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Abstract

Background: DNA methylation is an epigenetic mechanism that has been increasingly investigated in observational human
studies, particularly on blood leukocyte DNA. Characterizing the degree and determinants of DNA methylation stability can
provide critical information for the design and conduction of human epigenetic studies.

Methods: We measured DNA methylation in 12 gene-promoter regions (APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNc, IL-
6, TNFa, iNOS, and hTERT) and 2 of non-long terminal repeat elements, i.e., L1 and Alu in blood samples obtained from 63
healthy individuals at baseline (Day 1) and after three days (Day 4). DNA methylation was measured by bisulfite-PCR-
Pyrosequencing. We calculated intraclass correlation coefficients (ICCs) to measure the within-individual stability of DNA
methylation between Day 1 and 4, subtracted of pyrosequencing error and adjusted for multiple covariates.

Results: Methylation markers showed different temporal behaviors ranging from high (IL-6, ICC = 0.89) to low stability (APC,
ICC = 0.08) between Day 1 and 4. Multiple sequence and marker characteristics were associated with the degree of variation.
Density of CpG dinucleotides nearby the sequence analyzed (measured as CpG(o/e) or G+C content within 6200bp) was
positively associated with DNA methylation stability. The 39 proximity to repeat elements and range of DNA methylation on
Day 1 were also positively associated with methylation stability. An inverted U-shaped correlation was observed between
mean DNA methylation on Day 1 and stability.

Conclusions: The degree of short-term DNA methylation stability is marker-dependent and associated with sequence
characteristics and methylation levels.
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Introduction

DNA methylation is a well-studied epigenetic mechanism that

has been increasingly investigated in epidemiology studies in

relation to a variety of risk factors and health-related conditions,

including aging, prenatal, early- and adult-life risk factors,

changing environments, and disease outcomes. Albeit DNA

methylation shows dynamic changes during developmental stages,

DNA methylation markings have been suggested to be relatively

stable over time in adult individuals [1]. DNA methylation

changes can be replicated through cell mitosis and persist even in

the absence of the conditions that established them [1]. Due to its

stability, DNA methylation has been suggested to be particularly

well suited to represent ‘the interactions of genes with their

environment, which bring the phenotype onto being’ [1], and to

‘record a variety of dietary, lifestyle, behavioral, and social cues’

[2].

Experimental models and human studies, however, indicate that

DNA methylation can exhibit different temporal behaviors,

varying between the nearly absolute stability of the DNA sequence

and the rapid variations typical of mRNA levels. DNA methyl-

ation in imprinted genes, for instance, is established in early

embryogenesis and is believed to remain relatively stable

throughout the life-course [3]. Some non-imprinted genes, as well

as non-coding repeat elements, have been suggested to undergo

slow progressive changes in DNA methylation through aging [4].
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On the other hand, some other non-imprinted sequences – such as

the IL-2 promoter – have been demonstrated to undergo profound

changes in DNA methylation as rapidly as within 20 minutes after

an exogenous challenge [5]. However, no in-vivo human data are

yet available to help distinguish sequences that undergo rapid

changes in DNA methylation from those with more stable

methylation levels. This information would be relevant for

effective design of epidemiology studies, as well as for statistical

analysis of methylation data. In studies of risk factors that operate

over a short timeframe, such as investigations on triggers of

cardiovascular events including air pollution, alcohol, and cocaine

abuse [6,7], investigators may be interested in focusing on

epigenetic markers that vary their methylation levels over a

relatively short timeframe. Conversely, longitudinal studies eval-

uating effects of cumulative risk factor exposures and associations

with risk of chronic diseases would best avoid expending resources

and statistical power on sequences with rapid DNA variation.

The International Human Epigenome Consortium is expected

to map 1,000 reference epigenomes and define the level of

variation that exists between individuals and across different tissues

[8]. However, no information is available on the dynamics of DNA

methylation changes in normal tissues and to identify genomic

characteristics that may be associated with rapid variations in

methylation changes. In various studies, DNA methylation shows

genomic region specific changes in terms of CpG density. CpG-

rich regions (generally called CpG islands) are commonly

unmethylated in normal human tissues and have been found to

show DNA methylation changes in normal healthy individuals

through aging [9]. CpG-island shores – i.e., areas with low CpG

density bordering CpG-rich regions known as CpG islands - show

frequent variations of DNA methylation between cancer and

normal tissues, as well as in stem cells compared with differentiated

tissues [10]. On the other hand, a low CpG density area, distinct

from shores or CpG islands, was identified as a primary region for

the transgenerational differentially methylated regions (DMR)

[11]. In vitro data show that, transcription complexes, such as

transcription factors, nucleosome occupancy, chromatin contents

[12,13], show differential binding preference to genomic regions

depending on CpG density. DNA methyltransferases (DNMTs)

interactions with the transcription machinery [14] may bring

DNA methylation variation dependent on CpG density. Also,

proximity to repeat elements is another genomic feature that

might affect DNA methylation stability. For instance, Alu repeat

elements have been proposed as methylation centers that can

contribute to propagate DNA methylation to nearby gene

promoter CpGs [15,16,17].

Blood DNA from unfractionated peripheral leukocytes has been

most frequently used in DNA methylation analyses in epidemiol-

ogy studies [18], as it can be easily obtained from living human

individuals and used for DNA methylation analysis following

standard collection and isolation techniques. Due to the interest in

the investigation of genetic and molecular markers, a wealth of

epidemiology studies have collected and stored blood leukocyte

DNA, which can be readily used for DNA methylation analyses.

Peripheral blood leukocytes have been suggested to directly or

indirectly participate in the pathophysiology of a wide array of

human diseases that are initiated by or associated with systemic

inflammatory and immune responses, including – but not limited

to – immune, infectious, cardiovascular, and respiratory disease

[19]. As a result, DNA methylation analyses on blood DNA have

been conducted in investigations of ischemic heart disease [20,21],

stroke [21], autoimmune connective-tissue disease [22], as well as

of psychiatric disease [23], neurological disorders [24], and various

cancers [25].

In the present study, we report analyses on DNA methylation

markers with different genomic characteristics aimed at: i)

characterizing short-term variability in blood DNA methylation;

and ii) identifying characteristics associated with the variability in

DNA methylation levels. We investigated a population exposed to

an environmental risk factor, i.e., metal-rich airborne particulate

matter (PM), which has been previously associated with short-term

variations in DNA methylation [26]. We used statistical methods

accounting for measurement error from pyrosequencing analyses,

as well as potential effects on DNA methylation from modifications

in the proportion of leukocyte cell types. We show examples of

markers with rapid variation in DNA methylation, and we

demonstrate sequence and other marker characteristics that are

associated with DNA methylation stability.

Materials and Methods

Study Participants
The present study is based on 63 male healthy workers of a

Northern-Italy electric steel plant, free of cancer, cardiovascular,

and pulmonary disease [26,27]. Characteristics and exposure

levels of the study participants were reported previously [26]. An

in-person interview collected detailed individual and lifestyle

information. For each participant, we obtained blood samples

on two different days: on the first day of a workweek (Day 1); and

after three days of work (Day 4). This study was approved by

Università degli Studi di Milano and IRCCS Ca’ Granda

Maggiore Policlinico Hospital and all samples were collected

according to the institutional review board of the Università degli

Studi di Milano and IRCCS Ca’ Granda Maggiore Policlinico

Hospital in accordance with institutional guidelines. Individual

written informed consent was obtained from all participants before

the study.

Blood Sample Collection and DNA Methylation Analyses
Day 1 and 4 blood samples were collected and processed using

the same protocols, as previously described [26]. After purification,

Day 1 and Day 4 DNA samples were interspersed across plates to

minimize plate effect bias. We measured DNA methylation in 12

genes [Adenomatous polyposis coli (APC), cyclin-dependent kinase

2a (p16), tumor-protein p53 (p53), Ras-association (RalGDS/AF-6)

domain family member 1 (RASSF1A), cadherin 13 (CDH13), nitric

oxide synthase 3 (eNOS), endothelin-1 (ET-1), interferon, gamma

(IFNc), interleukin-6 (IL-6), tumor-necrosis factor a (TNFa), nitric-

oxide synthase 2, inducible (iNOS), and telomerase reverse

transcriptase (hTERT)]; and two repeat elements (L1 [also known

as LINE-1] and Alu). All methylation markers were selected as

candidates for their potential participation in pathway activated by

PM exposures. Bisulfite-PCR-pyrosequencing was performed as

previously described [26]. PCR primers and PCR conditions for

promoter regions of genes and repeat elements are listed in Table

S1. All post-PCR products were run twice on pyrosequencing to

increase precision.

Characteristics of the DNA Methylation Markers
In order to study the correlation between sequence character-

istics and stability of each methylation marker, we determined the

following characteristics: GC content (G+C) and ratio of observed-

to-expected CpG [CpG(o/e)] at 6200bp from the first CpG site

evaluated; and distance of any repeat elements from target CpGs

in 59 or 39 direction (Table 1). GC content and CpG(o/e) data

were obtained using the web-based program cpgplot (http://www.

ebi.ac.uk/Tools/emboss/cpgplot/#andNewcpgseek). The dis-

tance of repeat elements from target CpGs was calculated
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manually using the UCSC web browser (http://genome.ucsc.edu/

). We used information on ten classes of repeats, included short

and long interspersed nuclear elements (SINEs and LINEs), long

terminal repeat elements (LTRs), DNA repeat elements, simple

repeats (micro-satellites), low-complexity repeats, satellite repeats,

RNA repeats (including RNA, tRNA, rRNA, snRNA, scRNA,

srpRNA), and other repeats (including repeats classified as class

RC [Rolling Circle] and ‘unknown’).

Statistical Analysis
To account for the data structure, we used the following

random-effect model:

Yijk~azuizvijzeijk ð1Þ

where Yijk represents the methylation value for individual

i = 1,2,…,63, on Day j = 1,2, for technical pyrosequencing

replicate k = 1,2; a is an overall intercept, and ui and vij are

random effects associated with individual and day within

individual; eijk is the error term. As is standard in linear mixed

effects models, we assume the random effects and residual errors

are normally distributed: ui,N (0, sID); vij,N (0, sID, Day); and

eijk,N (0, sRun), yielding three variance components (sID, sID,

Day, sRun) in the model. The residual variance sRun captures the

pyrosequencing measurement error measured by the technical

replicates (pyrosequencing runs) on the same individual and day.

We used intraclass correlation coefficients (ICCs) to estimate DNA

methylation stability. We expected the ICCs to vary between 0

(i.e., no correlation between Day 1 and 4) and 1 (i.e., maximum

stability between Day 1 and 4). Define sTOT =sID+sID, Day+
sRun. We calculated two versions of the ICC, ICC1 and ICC2,

using the following formulas:

ICC1~
sID

sTOT{sRun

~
sID

sIDzsID,Day

ð2Þ

ICC2~
sID

sTOT

~
sID

sIDzsID,DayzsRun

ð3Þ

ICC1 was calculated to estimate within-individual DNA

methylation stability, excluding pyrosequencing measurement

error (sRun). ICC2 includes all three sources of variability the

denominator. We fitted unadjusted models, as well as models

adjusted for PM10 exposure levels, age, current smoking, and

percent blood granulocytes. Percent blood granulocytes are the

most represented cell type among nucleated blood cells and were

therefore included in the adjusted models as an independent

variable to account for potential differences in DNA methylation

due to between-day changes in the proportions of leukocyte

subtypes. As a sensitivity analysis, we also added to the adjusted

models percent lymphocytes and percent monocytes. ICCs from

this sensitivity analysis (Table S2) did not show any major

differences from those calculated from the models adjusted only

for PM10, age, current smoking, and percent blood granulocytes.

To evaluate the potential determinants of the differences in

DNA methylation stability between the markers, we fitted simple

linear regression models in which the dependent variable was ICC

and the independent variable was one of the characteristics of the

methylation markers (i.e., G+C density, CpG(o/e), distance from

repeat elements at 39, distance from repeat elements at 59; mean

methylation value, or range of methylation). Covariate-adjusted

ICC1, as calculated above, were used in this set of analyses. In

addition to the linear models, we also tested non-linear relation-

ships between ICC and each of the marker characteristics via

regression models including a quadratic term. As sensitivity

analysis, we fit the same regression models after logit transforma-

tion of ICC, because ICC is a proportion ranged between 0 and 1

and non-normal distributed. Results from this set of sensitivity

analysis (shown in Table S3 and Figure S1) did not show major

departures from the results of the primary analysis. All statistical

analyses were performed in SAS (version 9.2; SAS Institute Inc.,

Cary, NC, USA).

Table 1. Sequence characteristics of the DNA methylation markers analyzed.

Gene G+C CpGo/e
Repeat elements:
distance at 3’

Repeat elements:
distance at 5’

# CpG positions
analyzed

APC 0.70 0.72 1847 371 4

CDH13 0.39 0.27 0.00 0.00 2

eNOS 0.66 0.29 592 1411 3

ET-1 0.60 0.86 2570 2264 4

hTERT 0.70 0.54 873 3466 3

IFNc 0.39 0.39 874 934 2

IL-6 0.59 0.59 460 1503 2

iNOS 0.56 0.19 1004 520 2

p16 0.72 0.74 699 1093 7

p53 0.57 0.56 1484 408 4

RASSF1A 0.64 0.69 1440 3208 4

TNFa 0.57 0.50 568 1327 4

Alu –* –* –* –* 3

LINE-1 –* –* –* –* 3

*Alu and LINE-1 were not considered, as repeat elements have multiple locations across the human genome with different context sequence characteristics.
doi:10.1371/journal.pone.0039220.t001
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Results

Levels and Characteristics of the DNA Methylation
Markers

We measured DNA methylation in 12 gene promoter regions

(APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNc, IL-6,

TNFa, iNOS, and hTERT) and 2 of non-long terminal repeat

elements, i.e., LINE-1 and Alu (Table 1). The markers showed

extensive differences in the proportion of guanosine and

cytosine content (G+C), which varied between 0.39 (IFNc) and

0.72 (p16). The ratio of observed over expected CpG frequency

[CpG(o/e)] varied between 0.19 (iNOS) and 0.86 (ET-1). The

markers also had large differences in the distances from the

nearest repeat element in 59 (ranging between 0 bp [CDH13]

and 3.5 kB [hTERT]) and 39 (ranging between 0 bp [CDH13]

and 2.6 kB [ET-1]). In each marker, the assays we designed

allowed for measuring a variable number of CpG sites, ranging

from 2 to 7. The number of CpGs was dependent on the CpG

density in the vicinity of the target area, as we were able to

analyze a higher number of CpGs in sequences with higher

CpG density. In the statistical analysis, we used the average of

the CpG sites in each marker. We also conducted sensitivity

analyses using the methylation values at each of the CpG sites

within each marker, as shown below.

Mean DNA Methylation Difference between Day 1 and 4
APC, p16, and CDH13 showed small mean differences in DNA

methylation levels between Day 1 and 4 (Table 2). APC

methylation increased from 4.7% (SE = 0.13) to 4.9%

(SE = 0.13%) (difference = 0.2, 95% CI = 0.04; 0.44). p16 methyl-

ation increased from 2.2% (SE = 0.09) to 2.4% (SE = 0.09)

(difference = 0.2, 95% CI = 0.04; 0.3). CDH13 methylation

decreased from 78.0% (SE = 0.33) to 77.4% (SE = 0.35) (differ-

ence = 20.6, 95% CI = 21.1; 20.06). iNOS methylation de-

creased from 68.2% (SE = 0.46) to 67.6% (SE = 0.48) (differ-

ence = 20.6, 95% CI = 21.2; 20.02). All the other markers did

not show clear differences in DNA methylation between the two

time points. The analyses on individual CpGs were overall similar

to the analysis based on the mean of CpGs (Table S4).

Stability of DNA Methylation Markers
We used ICCs to describe the stability of the DNA methylation

markers between Day 1 and 4. ICCs capture both the mean and

within-individual differences of the individual data points, thus

providing an overall measure of biomarker stability. We decom-

posed the total variance in three components (Table 3), i.e., sID,

representing the between-individual variance in DNA methyla-

tion; sID, Day, representing the within-individual variance due to

changes in DNA methylation between Day 1 and 4; and sRun,

representing the variance between duplicate pyrosequencing runs

on the same sample (i.e., pyrosequencing error).

In unadjusted models (Table 3), the between-individual

variability (sID) varied between 0.15 (APC and p16) and 23.18

(IFNc). The within-individual variability between Day 1 and 4

(sID, Day) varied between 0.20 (Alu) and 11.18 (IFNc). Some of the

markers (i.e., RASFF1A and ET-1) had higher between- that

within-individual variability. Other markers (i.e., IL-6 and iNOS)

had higher within- than between-individual variability.

In unadjusted models that estimated ICCs subtracted of the

pyrosequencing measurement error (ICC1, see Table 3), IL-6

was the marker that showed the most stable methylation levels

between Day 1 and 4 [ICC1 = 0.89]. APC was the marker that

showed the highest variation between the two time points

[ICC1 = 0.10]. Representative scatter plots for these two genes

are shown in Figure 1a (IL-6) and 1b (APC), respectively. ICCs

estimated without subtracting the pyrosequencing error (ICC2)

were only moderately lower than ICC1 (Table 3). In order to

adjust for the potential effects of PM10 exposure, as well as

potential confounding by age, current smoking and changes in

percent granulocytes in the blood counts, we also used models

fitting those covariates as independent variables to calculate

adjusted sID, sID, Day, and ICCs. Results from adjusted models

were remarkably similar to those from unadjusted models

(Table 3). We also performed additional set of analyses based

on individual CpGs with both unadjusted (Table S5a) and

adjusted models (Table S5b). The analyses on individual CpGs

generally showed similar stability across the CpG sites within in

the same gene (Table S4). However, in hTERT the CpG at

position 3 appeared moderately more stable (adjusted

ICC1 = 0.57) than the CpGs at position 1 (adjusted

ICC1 = 0.15) or 2 (adjusted ICC1 = 0.30). Also, in p16 the

CpG at position 7 showed higher stability (adjusted

ICC1 = 0.51) than the CpGs at positions 1–6 (adjusted ICC1

between 0.00 and 0.24).

In order to understand the sole effect of PM10 level in changing

DNA methylation during Day 1and Day 4, we examined the

association between exposed PM levels with DNA methylation in

each gene (Table S6 and S7). We also examined whether PM

levels were associated with increased or decreased percent

granulocytes, monocytes, or lymphocytes during these time points

(Table S8). Although DNA methylation of some of the genes was

associated with PM10, the variance of DNA methylation was not

influenced by the level of PM10, as shown by the adjusted models

in Table 3; nor the level of PM10 was associated with the percent

of granulocytes, monocytes, or lymphocytes.

Marker and Genomic Characteristics Associated with
DNA Methylation Stability

Figure 2 shows the correlations of ICCs with the marker and

genomic characteristics that we considered. In these analyses, we

used ICC1 values from adjusted models. To evaluate the

Table 2. Blood DNA methylation levels (%mC) in Day 1 and
Day 4 samples.

Gene Day 1 Day 4 Difference (95% CI)

Mean (SE) Mean (SE)

APC 4.7 (0.13) 4.9 (0.13) 0.2 (0.04; 0.4)

CDH13 78.0 (0.33) 77.4 (0.35) 20.6 (21.1; 20.06)

eNOS 91.9 (0.30) 92.0 (0.25) 0.1 (20.3; 0.6)

ET-1 6.2 (0.42) 6.3 (0.40) 0.1 (20.4; 0.6)

hTERT 92.6 (0.18) 92.6 (0.15) 0.0 (20.3; 0.4)

IFNc 73.8 (0.78) 73.0 (0.73) 20.8 (22.0; 0.4)

IL-6 42.6 (0.65) 42.6 (0.62) 20.0 (20.6; 0.6)

iNOS 68.2 (0.46) 67.6 (0.48) 20.6 (21.2; 20.02)

p16 2.2 (0.09) 2.4 (0.09) 0.2 (0.04; 0.3)

p53 6.2 (0.17) 6.3 (0.17) 0.1 (20.2; 0.3)

RASSF1A 7.5 (0.46) 7.1 (0.46) 20.4 (21.0; 0.2)

TNFa 12.8 (0.33) 12.5 (0.33) 20.3 (20.8; 0.2)

Alu 25.8 (0.10) 25.8 (0.08) 20.0 (20.2; 0.2)

LINE-1 78.8 (0.13) 78.8 (0.15) 20.0 (20.4; 0.2)

doi:10.1371/journal.pone.0039220.t002

Temporal Stability of Epigenetic Markers

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39220



correlation of DNA methylation stability with CpG density, we

examined the GC content (G+C), as well as the ratio of observed-

to-expected [CpG(o/e)] within 6200bp from the first CpG site

analyzed. Both these measures showed negative correlation with

ICC (20.13 estimated change in ICC1 [95% CI 20.27; 0.01] per

a 0.1 increase in G+C, Figure 2a; and 20.08 estimated change in

ICC1 [95% CI 20.15; 20.02 per a 0.1 increase in CpG(o/e),

Figure 2b). These findings suggest that CpG-rich regions had

lower stability. The distance of repeat elements in 39 showed a

moderate negative correlation with the ICC values (20.20

estimated change in ICC1 [95% CI 20.40; 0.006] per each

1,000 nucleotides, Figure 2c). The distance of repeat elements in

59 did not show correlation with ICC (20.04 estimated change in

ICC1 [95% CI 20.2; 0.1] per each 1,000 nucleotides, Figure 2d).

The mean methylation of the markers on Day 1 did not show a

linear correlation with ICCs (Figure 2e). However, visual

inspection showed that the highest variations between Day 1

and 4 were found in markers with either high or low mean DNA

Table 3. Variance components and ICCs estimating the concordance between Day 1 and Day 4 DNA methylation measures.

Unadjusted Models
Models adjusted by PM10 exposure levels, age, current
smoking, and percent blood granulocytes

Marker sID sID, Day sRun ICC1 ICC2 sID sID, Day sRun ICC1 ICC2

APC 0.15 1.28 0.36 0.10 0.08 0.14 1.29 0.36 0.10 0.08

CDH13 4.98 2.36 0.25 0.68 0.66 4.72 2.26 0.25 0.68 0.65

eNOS 2.77 1.34 0.60 0.67 0.59 2.69 1.35 0.60 0.67 0.58

ET-1 4.92 7.30 0.13 0.40 0.40 5.37 7.33 0.13 0.42 0.42

hTERT 0.47 1.11 0.54 0.30 0.22 0.54 1.09 0.54 0.33 0.25

IFNc 23.18 11.18 0.23 0.67 0.67 18.27 9.94 0.23 0.65 0.64

IL-6 22.07 2.68 0.30 0.89 0.88 22.74 2.65 0.30 0.90 0.89

iNOS 11.28 2.52 0.30 0.82 0.80 11.53 2.54 0.30 0.82 0.80

p16 0.15 0.49 0.07 0.23 0.21 0.16 0.49 0.07 0.25 0.23

p53 0.53 1.65 0.23 0.24 0.22 0.58 1.64 0.23 0.26 0.24

RASSF1A 7.41 11.13 0.15 0.40 0.40 8.15 11.00 0.15 0.43 0.42

TNFa 4.40 1.69 0.17 0.72 0.70 3.67 1.70 0.17 0.68 0.66

Alu 0.12 0.20 0.27 0.39 0.21 0.11 0.20 0.27 0.37 0.20

LINE-1 0.59 0.98 0.33 0.38 0.31 0.59 0.96 0.33 0.38 0.31

Annotation: sID represents the between-subject variance in DNA methylation; sID, Day represents the variance due to within-subject changes in DNA methylation
between Day 1 and Day 4; sRun represents the variance between duplicate pyrosequencing runs on the same sample (i.e., analytical measurement error from
pyrosequencing). Two types of Intraclass Correlation Coefficients (ICCs) were computed using the quantities above: ICC1, subtracted of the measurement error (sRun),
was calculated as follows ICC1 = (sID/(sID+sID, Day)); and ICC2, which included the measurement error (sRun) at the denominator, was calculated as follows ICC2 = (sID/
(sID+sID, Day+sRun)).
doi:10.1371/journal.pone.0039220.t003

Figure 1. Representative scatter plots (Day 1 vs. Day 4 blood DNA methylation measures) of the biomarkers with highest (IL-6,
panel A) and lowest (APC, panel B) intra-class correlation coefficients.
doi:10.1371/journal.pone.0039220.g001
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methylation. By fitting a quadratic term regression, we found an

inverted U-shaped relation between mean DNA methylation and

ICCs (0.2 [95% CI 0.1; 0.4] for the linear term; 22*1023, 95% CI

24*1023; 21*1023 for the quadratic term; both estimating the

change in ICC1 per 10% methylcytosine units of DNA methyl-

ation). The observed range of methylation on Day 1 was positively

correlated with ICC (0.2 estimated change in ICC1 [95% CI 0.1;

0.3] per 10% methyl-cytosine units of DNA methylation,

Figure 2f).

Discussion

In the present analysis of a set of DNA methylation markers, we

identified large marker-dependent differences in the short-term

variability of blood DNA methylation levels. We demonstrated

that at least some of these differences can be predicted using

characteristics of the nearby sequence – such as those describing

CpG density – as well as based on the mean and range of

methylation of the markers on Day 1. These results, albeit limited

to a small-sized population with a specific condition of exposure to

PM, provide a first set of information to identify methylation

markers with high short-term variability.

Based on early findings in cancer tissues that showed frequent

alterations in DNA cytosine methylation within promoter CpG

islands, CpG-rich regions have been a primary focus of functional

epigenetic studies [28,29]. However, recent data by Irizarry et al.,

suggesting that a majority of functional methylation sites reside in

regions less dense in CpGs termed CpG-island shores, have

directed DNA methylation studies toward sequences with lower

methylation density [10]. Because CpG-island shores have been

shown to constitute a large proportion of tissue-specific and

cancer-related methylation patterns [10], these sequences with

lower methylation density are now widely considered hot spots for

DNA methylation changes. In the present study based on DNA

methylation measures on blood leukocyte DNA, we found a

negative association between CpG nucleotide density and ICCs.

This finding indicates that DNA methylation in CpG-rich areas is

highly variable, whereas CpG-poor regions have more stable

methylation – at least over the short time period (i.e., three days)

evaluated. Key differences of our study compared with previous

data on CpG-island shores [10,30] are in the type of DNA source

and the study design that we used. Our analysis was specifically

conducted to draw inference for human studies using unfraction-

ated blood leukocytes as the DNA source for methylation analyses.

As we collected blood leukocyte DNA twice from each of the study

participants, we could directly differentiate the amount of inter-

individual and within-individual variability in the DNA methyl-

ation markers. However, evidence from previous functional studies

also supports our findings. DNA methyltransferases (DNMTs), the

best-characterized enzymes responsible for DNA methylation

changes in somatic human tissues, have been shown to bind to

specific genomic regions [31]. Recruiting of de-novo DNMTs is

preferential to CpG-rich sequences, such as CpG islands [32], and

could account for the higher short-term variation of DNA

methylation that we observed in CpG-rich sequences.

One interesting observation in the present study is the finding of

a marginal negative association between ICCs and the 39 distance

of repeat elements from the methylation sites analyzed. Repeat

elements may spread DNA methylation to adjacent genes [17].

Paradoxically, repeat elements have also been shown to serve as

insulators, protecting against de-novo DNA methylation [33]. In our

Figure 2. Correlations of intraclass correlation coefficients (ICCs) with DNA methylation levels and genomic characteristics of the
sequences analyzed. The panels show correlations of ICCs for each of the methylation biomarkers with content of guanosine and cytosine (G+C,
panel A); ratio of observed/expected CpG dinucleotides (CpG o/e; panel B); distance of repeat elements from 39 (panel C); distance of repeat elements
from 59 (panel D); DNA methylation mean on Day 1 (panel E); range of DNA methylation on Day 1 (panel F). The scatter plots use ICC values
subtracted of pyrosequencing measurement errors (ICC1) and estimated from models adjusted by PM10 exposure levels, age, current smoking, and
percent blood granulocytes. Each data point corresponds to the ICC1 value for one biomarker, as indicated by the corresponding label.
doi:10.1371/journal.pone.0039220.g002
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data, methylation markers closer to repeat elements were more

stable in time, suggesting that repeat elements may protect DNA

methylation of neighboring genes from short-term variation.

Previous investigations suggest that this finding may result from

interplays involving CCCTC-binding factor (CTCF), specificity

Protein 1 (SP1) and DNMTs. Repeat elements tend to be

associated with heterochromatin states and inactive histone

modifications, and are regarded as insulators that act like a

barrier against the influences of neighboring cis-acting elements

[34,35]. This molecular property of repeat elements might

underlie the high-stability of DNA methylation markers located

within a short distance of a repeat element.

In our analysis, we found that the markers with mean

methylation values close to 50% on Day 1 had the highest

stability whereas those close to 0% or 100% showed less

correlation between the two time points. We also found that the

range of DNA methylation observed on Day 1 was positively

correlated with the ICC values. As the markers with methylation

values close to 50% were also the ones with the largest ranges

(compare Figure 2e and 2f), this second finding is to be considered

closely related with the inverse U-shaped correlation observed

between mean DNA methylation and ICC. We suggest potential

ways through which DNA methylation showed levels around 50%.

The most obvious way is that methylation is derived from a variety

of cell types in blood leukocytes, and the mix of different

methylation patterns in each cell might determine the average

leucocyte methylation values. Whereas the mix of cell types may

determine differences in DNA methylation, our results of DNA

methylation stability were adjusted for the number and also the

proportion of different blood cell types. Another possibility is that

the two alleles present in each cell could be differentially

methylated, i.e. one of them methylated and the other unmethy-

lated. However, although this is the usual pattern found in

imprinted genes, allele-specific methylation is highly infrequent in

non-imprinted genes. None of the markers analyzed is known to

be imprinted. However, as we did not perform allele-specific

methylation analysis, we cannot exclude differential allelic

methylation based on our data. It is worth noting that, whereas

we computed ICCs net of pyrosequencing measurement error, we

did not run duplicates for bisulfite treatment and PCR-amplifica-

tion, which are other potential unmeasured sources of measure-

ment error. The association between larger methylation ranges

and ICCs may in part result from the influence of residual

measurement error, which is comparatively larger for the

biomarkers with smaller ranges.

We studied a group of individuals with well-characterized

environmental exposure to metal-rich air particles. In previous

analyses, we have shown in this group exposure-dependent

alterations of epigenetic and molecular markers related with pro-

inflammatory and oxidative properties of the exposure, including

DNA methylation [26,36], histone modifications [36], miRNAs

[37], telomere length [38], and mitochondrial DNA abundance

[27]. However, in the present study we found similar ICCs in

models with or without adjustment for PM10 levels. This finding

indicates that our estimates of the stability of DNA methylation

between Day 1 and 4 are independent from the levels of exposure

in the steel factory. The levels of individual PM10 exposure in this

study group ranged from high to low, and individuals with lower

exposures had PM10 levels similar to those found outdoors in

metropolitan areas in North America and Europe [26]. Therefore,

our results may extend to populations of individuals living in more

common environmental conditions.

We recognize several limitations to our investigation. Our

results are based on a limited selection of methylation markers,

which were available for the present analyses from previous and

ongoing studies on the effects of metal-rich particles on DNA

methylation. Our selection included markers related to inflamma-

tion, oxidative stress and cell-cycle control. Our results do not

necessarily apply to other markers. Nonetheless, the markers

analyzed included a variety of different genomic characteristics, as

well as a wide range of methylation levels, that allowed for

effectively testing the correlation of ICC with differences in CpG

density, distances from repeat elements, and DNA methylation

values on Day 1. Our marker selection is particularly limited if

compared with the high numbers of methylation sites that can be

analyzed using methylation arrays or other genome-scale ap-

proaches. However, bisulfite-PCR-pyrosequencing is the gold

standard for DNA methylation analyses in short (up to 80–100 bp)

sequences and provides measures that are considerably more

accurate and quantitative than microarray measures [39,40]. The

higher precision of pyrosequencing-based analyses is a critical

strength in the context of the statistical analyses presented in this

report. We recognize the small sample size as an additional

constraint that limited the precision of our statistical estimates.

Our statistical strategy, however, took advantage of some of the

strengths of the study, including the measurement of all

methylation markers in duplicates and the availability of

differential blood counts. We computed ICCs net of pyrosequenc-

ing error, we adjusted all results for percent granulocytes, and we

conducted sensitivity analyses that demonstrated that the results

were not dependent on changes in the proportion of other major

leukocyte cell types, i.e. granulocytes, monocytes and lymphocytes

(Table S2). However, some of the changes in DNA methylation

between Day 1 and 4 might have been determined by proliferation

of cell subpopulations within each of the major cell types (e.g.,

lymphocytic subpopulations). Whether short-term DNA methyla-

tion modifications in blood leukocytes are determined by actual

modifications of DNA methylation or rather by clonal expansion

of a subpopulation with distinctive methylation profiles remains to

be determined. Finally, we only examined two time points within

the same week. It is worth noting that our findings may not apply

to slower progressive changes in DNA methylation, such as those

associated with aging. Studies with a larger number of time points

over a longer time period may provide more detailed and accurate

information on cumulative long-term changes in DNA methyla-

tion.

In conclusion, we showed that DNA methylation markers in

blood DNA have different degrees of short-term variability. The

amount of variability in the methylation markers evaluated could

be predicted based on easy-to-obtain sequence information, such

as CpG density and distance from repeat element, as well as on the

average and range of methylation at the first measurement. Our

results provide information on short-term variability of methyla-

tion measures on blood leukocyte DNA, which are extensively

used in human studies. Whether these results can be extended to

other cell types remains to be determined in further investigations.

Supporting Information

Figure S1 Correlations of logit transformed ICCs with
genomic characteristics of the sequences analyzed. The

panels show correlations of logit transformed ICCs for each of the

methylation biomarkers with content of guanosine and cytosine

(G+C, panel A); ratio of observed/expected CpG dinucleotides

(CpG o/e; panel B); distance of repeat elements from 39 (panel C);

distance of repeat elements from 59 (panel D); DNA methylation

mean on Day 1 (panel E); range of DNA methylation on Day 1

(panel F). The scatter plots use ICC values subtracted of
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pyrosequencing measurement errors (ICC1) and estimated from

models adjusted by PM10 exposure levels, age, current smoking,

and percent blood granulocytes. Each data point corresponds to

the ICC1 value for one biomarker, as indicated by the

corresponding label.

(DOC)

Table S1 PCR primer sequences.
(DOC)

Table S2 Table S2a. Variance components and ICCs estimating

the concordance between Day 1 and Day 4 DNA methylation

measures. Models adjusted by PM10 exposure levels, age current

smoking, and percent blood granulocytes. Table S2b. Variance

components and ICCs estimating the concordance between Day 1

and Day 4 DNA methylation measures. Models adjusted by PM10

exposure levels, age current smoking, and percent blood

monocytes. Annotation: sID represents the between-subject

variance in DNA methylation; sID, Day represents the variance

due to within-subject changes in DNA methylation between Day 1

and Day 4; sRun represents the variance between duplicate

pyrosequencing runs on the same sample (i.e., analytical

measurement error from pyrosequencing). Two types of Intraclass

Correlation Coefficients (ICCs) were computed using the quan-

tities above: ICC1, subtracted of the measurement error (sRun),

was calculated as follows ICC1 = (sID/(sID+sID, Day)); and ICC2,

which included the measurement error (sRun) at the denominator,

was calculated as follows ICC2 = (sID/(sID+sID, Day+sRun)).

Table S2c. Variance components and ICCs estimating the

concordance between Day 1 and Day 4 DNA methylation

measures. Models adjusted by PM10 exposure levels, age current

smoking, and percent blood lymphocytes. Annotation: sID

represents the between-subject variance in DNA methylation;

sID, Day represents the variance due to within-subject changes in

DNA methylation between Day 1 and Day 4; sRun represents the

variance between duplicate pyrosequencing runs on the same

sample (i.e., analytical measurement error from pyrosequencing).

Two types of Intraclass Correlation Coefficients (ICCs) were

computed using the quantities above: ICC1, subtracted of the

measurement error (sRun), was calculated as follows ICC1 = (sID/

(sID+sID, Day)); and ICC2, which included the measurement error

(sRun) at the denominator, was calculated as follows ICC2 = (sID/

(sID+sID, Day+sRun)).

(DOC)

Table S3 Non-linear relationships between logit trans-
formed ICCs and each of the marker characteristics.
(DOC)

Table S4 DNA methylation levels (%mC) at individual
CpGs in Day 1 and Day 4 blood samples.
(DOC)

Table S5 Table S5a. Variance components and ICCs based on

methylation values at individual CpGs estimating the concordance

between Day 1 and Day 4 DNA methylation measures.

Unadjusted Models. Annotation: sID represents the between-

subject variance in DNA methylation; sID, Day represents the

variance due to within-subject changes in DNA methylation

between Day 1 and Day 4; sRun represents the variance between

duplicate pyrosequencing runs on the same sample (i.e., analytical

measurement error from pyrosequencing). Two types of Intraclass

Correlation Coefficients (ICCs) were computed using the quan-

tities above: ICC1, subtracted of the measurement error (sRun),

was calculated as follows ICC1 = (sID/(sID+sID, Day)); and ICC2,

which included the measurement error (sRun) at the denominator,

was calculated as follows ICC2 = (sID/(sID+sID, Day+sRun)).

Table S5b. Variance components and ICCs based on individual

CpGs estimating the concordance between Day 1 and Day 4 DNA

methylation measures. Models adjusted by PM10 exposure levels,

age current smoking, and percent blood granulocytes. Annotation:

sID represents the between-subject variance in DNA methylation;

sID, Day represents the variance due to within-subject changes in

DNA methylation between Day 1 and Day 4; sRun represents the

variance between duplicate pyrosequencing runs on the same

sample (i.e., analytical measurement error from pyrosequencing).

Two types of Intraclass Correlation Coefficients (ICCs) were

computed using the quantities above: ICC1, subtracted of the

measurement error (sRun), was calculated as follows ICC1 = (sID/

(sID+sID, Day)); and ICC2, which included the measurement error

(sRun) at the denominator, was calculated as follows ICC2 = (sID/

(sID+sID, Day+sRun)).

(DOC)

Table S6 The effect of PM10 level on the changes of DNA
methylation between Day 1 and Day 4.

(DOC)

Table S7 Variance components and ICCs estimating
the concordance between Day 1 and Day 4 DNA
methylation measures. Models adjusted by PM10 exposure +
Interaction PM10*DAY Annotation: sID represents the between-

subject variance in DNA methylation; sID, Day represents the

variance due to within-subject changes in DNA methylation

between Day 1 and Day 4; sRun represents the variance between

duplicate pyrosequencing runs on the same sample (i.e., analytical

measurement error from pyrosequencing). Two types of Intraclass

Correlation Coefficients (ICCs) were computed using the quan-

tities above: ICC1, subtracted of the measurement error (sRun),

was calculated as follows ICC1 = (sID/(sID+sID, Day)); and ICC2,

which included the measurement error (sRun) at the denominator,

was calculated as follows ICC2 = (sID/(sID+sID, Day+sRun)).

(DOC)

Table S8 Association of PM10 levels with changes in
blood cell types between Day 1 and Day 4.

(DOC)
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