACGAG-
TACCG-30)andreverse(50-GTCACTGGTCAACTCCAGCA-
C-30); actin, forward (50-GACGGCCAGGTCATCACTAT-30)
and reverse (50-CCACCGATCCACACAGAGTA-30); laminin
B1, forward (50-ACAACACCAAAGGCCTGAAC-30) and
www.endocrinology-journals.org
reverse (5 0-TGCCAGTAGCCAGGAAGACT-3 0); SPARC,
forward (5 0-GAGGAGGTGGTGGCTGACAA-3 0) and
reverse (5 0-CACCTTGCCATGTTTGCAAT-3 0); collagen
IV, forward (5 0-ACAACAGAGACCCACTGTG-3 0) and
reverse (5 0-GTGTGCATCACGAAGGAATA-3 0); PPARg,
forward (5 0-TTTTCAAGGGTGCCAGTTTC-3 0) and
reverse (5 0-AATCCTTGGCCCTCTGAGAT-3 0); thrombo-
modulin, forward (50-TGGAGCATGAGTGCTTCGC-30)
and reverse (5 0-GGTGTTGTAGGTACTAGAGA-3 0).
Use of the PPRE-Luc transgenic mouse

The PPRE-Luc transgenic mouse has been previously
described (Ciana et al. 2007, Biserni et al. 2008); in this
reporter mouse model, luciferase expression is
modulated by PPAR ligands and can be considered a
surrogate marker for PPAR transcriptional activation.
For optical imaging studies, mice were first anesthetized
using an s.c. injection of 50 ml ketamine–xylazine
solution composed of 78% ketamine (Ketavet 50,
Intervet, Peschiera Borromeo, Italy), 15% xylazine
(Rompun 2% solution, Bayer), and 7% water, and then
received an i.p. injection of 25 mg/kg D-luciferin
(25 mg/kg; Promega); to obtain a uniform biodistribu-
tion of the substrate, CCD camera detection was
performed 20 min after luciferin injection (Ciana et al.
2003, 2007). Bioluminescence measurements were done
with a Night Owl imaging unit (Berthold Technologies,
Bad Wildbad, Germany) consisting of a Peltier cooled
charge-coupled device slow-scan camera equipped with
a 25 mmf/0.95 lens. Images were generated by a Night
Owl LB981 image processor and transferred via video
cable to a peripheral component interconnect frame
grabber using WinLight32 software (Berthold Tech-
nologies). To lower the background activity of endogen-
ous PPAR activities due to dietary intake of lipids,
experimental mice were fed solely during the night
(Ciana et al. 2007), and photon emission was measured
at 1700 h. In chronic studies, 50 mg/kg MC1568 and
5 mg/kg of rosiglitazone or vehicle (water solution of
0.5% carbossimetilcellulose) were administered by
gavage once a day at 0900 h, for a total of 7 days starting
from day 1. In co-treatment, MC1568 was administered
30 min before rosiglitazone. Photon emission was
measured in chest and abdomen; photon emission
from these areas is due mainly to liver and intestine as
demonstrated in preliminary experiments (data not
shown and Ciana et al. (2007)).
Luciferase enzymatic assay

Mice were euthanized and dissected, and tissues were
immediately frozen on ice. Protein extracts were
homogenized in 200 ml of 100 mM KPO4 lysis buffer
(pH 7.8 containing 1 mM dithiothreitol, 4 mM EGTA,
4 mM EDTA, and 0.7 mM phenylmethylsulfonyl
Journal of Molecular Endocrinology (2010) 45, 219–228
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fluoride), three cycles of freezing–thawing, and 30 min
of minifuge centrifugation (Eppendorf, Hamburg,
Germany) at maximum speed. Supernatants containing
luciferase were collected, and protein concentrations
were determined by Bradford’s assay. Luciferase
enzymatic activity was measured by a commercial kit
(Luciferase assay system, Promega) according to the
supplier’s instructions. Light intensity was measured
with a luminometer (Veritas, Promega) over 10 s time
periods and expressed as relative light units per mg
protein (RLU/mg protein).
Results

The class II HDACI MC1568 blocks differentiation in a
cell-specific manner

Supporting the notion that class II HDACs may
function primarily during specific cell physiological
events, several class II HDACs interact with factors
involved in cell differentiation (Verdin et al. 2003, Yang
& Gregoire 2005). To assess directly the role of class II
HDACs on cell differentiation, we investigated the
effect of the class II-selective HDACI MC1568 (Fig. 1A)
in well-established models, namely primitive or parietal
endodermal differentiation (Rochette-Egly & Chambon
2001), NB4 promyelocytic maturation (Altucci &
Gronemeyer 2001), and adipogenesis (Rangwala &
Lazar 2000). Note that the complete characterization of
the inhibitory action of the MC1568 has been previously
reported (Nebbioso et al. 2009).

Exposure of F9 embryonal carcinoma cells to ATRA
induced primitive endodermal differentiation that
was blocked by MC1568 as revealed by cell
morphology (Fig. 1B, top panel) and confirmed by
the lack of induction of the differentiation marker
collagen IV (Fig. 1C and D). The same differentiation
block was observed for parietal endodermal diffe-
rentiation induced by ATRA and cAMP (Fig. 1B,
bottom panel). Indeed, the de novo induction of
thrombomodulin (Weiler-Guettler et al. 1992) and
the enhanced expression of SPARC, collagen IV, and
laminin B1 were all impaired in the presence of
MC1568 (Fig. 1C and D).

While these observations supported the hypothesis
that class II-selective HDAC inhibition antagonized
retinoic acid signaling, no such effects were seen in
another retinoid-induced cellular differentiation
system. Indeed, in stark contrast to F9 cells, the ATRA-
induced maturation of NB4 promyelocytic leukemia
cells was entirely unaffected by the HDAC class
II-selective inhibitor (Fig. 1E) after treatment for 96 h.
Thus, retinoic acid signaling apparently involves class II
HDAC action in a cell-specific manner, possibly due
to differential expression of HDACs and/or different
Journal of Molecular Endocrinology (2010) 45, 219–228
functional role of HDACs in the retinoic acid
signaling pathway.
HDAC class II inhibition decreases PPARg-dependent

adipogenesis, while class I inhibitors block

adipogenesis completely

Complex transcriptional hierarchies govern the
changes and maintenance of cell morphology and
gene expression associated with adipogenesis (Chen
et al. 2005). Transcription factors form cross-regulatory
circuits and act in concert with epigenetic programs
(Yoo & Jones 2006) that can be altered by HDACIs
(Lagace & Nachtigal 2004, Qiao et al. 2006). Interest-
ingly, our data indicate that class II HDACs are involved
in the regulation of adipogenesis, as MC1568 inhibits
the adipogenic activity of troglitazone in 3T3L1 pre-
adipocytes, as verified by oil red O staining (Fig. 2A)
and induction of differentiation markers (Fig. 2B).
Most likely, this effect results from the attenuation of
troglitazone-induced PPARg expression by MC1568
(Fig. 2C). Interestingly, the class I-selective HDACI
MS275 blocks PPARg induction (Fig. 2C) and adipo-
genesis (Fig. 2D) completely. In contrast to MS275
(Fig. 2D), even at higher concentration equal to 10 mM,
complete differentiation medium can partially override
the adipogenesis block imposed by MC1568 (Fig. 2D,
lower panel). The activation of the aP2 and adiponectin
differentiation markers is blocked by MC1568 after
induction of adipogenesis with troglitazone or rosigli-
tazone (Fig. 3A), whereas the activation of these same
targets is unaffected in the presence of complete
differentiation medium or the combination of rosigli-
tazone and dexamethasone (Fig. 3B–C). Note that both
troglitazone and rosiglitazone have been reported to
similarly induce 3T3L1 adipocyte differentiation
(Huang et al. 2006). Moreover, we note that while the
differentiation markers aP2, adiponectin, and C/EBPa
are unaffected by exposure to MC1568 (Fig. 3B, C, and E),
the expression of leptin is significantly down-regulated
(Fig. 3D) in both rosiglitazone and MDI-induced
differentiation of 3T3-L1 cells. Thus, HDAC class II
inhibitors seem to interfere with a subset of gene
programs associated with adipogenesis.
HDAC class II inhibition exerts organ-selective effects

on PPARg signaling in vivo

Given that MC1568 attenuated adipogenesis in vitro in
pro-adipogenic 3T3L1 cells, the possible effect of the
drug was assessed in the PPRE-Luc PPAR reporter
mouse model in vivo with the idea of exploring a
possible anti-obesity activity. In this reporter, mouse
luciferase expression is activated in response to PPAR
agonists in cognate target organs (Ciana et al. 2007,
www.endocrinology-journals.org
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Figure 1 The class II-selective HDAC inhibitor MC1568 blocks retinoic acid-induced F9 cell differentiation, but not promyelocytic NB4 cell
maturation. (A) In vitro human recombinant HDAC1 and HDAC4 assays with or without MC1568 or SAHA used at 5 mM; for HDAC4
assay, the specific trifluoroacetyl lysine substrate has been used; (B) morphological analysis of F9 cells upon treatment with MC1568 in
combination with ATRA and cAMP at the indicated time; (C) RT-PCR and qPCR of molecular differentiation markers in F9 cells treated as
indicated; (D) RT-PCR of collagen IV and laminin B1 in F9 cells treated as indicated; (E) NBT differentiation assay carried out in NB4 cells
treated as described.
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Biserni et al. 2008). Using whole body optical imaging,
7 days of treatment resulted in only minor changes
between the various treatment groups (Fig. 4A). Indeed,
quantification of bioluminescence did not show any
significant effect of the agonist (rosiglitazone) or MC1568
with a trend towards a decrease in the overall photon
emission upon co-treatment with both molecules in the
Journal of Molecular Endocrinology (2010) 45, 219–228
chest but not in the abdomen (Fig. 4B). The limited
effect of treatments in whole body bioluminescence
emission after 7 days of rosiglitazone treatment may be
ascribed to the high background activity of PPARa
and b/d isoforms in the liver and intestine, the two
most visible PPAR target organs in optical imaging
experiments on PPRE-Luc mice. In contrast, ex vivo
www.endocrinology-journals.org
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Figure 3 Expression levels of adipogenesis markers determined
by real-time PCR. (A) A-FABP/aP2 and adiponectin expression
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quantification of individual organs revealed a strikingly
different picture. While no significant drug effects on
reporter gene activity were measured in the intestinal
compartment, administration of rosiglitazone or MC1568
alone revealed a trend towards lower activities in the liver,
and co-administration of the two drugs resulted in
significantly decreased liver luciferase expression
(Fig. 4C). Most strikingly luciferase activity in the other
PPARg target organs, heart, and perirenal adipose tissue
was strongly induced by rosiglitazone, and this induction
www.endocrinology-journals.org
was completely abolished by co-treatment with MC1568
(Fig. 4C bottom panels). These results indicate that the
class II HDACI MC1568 can antagonize rosiglitazone
activity in PPARg target organs in vivo.
Discussion

While two HDACIs (SAHA (vorinostat) and depsipep-
tide) are in use for cancer therapy and others are
enrolled in clinical trials, the clinical indications
for HDAC subtype-selective modulators – which con-
ceptually should display a reduced spectrum of side
effects – have still to be determined. Given the ability of
HDAC1 to repress Myo D and class II HDACs to block
MEF2 target gene expression, it could be predicted that
pharmacological HDAC inhibition would stimulate
muscle gene expression and thus enhance myogenesis.
Paradoxically, the same inhibitors were later reported
to modulate skeletal muscle differentiation in a stage-
specific manner revealing that HDACIs have the
potential to enhance myogenesis (Iezzi et al. 2002).
Inhibitory effects of HDACIs were reported for
adipocyte differentiation. Treatment with class
1-selective or pan-HDACIs blocked the differentiation
of 3T3-L1 cells (Kim et al. 2009) as confirmed in the
present study.

That class II HDAC activity is required for some steps
within the cascade of gene regulatory events that
constitute a differentiation program is supported by
our data on the retinoic acid induction of endodermal
differentiation of F9 cells. Moreover, in studying the
effects of class II HDACs in two different NR-dependent
differentiation systems, we show that the class II-specific
inhibitor MC1568 interferes with the transcriptional
signaling of RARs as well as PPARg. That we are able to
interfere with retinoic acid-mediated endodermal
differentiation in F9 cells by altering the transcriptional
regulation of target genes such as the collagen IV but
that retinoic acid-mediated maturation of NB4 pro-
myelocytes is not affected indicates that class II HDACs
and their cognate inhibitors can exert tissue-specific
effects. This observation is in keeping with class II
HDACs-restricted expression in selected organs and
tissues, and a stage-specific requirement of certain
HDACs or HDAC classes may also account for the
divergent observations reported for pan-HDACIs on
myogenesis. Moreover, note that NB4 cells express
limited amounts of selected class II HDACs. Selective
HDAC class II inhibition blocks the (weak) differen-
tiation of 3T3-L1 pre-adipocytes induced by troglita-
zone or rosiglitazone alone supposedly by inhibiting
the induction of PPARg expression. Notably, this block
can be overridden by simultaneously activating several
adipogenic pathways when using complete differen-
tiation medium (MDI). Under such conditions, class II
Journal of Molecular Endocrinology (2010) 45, 219–228
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Figure 4 MC1568 antagonizes rosiglitazone-dependent induction of luciferase
expression in adipose tissue and heart of the PPRE-Luc mouse. PPRE-Luc mice were
treated by gavage daily with 5 mg/kg rosiglitazone (ROSI), 50 mg/kg MC1568 (MC), or
vehicle (water solution of 0.5% carbossimetilcellulose); when co-administered, MC1568
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was measured at 1700 h at day 0 and at the end of the treatment (day 7). (A) Pictures of
photon emission measured in vivo of a single, representative, individual at day 0 and 7.
(B) Photon emission measured in vivo after 7 days treatment; bars represent the mean
GS.E.M. (C) Luciferase contents from liver, intestine, perirenal adipose tissue (PRAT), and
heart. Relative luciferase units (RLU, photon counts/mg of proteins) were determined by
enzymatic assay as described in Materials and methods. Bars represent the mean RLU
GS.E.M. *P!0.05 and ***P!0.001 versus vehicle-treated group.
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inhibition results only in an attenuation of the
efficiency of adipogenesis as determined by oil red O
staining, suggesting both a direct and indirect involve-
ment of class II HDACs in PPARg signaling. The
influence of HDAC class II on PPARg signaling – and as
a consequence the modulation of PPARg by HDACIs
(Kim et al. 2009) – might be explained both as a
consequence of the interaction of HDACs with NRs
(Franco et al. 2003) and of the influence on PPARg
target genes. That MC1568 also inhibits HDAC6
might suggest a role for HDAC6 in these settings.
Despite HDAC6 contribution cannot be excluded, its
main cytoplasm localization (Valenzuela-Fernández
et al. 2008) does not fully support the interference
with the PPARg signaling pathway. Interestingly
enough, the impairment of PPARg signaling is
supported by experiments in vivo with PPRE-Luc
reporter mice, further arguing for a role of class II
HDACs in mediating PPARg signaling. Indeed, only
the PPARg ‘target organs’, such as the heart and
adipose tissues, displayed inhibited PPARg activity
when animals were co-exposed to MC1568 and
Journal of Molecular Endocrinology (2010) 45, 219–228
rosiglitazone. We also noted that inhibition of class
II HDACs in the PPRE-Luc reporter mice did not
lead to any side effects or detrimental alterations
after administration of MC1568 as a single agent.
Although PPARg is expressed at low levels in many
different cell types, it is well established that PPARg
activation in adipose tissue and to some extent also
in macrophages is of key importance for the insulin-
sensitizing effects of thiazolidinediones (TZDs; Kahn
et al. 2000, Hevener et al. 2007). However, PPARg
activation in other cell types may also contribute to
the physiological effects of these TZDs including the
side effects that limit the use of these drugs. Thus,
treatment with TZDs such as rosiglitazone leads to
edema in some patients (Nesto et al. 2003), and
genetic experiments in mice indicate that the edema
results from activation of PPARg in the kidney
epithelium (Zhang et al. 2005). Our observation
that HDAC class II inhibition decreases TZD
activation of PPARg in cell culture as well as in vivo
suggests that HDAC class II inhibition could poten-
tially be used in combination with PPARg agonists
www.endocrinology-journals.org



HDACs class II-selective inhibition . A NEBBIOSO and others 227
to modulate PPARg activation in a tissue-specific
manner. This would require that these inhibitors
preferentially interfere with the deleterious side
effects rather than the many beneficial effects of TZDs.
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