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Introduction

Motivation

Globular star clusters have long been considered the ideal astrophysical systems for the
study of stellar dynamics. For such stellar systems, the relevant two-body relaxation
times are typically shorter than their age, so that it can be argued that they are close
to a thermodynamically relaxed state. A classical problem in stellar dynamics is the
search for self-consistent equilibrium solutions of the “collisionless” Boltzmann equa-
tion, where the mean potential is generated by the distribution of stars populating the
system. In this approach, the starting point is the identification of an appropriate form
for the one-particle distribution function in phase space.

Indeed, as a zeroth-order dynamical description, the class of models defined as a
truncated Maxwellian distribution function, supplemented by the assumption of spheri-
cal symmetry (the King 1966 models), have had remarkable success in the application to
observed globular clusters. In recent years, thanks to high resolution space and ground-
based observations, great progress has been made in the acquisition of detailed informa-
tion of the structure of these stellar systems (e.g., see Mcl.aughlin et all 2006; Anderson
& van der Marel 201(0). In addition, recent improvements in computational speed of the
codes for performing N-body simulations and the availability of accelerator hardware
(GRAvity PipEs, Graphic Processing Units) allow us to begin the study of the entire
dynamical evolution of selected globular star clusters on a star-by-star basis (see the
N-body models of Palomar 14 and M4, by [Zonoozi et all2011 and D. C. Heggie, respec-
tively).

Such progress calls for a renewed effort on the side of dynamical modelling. In fact,
more general analytical models would have a a twofold role. On the observational side,
they could serve as a useful guide for the interpretation of the relevant photometric
and kinematic observables and they provide a first insight into some observational is-
sues only partly understood, such as the detailed distribution of angular momentum or
the physical origin of the deviations from spherical symmetry observed in some globu-
lar clusters (e.g., see lvan_den Bergh 2008). On the the theoretical side, realistic analyti-
cal models could provide more appropriate initial conditions for numerical simulations
(e.g., in which internal rotation and external tidal field are properly taken into account),
allowing us to address a number of long-standing issues, such as the interplay between
two-body relaxation processes and angular momentum transport or the effects induced
by different tidal environments on the dynamical evolution of star clusters.

xiii
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Thesis overview

Main results

Driven by the motivations described above, the present Thesis is devoted to the study
of the internal dynamics of globular clusters, with the aim of providing a more realistic
dynamical framework for this class of stellar systems, in which fundamental physical
ingredients such as the external tidal field, internal rotation, and weak anisotropy in
velocity space are properly taken into account. The main results of the Thesis are sum-
marized below.

Self-consistent triaxial tidal models: As a generalization of the well known family
of spherical King models, we constructed a family of triaxial models in which the
deviations from sphericity are induced by the presence of an external tidal field, taken
into account self-consistently. By considering the simple case of a cluster in circular
orbit within a host galaxy, the equilibrium distribution function is obtained from
the one describing the spherical models by replacing the energy integral with the
relevant Jacobi integral in the presence of the stationary tidal field (see also Heggie
& Ramamani(1995). The construction of the model requires the solution of a singular
perturbation problem for the relevant Poisson equation. A method of solution to
any desired order is devised, with a formulation of the equation for the general term
of the perturbation series by means of the Fda di Bruno formula (see [Fad_di Bruna
1855); the explicit solution up to the second order in the perturbation parameter is
provided. In particular, the singularity is cured by the introduction of a boundary
layer and, to obtain a uniformly valid solution over the entire domain, an asymptotic
matching is performed, by application of the Van Dyke principle (seeVan Dyke [1975).
A full characterization of the resulting configurations in terms of the relevant intrinsic
and projected properties has been given and the range of the predicted flattening is
consistent with that observed in most Galactic globular clusters.

Self-consistent axisymmetric rotating models: Following general statistical mechan-
ics considerations, we constructed a family of rigidly rotating models defined as an
extension of the King models to the case of axisymmetric equilibria, flattened by
solid-body rotation. The relevant distribution function depends only on the Jacobi
integral associated with the internal rotation; the structure of the models is deter-
mined by solving the relevant Poisson equation with the same perturbation method
discussed for the tidal models, since the corresponding singular perturbation prob-
lem is formally equivalent. In addition, we also considered a second family of models
characterized by differential rotation, designed to be rigid in the central regions and
to vanish in the outer parts. In this case the relevant Poisson equation is solved by
a spectral iteration method, based on the Legendre expansion of the density and the
potential. A full description of the photometric and kinematic observables has been
provided and the models in the moderate rotation regime are particularly suited to
the description of the observed rotating star clusters. For general interest in stellar
dynamics, we also studied the models in the strong rotation regime, which tend to
show a central toroidal structure.

Dynamical stability of differentially rotating stellar systems: By means of specifi-
cally designed N-body simulations with a direct code (STARLAB, see Portegies Zwart
et al. 2001), a full stability analysis of the family of differentially rotating models has
been performed. As expected, configurations in the moderate differential rotation
regime are found to be dynamically stable. Curiously, there also exists an intermedi-
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ate rotation regime in which the systems exhibit a central toroidal structure and are
dynamically stable. In turn, a new dynamical instability, characterized by a variety of
unstable Fourier modes of the density distribution, is observed in models with high
degree of differential rotation, in striking analogy with recent stability analyses of
differentially rotating fluids with polytropic equations of state (Centrella et all 2001}
Saijo_et all 2003; Ou_& Tohlind 2006). The excitation of an unstable mode seems to
be triggered by the presence of the relevant corotation point inside the rotating con-
figuration. This result may help to clarify the physical motivation of the “empirical”
Ostriker & Peebles stability criterion for rotating stellar systems (Ostriker & Peebles
1973).

Long-term dynamical evolution of rotating stellar systems: The long-term dynam-
ical evolution of the differentially rotating models, studied as isolated systems, has
been investigated by means of a comprehensive survey of N-body simulations. This
study clarifies how the presence of global angular momentum affects the evolution
of stellar systems with respect to the traditional paradigm for the dynamical evolu-
tion of nonrotating models (for an elegant summary, see [Heggie & Hudi 2003) and
extends the results obtained in the context of Fokker-Planck evolutionary models
with rotation (seeEinsel & Spurzen [1999; Kim et all2002, among others). In particu-
lar, by comparing the evolution of several rotating models with selected nonrotating
models, characterized by the same initial structural properties, we found that rotat-
ing configurations reach core collapse more rapidly. Following early investigations
(Akiyama & Sugimotd [1989), we also interpreted the evolution of a rotating system
by distinguishing between a short initial phase, in which the gravo-gyro instability
(Hachis1111979) takes place and subsequently levels off, and a second phase in which
the residual rotation no longer affects the dynamical evolution of the system, which
experiences the gravothermal catastrophe and reaches core collapse, as it happens
for nonrotating configurations.

Observational signatures of internal rotation in Galactic globular clusters: The
family of differentially rotating models studied in the present Thesis show a vari-
ety of realistic velocity dispersion profiles, characterized by the presence of pres-
sure isotropy and radially-biased anisotropy in the central and intermediate regions,
respectively. The kinematical behavior in the outer parts strictly depends on the
adopted truncation prescription; in particular, the family which, in the nonrotat-
ing limit, reduces to the Wilson spheres is characterized by tangentially-biased ani-
sotropy. This kinematical feature (rarely obtained in equilibrium models) is of great
interest as tangentially-biased pressure anisotropy is observed in the presence of in-
ternal rotation in globular clusters. For example, the full three-dimensional view of
the velocity space of w Cen, obtained from proper motions and radial velocities mea-
surements, has revealed that this object is characterized by significant rotation and
tangential anisotropy in the outer parts (in particular, see lvan de Ven et all 2006).
We successfully applied such family of models to the interpretation of the structure
and kinematics of three Galactic globular cluster, characterized by the presence of
internal rotation, namely w Cen, 47 Tuc, and M15. The selection of the relevant
model has been performed by a method which combines a number of physically-
based kinematic criteria with a more statistically rigorous best-fit procedure for the
determination of the relevant dimensionless parameters and physical scales of the
configuration, respectively.

Pressure anisotropy as signature of partial relaxation in Galactic globular clusters:
On the observational side, we also performed a photometric and kinematic study



xvi Thesis overview

of sample of Galactic globular clusters, by means of spherical King and f(*) models.
The latter is a family of radially-biased spherical models, explicitly constructed to de-
scribe violently relaxed elliptical galaxies (see Bertin & Stiavelli{1993, Bertin & Trent:
2003). The study suggests that less relaxed clusters tend to conform to the picture
of formation via incomplete “violent relaxation”, i.e. the process associated with the
rapid fluctuations of the gravitational potential during the early collapse phase of a
self-gravitating system (see [Lynden-Bell [1967, van_Albadal[1982).

Organizational note

The present Thesis consists of three Parts, for a total of eight Chapters. Each part is de-
voted to the study of the effects on the internal dynamics of globular clusters of a specific
physical ingredient. Part I is composed of Chapters 2 and 3 and presents the construc-
tion and characterization of self-consistent equilibria in the presence of an external tidal
field. Part II spans from Chapter 4 to Chapter 7 and addresses several aspects of the role
played by internal rotation in stellar systems, both from the theoretical and observational
point of view. Part III, which actually corresponds solely to Chapter 8, is dedicated to
the analysis of the effects of anisotropy in the velocity space, with particular reference
to the relaxation state of the stellar system. Parts I, III, and a substantial fraction of Part
II have appeared as refereed publications in scientific journals; co-authors of the rele-
vant articles are mentioned below. Some variations have been made in the presentation
of previously published results, to maintain consistency of style and content structure
through the manuscript.

Chapter 1: Globular clusters as quasi-relaxed stellar systems: We set the stage by
describing some basic structural and dynamical properties of globular star clus-
ters. Some introductory remarks about the methods traditionally used in stellar
dynamics, with emphasis on the description of low-mass stellar systems, are also
presented.

Chapterl The construction of nonspherical models of quasi-relaxed stellar sys-
tems: We consider the general problem of the construction of three-dimensional
nonspherical self-consistent solutions of the collisionless Boltzmann equation and
we propose an analytical perturbation method and numerical spectral iteration
method for solving the relevant Poisson equation. The application to the case in
which the stellar system is in the presence of an external (stationary) tidal field is
then explicitly discussed. This work has been completed in collaboration with G.
Bertin and has been published as an article in The Astrophysical Journal (Bertin &
Varri2008§), on which the Chapter is based.

ChapterBl Properties of quasi-relaxed stellar systems in an external tidal field:
We describe in systematic detail the intrinsic and the projected structure and kine-
matics of the models introduced in ChapterP} covering the entire parameter space,
from the case of sub-critical to that of critical tidal strength regime. This work has
been completed in collaboration with G. Bertin and has been published as an article
in The Astrophysical Journal (Varri & Bertin 2009), on which the Chapter is based.

Chapter@l New self-consistent rotating equilibria: We present two new classes
of self-consistent axisymmetric models characterized by the presence of rigid and
differential internal rotation, respectively. A full description in terms of the princi-
pal photometric and kinematic observables is provided. This work has been com-
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pleted in collaboration with G. Bertin and has been published as an article in As-
tronomy & Astrophysics (Varri & Bertin 2012), on which the Chapter is based.

Chapter Dynamical stability of differentially rotating stellar systems: By
means of specifically designed N-body simulations a full dynamical stability anal-
ysis of the family of differentially rotating models introduced in ChapterBlhas been
performed. Dynamical instabilities are shown to occur in several configurations in
the strong differential rotation regime. This work has been carried out in collab-
oration with E. Vesperini, S. L. W McMillan, and G. Bertin and is currently in the
final stages of preparation for submission to a scientific journal.

Chapter[l Long-term dynamical evolution of isolated rotating stellar systems:
We report the results of the investigation, performed by means of a dedicated sur-
vey of N-body simulations, of the long-term dynamical evolution of selected con-
figurations in the family of differentially rotating models introduced in Chapter B
studied as isolated systems. This work has been carried out in collaboration with
E. Vesperini, S. L. W. McMillan, and G. Bertin and is currently in preparation for
submission to scientific journals.

Chapter[l Observational signatures of rotation in Galactic globular clusters: A
first application of the differentially rotating models to the interpretation of the
kinematics and morphology of the globular clusters w Cen, 47 Tuc, and M 15 has
been performed in collaboration with P. Bianchini, G. Bertin, and A. Zocchi. This
work is in final stages of preparation for submission to a scientific journal.

Chapterl Galactic globular clusters in different relaxation conditions: We present
the results of an observational investigation of pressure anisotropy as signature of
partial relaxation in sample of Galactic globular clusters. This work has been com-
pleted in collaboration with A. Zocchi and G. Bertin and has been published as
an article in Astronomy & Astrophysics (Zocchi et all2012), on which the Chapter is
based.

Appendix A. Details of the perturbation method: We summarize some definitions
and derivations concerning the perturbation method for the solution of the Poisson
equation presented in Chapter

Appendix B. Details of the iteration method: We report the derivation of the gen-
eral solution of the radial part of the Laplacian, as resulting from the spectral it-
eration method for the solution of the Poisson equation presented in Chapter
We summarize the details of the numerical implementation of such method, as ap-
plied to the construction of the family of differentially rotating models presented
in Chapter @






CHAPTER 1

Globular clusters as quasi-relaxed stellar systems

1.1 Basic properties of globular clusters

Globular star clusters can be considered as the “building blocks” of galaxies, because
they are among the first recognisable stellar structures that were born on sub-galactic
scales and their age is comparable to the age of the Universe. They are compact groups
often containing about a million stars, which are held together by their mutual gravi-
tational attraction, and are characterised by a nearly spherical distribution and a high
density in the central regions.

For the astronomical community this class of stellar systems has been valuable in
many ways, from the first applications of the theory of stellar evolution to recent in-
vestigations in the context of what is called “near-field cosmology”. The typical range
of masses (10* to 10° M) place globular star clusters at the low-mass end of stellar
systems, between open clusters and dwarf galaxies. At this mass range a puzzling
dichotomy is observed. On the one hand, the available observations do suggest that
globular star clusters do not contain large amounts of dark matter and can generally
be well described by Newtonian gravity. On the other hand, there are the more spa-
tially extended dwarf galaxies, whose dynamics appears to be dark matter dominated
and which are usually related to cosmological substructures. These classical boundaries
have been blurred by the recent discovery of new classes of stellar groups, such as ultra-
faint dwarf spheroidals, ultra-massive super star clusters, ultra-compact dwarf galaxies,
and dark-matter-poor tidal dwarf galaxies (for recent studies, seeMisgeld & Hilker 2011
and Brodie et all2011).

The study of the internal dynamics of the low-mass stellar systems in the transition
region between classical star clusters and dwarf galaxies is therefore of great importance
in the context of structure formation theories because only accurate dynamical models
can lead to a reliable interpretation of the photometric and kinematic observables, pro-
viding an estimate of the relevant mass-to-light ratio so as to firmly exclude or require
the presence of significant amounts of dark matter in these systems. In this context, glob-
ular star clusters also play an important role as interesting targets to test major gravita-
tional paradigms, such as Modified Newtonian Dynamics vs. Newtonian Dynamics (see
Baumgardt et all 200534 and IMoffat & Toth 200§, among others; for a recent and contro-
versial test performed on the globular cluster NGC 2419, seellbata et all2011 and [Sanders
2017).

1.1.1 Galactic globular clusters

Galactic globular clusters can be collectively described as a system of approximately 150
objects, for which there is a clear evidence of the existence of two sub-systems associ-
ated to the Galactic disk and with the Galactic halo, respectively (Ashman & Zep{ 2008).
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Quantity Mean value
Ry 12.16 kpc
My —7.27 mag

c 1.57
tretc 1.09 x 108 yr
trei,h 1.12 x 10% yr

R, 1.14 pc

R, 2.21 pc

Ttr 21.85 pc
wy(0) 18.81 mag/arcsec?

00 2.32 x 10® Ly /pc?

€ 0.06

00 5.5km/s

Table 1.1: Mean values for selected structural and dynamical properties of Galactic globular clus-
ters. Listed from top to bottom: (1) distance from the Galactic center, (2) absolute magnitude (in
the V band), (3) concentration parameter (King [196€), (4) central relaxation time, (5) half-mass
relaxation time, (6) projected core radius (HWHM of the surface brightness profile), (7) effective
radius (also denoted as projected half-light radius, i.e. the radius within which half of the total
luminosity is enclosed, in projection), (8) truncation radius (King [196€), (9) central surface bright-
ness (in V band), (10) central luminosity density, (11) ellipticity, (12) central velocity dispersion.
The values presented in the table are calculated from the data reported in the [Harrid (201() cata-
log. To be noted that some parameters are not independent, in particular po is derived by making
use of pv (0), C, and 7¢; trer,. by making use of My, r., and C; ¢y, by making use My, ry.

These sub-systems are therefore defined primarily with reference to the distance of star
clusters from the Galactic center, but also on the basis of a number of other structural
and dynamical properties, such as the metallicity or the morphology of the horizontal
branch of the HR diagram. In addition, star clusters of the halo sub-system represent a
kinematic tracer of the Galactic gravitational field at large scale, and their spatial distri-
bution provide a stringent constraint for the models of the dark matter distribution in
the outer part of the Galaxy. When considered as a system, globular clusters also play a
fundamental role in the validation of theories of formation and evolution of the Galaxy
itself, as they can offer a record of the chemical and dynamical conditions of its formation
phase.

As individual objects, globular clusters are studied with particular reference to two
classes of observables, as determined from the photometric and the spectroscopic data,
respectively, which provide information about the structural and kinematical properties
of the systems. In particular, most dynamical models designed for the description of this
class of stellar systems can be constrained by a joint analysis of the surface brightness
profile and the velocity dispersion profile. Such observable quantities are usually con-
structed under the simplifying assumption of spherical symmetry and are traditionally
interpreted on the basis of geometrically simple, physically-based dynamical models
(presented in some detail in the next Section). Dynamical studies of this kind have led
to the determination of structural and kinematical properties for the majority of Galac-
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Figure 1.1: Distribution of the central and half-mass relaxation times for Galactic globular clusters,
as published in the [Harrid (201() catalog.

tic globular clusters. Following the presentation style of IMeylan & Heggie (1997) and
Heggie & Hul (2003), the mean values of selected parameters are recorded in Table [l

A quantity of particular relevance for the study of the internal dynamics of globular
clusters is the relaxation time, which may be regarded as the time scale on which the
system approaches thermodynamical equilibrium, as a result of deflections and kinetic
energy exchanges associated with the two-body encounters between the stars (a formal
definition is provided in the next section). Since globular clusters are characterized by a
significant density variation between the central regions and the outer parts, it is critical
to distinguish between central (¢,.;,) and half-mass (¢,.; ») relaxation time; the distribu-
tions of the relevant values, as published in the [Harrid (2010) catalog, are illustrated in

Fig. [Tl
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Figure 1.2: (a) Comparison of axial ratios determined by (Chen & Chen (201()) and those by White
& Shawl (1987) for the 92 Galactic globular clusters common in the two samples. Clusters with
reliable measurements (82) are marked as filled squares. The dashed line marks equal values.
Median values of measurement errors for both studies are shown in the lower right corner. The
offset panels (b) and (c) show the two distributions of axial ratios. From|Chen & Chen (2010).

From the morphological point of view, globular cluster present only small deviations
from spherical symmetry. Yet, there is observational evidence of flattening, as measured
by the ellipticity parameter, defined as e = 1 — b/a, where b/a is the ratio of the minor to
major axis of the projected image of a cluster. For a long time, the White & Shawl (1987)
database (hereafter denoted as WS87) represented the only comprehensive collection of
measurements of the ellipticity of Galactic globular clusters; recently, an alternative ho-
mogeneous database of ellipticities has been published by (Chen & Chen (2010) (hereafter
denoted as CC10). The two distributions of values show significant differences (for a de-
tailed comparison, see Fig. [2). In fact, from the WS87 database (93 objects), Galactic
clusters appear to be predominantly round, with the peak of the distribution at e ~ 0.05,
maximum value of the entire sample given by ¢ ~ 0.3, and axial ratios randomly ori-
ented in space. However, the distribution of the CC10 ellipticities (116 objects, 82 in
common with the WS87 database) is peaked at € ~ 0.15, with the majority of the values
falling in the range [0.05,0.25], and maximum value ¢ ~ 0.45. In addition, especially
for the clusters in the region of the Galactic Bulge, their major axes preferentially point
toward the Galactic Center (see Fig.[[3).
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Figure 1.3: Spatial distribution of 57 Galactic globular clusters. Thick black ellipses mark clusters
with a distance from the Galactic Center smaller than 2.7 kpc and thin blue ellipses mark those
beyond. For clusters flatter than the average value determined by [Chen & Chen (2010) (b/a <
0.87), a line, the size of which depicts the axial ratio, is drawn through the corresponding ellipse.
There are 14 flattened bulge clusters, marked by lines in thick ellipses. For approximately half
of these clusters (highlighted in red), the angle between the direction of the major axis and the
direction pointing toward the Galactic Center is less than 20 deg. From |Chen & Chen (201()

The apparent discrepancies between the two studies should be interpreted by tak-
ing into account that (i) the WS87 values result from an optical study, with the use of a
surface photometry technique consisting of consecutive blurring of the digitized images
of blue sensitive photographic plates. On the other hand, CC10 ellipticities are deter-
mined with a number count technique, based on the analysis of the spatial distribution
of 2MASS point sources; (ii) as a result of the different resolution limits of the two ap-
proaches, the WS87 measurements mostly refer to the inner regions of the clusters, while
CC10 to the outer parts; (iii) unfortunately, in both cases, the cluster flattening values do
not refer to a standard isophote, such as the cluster half-light radius (as also noted by
van den Bergh 2008 with reference to the WS87 database). In fact, the WS87 axial ratios
are derived from the averaged values of the “isophotes” at various distances from the
center, while CC10 axial ratios are measured at the location at which a given value of
the density contrast with respect to the background is reached. This limitation is crucial
because there is observational evidence that the ellipticity of a cluster depends on radius
(see (Geyer et all[1983). For instance, in Fig. [[4 the radial profiles of the axial ratio b/a
for three Galactic globular clusters (NGC 104, NGC 7078, and NGC 5139) are illustrated.
Therefore, we may conclude that the two database somehow carry complementary in-
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Figure 1.4: Axial ratio as a function of the distance (in ) from the center of the cluster for (from
top to bottom) NGC 104 (47 Tuc), NGC 7078 (M15), and NGC 5139 (w Cen). Black dots mark the
values from White & Shawl] (1987); in the upper right of the panels, the typical uncertainties and
the correlation lengths of the data are shown as vertical and horizontal arrows, respectively. White
dots mark the values from|Geyer et all (1983). From [White & Shawl (1987).
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Table 1.2: Rotation in Galactic globular clusters

Globular Cluster oo €s Aot ea € Ref.
kms=! kms!' kms ! kms!

NGC 104 9.6 0.6 44 0.4 0.09 3)
NGC 288 2.7 0.8 0.5 0.3 — 3)
NGC 1851 10.4 0.5 1.6 05 005 (1),2)
NGC 1904 53 0.4 0.6 0.5 0.01 (1),(2)
NGC 2808 13.4 1.2 33 05 012 (1),Q2)
NGC 3201 45 0.5 1.2 03 012 (8)
NGC 4590 24 0.9 1.2 04 005 (3
NGC 5024 44 0.9 0.0 0.5 0.01 3)
NGC 5139 19.0 1.0 6.0 1.0 017 (6),(7)
NGC 5904 7.5 1.0 2.6 05 014 (1)
NGC 6121 3.9 0.7 1.8 02 000 (3)
NGC 6171 41 0.3 2.9 1.0 002 (1),2)
NGC 6218 4.7 0.9 0.3 0.2 0.04 3)
NGC 6254 6.6 0.8 0.4 0.5 0.00 (1),(2)
NGC 6388 18.9 0.8 39 1.0 001 (1),2)
NGC 6397 45 0.6 0.2 05 007 (1))
NGC 6441 18.0 0.2 12.9 20 002 (1),02)
NGC 6656 6.8 0.6 1.5 0.4 0.14 3)
NGC 6715 16.4 0.4 2.0 05 006 (4),5)
NGC 6752 5.7 0.7 0.0 0.0 0.04 3)
NGC 6809 2.7 0.5 0.5 0.2 0.02 3)
NGC 6838 23 0.2 1.3 05 000 (1),2)
NGC 7078 13.5 0.9 3.8 0.5 0.05 (1),(2)
NGC 7099 5.0 0.9 0.0 0.0 0.01 3)

Notes. Summary of the kinematical properties of selected Galactic globular clusters, as recently
presented by Bellazzini et ali2012. From left to right: cluster identification, central velocity disper-
sion, error associated with the central velocity dispersion, rotation amplitude, error on the rotation
amplitude, ellipticity, references. The references in the last column indicate the source of the ve-
locity dispersions and of the rotation amplitudes. The A, values from [Lane et all (2010d) have
been multiplied by a factor 2 so as to directly compare them with the scale adopted in Bellazzini
et al.2012. Ellipticity values are from White & Shawl (1987).

References. (1) Bellazzini et all2017; (2) [Harrid 2010; (3) [Lane_et all 2010d; (4) Thata_et all 2009; (5)
Bellazzini et all 2008 ; (6) lzan_de Ven_ et all 2006; (7) [Pancino_et all 2007 ; (8) ICote et all 1995 ; (9)
Meylan & Mayor (1991

formation about the morphology of Galactic globular clusters.

From the kinematical point of view, Galactic globular clusters can be considered as
pressure-supported stellar systems, characterized by a high degree of isotropy in the
velocity space, as expected for systems close to a thermodynamically relaxed state (see
Section 1.3 for further considerations on this point). In addition, internal rotation has
been measured in a progressively increasing number of objects. The detection of internal
rotation in star clusters is a challenging task, because the typical value of the ratio of
mean velocity to velocity dispersion is only of a few tenths, for example V/oy ~ 0.46,0.32
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for 47 Tucanae and w Centauri, respectively (see Bellazzini et all 2012). Ground-based
work on nearby Galactic globular clusters has already demonstrated the power of three-
dimensional kinematics lvan Leeuwen et all (2000). The Hubble Space Telescope (for
w Cen, see |Anderson & van der Marel 2010; for 47 Tuc, see |[Anderson & King 2003)
and GAIA, with the planned acquisition of the proper motion of thousands of stars in
globular clusters, make this goal within reach, by allowing to measure the component of
rotation in the plane of the sky, supplemented by the kinematical information derived
from radial velocity measurements. A summary of the kinematical properties of selected
Galactic globular clusters is recorded in Table [ the discussion of the effects of internal
rotation on the dynamics of this class of stellar system is presented in Subsection 1.4.2.
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Figure 1.5: Distributions of ellipticities of globular clusters in external galaxies. From [Harris et all
)

1.1.2 Extragalactic globular clusters

Globular clusters are present also in external galaxies (Ashman & Zepf 2008). After the
first observational studies of relatively small samples of objects in the nearby Magellanic
Clouds (e.g., see [Elson et all I@), the investigation has been extended also to the glob-
ular clusters systems in selected galaxies of the Local Group and the Virgo Cluster. In
particular, a number of observational programs performed first with WFPC2 and later
with ACS on the Hubble Space Telescope have determined high resolution photometric
profiles for large samples of globular clusters in Andromeda (M31), the giant elliptical
galaxy Centaurus A (NGC 5128), the Small and Large Magellanic Clouds, the dwarf
galaxies Fornax and Sagittarium, and the giant elliptical galaxy M87 (see

ﬁﬂ 2009, respec-

2007; Harris et all 2002, 2006; Mackey & Gilmord 2003H
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tively).

Such photometric studies show that the globular cluster system in M31 is quite simi-
lar to the Galactic one, as composed of old, approximately round stellar systems, which
can be successfully described in terms of spherical, isotropic, truncated models. How-
ever, the majority of the globular clusters in the Magellanic Clouds and Fornax, as well
as a significant fraction of clusters in NGC 5128, seem to be systematically younger, more
spatially extended and therefore better represented by a power-law density profiles, es-
pecially in the outer parts, with respect to the Galactic clusters. In addition, they appear
to be flatter, as illustrated in Fig. [3

1.2 Dynamical description of self-gravitating systems

1.2.1 Fundamental time scales

In the study of the internal dynamics of globular clusters it is particularly important to
introduce a time scale that measures the dynamical effects associated with the two-body
encounters within a self-gravitating stellar system. These encounters can be treated as
events of Rutherford scattering, in which a star representing a “test mass” m; is deflected
by another “field star” of the cluster, characterized of mass m. The relaxation time can
thus be defined as the time scale beyond which the cumulative effects of subsequent
encounters, as measured by the increase of the square of the transverse velocity compo-
nent with respect to the original direction of motion, becomes comparable to the initial
specific energy of a star

Ugtart = tTel /(AUL)Qzﬂvstartnbdb (11)

where b is the impact parameter and n is the number density of the system.
The increment of the transverse velocity may be expressed as

m 0
Av| = 2Uspqrt —— Sin — — 1.2
on Vst tm—l—mt sin cos2 (1.2)

where 6 denotes the deflection angle, with sin®(6/2) = 1/[1 + (b/by)?], where by =
G(m+my)/v?,,.. By substituting Eq. (C2) in Eq. (CI) and by performing the integration
over [0, byae] (With by, e, maximum value allowed for the impact parameter), it is readily

found that s

Ustart
8nG?nm? In A (13)
where A = byq2/bo (In A is often called Coulomb logarithm).

By assuming that the stars in the cluster are characterized by the same mass m and
that the velocity distribution is approximately a Maxwellian distribution, it can be shown
(see lSpitze1 [1987) that the velocity dispersion o can be used as a good approximation of
the initial velocity vsier¢. An estimate of the relaxation time, such as the values presented
in Fig. [T can now be obtained, if we insert the values of the relevant quantities sug-
gested by King (1966) models. To be noted that both the number density and the velocity
dispersion are defined as a function of the distance from the center of the system (for sim-
plicity assumed here as spherically symmetric), therefore the relaxation time itself can
be expressed as a radial profile. This is the reason why it is appropriate to distinguish
between central t,.¢; . o< 0(0)%/n(0) and half-mass relaxation timet,..; 5, &< o(r1,)?/n(rp).

trel ~
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With particular reference to the half-mass relaxation time, from the virial theorem, an
alternative expression can be recovered
N1 /QTZ/ 2
trel,c = G2 oA
where, by assuming the half-mass radius as maximum value for the impact parameter

the Coulomb logarithm can be expressed as In A = In(0.4N). By defining the dynamical
time as tp j, = 27, /0, the following relation is obtained

(1.4)

trel,h N
XX .
tp.n 1n(0.4N)

(1.5)

Within this traditional description of the two-body encounters, other important time
scales can be introduced in similar fashion. In particular, from the energy exchange
between two stars during a scattering event the time scale associated with the energy
equipartition can be defined, while the time scale associated with the dynamical friction
is calculated with reference to the decrement of the component of the velocity of the test
star parallel to the original direction of motion.

1.2.2 Kinetic description

The relation expressed in Eq. [L3) is particularly important because, as for globular clus-
ters N ~ 10* — 105, suggests a statistical description for this class of stellar systems in
terms of a one-particle distribution function in phase space f = f(x,v,t).

In principle, the time evolution of a distribution function is governed by the Boltz-

mann equation
of of 8f8<1>5_(8f>
coll

ot Vox  ovox  \ot

where, on the right-hand side the collision integral is often treated in terms of the Fokker-
Planck approximation. On the left-hand side ®. denotes the mean field potential gen-
erated by the entire system, which is associated with the zeroth-order moment of the
distribution function (i.e., the density) by means of the Poisson equation.

If we are not interested in providing a description of the long-term evolution of a
stellar system, it is appropriate to refer to the equilibrium solutions of the homogeneous
equation associated with Eq. (LA), that is, the “collisionless” Boltzmann equation. With
particular reference to globular clusters, the relevant values of the dynamical and relax-
ation time scale guarantee that, on the one hand, the stellar system rapidly reaches a
quasi-stationary state on the dynamical time scale and, on the other hand, that the col-
lisionless description can be applied, at least as a zeroth-order approximation, because
the effects of collisions can be ignored.

The collisionless Boltzmann equation can be also expressed in terms of the canoni-
cal variables; this form greatly emphasizes the formal and conceptual proximity to the
Liouville theorem. In other words, an equilibrium solution of the Eq. (L) is a function
of the integrals of motion of the system. In particular, as stated by the Jeans theorem, an
equilibrium solution of the collisionless Boltzmann equation depends on phase space co-
ordinates only through the isolating integrals of the motion, that is those that effectively
reduce the dimensions of the manifold in phase space available to the dynamical system,
according to a given distribution function.

The study of self-consistent collisionless equilibrium models has a long tradition not
only in stellar dynamics, but also in plasma physics (e.g., see |Attico & Pegorard [1999).

(1.6)
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We note that in both research areas a study in the presence of external fields, especially
when the external field is bound to break the natural symmetry associated with the one-
component problem, is only rarely considered.

1.2.3 Fluid and virial description

For a long time the degree of detail offered by the kinetic description of stellar systems
has been somehow redundant with respect to the actual constraints provided by the
astrophysical observables. In particular, only recently, by means of high resolution pho-
tometry and recent determinations of large datasets of proper motions from the Hubble
Space Telescope, supplemented by the radial velocities measured along the line of sight,
a 5-dimensional view of an increasing number of Galactic globular clusters has become
available. Therefore, the less detailed yet more manageable fluid description (i.e., in
terms of the solutions of the generally called Jeans equations) often represented a popu-
lar alternative to the phase space description of stellar systems.

Fluid quantities are actually calculated as moments of the relevant distribution func-
tion in the velocity space. Correspondingly, their time evolution is governed by a hi-
erarchy of fluid equations, derived from the Boltzmann equation. The derivation leads
to an infinite set of fluid equations; however, such hierarchy is actually undetermined,
as each new equation introduces a new variable, corresponding to the velocity moment
of higher order. This chain of equation may be broken by introducing a “closure equa-
tion”, which often is described as the equation of state of the system or, in different
physical contexts, as an assumption on the form of the pressure tensor in the momen-
tum transport equation; the choice of an appropriate “closure” is highly nontrivial. In
the most common astrophysical applications, which usually involve the equations for
the first three moments (i.e., continuity, momentum, and energy conservation), the clo-
sure simply consists in a truncation of the hierarchy of the fluid equation by means some
assumption on the pressure tensor.

For this reason, especially when the stellar system is characterized by the presence of
anisotropy in the velocity space, this modeling approach is actually more suited as a sim-
ple diagnostic tool for the direct interpretation of the relevant astronomical observable,
instead of a powerful method for the construction of a fluid model for which it is pos-
sible to recover a kinetic counterpart defined from a distribution function (to be noted
that, also in the cases in which such inversion is formally achievable, there is no guaran-
tee that the resulting distribution function is positive definite, and therefore physically
meaningful).

By further decreasing the degree of detail of the description of the stellar system,
we finally reach the so-called virial description. As in the previous case, the relevant
quantities are defined as momenta the in the coordinate space of the previous ones. The
fundamental equation is given by the virial theorem in tensor form (from which the
traditional scalar form is recovered by considering the trace of the relevant tensors)

1d*1;;
2 dt?

1L;;
=2 (Tij + 2]> + Wij (17)

where I;; is the inertia tensor, W;; is the gravitational energy tensor, and T;; e I1;; /2 are
the ordered and random parts of the kinetic energy tensor. A number of useful global
diagnostic tools can be defined starting from these quantities, as discussed in the next
Chapters.
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1.2.4 N-body simulations

From a theorist’s perspective, globular clusters are also an excellent physical realization
of the “gravitational N-body problem”, which is the problem of understanding the evo-
lution of a system of N point masses interacting by gravitational forces.

The most straightforward and accurate technique to solve the gravitational N-body
problem is that of direct summation (e.g, see |Aarseth 1999, Spurzem [1999, Portegies
Zwart et al. 2001). In this approach, the force exerted on each particle is computed by
summing up the contributions from all other particles. The force is used to solve the
equations of motion of each body and all the trajectories are computed by means of a
numerical solver.

Alternative particle methods adopt the strategy of grouping particles together ac-
cording to their spatial distribution and compute the force exerted by the whole group
instead of considering the contribution of each particle. The most popular example in
this class is probably given by the “tree code” (seeBarnes & Hui [1986 and [Springel et al!
2001)), which arranges particles in cells and computes the force contributions from these
cells by means of truncated multipole expansions.

A different class of approximated methods includes Monte Carlo methods, Fokker-
Planck methods and gaseous methods. Monte Carlo methods (see [Hénon [1975; [Giersz
199§; lloshi_et all 2000, among others) treat the N-body system as a continuous system
in which particles are replaced by spherical shells of matter. Assuming equilibrium in
a smooth spherical potential, the global evolution of the system is followed. A simi-
lar approach is used in Fokker-Planck methods (e.g., see Cohnl [198( and Murphy et al!
1991)), with the difference that distribution functions are used instead of particles. The
evolution of the system is followed by direct integration of the Fokker-Planck equation.
Gaseous methods (e.g, see [Lynden-Bell & Eggleton 1980 and Louis & Spurzem [1991)
solve several equations for higher order moments of the Fokker-Planck equation.

Direct N-body simulations are therefore computationally demanding: these methods
present an O(N?) scaling with the number of particles. Many attempts have been made
to reduce their requirements, both from a software and from a hardware point of view.
The development of approximated methods was motivated in the first place by the in-
tention to reduce the computational complexity of direct methods, at the expense of a
reduced accuracy. From a hardware point of view, special purpose hardware is being
built to accelerate the computation of gravitational forces. The GRAPE family of com-
puters (GRavity PipE, see Makino et all 2003 for a recent summary), has proven very
efficient for this purpose. In the very last years, GPUs (Graphic Processing Units) have
emerged in the scene of high-performance scientific computing, with great interest from
the theoretical astrophysics community (e.g., see Gaburov et all2009).

1.3 Simple spherical quasi-relaxed models

1.3.1 Basic assumptions

On the basis of the empirical and theoretical backgrounds provided in the previous sec-
tions, the following set of assumptions are now physically well justified for the zeroth-
order dynamical description of an individual globular cluster

(i) the dynamical problem is treated in the continuum limit, that is, the granularity of
the real stellar system is ignored in the mean field description.

(ii) the system is assumed to be in a quasi-stationary state; therefore the distribution
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function, the relevant moments and the self-consistent potential are time indepen-
dent.

(iii) the system is assumed to be characterized by spherical symmetry; this assumption
greatly simplifies the formal construction of the models, as the gravitational poten-
tial becomes a function of only the distance from the center of the system and the
distribution function depends only on the variables r, v,, and v; (the latters being
the components of the velocity parallel and trasverse with respect to the radius
vector).

(iv) the system is assumed to be close to a thermodynamically relaxed state, as ex-
pected from the condition t44c > tre;,n. Therefore, this assumption allows us to
consider a distribution function that depends only on the single-star energy, thus
characterized by isotropy in the velocity space. Note that (ii) guarantees that the
energy is an integral of the motion, and (iii) suggests that we consider to consider
the phase space partition in terms of E = v?/2 + ®.(r) e J? con J = rv;, as nat-
ural for spherically symmetric systems. In the general case of f = f(E, J?), the
system may be characterized by the presence of anisotropy in the velocity space

(pr # po = pg)-

(v) the system is considered as composed by only one component, that is, the stars are
considered as a homogeneous population with a constant mass-to-light ratio.

(vi) the system is characterized by the presence of a spatial truncation, representative
of the tidal effects of the host galaxy

1.3.2 The role of truncation in phase space

Within the set of assumptions described above, a number of simple equilibrium self-
consistent models can be defined. Among the historical results, polytropic spheres played
an important role, basically borrowed from the theory of stellar structure. In fact, poly-
tropes are usually presented as fluid models, defined with particular reference to their
equation of state p = K, p"*1)/" where K,, = B;l/"/(n + 1) with B,, a positive con-
stant. They are equilibrium solution of the Lane-Emden equation, parametrized by the
polytropic index n. The relevant distribution function can be defined as

f(E) = A(-E)"~3/2 (1.8)

for £ < 0 e and vanishing otherwise. The associated density profile is defined as
p(r) = Bn[—®.(r)]", where A is a positive constant and B,, = 27%/2 AT'(n — 1/2)/n!.
Configurations with n < 5 have a finite total mass, the polytrope with n = 5 (i.e., the
so called Plummer model) is the first of the sequence characterized by a infinite spatial
extent.

Interestingly, the limiting case of a sequence of polytropes with n — oo can be related
(in a nontrivial way, see [Hunter 2001) to the isothermal sphere, defined as

f(E) = Aexp(—aFE) (1.9)

where A and a are positive constants; as expected, the relevant equation of state is given
by p = p/a and the density distribution is defined as p(¢) = Aexp(¢), with the dimen-
sionless potential ¢ = —a®. and A = A,/873/a3.
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Assumption (vi), the existence of a spatial truncation of the system, suggests that
we introduce a truncation in phase space with respect to the distribution function that
defines the isothermal sphere. The most popular family in the class of quasi-relaxed
models is defined as a Maxwellian distribution function, characterized by the presence
of an energy truncation (King [1966)

fre(E) = { é[eXp(_aE) ~exp(~ak)] ﬂg S gg (1.10)

The cut-off energy Ey should be interpreted as the threshold value beyond which a
star is no longer considered as part of the system. Because of the assumed spherical sym-
metry, the energy truncation directly translates into the existence of a truncation radius
r¢r. This family of models is characterized by two physical scales (associated with the
positive constants A and a) and one dimensionless parameter ], defined as the depth
of the central potential well, which provide a measure of the central concentration of
the configuration. Alternatively, the concentration can be measured by C' = log(r:/r0)
(there is a one-to-one correspondence between C and ¥). In addition, it has been demon-
strated (Spitze1 [1987) that this equilibrium solution of the collisionless Boltzmann equa-
tion represents also an approximate solution of the Fokker-Planck equation. Indeed, as
a zeroth-order description, these models have had remarkable success in applications to
observed globular clusters (e.g., see IDiorgovski & Meylan [1994; McLaughlin & van der
Marel 2005, and references therein) and provide the standard dynamical paradigm for
the calculation of the basic structural and dynamical properties for this class of stellar
systems (see Table [[T)).

Yet, the truncation prescription is not unique. In fact, in recent years an alterna-
tive family of quasi-relaxed configurations has become increasingly popular for obser-
vational applications. The models are defined by the following distribution function

fu () = { gl{exp(—aE) —exp(—aEp)[l — a(E — Ep)]} iﬁg § gg | (111)

and they represent the spherical isotropic nonrotating limit of a family of rotating mod-
els orginally introduced by Wilson (1975). The same definitions for the quantities in
Eq. (CI0) and the physical scales and the concentration parameter of the family of mod-
els apply here maybe. In this case, the truncation is continuous also with respect to the
first derivative in the energy E. In principle, distribution functions characterized by
even smoother gradients in correspondence with the energy cut-off may be defined (see
Davousi [1977).

As a result, the configurations are spatially more extended with respect to King mod-
els, with a similar behavior in the central regions and a less sharp slope of the density
distribution in the outer parts. This spatial feature is the reason of the recent success
of such family of models in the interpretation of the structures in the surface brightness
profiles that, in a relevant fraction of Galactic and extragalactic globular clusters, ex-
tend beyond the spatial truncation prescribed by King models. For instance, we show in
Fig. [LAthe direct comparison between the best-fit King and spherical Wilson models for
the number density and surface brightness density profiles of the globular cluster M92.

I This quantity is often denoted by Wy in the literature.
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Figure 1.6: The surface brightness and the number density profile of the cluster NGC 6341 (M92)
are shown in the top and bottom panel, respectively. The solid lines mark the best-fit King model
and the dashed lines the best-fit spherical Wilson model. From[Di Cecco et all (2012).

1.4 Three fundamental physical ingredients

1.4.1 Why do we need a more realistic dynamical framework?

As hinted in Section 1, in recent years great progress has been made in the acquisition of
detailed quantitative information about the structure and dynamics of Galactic globular
clusters, especially in relation to the measurement of the proper motions of thousands of
individual stars (see lvan Leeuwen et all 2000; MclLaughlin et all 2006; Anderson & van
der Marel 2010). Such progress calls for a renewed effort on the side of modeling. More
general analytical models would allow us to address a number of observational issues
only partially understood, such as the detailed distribution of angular momentum and
the origin of the observed departures from spherical symmetry.

As in the case of the study of elliptical galaxies (e.g., see Bertin & Stiavelli [1993,
and references therein), different approaches can be taken to the construction of models.
Broadly speaking, two complementary paths can be followed. In the first, “descriptive”
approach, under suitable geometrical (on the intrinsic shape) and dynamical (e.g., on the
absence or presence of dark matter) hypotheses, the available data for an individual stel-
lar system are imposed as constraints to derive the internal orbital structure (distribution
function) most likely to correspond to the observations. This approach is often carried
out in terms of codes that generalize a method introduced by iSchwarzschild (1979); for



16 1.4 Three fundamental physical ingredients

an application to the globular cluster w Cen, see lvan_de Ven et all (2006). In the sec-
ond, “predictive” approach, one proposes a formation/evolution scenario in order to
identify a physically justified distribution function for a wide class of objects, and then
proceeds to investigate, by comparison with observations of several individual objects,
whether the data support the general physical picture that has been proposed. Indeed,
King models belong to this latter approach.

The of the main purpose of this Thesis is to extend the analytical description of quasi-
relaxed stellar systems, so far basically limited to the simple spherical models outlined
in Section 1.3, to the nonspherical case. There are at least three different ways of extend-
ing spherical isotropic models of quasi-relaxed stellar systems (such as King models),
by modifying the distribution function so as to include: (i) the explicit presence of a
nonspherical tidal field; (ii) the presence of internal rotation; (iii) the presence of some
pressure anisotropy. These correspond to the physical ingredients that, separately, may
be thought to be at the origin of the observed non-spherical shapes.

As shown in Section 1, deviations from spherical symmetry are observed in globular
clusters (e.g., see Gever et all[1983;[White & Shawl [1987; (Chen & Chen 201(), and they
are often ascribed to internal rotation. In other words, it is frequently believed that tides
and pressure anisotropy (and dust obscuration), even though playing some role in indi-
vidual cases, should not be considered as the primary explanation of the observed flat-
tening of Galactic globular clusters. Such conclusion is suggested by the [White & Shaw]
(1987) database of ellipticities. In fact, it is recognized that the issue of what determines
the observed shapes of globular clusters remains unclear (e.g., see King [1961; Frenk &
Fall [1982; [Fall & Frenk [1985;Davoust & Prugniel [1990;Han & Ryden [1994; Ryden [1996;
Goodwin [1997, and references therein).

We might argue that real globular clusters are likely to be not fully relaxed, may pos-
sess some rotation and experience time-dependent tides so that analytical refinements
beyond the spherical one-component King models would not compete with the cur-
rently available numerical simulation tools that allow us to include these and a great va-
riety of other detailed effects that are relevant for the quasi-equilibrium configurations.
However, physically simple analytical models, accompanied by the study of more real-
istic numerical simulations, serve as a useful tool to interpret real data and to provide
insights into dynamical mechanisms, even though we know that real objects certainly
include features that go well beyond such simple physical models.

In conclusion, mastering the internal structure of spheroidal and triaxial stellar sys-
tems through a full spectrum of models, including rotation, is a prerequisite for studies
of many empirical and theoretical issues. In addition, it is required for the interpretation
of the relevant scaling laws (such as the Fundamental Plane, which appears to extend
from the brightest, pressure supported ellipticals down to the low-luminosity end of the
distribution of early-type galaxies, and possibly further down to the domain of globular
clusters) and for investigations aimed at identifying the presence of invisible matter (in
the form of central massive black holes or diffuse dark matter halos) from stellar dynam-
ical measurements.

1.4.2 External tidal field

It is commonly thought that globular clusters can be described as stellar systems of finite
size, with a truncation in their density distribution determined by the tidal field of the
hosting galaxy. Most of the interesting physical mechanisms that underlie the dynam-
ical evolution of these stellar systems (such as evaporation and core collapse; e.g., see
Spitze1 [1987; Heggie & Hui 2003) depend on such truncation and are frequently studied
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in the context of spherical models for which the action of tides is implemented by means
of the existence of a suitable truncation radius, supplemented by a recipe for the escape
of stars. Therefore, evolutionary models that rely on the assumption of spherical sym-
metry, such as Monte Carlo models (e.g., for a description of two of the codes currently
used, see |Giersz [1998; loshi_et all 2000) and Fokker-Planck models (e.g., for an exam-
ple of, respectively, the isotropic and anisotropic case, see [Chernoff & Weinberg [199(;
Takahashi et all[19974) are necessarily based on an approximate treatment of the tidal
field.

Yet, if tides are indeed responsible for the truncation, they should also induce some
deviations from spherical symmetry: in the simplest case of a cluster in circular orbit
about the center of the host galaxy, the associated (stationary) tidal field is nonspherical
and determines an elongation of the mass distribution in the direction of the center of
mass of the host galaxy accompanied by a compression in the direction perpendicular
to the orbit plane (e.g., see [Spitze1 [1987; [Heggie & Hul 2003). In Part I of the present
Thesis this simple physical model is analyzed in detail, with the aim of constructing
a family of tidal triaxial models in which the external tidal field is taken into account
self-consistently and the induced geometrical distortions are properly calculated.

Such analytic equilibria are, of course, naturally limited to the treatment of a very
idealized configuration of the cluster-galaxy system. In fact, only direct N-body simula-
tions, in which an external tidal field can be taken into account explicitly, provide a tool
for the study of the evolution of a tidally perturbed cluster, especially when noncircu-
lar orbits are considered, so that tidal effects are time-dependent (e.g., see Baumgardt &
Makino 2003). In particular, this approach has recently led to detailed investigations of
the rich morphology and kinematics of the tidal tails, i.e. the streams of stars escaped
from the cluster (e.g., seellee et all2006a; Kiipper et all 2008, 2010k, 2012).

1.4.3 Internal rotation

In the context of globular clusters, relatively little attention was actually placed on the
role of internal rotation. For ellipticals, most of the attention that led to the devel-
opment of stellar dynamical models, after the first kinematical measurements became
available in the mid-70s, was taken by the study of the curious behavior of pressure-
supported systems in the presence of anisotropic orbits (see also [Schwarzschild [1979,
1982;/de Zeeuwl [1985). In contrast, very little effort has been made in modeling rotation-
dominated ellipticals, even though the entire low-mass end of the distribution of ellip-
tical galaxies might be consistent with a picture of rotation-induced flattening (e.g., see
Davies et all[1983; [Emsellem et all2011)); similar comments apply to bulges.

For globular clusters, given the fact that they only exhibit modest amounts of flatten-
ing and given the success of the spherical King models, little work has been carried out in
the direction of stationary self-consistent rotating models (with some notable exceptions,
that is Woollev & Dickens 1962; [L.ynden-Bell 1962; Kormendy & Anand[1971]; Lupton &
Gunn1987; Lagoute & Longaretti1996). Therefore, as far as rotation-dominated systems
are Concerned, much of the currently available modeling tools go back to the pioneering
work of Prendergast & Tomer (1970), Wilson (1975), and [Toomre (1982), intended to de-
scribe ellipticals, and of [Jarvis & Freeman (1985) and [Rowley (1988), devoted to bulges.
In general, we may say that only very few rotating models with explicit distribution
function are presently known (for a recent example, see Monari et al. in preparation). In
this context, we should also mention the interesting work by [Vandervoori (1980) on the
collisionless analogues of the Maclaurin and Jacobi ellipsoids.

On the empirical side, a deeper study of quasi-relaxed rotating stellar systems is actu-
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ally encouraged by the investigation of the physical orgin of the observed deviation from
spherical symmetry. In this respect, a traditional diagnostic tool is offered by the (V/c, €)
diagram, in which the connection between morphology and kinematics is interpreted by
means of simple models of rigidly rotating homogeneous fluids (Maclaurin ellipsoids).
For this family of models the ratio of ordered to random motions can be expressed as

Vv o« 2t(e)
o 4\ g 2t(e) (112)

where the factor /4 is included to take into account the projection effect along the semi-
major axis and the function on the right-hand side is defined as

t(e)—£—3_262— 3v1 —e? (1.13)
W] 2e? 2¢ arcsine '

in terms of the polar eccentricity e = /1 — (b/a)?. The relation between polar eccentric-
ity e and the projected ellipticity € is given by e = \/1 — (1 — €)2. This diagram has been
widely used for the study of elliptical galaxies (e.g., see IDavies et al! [1983; Emsellem
et al. 2011)), but can be of some interest also for globular clusters. In Fig.[L7a selection of
rotating globular clusters are represented in such plane; given the small values of ellip-
ticities, the points are primarily located in the lower-left portion of the diagram, in the
region characterized by isotropy to mild anisotropy of the pressure tensor.

The connection between flattening and internal rotation has been discussed in detail
by means of nonspherical dynamical models in just a handful of cases, in particular for w
Cen (for an oblate rotator nonparametric model, seeMerritt et all[1997; for an orbit-based
analysis, see lvan_de Ven et all 2006; for an application of the Wilson 1975 models, see
Sollima_ et all2009), 47 Tuc (Meylan & Mayor [198€), M15 (van den Bosch et al|2006), and
M13 (Lupton et all[1987). In addition, specifically designed 2D Fokker-Planck models
(Fiestas et all 2006) have been applied to the study of M5, NGC 2808, and NGC 5286.
We recall that the detection of internal rotation in globular clusters is a challenging task,
because the typical value of the ratio of the amplitude of the projected rotation velocity
to the central velocity dispersion is only of a few tenths, for example V/oy ~ 0.46,0.32
for 47 Tuc and w Cen, respectively (from a recent study by [Bellazzini et all 2012; for
a summary of the results for several Galactic objects, see Table[L2land also Table 7.2 in
Meylan & Heggid[1997). However, great progress made in the acquisition of photometric
and kinematical information, and in particular of the proper motion of thousands of stars
(for w Cen, seevan Leeuwen et all2000,|IAnderson & van der Marel 201(; for 47 Tucanae,
seelAnderson & King 2003 and McLaughlin et all2006), makes this goal within reach (see
Lane et all2009, [Lane et all2010b for new kinematical measurements, in which rotation,
when present, is clearly identified).

On the one hand, two general questions provide further motivation to study quasi-
relaxed rotating stellar systems. On the one hand, many papers have studied the role of
rotation in the general context of the dynamical evolution of globular clusters, but a solid
interpretation is still missing. Early investigations (Agekian [195§; Shapiro & Marchant
1976) suggested that initially rotating systems should experience a loss of angular mo-
mentum induced by evaporation, that is, angular momentum would be removed by
stars escaping from the cluster. Because of the small number of particles, N-body simu-
lations were initially (Aarseth[1969; Wielen [1974;|Akiyama & Sugimotad [1989) unable to
clearly describe the complex interplay between relaxation and rotation. Later investiga-
tions, primarily based on a Fokker-Planck approach (Goodman [1983; [Einsel & Spurzem
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Figure 1.7: (V/o, ¢) diagram for selected Galactic globular clusters. Data are taken from Table 7.2
of Meylan & Heggid [1997.

1999; IKim_et all 2002; [Fiestas et all 2006) have clarified this point, not only by testing
the proposed mechanism of angular momentum removal by escaping stars, but also by
showing that rotation accelerates the entire dynamical evolution of the system. More
recent N-body simulations (Boily 2000; [Ernst et all 2007; [Kim_et all 2008) confirm these
conclusions and show that, when a three-dimensional tidal field is included, such ac-
celeration is enhanced even further. The mechanism of angular momentum removal is
generally considered to be the reason why Galactic globular clusters are much rounder
than the (younger) clusters in the Magellanic Clouds, for which an age-ellipticity rela-
tion has been noted (Frenk & Fall[1982), but other mechanisms might operate to produce
the observed correlations (Meylan & Heggid [1997;lvan den Bergh R00S).

On the other hand, the role of angular momentum during the initial stages of cluster
formation should be better clarified. In the context of dissipationless collapse, relatively
few investigations have considered the role of angular momentum in numerical exper-
iments of violent relaxation (e.g., the pioneering studies by (Goti [1973; see also Aguilar
& Merritt [1990). Interestingly, the final equilibrium configurations resulting from such
collisionless collapse show a central region with solid body rotation, while the external
parts are characterized by differential rotation.

It would thus be desirable to construct rotating models to be tested on low luminos-
ity ellipticals, bulges, and globular clusters, especially now that important progress has
been made in the collection and analysis of kinematical data. Presumably, many of these
stellar systems are quasi-relaxed, at least in their central regions. In which directions
should we explore deviations from the strictly relaxed case? We try to answer to this
question in Part II of the present Thesis, with the construction of two new families of ro-
tating equilibria, explicitly designed to describe, at least in the moderate rotation regime,
the properties of globular clusters.
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1.4.4 Anisotropy in velocity space

The zeroth-order dynamical interpretation of globular clusters in terms of quasi-relaxed
stellar systems present some limitations also with respect to the assumed properties of
the velocity space. In fact, these stellar systems are inhomogeneous, with a clear trend
to become less collisional in their outer parts (note that by applying the formula for the
relaxation time (Chandrasekhar [1947) to the outer boundary of a King model, we find
that o®/p diverges quickly as we approach the truncation radius). In this respect, it
might even be, in principle, that their outer structure is not too far from that of bright
elliptical galaxies for which violent relaxation is thought to have acted primarily to make
the inner system quasi-relaxed, while the outer parts are more and more dominated
by radially-biased anisotropic pressure. This line of argument motivates the use of the
generalization of King models to the anisotropic case (i.e., the so-called Michie-King
models, in which the truncated Maxwellian is associated with the anisotropic factor of
the Eddington models, seelGunn & Griffin [1979).

Some studies of Galactic globular clusters in terms of anisotropic models, constrained
simultaneously by density and velocity dispersion profiles, are actually available, mainly
based on multi-mass Michie-King models (e.g., see |(Gunn & Griffin 1979, Meylan et al
1995, and IMeylan & Mayor 1991 for M3, w Centauri, and NGC 6397, respectively), but
a systematic and homogeneous investigation is still missing. Note that, on the galac-
tic side, investigations of these issues, starting with the mid 1970s, have led to the re-
markable discovery that bright ellipticals are generally supported by anisotropic pres-
sure and contain significant amounts of dark matter inside the effective radius R. (e.g.,
see Chap. 24 in[Bertinl 2000). From the study of elliptical galaxies it has also been learned
that structurally different models (as diagnosed by their kinematics or characterized by
their virial coefficients) may have remarkably similar photometric profiles (e.g., see Ap-
pendix D of [Bertin et all2002).

In Part IIT of the present Thesis we wish to investigate this issue in detail, by per-
forming a systematic combined photometric and kinematic analysis of a sample of glob-
ular clusters under different relaxation conditions, as measured by their core relaxation
time. Systems characterized by shorter relaxation time scales are expected to be better
described by isotropic King models, while less relaxed systems might be interpreted by
means of non-truncated, radially-biased anisotropic f*) models, originally designed to
represent stellar systems produced by a violent relaxation formation process and applied
here for the first time to the study of globular clusters.

Several families of dynamical models have been developed to represent the final
state of numerical simulations of the violent relaxation process thought to be associ-
ated with the formation of bright elliptical galaxies via collisionless collapse (for a re-
view, see|Bertin & Stiavelli[1993). These models show a characteristic anisotropy profile,
with an inner isotropic core and an outer envelope that becomes dominated by radially-
biased anisotropic pressure. They provide a good representation of the photometric and
kinematic properties of elliptical galaxies. Here we will refer to the family of spherical,
anisotropic, non-truncated f*) models (which have been revisited recently in detail by
Bertin & Trenti2003).

The distribution function that defines these models depends on specific energy £ and
angular momentum J:

v/2

J2

£ = { Aexp {_“E - d () ] E<0 (1.14)
0 E>0,
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where A4, a, d, and v are positive constants, defining two scales and two dimensionless
parameters. For applications, as described by Bertin & Trenti (2003), the dimensionless
parameter v can be fixed at v = 1. Therefore, similarly to the King models, after in-
tegration of the relevant Poisson equation the f*) models are a one-parameter family
of models, parametrized by their central concentration, which can be expressed by the
central dimensionless potential ¥ = —a®(0).

The physical scales can be expressed as 7scale = d~/?a~1/* and Myca1e = d=3/Va=%/%.
By definition, these models are non-truncated and, because of this, are likely to be less
suited to describe the outer parts of globular clusters. A study of globular clusters based
on truncated f(*) models is postponed to a separate investigation. We recall that the sur-
face brightness profiles for concentrated models (¥ 2 7) are very close to de Vaucouleurs
profile, while for low values of ¥ the models exhibit a sizeable core.






Part 1
External Tidal Field






CHAPTER 2

The construction of nonspherical models of quasi-relaxed
stellar systems

2.1 Introduction

In order to better address the role of tides in determining the observed structure of glob-
ular clusters, in the present Chapter we construct a family of self-consistent nonspherical
equilibrium models of quasi-relaxed stellar systems, obtained from the spherical case by
including in their distribution function the effects associated with the presence of an
external tidal field explicitly. Our models consider the stellar system in circular orbit
within the host galaxy, for simplicity assumed to be spherically-symmetric. Therefore,
in the corotating frame of reference, the tidal field experienced by the system is station-
ary and the Jacobi integral H is available. In this physical picture the typical dynamical
time associated with the orbits inside the cluster is assumed to be much smaller than the
external orbital time. The procedure starts by replacing the single-star energy E with the
Jacobi integral in the relevant distribution function fx (H) = Alexp(—aH) —exp(—aHy)]
if H < Hy, with Hj the cut-off constant, and fx (H) = 0 otherwise. Thus the collisionless
Boltzmann equation is satisfied. The construction of the self-consistent models then re-
quires the solution of the associated Poisson-Laplace equation, that is of a second-order
elliptic partial differential equation in a free boundary problem, because the boundary
of the configuration, which represents the separation between the Poisson and Laplace
domains, can be determined only a posteriori. The idea of using the Jacobi integral for
the construction of tidal triaxial models had been proposed also by Weinberg (1993). A
first-order analysis of the triaxial tidal problem addressed in this Chapter was carried
out by Heggie & Ramamani (1995).

The Chapter is organized as follows. Section 2.2 introduces the reference physical
model, in which a globular cluster is imagined to move on a circular orbit inside a host
galaxy treated as a frozen background field. The distribution function for such a cluster
is then identified and the relevant parameter space defined. Section 2.3 sets the math-
ematical problem associated with the construction of the related self-consistent models.
For models generated by the spherical fx (E), Section 2.4 gives the complete solution in
terms of matched asymptotic expansions. Alternative methods of solutions are briefly
discussed in Section 2.5. In addition, in Section 2.6 it is shown how the method can be
applied to the study of the three-dimensional effects of tides on other isotropic truncated
models, different from King models. The concluding Section 2.7 gives a summary of the
Chapter, with a short discussion of the results obtained.

Technically, the mathematical problem of a singular perturbation with a free bound-
ary that is faced here is very similar to the problem noted in the theory of rotating stars,
starting with Milne (see [Tassoul [1978§; Milne [1923; IChandrasekhar [1933; [Krogdahl [1942;
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Chandrasekhar & Tebovitz [1962; Monaghan & Roxburgh [1965). The problem was ini-
tially dealt with inadequate tools; a satisfactory solution of the singular perturbation
problem was obtained only later, by [Smith (1975, 1976).

2.2 The physical model

2.2.1 The tidal potential

As a reference case, we consider an idealized model in which the center of mass of a
globular cluster is imagined to move on a circular orbit of radius Ry, characterized by
orbital frequency €, inside a host galaxy. For simplicity, we focus on the motion of the
stars inside the globular cluster and model the galaxy, taken to have very large mass,
by means of a frozen gravitational field (which we will call the galactic field, described
by the potential ®¢), with a given overall symmetry. This choice makes us ignore in-
teresting effects that are generally present in the full interaction between a “satellite”
and a galaxy; in a sense, we are taking a complementary view of an extremely complex
dynamical situation, with respect to other investigations, such as those that lead to a dis-
cussion of the mechanism of dynamical friction (in which the globular cluster or satellite
is modeled as a rigid body and the stars of the galaxy are taken as the “live” component;
see [Bontekoe & van Albada[1987; Bertin et all 2003;|Arena & Bertin 2007; and references
therein). Therefore, we will be initially following the picture of a restricted three-body prob-
lem, with one important difference, that the “secondary” is not treated as a point mass
but as a “live” stellar system, described by the cluster mean-field potential . In this
extremely simple orbital choice for the cluster center of mass, in the corotating frame the
associated tidal field is time-independent and so we can proceed to the construction of a
stationary dynamical model.

We consider the galactic potential ®¢ to be spherically symmetric, that is, ¢ =
P (R), with R = vV X2+ Y2+ Z2, in terms of a standard set of Cartesian coordinates
(X,Y, Z), so that Q% = (d®g(R)/dR)r,/Ro. Let (X,Y) be the orbit plane of the center
of mass of the cluster. We then introduce a local rotating frame of reference, so that the
position vector is given by r = (z,y, z), with origin in the center of mass of the cluster
and for which the x-axis points away from the center of the galactic field, the y-axis
follows the direction of the cluster rotation in its orbit around the galaxy, and the z-axis
is perpendicular to the orbit plane (according to the right-hand rule). In such rotating
local frame, the relevant Lagrangian, describing the motion of a star belonging to the
cluster, is (cf. (Chandrasekhan (1942, Eq. [5.510]):

1
£ = (i +97+ 22+ Q| (Ro+2)+y?] 4+ 20 Ro+)§ — 22iy } — 6 (R) —Po(z,y, 2) , (21)

where R = \/(Ro + )2 + y2 + 22 and the terms responsible for centrifugal and Coriolis
forces are explicitly displayed.

If we suppose that the size of the cluster is small compared to Ry, we can adequately
represent the galactic field by its linear approximation with respect to the local coordi-
nates (the so-called “tidal approximation”). The corresponding equations of the motion
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for a single star in the rotating local frame are:

i — 20y — (49% — K?)x = —% , (2.2)

i+ 2Qi = —&}l, (2.3)
dy

02, = 0% , (2.4)
0z

where & is the epicyclic frequency at Ry, given by x? = 3Q? + (d?®g /dR?)g,. Note that
the assumed symmetry for @ introduces a cancellation between the kinematic term yQ?
and the gradient of the galactic potential 0®¢ /0y and makes the vertical acceleration
—0®/0z approximately equal to —zQ2.

These equations admit an energy (isolating) integral of the motion, known as the
Jacobi integral:

H=_(2*4+9°+ *) + &p + O¢, (2.5)

N =

where )
Op = EQQ (z2 — VJ,‘Q) (2.6)

is the tidal potential. Here v = 4—rx?%/Q? is a generally positive dimensionless coefficient.

Thus, at the level of single star orbits, we note that, in general, the tidal potential
leads to a compression in the z-direction, a stretching in the x-direction, and leaves the
y-direction untouched. The tidal potential is static, breaks the spherical symmetry, but is
characterized by reflection symmetry with respect to the three natural coordinate planes;
strictly speaking, the symmetry with respect to (y, z) is applicable only in the limit of an
infinitely massive host galaxy (see/Spitze1{1987). In turn, we will see that the geometry of
the tidal potential induces a non-spherical distortion of the cluster shape collectively, in
particular an elongation along the x-axis and a compression along the z-axis. In practice,
the numerical coefficient v that defines quantitatively the induced distortion depends
on the galactic potential. We recall that we have v = 3 for a Keplerian potential, v = 2
for a logarithmic potential, while for a Plummer model the dimensionless coefficient
depends on the location of the circular orbit with respect to the model scale radius b,
with v(Ry) = 3R2/(b*> + R3) (for a definition of the Plummer model see, e.g., Bertin
2000).

Different assumptions on the geometry of the galactic field can be treated with tools
similar to those developed here, leading to a similar structure of the equations of the
motion, with a slight modification of the tidal field. In particular, for an axisymmetric
galactic field, the tidal potential differs from the one obtained here only by the z-term
(Chandrasekhar[1942;|Heggie & Hui2003). This case is often considered, for example by
referring to a globular cluster in circular orbit on the (axisymmetric) disk of our Galaxy
(see Heggie & Ramamani [1995; [Ernst et all 2008), for which ® is then formulated in
terms of the Oort constants.

In the physical model outlined in this Section, the typical dynamical time associated
with the star orbits inside the cluster is much smaller than the (external) orbital time
associated with Q. Therefore, in an asymptotic sense, the equilibrium configurations
that we will construct in the rest of the Chapter can actually be generalized, with due
qualifications, to more general orbits of the cluster inside a galaxy, provided we interpret
the results that we are going to obtain as applicable only to a small piece of the cluster
orbit.
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2.2.2 The distribution function

As outlined in the Section 2.1, we wish to extend the description of quasi-relaxed stellar
systems (so far basically limited to spherical models associated with distribution func-
tions f = f(E), dependent only on the single-star specific energy E = v?/2 4+ ®¢) to
the non spherical case, by including the presence of a non-spherical tidal field explicitly.
Given the success of the spherical King models in the study of globular clusters, we will
focus on the extension of models based on fx (F), which is defined as a “lowered” Max-
wellian, continuous in phase space, with an energy cut-off that implies the existence of
a boundary at the truncation radius r4,.

Therefore, we will consider (partially) self-consistent models characterized by the
distribution function:

fx(H) = Alexp(—aH) — exp(—aHy)] (2.7)

if H < Hp and fx(H) = 0 otherwise, in terms of the Jacobi integral defined by Eq. Z3).
Here H) is the cut-off value for the Jacobi integral, while A and a are positive constants.

In velocity space, the inequality H < Hj identifies a spherical region given by 0 <
v? < 21)(r)/a, where:

U(r) = a{Ho — [®c(r) + Pr(z, )]} (2.8)
is the dimensionless escape energy. Therefore, the boundary of the cluster is defined as
the relevant zero-velocity surface by the condition 1(r) = 0 and is given only implicitly
by an equipotential (Hill) surface for the total potential ®¢ + ®7; in fact, its geometry
depends on the properties of the tidal potential (of known characteristics; see Eq. [Z6])
and of the cluster potential (unknown a priori, to be determined as the solution of the
associated Poisson equation).

The value of the cut-off potential Hj should be chosen in such a way that the surface
that defines the boundary is closed. The last (i.e., outermost) closed Hill surface is a criti-
cal surface, because it contains two saddle points that represent the Lagrangian points of
the restricted three-body problem outlined in the previous subsection. From Egs. (Z2)-
@3, we see that such Lagrangian points are located symmetrically with respect to the
origin of the local frame of reference and lie on the x-axis. Their distance from the ori-
gin is called the tidal radius, which we denote by rr, and can be determined from the
condition: 5

%(TT’ 0,0)=0. (2.9)
If, as a zero-th order approximation, we use a simple Keplerian potential for the cluster
potential ¢, we recover the classical expression (e.g., see Spitzer 1987):

0 GM 1/3
T(T)=(—Q2V) : (2.10)

where M is the total mass of the cluster.
As for the spherical King model, the density profile associated with the distribution
function @3) is given by:

plw) = ety (5.0) = Ap(w). 1)

where A = 81 Av/2e=%M0 /(3¢%/?). We recall that the incomplete gamma function has
non-negative real value only in correspondence to a non-negative argument. In the fol-

lowing, we will denote the central density of the cluster by py = Aj(¥), where ¥ = 1(0)
is the depth of the central potential well.
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2.2.3 The parameter space

The models defined by fx (H) are characterized by two physical scales (e.g., the two free
constants A and a, or, correspondingly, the total mass M and the central density pg of
the cluster) and two dimensionless parameters. The first dimensionless parameter can
be defined, as in the spherical King models, to measure the concentration of the cluster.
We can thus consider the quantity ¥, introduced at the end of the previous subsection,
or we may refer to the commonly used concentration parameter:

C = log(ry/70) (2.12)

where ro = /9/(4nGpoa) is a scale length related to the size of the core and ry, is the
truncation radius of the spherical King model associated with the same value of the
central potential well ¥ (the relation between C and ¥ is one-to-one; e.g., see [Bertin
2000).
The second dimensionless parameter characterizes the strength of the (external) tidal
field:
QQ
ArGpo

(2.13)

The definition arises naturally from the dimensionless formulation of the Poisson equa-
tion that describes the (partially) self-consistent problem (to be addressed in the next
Section).

In principle, for a given choice of the dimensional scales (A and a) the truncation
radius or the concentration parameter of a spherical King model can be set arbitrarily.
In practice, the physical motivation of the models suggests that the truncation radius ry,
should be taken to be of the order of (and not exceed) the tidal radius r7, introduced in
the previous subsection (see Eq. [Z9]). We may thus define an extension parameter, as the
ratio between the truncation radius of the corresponding spherical model and the tidal
radius rp:

e (2.14)
T

5

For a given value of the central potential well ¥, there exists a (maximum) critical value
for the tidal strength parameter, which we will denote by ¢, corresponding to the max-
imum value for the extension parameter §.., which can be found by solving the system:

0
a_f(rTv Oa 07 6cr) =0

w(rTvoaO;ecr) =0.

(2.15)

From this system, if we use the zero-th order Keplerian approximation for ®¢, we find
that 612 = 2/3 (see Spitzel [1987).

For our two-parameter family of models we thus expect two tidal regimes to exist.
For models characterized by the pairs (, €) near the critical condition § ~ ., the tidal
distortion should be maximal, while for models with pairs well below criticality only
small departures from spherical symmetry should occur. A thorough exploration of the
parameter space will be carried out in the next Chapter. In closing, we note that the
models proposed and studied by [Heggie & Ramamani (1995) correspond to the pairs in
parameter space that we have called critical.
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2.3 The mathematical problem

The (partially) self-consistent models associated with the distribution function defined
by Eq. @3) are constructed by solving the relevant Poisson equation. In terms of the
dimensionless escape energy 1, given by Eq. &), the Poisson equation (for ¢ > 0) can
be written as: 0 9 p)
2 p p

V(¢ + a®r) 2 20 20 (2.16)
where ry is the scale length introduced in Sect. (see Eq. [Z17]). We then rescale
the coordinates and introduce the dimensionless position vector & = r/ro, so that V2 =
73V? and a®r = €T = 9¢(2% — v3?)/2, where we have made use of the tidal parameter
introduced in Eq. (ZI3). Therefore, the Poisson equation, for ) > 0, can be written in
dimensionless form as:

p(Y)

p(¥)
while for negative values of ¢ we should refer to:

Vi) = -9 [ +e(1— 1/)} , (2.17)

V2 = —9¢(1 —v) , (2.18)

that is, the Laplace equation VZ(a®¢) = 0.

The mathematical problem is completed by specifying the appropriate boundary
conditions. As for the spherical King models, we require regularity of the solution at
the origin

Y(0) =1V, (2.19)
V(0) =0, (2.20)

and, at large radii:
Y+ €T — aHy, (2.21)

which corresponds to a®c — 0.

Poisson and Laplace domains are thus separated by the surface defined by ¢ = 0
which is unknown a priori; in other words, we have to solve an elliptic partial differen-
tial equation in a free boundary problem.

In the ordinary differential problem that characterizes the construction of spherical
models with finite mass, the condition of vanishing cluster potential at large radii (to-
gether with the regularity conditions at the origin) overdetermines the problem, which
can then be seen as an eigenvalue problem (e.g., see Sect. 2.5 in Bertin & Stiavelli[1993).
Indeed, for the King models the integration of the Poisson equation from the origin out-
wards, with “initial conditions” @I9)-@20), sets the relation between the ratio 7, /ro
and U in order to meet the requirement @ZI)), with r, /7o thus playing the role of an
“eigenvalue”.

In the more complex, three-dimensional situation that we are facing here, the exis-
tence of two different domains, internal (Poisson) and external (Laplace), suggests the
use of the method of matched asymptotic expansions in order to obtain a uniform solu-
tion across the separation free surface. The solution in the internal and external domains
are expressed as an asymptotic series with respect to the tidal parameter ¢, which is
assumed to be small (following the physical model described in the previous Section):

w0 = 30 M Ee (222)
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emt Z - w(exf) (2.23)

with spherical symmetry assumed for the zero—th order terms. The internal solution
should obey the boundary conditions @ZI9)-20), while the external solution should
satisfy Eq. @ZI)). The two representations should be properly connected at the surface
of the cluster.

On the other hand, for any small but finite value of ¢ the boundary, defined by v = 0,
will be different from the unperturbed boundary, defined by 1o = 0, so that, for each of
the two representations given above, there will be a small region in the vicinity of the
surface of the cluster where the leading term is vanishingly small and actually smaller
than the remaining terms of the formal series. Therefore, we expect the validity of the
expansion to break down where the second term becomes comparable to the first, i.e
where 1)y = O(¢). This region can be considered as a boundary layer, which should be
examined in “microscopic” detail by a suitable rescaling of the spatial coordinates and
for which an adequate solution ¢)(!*¥), expressed as a different asymptotic series, should
be constructed. To obtain a uniformly valid solution over the entire space, an asymptotic
matching is performed between the pairs ((nt) ypllav)y and (pltav) 4h(ext)) thus leading
to a solution 1), obeying all the desired boundary conditions, in terms of three different,
but matched, representations. This method of solution is basically the same method
proposed by [Smith (1975) for the analogous mathematical problem that arises in the
determination of the structure of rigidly rotating fluid polytropes.

2.4 Solution in terms of matched asymptotic expansions

The complete solution to two significant orders in the tidal parameter is now presented.
The formal solution to three orders is also displayed because of the requirements of the
Van Dyke principle of asymptotic matching (cf. Van Dyke [1975, Eq. [5.24]) that we have
adopted.

Here one important comment is in order. Strictly speaking, the complete solution for
a®c derived by the method of matched asymptotic expansions illustrated in this Sec-
tion is a well-justified global uniform solution only for sub-critical (underfilled) models.
Close to the condition of criticality, i.e., when #;, ~ 7, in the vicinity of the bound-
ary surface the tidal term ¢ 7' (which is considered a small correction in the construction
of the asymptotic solution) becomes comparable to the cluster term a®¢, so that the
asymptotic solution is expected to break down. For such models, the iteration method
described that will be described in Section 2.5.2 of Chapter 2, which does not rely on
the assumption that the tidal term is small, is preferred and expected to lead quickly
to more accurate solutions. In practice, in line with previous work on the similar prob-
lem for rotating polytropes mentioned in the Introduction, we argue that the use of the
second-order asymptotic solution constructed in Chapter 2 will give sufficiently accurate
solutions in the determination of the critical value of the tidal parameter .., from the sys-
tem in Eq. (2.15) and in the consequent assessment of the general properties of models
even when close to the critical case. The main reason at the basis of this argument is
that, even for close-to-critical models, only very few stars populate the region where the
asymptotic analysis breaks down, so that the overall solution should be only little af-
fected. A direct comparison between selected critical models calculated with both the
perturbation and the iteration method Will be presented in the next Chapter (see Section
3.6)
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24.1 Internal region

If we insert the series (ZZ2) in the Poisson equation (ZI7), under the conditions (Z19)-
(Z20), we obtain an (infinite) set of Cauchy problems for ¢;. The problem for the zero-th
order term (i.e., the unperturbed problem with € = 0) is the one defining the construction
of the spherical and fully self-consistent King models:

p) ( (zm‘))

int (int)’ 0

o w 9t (2.24)
0 p(P)

with /0™ (0) = ¥ and w(mt (0) = 0, where the symbol ' denotes derivative with respect

to the argument 7. We recall that the truncation radius 7, which defines the boundary

of the spherical models, is given implicitly by z/;émt) (Fer) = 0.
Let us introduce the quantities:

@ p

_](T ) d'l/J] ’l/f(()”Lt)

T (2.25)

These quantities depend on 7 implicitly, through the function z/;émt) ; in turn, the depen-
dence on V¥ is both explicit (through the term 5(¥)) and implicit (because the function

wémt)( ) depends on the value of ¥). For convenience, we give the expression of the
first terms of the sequence (cfr. Eq. [ZI0]): R1 = [9/p(¥)][p(¢g (int)y 4 (%mt))3/2], Ry =
Ry + 27(8™) V2 /12p(0)], Ry = Ry + 27(5™)=1/2 /[45(¥)]. Note that for ¢ — 0,
thatis, for 7 — 7., Ri — 0, R2 — 0, whereas for j > 3 the quantities R; actually diverge.
This is one more indication of the singular character of our perturbation analysis, which
brings in some fractional power dependence on the perturbation parameter ¢ (see also

expansion [ZZ4]).

Therefore, the equations governing the next two orders (for z/;,(:”t) with & = 1,2) can
be written as: ,
[VQ + Ry (7; \p)} () — _9(1 — ) (2.26)

(V2 Ru (7 0)] 0™ = — Ro(7 w) (02 (2.27)

with {9 (0) = ™ (0) = 0 and V(" (0) = V¢{™(0) = 0. The equation for
k = 3 is recorded in Appendix A.1, where we also describe the structure of the general
equation for ¢\""").

For any given order of the expansion, the operator acting on the function wkmt) (see
the left-hand side of Egs. [Z26] and [Z27]) is the same, that is, a Laplacian “shifted” by
the function R, (#; ¥). If we thus expand every term v, () in spherical harmonicdl:

G Z Z Vi) (7)Y (0, 6) (2.28)

=0 m=—1

the three-dimensional differential problem is reduced to a one-dimensional (radial) prob-
lem, characterized by the following second order, linear ordinary differential operator:

1We use orthonormalized real spherical harmonics with Condon-Shortley phase; with respect to the toroidal
angle ¢, they are even for m > 0 and odd otherwise.
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I(1+1)

d
D=t
! tr 72

dr?
In general, for a fixed value of [, two independent solutions to the homogeneous problem
D, f = 0 are expected fl to behave like # and 1/#+! for # — 0. Because of the presence of
R (#; ), solutions to equations where D; appears have to be obtained numerically.
For k = 1 (see Eq. [Z26]) we thus have to address the following problem. For I = 0,
the relevant equation is:

2
2
d - + Ry (7 0) . (2.29)

Do foo = —9(1 — v), (2.30)

where foo = {08 /\/ax, with foo(0) = f},(0) = 0. Here we do not have to worry about
including solutions to the associated homogeneous problem, because one of the two
independent solutions would be singular at the origin and the other would be forced to
vanish by the required condition at # = 0. For [ > 1 we have:

Dl = 0 (2.31)

Jm

with ¢\ (0) = ﬁ;fl) '(0) = 0. Both Eq. @31) and the associated boundary conditions

1,lm
are homogeneous. Therefore, the solution is undetermined by an m-dependent multi-
plicative constant: {7 (7) = A}, 3 (#), with v, (#) ~ # for # — 0 (the singular solution
is excluded by the boundary conditions at the origin). Then the complete formal solution

1S:

0o l
(@) = foo®) + Y D A (7)Y (0, 9) , (2:32)

=1 m=-1

where the constants are ready to be determined by means of the asymptotic matching

with ¢\"")(#) at the boundary layer.
For k = 2 (see Eq. [Z27)]) the relevant equations are:

in ~ int 2
D) = —Rais 0) [w™7] (2.33)

lm

where on the right-hand side the function wlmt) is that derived from the solution of
the first order problem (which shows the progressive character of this method for the
construction of solutions). In Appendix A.2 the equations for the six relevant harmonics
are displayed explicitly. The boundary conditions to be imposed at the origin are again

homogeneous: ¥{""(0) = wélﬁg I(O) = 0. For a fixed harmonic (I,m) with [ > 0, the
general solution of Eq. (Z33) is the sum of a particular solution (which we will denote
by gim (7)) and of a regular solution to the associated homogeneous problem given by
Eq. @31) (which we will call By,7(7), with ;(7) the same functions introduced for
the first order problem). Obviously, the particular solution exists only when Eq. Z33)

is non-homogeneous, that is, only for those values of (I,m) that correspond to a non-
vanishing coefficient in the expansion of ( Y”t))Q in spherical harmonics. As noted in

2We note that Ry (0, ¥) = 9[14 ¥3/2/5(¥)], that is, a numerical positive constant. Therefore, for # — 0 the
operator D; tends to the operator associated with the spherical Bessel functions of the first and of the second
kind (e.g., see |Abramowitz & Stegun [1965, Eq. [10.1.1] for the equation and Egs. [10.1.4] and [10.1.5] for the
limiting values of the functions for small argument).
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the first order problem (k = 1), the associated homogeneous problem for [ = 0 has no
non-trivial solution. Then we can express the complete solution as:

o0 l
émt)( Z Z glm + Blm')/l( )]Ylm (9 (b) ’ (234)

where By, are constants to be determined from the matching with the boundary layer.
Similarly, for k£ = 3 the solution can be written as:

P () = hoo(7) + [P (7) + Com i (7)]Yirm (6, 6) , (2.35)

l

NE
M-

~

1

where hy,, are particular solutions and Cj,, are constants, again to be determined from
the matching with the boundary layer.

Because the differential operator D; and the boundary conditions at the origin are the
same for the reduced radial problem of every order, we have thus obtained the general
structure of the solution for the internal region (see Appendix A.1).

2.4.2 External region

Here we first present the general solution and then proceed to set up the asymptotic

series (Z.23).

The solution to Eq. (ZI8) describing the external region, that is, in the Laplace do-
main, can be expressed as the sum of a particular solution (—e7'(#)) and of the solutions
to the radial part of the Laplacian operator consistent with the boundary condition @Z1)):

w(emt)(

ﬂ>|>/

- Z ﬁzlﬁ Yim(0,6) — €T (#) . (2.36)
m=—I

I=1 m=—

Here we note that the tidal potential contributes only with spherical harmonics of order
1 = 0,2 with even values of m:

Too(F) = =3v/m(v — 1)7*, (2.37)
Too(7) = 3\/§(2 + )2, (2.38)

Toa(7) = 3\/? P2 (2.39)

At this point we can proceed to set up the asymptotic series, by expanding the constant
coefficients «, A, and (;,, with respect to e:

1
a=aHy=qap+aje+ 50[26 + .. (2.40)
1 2
A= X+ A\e+ 5/\26 + .., (241)

1
Bim = Gime + ablm62 + Clm€ + .. (242)

3!
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The last expansion starts with a first order term because the density distribution of the
unperturbed problem is spherically symmetric.

For convenience, we give the explicit expression of the external solution up to third
order:

A M Toold) 2 [a
(ext) (4 _ _ _O _ _1 _ 00 _ ilm
G (I‘) Qo 7 + {al 7 2\/E l§=1 m§=_l |:Al+1 + Tlm( )} Ylm,(ea ¢)} €
1 e = by 1 Z Z a
2 m 2 m
+§ Qo — 7 - E § Y Ylm,(ea ¢) € + — |3 — —/— — Al+1 (bl} 4:8
=1 m=— =1 m=—

2.4.3 Boundary layer

The boundary layer is the region where the function ) becomes vanishingly small. Since
the unperturbed gravitational field at the truncation radius is finite, 1j (%) # 0, for any
value of ¥, based on a Taylor expansion of 1)y about #* = 7, we may argue that the region
in which the series (ZZ2) breaks down can be defined by 7, — 7 = O(¢). In this boundary
layer we thus introduce a suitable change of variables:

=" (2.44)

take the ordering ¢(!®%) = O(e), and thus rescale the solution by introducing the function
7 = (%) /. For positive values of 7 the Poisson equation ZI7) thus becomes:

9%t 2¢  OT €2 9

— — = - + —
on?  Fu—endn  (fy —en)?

%\I/) epler) — 962 (1 —v) (2.45)
where A? is the angular part of the Laplacian in spherical coordinates. For negative val-
ues of 7 we can write a similar equation, corresponding to Eq. (ZI8), which is obtained
from Eq. (Z45) by dropping the term proportional to p(eT).

With the help of the asymptotic expansion for small argument of the incomplete
gamma function (e.g., seeBende1[1999, Eq. [6.2.5]), we find:

2 4
pler) ~ 37'5/265/2 + £T7/2€7/2 + ..., (2.46)

so that, within the boundary layer, the contribution of 5(e7) (which is the one that distin-
guishes the Poisson from the Laplace regime) becomes significant only beyond the tidal
term, as a correction O(¢/?).

Therefore, up to O(€?) we can write:

T ="To+TiE+ %7'262 (2.47)
To this order, which is required for a full solution up to k& = 2 of the global problem (see
Egs. [ZZ7] and [Z23])), by equating in Eq. (Z43) the first powers of e separately, we obtain
the relevant equations for the first three terms:

827'0
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827'1 2 87'0
= 2.4
o Fu On 29)
827'2 4 87'1 n 8’7'0 2
= — 1-v). 2.
o [ o "R 877} i 4= (250
The equations are easily 1ntegrated in the variable 7, to obtain the solutions:
70 = FO(97 (15)77 + G0(97 (b) ’ (251)
0
r = 0D s (0,00 + a0, 0) 252)
Fir
2Fy(0 ; 1 2F (0,
Ty = 0(2 ,9) 3 _ - A2F0(9, ¢)773 + 1A( ¢)772
Ti 37y, Py
—9(1 = v)n* Go(0, ¢)n* + Fa(0, 8)n + G2 (6, ) - (2.58)

tr

The six free angular functions that appear in the formal solutions will be determined by
the matching procedure.

2.4.4 Asymptotic matching to two orders

In order to obtain the solution, we must perform separately the relevant matching for
the pairs (") ) (ev)) and (¢p(e¥) (=) We follow the Van Dyke matching principle,
which requires that we compare the second order expansion of the internal and exter-
nal solutions with the third order expansion of the boundary layer solution. The full
procedure is described in Appendix A.3.

To first order (i.e., up to k = 1 in series [Z27] and [ZZ3])), from the matching of the
pair (") ¢(l9v)) we find the free angular functions of (Z51) and Z52):

Fo(0,¢) = — éi”t)/(m), (2.54)

Go(0,6) = 1" (74r, 0, 9) , (2.55)
aw(znt

F1(6,9) = ——5-—(7tr,6,9) , (2.56)

Gi(6,9) = 505" (7ur,0,0) (2.57)

From the matching of the pair (=) p(lav)) we connect 1/(¢*t) to the same angular func-
tions, thus proving that the matching to first order is equivalent to imposing continuity
of the solution up to second order and of the first radial derivative up to first order. This
allows us to determine the free constants that are present in the first two terms of Z.43)
and in 32):

oo =22, (2.59)

Ttr
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No = 25 (Far) (2.59)

a1 = foo(Per) + Per foo (Fer) + 37;)07\;;”) ; (2.60)
= 7 foo(Per) + &\/i—fr” , (2.61)
s e g 202
agm = —Fi, [A2my2 (For) + Tom (Per)] - (2.63)

Note that A, = ap, = 0if I # 2, for every value of m, and that the constants for [ = 2
are non-vanishing only for m = 0,2. The constants that identify the solution are thus

expressed in terms of the values of the unperturbed field 1/)(”’t) of the “driving” tidal
potential 7;,,, and of the solutions foo and . (see Egs. [Z30] and [Z31]]) taken at 7 = 74,

The boundary surface of the first order model is defined implicitly by w(()ezt)(f) +

3 (7.6, ¢)e = 0, that is, the spherical shape of the King model is modified by monopole
and quadrupole contributions, which are even with respect to toroidal and poloidal an-
gles and characterized by reflection symmetry with respect to the three natural coor-
dinates planes. As might have been expected from the physical model, the spherical
shape is thus modified only by spherical harmonics (I, m) for which the tidal potential
has non-vanishing coefficients. Mathematically, this is non-trivial, because the first or-
der equation in the internal region Eq. (ZZ6) is non-homogeneous only for | = 0; the
quadrupole contribution to the internal solution is formally “hidden” by the use of the
function 1 (which includes the tidal potential) and is unveiled by the matching which
demonstrates that Ay, with m = 0, 2 are non-vanishing.

The first order solution can be inserted into the right-hand side of Eq. (Z33) to gener-
ate non-homogeneous equations (and thus particular solutions) only for [ = 0,2,4 and
corresponding positive and even values of m (see Appendix A.2). We can thus proceed
to construct the second order solution in the same way described above for the first order
solution. From the matching of the pair (1)), 1)(1%%)) we determine the missing angular
functions:

(int)
Fy(0,0) = aw@A (Fer, 0, 0) , (2.64)
Ga(0,9) = w(””(me é) (2.65)

which are then connected to the properties of 1/(°**) by the matching of the pair (y(¢**) ¢ (la)),
This is equivalent to imposing continuity of the solution up to third order and of the first
radial derivative up to second order and leads to the determination of the free constants
that appear in the third term of (Z43) and in (Z.34):

az = goo(Per) + Pergoo (Per) » (2.66)

Xe = 7900 (Fer) (2.67)
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B2m _ _ftigénj(ftr) + 392mA(7A'tr) (268)
TtrYo (Ttr) + 372 (rﬁ“)

bom = —7p[gom (Fer) + Bam a2 (Fer)] (2.69)

B4m _ _ftigfmj(ftr) + 5g4mA(7A'tr) (270)
TtrYy (Ttr) + 5'74(”7")

bam = —7p.[gam (Per) + Bamya(Per)] - (2.71)

Here By, = by, = 01if [ # 2,4 for every value of m; the only non-vanishing constants
with [ = 2, 4 are those with even m.

Figure 2.1: The critical Hill surface (in dimensionless variables) for a second-order model with
U =2and e = 7.043 x 107* (corresponding to 59 = 0.671); the galactic potential is Keplerian

(v =3).

Therefore, the second order solution has non-vanishing contributions only for [ =
0,2, 4, that is, for those harmonics for which the particular solution to Eq. (ZZ7) is non-
trivial. By induction, it can be proved (see Appendix A.4) that the k-th order solution is
characterized by | = 0,2, .., 2k harmonics with corresponding positive and even values
of m. In reality, the discussion of the matching to higher orders (k > 3) would require a
re-definition of the boundary layer, because the density contribution on the right-hand



The construction of nonspherical models of quasi-relaxed stellar systems 39

side of Eq. (Z40) (for positive values of 7) comes into play. The asymptotic matching
procedure carries through also in this more complex case but, for simplicity, is omitted
here. We should also keep in mind that in an asymptotic analysis the inclusion of higher
order terms does not necessarily lead to better accuracy in the solution; the optimal
truncation in the asymptotic series depends on the value of the expansion parameter (in
this case, on the value of ¢) and has to be judged empirically.

In conclusion, starting from a given value of the King concentration parameter ¥ and
from a given strength of the tidal field ¢, the uniform triaxial solution is constructed by
numerically integrating Eqs. @24), @30), @31), and @33) and by applying the con-
stants derived in this subsection to the asymptotic series expansion (Z22)-ZZ3). The nu-
merical integrations can be performed efficiently by means of standard Runge-Kutta rou-

tines. The boundary surface of the model is thus defined by ¢{“*" (#) + {*" (7,6, ¢)e +

{7 (7,0, ¢)e2/2 = 0, while the internal density distribution is given by p = (15" (7)+
P (7,0, p)e + S (7,6, ¢)e?/2), with the function p defined by Eq. ZTT). Any other
“observable” quantity can be reconstructed by suitable integration in phase space of
the distribution function fx (H) defined by Eq. @3), with H defined by Eq. (Z3), and

O + Do = Ho — [ (7) + 0™ (7,0, 6)e + w5 (7,0, ¢)e? /2] /a.

Figure 2.2: Sections in the three coordinate planes for a second-order model with ¥ = 2 and
€ = 7.000 x 10~*, characterized by high tidal distortion (§ = 0.669 ~ 587, see Fig. ) illus-
trating the boundary surface of the triaxial model (solid), of the internal region (dotted), and of
the corresponding spherical King model (dashed); the filled area represents the inner region of
the boundary layer. Note the compression and the elongation with respect to the unperturbed
configuration in the 2- and 2-direction, respectively. The galactic potential is Keplerian (v = 3).

In Figs. Tl and 22 we illustrate the main characteristics of one triaxial model con-
structed with the method described in this Section.

2.5 Alternative methods of solution

2.5.1 The method of strained coordinates

The mathematical problem described in Sect. 2.3 can also be solved by the method of
strained coordinates, an alternative method usually applied to non-linear hyperbolic dif-
ferential equations (e.g., see [Van Dykd [1975, Chapter 6) and considered by [Smith (1976)
in the solution of the singular free-boundary perturbation problem that arises in the
study of rotating polytropes.
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Starting from a series representation of the form @22) and (ZZ3) for the solution
defined in the Poisson and Laplace domains, respectively, a transformation is considered
from spherical coordinates (7, 6, ¢) to “strained coordinates” (s, p, q):

1
=s+ef(s,p,q) + §€2f2(57p,Q) T+

¢=q, (2.72)

where 74 (s, p, ¢) are initially unspecified straining functions. We note that the zero-th
order problem is defined by the same Eq. (Z24) with the same boundary conditions but
with the variable 7 replaced by s. The unperturbed spherical boundary in the strained
space is defined by s = sg, where w(()mt) (s0) = 0. To each order, the effective boundary of
the perturbed configuration remains described by the surface s = sy, while in physical
coordinates the truncation radius actually changes as a result of the straining functions
7), that are determined progressively.

The Laplacian expressed in the new coordinates, %2, can be written as an asymptotic

series: V2 = Lo + €Ly + 1/2€?Ly + ..., where Ly, are linear second order operatorsE
in which #;(s, p,q) (with j = 1, .., k) and their derivatives appear. For convenience, we
record the zero-th and first order operators:

> 2d
Lo=— 424 :
= TE T SE @73)
o\ & (9*h 20m 1 ., 2 \d
L= (222) 2 ARSI VS ) :
' (2 5‘5) ds? (5‘52 T5os T 52A nt 52r1> ds’ @74

where A? is the standard angular part of the Laplacian, written with angular coordinates
(p, q). The general k-th order operator can be decomposed as Ly = L1 + Fj,, where Fj, is,
in turn, a second order operator in which 7;(s,p, ¢) (with j = 1,..,k — 1) appear and L,
is defined as in Eq. @ZZ4) but with 74 (s, p, ¢) instead of 71 (s, p, q); these operators appear
: : (int),

in the relevant equation for +; " :

(Lo + Ri(v; )™ = Lyp§™ (2.75)

which corresponds to the general k-th order equation of the previous method.

Following a set of constraints that guarantee the regularity of the series (Z22)) in the
strained space, the equations that uniquely identify the straining functions to any de-
sired order can be found and solved numerically; structurally, they somewhat corre-
spond to Eqs. @3I) and Z33). Therefore, the internal and external solutions can be
worked out and patched by requiring continuity of the solution and of the first deriva-
tive with respect to the variable s at the boundary surface defined by s = s, in general
qualitative analogy with the method described in the previous section.

This method is formally more elegant than the method of matched asymptotic expan-
sions but requires a more significant numerical effort because, even though the number
of equations to be solved at each order is the same, the operator that plays here a cen-
tral role in the equations for the straining functions, Llw(()mt) (interpreted as an operator
acting on 7 [s, p, ¢]), is more complex than D, (defined in Eq. (2.29)).

3Surfaces with constant s in the strained space are assumed to correspond to surfaces with constant ¢ (*"t)
in the physical space, that is, 1(i"t) = 1(in%) (s); therefore, L, (with k > 0) is an ordinary differential operator
for (int),
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2.5.2 Iteration

This technique follows the approach taken by [IPrendergast & Tome (197()) and by|Wilson
(1979), for the construction of self-consistent dynamical models of differentially rotating
elliptical galaxies, and later by [Longaretti & T.agoute (1996), for their extension of King
models to the rotating case.

In terms of the function:

u(®) = a[Hy — @o(F)] = ¢(R) + €T (%), (2.76)
inside the cluster the Poisson equation can be written as:

A 9
Viu = ——
p(Y)

plu—€T), (2.77)

while outside the cluster the Laplace equation is simply:
Viu=0. (2.78)

The boundary conditions at the origin are u(0) = ¥ and Vu(0) = 0, because the tidal
potential T'(¥) is a homogeneous function; the condition at large radii is v — aH.

The basic idea is to get an improved solution u(™ of the Poisson equation by evalu-
ating the “source term” on the right-hand side with the solution obtained in the imme-
diately previous step:

T2, — _

Hu=D —

—p(u €T) . (2.79)

FOl !

The iteration is seeded by inserting as u(“), on the right-hand side of Eq. (ZZ9), the spher-

ical solution of the King models. The iteration continues until convergence is reached.
In order to solve Eq. (ZZ9), we expand in spherical harmonics the solution and, cor-

respondingly, the dimensionless density distribution:

o l
WE) =D D u (7)Yim(6,9) (2.80)
=0 m=—1
0o l
P =D D i (F)Yim (6, 9) (2.381)
=0 m=—1
so that the reduced radial problems for the functions “z(:;) (7) are:
d? 2 .d (l+1) (n) 9 (-1
T = - o 2.82
|:d722 P+ dr 72 :| Uy, ﬁ(\:[j) Pim ’ ( )

with boundary conditions u{’(0) = ¥, u{")(0) = 0 and u(()g)/(o) = ul(:;)/(o) = 0. Here,
in contrast with the structure of the governing equations for w,(cmt) of Subsections 2.4.1
and 2.4.2, the radial part of the Laplacian appears with no “shift”, for which the ho-
mogeneous solutions are known analytically. Thus the full solution to Eq. (Z82) can be

obtained in integral form by the standard method of variation of the arbitrary constants:

O —

p(¥) r

IV 1" e
/ o () — / 556 ”(f’)df’] . @8)
0 0
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() () — 9
im (7’) - (2l ¥ 1)pA(\I/)

o0 B 1 [ 1)) e
l / PR (3 s / P2 pm ”(r')dr’] . (2.84)
7 0

The complete calculation can be found in the Appendix 2. Here we only remark that this
integral form is valid in both Poisson and Laplace domains because it contains simul-
taneously the regular and the singular homogeneous solutions of the Laplacian. In the
derivation, all the boundary conditions have been used; in particular, the two conditions
at the origin are sufficient to obtain expression (Z83), while for expression (Z84) the one

concerning the radial derivative at the origin is used together with the one that describes
(n)

1 — 0for I > 1). Furthermore, from the condition at

large radii evaluated for the harmonic [ = 0, that is, u_}) /v/4r — aH{" (here the nota-

tion reminds us that the value of Hj is known only approximately and it changes slightly
at every iteration), we find:

the behavior at large radii (i.e.

(n) _ v 9 /oo At A(n—=1) 1 a1\ 747
aHy" = - - P (#dr" (2.85)
0 Var  Arp(P) Jo 0o
where we should recall that beyond a certain radius ;3(()8_1) vanishes.
In terms of the function u, the boundary of the cluster is given implicitly by: u(f) =

1)

€T'(t). Therefore, the radial location at which the pAl(:: vanishes is determined numeri-

cally from:

27 1
PO = / / (5,0, 6) — €T(7, 0, 6)]Yim (0, 6)d(cosO)ds . (2.86)
0 —1

In practice, to perform the iteration, the definition of a grid in spherical coordinates
and of a suitable algorithm, in order to perform the expansion and the resummation in
spherical harmonics of u and p, is required; the number of angular points of the grid
and the maximum harmonic indices (I,m) admitted in the series (Z80) and &) are
obviously related.

2.6 Extension of other isotropic truncated models

The procedure developed in Sects. 3 and 4 can be applied also to extend other isotropic
truncated models, different from the King models, to the case of tidal distortions. Here
we briefly describe the case of low-n polytropes (1 < n < 5), which are particularly
well suited to the purpose, because they are characterized by a very simple analytical
expression for the density as a function of the potential; this class of models was also
considered by [Weinberg (1993). In the distribution function that defines the polytropes
(e.g., see Bertin2000), we may thus replace the single star energy with the Jacobi integral
(see definition [ZH]) and consider:

fp(H)=A(Hy— H)" %/ (2.87)

for H < Hy, and a vanishing distribution otherwise. Unlike the King family discussed
in the main text, these models have no dimensionless parameter to measure the concen-
tration of the stellar system, which depends only on the polytropic index »; in fact, the
spherical fully self-consistent polytropes are characterized only by two physical scales,
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which are associated with the cut-off constant Hy and the normalization factor A. Be-
low we consider values of n < 5, so that the models have finite radius. Therefore, the
relevant parameter space for the tidally distorted models is represented just by the tidal
strength parameter e (see definition [ZT3]), which, for a given value of the index n, has
a (maximal) critical value. The definition in Eq. (2.14) for the extension parameter § is
still valid if by r;, we denote the radius of the unperturbed spherical configuration. The
associated density functional is given by:

p(¥) = pot™ (2.88)

where the dimensionless escape energy is given by:

c 1/n
(r) = {Ho — [Bo(r) + Dr(r)]) (p—) , (2.89)

with ¢, = (2m)3/2T'(n — 1/2)A/n!. The boundary of the perturbed configuration is de-
fined by ¥ (r) = 0, following the same arguments described in the main text. Here py can
be interpreted as the central density if we set ¢)(0) = 1.

For ¢ > 0, the relevant equation for the construction of the self-consistent tidally
distorted models is the Poisson equation, which, in dimensionless form, is given by:

Vi = —[p" — (1 —v)], (2.90)

while for negative values of 1) we must refer to Eq. (ZI8). Here the rescaling of variables

has been performed by means of the scale length ¢ = \/ pl/ " (4rnGey! "). The relevant
boundary conditions are given by ¢(0) = 1 instead of ZI9), while (ZZ0) and ZZT) hold
unchanged.

If the polytropic index is in the range 1 < n < 5, the solution up to second order
presented in Sect. 2.4 is fully applicable, provided that we note that the problem for the
zero-th order term of the series (ZZ2) is now given by the Lane-Emden equation (see,
e.g.[Chandrasekhar [1939):

int " 2 int)’ in "
g™ + ui = = (w) (2.91)

with ¢{™"(0) = 1 and 1/)(”’t) (0) = 0, where the symbol ' denotes derivative with respect

to the argument 7; explicitly, the truncation radius 7, is now defined by w{f"t’ (Fer) =
0, that is, it represents the radius of the so-called Emden sphere. Correspondingly, the
quantities called R; in the main text must be re-defined as:

diypn

R;(m;n) = _ ;
J( ) dw] w[()int)

(2.92)

the value of j at which the quantity R; may start to diverge depends on the index n.
Obviously, in Eq. (Z45), that is, in the Poisson equation defined in the boundary layer,
p(er) must be replaced by (e7)". This makes it clear that the value of the polytropic in-
dex n directly affects the order, with respect to the perturbation parameter, at which the
density contribution on the right-hand side of Eq. (Z45) comes into play and therefore
changes the matching procedure. If n > 1, the density contribution emerges only after
the second order and thus the full procedure described in Sect. 4 is valid. In contrast, if
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n < 1 the procedure described in the main text is applicable only up to first order while
the calculation of second order terms would require a re-definition of the boundary layer
(as it happens for the case discussed in the main text when terms of order k£ > 3 are de-
sired). In closing, we note that the procedure presented in this Chapter can be applied
also to isotropic truncated models with more complicated expressions for the density
functional (e.g. the family of models fi,, proposed by IDavousi (1977), without bound-
ary conditions on tangential velocity, for which the density functionals are expressed in
terms of the error function and of the Dawson integral), bearing in mind the last caveat
about the possibility that the density contribution may affect at some order the boundary
layer, thus requiring a reformulation of the results presented in Sect. 2.4.

2.7 Discussion and conclusions

Spherical King models are physically justified models of quasi-relaxed stellar systems
with a truncation radius argued to “summarize” the action of an external tidal field.
Such simple models have had great success in representing the structure and dynam-
ics of globular clusters, even though the presence of the tidal field is actually ignored.
Motivated by these considerations and by the recent major progress in the observations
of globular clusters, in this Chapter we have developed a systematic procedure to con-
struct self-consistent non-spherical models of quasi-relaxed stellar systems, with special
attention to models for which the non-spherical shape is due to the presence of external
tides.

The procedure developed in this Chapter starts from a distribution function identi-
fied by replacing, in a reference spherical model, the single star energy with the relevant
Jacobi integral, thus guaranteeing that the collisionless Boltzmann equation is satisfied.
Then the models are constructed by solving the Poisson equation, an elliptic partial dif-
ferential equation with free boundary. The procedure is very general and can lead to the
construction of several families of non-spherical equilibrium models. In particular, we
have obtained the following results:

e We have constructed models of quasi-relaxed triaxial stellar systems in which the
shape is due to the presence of external tides; these models reduce to the standard
spherical King models when the tidal field is absent.

e For these models we have outlined the general properties of the relevant param-
eter space; in next Chapter we will provide a thorough description of this two-
parameter family of models, also in terms of projected quantities, as appropriate
for comparisons with the observations.

e We have given a full, explicit solution to two orders in the tidal strength parameter,
based on the method of matched asymptotic expansions; by comparison with stud-
ies of analogous problems in the theory of rotating polytropic stars, this method
appears to be most satisfactory.

e We have also discussed two alternative methods of solution, one of which is based
on iteration seeded by the spherical solution; together with the use of dedicated
N-body simulations, the ability to solve such a complex mathematical problem in
different ways will allow us to test the quality of the solutions in great detail.

e By suitable change of notation and physical re-interpretation, the procedure de-
veloped in this Chapter can be applied to the construction of non-spherical quasi-
relaxed stellar systems flattened by solid-body rotation (see Chapter 4.2).
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e The same procedure can also be applied to extend to the triaxial case other isotropic
truncated models (such as low-n polytropes), that is, models that do not reduce to
King models in the absence of external tides.

We hope that this contribution, in addition to extending the class of self-consistent
models of interest in stellar dynamics, will be the basis for the development of simple
quantitative tools to investigate whether the observed shape of globular clusters is pri-
marily determined by internal rotation, by external tides, or by pressure anisotropy.






CHAPTER 3

Properties of quasi-relaxed stellar systems in an external
tidal field

3.1 Introduction

In the previous Chapter, we have constructed a family of self-consistent triaxial models
of quasi-relaxed stellar systems, shaped by the tidal field of the host galaxy, as an exten-
sion of the well-known spherical King models. For a given tidal field, the models are
characterized by two physical scales (such as total mass and central velocity dispersion)
and two dimensionless parameters (the concentration parameter and the tidal strength).
The most significant departures from spherical symmetry occur when the truncation ra-
dius of the corresponding spherical King model is of the order of the tidal radius, which,
for a given tidal strength, is set by the maximum concentration value admitted. For
such maximally extended (or “critical”) models, the outer boundary has a generally tri-
axial shape, given by the zero-velocity surface of the relevant Jacobi integral, which is
basically independent of the concentration parameter. In turn, the external tidal field
can give rise to significant global departures from spherical symmetry (as measured, for
example, by the quadrupole of the mass distribution of the stellar system) only for low-
concentration models, for which the allowed maximal value of the tidal strength can be
relatively high. In this Chapter, we describe in systematic detail the intrinsic and the
projected structure and kinematics of the models, covering the entire parameter space,
from the case of sub-critical (characterized by “underfilling” of the relevant Roche vol-
ume) to that of critical models. The intrinsic properties can be a useful starting point for
numerical simulations and other investigations that require initialization of a stellar sys-
tem in dynamical equilibrium. The projected properties are a key step in the direction of
a comparison with observed globular clusters and other candidate stellar systems.

The Chapter is organized as follows. In Section 3.2 we present a thorough description
of the relevant parameter space. The intrinsic and projected density distributions are dis-
cussed in Section 3.3, with special emphasis on the global and local quantities that can
be used as diagnostics of deviations from spherical symmetry. Intrinsic and projected
kinematics are addressed in Section 3.4. The details of the calculation of the global quan-
tities from the multipole expansion of the cluster potential are given in Section 3.5. The
comparison between the perturbation and the iteration approach for the solution of the
relevant Poisson equation is briefly presented in Section 3.6. The concluding Section 3.7
gives the summary with a discussion of the results obtained and a comment on the com-
plex physical phenomena that a large body of evolutionary models based on numerical
investigations has shown to characterize the periphery of globular clusters.

47
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Figure 3.1: Parameter space for second-order models. The uppermost solid line represents the
critical values of the tidal strength parameter for models in which the potential of the hosting
galaxy is Keplerian (v = 3); thin solid lines represent contour levels of the extension parameter J.
The dashed line is the critical curve for models within a logarithmic potential (v = 2). The dot-
dashed line gives the critical condition for a potential with v = 1 (e.g., that of a Plummer sphere
evaluated at Ry = b/ V2, with b the model scale radius).

3.2 The parameter space

The triaxial tidal models are characterized by two physical scales (corresponding to the
two free constants A and « in the distribution function fx(H)) and two dimensionless
parameters. The latter parameters are best introduced by referring to the formulation of
the Poisson equation in terms of the dimensionless escape energy

() =aHy—[aPc(F) +eT(,2)], (3.1)

where a®¢ is the dimensionless cluster mean-field potential (to be determined self-
consistently) and T'(2, 2) = 9(2% — v2?) /2 represents the tidal potential (with the numer-
ical coefficient v = 4 — £?/Q?, where x and (2 are respectively the epicyclic and orbital
frequency, depending on the potential of the hosting galaxy); the hat on the spatial coor-
dinates denotes that they are measured in units of the scale length ro = [9/(47Gpoa)]*/2.

Then the first parameter, already available in the spherical case, is the concentration
of the system and can be expressed as a dimensionless measure of the central depth of
the potential well: ¥ = ¢(0). The second parameter, the tidal strength ¢ in Eq. @), is
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defined as
02
47Gpo
i.e. as the ratio of the square of the orbital frequency (of the revolution of the stellar
system around the center of the hosting galaxy) to the square of the dynamical frequency
associated with the central density pg of the stellar system. Alternatively, the effect of the
tidal field can be measured by the extension parameter

0= 'Ftr/fT 5 (33)

where 7y, = 74, () is the fruncation radius of the spherical King model characterized by
the same value of ¥ and #r is the tidal (or Jacobi) radius, i.e. the distance from the origin
(the center of the stellar system) of the two nearby Lagrangian points of the restricted
three-body problem considered in our simple physical picture. A given model will be
labelled by the pair of values (¥, ¢) or, equivalently, by the pair (¥,§). The dimen-
sionless cut-off constant aHy can be expressed in a natural way as an asymptotic series
with respect to the tidal parameter aHy = ap + aj€ + aze?/2 + ... where the terms «;, as
discussed in Chapter 2, depend only on W¥.

Much like the Hill surfaces for the standard restricted three-body problem, we now
consider the family of zero-velocity surfaces defined by the condition ¢ (#) = 0, which
represents the boundary of our models. These surfaces can be open or closed, depending
on the value of the cut-off constant aHy, which is determined by the selected values of
the two dimensionless parameters that characterize the model. To be consistent with the
hypothesis of stationarity, we only consider closed configurations. We call “critical mod-
els” those that are bounded by the critical zero-velocity surface (which is the outermost
available closed surface). For each value of ¥, the critical value of the tidal parameter
can be found by (numerically) solving the system

(T =77, =0,2=0;€z) =0
w(‘%:fTag:()vé:O;ecr)zoa

where the unknowns are 77 and €,,. The method of matched asymptotic expansions
proposed in Chapter 2 for the solution of the relevant Poisson-Laplace equation re-
quires an expansion in spherical harmonics, therefore it can be easily recognized that
the first condition of Eq. (B4) is equivalent to the requirement of vanishing gradient,
which identifies the saddle points of the critical surface. In the general case, the condi-
tion ;¢ (1,0, 0; €) = 0 determines the value of 77 for a given tidal strength ¢, therefore
7 T = ’PT(\I/, 6).
By using in the escape energy defined in Eq. (BJ) the zeroth-order expression for the
cluster potential (a®$")(9) (#) = Ao /7 and for the cut-off constanfl, the system in Eq. (G-4)
becomes

(3.2)

(3.4)

A X
72—20 +9¢€q,vrr =0
T (3.5)
0 4 ) Z8 0
o — — + € =
0 72T 2 cr T )
thus leading to an expression for 7#) ) in terms of the dimensionless truncation radius of
the corresponding spherical King model and a first estimate of the critical value of ¢
(0 _3X 3.
Ty = —— = =T 3.6
T " 2aq 2 (.6
1 We recall from Chapter 2 that A\g = ffrwgm)/ (Per) and g = Ao /Fir, with wg“t) the zeroth-order term of
the asymptotic series of the internal solution. aHp = ag
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Figure 3.2: Critical values of the extension parameter for first-order models (dotted) and second-
order models (solid) with different potentials of the hosting galaxy (v = 3, 2, 1 from top to bottom).
The dashed horizontal line shows the value 2/3 that is found when a zeroth-order approximation
for a®c is used (see Eq. (EA)).
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The first expression can also be written as (59 = 2/3 (see Spitzer [1987). We recall that
Xo = Ao(74r) and that 74, = 74, (¥). Therefore, the right-hand side of Egs. (B.8) and B7)
depends only on the value of W.

If we make use of the full second-order asymptotic solution for the escape energy
()® in which the second-order expressions for the cluster potential (recorded in
Eq. @32) and the cut-off constant are used, the system in Eq. (83) can be re-arranged
and written in standard form

{ A(f’T)EgT +2 B(fT)Ecr + C(f'T) =0 (3 8)
D(fT)EET + 2 E(fT)Ecr + F(fT) =0, '
with

R N 3 /5. 45
A(TT) = )\27”% - (520 - 522\/@1\/;7“% + b40m
15 /5 15 /35

—bag—1A]/ — + bau—1/ — .
428 7r+ 4416 o (3.9)
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B(ir) = M7 — (az0 — a2 V/3)~ \/er + vt (3.10)

C(TT) = 2)\07’T 5 (311)

D(fr) = oy — Aaip + (bao — ba2V/3) — \/er
—b b b —\/— .
10T = 16\/_ + 0423 \/7 44 ) (3.12)

. 9
E(f7) = a1fy — M7T + (az0 — a2 V/3)~ \/er + 21/7"; , (3.13)

F(fr) = 2(aofy — A7) , (3.14)

where the relevant constants (A\; with i = 0,1, 2, aj,,, withl = 0,2 and b;,,, with [ = 0,2,4
m = 0,2,...,1), which are determined by the matching process, are defined in Sec-
tion 2.4.4 of Chapter 2. [The corresponding system based on the first-order solution
for 1Y can be recovered by setting A(#r) = D(#r) = 0.] This system has been solved
numerically, by means of the Newton-Raphson method, since the equations are nonlin-
ear in 77 (in particular, they are polynomials of fifth and seventh-order, for the first and
second-order solution respectively). As noted in the discussion of the simpler Eq. 3),
the solution for e, can then be represented as a function of the concentration parame-
ter ¥. The parameter space of the first and second-order models has been explored by
means of an equally spaced grid frome =5 x 1078 toe =1 x 1072 at steps of 5 x 1077
and from ¥ = 0.1 to ¥ = 10 at steps of 0.1.

The parameter space for the second-order models is presented in Fig. Bl The plot
provides the contour levels of the extension parameter §, with the uppermost solid line
corresponding to § = 0., ~ 2/3 (thus identifying the critical models), based on the choice
v = 3 (Keplerian host galaxy). The critical curves for v = 2 (host galaxy characterized by
flat rotation curve) and for v = 1 (Plummer potential evaluated at Ry = b/v/2, with b the
model scale radius) are shown as a dashed and dot-dashed line, respectively.

Sub-critical, underfilled models (bottom-left corner of the figure), with § < 6., are
only little affected by the tidal perturbation. The maximally deformed models are those
with § ~ 6. (close to the uppermost solid line, i.e. close-to-critical configurations).
Figure BJlshows that the critical value for the tidal strength parameter depends strongly
on concentration, with a variation of almost four orders of magnitude in the explored
range of V. The figure also indicates that for lower values of v the critical curve moves
upwards, i.e. the available parameter space increases.

The difference between the critical value of the tidal strength parameter for first
and second-order models (for a chosen value of v) is very small, around 1075 for low-
concentration models, down to 10~ or less for models with ¥ ~ 10. The critical value of
the extension parameter § depends only weakly on concentration and on v, as illustrated
in Fig.

In closing this section, we should reiterate that, in spite of the abundant use of sym-
bols required by the analysis, the family of models that we have studied is characterized
by two dimensionless parameters (¥, €). [As an alternative pair, we may refer to the stan-
dard concentration parameter C' = log(rs- /o), equivalent to ¥ and frequently used in
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Figure 3.3: Intrinsic density profiles (normalized to the central value) for critical second-order
models with v = 3and ¥ = 1,2, ..., 10 (from left to right). Top panel (a): profile of the triaxial
models along the z-axis (solid) and of the corresponding spherical King models (dashed). Bottom
panel (b): profile of the triaxial models along the j-axis (solid) and the z-axis (dashed).

the context of spherical King models, and to the extension parameter 6 = #, /77, equiv-
alent to e.] The free constants A and a that appear in the distribution function fx (H) set
the two physical scales. In turn, the models constructed by [Heggie & Ramamani (1995)
are a one-parameter family of models, because these authors focused on the critical case
and did not discuss the sub-critical regime.

3.3 Intrinsic and projected density distribution

3.3.1 Intrinsic density profile

The models are characterized by reflection symmetry with respect to the three natural
coordinate planes. With respect to the unperturbed configuration (i.e. the spherical King
model with the same value of V), they exhibit an elongation along the Z-axis (defined
by the direction of the center of the host galaxy), a compression along the Z-axis (the
direction perpendicular to the orbit plane of the globular cluster), and only a very modest
compression along the g-axis.
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Figure 3.4: Central values of the polar (eo; dashed) and equatorial (70; solid) eccentricities of the
isodensity surfaces of second-order models with v = 3, ¥ = 1,3,5,7 (from top to bottom) and
€ € [0, ecr(V)]. Horizontal lines mark the maximum value of ey and 7o reached by the critical
models (i.e., for € = €. (¥)).

Models with § < 0.2, regardless of the value of ¥, are practically indistinguishable
from the corresponding spherical King models; significant departures from spherical
symmetry occur for models with 6 ~ 0.4 or higher. In Fig. B3la we show the den-
sity profile along the Z-axis for a selection of critical second-order models with v = 3
in comparison with that of the corresponding spherical King models; note that for a
model with ¥ = 2 the elongation is already significant at Log(p/po) ~ —4, while for
a model with ¥ = 8 a similar elongation is reached only at much lower density levels
(Log(p/po) =~ —T7). The corresponding profiles along the j-axis and the Z-axis are given
in Fig. B3b.

For completeness, we checked the dependence of our density profiles on the potential
of the host galaxy. Consistent with the general trends suggested by Fig. the elonga-
tion along the Z-axis and the compression along the 2-axis for the models with v = 3
turn out to be slightly weaker than for the models with smaller values of v.

Since the dimensionless density distribution of a model, identified by (¥, ¢), is given
by p = pli(7)], where ¢ is the dimensionless escape energy and p is a monotonically
increasing function that vanishes for vanishing argument, there is a one-to-one corre-
spondence between isodensity and isovelocity surfaces, the latter being defined by the
condition (") (#) = S, where S is a constant (with 0 < S < W¥). We recall that non-
spherical models often exhibit equipotential surfaces rounder than the isodensity sur-
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faces (e.g., see [Evans [1993; [Ciotti & Bertin 2005). The reason for the presence of this
property in our models is that the supporting distribution function depends only on the
Jacobi integral, i.e. the (isolating) energy integral in the rotating frame. Therefore, for
each value of S, we can define the semi-axes @, b, and ¢ of the corresponding triaxial
isodensity surface, by means of the intersections of the surface with the z, g, and 2 axes,
which turn out to follow the ordering @ > b > ¢ The shape of the triaxial configura-
tion can thus be described in terms of the polar and equatorial eccentricities, defined as
e=[1—(¢/a)?]"/? and n = [1 — (b/a)?]'/?, respectively.

A surprising result can be derived analytically. In the innermost region 7 < 74, (i.e.,
for § ~ W), the dimensionless escape energy can be expanded to second order in the
dimensionless radius

3, 3
PO (R) ~ U — 57 e | =5 (1= v) + AxYao (6, $)+ (3.15)

AxYas(0,0)] + ; [(1 4+ B2)Ya20(0, ¢) + (1 + Ba2)Ya2(0,0)] .

Here some terms of the second-order solution do not contribute (e.g., it can be read-
ily checked that wg’ﬁ{( ) ~ 7 and wézgé)( ) ~ 79). Then by setting (") (a,0,0) =

(0 (0, B, 0) = ¥(™1(0,0, &), we find that in the innermost region the eccentricities tend
to the following non-vanishing central values

o — {e(Aa2 — V3Az + (e/2)[1 + Baa — \/§(1 + Ba)]) v/ 15/77}1/2
’ {6+ 2¢[3(1 — v) — A2o/5/m] — (1 + Bao)\/5/m}1/2

{€[2A90 + (1 + Bay)e]y/15/m}1/? (3.17)

(3.16)

=T 6 edy + (2/2)da) 2
where
di = 6(1 —v) + (Ago + V3Ax)\/5/T (3.18)
dy = [1+ Bao + V3(1 + Ba2)]\/5/7 (3.19)

which depend explicitly on the tidal strength and implicitly on the concentration. This
result is nontrivial. In fact, since the tidal potential is a homogeneous function of the
spatial coordinates, naively we might expect that in their central region the models re-
duce to a perfectly spherical shape (i.e., ¢g = 19 = 0), even for finite values of the tidal
strength. Instead, e and 79 are O(e!/?) and strictly vanish only in the limit of vanishing
tidal strength.

Figure B4lshows the central values of the eccentricities for second-order models with
v = 3 and selected values of concentration, as a function of tidal strength within the
range [0, e.-(¥)]. Consistent with the general trends identified in the discussion of the
parameter space, low-concentration models show the most significant departures from
spherical symmetry. The full eccentricity profiles (as a function of the major axis) are
shown in Fig. for a selection of critical second-order models; here the calculation of
e and 7 has been performed by numerically determining the values of the semi-axes of
a number of reference isovelocity surfaces, defined by (") (#) = S; = (25 — i)¥ /25 —
0.01 with ¢ = 0,..,25. Outside the central region, the profiles increase monotonically
and, independently of concentration, at the boundary they reach approximately a fixed
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Figure 3.5: Profiles of the polar (e; dashed) and equatorial (n; solid) eccentricities of the isodensity
surfaces for selected critical second-order models with v = 3 and ¥ = 1, 3, 5, 7 (from left to right).
Dotted horizontal lines show the central eccentricity values (see Eqs. &I6) and GI12)).

maximum value (e ~ 0.78 and n ~ 0.74), which corresponds to the fact that the shape

of the boundary surface of a critical model 09 =2 /3; see also Fig. B.2) depends only
modestly on concentration.

3.3.2 Comparison with the models constructed by Heggie & Ramamani (1995)

The method used in Chapter 2 for the construction of the models illustrated here can
be summarized as follows. The solution in the internal (Poisson) and external (Laplace)
domains are expressed as an asymptotic series with respect to the dimensionless param-
eter ¢, representing the tidal strength (defined in Eq. @2)), which is considered to be
small. The kth-order term of the asymptotic series of the internal and external solution
are denoted by ¢{"'(7) and ¢ (7) respectively, so that the zeroth-order terms define the
standard spherical King models. The quantity (:/©?)(*) indicates the kth-order external
solution, i.e. the corresponding asymptotic series truncated at the term ¢;>; a simi-
lar notation holds for the internal solution. The validity of the expansion breaks down
where the second term is comparable to the first, i.e. where y9 = O(e). This singularity
is cured by introducing a boundary layer in which both the spatial coordinates and the
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Figure 3.6: Relative difference between the intrinsic density profiles of critical second-order mod-
els (prr) constructed in this Chapter and those of the corresponding (first-order) models (pur)
described by [Heggie & Ramamani (1995). The comparison has been performed along the three
axes in the whole internal+boundary region (see main text). Here we illustrate the difference
along the z-axis in the boundary layer (¥ = 1, 2, ..., 10 from left to right). At variance with Fig. B3
the spatial coordinate is scaled with respect to the truncation radius instead of the scale radius ro.

solution 1™ are suitably rescaled with respect to the tidal parameter. To obtain a uni-
formly valid solution over the entire space, an asymptotic matching (seelVan Dyke 1975,
Eq. (5.24)) is performed between the pairs (™, ™) and ()™, 1pY). Each term 1y (#)
is then expanded in spherical harmonics with radial coefficients v, 1., (7). The internal
region requires a numerical solution of the Cauchy problems for the radial coefficients
(we used a fourth-order Runge-Kutta code) while in the external region a formal solu-
tion with multipolar structure is available and in the boundary layer the integration in
the radial variable can be performed analytically.

The models described by [Heggie & Ramamani (1995) are also based on a perturbation
approach, but the method used is different from ours, provides a solution of the Poisson
equation that is first-order with respect to the tidal parameter, and is restricted to the
“critical” case; actually, as noted in Section 3.2 after Eq. (82), the perturbation approach
is bound to break down in the critical case. Technically speaking, their method is in the
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form of a “patching” procedure, in contrast with our asymptotic matching. Therefore,
the models constructed in Chapter 2, while consistent, to first order, with those of Heggie
& Ramamani (1995), are more general. We also recall that our method is also applicable
to systems described by different distribution functions (see Section 2.6).

We have thus performed a quantitative comparison between the intrinsic density
profiles of our critical second-order models and those of the modeld] by Heggie & Ra-
mamani (1995), both referred to the case in which the host galaxy is Keplerian (v = 3).
As desired, there is substantial consistency except for the outermost part of the bound-
ary layer in which our models are slightly more compact, due to a global “boxiness”
effect induced by the second-order term present in our models in which harmonics of
order | = 4 also play a role. In Fig. Bl we represent the relative difference between the
two density profiles evaluated along the z-axis (with the coordinates scaled with respect
to the truncation radius instead of the usual scale radius r) for selected values of V.
A similar behaviour is found also along the y-axis, for y/r, in the range [0.80, 1], and
along the z-axis, for z/r, in the range [0.80,0.95]. In the central part of the internal re-
gion, along the principal axes, the relative difference is smaller than 5 percent for every
value of ¥ we tested, while near the transition to the boundary layer (i.e z/r;,, < 1 and
y/rir, z/Te S 0.8) a difference of 20 percent can be reached in the case of highly con-
centrated models (¥ = 8,9, 10). We interpret these differences as due to the combined
effects of the patching vs. matching adopted process and of the different grid on which
the Cauchy problems for the radial coefficients are solved (we used a regular radial grid
while [Heggie & Ramamani (1995) used a more complex tabulation resulting from their
choice of taking the zeroth-order cluster potential as the independent variable and of the
function in(1 + #?) instead of 7).

3.3.3 Global quantities

The previous discussion has focused on the shape of the isodensity surfaces of the mod-
els. In particular, some interesting conclusions have been derived based on a local anal-
ysis of the central region and of the outer boundary of the configuration. The maximal
departures from spherical symmetry are reached at the periphery, but these hinge on the
distribution of the very small number of stars that populate the outer region of the clus-
ter. We may thus wish to study some global quantities that better characterize whether
significant amounts of mass (and, correspondingly, of light) are actually involved in the
deviation of the model from spherical symmetry. One standard such global measure is
provided by the quadrupole moment tensor

Qij = / (31‘7.13] — TQ(Sq;j)p(I‘)dBT =
\4
1217“8/ (3@}3% — AQ(Sq;j)pA(f')dBA = ATSQU s (320)
14

with the integration to be performed in the volume V' of the entire configuration. Here
the notation for the function p and for the constant A is the same as in Eq. @T0). In con-
trast with the frequently used inertia tensor I;; = [|, pz;z;d°r (e.g., see Chandrasekhar
1969, chap. 2), the quadrupole moment is defined in such a way that in the spheri-
cal limit it vanishes identically. In our coordinate system it is diagonal. Note that the
tidal distortions require that the non-vanishing terms of the inertia tensor follow the

2 For this purpose, we used the code that implements the models described by[Hegeie & Ramamani (1995),
written by D. C. Heggie and available within the STARLAB software environment (Portegies Zwart et ali2001)
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Figure 3.7: Ratio of two pairs of quadrupole moments for the second-order models with ¥ = 5,
0.1 <0 < 0cr(¥), and v = 1, 2, 3 (in the left panel, the sequence of models with different v values
runs from bottom to top; in the right panel, it runs from top to bottom). The values obtained
from numerical integration over the entire triaxial volume (dots) are compared to the analytical
approximations (solid line) given by Egs. and BZ0); the analytical estimates of the ratios for
first order models are also shown (dashed horizontal lines). The propagation of the errors of the
numerical integration leads to the plotted error bars.

ordering I, > I,, > I..; to visualize the geometry of the system, we may thus also
refer to the average polar and equatorial eccentricities € and 7 defined by the relations
Iy, = (1= 7*)1ys, L. = (1 — €2)I,,. In general, we have Qy,/ Q.. = (€2 — 27%) /(€% + 7?)
and Q../Q.. = (7> — 2€?)/(e* + %), with the prolate configuration identified by & = 7,

Since most of the mass is contained in the inner regions, global quantities can be
evaluated approximately by neglecting the contribution from the region corresponding
to the boundary layer. We can thus use the second-order solutions for p obtained in
Chapter 2 by the method of matched asymptotic expansions and conveniently reduce
the calculation of global quantities to an easier integration in spherical coordinates inside
the sphere of radius 7. Therefore, for the quadrupole moment tensor we find

2
A A A €
Q) = Quac+ Qi - (3.21)

We emphasize that this estimate is expected to be a good approximation only for those
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models for which the contribution of the boundary layer is negligible with respect to the
one of the internal sphere of radius 7.

The relevant components on the diagonal can be expressed in terms of the matching
constants of the external solution (for the relevant definitions, see Eqgs. (Z.63) and Z.69)
in Chapter 2)

A 2 . €2
Q(IQI) = § V 57Tp(\I/) |:(a206 + bgo—)

2
2
—V3 (a22€ + 622%)] ; (3.22)
. 9 2
ng) = 5\/5_7TP(‘I’) [<020€ + b20%)
2
+V3 <a226 + b22%)] , (3.23)
A 4 2
QY = —5\/5_”/3(‘:[’) (a206 + bzo%) : (3.24)

We recall that the constants asp and by are positive, while a2 and byy are negative
(and larger in magnitude). Therefore, Q% is positive and Q@(,Qy) and Q% are negative,
consistent with the detailed elongation and compressions observed in the density profile.
A summary of the derivation of these formulae is provided in Appendix B.

As a measure of the degree of triaxiality of a given configuration, we have calculated
the following ratios

ng)  (a20 + booe/2) + V3 (a2 + baze/2)

vy _ , (3.25)
@) (ago + baoe/2) — /3 (agz + bage/2)
) - —2 (az20 + bape/2) (3.26)

Q%)  (a20 + baoe/2) — V3 (azz + baoe/2)

which depend explicitly on the tidal strength parameter and implicitly on the concentra-
tion parameter. In the limit of vanishing tidal strength, we find

ny N A(yly) _ Tao(Per) + V/3Too (74 _ov—1

) A o - ~ - ’ (327)
ch gclm) TQO(Ttr) - \/§T22 (rtr) 2v+1
sz -~ :glz) _ —QTQO(’F]‘/{-) _ 2+ v (328)

Qux & Too(Per) — V3Taa (i) 2v+17

where T5,,, () are the quadrupole coefficients of the tidal potential (see Eqs. @38) and
(Z39) in Chapter 2). This result is nontrivial, because, in this limit, numerator and de-
nominator are both expected to vanish. Note that only for » = 1 the ratio Qyy/Qzz =
O(e).

Earlier in this Chapter we mentioned that two physical scales, such as total mass and
central velocity dispersion, correspond to the two dimensional constants A and a that
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appear in the distribution function fx (H). In fact, the total mass of the system is given

by
M :/ p(r)d3r = /Alrg/ p(R)d>F = Ard M . (3.29)
v 1%

If we insert the second-order solution for p obtained in Chapter 2, we find

M® :/ dqb/ d9$1n9/ dr % p (7,0, ¢)

= Mo + eM; + 5]\22 , (3.30)
with R
M; = NI;(0) = —47”’9 W), (3.31)

Here each term of the expansion is related to the corresponding constant with [ = 0 (i.e.,
the monopole term) of the expression of the external solution of the Poisson-Laplace
equation calculated by means of the method of matched asymptotic expansion (for the
relevant definitions, see Eqs. Z59),2.61),([Z&7) in Chapter 2).

The quality of the analytical estimates for the total mass and the quadrupole moment
tensor has been checked by comparing the values obtained from asymptotic analysis
with those resulting from direct numerical integration of Eq. Z9) and Eq. (B20) respec-
tively, in which the density profile s = p[1(#)] is used without any additional expansion.
The integration of the distribution function over the entire space, required by those
global quantities, has been performed by means of an Adaptive Monte Carlo method
(the algorithm VEGAS, see [Press et all[1992, Section 7.8), well suited for our geometry.
For the quadrupole, the results are illustrated in Fig. BZ For the mass, the dimensionless
function M ) (¥) is basically unchanged (within 0.5 percent) with respect to the function
characterizing the spherical King models; the Monte Carlo integration is very accurate,
with relative errors around 10~°, and the analytical approximation given by Eq. @30)
shows an excellent agreement for every value of ¥ in the whole range of the extension
parameter [0, d.. (V)]

The average eccentricities for critical second-order models as a function of concentra-
tion, with 0.1 < ¥ < 10, for two different choices of the host galaxy potential (v = 3, 1),
are shown in Fig. The values are calculated directly from the definitions given ear-
lier in this subsection in terms of p = p[¢(#)] with no additional expansions. A non-
monotonic dependence on concentration is revealed, with generally higher average ec-
centricities attained by low-concentration models. The trends of the polar and equatorial
eccentricities are basically the same, as shown by the fact that the related curves in the
plot can be matched approximately by a rigid translation. As expected (see Section 3.3.1),
models with v = 1 show a larger separation between polar and equatorial eccentricities
than models with v = 3. The presence of a minimum for the curves at ¥ ~ 6.5 occurs
approximately at the location where the function Logle.,(¥)] shows an inflection point
(regardless of the value of v; see Fig. B.).

3.3.4 Projected density profile

Under the assumption of a constant mass-to-light ratio, projected models can be com-
pared with the observations. We have then computed surface (projected) density profiles
and projected isophotes. The projection has been performed along selected directions,
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Figure 3.8: Average polar (&; dashed) and equatorial (7; solid) eccentricities for critical second-
order models as a function of concentration, with 0.1 < ¥ < 10, for two different host potentials.
Models with v = 3 correspond to the inner pair of curves, while models with v = 1 to the outer
pair. The eccentricities have been determined numerically from their definitions (see main text) in
terms of p = p[ty(#)], without any additional expansion; the relative errors are around 107°.

identified by the viewing angle (6, ¢), corresponding to the Zp axis of a new coordinate
system related to the intrinsic system by the transformation Zp = Rz; the rotation ma-
trix R = R1(0)Rs3(¢) is expressed in terms of the viewing angles, by taking the & p axis as
the line of nodes (see IRyden [1991, for an equivalent projection rule). Given the symme-
try of our models (see Section 3.3.1), viewing angles can be chosen from the first octant
only. In particular, we used a 4 x 4 polar grid defined by §; = in/6 and ¢; = j7/6
with 4,5 = 0, .., 3, and calculated (by numerical integration, using the Simpson rule) the
dimensionless projected density

S(ip, ip) = / " p(p)dip (3.32)

Zop

where %, = (#2 — i% — §%)/? with i, the edge of the cluster along the & axis of the

intrinsic coordinate system (i.e., we “embedded” the triaxial configuration in a sphere of
radius given by its maximal extension). The projection plane (Zp, §p) has been sampled
on an equally-spaced 108 x 108 square grid centered at the origin (note that for % + 9% >
&2 the projected density is correctly set to zero).

The morphology of the isophotes of a given projected image can be described in
terms of the ellipticity profile, defined as ¢ = 1 — bp /ap where ap and bp are the semi-
axes, as a function of the major axis ap. As already noted for the (intrinsic) eccentricity
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Figure 3.9: Projections of a second-order critical model (¥ = 2 and v = 3) along the & axis (left
panel [a]) and along the y axis (central panel [b]). The ellipticity profiles (right panel [c], from
bottom to top) refer to the projections along directions identified by (0 = 7/2,¢ = i7/6) with
1 =0, ..., 3; dots represent the locations of the isophotes drawn in panels [a],[b], which correspond
to selected values of 3/ in the range [0.9, 10™°]. The arrow indicates the position of the half-light
isophote (practically the same for every projection considered in the figure).

profiles, the deviation from circularity increases with the distance from the origin. In the
inner region, the ellipticity is consistent with the central eccentricities eq and 7y calcu-
lated in Section 3.3.1.

By taking lines of sight different from the axes of the symmetry planes, we have
also checked whether the projected models would exhibit isophotal twisting. For all the
cases considered, the position angle of the major axis remains unchanged over the entire
projected image. Tests made by changing the resolution of the grid confirm that, even in
the most triaxial case (v = 1), no significant twisting is present.

The first two panels of Fig. show the projected images of a critical second-order
model with ¥ = 2 and v = 3 along the (7/2,0) and (7/2, 7/2) directions, (i.e., the Z and
7 axis of the intrinsic system), corresponding, respectively, to the least and to the most
favorable line of sight for the detection of the intrinsic flattening of the model. For the
same model, the third panel illustrates the ellipticity profiles for various lines of sight.

FigureB.I0shows the surface density profiles along the & p and yp axes of the projec-
tion plane for ten critical second-order models with v = 3, viewed along the (7/2,7/2)
direction. As a further characterization, for the same models in the lower panel we also
present the surface density profiles obtained by averaging the projected density distri-
bution on circular annuli; this conforms to the procedure often adopted by observers in
dealing with density distributions with very small departures from circular symmetry
(e.g., see [Lanzoni et all 2007). As expected, circular-averaged profiles lie between the
corresponding regular profiles taken along the principal axes of the projected image.

3.4 Intrinsic and projected kinematics

By construction, the models are characterized by isotropic velocity dispersion. The in-
trinsic velocity dispersion can be determined directly as the second moment in velocity
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space (normalized to the intrinsic density) of the distribution function

2 29(7/2,¢) 1,

where v represents the incomplete gamma function (near the boundary of the config-
uration, the velocity dispersion profile scales as 6%(1)) ~ (2/7)1). This shows that the
isodensity surfaces of the models are in a one-to-one correspondence with the isoveloc-
ity and isobaric surfaces (defined by o[1()] = const). As noted for the intrinsic density
profiles in Section 3.3.1, a compression along the Z axis and an elongation along # axis
occur also for the intrinsic velocity dispersion profiles. In Fig. BTTla we present the in-
trinsic velocity dispersion profiles along the & axis for the same critical models illustrated
in Fig. B3lcompared to the profiles of the corresponding spherical King models. The be-
havior of the projected velocity dispersion profiles near the boundary is significantly
different from that of the spherical models.

The projected velocity moments can be calculated by integrating along the line of
sight (weighted by the intrinsic density) the corresponding intrinsic quantities. There-
fore, the projected velocity dispersion is given by

J77 o2 (Ep)p(Ep)dp

QAN Zsp -
UP(xP7yP) - E(fi'P,gP) =
2 A[7)2,9(8p)] explts (Fp)]d2
5%[ y i(i:z ip) - 2‘}?’(55“@”' (3:34)

Figure BIIlb shows the projected velocity dispersion profiles along the Zp and ¢p axis
of the projection plane for the same models displayed in Fig. B0 (the line of sight is
defined by (7/2, 7/2)).

3.5 Global quantities from the multipole expansion of the cluster po-
tential

Based on the expansion in spherical harmonics of 1/|# — #| given in Eq. (3.70) of lackson
(1999), the external potential generated by our model can be expressed by means of the
following multipole expansion

) 9 L ) 9 =X 1 & Y9
(ext) _ 3/ I s
) /Vd =T 2 gy 2 dm s (339)

=0 m=—I1

where the multipole coefficients are defined as
i = [ Vi (807005 (336)
14
with the integration to be performed in the volume V' with boundary surface defined by

1 = 0. This general expression can be compared with the second-order solution of the
Laplace equation obtained in Chapter 2

(0, 9)

. . 71 €27 Yao(0, 2] Y
(a(I)(g))(Q) (7”) = |:/\0 + Ae+ /\25:| ; + [agoe + bgo;] w + [GQQG + bQQE] 22
€2 Yao (6, ¢) €2 Y2 (0, ¢) e Yiu (6, 9)
+b405T + b425T + b445T )

723

(3.37)
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Figure 3.10: Projected density profiles (normalized to the central value) for the same ten second-
order critical models displayed in Fig. B3 Top panel (a): the models are viewed from the § axis
and the profiles taken along the two principal axes in the projection plane (along Zp (solid) and
yp (dashed), i.e. along the & and Z axes of the intrinsic frame of reference). Bottom panel (b): the
projection is performed on the same line of sight of the previous panel, but the profiles are taken

by averaging the projected surface density on circular annuli, as if the image were intrinsically
circular.

in order to determine the relation between the second-order multipole coefficients (jl(fn)

(i.e. calculated by means of the second-order expression for the density) and the match-
ing constants that appear in Eq. (37). Therefore, we find that

€2 9 )
A+ Ade+d—=————1{qp9 3.38
0 1€ 2 5 \/Eﬁ(\ll) o0 ( )

so that Eq. B31) follows. For the higher-order harmonics we find the following relations
for the non-vanishing coefficients

¢ 9 @




Properties of quasi-relaxed stellar systems in an external tidal field 65

form = 0,2 and

e __ 1 .o

b4m5 = _ﬁ(\ll) Aapm s (340)

form =0,2,4.
Recalling that we are using real spherical harmonics with the Condon-Shortley phase,

we get
. 1 /5 4
420 = 1\/jQ22 ) (3.41)
s

= o2 (0~ ) (342)

To determine all the nontrivial components of the quadrupole moment tensor, we use

the condition Tr(@ij) = 0. Therefore, for the second-order solution of Chapter 2, the
system

. . 20 [ . €

QP - QY = -3 Ep(\I/) <a226 + b225>

) 2 ) 2 3.43
QQZ) iy gp(\ll) (a20€ + 520%) ( :

QY + Q% +o% =0,

leads to the expressions recorded in Eqs. G22)-(B.24).

3.6 Perturbation vs. iteration

For completeness, we calculated selected models also by means of the iteration method
described in Section 2.5.2, in order to verify the quality of the solution obtained with
the method of matched asymptotic expansions, in particular in the critical regime. This
technique follows the approach proposed by [Prendergast & Tomed (1970). The basic idea
is to get an improved solution of the Poisson equation (see Eq. (ZZ2) in Chapter 2) by
evaluating the right-hand side with the solution obtained from the immediately previ-
ous step, starting from the spherical King models taken as initial “seed solutions”. In
our code, the required spherical harmonic analysis and synthesis of density and poten-
tial have been performed by means of the S2kit 1.0 package (Kostelec & Rockmord 2004),
which makes use of FFTW 3.2.1 (Frigo_& Johnson 2005). We decided to truncate the
harmonic series at | = 4 in order to be consistent with the maximum harmonic index ad-
mitted by the second-order asymptotic solution. The iteration stops when convergence
to four significant digits in the whole domain of the solution is reached.

For selected values of the concentration parameter in the range 0.1 < ¥ < 10 (for
simplicity, we considered only the case of an external potential with v = 3), the cor-
responding critical value of the tidal strength parameter obtained with the iteration
method is consistent to 1073 with the value determined by the numerical solution of
Eq. @3), in which the constants obtained from the asymptotic matching are used. For
a critical model up to 20 iteration steps are required for convergence, while a subcritical
solution typically takes in 4 to 8 steps.
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3.7 Discussion and conclusions

3.7.1 A comment on the complex structure of the outer regions

In Chapter 2 we have noted the singular character of the mathematical problem as-
sociated with the free boundary set by the three-dimensional surface of these tidally
truncated models. In Section 3.2 of the present Chapter, we have further emphasized
the additional singularity that characterizes close-to-critical models (see comment after
Eq. @2)). Asis true in general in the study of boundary layers and similar problems, it is
no wonder that in the vicinity of such critical boundaries, a number of complex physical
effects may take place and play an important role in determining the detailed structure
of the solution. On the other hand, the properties of the derived solution away from the
boundary are quite robust (see Sections 3.3 and 3.5). As to some of the subtle proper-
ties of the expected distribution function close to the edge of a cluster, it is interesting
to summarize here below the main results that emerge from a vast body of evolutionary
models (N-body, Fokker-Planck, Monte Carlo, gas), on the issue of the interplay between
pressure anisotropy and tidal effects.

Since the first solutions of the Fokker-Planck equation by means of a Monte Carlo
approach, as described by [Hénon (1971)) or Spitzer & Hari (1971), it has been shown
that one-component isolated spherical clusters, starting from a variety of initial conditions
(see Spitze1 [1987, chap.4 and references therein), develop a core-halo structure in which
the central parts are almost isotropic while the outer regions are characterized by radial
anisotropy. A commonly reported interpretation is that the halo is mainly populated by
stars scattered out from the core on radial orbits. If the evolution of a cluster is influ-
enced not only by internal processes but also by the presence of an external tidal field,
the growth of pressure anisotropy is significantly damped. Direct N-body simulations
(e.g., see Giersz & Heggid [1997; |Aarseth & Heggid [1998; Baumeardt & Makind 2003;
Lee et all[2006H), anisotropic Fokker-Planck (e.g., see [Takahashi et all[1997h), and Monte
Carlo models (e.g., see Giersz 2001) of both single and multi-mass systems suggest that
clusters in circular orbits (and even in eccentric orbits, see Baumgardt & Makina 2003),
starting from isotropic initial conditions, tend to preserve pressure isotropy, except for
the outermost parts which become tangentially anisotropic due to the preferential loss of
stars on radial orbits, induced by the tidal field. The overall agreement on this result
is nontrivial, because of the aforementioned differences in the treatment of the external
tidal field. Even extreme cases of time-dependent tides, such as disk shocking, influ-
ence the degree of pressure anisotropy since it has been shown that they may represent
a dominant mechanism (“shock relaxation”) of the energy redistribution, leading to a
substantial isotropy, of the weakly bound stars (see l(Oh_& Lin [1992; Kundic & Ostriket
1995, both papers are based on a Fokker-Planck approach).

These results confirm that, of course, the properties of the models constructed in
Chapter 2 and described here should be taken only as a zeroth-order reference frame,
to single out the precise role of external tides, and should not be taken literally as a
realistic representation of real objects since a number of simplifying assumptions are
made. On the other hand, by comparing data with such an idealized reference model it
will be possible to better assess the role of tides with respect to other physical ingredients
studied separately.

3.7.2 Summary and concluding remarks

The main results that we have obtained from the detailed analysis of the family of tidal
triaxial models can be summarized as follows:
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Figure 3.11: Top panel (a): intrinsic velocity dispersion profiles (solid, normalized to the central
value) along the Z axis for the same ten second-order critical models illustrated in Fig.B3a com-
pared to the corresponding spherical King models (dashed). Bottom panel (b): projected velocity
dispersion profiles (normalized to the central value) for the same ten second-order critical models
illustrated in Fig.BI0la, viewed along the same direction. Solid and dashed lines show the profiles
along the & p axis and gp of the projection plane, respectively.

e Two tidal regimes exist, namely of low and high-deformation, which are deter-
mined by the combined effect of the tidal strength of the field and of the concentra-
tion of the cluster. The degree of deformation increases with the degree of filling
of the relevant Roche volume. Far from the condition of Roche volume filling,
the models are almost indistinguishable from the corresponding spherical King
models. A number of studies have investigated the evolution of tidally perturbed
stellar systems initially underfilling their Roche lobe (e.g., see |Gieles & Baumgardi
2008; [Vesperini_et all 2009), concluding that some of the relevant dynamical pro-
cesses, in particular evaporation, depend on the degree of filling of the Roche vol-
ume. The intrinsic properties of the models discussed in this Chapter can be useful
for setting self-consistent nonspherical initial conditions of numerical simulations
aiming at studying in further details the evolution of configurations starting from
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sub-critical tidal equilibria.

e For a given tidal strength, there exists a maximum value of concentration for which
a closed configuration is allowed (see Fig. B). In such “critical” case, the trunca-
tion radius of the corresponding spherical King models is of the same order of the
tidal radius of the triaxial model. The shape of the boundary of the maximally
deformed models is given by the “critical” zero-velocity surface of the relevant Ja-
cobi integral and is basically independent of concentration, while the deformation
of the internal region strongly depends on the value of the critical tidal strength
and is more significant for low-concentration models. This statement agrees with
a general trend noted by White & Shawl (1987) for the globular cluster system of
our Galaxy.

e The structure of the models can be described in terms of the polar and equatorial
eccentricity profiles of the intrinsic isodensity surfaces. The maximal departures
from spherical symmetry are reached in the outskirts.

e For finite tidal strength, the central values of the polar and equatorial eccentricities
are finite, O(¢!/?); this result is nontrivial since the tidal potential which induces
the perturbation is a quadratic homogeneous function of the spatial coordinates.

e Global measures of the degree of triaxiality in terms of the quadrupole moment
tensor have been introduced and calculated for different values of the tidal strength
and different potentials of the host galaxy. The potential of the host galaxy sets the
geometry of the tidal perturbation, as nicely shown by the analytic expressions
for the ratios of the components of the quadrupole moment tensor, which, in the
case of first-order models, reduce to simple functions of the coefficient v. Average
eccentricities have been calculated from the inertia tensor components, evaluated
numerically.

o As a key step in the direction of a comparison with observations, projected density
profiles and ellipticity profiles have been calculated for a number of models for
several lines of sight.

e The study of the relevant (projected) isophotes indicates that no isophotal twisting
occurs. This result is nontrivial since the models are nonstratified and centrally-
concentrated, conditions under which, in principle, isophotal twist may occur (see
Stark (1977); models based on Stdckel potentials are also known to be twist-free, as
shown by [Franx (1988)).

e Finally, close to the boundary, the intrinsic and projected kinematics shows signif-
icant differences with respect to that of spherical models.

Since our models are all characterized by monotonically increasing ellipticity profiles,
they cannot explain the variety of behavior of observed ellipticity profiles (see Geyer
et al. [1983), but the range of the predicted flattening (¢ < 0.3) is consistent with that
observed in most globular clusters (see White & Shawl (1987) for the clusters in the
Milky Way and [Frenk & Fall (1982) for those in the LMC). Therefore, with the exception
of special clusters such as Omega Centauri, we think that the modest but frequently
observed deviations from spherical symmetry might have their origin traced to tides.

Finally, since our models are intrinsically more elongated (in the direction of the cen-
ter of the host galaxy) than spherical King models, they might be useful for interpreting
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clusters with a surface brightness profile extending beyond that predicted by the spher-
ical King models. Recent investigations (see MclLaughlin & van der Marel 2005) suggest
that such “extra-tidal” structures are a fairly generic feature, especially for extragalactic
clusters, and not just a transient property, present only at young ages.
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CHAPTER 4

New self-consistent rotating equilibria

41 Introduction

In the present Chapter, we consider two families of axisymmetric rotating models: the
first one is characterized by the presence of solid-body rotation and isotropy in velocity
space. Indeed, full relaxation in the presence of nonvanishing total angular momentum
suggests the establishment of solid-body rotation through the dependence of the rele-
vant distribution function f = f(H) on the Jacobi integral H = E — wJ, (see Landau
& Lifshitz [1969). But, for applications to real stellar systems, one may take advantage
of the fact that the collisional relaxation time may be large in the outer regions, so that
in the outer parts the constraint of solid-body rotation might be released. In particu-
lar, for globular clusters we may argue that the outer parts fall into a tide-dominated
regime, for which evaporation tends to erase systematic rotation even if initially present,
as confirmed by previous studies based on the Fokker-Planck method (Goodman [1983;
Einsel & Spurzem [1999; [Kim et all 2002; [Fiestas et all2006). For the truncation, we may
then consider a heuristic prescription to simulate the effects of tides, much like for the
spherical King models.

In view of possible applications to globular clusters, we thus consider a second class
of axisymmetric rotating models based on a distribution function dependent only on the
energy and on the z-component of the angular momentum f = f(I) where I = I(E, J.),
with the property that I ~ E for stars with relatively high z-component of the angular
momentum, while I ~ H = E — wJ, for relatively low values of J.. Such models are in-
deed defined in order to have differential rotation, designed to be rigid in the center and
to vanish in the outer parts, where the energy truncation becomes effective. As far as the
velocity dispersion is concerned, this family may show a variety of profiles (depending
on the values of the relevant free parameters), all of them characterized by the presence
of isotropy in the central region. We thus add two classes of self-consistent models to the
relatively short list of rotating stellar dynamical models currently available.

One aspect that plays an important role in defining a physically motivated distri-
bution function, which often goes unnoticed (but see [Hunte 11977, IDavousi 1977, and
Rowleyl [1988), is the choice of the truncation prescription in phase space. The advan-
tages and the limitations of alternative options available for the second family of models
will be discussed in detail. In this context, we will also address the issue of whether
these differentially rotating models fall within the class of systems for which rotation is
constant on cylinders.

The Chapter is structured as follows. The properties of the family of rigidly rotat-
ing models, constructed on the basis of general statistical mechanics considerations, are
illustrated in Sect. The family of differentially rotating models, designed for the
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application to rotating globular clusters, is introduced in Sect. B3] where we briefly de-
scribe the method used for the solution of the self-consistent problem and discuss the
relevant parameter space. Section B4l is devoted to a study of the intrinsic properties
and Sect. Rl to the projected observables derived from differentially rotating models.

After illustrating in Sect. B the effect of different truncation prescriptions in phase
space, a discussion of the spherical nonrotating limit of our families of models in pre-
sented in Sect. 7l and the details of the alternative truncation option for the second
family are recorded in Sect. We summarize the results and present our conclusions
in Sect.

4.2 Rigidly rotating models

4.2.1 The distribution function

The construction of rigidly rotating configurations characterized by nonuniform density
is a classical problem in the theory of rotating stars, starting with Milne (Milne [1923;
Chandrasekha1[1933), but it basically remained limited to the study of a fluid with poly-
tropic equation of state, for which the solution of the relevant Poisson equation can be
obtained by means of a semi-analytical approach (for a comprehensive description, see
Chaps. 5 and 10 in Tassoul (1978); for an enlightening presentation of the general prob-
lem of rotating compressible masses, see Chap. 9 in [[eand [192§). The reader is referred
to Chapter 2 for a discussion of the application of some of the mathematical methods
developed in that context to the construction of nonspherical truncated self-consistent
stellar dynamical models. The deviations from spherical symmetry studied in Chapter 2
are induced by the presence of a stationary perturbation characterized by a quadrupolar
structure, that is, either an external tidal field or internal solid-body rotation.

It is well known that in the presence of finite total angular momentum of the system,
relaxation leads to solid-body rotation (e.g., seelLandau & LifshitZ[1969). If we denote by
w the angular velocity of such rigid rotation and assume that it takes place around the z
axis, in the statistical mechanical argument that leads to the derivation of the Maxwell-
Boltzmann distribution one finds that in the final distribution function the single particle
energy F is replaced by the quantity £ — w.J,. Following this picture, we may consider
the extension of King models to the case of internal rigid rotation. This extension is con-
ceptually simpler than that addressed in Chapter 2, because the perturbation associated
with internal rotation, while breaking spherical symmetry, preserves axial symmetry. We
note that the models described below differ from those studied by [Kormendy & Anand
(1971), which were characterized by a different, discontinuous truncation, and those by
Prendergast & Tomer (197() and by Wilsorl (1975), which were characterized by a differ-
ent truncation prescription and by differential rotation.

The relevant physical model is that of a rigidly rotating isolated globular cluster char-
acterized by angular velocity w = wé,, with respect to a frame of reference with the ori-
gin in the center of mass of the cluster. We then introduce a second frame of reference,
co-rotating with the cluster, in which the position vector is given by r = (z, y, z). In such
rotating frame, the Lagrangian describing the motion of a star belonging to the cluster is
given by:

1
L= (@ + 9"+ 2% + 2wiw — Wwiy) = Peen(@,) = P (,y,2) (4.1)

where @, (7, y) = —(2? + y?)w? /2 is the centrifugal potential; the energy integral of the
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Figure 4.1: The boundary surface, defined implicitly by (&) = 0, of a critical second-order rigidly
rotating model with ¥ = 2. The configuration is axisymmetric; the points on the equatorial plane
are saddle points (see Sect. 4.2.2 for details). Rotation takes place around the Z-axis. The spatial
coordinates are expressed in appropriate dimensionless units (see Eq. @8)).

motion (called the Jacobi integral) is:

1. . .
H = E(xQ + y2 + 22) + Peen + D¢ - (4.2)

As in the tidal case, the extension of the family of King models is performed by con-
sidering the distribution function:

fr(H) = Ae~@Ho |galH—Ho) _ (4.3)

for H < Hy and f};(H) = 0 otherwise, where
H=E-wl, (4.4)

denotes the Jacobi integral, with w the angular velocity of the rigid rotation (hence the
superscript r), assumed to take place around the z—axis. The quantities £/ and J, are
the specific one-star energy and z-component of the angular momentum, Hy represents
a cut-off constant of the Jacobi integral, while A and a are positive constants. The dimen-
sionless energy is defined by:

Y(r) = a{Ho — [Pc(r) + Peen(, )]}, (4.5)
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and the boundary of the cluster, implicitly defined as (r) = 0, is an equipotential sur-
face for the total potential ®¢ + Pcer,. Its geometry, reflecting the properties of the cen-
trifugal potential, is characterized by symmetry with respect to the z-axis and reflection
symmetry with respect to the equatorial plane (z,y). The constant ¢ family of surfaces,
much like the Hill surfaces of the tidal case, is characterized by a critical surface which
distinguishes the closed from the opened ones and in which the points on the equatorial
plane are all saddle points. Note that, by construction, in the limit of vanishing internal
rotation, this family of models reduces to the family of spherical King (1966) models (see
Section 4.7 for a summary of the main properties of the family in the nonrotating limit).

The construction of the models requires the integration of the associated nonlinear
Poisson equation, which, after scaling the spatial coordinates with respect to the scale
length

9 1/2
Tro = (747eroa) 5 (46)

can be written as

. ) ~ (int)
prc (W)
where )
w
= 4.
X= G (4.8)

is the dimensionless parameter that characterizes the rotation strength and
v =y (0) (4.9)
is the depth of the potential well at the center. The dimensionless density profile is given
by
pret) = 29—y (S0 (@.10)
where

8m21/2A _
34372 ©

and ~ denotes the incomplete gamma function. Therefore, the central density is given

by po = flﬁ & (¥). Outside the cluster, for negative values of 1, we should refer to the
Laplace equation

A 4.11)

V2pert) = 18y | (4.12)

The relevant boundary conditions are given by the requirement of regularity of the
solution at the origin and by the condition that e 4 qd..,, — aHj at large radii. The
Poisson (internal) and Laplace (external) domains are thus separated by the boundary
surface, which is unknown a priori. Therefore, we have to solve an elliptic partial dif-
ferential equation in a free boundary problem. In particular, here we illustrate the prop-
erties of the solutions of the Poisson-Laplace equation obtained by using a perturbation
method, which also requires an expansion of the solution in Legendre series. To obtain a
uniformly valid solution over the entire space, an asymptotic matching is performed be-
tween the internal and the external solution, using the Van Dyke principle (see Van Dyke
Van Dyke (1975)). This method of solution is basically the same as proposed by Smith
(1975) for the construction of rotating configurations with polytropic index n = 3/2. We
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Figure 4.2: Parameter space for second-order rigidly rotating models. The solid line represents
the critical values of the rotation strength parameter x.- and the grey region identifies the values
(¥, x) for which the resulting models are bounded by a closed constant-t) surface (subcritical
models).

have calculated the complete solution up to second-order in the rotation strength pa-
rameter x. The final solution is expressed in spherical coordinates & = (7,6, ¢) and the
resulting configurations are characterized by axisymmetry (i.e., the density distribution
and the potential do not depend on the azimuthal angle ¢). For the details of the method
for the construction of the solution the reader is referred to Appendix A.5, in which the
complete calculation is provided.

4.2.2 The parameter space

The resulting models are characterized by two dimensional scales (e.g., the total mass
and the core radius) and two dimensionless parameters. As in the spherical King mod-
els, the first parameter measures the concentration of the configuration; we thus consider
the quantityt ¥ (see Eq. @9)) or equivalently ¢ = log(r,/r0), where 7, is the trunca-
tion radius of the spherical King model associated with a given value of ¥. The second
dimensionless parameter x (see Eq. @38)) characterizes the rotation strength measured in
terms of the frequency associated with the central density of the cluster.

For every value of the dimensionless central concentration ¥ there exists a maximum
value of the rotation strength parameter, corresponding to a critical model, for which the

n the literature, the parameter ¥ is often denoted by Wy.
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boundary is given by the critical constant-i) surface. The boundary surface of a repre-
sentative critical model (with U = 2) is depicted in Fig. LT} the surface is such that all the
points on the equatorial plane are saddle points, where the centrifugal force balances the
self-gravity. We refer to their distance from the origin as 7, the break-off radius. In the
constant-i family of surfaces associated with a given value of ¥, the critical surface thus
separates the open from the closed surfaces. Consistent with the assumption of station-
arity, only configurations bounded by closed surfaces are considered here. This unique
geometrical characterization suggests that the effect of the rotation may be expressed
also in terms of an extension parameter

6:

(4.13)

which provides an indirect measure of the deviations from sphericity of a configuration,
by considering the ratio between the truncation radius of the corresponding spherical
King model and the break-off radius of the associated critical surface. Therefore, a given
model may be labelled by the pair (¥, x) or equivalently by the pair (¥, ). For a given
U, there is thus a maximum value of the allowed rotation, which we may express as X,
or d.r. A model with § < §., may be called subcritical.

For each value of ¥, the critical value of the rotation parameter can be found by
numerically solving the systenﬂ

afw(f:fBaezﬂ—/Q;Xcr) =0
2/1(72 7:B;9:7T/2;Xcr):0a

where the unknowns are 7g and x.,. In terms of the extension parameter, for a given
U, the critical condition occurs when § = 6., = 74 /fp ~ 2/3. This value is obtained by
inserting in Eq. (I4) the zeroth-order expression for the cluster potential, as discussed
in detail in Sect. 3.2 of Chapter 3 for the tidal problem (see p. 251-255 in [[eansd [192§ for
an equivalent discussion referred to the purely rotating Roche model, that is a rotating
configuration in which a small region with infinite density is surrounded by an “atmo-
sphere” of negligible mass).

The parameter space for the second-order models is presented in Fig. B2 (which cor-
responds to Fig. 3.1 of Chapter 3 describing the tidal models). Two rotation regimes
exist, namely the regime of low-deformation (§ < d.,, bottom left corner), where in-
ternal rotation does not affect significantly the morphology of the configuration, which
remains very close to spherical symmetry, and that of high-deformation (§ ~ d.,, close
to the solid line), where the model is highly affected by the nearly critical rotation veloc-
ity, especially in the outer parts. Note that the actual regime depends on the combined
effect of rotation strength and of concentration. In other words, the models described
here belong to the class of rotating configurations characterized by equatorial break-off
(“region of equatorial break-oft”, see Fig. 44, p. 267 in [Jeans [1928), for which the limiting
case is given by the purely rotating Roche model.

(4.14)

2For brevity, here we omit the explicit structure of the system. The reader is referred to Eqs. 8)-CGI)
in Chapter 3, with respect to which several differences occur, because in the axisymmetric rotation problem
the coefficients of the asymptotic series are best expanded in (normalized) Legendre polynomials (rather than
spherical harmonics). In particular, with respect to Chapter 3: (i) the coefficients with m # 0 must be dropped;
(ii) the coefficients with [ # 0 must be multiplied by the factor (r/4)'/2, because of the different normalization
used in the two systems of orthonormal functions; (iii) the expressions are evaluated at 7 instead of #7. Asin
Chapter 2, for the definition of the Legendre polynomials we refer to Egs. (22.3.8) and (22.2.10) of (Abramowitz
& Stegun[1965).
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Figure 4.3: Values of the ratio between ordered kinetic energy and gravitational energy ¢ =
Kora/|W| for selected rigidly rotating models characterized by ¥ = 1,3,5,7 (solid lines, from
top to bottom) and x in the range [0, x..]. For comparison, the dashed line indicates the values of
t for the sequence of Maclaurin oblate spheroids in the limit of small eccentricity.

A global kinematical characterization, complementary to the information provided
by the rotation strength parameter Y, is offered by the parameter ¢t = K,.q/|W|, defined
as the ratio between ordered kinetic energy and gravitational energy. Figure B3 illus-
trates the relation between the two parameters for models with selected values of ¥ and
increasing values of x, up to the critical configuration characterized by x.,. The parame-
ter t increases linearly for increasing values of x (with a slope dependent on the concen-
tration parameter ¥). A similar linear relation is observed for small values of eccentricity
(e << 1) in the sequence of Maclaurin oblate spheroids t(e) ~ x(e) ~ 2¢2/15 (for the def-
initions of the two parameters in the context of Maclaurin spheroids, see Egs. (10.20) and
(10.24) in[Bertin (2000)); in Fig. B3l the relevant linear relation is normalized with respect
to the maximum value of the rotation strength parameter attained in the sequence of
Maclaurin spheroids xmaz = 0.11233 (see Eq. (10), p. 80 in/Chandrasekhar [1969).

4.2.3 Intrinsic properties

The geometry of the models, reflecting the properties of the centrifugal potential, is
characterized by symmetry around the Z-axis and reflection symmetry with respect to
the equatorial plane (Z, §). As expected, compared to the corresponding spherical King
models, the rotating models stretch out on the equatorial plane and are slightly flattened
along the direction of the rotation axis (see Fig. 24 for the density profiles of selected
critical second order models evaluated on the equatorial plane and along the 2-axis). In
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Figure 4.4: Intrinsic density profiles (normalized to the central value) evaluated on the equatorial

plane (solid lines) and along the Z-axis (dashed lines) for critical second-order rigidly rotating
models with ¥ = 1, 2, ..., 10 (from left to right).

general, configurations in the low-deformation regime (6 < d.,), regardless of the value
of concentration ¥, are almost indistinguishable from the corresponding spherical King
models.

Models in the intermediate and high-deformation regime (§ ~ d.,) show modest de-
viations from spherical symmetry in the central regions, while they are significantly flat-
tened in the outer parts. The intrinsic eccentricity profile, defined as e = [1 — (b/a)?]/2,
where G and b are semi-major and semi-minor axes of the isodensity surfaces, is a mono-
tonically increasing function of the semi-major axis (see Fig. BBl for the eccentricity pro-
files of selected critical second-order models). We recall that the geometry of the bound-

ary surface of a critical model depends only slightly on the value of the concentration
parameter. In particular, in the critical case, the break-off radius 75 represents the dis-
tance from the center of the outermost points of the boundary surface on the equatorial
plane and the truncation radius 7, is approximately the distance of the last point on the
polar axis (i.e., the Z-axis). Therefore, since ., = 7/fp ~ 2/3, the value of the ter-
mination points of the eccentricity profiles of critical models is approximately the same
(e ~ 0.75; see the termination points of the solid lines in Fig. E5).

In addition, by using the multipolar structure of the solution of the Poisson-Laplace
equation obtained with the perturbation method, the asymptotic behavior of the eccen-
tricity profiles in the central regions can also be evaluated analytically. Since the distribu-
tion function depends only on the Jacobi integral (i.e., the isolating energy integral in the
corotating frame of reference), the density and the velocity dispersion profiles are func-
tions of only the escape energy (see Egs. @I0) and @TI9), respectively). Therefore, there

is a one-to-one correspondence between equipotential, isodensity, and isobaric surfaces
and the eccentricity profiles can be calculated with reference to just one of these families
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Figure 4.5: Eccentricity profiles of the isodensity surfaces for selected critical second-order rigidly
rotating models, with ¥ = 1,3, 5, 7 (from top to bottom); dotted horizontal lines show the central
eccentricities values estimated analytically (see Eq. @I8)).

of surfaces. In fact, if expanded to second order in the dimensionless radius, the escape
energy in the internal region reduces to:

WD) = U4 % =3+ 6x + 24202(0) x +
(B2 + 1)U2(0)x%] 7% + O(7*) (4.15)

where U;(#) denotes the normalized Legendre polynomial with [ = 2 and A, B, are
appropriate (negative) coefficients, depending on ¥, which are determined by asymp-
totically matching the internal and external solution, in order to have continuity on the
entire domain (see Eqs. (Z62) and (Z&8) in Chapter 2, to be interpreted as indicated in
Appendix A.5). By setting (") (a,7/2) = () (b,0), we thus find that, in the inner-
most region, the eccentricity tends to the following nonvanishing central value

_ 642 x +3(B2 +1) ]/
[64/2/5(2x — 1) +4As x + 2(By + 1) x2]1/2

Therefore, the central value of the eccentricity is finite, of order O(x'/?), and strictly van-
ishes only in the limit of vanishing rotation strength. This result is nontrivial because the
centrifugal potential (which induces the deviations from sphericity) is a homogeneous
function of the spatial coordinates. Therefore, we might naively expect that, in their cen-
tral regions, the models reduce to a perfectly spherical shape (i.e., g = 0), even for finite
values of the rotation strength. This property has been noted also in the family of triaxial

eo (4.16)
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Figure 4.6: Intrinsic velocity dispersion profiles (normalized to the central value) evaluated on the
equatorial plane (solid lines) and along the Z-axis (dashed lines) for selected critical second-order
rigidly rotating models with ¥ = 1,2, ..., 10 (from left to right).

tidal models, in which the tidal potential plays the role of the centrifugal potential (see
Sect. 3.3.1 of Chapter 3).

Deviations from spherical symmetry can also be described, in a global way, by the
quadrupole moment tensor, defined as

@y = [ o, - e =
1%
Arg / (3aidj — 728))p()d’F = ArgQi; . (4.17)
%4

where the integration is performed in the volume V' of the entire configuration. It can be
easily shown that in our coordinate system the tensor is diagonal and that Q.. = Qyy.
The components of the tensor can be calculated explicitly

A(2) 2
- A P 10,
Q%R = Q) = - 5 = QW\/_TPK(‘I’) (G2X + bz%) ; (4.18)

The quantities a2 and b, are appropriate (positive) coefficients, depending on V¥, re-
sulting from the asymptotic matching of the internal and external solution of the Poisson-
Laplace equation. The sign of the components are consistent with the above mentioned
compression and stretching of the density distribution. The expression in Eq. @I8) is
calculated from the second-order external solution; the first-order expression is recov-
ered by dropping the quadratic term in the parameter . At variance with the tidal case,
the ratio sz / Qm is independent of the rotation parameter . This analytical result has
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Figure 4.7: Mean rotation velocity profiles on the equatorial plane for the selected critical second-
order rigidly rotating models with ¥ = 1,2, ..., 10 (from left to right). The mean velocity increases
linearly with radius because the rotation is rigid (see Eq. @20); note the logarithmic scale of the
horizontal axis). The values of the termination points of the curves depend on the value of x.r
(which decreases as U increases, see Fig.EL2) and on the extension of the models on the equatorial
plane (which increases as ¥ increases, see Fig. E4).

been compared to the ratio of the components of the quadrupole tensor determined by
direct numerical integration (performed by means of the algorithm VEGAS, see Press
et al.1992) and good agreement has been found. f| For the tidal case, the detailed calcu-
lation can be found in Sects. 3.3 and 3.5 of Chapter 3; such calculation is easily adapted
to the rotating case.

By construction, the models are isotropic in velocity space, with the dimensionless
scalar velocity dispersion given by

_ 29(7/2,9)
57(5/2,0)

As noted for the intrinsic density profiles, a compression along the vertical axis and a
stretching along the equatorial plane occur also for the velocity dispersion profiles (the
profiles of selected critical second-order models are shown in Fig. EL6).

The mean rotation velocity (which is subtracted away when the corotating frame of
reference is considered) characterizing the models is defined as (v) = wé, x ré, =
(vg)€4; in the adopted dimensionless units, the azimuthal component can be written as

5% (W) (4.19)

(8g) = (vg)a'/? = 3xM % siné . (4.20)

3Strictly speaking, the analytical expressions for the components of the quadrupole moment tensor refer
only to the inner region, because the contribution from the boundary layer, where ¢ is of order O(x), is
neglected.
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Figure 4.8: Projections along directions identified by ¢ = 0 and ¢ = i(7/8) with i = 0, .., 4 (from
left to right, top to bottom) of a critical second-order rigidly rotating model with ¥ = 2; the first
and the fifth panel represent the projections along the 2-axis (“face on”) and the 2-axis (“edge-on”)
of the intrinsic coordinate system, respectively. Solid lines mark the isophotes, corresponding to
selected values of ¥/ in the range [0.9,1077]. The last panel shows the ellipticity profiles, as
functions of the semi-major axis of the projected image ap, referred to the lines of sight considered
in the previous panels (from bottom to top). Dots represent the locations of the isophotes and
the arrow marks the position of the half-light isophote (practically the same for every projection
considered in the figure).

As expected, the mean velocity is constant on cylinders (in our coordinate system, the
cylindrical radius is defined by R = #sin ). The relevant dimensionless angular velocity
is linked to the rotation strength parameter by the following relation & = 3x!/2 (the
numerical factor 3 is due to the adopted scale length, see Eq. @6)). The rotation profiles
of selected second-order critical models are represented in Fig. E7 For all the models, as
we approach the boundary of the configuration, the ratio (94)/6x quickly diverges since
at the boundary the rotation velocity tends to a finite value while the velocity dispersion
vanishes; this behavior is observed in every direction (except for the 2-axis, on which the
rotation velocity vanishes by definition).

4.2.4 Projected properties

For a comparison of the models with the observations (under the assumption of a con-
stant mass-to-light ratio), we have then computed surface (projected) density profiles
and isophotes. The projection has been performed along selected directions, identi-
fied by the viewing angle (6, ¢) corresponding to the Zp axis of a new coordinate sys-
tem related to the intrinsic system by the transformation Xp = RX; the rotation matrix
R = R, (0)R3(¢) is expressed in terms of the viewing angles, by taking the p axis as the
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line of nodes (i.e., the same projection rule we adopted for the triaxial tidal models, see
Sect. 3.4 in Chapter 3). Since the rigidly rotating models are characterized by axisym-
metry with respect to the 2-axis and reflection symmetry with respect to the equatorial
plane, it is sufficient to choose the viewing angles from the (z, 2)-plane of the intrinsic
coordinate system. In particular, we used the line of sights defined by 6, = i(7r/8) and
¢ = 0with i =0, ..,4, and we calculated (by numerical integration, using the Romberg’s
rule) the dimensionless projected density

S(@p,gp) = / " pEp)dip (4.21)

Zsp

where %, = (22 —3% —9%)/? with 7. the edge of the model along the & axis of the intrin-

sic coordinate system. The projection plane (Zp,yp) has been sampled on an equally-
spaced square cartesian grid centered at the origin.

The first five panels of Fig. B8l show the projected images of a critical second-order
model with ¥ = 2; the first and the fifth panel correspond, respectively, to the least
and to the most favorable line of sight for the detection of the intrinsic flattening of the
model (the Z and Z-axis of the intrinsic coordinate system, that is “face-on” and “edge-
on” view).

The morphology of the isophotes of a given projected image can be described in
terms of the ellipticity profile, defined as e = 1 —bp/ap where ap and bp are the principal
semi-axes, as a function of the semi-major axis ap. As already noted for the (intrinsic)
eccentricity profile, the deviation from circularity increases with the distance from the
origin. In the inner region, the central value of the ellipticity is consistent with the central
eccentricity e calculated in the previous subsection. The last panel of Fig. E8illustrates
the ellipticity profiles corresponding to the projections displayed in the previous panels.
In addition, the isophotes of models in the high deformation regime (6 ~ d.,), if projected
along appropriate line of sights, show clear departures from a pure ellipse, that can be
characterized as a “disky” overall trend (e.g., seelledrzejewskil1987), particularly evident
in the outer parts (see fourth and fifth panels in Fig. E5).

Because the family of rigidly rotating models is characterized by simple kinematical
properties (pressure isotropy and solid-body rotation), that have been already presented
in detail with reference to three-dimensional configurations, for brevity, the derivation
of the projected kinematical properties is omitted here.

4.3 Differentially rotating models

4.3.1 Choice of the distribution function

As indicated in the Introduction, theoretical and observational motivations have brought
us to look for more realistic configurations, characterized by differential rotation. Thus
we focus our attention on axisymmetric systems, within the class of distribution func-
tions that depend only on the energy E and the z-component of the angular momentum
J., and we consider the integral

wd,

I(F,J,)=F — —————
(B, ) 1+bJj2¢’

(4.22)

where w, b, and ¢ > 1/2 are positive constants. The quantity I(E, J,) reduces to the Jacobi
integral for small values of the z-component of the angular momentum and tends to the
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Table 4.1: Summary of the properties of the families of models studied in the present Chapter.

Family of Distribution Dimensionless Internal Anisotropy Isophote
models function parameters rotation profile shape
I (H) Ae~oHo[gma(H=Ho) _ q] U, x solid-body (0,0,0) disky
fEr(I)  Ae*Pole=aI=F0) _ 1 4 o(I — Ey)] ¥, x,b,c differential (0, > 0, —2) boxy
e (D) Ae~*Foe—alI=FEo) ¥, x, b, c differential (0,>0,0) boxy

Notes. The relevant integrals are defined as H = E — wJ, and I = E — wJ. /(1 + bJZ2¢), with the
corresponding cut-off constants given by Ho and Ey. The dimensionless parameters are defined
as follows: ¥ = (0) represents a measure of the concentration, x = w?/(47Gpo) a measure of
the (central) rotation strength, and, for the family of differentially rotating models, b = brg°a™°
and ¢ > 1/2 determine the shape of the rotation profile. The pressure anisotropy profiles are
characterized in terms of the values of the anisotropy parameter o = 1 — ai¢ /o2, in the central,
intermediate, and outer regions of a model; values of a greater than, lower than, and equal to
zero indicate radially-biased, tangentially-biased anisotropy, and isotropy in velocity space, re-
spectively. For each family of models, the first and third values of « are calculated analytically as
the limiting values for small and large radii. For physical reasons discussed earlier in this Chapter,
the focus is on the first two families.

single-star energy in the limit of high values of J.. Therefore, if we refer to a distribution
function of the form f = f(I), we may argue that w is related to the angular velocity
in the central region of the system, characterized by approximately solid-body rotation,
whereas the positive constants b, c will determine the shape of the radial profile of the
rotation profile. In view of the arguments that have led to the truncation prescription that
characterizes King model, we decided to introduce a truncation in phase-space based
exclusively on the single-star energy with respect to a cut-off constant Ej.
For simplicity, we consider two families of distribution functions. The first family is
defined as
Fo(I) = AeaFo [e*aU*Eo) —1+a(l- Eo)} (4.23)

if E < Epand f& (1) = 0 otherwise, so that both f{,(I) and its derivative with respect
to E are continuous. We refer to this truncation prescription as Wilson truncation (hence
the subscript WT') because, in the limit of vanishing internal rotation (w — 0), this family
reduces to the spherical limit of the distribution function proposed by Wilson (1975). The
superscript d in Eq. @23) indicates the presence of differential rotation.

The second family is defined by the distribution function

fp(I) = Aem*Foea(I=Fo) (4.24)

if E < Ey and f¢,(I) = 0 otherwise; therefore the function, characterized by plain
truncation (hence the subscript PT)), is discontinuous with respect to E. In the limit of
vanishing internal rotation, it reduces to the spherical limit of the function proposed by
Prendergast & Tomei (197(), which leads to the truncated isothermal sphere (see also
Woolley & Dickend [1962). A summary of the main properties and definitions of the
relevant nonrotating limit of the two families of models is presented in Section 4.7.

In both cases the distribution functions are positive definite fg, (1), fir(I) > 0, by
construction. Curiously, a naive extension of King models f = f¢&(I) with a similar trun-
cation in energy alone would define a distribution function that is not positive definite
in the whole domain of definition.
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Sharp gradients or discontinuities in phase space (such as the ones associated with
the truncation prescription of f&,(I)) are expected to be associated with evolutionary
processes dictated either by collective modes or by any small amount of collisionality.
Therefore, the first truncation prescription, corresponding to a smoother distribution in
phase space, is to be preferred from a physical point of view as the basis for a realistic
equilibrium configuration (in principle, we might have referred to even smoother func-
tions; see IDavousf [1977). In addition, a full analysis of the configurations defined by
fa..(I) shows that this family of models exhibits a number of interesting intrinsic and
projected properties, more appropriate for application to globular clusters, with respect
to the models defined by f&,.(I).

Therefore, the following Sects. EE2land 25 are devoted to the full characterization of
the family of models defined by f¢,(I) (for a summary of the properties of the families
of models studied in the present Chapter, see Table 4.1). The intrinsic properties of the
family of models defined by f&,(I) are summarized in Section 4.8. In this investigation,
we decided to briefly mention and to keep also the second family not only because it
extends a well-known family of models, but also because it allows us to check directly
an important aspect of model construction that had been noted by [Hunter (1977). This is
that the truncation prescription affects the density distribution in the outer parts of the
models significantly.

4.3.2 The construction of the models

The construction of the models requires the integration of the relevant Poisson equation,
supplemented by a set of boundary conditions equivalent to the one described in Sect. 2
for rigidly rotating models. In this case, we obtain the solution by means of an iterative
approach, based on the method proposed by IPrendergast & Tomed (197(0), in which an
improved solution (") of the dimensionless Poisson equation is obtained by evaluating
the source term on the right-hand side with the solution from the immediately previous
step (for an application of the same method to the construction of configurations shaped
by an external tidal field, see Sect. 2.5.2 in Chapter 2)

V20 = 2 (7,040 ; (4.25)
Po
here the dimensionless escape energy is given by

Y(r) =alEy — Po(r)], (4.26)

the dimensionless radius is defined as #* = r/ry, with the same scale length introduced in
Eq. @8), and p indicates the dimensionless central density. The relevant density profile
p = Ap, with A defined as in Eq. @TI), results from the integration in velocity space of
the distributions function defined by f¢,.(I). It is clear that the general strategy for the
construction of the self-consistent solution is applicable also to the density derived from
T (D).

The iteration is seeded by the corresponding spherical models, that is, the Wilson
and the Prendergast-Tomer spheres respectively, and is stopped when numerical con-
vergence is reached (see Appendix B.2 for details). At each iteration step, the scheme
requires the expansion in Legendre series of the density and the potential

P (7) = i ™ (7)U (cos 6) (4.27)
=0
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P (#) Z #)U(cos ) . (4.28)

=0

The associated Cauchy problems for the radial functions wl(") () are therefore

d? 2 d l(l —I— 1) ) 9 -1
[df? TEH } K A (429
supplemented by the following boundary conditions
0y =wva2, (4.30)
™) =0,forl#0 (4.31)
(' (0) = ™" (0) = 0 432
wO ( ) wl ( ) 9 ( . )

where V¥ is the depth of the dimensionless potential well at the center. By using the
method of variation of arbitrary constants, the radial functions can be expressed in inte-
gral form as follows

Po
1 /" e
. / #2950 (7) r} , (4.33)
™ Jo
Wy = 9| / D i
: (20 +1)po 7 !
1 iA ~(m—1) /A N
+ /0 P2 p )(r')dr’] . (4.34)

The factor /2 appearing in Eqs. @30) and @33) is due to the normalization assumed for
the Legendre polynomials.

4.3.3 The parameter space

Much like in the case of rigidly rotating models, in both families f&,,.(I) and f&, (1), the
resulting models are characterized by two scales, associated with the positive constants
A and a, and two dimensionless parameters (¥, x), measuring concentration and central
rotation strength, respectively. In addition, two new dimensionless parameters, namely
cand

b=bréac, (4.35)

determine the shape of the rotation profile. Variations in the parameter b and c are found
to be less important. Minor changes in the model properties are found up to b, ¢ = 4,
above which the precise value of ¢ has only little impact on the properties of the config-
urations.
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Figure 4.9: Two-dimensional parameter space, given by central rotation strength x vs. concentra-
tion ¥, of differentially rotating models defined by fd.r(I); the remaining parameters are fixed at
b = ¢ = 1. The upper solid line marks the maximum admitted values of ¥, for given values of
concentration V¥, that is the underlying area indicates pairs (¥, x) for which models can be con-
structed. The intermediate and the lower solid lines mark the values of @/@maz = 0.4, 0.2, respec-
tively. The gray, wide-striped, and thin-striped areas represent the extreme, rapid, and moderate
rotation regimes, respectively.

For each family of differentially rotating models, for given values (¥, b, ¢) there exists
a maximum value of the central rotation strength parameter x,q., corresponding to
the last configuration for which the iteration described in Sect. converges. Such
maximally rotating configurations exhibit highly deformed morphologies, characterized
by the presence of a sizable central toroidal structure, which will be described in detail
in the following sections.

As for the parameter space of rigidly rotating models, it is useful to introduce dif-
ferent rotation regimes, defined on the basis of the deviations from spherical symmetry
introduced by the presence of differential rotation. With particular reference to the pa-
rameter space of the models defined by fd.,.(I), we introduce some threshold values in
central dimensionless angular velocity, which, in this family of models, is related to the
central rotation strength parameter x by the relation & = 3x'/2, as for the rigidly rotating
models. In particular, configurations in the moderate rotation regime have & /@4, < 0.2
(the thin-striped area in Fig. £9), are quasi-spherical in the outer parts, while they are
progressively more flattened when approaching the central region, as the value of x in-
creases. For the models falling in this rotation regime, the central toroidal structure is



90 4.3 Differentially rotating models

0.20

0.15
t
0.10
0.05
0.00 1 I I | I I | I I | I I | I I |
0.0 0.2 0.4 0.6 0.8 1.0
X/ Xmax

Figure 4.10: Values of the ratio between ordered kinetic energy and gravitational energy ¢t =
Kora/|W| for selected sequences of differentially rotating models characterized by ¥ = 1,2,..,7
(from bottom to top) and x in the range [0, Xmaz]; the remaning parameters are fixed atb = ¢ = 1.
The arrows mark the threshold values of x for the moderate and rapid rotation regimes, illus-
trated in Fig. For comparison, the dashed line represents the values of ¢ for the sequence of
Maclaurin oblate spheroids (with e < 0.92995; this eccentricity value corresponds to spheroids
with maximum value of the rotation parameter xmq.. = 0.11233).

absent or, when low values of the concentration parameter ¥ are considered, not signif-
icant. Configurations with 0.2 < ©/Wye, < 0.4 (the wide-striped area in Fig. E9) are
defined as rapidly rotating models. The extreme rotation regime is defined by the con-
dition &/Wmqs > 0.4 (the gray area in Fig. 9); in this case, the models always show a
central toroidal structure, which becomes more extended as the central rotation strength
increases. In particular, in the last regime, the entire volume of a configuration is domi-
nated by the central toroidal structure.

As for the rigidly rotating models described in Sect. 2, a global kinematical character-
ization is offered by the parameter t = K,.q/|WW|, defined as the ratio between ordered
kinetic energy and gravitational energy. Figure LIl illustrates the relation between the
two parameters, for models with selected values of ¥, b, and ¢. Note that the transition
from rapid to extreme rotation corresponds to values of the parameter ¢ in the range
[0.075,0.135] (the precise value depends on the value of ¥). A naive application of the
Ostriker & Peebled (1973) criterion, which states that axisymmetric stellar systems with
t > 0.14 are dynamically unstable with respect to bar modes, would suggest that the ma-
jority of the models in the extreme rotation regime are dynamically unstable. A detailed
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stability analysis of the configurations in the three rotation regimes has been performed
by means of specifically designed N-body simulations and will be presented in next
Chapters.

To provide a systematic description of the intrinsic and projected properties, we will
study the equilibrium configurations as sequences of models characterized by a given
value of concentration ¥, in the range [1, 7], and increasing values of x, up to the maxi-
mum value allowed; such sequences are constructed by fixing b = ¢ = 1 (unless other-
wise stated).

4.4 Intrinsic properties of the differentially rotating models

4.4.1 The intrinsic density profile

The relevant density profile is obtained by integration in velocity space of the distribu-
tion function fd.,(I) (see Eq. @2Z3)). It is convenient to introduce in the velocity space
a spherical coordinate system (v, i, A), in which v is magnitude of the velocity vector,
while 1 and A are the polar and azimuthal angle, respectively. After some manipulation,
the density profile can be expressed in dimensionless form as

3 ( +1
pwr(r,0,¢) = Ze“/’/ dse_ssl/Q/ dt g(s,t,7,0)
0 -1
2
—y - 2yl (4.36)
where the function in the integrand is defined as
1/24 5 gin 6 (25)1/2
o5, 1.7,0) — exp | X _L7sin0 (29) —_ 4.37)
1+0b [t7sind (2s)1/2]

for completeness, we note that the two dimensionless variables in the double integral can
be expressed in terms of the previous variables as ¢ = cos y and s = av?/2. Because the
distribution function depends only on the energy £ and the z-component of the angular
momentum .J;, the resulting models are axisymmetric and therefore the density profile
depends only on the radius # and the polar angle 6. The density depends on the spatial
coordinates explicitly and implicitly, through the dimensionless escape energy (7, 6);
such explicit dependence is the reason why, in this case, the isodensity, equipotential,
and isobaric surfaces are not in one-to-one correspondence, at variance with the family
of rigidly rotating models. The presence in Eq. @38) of the terms with fractional powers
of 1 is due to the adopted truncation in phase space; in particular, it is directly related to
the presence of the terms e~ *%°[—1 + a(I — Ep)] in Eq. @Z3).

The central value of the density profile depends only on the concentration parameter
¥ and is given by pwro = (2/5)e¥y (7/2,¥), consistent with the central value of the
density profile obtained in the nonrotating limit py 7 s(¥) (see Eq. @63) in Section 4.7).
This result corresponds to the fact that the integral I(E, J.) (see Eq. @22)) reduces to
the Jacobi integral for small values of J,, which implies that the rotation is approxi-
mately rigid in the central regions of a configuration (see the next subsection for details);
therefore, the mean rotation velocity vanishes at the origin and the density distribution
reduces to its nonrotating limit.

The double integral in Eq. @38) requires a numerical integration (see Appendix B.2
for details). Some insight into the behavior of the density profile can be gained by cal-
culating the relevant asymptotic expansions in the central region and in the outer parts.
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Around the origin, up to second order in radius, the density profile reduces to

1 5
pwr(7,0,¥) = pwro+ Ee'l"y (5,\11) (9 sin® 0
82 2 4
¥ 3 4.
T o 0]7”—1—(’)(7“), (4.38)

which depends explicitly on the concentration ¥ and the central rotation strength x, and
implicitly on the parameters b and ¢, through the second order derivative of the escape
energy evaluated at # = 0. Such derivative can be calculated from the radial functions

given in Eqs. @33)-E34)

821/} " "
oz = Y0(0)Uo(9) + vz (0)U2(0) =
0
1/2
= -3+ % (g) (—1+3cos®9) , (4.39)
where the quantity
18 [T 1. .,
Cy = 570 /0 dr ;pg(?” ) (4.40)

depends implicitly on the parameter ¥ through the function p(7) and jo. The quantity
(5 is negative-definite since the quadrupole radial function of the density j2(7) is nega-
tive on the entire domain of definition of the solution of the Poisson equation; the sign of
the quadrupolar function is negative because the configurations in our family of models
are always oblate. In passing, we also note that the the expansion around 7 = 0 of the
escape energy up to second order in radius is given by

1 0%

— | P2+ 0. (4.41)
2 0r2 |,

Y(r,0) =T +

Since the boundary of a configuration is defined by the condition ¢(#,6) = 0, the
density profile in the outer parts can be evaluated by performing an expansion with
respectto ) < 1

pur(70,9) = 5 i sin? 045/% 1 O ; (4.42)

the terms with fractional powers of ¢ that appear in Eq. 38) cancel out with the first
terms of the expansion of the double integral (which reduces to the incomplete gamma
function).

The density profiles evaluated on the principal axes for a sequence of models with
¥ = 2,b = ¢ = 1, and increasing values of the rotation strength parameter  are illus-
trated in Fig. ETT} the corresponding dimensionless escape energy profiles are displayed
in Fig. Configurations characterized by moderate rotation show monotonically de-
creasing profiles, whereas models with rapid rotation have the maximum value of the
density profile in a position displaced with respect to the origin; in the extreme rotation
regime, also the maximum value of the escape energy is off-centered. The sections of the
isodensity and equipotential surfaces (presented in the first two rows of Fig. ET3) clearly
show that the offset of the density peak corresponds to the existence of a curious toroidal
structure; the condition for the existence of such structure is discussed in Sect. EL4.3]
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Figure 4.11: Intrinsic density profiles (normalized to the central value) evaluated on the equatorial
plane (solid lines) and along the 2-axis (dashed lines) for a sequence of differentially rotating mod-
els defined by [ (I), with & = 2 and x = 0.04,0.36, 1.00, 1.96, 3.24 (from right to left; slower
rotating models are more extended); the remaining parameters are fixed at b=c=1.

4.4.2 The intrinsic kinematics

The calculation of the first order moment in velocity space of the distribution function
f&.(I) confirms that only the azimuthal component of the mean velocity is nonvanish-
ing. The mean velocity in dimensionless form

3 P +1 .
(Og)yp(F,0,0) = m/o dss B dtt[g(s,t,7,0)e e
—1Ing(s,t,7,0)) (4.43)

can be calculated by numerically. As for the density profile, it is useful to evaluate the
asymptotic expansion of Eq. @43) in the central regions and in the outer part of a given
configuration. By performing a first order expansion in the radius with respect to the
origin, we found that the mean rotation velocity reduces to the following expression

(V) oy (7,0) = 3x?Fsinf + O(#?) (4.44)

which corresponds to rigid rotation, with dimensionless angular velocity & = 3x!/?; the
expression does not depend on the concentration parameter, consistent with the asymp-
totic properties of the integral I(E, J.).
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Figure 4.12: Dimensionless escape energy (normalized to the central value) evaluated on the equa-
torial plane (solid lines) and along the Z-axis (dashed lines) for the sequence of differentially rotat-
ing models displayed in Fig. Tl

In the outer parts of the models the mean rotation velocity is of order O()) and thus
vanishes at the boundary. The relevant numerical coefficients depend on the value of the
parameter ¢; for example, for ¢ = 1 we have

2(2 + 6072 sin? 6 + 9x 72 sin? 0)
21 (/27 sin 0)

<@¢>WT (72; 9; 7/}) = (4.45)

The mean rotation velocity profiles on the equatorial plane for a selected sequence of
models are displayed in Fig. T4} as the value of the central rotation strength parameter
increases, the mean velocity profile becomes steeper in the inner parts and the maximum
value increases; the central part of the profiles is well approximated by rigid rotation, as

in Eq. @&44).
By evaluating the second-order moments in velocity space of the distribution func-
tion fd(I), it can be easily shown that, in our coordinate system, the pressure ten-

sor pij = (A/a)pi; is diagonal and that the radial component is equal to the polar one
Drr = Dgg. Therefore, in the following, only the nontrivial components are discussed.
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Figure 4.13: Meridional sections of the isodensity, equipotential, isovelocity, and isobaric surfaces
(from top row to bottom row) for a sequence of four differentially rotating models characterized
by ¥ =2,b=c=1,and x = 0.04,0.16,0.36, 1.0 (from left column to right column; note the
change in the scale of the axes). The first and second models are in the moderate rotation regime,
the third has rapid rotation, and the last represents the beginning of the extreme rotation regime.
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Figure 4.14: Mean rotation velocity profiles on the equatorial plane (solid lines) for the sequence
of differentially rotating models defined by f& (1), with ¥ = 2 and x = 0.04, 0.36,1.00, 1.96, 3.24
(the same sequence displayed in Figs. ETTl and from bottom to top). Dashed lines indicated
the asymptotic behavior in the central regions, which corresponds to rigid rotation (see Eq. @Z2)

and Sect. £27).

The radial and azimuthal components in dimensionless form are given by

3 (4 +1
e 0.) = 36 s [ (=2 6, ,7.0)
0 -1
2 4
— U T, (4.46)
3 ( +1
Pw,gs(7,0,0) = §ew/ dse‘ss3/2/ dt 2 g(s,t,7,0) —
0 -1
2 5/2 4 7/2 N A\ 2
—g 0 = T = bwrlts)ivr (4.47)

where the presence of the terms with fractional powers of ) should be interpreted as in
Eq. @38). The expansion up to second order in radius gives

1 7 .
Ppwrr(7,0,9) = pwro+ e’y (—, \I/) (9 sin® 0

5 2
0%

t o

] 72+ O . (4.48)
0



New self-consistent rotating equilibria 97

We also found that, to second order in radius, the pressure is isotropic pw,¢¢(7, 6, ¥) =
Pw,rr (7,60, ¥). The components of the pressure tensor evaluated at the origin reduces to
pwr,o = (4/35)e¥y (9/2, ¥), consistent with the value obtained in the nonrotating limit
pwr,s(¥) (see Eq. @hA) in Section 4.7).

The asymptotic behavior of the pressure tensor components in the outer part can be
written as

R . 18 ., .

Dwr(7,0,8) = =xi® sin® 0472 4+ O(4°/?) (449)
R . 54 o o 72 9/2

Pw,po (7, 0,7) = gxr sin“ @y + O@W7?) (4.50)

respectively.

The relation between the dimensionless pressure and velocity dispersion tensor is
given by 67; = pi;/p- The profiles of the radial and azimuthal component of the velocity
dispersion tensor of a selected sequence of models, evaluated on the equatorial plane,
are displayed in Fig. For configurations in the moderate rotation regime the pro-
files are monotonically decreasing with the radius, with some variations in the slope in
the intermediate and external parts, while for configurations in the rapid and extreme
rotation regimes, their peak is off-centered. The sections in the meridional plane of the
isobaric surfaces, defined with respect to the trace of the pressure tensor, show the pres-
ence of a central toroidal structure for the fast rotating models of the sequence (see the
last row in Fig. EET3).

The intrinsic kinematics can be further characterized by means of the anisotropy pa-
rameteff], defined as

p o}
a=1--2 =122 (4.51)
pT?" UTT

From the asymptotic behavior of the pressure tensor components in the central region
(see Eq. @2498)), we find that « — 0 for # — 0, while from the expansion in outer parts
(see Egs. E49)-EXR0)), we find that o« — —2 as we approach the boundary. These limit-
ing values do not depend on the dimensionless parameters that characterize the family
f&7(I). In other words, the central region of the configurations is always character-
ized by isotropy in velocity space, while the regions next to the boundary show a strong
tangentially-biased pressure anisotropy. The radial profiles of the anisotropy parame-
ter for a selected sequence of models are displayed in Fig. T8l The values of « in the
intermediate region of a given configuration depend on the values of the relevant dimen-
sionless parameters (¥, b, ¢). In fact, from an exploration of the entire four-dimensional
parameter space, we found that, by increasing the value of ¢, the portion of a model
dominated by radial anisotropy becomes slightly less extended, while, if the value of
b is increased, it increases (see Fig. 17 top panels). In turn, by increasing the value
of the concentration, as measured by ¥, the models are characterized by a significant
radially-biased pressure anisotropy, which appears also in the intermediate region. By
decreasing the value of the concentration, the intermediate region turns out to be domi-
nated by tangential anisotropy, like in the outer parts (Fig. E17, bottom panels).

“In the literature, the anisotropy parameter is often defined as 8 = 1 — ((72 ot 02,)/202,; for axisymmeric

systems, for which 02, = 02, the relation with the parameter adopted in the present Chapter is given by
a = 2(3. Here we prefer to keep the same notation used inlvan Albadd (1987) and in other articles.
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Figure 4.15: Squared velocity dispersion profiles for the azimuthal (solid lines) and radial compo-
nent (dashed lines) of the sequence of differentially rotating models displayed in Fig. T4 (from
right to left). The profiles are evaluated on the equatorial plane.

4.4.3 The condition for the existence of the central toroidal structure

In general, configurations with rapid rotation may exhibit highly deformed morpholo-
gies. In the context of rotating fluids, the regime of strong differential rotation has been
successfully explored, at least for polytropes. Stoecklyl (1965) and IGeroyannid (1990)
found that rapidly rotating polytropic fluids show a central toroidal structure; in addi-
tion, a self-consistent method for the construction of rapidly differentially rotating fluid
systems with a great variety of shapes has been proposed by [Hachisu (198€). In stellar
dynamics, this regime has been rarely explored: [Lynden-Bell (1962) and Prendergast &
Tomer (1970) noted that some models with strong differential rotation show the density
peak in a ring on their plane of symmetry.

The existence of a central toroidal structure in a given model of our family can be
studied by using the asymptotic expansion of the density in the central regions, ex-
pressed in Eq. @38). In fact, if the second order derivative of the density with respect to
the radius is positive, then the maximum value of the radial density profile is displaced
from the geometric center of the configuration, so that a central toroidal structure is
formed. Therefore, the relevant condition on the sign of the derivative can be expressed
as

1/2
9xsin29—3+% (g) (=1+3cos’0) >0, (4.52)
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Figure 4.16: Radial profiles of the anisotropy parameter for the sequence of differentially rotating
models displayed in Fig. T evaluated on the equatorial plane (from right to left). All models
are characterized by a = 0 (isotropy) at the center and o = —2 (tangentially-biased anisotropy) at
the boundary.
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Figure 4.17: Radial profiles of the anisotropy parameter for selected sequences of differentially
rotating models, evaluated on the equatorial plane. Top panels: the sequences are characterized
by ¥ =2, x = 0.04,0.16, 0.36, 0.64, 1.00 (in each panel, from right to left); the left and right panels
show the effect of increasing of parameters c and b, respectively. Bottom panels: the sequences are
characterized by b = ¢ = 1, x = 0.04,0.16,0.36,0.64, 1.00 (in each panel, from right to left); the
left and right panels show the effect of decreasing and increasing the concentration parameter ¥,
respectively.

which, on the equatorial plane (i.e., at # = 7/2), reduces to a simple condition for the
central rotation strength parameter

1 Cy (5\"?
X>§+1_§(§> , (4.53)

The expression on the right-hand side depends implicitly on the dimensionless param-
eters ¥, b, and ¢ through the quantity C,, defined by Eq. (AZ). Since C- is negative-
definite, the condition x > 1/3 provides the upper limit to Eq. @53). Actually, the mod-
els characterized by values of x immediately above the threshold given by Eq. @X3),
show a very small central toroidal structure, with a shallow increase of the density with
respect to the geometric center of the configuration (e.g., for the model with ¥ = 2 and
x = 0.36, illustrated in Fig. LTT], the density peak, at the center of the toroidal structure,
is merely log(p/po) = 0.014 and the central structure itself is barely visible in the merid-
ional sections of the isodensity surfaces, depicted in the third panel of the first row of
Fig. EET3). To construct a model with a sizable central toroidal structure, the value of the
parameter x should be at least twice the threshold given by the above-mentioned con-
dition (e.g., see the last panel of the first row of Fig. EET3). In conclusion, by comparing
Figs. E9and we note that, for configurations in the moderate rotation regime (i.e.,
with &/@mae, < 0.2), the central toroidal structure is absent or very small, while start-
ing from the rapid rotation regime, the structure is always present and becomes more
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Figure 4.18: Two-dimensional parameter space of differentially rotating models (¥, x); the re-
maining parameters are fixed at values b = ¢ = 1. The upper solid line marks the maximum
admitted values of y, as in Fig. The lower solid line marks the values of x at which the models
start to exhibit a central toroidal structure; the dashed line marks the upper limit of the condition
for the existence of the central toroidal structure (see Eq. @23).

extended as the value of the central rotation strength increases.

The presence of the central toroidal structure can be also be interpreted in terms of to
the intrinsic kinematical properties the models. From the radial component of the Jeans
equation, expressed in dimensionless spherical coordinates,

10562, 100 (0,)2 [1062. 62— 62
pTr ¢+ < ¢> _ [; a,,/;T—’— = PP 7 (454)

the sign of the first order derivative of the density with respect to the radius (on the
left-hand side of Eq. #&R4)) depends on (i) the difference between the angular velocity
associated with the circular orbit of a single star &. = [—(1/7)9;¥]'/? and the angular
velocity of the model &, associated to the mean rotation velocity (0,) = @fsinf, (ii) a
more complex pressure term (in square brackets on the right-hand side of Eq. @54)). To
check for the presence of the central toroidal structure, it is sufficient to study the Jeans
equation in the central region of the model. Therefore, by inserting the relevant asymp-
totic expansions for the mean velocity and the escape energy (see Eqs. @44) and @A),
the term (i) reduces to the expression indicated on the left-hand side of Eq. @X2), and,
by inserting the relevant asymptotic expansions for the pressure tensor components, the
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Figure 4.19: Squared angular velocity (solid lines) evaluated in the central parts of the equatorial
plane for the first three differentially rotating models displayed in Fig. thatiswith U =2,b =
¢ =1,and x = 0.04, 0.16, 0.36 (from bottom to top). Dashed lines indicate the asymptotic behavior
at small radii, characterized by solid-body rotation, that is constant angular velocity. Dotted lines
represent the angular velocity associated with the circular orbit of a single star, evaluated on the
equatorial plane for the same models (from top to bottom). For the first two models &. > &, while
for the third @ > &, in the inner part, where the toroidal structure is present (the black filled circle
marks the position where © = @) .

term (ii) can be written as

1/2
[9)(511129—34—% <g> (—1—1—300529)] X
57(9/2,¥)~(5/2,¥)
o 59

By combining the asymptotic expressions of terms (i) and (ii), it followd] that the re-
quirement of a positive density gradient on the left-hand side of the Jeans equation is
equivalent to the condition expressed by Eq. @X22).

In conclusion, we have independently tested the validity of the condition for the ex-
istence of the central toroidal structure derived at the beginning of this section. We have
also shown that the requirement of positivity of term (i) in the radial Jeans equation is
a necessary and sufficient condition for the presence of the central toroidal structure. In

5The coefficient given by 1 — (5/7)[v(9/2, ¥)v(5/2, )] /v(7/2, ¥)? is nonnegative for every value of ¥.
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other words, the central toroidal structure exists if and only if, in the central region, the
angular velocity associated with the internal rotation is higher than the angular velocity
associated with the circular orbit of a single star. Figure ET9shows the relevant angular
velocities for the first three models of the sequence considered in Fig. it is appar-
ent that, for the configuration in which the central toroidal structure is present, & > @..
This result strictly depends on the adopted truncation in phase space for the distribu-
tion function f¢,(I); in fact, in Section 4.8 we show that for the alternative distribution
function f&,(I), the condition on the angular velocities is a necessary but not sufficient
condition for the existence of the central toroidal structure.

44.4 The condition for maximally rotating models

If we consider a sequence of models with fixed values of ¥, b, ¢ and increasing values of
X, the central toroidal structure becomes progressively more extended and characterized
by a larger aperture angle (i.e., the angle spanned at small radii by the isodensity surface
that represents the boundary of the central toroidal structure). For high values of the
central rotation strength parameter x, a smaller central toroidal structure appears also
in the equipotential surfaces (see the escape energy profile of the fastest rotating model
in Fig. ET2). These two structures can be characterized in terms of 6, and 6,4, defined as
the complements of the semi-aperture angle of the inner cusp of toroidal structures in
the equipotential and isodensity surface, respectively. In fact, since the boundary of the
central cusp of the toroidal structures, is defined by ¥ (#,0) = ¥, and p(+,6,) = po, by
using the relevant asymptotic expansion up to second order in 7 given in Eqs. @Z]) and
#38), the following expressions for the angles are obtained:

3+ (5/2)Y204/2

20, = 4.56
COs™ Up (3/2)(5/2)1/2C2 ’ ( )
34 (5/2)12Cy /2 — 9y
204 = : 4.57
O 0= ) (5/2172C; o e
The two angles are related, because
1/2 29 _
cos? 0y — (3/2)(5/2)'/2C5 cos? 8, — 9x (4.58)

(3/2)(5/2)1/2C2 — 9x

Note that 6, and 6, decrease as the values of |Cs| and x increase (we recall that C5 is
negative-definite), that is the corresponding semi-aperture angles become larger.

For high values of the central rotation strength x, which imply a high degree of
quadrupolar deformation, as measured by the quantity |Cs|, it is easy to see that cos? 6, —
1/3; interestingly, we also found (numerically) that a limiting value exists also for 6,
given by cos?f; — 2/3. By inserting the limiting value of 6, in Eq. @E58), the condition
for the maximum value of the angle 6 (i.e., cos* 64 < 2/3) can be translated in a simple
condition for the central rotation strength parameter

1 5 1/2
X<g <§> |Cyl, (4.59)

which basically provides a limit to the deformation induced by the central rotation itself.
The previous condition has been checked numerically and we found that, for values of
X above the threshold, the iteration scheme used for the solution of the Poisson equation
does not converge.
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Figure 4.20: Contour maps of the surface density, mean line-of-sight velocity, and line-of-sight
velocity dispersion (from top row to bottom row) of the differentially rotating models with ¥ = 2,
b=c=1,and x = 0.04,0.16,0.36, 1.00 (from left to right, as in Fig. EET3), projected along the
Z-axis of the intrinsic coordinate system (“edge-on” view, so that Zp and §p correspond to the 3
and 2 axes of the intrinsic system, respectively). In the panels in the first row, solid lines represent
the isophotes corresponding to selected values of /% in the range [1.02,10~7]; only the last
(fastest rotating) model shows values ¥/ > 1, when the toroidal structure appears. Panels in
the second row illustrate the contours of the dimensionless rotation velocity in the range [0.5, 107°]
at intervals of 0.05 (from left to right, the values of the innermost contours are 0.25, 0.35, 0.4, 0.45,
respectively.). Panels in the last row show the contours of the projected velocity dispersion in the
range [0.4, 10™°] at intervals of 0.05 (the values of the innermost contours are 0.3 for the first three
models and 0.4 for the last one).
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Figure 4.21: Surface density profiles (normalized to the central value) of the differentially rotating
models with ¥ = 2,b = ¢ = 1, and x = 0.04,0.16, 0.36, 1.00 (from right to left; same sequence
illustrated in Fig. E20), evaluated along the & p-axis (solid lines) and §p-axis (dashed lines) of the
projection plane (“edge-on” view).

4.5 Projected properties of the differentially rotating models

4.5.1 The surface density profile

The calculation of the projected properties has been performed by following the same
projection rules described in Sect. 2.4 that is the line of sight corresponds to the Zp-
axis of a new frame of reference in which the projection plane is denoted by (Zp,3p).
In particular, we studied in detail the “edge-on” view, that is the projection along the
Z-axis of the intrinsic frame of reference (2p = &, £p = ¢, and yp = 2, i.e,, the viewing
angles of the rotation matrix are § = 7/2, ¢ = 0). The dimensionless surface density
distribution (i p, §p) has been calculated by numerical integration of Eq. @ZT) on an
equally-spaced square cartesian grid on the projection plane.

The first row of Fig. shows the contour maps of the surface density of selected
differentially rotating models in the moderate and rapid rotation regime. As result of
projection, the dimples on the rotation axis, which are prominent in the corresponding
intrinsic isodensity surfaces (see Fig. I3 for the meridional sections of the same se-
quence of models), are less pronounced. In addition, the central toroidal structure in the
projected density distribution is visible only if it has a reasonable size in the intrinsic
density distribution (see third and last model of the sequence illustrated in Fig. E20).
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Figure 4.22: Ellipticity profiles, as functions of the semi-major axis of the projected image ap, of
the first three differentially rotating models illustrated in Fig. E2]] (from bottom to top; “edge-on”
view). Dots correspond to the isophotes shown in the first row of Fig. and arrows mark the
position of the half-light isophote.

The surface density profiles of the same sequence of differentially rotating models,
evaluated along the principal axes of the projection plane, are presented in Fig. EZ2T]
For the configurations in which the central toroidal structure in projection is absent, we
calculated the relevant ellipticity profiles, as functions of the semi-major axis of the pro-
jected image ap, and they are reported in Fig. As expected, the configurations in the
moderate rotation regime are characterized by nonmonotonic ellipticity profiles, while
models in the rapid rotation regime have monotonically decreasing profiles; to some ex-
tent, this morphological feature is complementary to that of the uniformly rotating mod-
els, in which the configurations are always characterized by monotonically increasing
ellipticity profiles. Interestingly, the behavior of the ellipticity profiles does not neces-
sarily correlate with the mean line-of-sight velocity profiles (see next subsection), that
is configurations with a nonmonotonic velocity profile may have a monotonic ellipticity
profile.

In addition, the isophotes of models show clear departures from a pure ellipse, which,
at variance with the family of rigidly rotating models, can be characterized as a “boxy”
overall trend, particularly evident in the intermediate parts of the configurations (see
third and fourth panels of the first row of Fig. E.20).
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4.5.2 The line-of-sight velocity distribution

The projected velocity moments are calculated by integrating along the line of sight
(weighted by the intrinsic density) the corresponding intrinsic quantities. As for the
surface density distribution, we studied in detail the kinematics projected along the -
axis of the intrinsic coordinate system. Therefore, the dimensionless mean line-of-sight
velocity and the line-of-sight velocity dispersion can be written as

o 1 S (0g) Tp
<UP>(37Pa?JP) = _ﬁ/ dzp P(I'P) 5 o175 (4-60)
YX(&p,9p) Jz.p (2% +ap)1/2
62 (i Gp) = / " dsp p(Ep) [#(@%&2 +
’ S(ip,gp) Js, p+ap

Tp
cxsad )

Selected mean line-of-sight velocity profiles (for the sequence of models presented in
Fig. B7T)), evaluated along the # p-axis of the projection plane, are illustrated in Fig. 23]
where the sign of the mean velocity in the two half-planes is consistent with Eq. @60).
As the value of the central rotation strength parameter increases, the slope of the inner
part of the profile becomes steeper, since the asymptotic behavior of the intrinsic velocity
in the central regions is approximately that of a rigid rotation, with the angular veloc-
ity proportional to x'/? (see Eq. (@Zd)); in addition, because the entire configuration
becomes more compact, the radial position of the peak of the velocity profile shrinks
progressively.

The line-of-sight velocity dispersion profiles of the same sequence of models, eval-
uated along the principal axes of the projection plane, are presented in Fig. For
configurations in the moderate rotation regime, the variations in the slope at intermedi-
ate and outer radii, which characterize the azimuthal component of the intrinsic velocity
dispersion tensor, are still visible in projection, while the inner part of the profile has
a flat core. For models in the rapid and extreme rotation regime, the maximum value
of the profile is displaced from the geometric center; in this case, the inner part of the
profile has a nontrivial gradient.

We also calculated the ratio of the mean line-of-sight (rotation) velocity to the cen-
tral line-of-sight velocity dispersion, as a measure of the amount of ordered motions
compared to random motions (see Fig. EZ8 for relevant profiles evaluated along the & p-
axis, for the sequence of models discussed above). The models in the moderate rotation
regime show values that are consistent with those observed in Galactic globular clus-
ters (see Introduction). The configurations in the rapid and extreme rotation regime are
characterized by higher values of the ratio, that can be even greater than one; such high
values are measured only in the class of elliptical galaxies known as fast rotators (see
Davies et all [1983). Of course, the values of this ratio strongly depend on the line of
sight on which the projection is performed (we recall that here we illustrate the results
obtained only from the “edge-on” view, which is the most favorable for the detection of
ordered motions).

Ep65, + (0p)°8D) + (0p)” + 2(0p) (Dy) (4.61)

4.6 Effect of truncation in phase space

To explore the nontrivial effects of the two options for the truncation prescription of the
family of differentially rotating models (see Sect. B3} see alsolHunten[1977), we selected
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Figure 4.23: Mean line-of-sight rotation velocity profiles of the differentially rotating models with
¥ =2,b=c=1,and x = 0.04,0.16, 0.36, 1.00 (slower rotating models are more extended; same

sequence illustrated in Fig. 7)), evaluated along the & p-axis of the projection plane (“edge-on”
view).
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Figure 4.24: Squared line-of-sight velocity dispersion profiles of the differentially rotating models
illustrated in Fig. evaluated along the & p-axis (solid lines) and §p-axis (dashed lines) of the
projection plane (“edge-on” view).
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Figure 4.25: Ratio of mean line-of-sight (rotation) velocity to the central line-of-sight velocity dis-
persion of the differentially rotating models illustrated in Figs. and E24] evaluated along the
Z p-axis of the projection plane (“edge-one” view). The first and second models are in the moderate
rotation regime, the third has rapid rotation, and the last represents the beginning of the extreme
rotation regime.
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Figure 4.26: Top panels: histogram (scaled to unity) of the phase space density NV (E, jz) for a
differentially rotating model characterized by Wilson truncation (left) with ¥ = 2,x = 0.16,b =
¢ = 1, and for one characterized by plain truncation (right) with ¥ = 2,x = 0.36,b = ¢ = 1.
Both models are characterized by &/@mae ~ 0.2. Bottom panels: Lindblad diagrams for the same
models presented in the top panels. The graphs have been obtained by a Monte Carlo sampling of
the relevant distribution functions with 65 536 particles.
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two representative models and studied the relevant phase space density N(E,J.), de-
fined in such a way that the total dimensionless mass is given by M = [ N(E, J,)dE dJ.,
with the specific energy £ = a E and z-component of the specific angular momentum
J. = (t x ¥), = 47 sinf. The histograms of the phase space density, constructed by
means of a Monte Carlo sampling of the distribution functions, are presented in the top
panels of Fig.

We also constructed the corresponding Lindblad diagrams (Lindblad 1933), that is
the representation in the plane (E,.J.) of orbits in phase space in a given model (see
bottom panels of Fig. E26). For any given .J,, the orbit with the lowest energy corre-
sponds to a circular orbit in the equatorial plane; therefore, in both families of models,
the circular orbits form the lower cuspy boundary of the model in the diagram. The up-
per boundary corresponds to the energy truncation, introduced by the cut-off constant
E,. Of course, since both families of models are characterized by internal rotation, the
distribution of the orbits is asymmetric with respect to the z-component of the angular
momentum, but different truncation prescriptions determine a different distribution of
the orbits in phase space. In particular, the Wilson truncation introduces a sharp de-
population of retrograde orbits with intermediate energy, while the plain truncation is
associated with a smooth decrease of the number of retrograde orbits with high energy.
Alternative options for the truncation prescription in rotating models correspond to a
distribution of orbits in different regions of the diagram (see Fig. 1 in [Rowley [1988).
Note that a truncation with respect to the Jacobi integral H = E — wJ, only, as in our
family of rigidly rotating models [ (H) (see Eq. @3)), corresponds to a region in the
diagram bounded by a straight line (with w as slope) and the curves corresponding to
the energy of circular orbits.

In addition, as the concentration of the models increases, the cusp of the lower bound-
ary, given by the energy of circular orbits, becomes sharper; as noted also by IRowley
(1988), this is the reason why centrally concentrated configurations with rigid rotation
cannot be very flat, except for the outer parts, as described in Sect. 24

4.7 Spherical limit of rotating models

The spherical nonrotating limit of the families of rotating models considered in the
present Chapter are defined by the following distribution functions

fpr(E) = Ae™FreelFmE0) (4.62)
fi(E) = Ae—aFo [e_“(E_E“) - 1} , (4.63)
fwr(E) = Ae—oFo [e—a<E—E0> —1+a(E- EO)} : (4.64)

if B < Ey and f;(E) = 0 otherwise (in the following, the index i = 1, 2,3 denotes the
models defined by Eqs. @62)-@64), in the same order). In particular, fx(E) defines
the [King (1966) models and represents the spherical nonrotating limit of the family of
rigidly rotating models defined by f} (H) (see Eq. @3)); fwr(E) and fpr(E) are the
spherical isotropic limit of the Wilson (1975) and [Prendergast & Tomer (1970) models,
and represent the spherical nonrotating limit of our differentially rotating models de-

fined by fd.(I) (see Eq. @2Z3)) and f&,(I) (see Eq. @24)), respectively. In the previous
expressions, A, a, are positive constants, defining two dimensional scales, while Ej is
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the cut-off energy, which implies the existence of a truncation radius 7, for the spherical
system. For all the families of models considered here one important parameter is the
central concentration, as measured by the depth of the dimensionless central potential
well ¥ = 4(0) = a[Ey — ®(0)] or by the parameter ¢ = log(7-). Note that, if we compare
three models (one for each family) having the same value of ¥, the corresponding val-
ues of c are not the same, that is the relevant dimensionless truncation radii are different
(74 increases from fpr(E), to fx(E), to fwr(E)). In other words, the structure of the
outer parts of a spherical isotropic truncated model strictly depends on the truncation
prescription; this property is particularly relevant for the interpretation of the photomet-
ric profiles of globular clusters (see the systematic comparison between spherical King
and Wilson models performed by MclLaughlin & van der Marel (2005).

From the integration of the distribution functions in velocity space, the correspond-
ing intrinsic density distributions are recovered. Using the same dimensionless units in-
troduced in the main text, we denote the dimensionless density profiles by p; s = p;.s/A
(for the definition of A, see Eq. @TT)), with

here ¢ indicates the dimensionless escape energy, defined as in Eq. 26) .
Similarly, the trace of the pressure tensor in dimensionless form (divided by a factor

3) can be written as p; g = (a/fl)pi’s, where

Dis() = Pre¥y (B; 4+ 1,1) ; (4.66)

D;, P;, and E; are numerical coefficients resulting from the integration in velocity space
and are summarized in Tab. Note that the coefficient appearing as first argument of
the incomplete gamma function in the pressure profile is related to the corresponding
coefficient in the density profile, because they are, respectively, the second-order and
zeroth-order moment of the distribution function in velocity space.

Table 4.2: Coefficients for the spherical nonrotating models

Model D P E

Prendergast-Tomer 3/2 1 3/2
King 1 2/5 5/2
Wilson 2/5 4/35 7/2

4.8 Plain-truncated rotating models

We summarize here the intrinsic properties of the family of models defined by f&,(I)
(see Eq. @Z24)), for a comparison with the corresponding quantities derived from the
family of models defined by f&,(I) (see Eq. @23)). The density profile in dimensionless
form can be written as

ppr(7,0,0) = pwr(#, 0,9) + 3% + %wm ; (4.67)
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the asymptotic behavior of the density profile in the outer parts (¢ — 0), with respect to
the dimensionless escape energy, is given by:

- 2
ppr(7,0,1) = 3% + guf”/? (1 + gxﬂ sin? 9> +0O@?) . (4.68)
In the central region (# — 0), the expansion to second order in radius is

1 )
pAPT(f,H, \I/) = ﬁPT,O + 5 |:9X’I§2 sin2 Ge‘Ij’y (5, \I/) +

)
17 ( ) 72
where the central valueis ppro = 3/2e%y (3/2, ¥) = ppr.s(¥), consistent with the value

of the corresponding nonrotating model.
The mean velocity is in the azimuthal direction. In dimensionless units it is given by

} P2+ O, (4.69)

3eY Sg .
(0g) pp(7,0,9) = 5372 pPT/ dse” dttg(s,t,r,@), (4.70)

which, in the outer parts of the models reduces to
R X 6 .
(09) prp (7,0, 9) = X' /7 sin 6 + O(4*/?) . (471)

The expansion for # — 0 to first order in radius can be written as

(V) pp (7,0, W) = Q%XW Fsinf + O(#) (4.72)

at variance with the family defined by fd (1), the dimensionless angular velocity de-
pends also on the concentration parameter.

As far as the pressure tensor is concerned, we recall that by construction p,, = pgg.
The dimensionless radial component is given by

2 4
P (7,0,9) = pw,pr(7,0,9) + 202 4 g T/2, (4.73)

which, expanded in ¢ (as is appropriate for the outer parts), reduces to

2
perer(7,0,0) = 2077+
4 9
%W? (1 + 5”22 sin? 9) +OW?) . (4.74)

In the inner parts it can be approximated to second order in radius, by the following
expression

1118 . 7
ppr,er(7,0,%) = ppro+ = [EXTQ sin? fe¥ (57 ‘I/)

2
e ( q’)azo

} 2+ O, (4.75)
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where the central value is given by ppro = e¥~(5/2,¥) =p pr,s(¥), consistent with the
value of the corresponding model in the limit of vanishing rotation.
The azimuthal component of the pressure tensor can be written as

. ) ) X 2 4
Prr,gs(F,0,0) = Pwes(?,0,1) + 5w5/2 - gwm -

pwr{0o)yyr — PPr(0s)pr (4.76)
which at the boundary is approximated by

PPr.ge(F, 0,10) = %w/z N
%wm (1 N %Xﬂ sin® 9) +0w?). 4.77)
Close to the center we find
PPT.0¢ (7,0, V) = ppr,0 + % {GX sin’ 0 [ge‘l"y <7 \Ij) _

57
w7(5/2,9)° 3w (3 9%
2 S mrmey | T2t 1\ ) o

Therefore, the models in this family are characterized by pressure isotropy in the
central region, radially-biased pressure anisotropy in the intermediate part, and pressure
isotropy at the boundary (since, for both j,, and p44, the term of lower order in ¢ is given
by 2/51°/2), at variance with the family defined by f,,-(I) in which tangentially-biased
anisotropy is present.

Using the asymptotic expression of the density in the central regions recorded above,
in this case, the condition for the existence of the central toroidal structure is given by

1/2
(1/2,%) +%<§> ] (4.79)

12v(5/2, )

where C5 is defined as in Eq. (A2). By evaluating the sign of the velocity and pressure
term in the radial component of the Jeans equation (see Eq. @54)), we found that, in this
case, the requirement of positivity of the velocity term is just a necessary but not sufficient
condition for the existence of the central toroidal structure. In other words, in this family,
configurations with angular velocity higher than the angular velocity associated with
the circular orbit of a single star but without a central toroidal structure can exist. The
condition for maximally rotating configurations, which, in this case, is given by

y(1/2,9) (5\"?
< 78’)/(5/2,\11) (5) |CQ| s (480)

completes the summary of the intrinsic properties of the family of plain-truncated dif-
ferentially rotating models.

} 72+ O . (4.78)
0

4.9 Discussion and conclusions

In this Chapter we have constructed two new families of self-consistent axisymmetric
models of quasi-relaxed stellar systems, characterized by the presence of internal rota-
tion (see Table 1); a full description in terms of the intrinsic and projected properties has
been provided. The main results can be summarized as follows:
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4.9 Discussion and conclusions

e Driven by general statistical mechanics considerations, we started by constructing

a family of rigidly rotating dynamical models; this family is defined as an exten-
sion of the [King (1966) models to the case of axisymmetric equilibria flattened by
solid-body rotation, with the relevant distribution function dependent only on the
Jacobi integral. The configurations have been constructed self-consistently by solv-
ing the Poisson-Laplace equation for the mean-field potential by means of a pertur-
bation method (described in Chapter 2), using a measure of the rotation strength
as the expansion parameter. The two-dimensional parameter space which charac-
terizes the family (concentration and rotation strength) can be described in terms
of two regimes. Models in the low-deformation regime are almost indistinguish-
able from the corresponding spherical King models. Highly-deformed models are
quasi-spherical in the central regions and show significant deviations from spher-
ical symmetry in the outer parts; in particular, they are flattened toward the equa-
torial plane and exhibit a sort of “disky” appearance. The resulting eccentricity
profile is a monotonically increasing function of radius; the (finite) central value
can be expressed analytically in terms of the rotation strength parameter. From the
kinematical point of view, the models are characterized by pressure isotropy and
cylindrical rotation.

In view of possible applications to globular clusters, we have constructed a sec-
ond family of dynamical models, characterized by differential rotation, designed
to be approximately rigid in the central regions and to vanish in the outer parts,
where the imposed energy truncation is effective. In this case, the relevant Poisson
equation is solved by means of a spectral iteration method based on the Legendre
expansion of the density and the potential. The full parameter space is now four-
dimensional, with two additional parameters, defining the shape of the rotation
profile. Three rotation regimes can be introduced, namely of moderate, rapid, and
extreme rotation. However, significant variations in the structure of the models
are primarily associated with concentration and central rotation strength, as for the
previous family. We explored the properties of the configurations resulting from
two options for the truncation prescription, with emphasis on the family which, in
the limit of vanishing internal rotation, reduces to the spherical limit of the models
proposed by Wilson (1975). In particular, configurations in the rapid and extreme
rotation regimes exhibit a central toroidal structure, the volume of which increases
with the value of the central rotation strength parameter. By making use of asymp-
totic expansions of the density, mean velocity, and pressure tensor components
for small radii, we found the condition for the existence of such central toroidal
structure, as well as the condition for the maximum value of the central rotation
strength parameter admitted by a configuration with a given concentration.

The differentially rotating models show a variety of realistic velocity dispersion
profiles, characterized by the presence of pressure isotropy and radially-biased
anisotropy in the central and intermediate regions, respectively. The kinemati-
cal behavior in the outer parts depends on the adopted truncation prescription;
in particular, the family which, in the nonrotating limit, reduces to the Wilson
spheres is characterized by tangentially-biased anisotropy. This kinematical fea-
ture (rarely obtained in equilibrium models) is of great interest for two reasons:
(i) Tangentially-biased pressure anisotropy is observed in the presence of internal
rotation in globular clusters. For example, the full three-dimensional view of the
velocity space of w Cen, obtained from proper motions and radial velocities mea-
surements, has revealed that this object is characterized by significant rotation and
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tangential anisotropy in the outer parts (van de Ven et all2006). (ii) The dynami-
cal evolution of a cluster in a tidal field is known to induce a rapid development of
tangential anisotropy in the outer parts of the stellar system. In fact, if a cluster fills
its Roche lobe and starts losing mass, there is a preferential loss of stars on radial
orbits induced by the external tidal field at large radii, where tangential anisotropy
in velocity space is thus established (Takahashi & I.e€ 2000;Baumgardt & Making
2003).

e The presence of differential rotation may induce nontrivial gradients in the line-of-
sight velocity dispersion profile of a stellar system, even if the amount of rotation is
modest. Therefore, this important physical ingredient should be taken into account
properly. In this respect, dynamical studies of globular clusters and other low-mass
stellar systems by means of models based on the use of the Jeans equations are less
satisfactory, because, at least in their most popular (nonrotating) application, they
are used to reproduce variations in the slope of the kinematical profile of a system
only by means of a (sometimes significant) amount of pressure anisotropy.

o As expected, differential rotation also induces nontrivial deviations from spherical
symmetry; in fact, the models are characterized by a great variety of (projected)
ellipticity profiles, dependent on the combined effect of concentration and central
rotation strength. Configurations in the moderate rotation regime are character-
ized by realistic nonmonotonic ellipticity profiles (e.g., seelGeyer et ali[1983), while
models in the rapid rotation regime have monotonically decreasing profiles. To
some extent, this morphological feature is complementary to that of the uniformly
rotating models, in which the configurations are always characterized by monoton-
ically increasing ellipticity profiles. Interestingly, the behavior of the ellipticity pro-
files is not necessarily correlated with the mean line-of-sight velocity profiles, that
is configurations with a nonmonotonic mean velocity profile may have a mono-
tonic ellipticity profile. In addition, the isophotes of the relevant surface density
distribution tend to be characterized by a “boxy” structure.

e From a comparison of the equilibrium configurations resulting from two options
for the truncation prescription of the family of differentially rotating models, we
confirm that the interplay between internal rotation, anisotropy in velocity space,
and truncation in phase space is highly nontrivial. In fact, as also noted by [Hunte
(1977), the structure of the outer parts of a model is particularly sensitive, both from
the morphological and the kinematical point of view, to the adopted truncation.
One way to select the most appropriate truncation from the physical point of view
will be to address the issue in the context of formation and evolution of the class
of stellar systems under consideration (see also last item below).

e Models in the moderate rotation regime seem to be particularly appropriate for
describing rotating globular clusters, since the relevant configurations are charac-
terized by a number of realistic properties, such as the presence of nonmonotonic
ellipticity profile, the behavior of surface density profile in the outer parts simi-
lar to the one associated with spherical Wilson models, the existence of pressure
isotropy in the central regions and tangentially-biased anisotropy at the boundary,
as well as realistic values of the ratio (vp)/opo. In Chapter 7, we apply our family
of differentially rotating models to selected Galactic globular clusters that show the
presence of significant rotation, such as w Cen, 47 Tuc, and M15.



118

4.9 Discussion and conclusions

o Configurations with strong differential rotation, characterized by the presence of a

sizable central toroidal structure and by a off-centered peak of the surface bright-
ness profiles, may be useful to shed light on the internal dynamics of the so-called
“ring clusters”. This class of object, originally observed in the Small Magellanic
Cloud (Hill & Zaritskyl 2006) and subsequently noted also in the Large Magel-
lanic Cloud (Werchan & Zaritsky 2011), is characterized by a sizable dimple of
the central surface brightness, resulting in an off-centered peaked density profile.
A proper dynamical interpretation of these objects is currently missing.

The families of models illustrated in the present Chapter may also help to clarify
the role of angular momentum in the formation and dynamical evolution of globu-
lar clusters. The results of an extensive survey of N-body simulations, designed to
study the dynamical stability and the long term evolution of the models described
here, will be presented in the next chapters (see also Varri et al. in preparation).



CHAPTER 5

Dynamical stability of differentially rotating stellar
systems

5.1 Introduction

The analysis of the stability properties of the equilibrium configurations of self-gravitating
rotating systems is a classical problem in stellar and fluid dynamics, starting with the
study of the ellipsoidal figures of equilibrium (for an elegant summary, seelChandrasekhar
1969). The sequence of Maclaurin spheroids, as parametrized by the ratio of the ro-
tational kinetic energy to the magnitude of the gravitational energy ¢t = K/|IV| (often
denoted as ), shows the presence of a bifurcation point (at t; = 0.13572), where an
additional sequence of solutions, which break the axial symmetry, branches off (Jacobi
ellipsoids). It has been proved that a Maclaurin spheroid with ¢ > t, is secularly unsta-
ble with respect to bar modes (m = 2). Further along the Maclaurin sequence, when
t > tq = 0.2738, a dynamical instability with respect to bar modes sets in.

In the context of the theory of rotating stars, the investigation of the properties of
self-gravitating rotating fluid bodies has been generalized to the case of configurations
with nonuniform density, with particular attention to polytropic fluids with rigid (see
Jamesd [1964; Stoecklyl [1965; [Lai_et_all [1993) and differential rotation (see [Tohline et al.
1985; [Hachisu [1986; IHouser et alll1994; New et ali2000, among others).

In the study of the stability properties of rotating stellar systems, general results are
relatively few and they are derived primarily in the context of the global stability analy-
sis of stellar disks. Ostriker & Peebles (1973) confirmed and extended the first results on
rigidly rotating systems by [Hohl (1971)) to the case of differentially rotating disks. They
studied a set of N-body simulations of a truncated Mestel disk characterized by different
values of internal rotation and found that systems with ¢ > top = 0.14 £0.02 are dynam-
ically unstable with respect to bar modes (note that top ~ t;). Hence, they proposed the
condition ¢ < top as an empirical necessary (but not sufficient) criterion for the stability
of any rotating stellar system with respect to barlike modes.

Over the years, attempts at providing a physical interpretation of the Ostriker & Pee-
bles (1973) criterion have been made (in particular, see Vandervoori|1982). Yet, the stabil-
ity properties of differentially rotating spheroidal stellar systems are largely unexplored
and the connection with the corresponding fluid systems is only partially understood
(Christodoulou et all{1995a,H). Few exceptions are represented by the collisionless coun-
terparts of the rigidly rotating polytropes (Vandervoori [198(), Riemann ellipsoids (Van-
dervoort & Welty [1987), and Maclaurin spheroids (Vandervoori [1991), for which analyt-
ical studies of the normal modes of oscillations have demonstrated that the dynamical
instability with respect to m = 2 mode sets in at lower values of rotation with respect to
the case of the Maclaurin fluid sequance (at ¢t = 0.17114, see|Christodoulou et ali[19954).
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Recently, there has been a revival of interest in the study of the stability of differ-
entially rotating fluids, kindled by the surprising discovery by ICentrella et all (2001))
of an unstable m = 1 azimuthal mode in highly differentially rotating polytropes with
n = 3.33 and ¢ = 0.14. Since then, several numerical studies have confirmed thatm = 1, 2
modes can become unstable in a variety of differentially rotating fluid models having
t < tgq, that is, well below the range of values in which dynamical instability is expected
to occur, according to the Maclaurin fluid pattern (Shibata et all 2002, 2003; Saijo_et all
2003;Karino & Eriguchi2003).

The study of the stability of differentially rotating spherical shells (Watts et all2003,
2004) suggest that the low ¢ instabilities are triggered by the presence of corotation points
associated with the unstable modes within the differentially rotating configurations. In
particular, Watts et all (2005) argued that this class of instabilities occurs when the de-
gree of differential rotation, defined as the difference between the maximum and the
minimum angular velocities within a rotating configuration, exceeds a critical value and
when the relevant modes can cross into the corotation band. Numerical investigations
performed by [Saijo & Yoshida (2006) and [Ou & Tohlind (200€) strengthened this inter-
pretation.

In this Chapter we report the results of the stability analysis performed on the family
of self-consistent equilibria introduced in Chapter 4, designed to describe differentially
rotating spheroidal stellar systems. In particular, we focus on the strong differential ro-
tation regime, where several models of the family present dynamical instabilities with
respect to m = 1,2 modes. Such instabilities show striking similarities with the low ¢ dy-
namical instabilities observed in differentially rotating fluid polytropes; therefore, this
result help to clarify the interpretation of the analogies between stellar and fluid rotat-
ing spheroidal systems in a regime currently unexplored. In particular, the selection of
models presented in this Chapter should be interpreted as possible stellar counterparts
of the fluid systems examined by Centrella et al! (2001) and Saijo et all (2003). In addition,
since a detailed investigation of the corotations points within our stellar rotating models
confirms that corotation plays a significant role in the excitation of the unstable modes,
we performed the same analysis on the “standard” disk model presented by Ostriker &
Peebles (1973), to evaluate if their stability criterion may be included in this framework
of interpretation.

The structure of this Chapter is as follows. Section 5.2 describes the initial conditions
sampled from the family of models presented in Chapter 4, summarizes the setup of the
N-body simulations performed to investigate the dynamical evolution of the models,
and introduces the diagnostics tools used to characterize the instabilities. The results
obtained from the stability analysis are described in Sect. 5.3 and our conclusions are
presented in Sect. 5.4.

5.2 Method and Initial conditions

5.2.1 N-body simulations

We consider the class of axisymmetric rotating equilibria defined by the distribution
function fd,,.(I) = Ae=2Fo [emI=E0) —1 4 o(I — Ey)] if E < Ey and fg,(I) = 0 oth-
erwise; the relevant integral of motion I = I(E, J;) is such that I ~ E for stars with
relatively high z-component of the angular momentum, while I ~ H = E —wJ, (ie., the
Jacobi integral) for relatively low values of .J.. Such configurations are defined to have
differential rotation, designed to be rigid in the center and to vanish at the boundary. The
family of models is characterized by two dimensionless parameters (¥, x), measuring
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Table 5.1: Summary of the N-body simulations for the dynamical stability analysis

Id N v X CI}/C'Dmaw t pmaw/po 01 g2

@ @ 6 @ ©) (6) 7) ®
C200R40 65536 2 0.75 0.4 0.11 1.43 - 1.71
C200R50 65536 2 1.21 0.5 0.12 1.92 - 1.81
C200R70 65536 2 237 0.7 0.14 3.35 3.66 1.16
C200R90 65536 2 392 0.9 0.16 5.37 290 149
SOP73 16384 - - - 0.38 1 - 1.45

Note. — Summary of the initial conditions of the N-body simulations presented in this Chapter. Col. (1):
label; Col. (2): number of particles N; Col. (3): initial concentration of the model (in the literature, the parameter
W is often denoted by Wy); Col. (4): rotation strength dimensionless parameter; Col. (5): ratio of the central
dimensionless angular velocity of the model to the maximum value associated with a given concentration ¥;
Col. (6): ratio of the rotational kinetic energy to the absolute value of the gravitational energy; Col. (7): ratio of
the maximum intrinsic density to the central intrinsic density; Col. (8): eigenfrequency of the m = 1 unstable
mode, if present (expressed in units of 1/Tp); Col. (9): eigenfrequency of the m = 2 unstable mode, if present
(expressed in units of 1/Tp).

concentration and central rotation strength, respectively. Two additional dimensionless
parameters (namely ¢ and b) determine the shape of the rotation profile. Details on the
construction of the models, along with a full description in terms of the intrinsic and
projected properties are provided in Chapter 4. In this Chapter we consider configura-
tions in the regime of strong differential rotation, that is, such that 0.4 < &/, < 1.0,
where & = 3x1/2 is the central dimensionless angular velocity of the models and @yqa
denotes the maximum value of the central angular velocity admitted by a model with
a given concentration ¥ (for details about the condition for maximally rotating models,
see Chapter 4, Subsections 4.4.3 and 4.4.4). The properties of the initial conditions con-
sidered here are summarized in Table 5.1, together with the label used below to refer to
them. In this regime, our configurations are always characterized by the presence of a
central toroidal structure, that is, the density maximum is located in a torus the size of
which increases with the rotation parameter y. [l

The dynamical evolution of the models is studied by means of direct N-body sim-
ulations performed with the STARLABA software environment (Portegies Zwart et al
2001), accelerated by GRAPE-6 special-purpose hardware (Makino et all 2003). For all
the simulations presented here, the models are treated as isolated and composed by a
single population of stars. Since our analysis is focused solely on the dynamical effects
associated with the presence of internal rotation, primordial binaries and the effects of
stellar evolution are not included in the simulations. The systems are followed until
T/Tp = 35 and the mass loss associated to the dynamical evolution of the system is

1For rotating polytropic fluids, equilibria in the regime of strong differential rotation has been successfully
explored, in particular thanks to the self-consistent field method of [Hachisul (198€). In stellar dynamics, this
regime has been rarely explored: only [Lynden-Bell (1962) and [Prendergast & Tomer (197() noted that some of
their models with strong differential rotation showed the density peak in a ring on their plane of symmetry,
but a detailed description of the configurations is not provided.

2See http:/ /www.manybody.org.
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T/Tp=0 T/Tp=5

-2 -1 O 1 2 -2 -1 O 1 2

Figure 5.1: Time evolution of the surface density of the model C200R90, projected on the equatorial
plane. In each snapshot, the density is normalized to the maximum value as log(X/Zmaz ). Time
is expressed in units of the dynamical time and spatial coordinates are expressed in N-body units
(c.g. sce Heggie & Hiui D003)

negligible (M finq/M(T = 0) > 0.975 in all cases). The time is measured in units of
Tp = [37/(16Gpgo)]'/?, which is the dynamical time associated to the sphere enclosing
90% of the mass of the system, with mean density pog = 3Mgo(T = 0)/ (47 R3,); in the fol-
lowing, the spatial coordinates are expressed in standard N-body units (e.g., see Heggie
& Hut ).

5.2.2 Diagnostics tools

The instabilities are characterized by means of a Fourier decomposition of the intrinsic
density distribution of the models. Following [Tohline et all (1985) and [Centrella et all

), at any given time we consider the density distribution in N4 coaxial and linearly
spaced cylindrical annuli of radii R and R + AR and height Az = AR, where AR =
2Rpmaz/Na (Rmar denotes the maximum radius of the initial distribution of particles);
for a given annulus labelled by (R, z), we define the complex coefficient associated to
the mode of azimuthal number m as

1 27 )
ColRez) = 3= [ plBozi)e™as, (5.1)
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with the corresponding normalized coefficient A, (R, z,t) = Cy, (R, 2,t)/Co(R, z,t), where
Cy denotes the mean density in a given annulus. The tangent of the phase angle of the m-
th modes is then defined as the ratio between the imaginary and real part of the relevant
normalized coefficient

S(Am) ]

§R(14m )

¢m = tan™! [ (5.2)
and the associated eigenfrequency is given by o, = 9¢,,/0t or equivalently by o,, =
27 /T,, where T, is the period of the cosine of the phase angle. The relevant corotation
point is defined as the radial position in the configuration at which the pattern speed
of a given mode is equal to the angular velocity of the system w(Rcor) = 0m/m. As
noted also by IOu_& Tohlind (200€), in our N-body simulations the measurement of an
eigenfrequency is accurate only when the corresponding mode dominates the Fourier
decomposition.

5.3 Low 7T'/|W| dynamical instability

The model C200R90, with initial ¢ = 0.16, is characterized by a high degree of differen-
tial rotation (90% of the maximum value admitted for configurations of concentration
¥ = 2) and a well-developed central toroidal structure (see the first panel in Fig. 5.1),
with a density peak of pimaz/p0 = 5. During the early dynamical evolution, at T'/Tp ~ 8,
the torus experiences a rapid deformation into a single high-density region, which even-
tually progresses toward the geometric center of the configuration (see second and third
panels in Fig. 5.1). In the subsequent phase, the central density distribution becomes
progressively more elongated and evolves into a bar-like structure (see fourth panel in
Fig. 5.1).

This morphological evolution is described quantitatively by the Fourier decompo-
sition of the intrinsic density distribution of the model. The time evolution of the am-
plitudes |A,,| of the first four modes calculated in the annulus with 0.36 < R < 0.72
(corresponding roughly to the inner half of the central torus) is presented in the top
panel of Fig. 5.2. The first evolution phase is clearly dominated by an m = 1 mode, then
anm = 2 unstable mode develops and eventually dominates the Fourier decomposition.
The eigenfrequencies of the two unstable modes are easily determined from the period
of the cosine of the relevant phase angle. Due to the major structural evolution of the
initial configuration determined by the m = 1 instability, the eigenfrequency associated
with the m = 2 mode, which is subdominant yet characterized by a rapidly increasing
amplitude in the first phase, can be measured accurately in both phases and shows a
significant variation at 7'/Tp ~ 16.

To assess the importance of corotation in association with the existence of unstable
modes, we analyzed the time evolution of the radial profile of the angular velocity of the
model, measured on the equatorial plane, as illustrated in Fig. 5.3. Interestingly, from the
calculation of the pattern speed of the m = 1,2 modes at different time of the evolution,
it appears that, mainly as a result of the progressive lowering of the central angular
velocity, the corotation point associated to the m = 1 mode disappears almost exactly
at the moment in which the m = 1 becomes subdominant with respect to the m = 2
mode (T//Tp = 8). On the other hand, the corotation point associated with the m = 2
mode is always present, but, as a result of the variation of the relevant eigenfrequency,
at different radial positions in the two phases.

The same analysis has been performed on the other models listed in Table 5.1. In par-
ticular, model C200R70 shows a dynamical evolution similar to that of model C200R90,
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Figure 5.2: Fourier analysis of the intrinsic density of the model C200R90. Top panel (a): Growth
of the amplitude of the normalized complex coefficient | A, |, for m = 1,2, 3, 4. Bottom panels (b),
(c): Cosine of the phase angle ¢, for the dominant modes withm = 1, 2.
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Figure 5.3: Radial profile of the angular velocity of the model C200R90 illustrated at different times
of the evolution. Thick horizontal lines depict the eigenfrequencies of the two dominant modes
m = 1, 2 in the two phases of the evolution.

where an initial m = 1 instability triggers the existence of an m = 2 unstable mode that
appears to survive in the subsequent evolution (the relevant eigenfrequencies are re-
ported in the last two columns of Table 5.1). In models characterized by a lower (yet sig-
nificant, that is, > 40% of the maximum value admitted for configurations with ¥ = 2)
degree of differential rotation, such as C200R50 and C200R40, the m = 1 instability is
absent or limited to a very short time at the beginning of the evolution; therefore, the
Fourier decomposition of the density distribution is dominated by the m = 2 unstable
mode.

To evaluate the possibility of some dependence of the properties of the dynamical
instabilities on the number of particles, we performed an additional set of simulations
starting from the same self-consistent equilibrium models, but sampled with NV = 32768
particles. The scaling test suggests that the observed instabilities indeed develops on the
dynamical time scale and do not depend on the number of particles.

Finally, we performed a separate set of simulations designed to study the dynamical
evolution of the “standard” disk model presented by Ostriker & Peebled (1973), in order
to evaluate the role played by corotation in this case. The initial conditions have been
generated by using the mkop73 routine (available within the software package NEMO,
see[leuben[1995), which samples a Mestel disk by following the Ostriker & Peebled (1973)
original prescriptions. Initially, we considered configurations with N = 150, 300, to ver-
ify the consistency of our simulations with the original results. Having found a good
agreement in this preliminary test, we then performed a full scaling test by considering
initial conditions sampled with up to N = 16384 particles. For brevity, only the N = 16k
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Figure 5.4: Fourier analysis of the intrinsic density of the “standard” model presented by Ostriker
& Peebles (1973). Top panel (a): Growth of the amplitude of the complex coefficient |A,,| for
m = 1,2, 3,4. Bottom panel (b): Cosine of the phase angle ¢,, for the m = 2 dominant mode.

run is reported in the present Chapter. As expected, the Fourier analysis of the density
distribution allows us to identify the m = 2 unstable bar mode, which becomes visible
already at 7/Tp =~ 5 and dominates the decomposition starting from 7/Tp ~ 9 (see
Fig. 5.4). The evolution experienced by the disk in the very first units of dynamical time
significantly alters the angular velocity radial profile, with the subsequent formation (at
T/Tp = 5) of the corotation point associated with the m = 2 mode (see Fig. 5.5).

5.4 Discussion and conclusions

The dynamical evolution of the rotating stellar systems presented in this Chapter presents
striking similarities to the one experienced by some differentially rotating fluid poly-
tropes. The evolution of our models C200R90 (¢ = 0.16) and C200R70 (¢ = 0.14), charac-
terized by an initial m = 1 instability which triggers a subsequent m = 2 unstable mode,
is very similar to the fluid polytropic model with ¢ = 0.14, polytropic index n = 3.33
and pmaz/po = 1.88 examined by [Centrella_et all (2001) (see their Fig. 2) and to the
models denoted as II(c) and III(d) in [Saijo_et all (2003) (with ¢ = 0.147, n = 3, and
Pmaz/Po = 3.07, 1.44, respectively; see their Figs. 11, 16).

To conform with the cases analyzed by [Centrella et all (2001), the values of the pa-
rameter ¢ of the models presented here fall exclusively in the range [0.11, 0.16]. We also
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Figure 5.5: Radial profile of the angular velocity of the the “standard” model presented by Os-
triker & Peebles (1973) at different times of the evolution. Thick horizontal line depicts the eigen-
frequency of the dominant modes m = 2 at T'/Tp = 10.

explored the dynamical evolution of models in the regime of moderate differential rota-
tion (0.2 < @/WOmas < 0.4) and we found that, in such regime, configurations character-
ized by the presence of a central toroidal structure can be dynamically stable. Therefore,
as for differentially rotating fluid polytropes (see Saijo_et all 2003), the presence of a
central torus is not a sufficient condition for the existence of unstable modes on dynam-
ical timescale. For the complete sequence of differentially rotating models of which the
strong rotation regime is addressed here, the transition from stable to unstable config-
urations takes place in the moderate differential rotation regime, at ¢ ~ 0.10 (for the
models presented by |[Centrella et all[2001, such transition takes place at ¢ ~ 0.09).

We also extended our analysis to other sequences of models of the family defined by
f&.., characterized by higher values of central concentration (e.g., ¥ = 6). Within such
family, configurations with high central concentration may reach values of as high as
t ~ 0.22 in the strong rotation regime. Similar dynamical instabilities are observed also
in those sequences.

The detailed analysis of the model C200R90 shows that the formation of the coro-
tation points within a rotating configuration is strictly connected to the excitation of
the corresponding modes, as suggested by [Watts et all (2005) for differentially rotating
fluid polytropes. Furthermore, the analysis performed on the “standard” Ostriker &
Peebles (1973) model offers an additional evidence that corotation and dynamical insta-
bilities are deeply connected. This result suggests that the degree of differential rotation,
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which eventually determines the existence of corotation points, is the fundamental phys-
ical ingredient which motivates the existence such dynamical instabilities. Therefore, as
already argued by [Christodoulou et all (19954) and by other investigators who found
counterexamples to the Ostriker & Peebled (1973) criterion (e.g., see Zang & Hohl[197§;
Berman & Mark[1979), instabilities do not depend exclusively on the value of the param-
eter ¢t. In fact, the global amount of rotation, as measured by the parameter ¢, and the
degree of differential rotation are in principle decoupled factors. A strong initial degree
of differential rotation may indeed determine the appearance of such dynamical insta-
bilities in stellar dynamical configurations with relatively low values of ¢. On the other
hand, at variance with rotating fluid polytropes in which the rotation law can be easily
controlled by assuming a priori a distribution of the angular momentum, for stellar dy-
namical models it may be nontrivial to study the total amount of rotation and the degree
of differentiality as truly independent parameters (in the f{,, family of models, the ratio
W/ Wmaq Offers a measure of the degree of differential rotation).

This interpretative scenario not only provides a meaningful guide to the investigation
of the analogies between fluid and stellar rotating systems, but enriches the physical
interpretation of the traditional Ostriker & Peebled (1973) criterion; it also allows to form
a more general picture, by allowing to study modes of general order m. In this context, it
should be recalled that dynamical instabilities associated with the presence of corotation
points are also well known in accretion disk theory (e.g., IPapaloizou & Pringle [1985).

The physical mechanism responsible for the growth of the amplitude of the unstable
modes is still only partially understood, even in the context of fluid systems. In par-
ticular, it has been proposed that a resonant cavity resulting from a local minimum in
the radial vortensity profile of the rotating configuration may play a important role in
amplifying the unstable mode (Ou_& Tohling 2006). This analysis will be the subject of
future investigations.



CHAPTER 6

Long-term evolution of isolated rotating stellar systems

6.1 Introduction

Many investigations have studied the role of rotation in the general context of the dy-
namical evolution of globular clusters, but a solid interpretation is still missing. Early
investigations (Agekian [1958;Shapiro & Marchani1976) suggested that initially rotating
systems should experience a loss of angular momentum induced by evaporation, that
is, angular momentum would be removed by stars escaping from the cluster. Because of
the small number of particles, N-body simulations were initially (Aarseth [1969; |Wielen
1974) unable to clearly describe the complex interplay between relaxation and rotation.

In particular, from the study of adiabatically confined rotating cylindrical shells,
Hachisu (1979) found that, if angular momentum is removed from a shell, gravitational
contraction results in an increase in angular velocity, which leads to a runaway angular
momentum transport and central contraction. In analogy with the “gravothermal catas-
trophe”, this effect has been called “gravo-gyro catastrophe”, and the physical origin in
the latter case is a negative specific moment of inertia, analogously to the negative spe-
cific heat in the former case. The first application of this interpretative framework to the
case of rotating spheroidal stellar systems has been performed by|Akiyama & Sugimotc
(1989), by means of specifically designed N-body simulations, but with only N = 1000
particles. Although the relatively low number of particles affects significantly the statis-
tical quality of the results, |Akivama & Sugimotd (1989) interpreted the long-term evo-
lution of rotating stellar systems as consisting of different phases, namely (1) violent
relaxation, (2) gravo-gyro instability, (3) static evolution, (4) gravothermal collapse.

Later investigations, primarily conducted by following the evolution of a rotating
stellar system by solving the relevant orbit-averaged Fokker-Planck equation in (E, J,)
space (as pioneered by (Goodman (1983)), have strengthened this picture, not only by
testing the proposed mechanism of angular momentum removal by escaping stars, but
also by showing that rotation accelerates the entire dynamical evolution of the system
(Einsel & Spurzem 1999; Kim et all 2002; [Fiestas et all2006). In particular, More recent N-
body simulations (Boily 2000;Ernst et al!2007; Kim et all2008) confirm these conclusions
and show that, when a three-dimensional tidal field is included, such acceleration is
enhanced even further. The mechanism of angular momentum removal is generally
considered to be the reason why Galactic globular clusters are much rounder than the
(younger) clusters in the Magellanic Clouds, for which an age-ellipticity relation has
been noted (Frenk & Fall [1982), but other mechanisms might operate to produce the
observed correlations (Meylan & Heggid [1997; lvan den Bergh 2008).

In the present Chapter we wish to study, by means of specifically designed N-body
simulations, the long-term dynamical evolution of selected configurations from the fam-
ily of differentially rotating models presented in Chapter 4. In particular, we will focus
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Table 6.1: Summary of the N-body simulations for the long-term evolution analysis

Id N v X C'D/‘jjmaac tstruct/trh (0) tcc/trh (0)

1 @ 6 ©) (6) )
C600R10 16384 6.00 0.011 0.1 0.0 11.0
C600R00 16384 6.00 0.000 0.0 0.0 13.0
C735R00 16384 7.35 0.000 0.0 5.7 10.7
C600R20 16384 6.00 0.045 0.2 0.0 13.3
C550R00 16384 5.50 0.000 0.0 0.0 15.5
C600R30 16384 6.00 0.102 0.3 0.0 14.0
C425R00 16384 4.25 0.000 0.0 0.0 17.5
C690R00 16384 6.90 0.000 0.0 5.5 13.9

Note. — Summary of the initial conditions of the N-body simulations presented in this Chapter. Col. (1): la-
bel; Col. (2): number of particles N; Col. (3): initial concentration of the model (in the literature, the parameter
W is often denoted by Wp); Col. (4): rotation strength dimensionless parameter; Col. (5): ratio of the central
dimensionless angular velocity of the model to the maximum value associated with a given concentration ¥;
Col. (6): time (expressed in units of the initial half-mass relaxation time) at which a given differentially rotat-
ing model (first entry in each table section) is structurally equivalent to a selected nonrotating configuration
(second and third entries in each table section) ; Col. (7): core-collapse time, expressed in units of the initial
half-mass relaxation time.

on the investigation of the properties of isolated rotating configurations, in direct com-
parison with appropriately selected nonrotating models. In fact, we will compare the
evolution of several pairs of models, having the same initial structural properties (up
to the half-mass radius), but characterized by different kinematic properties (i.e, in the
presence or absence of internal rotation). Method and initial conditions are described in
detail in Sect. 6.2, the general results are discussed in Sect. 6.3, and the conclusions are
summarized in Sect. 6.4.

6.2 Method and initial conditions

We consider the class of axisymmetric rotating equilibria defined by the distribution
function fg, (1) = Ae=2Fo [emI=FE0) 1 4 o(I — Ey)] if E < Ey and f, () = 0 oth-
erwise, with I = I(E, J.) (see Chapter 4, Eq. (4.23)). In this Chapter we focus on config-
urations in the regime of moderate differential rotation, that is, such that & /@4 < 0.2,
where & = 3x'/2 is the central dimensionless angular velocity of the models and @yqs
denotes the maximum value of the central angular velocity admitted by a model with
a given concentration ¥ (for details about the condition for maximally rotating mod-
els, see Chapter 4, Subsections 4.4.3 and 4.4.4). The properties of the initial condi-
tions considered here are summarized in Table 6.1, together with the label used be-
low to refer to them. The rotating models under consideration (listed as the first en-
try in each section of Table 6.1) are characterized by the same value of the central con-
centration parameter ¥ = 6 and increasing values of the rotation strength parameter
x = 0.011,0.045,0.102, which can be expressed in terms of the central dimensionless
angular velocity as @/@maz = 0.1,0.2,0.3, respectively. In all cases, the additional pa-
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rameters b and ¢, which determine the shape of the rotation curve, are fixed to the values
b=c=1.

In this regime, our configurations are always characterized by the absence of a cen-
tral toroidal structure, that is, the density maximum is located in the geometrical center
of the configuration (at variance with the models characterized by strong differential ro-
tation considered in Chapter 5, which show a central toroidal structure, with the density
peak in a ring on their plane of symmetry). In addition, by performing a dynamical sta-
bility analysis equivalent to the investigation described in Chapter 5, we found that the
configurations considered in the present Chapter are dynamically stable with respect to
modes with azimuthal number m = 2 or higher.

The long-term dynamical evolution of the models is studied here by means of direct
N-body simulations performed with the STARLAB] software environment (Portegies
Zwart et al. 2001), accelerated by GRAPE-6 special-purpose hardware (Makino et al
2003). For all the simulations presented here, the models are treated as isolated and
composed by a single population of stars. Since our analysis is focused primarily on the
dynamical effects associated with the presence of internal rotation, primordial binaries
and the effects of stellar evolution are not included in the simulations. The case of stellar
systems characterized by the presence of a tidal boundary will be the subject of future
investigations. Here the systems are followed until 7'/¢,,(0) ~ 25. The time is measured
in units of the initial half-mass relaxation time, as defined in Eq. (1.4); in the following,
the spatial coordinates are expressed in standard N-body units (e.g., see Heggie & Hui
2003).

As discussed in detail in Chapter 4, the presence of differential rotation may affect
significantly the structure and morphology of a truncated stellar system, not only be-
cause it breaks the spherical symmetry, but also because the nontrivial interplay between
the energy truncation and the detailed internal angular momentum distribution may in-
troduce significant variations in the density distribution of the rotating configurations,
with respect to the corresponding nonrotating model, especially in the outer and inter-
mediate parts. In particular, we recall that, in a sequence of models characterized by
the same value of the central concentration parameter ¥ and increasing values of the
rotation strength parameter x, configurations with a higher internal rotation become
progressively more compact. In order to perform a meaningful comparison between the
dynamical evolution of rotating and nonrotating configurations, this effect should be
taken into account; as a result, in the presence of nonvanishing total angular momen-
tum, the traditional concentration parameter associated with the depth of the central
potential well of a stellar system may not be sufficient to fully characterize the structure
of a configuration.

In view of these remarks, instead of simply comparing the sequence of rotating mod-
els under consideration (denoted as C600R10, C600R20, C600R30, respectively) with the
“corresponding” spherical nonrotating model, that is, with by the same value of the
concentration parameter ¥ = 6, in the limit of vanishing internal rotation y — 0, we
decided to compare each rotating model with a nonrotating configuration characterized
by the same initial structure, that is, selected in order to have approximately the same
initial values of the relevant (spherical) lagrangian radii, at least up to the radius enclos-
ing 50% of the total mass fl. Note that, in principle, the nonrotating configurations may
have a different value of the central concentration parameter with respect to the rotating

1See http:/ /www.manybody.org.

’In the present investigation, we considered as reference the set of spherical lagrangian radii
that enclose 1%, 5%, 10%, 25%, 50%, 75%, 90% of the total mass of a configuration, denoted as
(r01, r05,r10, r25, r50, r75,790), respectively (e.g., see Figs. andB3).
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Figure 6.1: Evolution of selected lagrangian radii of four differentially models, characterized by
the same value of the concentration parameter (¥ = 6) and increasing values of internal rotation
@ /Omaa = 0.00,0.10, 0.20, 0.30 denoted by black, blue, red, and green lines, respectively.

models; in fact, the difference in concentration ¥ becomes more significant as the value
of the rotation strength parameter increases (see Table 6.1).

Previous studies of the long-term dynamical evolution of rotating stellar systems, ei-
ther based on a Fokker-Planck approach or by means of N-body simulations (E z0odmar
[1983; [Lagoute & T.ongaretti [199€; [Lonearetti & I.agoutd [1996; [EJns_e_]_&LS_m,]_tzf_njUM
Kim_et all 2002; [Fiestas et all 2006; [Ernst et all 2007; Kim_et all 2008), have considered
as initial conditions configurations selected almost exclusively from the family of the
truncated rotating Maxwellian distribution function, defined as:

f(E,J.) = A(e *E — ¢=aF0)e=FJ: 6.1)

for E < Ey and f = 0 otherwise; this family of models reduces, in the limit of van-
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ishing internal rotation, to spherical isotropic nonrotating IKing (1966) models. Those
studies often investigated the properties of a given sequence of rotating configurations,
characterized by the same value of central concentration and increasing values of the di-
mensionless rotation parameter (associated with the parameter 3), in direct comparison
with the spherical King model which represents the nonrotating limit of the sequence
under consideration (i.e., for 5 — 0).

6.3 General results and discussion

As discussed in the previous Section, the comparison between rotating and nonrotating
configurations performed exclusively with reference to the nominal value of the central
concentration parameter gives only a partial indication of the effect of internal rotation
on the long-term dynamical evolution of a model. Nonetheless, in Figure .1l we report
the evolution of selected spherical lagrangian radii of the three rotating models under
consideration, compared with the nonrotating model characterized by the same value
of central concentration V. Surprisingly, we found that only the model characterized
by the lowest value of internal rotation (&/@Wqes = 0.10, C600R10) reaches core collapse
more rapidly compared to the nonrotating model (C600R00), whereas the evolution of
the other two rotating configurations (&/&mas = 0.20,0.30, i.e., C600R20, C600R30) is
comparable to the nonrotating one. This result should be interpreted as an evidence
of the fact that the study of rotating configurations should not be performed by taking
into account exclusively the kinematical properties, as the structural one may play a
significant role in driving the dynamical evolution of dense stellar systems.

The previous picture, from which, apparently, the presence of internal rotation can
actually slow down the dynamical evolution of a stellar system, is somehow reversed if
the rotating models are compared with the nonrotating configurations characterized by
the same initial values of the first lagrangian radii (in Fig. ]l it is particularly evident
that model C600R30 is structurally different from the nonrotating model C600R00). Fig-
ures 6.2 and B3l illustrate such analysis for models C600R10 and C600R30. In the first
case, the relevant nonrotating model is still represented by model C600R00, while in the
second case, the nonrotating model is characterized by a much lower value of the cen-
tral concentration parameter. In both cases, the rotating models reach core collapse more
rapidly compared to the nonrotating configurations (see also Table 6.1).

The long-term dynamical evolution of the rotating models under consideration can
be therefore interpreted, as already discussed in particular by |Akivama & Sugimotc
(1989) and [Einsel & Spurzem (1999), as composed of two phases. During the first phase
the gravo-gyro instability takes place, and subsequently levels off, and, as a result, the
dynamical evolution of rotating configurations progresses more rapidly compared to
nonrotating configurations with the same initial structural properties. At variance, during
the second phase second phase, rotating models experience gravothermal catastrophe
and reach core collapse; in this phase, the overall dynamical evolution of the rotating
configurations is consitent with the one experienced by nonrotating models. To substan-
tiate this interpretation, we performed two additional simulations of nonrotating models
which show approximately the same values of the lagrangian radii of the rotating ones
at t/t,;,(0) = 5.5. The relevant nonrotating configurations are characterized by higher
values of the central concentration parameter with respect to the nonrotating models
selected to be structurally equivalent to the rotating ones at ¢/t,,(0) = 0 (see the last
entry in the first and third section of Table 6.1; the evolution of the lagrangian radii of
the additional nonrotating models is marked as red lines in Figs. B2land &3). This fact
is consistent with a traditional result regarding nonrotating configurations, for which
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Figure 6.2: Evolution of selected lagrangian radii of the differentially model with ¥ = 6 and
W/Gmaz = 0.10 (C600R10, blue lines). The rotating model is compared with two nonrotating
models (with ¥ = 6 and ¥ = 7.35, marked with black anf red lines, respectively), which are struc-
turally equivalent to the rotating configuration at ¢/t,,(0) = 0 and ¢/t,4(0) = 5.7, respectively.

the dynamical evolution of a dense stellar system can be interpreted, in a first-order de-
scription, as a sequence of equilibrum configurations characterized by increasing values
of central concentration. Note that the additional nonrotating models experience core
collapse at approximately the same moment of the rotating models. This result confirms
that, in the second phase, the presence of internal rotation no longer significantly affect
the dynamical evolution of the configurations. In addition, this analysis sets a superior
limit (¢/¢,,(0) ~ 5.5) to time at which the rotating configurations experience the transi-
tion from the first to the second phase.
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Figure 6.3: Evolution of selected lagrangian radii of the differentially model with ¥ = 6 and
&/Wmaz = 0.30 (C600R30, green lines). The rotating model is compared with two nonrotating
models (with ¥ = 4.25 and ¥ = 6.90, marked with black anf red lines, respectively), which are
structurally equivalent to the rotating configuration at ¢/¢,,(0) = 0 and ¢/¢,,(0) = 5.5, respec-
tively.

To further characterize the two phases of the evolution, we studied the distribution of
z-component of the angular momentum j, within the spherical lagrangian radii used as
reference in the previous analysis. The evolution of j, for the C600R10 and C600R30 ro-
tating models is represented in Figs. B 4land respectively. From the inspection of the
previous figures, it appears that, whitin a rotation configuration, the angular momen-
tum is transported outward, as the angular momentum in the inner lagrangian shells
experiences a significant decrease, while in the outer ones a mild increase.
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Figure 6.4: Evolution of the distribution of the z-component of the angular momentum j., in
selected lagrangian shells, for the differentially rotating model with ¥ = 6 and &/&maz = 0.10
(C600R10).

In addition, we also studied the evolution of selected local structural and kinematical
properties, namely the density, the velocity dispersion, and the ratio between ordered
and random motions V/o, evaluated in the very central region of the rotating models
under consideration (i.e., calculated with reference to a thin disk on the equatorial plane
enclosing 3% of the total mass of the system; see Figs. B.lande.Z) for model C600R10 and
C600R30, respectively). In particular, from the inspection of the evolution of the central
values of V/o (see Figs. flc andeZlc ), it results that such quantity drops significantly
during the first phase of evolution, meaning that the presence of ordered motions in the
central regions becomes less significant.

The previous result should be interpreted with reference to the evolution of the global
kinematical quantity ¢ = 7'/|W]|, that is, the ratio between the kinetic energy and the
magnitude of the gravitational energy of the system (see Fig. &8). From the inspec-
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Figure 6.5: Evolution of the distribution of the z-component of the angular momentum j., in
selected lagrangian shells, for the differentially rotating model with ¥ = 6 and &/&maz = 0.30
(C600R30).

tion of the evolution of such global quantity, the existence of the two phases is clearly
visible, the first phase being again characterized by a rapid decrease, which should be
interpreted as evidence of the fact that the energy contribution of the ordered motions is
becoming less significant. Therefore, from the evolution of the central value of V/o and
of T'/|W], it seems that the presence of internal rotation affects the dynamical evoltuion
of the systems only if the amount in the central regions is nonnegligible, although the the
configuration may still be characterized by nonvanishing global angular momentum.
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Figure 6.6: Evolution of the central properties of the differentially rotating model with ¥ = 6
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dispersion, (d) central value of the ratio V/o.

6.4

Conclusions

The analysis discussed in the present Chapter is the result of a preliminary investigation,
as the description of the dynamical evolution of the relevant rotating models in terms
of additional local and global diagnostics tools is currently in progress, with particular
attention to the morphological evolution of the configurations. The first results of this
study can be therefore summarized as follows:

e Following the early investigations by |Akivama & Sugimotd (1989) and Einsel &
Spurzem (1999), we have interpreted the long—term dynamlcal evolution of a rotat-
ing stellar system by distinguishing between a first phase, in which the gravo-gyro
instability takes place and subsequently levels off, and a second phase in which the
system experiences the gravothermal catastrophe and reaches the core collapse, as
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Figure 6.7: Evolution of the central properties of the differentially rotating model with ¥ = 6
and @/@maz = 0.30. From top left to bottom, clockwise: (a) central density, (b) central velocity
dispersion, (d) central value of the ratio V/o.

it happens for nonrotating configurations.

e A proper comparison between rotating and nonrotating configurations requires
great attention to the initial structural properties of the models. The evaluation of
simple sequences of models characterized by the same value of the concentration
parameter and an increasing value of the rotation parameter can be misleading.

e A rotating model with the same initial structural properties of a nonrotating one
reaches core- collapse more rapidly, as an effect of the internal rotation in the early
phase of the dynamical evolution.

e Gravo-gyro instability takes place in the first phase of the long-term evolution and
induces a nonnegligible variation of the structure of a rotating configuration, es-
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Figure 6.8: Evolution of the parameter T'/|W| for differentially rotating models DRM with ¥ = 6
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pecially in the central regions, which seems to be responsible for the subsequent
alteration of the core-collapse time scale.

e Two-body relaxation processes induce angular momentum transport toward the
outer parts of a rotating configuration, significantly reducing the amount of rota-
tion in the center. After a few half-mass relaxation times, the presence of internal
rotation (mainly located beyond the half-mass radius) no longer affects the evolu-
tion of the configuration.

e We decided to focus our attention first on the study of models in the moderate
rotation regime because they seem to be particularly appropriate for describing
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rotating globular clusters, since the relevant configurations are characterized by
a number of realistic properties, such as the presence of nonmonotonic elliptic-
ity profile, the behavior of surface density profile in the outer parts similar to the
one associated with spherical Wilson models, the existence of pressure isotropy
in the central regions and tangentially-biased anisotropy at the boundary, as well
as realistic values of the ratio V/o (see Chapter 7 for the application to selected
Galactic globular clusters). We should mention that the study of the long-term
evolution of configurations in the regime of strong differential rotation may be rel-
evant for stellar systems characterized by higher values of internal rotation, such
as low-luminosity ellipticals and bulges; this analysis will be the subject of future
investigations.






CHAPTER 7

Observational signatures of internal rotation in Galactic
globular clusters

7.1 Introduction

As discussed in Chapter 1, spherical isotropic models (in particular, the [King 1966 mod-
els and the spherical Wilson [1975 models) have indeed been shown to provide a satisfac-
tory zero-order description of the main observed dynamical properties of globular clus-
ters (for a recent dynamical study of large samples of globular clusters, see McLaughlin
& van der Marel 2005).

However, the acquisition of high-quality data is rapidly bringing us well beyond
such simple picture. In particular, deviations from sphericity have been observed and
measured (see (Geyer et all[1983, WS87, and CC10; see also Sect. 1.1.1 for a general com-
ment on ellipticity measurements). In addition, significant internal rotation has been
detected in a growing number of Galactic globular clusters from line-of-sight velocity
measurements (see Sects. 1.1.1 and 1.4.3 for an extended introductory discussion) and,
in a few cases, from kinematical measurements in the plane of the sky (e.g., for M22 see
Peterson & Cudworth 1994, for w Cen see lLe Poole & van I.eeuwen 2002, and for 47 Tuc
seelAnderson & King [2003). Detailed three-dimensional kinematics are thus available for
selected Galactic clusters. As to the measurement of proper motions, the Hubble Space
Telescope (HST) is best used to probe the central regions of the systems (McLaughlin
et al. 2006; |Anderson & van der Marel 2010), whereas ground-based observations are
considered for wide-field coverage (van Leeuwen et all 2000; Bellini et al! 2009; Sariya
et al. 2012). The future mission GAIA is planned to provide three-dimensional kinemat-
ical data for a large number of stars in globular clusters (except for the center of very
dense objects affected by crowding). All this progress calls for the development of a
more complex and realistic dynamical modeling framework, in which internal rotation
and deviations form sphericity are fully taken into consideration.

Internal rotation, external tides, and pressure anisotropy are the main physical factors
that could be responsible for the observed flattening of globular clusters, but we still
do not know which is the dominant cause of the observed deviations from spherical
symmetry (van den Bergh 2008). The suggestion that internal rotation plays a role in
determining the structure and morphology of globular clusters is not new (King [1961;
Fall & Frenk [1985). However, in only few cases has internal rotation been studied by a
quantitative application of nonspherical rotating dynamical models. In this respect, the
most significant examples are the orbit-based axisymmetric modeling of w Cen and M15
(van_de Ven et all 2006; van_ den Bosch et all 2006, respectively), the study of w Cen by
means of axisymmetric Wilsor 1975 models (Sollima_et all2009), and the analysis of the
internal dynamics of a small sample of Galactic globular clusters by means of dedicated
2D Fokker-Planck models (Fiestas et all2006).

143
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Internal rotation may also play an indirect role in the controversial issue of the pres-
ence of Intermediate Mass Black Holes (IMBH) in globular clusters. In fact, sizable cen-
tral gradients in the velocity dispersion profiles are often ascribed to the presence of an
IMBH, because a massive IMBH can influence stellar kinematics out to the half-mass
radius of the cluster (Baumgardt et all2005h). A critical discussion of the observed gra-
dients is often reduced to the application of the Jeans equations in which variations of
the slope of the velocity dispersion profile are obtained by varying only the amount
of pressure anisotropy (without considering rotation; e.g., see [Liitzgendorf et all 2011
and |Anderson & van der Mare] 2010). However, differential rotation and pressure ani-
sotropy can cooperate to produce nontrivial gradients in the velocity dispersion profiles
(see Chapter 4) and might thus be an important element to be considered in the interpre-
tation of the data.

In the present Chapter we apply the family of differentially rotating global models
introduced in Chapter 4 to three Galactic globular clusters, namely w Cen, 47 Tuc, and
M15, that have been observed in great detail and are known to exhibit evidence for ro-
tation. The differential behavior of the rotation profile has been clearly noted in w Cen
and 47 Tuc (Meylan & Mayor [1986) , for which the ellipticity profiles are also available,
even though they are not radially extended as desired. The dynamical models will be
compared with the relevant photometric and kinematic observables, with particular at-
tention to the global characteristics of the three-dimensional kinematics. The selection
of the appropriate dynamical models will allow us to obtain also an estimate of the dis-
tance of the clusters. Furthermore, by taking into consideration the inclination angle of
the rotation axis of the stellar systems with respect to the line-of-sight, we will perform a
detailed analysis of the morphology of the three clusters, thus testing whether, for these
cases, the observed deviations from spherical symmetry can be explained by rotation.
The three clusters are known to be in different relaxation states (according to the catego-
rization that will be introduced in Chapter 8, 47 Tuc and M15, with log T, < 8, fall in the
class of fully relaxed clusters, whereas w Cen, with log T, < 9, should be considered as
only partially relaxed; T, indicates the core relaxation time expressed in years). Given
the physical arguments used to introduce the distribution function f& (1), the degree
of relaxation will be an element to be considered in the final assessment of the quality of
the fits obtained in this study.

The Chapter is organized as follows. In Sect.[Z2 we present the available data sets
for w Cen, 47 Tuc, and M15 and describe the procedure followed to construct the profiles
of the relevant photometric and kinematic observables. In Sect. [Z3 we introduce the
method used to identify the dynamical models that best reproduce the data available for
the three clusters. In Sect. [Z4l we provide some general remarks on the analysis. The
detailed results on w Cen, 47 Tuc, and M15 are reported in Sects.[Z5 [Z8l and [Z7 Finally,
in Sect. L9 we summarize the conclusions that can be drawn from our study.

7.2 Observational data and relevant profiles

In this section we describe the kinematic and photometric data sets that will be consid-
ered in the dynamical analysis and the methods used to construct the relevant profiles,
with particular attention to the construction of the rotation profiles. Table [ZT summa-
rizes the basic properties of the globular clusters w Cen, 47 Tuc and M15, based primarily
on the Harris 2010 catalog, with additional information about the data sets considered
in the present Chapter.
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7.2.1 Kinematic data

To construct radially extended kinematic profiles, the kinematic data sets have been se-
lected by considering two main requirements: the kinematic data points should (1) cover
a wide radial extent of the cluster, with good coverage also of the central regions, (2) be
uniformly distributed in the plane of the sky. To meet these requirements, we decided to
combine different data sets, when necessary, as described below.

For w Cen, two different data sets of line-of-sight velocities are considered: 1589 line-
of-sight velocities from [Reiins et all (2006) and 649 line-of-sight velocities from Pancino
et al. (2007) for the central part of the cluster. After removing the stars in common be-
tween the two samples, the final combined data set is composed of N},s=1868 data, reach-
ing a radial extent of approximately half truncation radius, with an average error of 1.98
km s~!. The proper motions are taken from [van Leeuwen et all (2000), with a total of
9847 ground-based measured proper motions; each star is provided with a membership
probability and is classified according to the disturbance of the image due to neighbor-
ing stars on a scale from 0 to 4 (i.e., from nondisturbed to highly disturbed stars). We
decided to select a subsample composed of stars with a membership probability higher
than 68%, belonging to class 0, and with error measurements lower than 0.25 mas yr—*
(for a similar selection, seelvan.de Ven et all 2006). The final sample is thus composed of
Npm = 2740 proper motions, with a radial extent of approximately half truncation radius
and an average error of 0.16 mas yr—! (corresponding to 3.89 km s~! for an assumed
distance of 5.2 kpc).

For 47 Tuc, the line-of-sight velocities data set results from two data sets combined
by following the procedure described in Chapter 8: 499 line-of-sight velocities from Geb-
hardt et al. (1995) for the inner region (R < 100 arcsec) and 1977 line-of-sight velocities
from|Lane et all (2011) for the outer parts (R > 100 arcsec). As noted inlLane et all (2011),
the latter data set shows a mean velocity of —16.85 km s™!, which differs significantly
from the value obtained from the former data set, —18.34 km s—1; this is likely to be due
to a systematic uncertainty between the zero-point of the two velocity systems. To cor-
rect for this offset we have subtracted from each data set the corresponding measured
mean velocities. The final line-of-sight velocities sample is composed of Ni,s = 2476 ve-
locities covering the entire radial extent of the cluster and with an average error of 2.29
km s~!. The proper motions are taken from McLaughlin et all (2006), which is a data
set composed of N,,,,, = 12974 Hubble Space Telescope proper motions selected on the
basis of the star magnitude (V<20) and quality (i.e., we consider data with probability
P(x?) > 0.001); unfortunately, the data cover only the central region out to ~100 arcsec
(approximately 4 core radii); the measurements have an average error of 0.27 mas yr—!
(corresponding to 5.76 km s~ ! at a distance of 4.5 kpc).

For M15 we used a single data set composed of Ni,s = 1777 line-of-sight velocities
from (Gebhardt et all (2000); this sample is centrally concentrated, with ~ 80% of the
stars being inside 10 R. and with an average error of 3.79 km s~!. In addition, we used
the sample of Ny, = 703 Hubble Space Telescope proper motions in the central region
of the cluster (R< 2 R..), as reported by McNamara et all (2003), with an average error of
0.14 mas yr—* (corresponding to 6.79 km s~* at a distance of 10.2 kpc).

We recall that the procedure used to obtain the proper motions data sets described
above will not reveal any solid body rotation in the plane of the sky, as well as any sys-
tematic motions of contraction or expansion (e.g., seelVasilevskis et all[1979; McLaughlin
et al. 2006;|Anderson & van der Marel201(), because the proper motions measurements
are relative measurements (no absolute reference frame is available for measuring the
star displacements at different epochs). [van_de Ven et all (2006) show how to compen-
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Table 7.1: Properties of w Cen, 47 Tuc, and M15.

Globular Cluster  dg R, C log T, € 10} PA i Nios Npm
1) () 3) 4) G 6 O G O qo a1
w Cen 52 14220 131 960 021 017 6 12 50 1868 2740
47 Tuc 45 2160 207 784 016 0.09 123 136 45 2476 12974
M15 104 840 229 784 019 0.05 215 106 60 1777 703

Notes. For each cluster we list: (1) the distance from the Sun dg in kpc; (2) the core radius R in ”; (3) the concentration parameter C; (4) the
logarithm of the core relaxation time log 7 in years; the ellipticity e = 1 — b/a, as reported by (5) CC10 and (6) WS87; (7) the position angle of the
photometric minor axis ¢ measured in degrees (from North to East); (8) the position angle of the kinematic rotation axis PA on the plane of the sky
measured in degrees (from North to East); (9) the inclination 7 of the rotation axis with respect to the line-of-sight measured in degrees; the number

of data points for the samples of (10) line-of-sight velocities Nyos and (11) proper motions Npm.

References. From Col. (1) to Col. (4) Harrid (2010); Col. (5) CC10; Cols. (6) and (7) WS87; Col. (9) van.de Ven et all (200€), lAnderson & King (2003),
van den Bosch et all (2006) (from top to bottom, that is, for w Cen, 47 Tuc, and M15, respectively); Cols. (8), (10), and (11) the present work.
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sate for the missed solid body component under the assumption of axisymmetry, by
combining line-of-sight velocities and proper motions. We apply the related correction
to the w Cen data. For 47 Tuc and M15, given the fact that the data sets are centrally con-
centrated, we argue that, in the very central regions of the clusters, the amount of solid
body rotation associated with this effect is negligible and therefore we do not apply any
correction (see lvan_den Bosch et all 2006, who first noted that the result of the correc-
tion for M15 is below the measurement errors and therefore can be ignored). Therefore,
for the last two clusters no sign of rotation in the plane of the sky is expected from the
proper motions data sets considered above; however, for 47 Tuc rotation in the plane of
the sky has been clearly detected by lAnderson & King (2003).

Finally, an additional correction is applied to the w Cen and 47 Tuc data, to correct for
the apparent rotation resulting from their large angular extent and their global orbital
motion in the Galaxy; to this purpose, we followed closely the procedure described by
van de Ven et all (2006).

Coordinate systems

A common coordinate system for the line-of-sight velocities and proper motions data
sets must be defined. This is identified by the Cartesian coordinate system (X,Y), the
origin of which corresponds to the center of the cluster, with X in the West direction and
Y in the North direction. Given the position of every star in equatorial coordinates («,d),
the corresponding Cartesian coordinates can be expressed as (seelvan de Ven et all 2006)

X = —rgcosdsin A 7.1)
Y = 70(sin d cos §p — cos d sin dg cos Aay), ’
where Ao = a — ap and (v, do) is the position of the center of the cluster. The scaling
factor vy = 10800/ 7 gives the coordinates in arcminutes.

An additional change of coordinates is needed to align the vertical and the horizontal
axes with the observed minor and major axes of the cluster. This is done by rotating (X,Y)
over the position angle (PA) of the minor axis, which is defined as the angle between the
minor axis and the North direction (measured from North to East); the procedure used
to measure this position angle is described in Subsect. The new coordinate system
in the plane of the sky is defined by (), y,), with z,, and ¥, aligned with the major and
minor axes, respectively. The z, axis identifies the line-of-sight direction.

Finally, in the following analysis we will refer to proper motions as decomposed in a

polar coordinate system (R, ©), with the projected radius R = | /22 + y2 and © defining

the angle between R and x,,. The relation between proper motions in polar coordinates
(iR, pt) and proper motions in Cartesian coordinates (fi.,, i1y, ) is given by

KR = [z, COS O + p1, sin ©

Mt = — g, c0s O + p,, sin ©. (7:2)

Stars as kinematic tracers

In the dynamical analysis we will assume that the stars are fair kinematic tracers of the
true underlying stellar mass population of the system. Because our dynamical mod-
els are one-component models, they assume that the underlying stellar population is
homogeneous. In reality, the presence of multiple stellar populations and mass segrega-
tion would induce different spatial distributions and kinematics for masses of different
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types. Indeed, |Anderson & van der Mare] (2010) noted that in their sample of proper
motions referred to the central region of w Cen, stars with lower masses tend to have
higher velocity dispersion, although not as high as complete equipartition would predict
(o oc m~1/2); therefore, this problem should be discussed in further detail. Even though
a deeper analysis would bring us beyond the goals of the present study, we would like
to mention at least that some caution will be required in the final interpretation of our
results from the adopted kinematic data sets. In fact, in our study we will carry out a
dynamical analysis using both line-of-sight velocities and proper motions: usually stars
for which we have proper motions (measured with HST) are less massive than stars for
which we have line-of-sight measurements; the latter are relatively bright stars from the
giant or subgiant branch, whereas the former are main sequence stars.

7.2.2 Kinematic profiles

The present dynamical study is based on a combined analysis of the following kine-
matic profiles: (1) three rotation profiles, (2) three velocity dispersion profiles, and (3)
the pressure anisotropy profile. The general procedure adopted to construct the kine-
matic profiles is the traditional binning approach, that is, the data are divided in bins
containing an equal number of stars. In particular, radial bins are used to construct the
velocity dispersions and anisotropy profiles, whereas the line-of-sight rotation profile is
constructed by taking into consideration exclusively the data along the observed major
axis. As in Chapter 8, we chose a binning criterion that represents the best compromise
between having a rich radial sampling and accurate data points.

To calculate the mean velocity and the velocity dispersion, with the associated errors,
a Maximum Likelihood technique is applied to the data, following the method described
by Pryor & Meylan (1993). The details of the procedure used to obtain the different
profiles are given below.

Rotation profiles

The first step in building a rotation profile consists in identifying the position angle (PA)
of the projected rotation axis in the plane of the sky. To identify the PA the following
standard procedure is used (e.g., see Cote et all[1995; Bellazzini et all 2012): the line-of-
sight velocities data set is divided in two halves by a line passing through the center
with a given PA and for each subsample the mean line-of-sight velocity is computed;
the PA is varied in steps of 10° and the difference between the mean velocities AV is
plotted against PA. The resulting pattern is fitted with a sine function (see Fig. [Z1): the
PA at which the maximum difference in mean velocities is reached corresponds to the
rotation axis and the amplitude of the sine function gives an estimate of the significance
of the internal rotation. The values obtained for the PA are used to rotate the Cartesian
coordinate system in the plane of the sky by aligning x,, and y,, with the major and minor
axes, respectively (Subsect.[ZZT)). The results are listed in Tab.[ZIland compared to the
position angles of the photometric minor axes ¢ reported by WS87.

The position angles of the kinematic minor axes of w Cen and 47 Tuc are in good
agreement with the photometric ones, suggesting a direct connection between the pres-
ence of internal rotation and observed flattening. A discrepancy is found instead for
M15: for this cluster the small observed flattening (¢ ~ 0.05) makes the identification of
the minor axis nontrivial. Various estimates of the photometric position angle are given
in the literature, ranging from 215° to 135°, suggesting a possible twisting of the position
angle of both the photometric and kinematic minor axes (Gebhardt et all2000; van den
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Figure 7.1: Difference of the mean velocities calculated on each side of the system divided by a
line passing through the center with a given position angle PA. The PA at which the maximum
difference is reached corresponds to the position of the rotation axis. The best-fit sine function in
plotted (solid line) and the corresponding PA and amplitude A are indicated.
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Bosch et al. 2006).

Table 7.2: Internal rotation: position angle of the rotation axis and rotation amplitude referred to
disks of different radii.

w Cen 47 Tuc
Riax A PA N Riax A PA N
1) 2 B @ 1) @ 6 @
all 6.79 12 1868 all 4.00 136 2476
10 R, 691 12 1827 S0R., 411 136 2414
8 R, 7.09 10 1737 40R. 441 137 2058
6 R, 7.73 7 1481 20R. 4.53 136 1358
4R, 758 11 1026 10R. 3.32 139 800
2R, 695 22 398 5R,. 224 164 526
1R, 397 57 91 2R, 2.64 180 388
09R., 125 -4 73 1R, 407 199 114
0.7R. 198 23 42 0.8R. 4.05 171 78
0.6R. 7.04 10 27 0.7R. 599 167 61
0.5R. 1393 -8 19 0.6 R. 4.78 206 39
M15

Roax A PA N
1) @ & 4
all 284 106 1777
30R. 289 106 1671
10R., 293 102 1467
8R., 300 99 1293
5R. 194 118 0916
4R, 143 140 724
2R, 214 147 319
1R, 119 253 128
0.6R. 468 272 65
0.5R. 695 253 52
04R., 13.00 261 31

Notes. For each cluster we report the value of the position angle of the rotation axis PA measured
in degrees from North to East [Col. (3)] and the rotation amplitude A in km s™* [Col. (2)] obtained
from a fit of a sine function of N data [Col. (4)] inside Rmax [Col. (1)]. For each cluster, the first
row corresponds to the results illustrated in Fig. 1.

We also checked whether a radial variation of the position angle and of the rotation
amplitude is present in our line-of-sight data sets. To do so, we repeated the procedure
outlined above on subsamples of data with R < Ryax, for decreasing values of Ryax.
Table [Z2lists the position angles and rotation amplitudes for given values of Ryax. To
assess whether the number of data available for the different cases is sufficiently large
to reach a significant measure of the position angles and of the rotation amplitudes, we
tested the method used on simulated data drawn from a rotating model of the family
introduced in Sect.[ZTl We find that the estimates of the position angles obtained from
samples of data with N < 100 have a typical uncertainty (associated with a 68% confi-
dence level) greater than £25°. We conclude that no significant PA variation is present
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in 47 Tuc and w Cen, whereas for M15 a twisting is detected from 260° in the innermost
region (on the scale of the core radius) to 106° in the outer parts (thus confirming the
result found by (Gebhardt et all2000).

Moreover, we found that the rotation amplitude A changes across the clusters. In
general, it reaches a maximum at intermediate values of Ry.x. This can be taken as
an indication of differential rotation (as illustrated by the shape of the rotation profiles,
see Figs. [Z7 and [ZTT). Interestingly, all three clusters show a sharp increase of
the rotation amplitude in the very central regions. This feature may be interpreted as a
signature of a complex rotation pattern, characterized by spinning cores, as reported by
van de Ven et all (2006) and lvan den Bosch et all (2006), for a disk-like rotating component
in w Cen and a decoupled rotating core in M15. The last rows in Tab. [Z2 show that w
Cen reaches an amplitude of A = 13.93km s™! for R < 0.5 R., 47 Tuc A = 4.78 km s~!
for R < 0.6 R, and M15 A = 13.00 km s~! for R < 0.4 R,.. The probability of measuring
so high rotation amplitudes by chance when no rotation is present is 7%, 32%, and < 1%
for w Cen, 47 Tuc, and M15, respectively. We conclude that the central increase measured
in 47 Tuc is not statistically significant, whereas it can be taken as a sign of genuine high
rotation in the central regions of M15; this interpretation marginally applies also to the
case of w Cen.

After identifying the rotation axis, we can now proceed to build the rotation pro-
files. First we subtract from each data set the measured mean systemic velocity; then
we divide the line-of-sight velocities data set in bins along the major axis x,; each bin is
assigned an z; position calculated as the mean of the z positions of the stars in the bin.
Finally, the mean velocity in every bin is computed. In the case of the proper motion
data set, the rotation profile is constructed by dividing the data set in radial bins and by
computing for each of them the mean radial distance and the mean velocity, separately
for the tangential and projected radial components. We then end up with three rotation
profiles, one for the line-of-sight, Vies(xp), and two for the proper motions, V;(R) and
VR(R).

Velocity dispersion and anisotropy profiles

The velocity dispersion profiles are computed by dividing the data sets in radial bins; by
considering the mean velocity of the entire data set as a constant value throughout the
cluster, we calculate the velocity dispersion for each bin with the associated uncertainty.
The profiles obtained are o1,5(R), 0¢(R), and or(R), respectively for the line-of-sight
velocities, tangential component and projected radial component of proper motions.

From the dispersion profiles of the proper motions we also calculate the anisotropy
profile: this is defined here as the ratio of the velocity dispersion in the tangential com-
ponent to the velocity dispersion in the radial component, o¢(R)/or(R). Values of
o¢/or = 1indicate isotropy in velocity space, o¢/or > 1 indicate the presence of tangen-
tial anisotropy, and o /or < 1 radial anisotropy.

7.2.3 Photometric profiles

The photometric quantities that we will use in the dynamical analysis are the surface
brightness profile and the ellipticity profile. Below we briefly describe the data sets
available for the construction of these profiles.
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Surface brightness profiles

The surface brightness profiles are taken from [Trager et all (1995) and they are treated
as in Chapter 8; they are V-band surface-brightness profiles, built by dividing the data
in circular annuli, so that the surface brightness my (R), measured in mag arcsec” 2, is
reported as a function of projected radius.

Since the central regions correspond to the least reliable parts of the profiles of Trager
et al. (1995), a combination of different data sets is needed. The more accurate data
available from INoyvola & Gebhard{ (2006) are used for 47 Tuc and M15. For 47 Tuc the
data from the two sources are simply co-added; for M15 the two data sets are combined
by removing the points from [Trager et all (1995) that do not agree with the profile by
Novola & Gebhardi (2006). In the case of w Cen the inner points from [Noyola et al!
(2008) are added to the(Trager et all (1995) surface-brightness profile.

Ellipticity

From the morphological point of view, globular clusters present only small deviations
from spherical symmetry. Yet, there is observational evidence of flattening, as measured
by the ellipticity parameter, defined as ¢ = 1—b,/a,, where b, /a, is the ratio of the minor
to major axis of the projected image of a cluster in the plane of the sky. For a long time,
the WS87 database represented the only comprehensive collection of ellipticity measure-
ments for the Galactic globular clusters; recently, an alternative homogeneous database
of ellipticities has been published by CC10. The two distributions of values show signif-
icant differences: in fact, from the WS87 database (93 objects), Galactic clusters appear to
be predominantly round, with the peak of the distribution at € ~ 0.05, maximum value
of the entire sample given by ¢ ~ 0.3, and axial ratios randomly oriented in space. In
contrast, the distribution of the CC10 ellipticities (116 objects, 82 in common with the
other database) is peaked at € ~ 0.15, with the majority of values falling in the range
[0.05,0.25], and maximum value ¢ ~ 0.45. In addition, especially for the clusters in the
region of the Galactic bulge, their major axes preferentially point toward the Galactic
center.

In the present study we will use the ellipticity profile of w Cen taken from|Geyer et al
(1983). It is the most extended ellipticity profile available for a Galactic globular cluster,
as it reaches ~ 0.5 ;. In addition, IAnderson & van der Marel (2010) report the ellipticity
profile of the central region (R < 250 arcsec); in the following analysis both data sets
will be taken into consideration. For 47 Tuc and M15 we will use the profiles constructed
by eye-inspection of Fig. 5 in WS87. They reach ~ 0.27, and ~ 0.4 7, respectively.
We note that a genuine radial variation is present in the three ellipticity profiles. This is
particularly evident for w Cen, which exhibits a nonmonotonic behavior.

7.3 Model identification and predictions

In principle, the comparison between the differentially rotating models introduced in
Chapter 4 and the observations could be carried out by means of a standard fitting proce-
dure, leading to the best-fit models for the clusters. In addition to the four dimensionless
parameters (actually three, because we decided to set ¢ = 1; see Sect. 1) that character-
ize the internal structure of our family of axisymmetric models, the final model to be
used for a given cluster requires the specification of five additional quantities: two phys-
ical scales (e.g., the radial scale ry and the velocity scale vg); the mass-to-light ratio (to
convert density profiles into surface-brightness profiles); the inclination angle i between
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the rotation axis and the line-of-sight direction; the distance to the cluster (required to
convert the proper motions in km s~!). A parameter space with such a high number of
dimensions might lead to a high degree of degeneracy. Therefore, we decided to take
a different approach that points directly to the main physical ingredient that we are in-
terested in: the presence of internal rotation. We thus separate the procedure to identify
a reasonable model for a cluster in three parts. First, we determine the dimensionless
parameters by following few natural selection criteria based on the observed kinemat-
ics, then we proceed to set the physical scales by means of a few standard statistical fits,
and finally we check some properties of the models as predictions in relation to other
observational data not used in the first two steps.

7.3.1 Dimensionless parameters

From Subsection [ZZ7it is clear that the globular clusters under consideration are char-
acterized by significant global internal rotation. Therefore, we start from the observed
rotation properties to identify the natural ranges of the three dimensionless parameters
that characterize our family of differentially rotating models. In particular, the param-
eters should lead to configurations that successfully reproduce the following observa-
tions: (1) the observed value of V2! /o, that is, the ratio of the peak of the rotation
velocity profile to the central velocity dispersion for the line-of-sight kinematic data; (2)
the observed shape of the rotation profile along the line-of-sight, in particular the posi-
tion R:%Y of the rotation peak (relative to the cluster half-light radius); (3) the qualitative
behavior of the anisotropy profile (when available), defined as the ratio between the
tangential and the radial component of the velocity dispersion tensor projected in the
plane of the sky, in particular the radial position R, (relative to the half-light radius)
of the transition from radial anisotropy to tangential anisotropy. The relevant observa-
tional quantities to be matched by application of the above selection criteria are listed in

Tab.

Table 7.3: Kinematic observables used to identify the dimensionless parameters of a model.

GC o0 Vigx Vaa/oo R Ra

(1) 2) ®) @ O
wCen 1731 580 034 17 345
47Tuc 1306 326 025 18

M15 1293 =~ 3.00 0.23 ~ 1.3

Notes. For each cluster we report in Col. (1) the observed central line-of-sight velocity dispersion
ao in km s, in Col. (2) the maximum of the line-of-sight rotation profile V%, in km s™!, in
Col. (3) the ratio V1o /o0, in Col. (4) the position of the maximum of the rotation profile Riot,
expressed in units of the half-light radius Ry, in Col. (5) the position R. of the transition between
the regime of radial anisotropy and tangential anisotropy in units of the half-light radius Ry. The
last three columns guide our choice of the three dimensionless parameters that characterize the
internal structure of the models.

Given a set of parameters (¥, x, b), the models are projected on the plane of the sky
by assuming a known inclination angle i, as reported in Tab. [ZIl The projection is
performed by sampling from the relevant distribution function a discrete set of N =
2048 000 particles and then by performing a rotation of such discrete system to match

the relevant inclination angle. The theoretical kinematic and photometric profiled] are

I The profiles thus constructed are discrete profiles, which are then interpolated to obtain continuous pro-
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then constructed by following the procedures described in Subsections and
The central dispersion o, the maximum of the rotation profile V%!, and its position
Rt are calculated in view of the above-mentioned selection criteria. As to the morpho-
logical aspects, the projected isodensity contours are calculated based on the projected
number density distribution, calculated on an equally spaced Cartesian grid defined on
the plane of the sky, and then normalized to the central value (calculated as the average
of the four central Cartesian cells). The relevant ellipticity profiles are then constructed
by considering the ratio of the principal axes of approximately one hundred isodensity
contours, corresponding to selected values of the normalized projected number density
in the range [0.9, 1073]; smooth profiles are then obtained by performing an average on
subsets made of ten to twenty individual ellipticity values (depending on the concentra-
tion of the configuration).

The dimensionless parameters are varied until the kinematic selection criteria are
reasonably met. The exploration of the complete 3D dimensionless parameter space is
guided by the following general properties of the models: (1) large values of the con-
centration parameter ¥ determine spatially extended configurations, in terms of the rel-
evant units of length (see Chapter 4 for details); (2) configurations characterized by a
given value of concentration and increasing values of the rotation strength parameter x
are progressively more compact because of the adopted truncation prescription in phase
space, which sets the spatial extent of the models; (3) the parameters b determines the
shape of the line-of-sight rotation profile (in particular, it regulates the radial position of
the velocity peak).

7.3.2 Physical scales

Once a set of dimensionless parameters is identified, we proceed to determine the rel-
evant physical scales. This is done by fitting the models to the observed profiles, that
is, by minimizing a chi-squared. Two fits are performed. With the photometric fit to
the surface brightness profile we determine two scales: the central surface brightness
and the radial scale ro [the scale 7 is the standard length scale of King models]. The
velocity scale vy is determined by means of the kinematic fit, which is performed by
minimizing a combined chi-squared defined as the sum of the contributions from the
line-of-sight rotation profile and velocity dispersion profile. Finally, the mass-to-light
ratio is directly connected to the central surface brightness by the following relation
M/L = 3(0)10#0/25, where 3(0) denotes the central surface density expressed in the
relevant units. The details of the fitting procedure are given in Appendix B of Zocchi
etal. 2012).

7.3.3 Distance measurement

Part of the kinematic information associated with the proper motions is used to make
a dynamical measurement of the distance to the cluster. The relation between proper

motions ;1 measured in mas yr~! and proper motions v expressed in km s~ is

v B d I
{km/s] =4 [kpc} [mas/yr} ’ (7.3)

where d is the distance from the observer to the globular cluster. Therefore, with all the
dimensionless parameters and physical scales fixed from the previous analysis, a best-fit

files. The statistical scatter associated with the use of discrete model-points is well under control, given the
high number of sampling particles considered.
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distance d (hereafter referred to as dynamical distance) is obtained by a combined fit to
the observed tangential o, and radial o velocity dispersion profiles (i.e., by minimiz-
ing a combined chi-squared defined as the sum of the contributions of the two velocity
dispersion profiles in the plane of the sky).

7.3.4 Predicted profiles

At this stage for a given cluster the model and the relevant scales have all been deter-
mined. A number of other observable quantities are then predicted and the predictions
can be checked on the available observations. In particular, we wish to include in this
category the following quantities: the anisotropy profile o /or, the proper motion ro-
tation profiles V; and Vg, the ellipticity profile ¢, and the 2D structure of the isodensity
contours.

7.4 General results

Before providing In the following sections a detailed description of the results for each
individual cluster, we summarize here the main properties of the models that have been
identified. The values of the dimensionless parameters, the physical scales, and the best-
fit dynamical distance for the selected models are listed in Tab.[Z3 In Tab.[Z&we report
the derived structural properties of the clusters.

The procedure outlined in the previous section allows us to identify the self-consistent
models that we propose to interpret the observed structure and kinematics of w Cen, 47
Tuc, and M15. We recall that the procedure starts from a preliminary inspection of the
general properties of part of the kinematical data (in particular, the shape of the line-
of-sight rotation and velocity dispersion profiles; to identify the three dimensionless pa-
rameters that determine the internal structure of the model) that is then followed by a
standard statistical analysis to find the relevant physical scales. This approach, which
emphasizes the importance of the kinematical data, in particular of those that give evi-
dence for internal rotation, leads quickly and naturally to the identification of a global
self-consistent dynamical model. In contrast, the more traditional approach is generally
based on a best-fit procedure, frequently carried out, in practice, only in relation to the
available photometric profiles (see [(Trager et all[1995 and MclLaughlin & van der Mare]
2005), without the corresponding tests on the associated kinematical profiles that are
implied by the use of self-consistent models.

The profiles that contribute to the determination of the physical scales of the models
are the line-of-sight rotation profile, the line-of-sight velocity dispersion profile, and the
surface brightness profile. The quality of the results is summarized in Figs.[Z2 [Z7 and
[ZT1 for w Cen, 47 Tuc, and M15, respectively. The solid lines are the model profiles, the
open circles are the observation data points. For the kinematic profiles the data points are
associated with a horizontal bar, representing the size of the radial bin, and a vertical bar,
indicating the errors associated with the measurements. Quantitative information about
the quality of the fits for the determination of the physical scales is given in Tab. [Z4
where the reduced chi-squared, the corresponding two-sided 90% confidence interval
(CI), and the number of degrees of freedom are listed. In each case, the value of the
photometric chi-squared X7 is larger than the value of the kinematic chi-squared X7.
This is due to the fact that the kinematic profiles are characterized by a large number
of points with larger error bars. Note that the value of the reduced chi-squared of the
kinematic fits of M15 is inside the corresponding 90% CL.
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Table 7.4: Quality of the fits.

Photometric fit Kinematic fit Distance fit
Globular Cluster e X2 Xar X e Xp Xar X Nd X3 Xiaf  Xeup
H @ B @ G 6 &) ¥ 9) (10) (@11) (12)
w Cen 70 473 074 1.29 39 175 0.66 1.40 53 143 070 1.34
47 Tuc 229 555 0.85 1.16 39 4.00 0.66 1.40 39 135 0.66 1.40
M15 308 5.11 0.87 1.14 31 1.08 0.62 1.45 7 041 031 201

Notes. For each cluster, separately for the photometric, kinematic, and distance fits, we provide the number of degrees of freedom [Cols. (1), (5), and
(9)], the reduced best-fit chi-squared [Cols. (2), (6), and (10)], and the lower [Cols. (3), (7), and (11)] and upper [Cols. (4), (8), and (12)] boundaries of
the two-sided 90% confidence level interval for the reduced x?-distribution with n degrees of freedom.



Table 7.5: Dimensionless parameters and physical scales of the best-fit models.

Dimensionless parameters Physical scales Dynamical distance
Globular cluster v X b c 1o 0 Vo d
) &) SO ©) (6) @) ®)
w Cen 58 144x107° 0.040 1 16.43+£0.05 134.54+1.13 15.87+£0.27 4.25+0.08
47 Tuc 76 1.6x10"3 0.008 1 14.30 £ 0.08 24.41+0.14 13.35£0.21 4.15+0.07
M15 6.8 1.6x107% 0.035 1 14.65+£0.01 13.33+£0.20 12.52+0.24 10.52 £ 0.38

Notes. For each cluster we list: the concentration parameter ¥ in Col. (1), the rotation strength parameter x in Col. (2), the b parameter of the rotating
models in Col. (3), the V-band central surface brightness 110 in mag arcsec™2 in Col. (4), the radial scale 7 in arcsec in Col. (5), the velocity scale vg
in km s~! in Col. (6), and the best-fit dynamical distance d in kpc in Col. (8). Note that r¢ is an intrinsic quantity; it is recorded here in arcseconds,
for easier comparison with the observations,

4938110 AV]NQOLS 213V]YD) UL UOLIPI0L [DULIIUL JO SAUNFVUSLS [VU01IVAISGO)

LST
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Table 7.6: Derived parameters.
GC C R, Ry Ttr M M/L 00
1) () 3) 4) (©) (6) ()
wCen 127 127.76 28253 240029 2020 277 3.737
47 Tuc 1.87 2455 162.81 1814.88 6.23 1.69 4.752
M15 1.94 12.85 4372 111892 4.55 1.45 5.090

Notes. For each cluster we provide the structural parameters derived for the best-fit models: (1)
the concentration parameter C' = log(r:/Rc), (2) the projected core radius R. in arcsec, (3) the
projected half-mass radius Ry, in arcsec, (4) the truncation radius 7, in arcsec, (5) the total mass of
the cluster M in units of 10° My, (6) the V-band mass-to-light ratio in solar units, (7) the logarithm

of the central density mass po in units of Mg pc>.

7.5 w Cen

The globular cluster w Cen is the cluster for which the most complete photometric and
kinematic data are available. In particular, the kinematic profiles along the line-of-sight
and on the plane of the sky extend out to ~ 0.5r,; therefore, a thorough comparison
between models and observations can be carried out.

7.5.1 Photometry and kinematics

In general, the selected model is in satisfactory agreement with the surface brightness
profile and the line-of-sight kinematic profiles, as shown in Fig. For the photomet-
ric profile, the model reproduces well the central regions and the intermediate parts,
but it underestimates the last two data points. For the line-of-sight kinematic profiles,
the model is able to reproduce simultaneously the shape of the rotation profile and the
shape of the dispersion profile reasonably well, with one important failure: the central
values (inside ~ 200 arc sec) of the line-of-sight velocity dispersion are severely under-
estimated by our model. It is interesting to note that any quasi-Maxwellian dynamical
model applied to w Cen is unable to reproduce the cuspy behavior observed in the cen-
tral regions (e.g., see the application of spherical King models and of spherical Wilson
models presented by MclLaughlin & van der Marel 2005 in their Fig. 11; see also the fit
by means of the rotating [Wilson 1975 model performed by [Sollima et all 2009). In this
respect, radially-biased anisotropic models appear to perform better (in particular, see
the application of the f(*) models discussed in Chapter 8, with reference to Fig. 8.3). On
the one hand, this feature has sometimes been considered as evidence for the presence of
a central IMBH. On the other hand, the same feature may indicate that w Cen, because of
its relatively high relaxation times (see Tab. 1), is only partially relaxed and characterized
by a higher degree of radial anisotropy with respect to the case of more relaxed stellar
systems, as also suggested by Fig. Curiously, even though [see Subsection [ZZ7] the
line-of-sight data indicate high rotation in the very central regions (R < 0.5R.), which is
naturally interpreted as the signature of a complex rotating central structure, this does
not appear to affect the quality of our results on the rotation profile; in fact, the selected
model reproduces the central part of the line-of-sight rotation curve surprisingly well
(see Fig. 2).

In addition, the model thus identified by our procedure is associated with specific
proper motions dispersion profiles, and these can be scaled to the data, as shown in
Fig. to determine the dynamical distance d. Therefore, the model is actually able
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Figure 7.2: Surface brightness profile, line-of-sight velocity dispersion profile, and line-of-sight
rotation profile (measured along the projected major axis; for the definition of the x, coordinate
and the way the data are binned, see Sect. 2) for w Cen. Solid lines represent the model profiles
and open circles the observational data points. Vertical bars represent the measured errors and
horizontal bars indicate the size of the bins. These fits have determined the three physical scales
of the model (uo, 70, v0) (see Table[Z5).

to reproduce reasonably well all three components of the projected velocity dispersion
tensor. Interestingly, the shape of the anisotropy profile built from the proper motion dis-
persions is consistent with the general properties of the selected model, which is char-
acterized by isotropy in the central region, weak radial anisotropy in the intermediate
region and tangential anisotropy in the outer parts. The transition between the region
characterized by radial anisotropy to the region characterized by tangential anisotropy
takes place at R ~ 1200 arcsec. The data indeed show signs of radial anisotropy in the
intermediate region and of tangential anisotropy outside 12 ~ 1000 arcsec. The existence
of tangential anisotropy found in the present study is consistent with the results of pre-
vious investigations, namely [van de Ven et all (2006) and lvan_der Marel & Anderson
(2010) (see their Fig. 6). We wish to emphasize that such behavior of the anisotropy
profile in the outer parts of the equilibrium configuration is a natural property of the
family of models at the basis of the present work; in particular, the general shape of
the anisotropy profile is determined by the values of the three relevant dimensionless
parameters mentioned in Sect. 1.

Finally, we can also compare the rotation on the plane of the sky predicted by the
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Figure 7.3: The top panels illustrate the fit to the proper motion dispersion profiles along the
projected tangential and radial directions; this fit has determined the dynamical distance d. The
bottom panel shows the predicted anisotropy profile against the available data. Solid lines repre-
sent the model profiles and open circles the observational data points. Vertical bars indicate the
measured errors and horizontal bars indicate the size of the bins.

model with the observed mean-velocity profiles along the tangential and radial direc-
tions. Figure [Z4shows that the rotation profile V;(R) is well reproduced by the model,
confirming the presence of differential rotation. In the radial direction the model pre-
dicts an overall flat shape with vanishing velocity; in the external regions (R > 1000 arc-
sec), the observed proper motion mean-velocity in the radial direction reaches a value
of Vg &~ 5 km s™!, indicating the presence of a systematic expansion. This feature was
noticed also by [van Ieeuwen et all (2000), who ascribed it to systematic errors in the
measurement procedures. At this point, we should also mention that, as already dis-
cussed in Sect. [ZZ7] the procedure used to measure the proper motions removes any
sign of solid-body rotation in the plane of the sky; therefore a correction to recover the
solid-body mean velocity component has been applied to the data, following (van de
Ven et al. 2006). This fact introduces some uncertainties in the final profiles and might
account for some of the discrepancies between the model and the observed proper mo-
tion mean-velocity profiles.

In conclusion, aside from the inner cusp problem, the generally good agreement be-
tween model and proper motion mean-velocity and velocity dispersion profiles is quite
remarkable, because the model was selected only to match the velocity-to-dispersion ra-
tio along the line-of-sight V1%¢ /0, the location of the peak in the rotation profile along

the line-of-sight Rt , and the location of the transition from radial to tangential ani-
sotropy in the plane of the sky.
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Figure 7.4: Predicted proper motion mean-velocity profiles along the tangential and radial direc-
tions for w Cen. Solid lines represent the model profiles and open circles the observational data
points. Vertical bars indicate the measured errors and horizontal bars the size of the bins. Note
that the data give a hint of a possible overall expansion, which is obviously not present in the
model.

7.5.2 Dynamical distance

The rescaling of the model profiles to match the observed proper motion dispersion pro-
files allows us to derive an estimate for the distance of the cluster (see Sect.[Z33). The
dynamical distance thus obtained for w Cen is d = 4.25 4= 0.08 kpc. This value is signif-
icantly smaller than the distance estimated with photometric methods (e.g., d = 5.2 kpc
from [Harrid 2010) and also smaller than other estimates obtained by means of the appli-
cation of other dynamical models (d = 4.70 & 0.06 kpc from lvan der Marel & Anderson
2010; d = 4.8 = 0.3 kpc fromvan de Ven et all 2006).

As also noted by lvan_de Ven et all (2006), a low value of the distance is expected
when either the line-of-sight velocity dispersion is underestimated or the proper motion
dispersion is overestimated. In our case, it is clear from the previous Section and from
Fig. that our dynamical model underestimates the central value of the line-of-sight
velocity dispersion. Therefore, our distance estimate is affected by the corresponding
systematic error. The dynamical distances obtained byvan der Marel & Anderson (2010)
and van de Ven et all (2006) are based on a Jeans model and on an orbit-based model,
respectively; previous studies based on the application of quasi-Maxwellian dynamical
models, such as spherical King or spherical Wilson models, do not report distance esti-
mates for this object.

7.5.3 Deviations from spherical symmetry

The selected axisymmetric model is associated with a well defined ellipticity profile,
which is the morphological counterpart to the presence of rotation. The comparison with
the corresponding observed profile is illustrated in Fig.[Z5} the open circles represent the
profile from |Anderson & van der Marel (2010), the black dots represent the profile from
Geyer et all (1983), and the solid line the profile derived from our model. The two profiles
are discrepant in the central regions: in (Geyer et all (1983) the ellipticity profile starts
from a value of € ~ 0.05 at R =~ 80 arcsec and rapidly increases to ¢ =~ 0.16 at R ~ 500,
whereas the ellipticity profile from |Anderson & van der Mare] (2010) shows an almost
constant ellipticity ¢ ~ 0.12 inside R < 250 arcsec region, with significant scatter at R <
100 arcsec. For completeness, in Fig. [Z8 we present the projected isodensity contours
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Figure 7.5: Ellipticity profile for w Cen. The solid line represents the predicted profile derived from
our rotating axisymmetric model, the open circles mark the observed ellipticities from Anderson
& van der Marel (201(), and the black dots are the observed ellipticities from [Geyer et all (1983).
Dotted and dashed lines mark the average values reported by WS87 and CC10, respectively.
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Figure 7.6: Predicted projected isodensity contours of the model for w Cen. The contours are calcu-
lated in the first quadrant of the plane of the sky and correspond to selected values of the projected
number density (normalized to the central value) in the range [0.9, 10~ 2]. The area represented in
the figure covers a square of side length approximately equal to 2Ry,.
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Figure 7.7: Surface brightness profile, line-of-sight velocity dispersion profile, and line-of-sight
rotation profile for 47 Tuc. Solid lines represents the model profiles, open circles the observational
data. Vertical bars indicate the measured errors, horizontal bars indicate the size of the bins.

predicted by our model, which clearly shows deviations from spherical symmetry.

Therefore, the model ellipticity profile is characterized by a general trend similar to
that of the (Geyer et all (1983) measurements, but it predicts the peak of maximum flat-
tening too far out, at about R ~ 1000 arcsec. In turn, our model would not be able to
reproduce the finite central flattening observed by |Anderson & van der Marel (2010), if
confirmed. If we calculate the average ellipticity in the radial range covered by the data,
we find an average flattening in reasonable agreement with the observed average flatten-
ing. In other words, we are led to conclude that the observed deviations from spheric-
ity are likely to be originated by the presence of internal rotation. In our opinion, the
discrepancy between predicted and observed morphology only confirms the complex
nature of w Cen, and, in particular, the conditions of partial relaxation of the cluster. In
this respect, we expect that our models of quasi-relaxed stellar systems should perform
better for globular clusters (such as 47 Tuc and M15) characterized by shorter relaxation
times.
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7.6 47 Tuc

For the globular cluster 47 Tuc the line-of-sight kinematical data cover the full radial
extent of the cluster, out to approximately the truncation radius. In turn, the proper
motion data are limited to a disk of radius 4R..

7.6.1 Photometry and kinematics

As illustrated in Fig.[Z7 the surface brightness profile and the line-of-sight rotation and
velocity dispersion profiles are well reproduced by the selected model. In particular,
the rotation profile is well matched throughout the extension of the cluster, showing
clearly the position of the maximum rotation velocity, the characteristic rigid rotation
behavior in the central region, and the relatively sharp decrease in the outer parts. The
observed line-of-sight velocity dispersion profile is characterized by one data-point at
R 2 30 arcmin deviating from the model profile. This outer rise in the velocity dispersion
has been also been noted by [Lane et all (2010a). A corresponding discrepancy is found
also for the surface-brightness profile, at approximately the same radial position (the
last four photometric data-points). These two features may be interpreted in terms of
the population of “potential escapers” resulting from the tidal interaction between the
cluster and the host Galaxy (see[Kiipper et all20104; Lane et al|[2012).

As to the proper motions data, the relevant profiles, although limited to the central
region, show a satisfactory general agreement with the model predictions (see Fig. [Z8).
In the intermediate regions (50 < R < 1000 arcsec) the model predicts weak radial ani-
sotropy and tangential anisotropy in the outer parts. It would be interesting to acquire
more spatially extended proper motion measurements to confirm this prediction [in line
with the results obtained for the anisotropy profile of w Cen (see Fig.[Z3)].

Rotation in the plane of the sky is not available from the proper motions data set
Mclaughlin et all (2006). However, as noted in Sect. 2, proper motion rotation has been
measured by |Anderson & King (2003), by using the Hubble Space Telescope and by
considering background stars of the Small Magellanic Cloud as an absolute reference
frame. The observed rotation corresponds to a velocity of 4.97 + 1.17 km s~ (based
on the assumed distance of 4.5 kpc) at a projected radius of 5.7 arcmin (corresponding
approximately to the position of the rotation peak). Within the uncertainties, this is well
consistent with our model, which predicts a value of 4.13 km s~ at 5.7 arcmin.

7.6.2 Dynamical distance

The comparison of the observed proper motion dispersion profiles with the model pre-
dictions allows us to derive an estimate of the distance to the cluster (see Subsection
[Z33). For 47 Tuc the best-fit distance is d = 4.15 £ 0.07 kpc, with associated reduced chi-
squared Y% = 1.35, inside the corresponding 90% CI. This value is consistent with the
dynamical distance reported by MclLaughlin et all (2006) d = 4.02 £ 0.35 kpc, measured
under the simple assumptions of spherical symmetry, velocity dispersion isotropy, and
absence of internal rotation from the same proper motion data set used in the present
work. Our value is lower than the standard value of d = 4.5 kpc reported in the Harris
Catalogue (Harris 201() and lower than other distance estimates obtained by means of
photometric methods, such as main sequence fitting, RR Lyrae, and white-dwarf cooling
sequence fitting (for a recent summary of results, see Table 1 of Woodley et all 2012 or
Bono et all2008).
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Figure 7.8: Proper motions dispersion profiles along the tangential and radial directions (top pan-
els) and anisotropy profile (bottom panel) for 47 Tuc. Solid lines are the model profiles, open
circles represent the observational data. Vertical bars indicate the measured errors, horizontal bars
the size of the bins.

7.6.3 Deviations from spherical symmetry

Figure [Z9shows the ellipticity profile predicted by our model plotted together with the
ellipticity data available for 47 Tuc. Figure [ZI0lillustrates the projected isodensity con-
tours derived from our model. In this cluster, the deviations from spherical symmetry
are naturally explained by the selected model with a surprising degree of accuracy. In
fact, the ellipticity profile derived by our model reproduces the radial variation of the
observed ellipticity over the entire spatial range covered by the data (the flattening of
47 Tuc increases from a value of ¢ ~ 0 to a maximum value of ¢ = 0.12 at R = 450
arcsec). We recall that the ellipticity profile associated with the selected self-consistent
model is a structural property completely determined by the dimensionless parameters
and physical scales identified during the model selection procedure. In this case we can
thus state with confidence that internal rotation is the physical ingredient responsible for
the observed global deviations from spherical symmetry. In this respect, we emphasize
that the relation between the shapes of the rotation profile and the ellipticity profile is
highly nontrivial; in particular, the peak of the rotation profile does not correspond to
a peak in the ellipticity profile (at variance with what is often believed, e.g. Meylan &
Mayor [1986).

7.7 M15

The studies of the globular cluster M15 are largely focused on its the central region. In
fact, the cluster is believed to be in a post-core-collapse phase, it is a candidate host of
an intermediate mass black hole, and mass segregation is thought to play a role in its
dynamics. In particular, the sharp gradient of the central luminosity is thought to be
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Figure 7.9: Ellipticity profile for 47 Tuc. The solid line represents the profile predicted by our
axisymmetric rotating model, the black dots mark the observed ellipticities presented by WS87.
Dotted and dashed lines mark the average values reported by WS87 and CC10, respectively.
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Figure 7.10: Projected isodensity contours predicted by our global self-consistent model of 47 Tuc,
in the same format as in Fig.[Zd
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the result of the dynamical evolution of the cluster (e.g, see Baumgardt et all 2003 and
Murphy et all2011)) or of the presence of a central intermediate mass black hole (e.g., see
Gerssen et all2002). The available kinematic data are limited to the central regions. The
proper motion data set is not as rich, both in terms of quality and quantity, as for the
other two clusters studied in this paper.
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Figure 7.11: Surface brightness profile, line-of-sight velocity dispersion profile, and line-of-sight
rotation profile for M15. Solid lines represent model profiles, open circles are the observational
data. Vertical bars indicate the measured errors, horizontal bars indicate the size of the bins.

7.7.1 Photometry and kinematics

Remarkably, except for the most central region, the selected model offers a good de-
scription of both the line-of-sight kinematic profiles and the surface brightness profile
(see Fig. [ZTT). The line-of-sight velocity dispersion profile is well reproduced by the
model out to the last available bin, located at approximately 0.57,.

As to the line-of-sight rotation profile, a large scatter is present in the central regions,
where the number of data is higher compared to the outer parts. Indeed, the measure-
ment errors on the velocities are high, with an average error of 3.79 km s ! (significantly
higher than the error for w Cen and 47 Tuc, given by 1.98 km s~ ! and 2.29 km s~ !, re-
spectively). Unfortunately, the kinematic data set does not reach the region where the
peak of the rotation curve is expected. More accurate and better distributed line-of-sight
velocity measurements would be required to build a more reliable and complete rotation
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Figure 7.12: Proper motion dispersion profiles along the tangential and radial directions (top pan-
els) and anisotropy profile (bottom panel) for M15. Solid lines represent the model profiles, open
circles are the observational data. Vertical bars indicate the measured errors, horizontal bars indi-
cate the size of the bins. No data points are shown for the anisotropy profile because they are too
concentrated in the central region.

profile. However, it is interesting to note that the rotation profile in the central regions,
characterized by a solid-body behavior, is well accounted for by the model, although the
high rotation detected in the center, sometimes interpreted as a signature of the possi-
ble presence of a decoupled rotating core (see Subsect.[Z27), is basically missed by the
model.

For the proper motions, given the small number of data and the low accuracy of
the measurements, we decided to divided the sample in only 4 bins to avoid excessive
statistical noise; the relevant profiles are illustrated in Fig. Such profiles may be
used to constrain the kinematic behavior of the cluster only in relation to the very central
regions. In turn, the selected model leads to specific predictions about the anisotropy
profile in the intermediate and outer parts of the object, which are expected to first show
weak radial anisotropy and then tangential anisotropy. Unfortunately, for this object no
information about the rotation on the plane of the sky is available in the literature.

7.7.2 Dynamical distance

The dynamical distance obtained from the procedure described in Subsection[Z33yields
a distance of d = 10.52+0.38 kpc, with a reduced ﬁl = 0.41 inside the corresponding 90%
CI. This is consistent with the kinematic distance obtained by McNamara et all (2004) of
d =9.9840.47 kpc and the value obtained by lvan den Bosch et all (2006) of d = 10.3+0.4
kpc; these two estimates are based on the same proper motion data set considered in the
present work. In particular, the value obtained by McNamara et all (2004), which is based
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Figure 7.13: Ellipticity profile for M15. The solid line represents the profile predicted by our model,
the black dots mark the observed ellipticities presented by WS87. Dotted and dashed lines mark
the average values reported by WS87 and CC10, respectively
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Figure 7.14: Projected isodensity contours from our selected model for M15. The same remarks
presented in Figure[ZBapply here.
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on the simplifying assumptions of spherical symmetry, isotropy in velocity space, and
no rotation, is lower than the value obtained in the present paper and the one obtained
bylvan den Bosch et all (2006) (in which anisotropy, rotation, and flattening are taken into
account). Moreover, our distance is in agreement with other distance estimates based on
photometric methods, such as the one reported in the Harris Catalogue (Harris 2010)
d = 10.3 kpc. In this case, the conclusion drawn by Bono et all (2008§), according to which
distances obtained from kinematic data are systematically lower than distances obtained
from other methods, does not hold.

7.7.3 Deviations from spherical symmetry

The comparison between the observed ellipticity profile and the one derived from the
selected model is illustrated in Fig.[ZT3 The relevant projected isodensity contours are
presented in Fig. [ZT4l Our model predicts a value of ellipticity close to zero in the very
central regions and an increase of the flattening thereafter. The trend of the predicted
profile is consistent with the one observed. In particular, we note that our predicted pro-
file seems to overlap smoothly with the observed profile in the region sampled by the
data. Moreover, the observed average flattening is consistent with the value predicted
by our model. We thus conclude that our dynamical model, and consequently the pres-
ence of internal rotation, can naturally explain the observed deviations from spherical
symmetry of M15.

7.8 Comparison with previous studies

The results of the dynamical analysis performed in the present investigation are now
briefly compared with the results obtained from previous studies based on spherical
nonrotating models. Table [Z7 summarizes and compares the following derived struc-
tural properties: concentration parameter C, core radius R., total mass M, and global
mass-to-light ratio M /L.

Table 7.7: Comparison of the structural parameters from the best-fit models of the present investi-
gation with those obtained from spherical models in previous studies. Notation and units are the
same as in Tab.[Z8

GC Ref. C R. M M/L

wCen (0) 127 127.76 2020 2.77
(1) 135 127.68 2645 193
() 132 17120 2511 2.05
(3) 131 14220 ... ...

47Tuc  (0) 1.87 2455 623 169
(1) 201 2260 718 134
() 257 3208 1071 117
(3) 207 2160 ... ...

M15 (0) 194 1285 455 145
(1) 187 751 398 112
@ ... ..

(3) 229 840

References. (0) This Chapter; (1) Spherical King models from Chapter 8; (2) Spherical Wilson
models fromMclLaughlin & van der Mare] (2005); (3) Harrid (2010).
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Figure 7.15: V/o vs. ellipticity e for w Cen, 47 Tuc, and M15. Filled and empty symbols denote the
pairs (V/o,¢), in which the ellipticity values are determined by WS87 and CC10, respectively. The
solid line indicates the relation expected for isotropic oblate rotators projected with an inclination
angle of i = 90° (“edge-on” view).

In general, the values of the derived structural parameters agree, within the uncer-
tainties, with the values derived in the other studies. Spherical nonrotating Wilson mod-
els tend to lead to larger truncation radii, which is expected. We can also compare the
values of these global quantities to the results of the application of dynamical models in
which internal rotation and deviations from sphericity are taken into account, in partic-
ular the orbit-based axisymmetric dynamical models available for w Cen and M15 (van
de Ven et al. 2006; lvan den Bosch et all2006). Remarkably, the best-fit model for M15 is
characterized by a total mass and a mass-to-light ratio fully consistent with our results,
thatis, 4.4 x 10°M, and 1.6 M,/ L, respectively.

In the case of w Cen, in the present study we derive a lower value for the total mass
and a higher value for the mass-to-light ratio. Here the discrepancy with respect to
the other studies reflects our estimate of the distance to the object, which we find to be
smaller than the distance reported in the literature (by adopting a distance of d = 4.8 kpc,
the resulting total mass associated with our rotating model would be M = 2.28 x 105M,
whereas for d = 5.2 kpc, the total mass would be M = 2.47 x 106M,).

The three globular clusters under consideration are known to be in different evolu-
tionary states. In fact, the core relaxation time of w Cen is significantly higher than the
relaxation times of 47 Tuc and M15 (see Tab. [ZJ)). This suggests that w Cen should be
in only a partially relaxed state. The cuspy behavior of the velocity dispersion profile
in the central regions of w Cen may thus reflect a condition of partial relaxation; this
interpretation is supported by the fact that models with sizable radially-biased pressure
anisotropy, such as the family of f(*) models, are able to reproduce this controversial
kinematic feature (see Chapter 8). Indeed, the rotating models presented in Chapter
4 and applied in this study are characterized by the presence of only weak radial ani-
sotropy in the intermediate radial range, because they have been constructed under the
assumption that the stellar system is quasi-relaxed.

For the two more relaxed clusters, 47 Tuc and M15, probably the most significant
discrepancy is that of the core radius of M15. This is not surprising, given the known
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Figure 7.16: V /o profiles for w Cen, 47 Tuc, and M15, respectively. The solid line represents the
projected profile observed along the major axis; the dashed line represents the intrinsic profile
along the equatorial plane. The vertical line indicates the position of the half light radius Ry. All
the profiles shown are constructed starting from the selected models of the three clusters.

difficulties of the models considered in the table in fitting the central region of the surface
brightness profile of this cluster. We recall that M15 is generally considered to be a post-
core collapse cluster (Murphy et all 2011), a physical property not considered by our
models. The cuspy behavior of the surface-brightness profile in the central region is a
signature of such a dynamical state. For this cluster, the outer regions are well fitted
by our rotating model (Fig. [ZT1)), at variance with the spherical King models, which
severely underestimate the surface-brightness (see Fig. 8.1 in Chapter 8).]

In our opinion, the points of discrepancy noted here and in the previous sections
do not diminish the important result of the present study, that is, the possibility to pro-
vide a conceptually simple global description of the internal structure and dynamics of
three rotating globular clusters by means of one physically justified family of fully self-
consistent axisymmetric models. In particular, we have demonstrated in various ways
that that the global flattening observed in the clusters is likely to be produced by internal
rotation.

Finally, we wish to comment on a tool commonly used to assess the importance of
rotation in determining the global shape of a stellar system, that is the plot V/o vs. € (in
the context of elliptical galaxies, seeDavies et all[1983 and [Emsellem et all2011). The V/c
parameter is frequently defined as the ratio between the maximum of rotational velocity
and the central velocity dispersion V2% /o¢; both quantities are measured along the line
of sight. We note that the definition of the maximum of velocity V%! strictly depend on

max
the method adopted for the construction of the relevant rotation profile.

In Fig.[ZT5 the quantity V/o is the ratio of the observed maximum of the line-of-sight
rotation profile to the central line-of-sight velocity dispersion, as reported in Col. (1) of
Tab. The values of the ellipticity € are those reported by WS87 and by CC10. In the
figure, the solid line indicates the relation expected for isotropic oblate rotators (Binney
1978), with a projection angle of i = 90° (“edge-on” view). According to this diagram,
the flattening observed in the three globular clusters could be considered consistent with
being originated by the presence of internal rotation. The deviations from the line of
isotropic rotators may be interpreted as due to the combined effects of inclination, dif-
ferential rotation, and pressure anisotropy. The cluster for which the deviation is most
significant is w Cen, confirming the anomalous trends of the cluster (which we have
argued to be the result of its only partial relaxation state).

We recall that the V/o parameter is a local quantity, since both the rotation and dis-
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Table 7.8: The V/o parameter.
GC vt oo (V/o)g, €

max

@) ) ®)
wCen 034 048 017
47Tuc  0.25 042 0.9
M15 0.23 026  0.05

Notes. For each cluster we list the: (1) the ratio between the maximum of line-of-sight rotation
profile and central line-of-sight velocity dispersion, (2) the value of the V/o profile on the projected
major axis evaluated at Ry, derived from the model, (3) the observed ellipticity from WS87.

persion profiles depend on the radial position. Therefore, it is appropriate to construct
a V/o radial profile and to introduce the quantity (V/o)g,, that is the value that the
profile reaches at the half light radius Ry,. In Fig. [ZT8lwe report the V/o profiles derived
from the rotating models that reproduce the clusters under consideration; the profiles are
calculated by making use of the line-of-sight rotation curves and velocity dispersion pro-
files calculated along the major axis, and the values of (V/o)g, are reported in Tab.
For completeness, in the same Figure we also show the intrinsic V/o radial profiles, con-
structed by considering the relevant intrinsic kinematic profiles evaluated on the equa-
torial plane; in particular, for the scalar velocity dispersion we considered the trace of
the full three dimensional velocity dispersion tensor, defined as 0 = (07 + 0§ + 03)/3.
Indeed, projection effects play a fundamental role in determining the shape (and in par-
ticular in reducing the maximum value) of the V/o profiles.

7.9 Conclusions

The main results of the analysis illustrated in the present Chapter can be summarized as
follows:

o The models selected to reproduce 47 Tuc and M15 are in excellent agreement with
the relevant kinematic and photometric profiles. In addition, the predicted mor-
phology of the models describe surprisingly well the ellipticity profiles, where
available.

e The model selected for w Cen is not able to reproduce the central behavior of the
line-of-sight velocity dispersion profile, as expected, given the condition of partial
relaxation of this stellar system. In addition, this discrepancy affects the distance
estimate, which results to be smaller compared to the the values reported in the
literature. On the other hand, the model provide a very satisfactory global inter-
pretation of the complex three dimensional kinematics available for this object. In
particular, the behavior of the anisotropy profile is successfully described, includ-
ing the presence of tangential anisotropy in the outer parts of the system.

e We calculated new estimates of the distances of the stellar systems under consid-
eration, by performing a comparison between the proper motions measured in the
central regions of the clusters and the corresponding predictions derived by our
dynamical models. This approach is only rarely followed (seeD’Souza & Rix 2005,
van_de Ven et all 2006, IAnderson & van der Marel 2010), and it appears that the
distance estimates based on dynamical models are systematically lower compared
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7.9 Conclusions

to the distance moduli determined with photometric methods (e.g., see Bono et al:
2008).

Inclination angle may play a fundamental role. This quantity is difficult to con-
straint and, in general, renovated effort should be invested in the comparison of
nonspherical models with basic morphological observables. Driven by this moti-
vations, a new method to simultaneously determine the distance and the inclina-
tion angle of an axisymmetric stellar system, based on the combined use of proper
motions and line-of-sight velocities will be presented in a subsequent paper.

The analysis presented in the present Chapter and in Chapter 8 demonstrate that
an approach which gives priority to the kinematics is very satisfactory. A num-
ber of fundamental dynamical issues can be tested exclusively by making use of
appropriate kinematical data (e.g., the presence of dark matter, dark remnants, dy-
namical signatures of mass segregation, binary fraction, role of internal rotation,
central IMBHSs, distance determination), which are truly crucial for a meaningful
interpretation of the internal dynamics of stellar systems (see also [Sollima_et al:
2012). Three-dimensional kinematics will be available for an increasing number
of Galactic globular clusters, such a tremendous amount of information deserve a
more advanced interpretation by means of realistic dynamical models.

Rotation plays a fundamental role in shaping the structure of the three clusters
under consideration. To be noted that the physical origin of the small observed
deviations from spherical symmetry among external tidal field, internal rotation,
and pressure anisotropy is still to be determined.

More advanced global and local morphological observables should be considered
(e.g., isophotes shapes and quadrupole moment tensors). At a more basic level,
new ellipticity profiles of Galactic globular clusters are much needed, as they pro-
vide a very valuable constraint in the selection of the most appropriate nonspher-
ical models. Ultimately, detailed morphological information will allow us to gain
insight about the formation and evolution of low mass stellar systems (e.g., in the
context of dwarf galaxies, see the recent investigation by f.okas et al! 2012 about
the morphological signatures of the tidal stirring scenario).
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CHAPTER 8

Galactic globular clusters in different relaxation conditions

8.1 Introduction

In the present Chapter, we wish to check whether indeed King models perform better in
more relaxed systems, by studying the combined photometric and kinematical profiles
for a sample of globular clusters. We will refer to the surface brightness profiles collected
by [Trager et all (1995) (supplemented by more recent data, when available), in order to
deal with a homogeneous sample, and limit our discussion to one-component dynamical
models (leaving aside the issues of core collapse and mass segregation; we will thus
exclude from our sample clusters with evidence of core collapse). Our sample will then
be basically defined by the requirement that a sufficient number of kinematical data-
points is available from the literature, so as to define a reasonably accurate and radially
extended kinematic profile for a test of a dynamical model at the global level.

Many large globular clusters have very long relaxation times. Therefore, we have
decided to model the same data also by means of models (the f*) models; see Bertin
& Trenti 2003) explicitly constructed for the context of violently relaxed elliptical galax-
ies. In other words, we wish to check whether less relaxed clusters tend to conform to
the picture of formation via incomplete violent relaxation, which has the characteris-
tic signature of radially-biased pressure anisotropy for less bound stars. The use of the
™ models is preferred to other options (for example to the use of King-Michie models,
Michid [1963), because these models are based on a detailed physical justification and
have been shown to perform well both in relation to the observations of bright ellipticals
and to the properties of the products of incomplete violent relaxation found in numeri-
cal simulations of collisionless collapse (over a range of nine orders of magnitude in the
computed density profiles, with an excellent fit to the properties of the generated pres-
sure anisotropy profiles; see[Irenti et all2005). For a fair comparison with the King mod-
els we should have referred to truncated f(*) models; for the present simple exploratory
investigation, and in order to keep the comparison between models characterized by the
same number of parameters, we have decided to use the non-truncated f ) models.

The Chapter is organized as follows. In Sect.BZ2lwe introduce the sample of globular
clusters selected for this study. In Sect. B3 we describe the available data sets and the
procedure we followed to obtain the radial profiles used in our analysis. In Sect. B4l we
show the results of our work and in Sect. B8 we draw our conclusions.

8.2 The selected sample

In this Chapter we wish to analyze globular clusters characterized by different relax-
ation conditions, measured by the central (core) relaxation time 7, as listed in the Harris
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Table 8.1: The selected globular clusters.
Globular Cluster do C  logT. logTy e Urot Ny N, B L Ref.

Re Tir
NGC 362 86 176 7.76 893 0.01 00 208 92 422 0.33 D)
NGC 7078 (M15) 104 229 7.84 932 005 1.7 1777 1298 1694 0.62 (2)
NGC 104 (47 Tuc) 45 207 784 955 0.09 22 2638 709 1927 144 (3),(4)
NGC 6121 (M4) 22 165 790 893 0.00 09 200 55 10.36 0.87 4)
NGC 6341 (M92) 83 168 796 9.02 010 25 295 42 1396 1.14 (5)

NGC 6218 (M12) 48 134 819 887 0.04 015 242 58 10.38 1.06 (4)

NGC 6254 (M10) 44 138 821 890 0.00 ... 147 47 522 0.55 (6)
NGC 6656 (M22) 32 138 853 923 014 15 345 116 840 0.88 4)
NGC 3201 49 129 8.6l 927 012 12 399 201 1035 1.27 (7)
NGC 6809 (M55) 54 093 8.90 929 002 025 728 311 779 144 (4)
NGC 288 89 099 899 9.32 ... 025 171 68 553 093 (4),(6)
NGC5139 (wCen) 52 131 9.60 10.09 017 79 2060 554 597 0.62 (8),09)
NGC 2419 82.6 137 987 1063 0.03 06 166 38 14.63 174 (10)

Notes. From left to right, the following quantities are displayed: distance from the Sun (kpc), concentration parameter, logarithm of the core
relaxation time (years), logarithm of the half-mass relaxation time (years), ellipticity, rotational velocity (km s™"'), total number of velocity data-
points available, number of velocity data-points inside the projected half-light radius, ratio of the radius of the outermost velocity point to the
projected half-light radius, and ratio of the radius of the outermost velocity point to the truncation radius. The sources of the kinematical data are
listed in the last column (see main text for references of the other quantities).

References. (1) [Fischer et all[1993; (2)/Gebhardt et all 2000; (3)/Gebhardt et all[1995; (4) [Lane et all2011; (5) Drukier et all2007; (6) Carretta et all2009;
(7)ICate et alll1995; (8) Mayor et all[1997; (9) Reijns et all 2006; (10) Ibata et all2011.
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catalog (Harrid 201(0). We decided to order globular clusters according to the core re-
laxation time, rather than to the half-mass relaxation time, because in general T is less
model-dependent (as pointed out in Sect. B472). We checked that, by ordering the sam-
ple with respect to the half-mass relaxation time, some changes in the composition of the
three classes identified below would occur (this fact can be easily seen by inspecting the
values of these time scales for the globular clusters listed in Table B1)), but with minor
effects in relation to the general conclusions of the study.

Looking at the values of the relevant relaxation times recorded in the available cat-
alog for the globular cluster system of our Galaxy, we see that the distinction between
relaxed and partially relaxed globular clusters is not sharp. Therefore, we introduce a
simple criterion to classify globular clusters according to their relaxation state. We con-
sider three relaxation classes: relaxed globular clusters, for which log T < 8 (first class);
globular clusters in an intermediate relaxation condition, for which 8 < log7, < 9 (sec-
ond class); partially relaxed globular clusters, for which log 7., > 9 (third class; Tt is
expressed in years).

The sample of globular clusters has been selected on the basis of the following cri-
teria: (i) We exclude post-core-collapse globular clusters, that is, we reject the clusters
labeled as post-core-collapse by [Harrid (2010). The reason is that we wish to test King
models on the global scale, avoiding the subtle modeling issues that characterize the
central regions of these systems, especially if phenomena a priori known to go beyond
the King modeling are involved. (ii) We choose globular clusters for which an accurate
and extended surface brightness profile is available. (iii) We select clusters for which at
least 140 stellar radial (line-of-sight) velocities have already been measured. We impose
a lower limit to the number of measured velocities, because we wish to extract from such
data a reasonably well-defined velocity dispersion profile; the value of this limit is fixed
in a way that allows us to include in the analysis globular clusters that belong to the dif-
ferent relaxation classes defined previously. (iv) We exclude from our list all the clusters
that have less than 35 stellar radial velocities inside the projected half-light radius R.
(also called effective radius; the values of this quantity are reported in the Harris cata-
log, where the notation is r,). We introduce this further requirement, because we wish
to analyze velocity dispersion profiles that characterize the stellar systems on the largest
radial extent. For bright elliptical galaxies the kinematical data-points inside R. are usu-
ally the easiest to get, and often turn out to discriminate among very different models.
To test how well the King models perform, the central regions are a natural ground for
comparison with other models.

The most restrictive elements in identifying a significant sample of globular clusters
are the requirements on the radial velocity data, because for only few globular clusters
the desired data are available. Indeed, of the 28 Galactic globular clusters with a rea-
sonable number of radial velocities (i.e., at least 40 line-of-sight velocity measures on the
entire spatial extent of the cluster), 3 are flagged as post-core-collapse, 9 have less than
140 velocity data, and 3 have less than 35 data inside their projected half-light radius. In
the Harris catalog, NGC 362 and NGC 7078 are indicated as possible post-core-collapse
clusters, but we decided to keep them because, according to their concentration param-
eter in the Harris catalog, it is still possible to obtain an acceptable fit with King models.
In this way, we are left with 13 globular clusters that match our selection criteria. In
relation to the relaxation classes defined above, our set of globular clusters contains 5
well-relaxed clusters, 6 clusters in an intermediate relaxation condition, and 2 partially
relaxed clusters.

To better characterize our sample in terms of the radial extent of their radial velocity
data, we consider the ratio of the radius of the last kinematical point to the projected
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half-light radiudl, Rx /Re, and the ratio of the radius of the last kinematical point to the
truncation radiudl, Rk /Tt We judge the following values of the two ratios, Rk /Re > 3
and Rx /7y > 0.8, to be satisfactory. All the selected globular clusters satisfy the first
relation, and all but four globular clusters satisfy the second condition.

Table Bl gives the sample of selected globular clusters, listed in order of increasing
core relaxation time log T¢.. The first part of the table contains relaxed globular clusters,
the second part those in an intermediate relaxation condition, and partially relaxed clus-
ters are shown in the last part. For each object, the values of the adopted cluster distance
from the Sun d, (expressed in kpc), the concentration parameter C, the logarithm of the
core relaxation time log7¢, the logarithm of the half-mass relaxation time log 731 (where
T and Ty, in other papers often indicated with the symbols ¢,. and ¢.1,, are expressed in
years) and the ellipticity e are recorded (as listed in the Harris 2010 catalog). In addition,
the maximum rotational velocity v, (in km s™?; the references for these values are Lane
et al. 2011 for the globular clusters for which we use the kinematic data published in this
paper, and Meylan & Heggid [1997 for the others), the number of velocity data-points
available N, the number of velocity data-points inside the projected half-light radius
N,, the ratios of the radius of the outermost velocity point Rk to the projected half-light
radius R, (in the Harris catalog and in other papers often indicated as r,) and to the
truncation radius r,, and the sources of the kinematic data are given in the last columns.

8.3 The data sets

8.3.1 The surface brightness profiles

To deal with a homogeneous sample, we decided to use the surface brightness profiles
provided by [Trager et all (1997) (this is the same starting point of McLaughlin & van
der Marel2005). This choice guarantees that the profiles have been constructed with the
same method, even though the actual data come from different sources.

For each globular cluster, the profile is composed of IV, photometric data-points,
given by log R;, the logarithm of the radius R;, measured in arcsec, and by mv (R;), the
V band surface brightness measured in mag arcsec 2 at the radial position R;. The data
also include mv ¢ (R;), the surface brightness calculated with the Chebyshev polynomi-
als, which provides an accurate approximation to the overall profile; mv (R;) —mv,c(R;),
the Chebyshev residual; w;, a weight that the authors assign to each measurement. All
the surface brightness profiles considered in this Chapter are relative to the V band.

These data have to be properly corrected and treated before a comparison can be
made with the theoretical models. First, we introduced an extinction correction, under
the assumption that such extinction can be considered to be constant over the entire ex-
tent of each globular cluster. We calculated the extinction Ay from the reddening listed in
the Harris catalog and obtained m(R;) = mvy(R;) — Ay, fori =1, ..., N,. This is the only
correction applied to the data: we assume that[Trager et all (1995) already removed any
foreground and background contamination that could affect the measurements. Then,
we followed the procedure described by Mcl.aughlin & van der Marel (2009) to estimate
the uncertainties dm; on the data: starting from the weights, we calculated §m; = o, /w;

1We always indicate with R the projected (two-dimensional) radial scales, and with r the intrinsic (three-
dimensional) radial scales.

21n the latest version of the Harris catalog (Harrid 201(), the values of the truncation radii are not listed;
we calculated them from the available values of R. and C, as: 7ty = Rc 10€ (see notes in the Harris catalog
bibliography).

34, is a constant that varies from cluster to cluster, the value of which can be found in Table 6 in McLaughlin
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(note that in the fits we use only the points with weights w; > 0.15 in the original profile,
as suggested by IMclLaughlin & van der Marel 2005).

Usually, the less reliable parts in the profiles published by [Trager et all (1995) are the
central regions. Therefore, we decided to combine these profile with the more recent and
accurate surface brightness profiles by INoyola & Gebhardi (2006), when available. For
the globular clusters NGC 104 and NGC 6341, we simply combined the profiles from
the two sources; for NGC 6254 and NGC 7078, we decided to combine the two data sets
by removing the points from [Trager et all (1995), when they do not match the profile by
Novola & Gebhardi (2006) (the removed points are inside 3.5” and 14.5”, respectively).
In the case of NGC 7078, it should be emphasized that, with this treatment, the profile
changes significantly in the central regions, and the central slope becomes steeper.

In the case of NGC 5139 (w Cen) we decided to add to the surface brightness pro-
file the inner points that Eva Noyola kindly provided us (Noyola et all 2008§); still the
number of data-points in our final composite surface brightness profile of this cluster is
significantly smaller than that of the other clusters.

8.3.2 The velocity dispersion profiles

We divided the data (see Table Bl for detailed references) in several radial bins contain-
ing an equal number of stars; we chose the binning that represents the best compromise
between having a rich profile and having accurate points (by increasing the number of
bins, that is by decreasing the number of points per bin, the errors on the velocity dis-
persion increase). In principle, we might consider using unbinned data, to avoid loss
of information (for the study of dwarf spheroidals, see Wilkinson et all2002). Here we
preferred to follow the more traditional approach of constructing the associated one-
dimensional profiles, a method that can be applied in a similar way to both kinematical
and photometric data and that allows us to follow well-established fitting procedures
used in the past (especially in studies of elliptical galaxies). For the clusters with less
numerous kinematical data-points, we did experiment with changing the radial binning
and checked the related consequences.

The method used to calculate the mean velocity and the velocity dispersion from stel-
lar radial velocities is basically the one described by [Pryor & Meylan (1993). We started
by calculating the mean v, and the dispersion o, for the entire set of velocities. The mean
velocity represents the overall velocity of the entire cluster. Then, taking this value as a
constant for the entire cluster, we calculated the line-of-sight velocity dispersion o(R;)
and the related accuracy do; inside the bins in which the data have been divided. For
each bin, we indicate the distance from the center R; as the mean of the radial positions
of the stars that it contains. In this study we ignore the possible presence of rotation and
therefore consider the various kinematical data-points in each bin, after subtraction of
the systemic velocity, to contribute only to velocity dispersion (random motions).

For the majority of the clusters in our sample, only one data-set of stellar radial veloc-
ities is available; in the following we discuss in detail the cases in which a composition
of different data-sets has been performed or which require some additional comments.
For NGC 104, two data-sets of radial velocities are available; we noticed that the data
from |[Gebhardt et all (1995) are more centrally concentrated than those from [Lane et al
011)8 In order to have a complete sampling on the entire radial extent of the cluster,

& van der Marel (2007).

4Giersz & Heggid (2011) make some cautionary remarks about the velocity dispersion profile reported by
these authors. In particular, the selection criteria adopted by [Lane et all (2011) could lead to the exclusion of
some high-velocity stars, with consequent lowering of the central velocity dispersion, and to the inclusion of
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Table 8.2: Dimensionless parameters and physical scales of the best-fit models.

King Models @) Models

NGC v 9 Lo Vv v T'scale 1o Vv

@) ©)) ®) 4) (©) (6) ) (8) ©)
104 858+ 0.01 23.09+£0.23 14.33+£0.01 12.27+0.19 8.21+0.02 25044+146 1429+0.01 14.07+0.22
288 482+010 91.03+286 20.02+0.03 2.85+0.19 391+024 7954+537 19.88+0.03 3.70+0.25
362 780+0.03 1021+0.11 14.66+0.01 8.31+0.44 6.86 £0.05 52.73+1.09 1470+£0.01 9.26 £0.50
2419 6.62+0.04 19.70£0.31 1943+0.03 5.04+043 424 +0.09 29.86+0.83 19.44 +£0.04 7.28+0.61
3201 6.17+0.11 7699 £3.05 1835+0.08 4.28+0.19 409+040 103.48+11.71 1833+£0.08 5.01+£0.23
5139 6.27 £0.05 136.94+2.33 1642+0.04 14.83+0.25 4314+0.07 150.63+3.07 16.35+0.04 23.41+0.40
6121 7.324+0.07 7456+1.76 17.00£0.11 4.01+£0.30 739+ 0.09 4644942040 17.01+0.11 4.21+0.31
6218 6.11+0.07 51.56+1.51 17.65+0.07 3.93+0.30 400£014 60.69+£252 17.57+£0.07 5.58+0.42
6254 6.26 £0.04 53.63+060 16.88+0.09 6.21+0.37 267+013 5148+145 16.84+0.09 9.69+0.59
6341 754+0.02 1472+0.13 1531+£0.01 9.28+041 599+ 0.04 50.00+£0.80 1544 +0.01 12.77+0.56
6656 647+ 0.11 86.18+234 1641+0.11 6.47+0.38 599 +0.26 241.58+26.46 1641+0.11 7.19+042
6809 444 4+0.11 12911+4.06 19.124+0.04 292+0.13 392+019 101.53+539 1899+0.04 3.61+0.17
7078 8.09+0.02 7724+0.13 14.07 £ 0.03 11.83 +0.24 8.17 + 0.05 65.88+0.94 13.59+0.06 12.79+0.26

Notes. For each cluster, named in column (1), for King and f () models, we list: the concentration parameter U, in other papers often indicated as
Wo (Col. (2) and (6)), the scale radius, expressed in arcsec (ro in Col. (3) and 7scate in Col. (7), as defined in Eq. @8); note that they are intrinsic
quantities; they are recorded here in arcseconds, for easier comparison with the observations, as shown in Figs. BIH83), the V band central surface
brightness j10 in mag arcsec™ 2 (Col. (4) and (8)), and the central line-of-sight velocity dispersion V in km s~1 (Col. (5) and (9)). Formal errors on the
various parameters are also recorded.
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we decided to define a mixed data-set, composed of 499 data fromiGebhardt et all (1995),
located inside 100", and 2139 data from [Lane et all (2011), located outside that radius.
The second case is cluster NGC 288, studied by [Carretta et all (2009) and by [Lane et al!
(2011). Since these papers publish the coordinates of each star, we were able to single
out the stars in common between the two data-sets: for the stars in the overlap, velocity
measures by Carretta et all (2009), being more accurate, have been preferred. Finally, we
excluded three stars for which the value of the velocity deviates by more than 4o, from
the mean radial velocity v,, obtaining a final sample of 171 data.

For the globular clusters NGC 6121, NGC 6656 and NGC 6809, in addition to recent
data from [Lane et all (2011), older radial velocity measures are available in the literature,
but we decided to consider only the data-sets from [Lane et all (2011)), because they are
more complete and more radially extended.

In the case of NGC 5139, we merged the largest sample of velocity data available
(Reijns_et all 2006) with the sample provided by IMayor et all (1997), which provides
measurements for stars located in the central region of the cluster. A delicate issue re-
garding this cluster is the controversial position of its center, which plays an important
role also in our analysis, because we wish to build a radial-dependent velocity disper-
sion profile, starting from stellar positions expressed in right ascension and declination
(for[Reijns et all2006). To carry out a proper merging of the two data-sets, we have used
the position of the center proposed by Mayor et al! (1997); to calculate radial distances,
we have followed the procedure described by lvan de Ven et all (2006).

8.4 Description in terms of partially and quasi-relaxed models

8.4.1 Relaxation classes

The values of the dimensionless parameters and the physical scales of the two families
of models determined by the photometric and kinematic fits are presented in Table
Note that, in general, for the f(*) models relatively low values of the concentration pa-
rameter U are identified. Quantitative information about the best-fit models and the
observational profiles, such as the number of the photometric and kinematic points, the
values of the relevant reduced chi-squared, and the corresponding residuals, are listed
in Table

The surface brightness and the line-of-sight velocity dispersion profiles determined
by the fit procedure for the models, together with the observed profiles for selected clus-
ters in the first, second, and third relaxation class, are shown in Figs. and
respectively (see [Zocchi et ali2012 for the illustration of the relevant profiles and a de-
tailed discussion of all the clusters under consideration in the present study). In the
panels, solid lines correspond to the best-fit King models and dotted lines to the best-fit
™ models. The vertical solid line marks the position of the King model projected half-
light radius, the dotted one the position of the f*) model projected half-light radius.
For the surface brightness profiles, the data from [Trager et all (1995) are indicated with
circles, the data from other sources with squares. For the velocity dispersion data, the
horizontal bars indicate the length of the radial bin in which the data-points have been
calculated; they do not have a role in determining the fit. For each data-point the er-
rors are shown as vertical error bars. Note that, even if we insisted on selecting clusters

nonmember stars affecting the outer part of the profile. By using the composite data-set described above, we
should be able to obtain reliable values of the velocity dispersion in the central regions, while the outermost
points may still be affected by the inclusion of nonmember stars.
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with a reasonable number of data inside R,, for about half of the clusters, the kinematic
profiles are undersampled in their central region.

In the following part of this subsection we will try to give a general assessment of the
quality of the fits in the various cases. As a general rule, for a given cluster the family of
models yielding the lowest values of the best-fit photometric and kinematic chi-squared
is preferred. Table B3 shows that generally, for a given cluster, X2 > X3, because the
photometric profiles are characterized by a larger number of data-points with reported
smaller error-bars.

Within the class of relaxed globular clusters, for NGC 7078 King models can not re-
produce the observed surface brightness profiles, and f(*) models perform better, espe-
cially for describing the outer parts of the cluster. As to the observed velocity dispersion
profiles, we see that for NGC 7078 the f(*) profile is formally more adequate (at the
99.9% confidence level, which, in the following, we denote by CL), while for NGC 362
the King profile is the closer to the observations (at the 90% CL). We should recall that
these two globular clusters are flagged in the Harris catalogue as post-core-collapse clus-
ters, although the value of the concentration parameter C is smaller than 2.5. Indeed, the
observations indicate that there are some processes that cannot be captured by King
models (with particular reference to the shallow cusp in the photometric profile of NGC
7078). By looking at the plots in Fig. NGC 104 appears to have both observed surface
brightness and velocity dispersion profiles well represented by King models. Curiously,
NGC 6121 is equally well described by the two models; the values of the reduced chi-
squared are slightly lower for the King model, but in practice the quality of the two
fits is similar. We notice that for NGC 104 and NGC 6121 it is particularly evident that
the last point in the velocity dispersion profile is significantly higher than expected by
both models. A partial explanation of this fact could be the very large extent of the ra-
dial interval in which it is calculated. Therefore, it is important to obtain more velocity
data-points in the outer regions to clarify this issue.

Best-fit profiles for selected globular clusters in the intermediate relaxation class are
shown in Fig. For NGC 288, NGC 6218, and NGC 6809 King models provide a better
fit to both the surface brightness and the velocity dispersion profile (at the 90% CL in all
cases). For the other globular clusters in this relaxation class the results are less sharp.
In fact, for NGC 3201 and NGC 6254 the surface brightness profiles are formally better
reproduced by f*) models (for the first, at 95% CL), while the corresponding velocity
dispersion profiles are formally better described by King models (at the 95% and 90%
CL, respectively). For NGC 6656 both the surface brightness and the velocity dispersion
profile are approximately equally well reproduced by the two families of models (at the
90% CL in all cases). For NGC 3201, NGC 6656, and NGC 6809 the velocity dispersion
profiles have an irregular shape in the central regions: even if King models formally
perform better than f(*) models, they are unable to reproduce the observations. We
tried to choose a different binning for the data and we found that this irregularity does
not depend on the way in which the observed velocity dispersion profile is constructed
from the available data-set. Clearly, more data are necessary in order to obtain a more
convincing description of these systems.

In Fig. we show the best-fit profiles for partially relaxed globular clusters. For
these two clusters we see discordant results: for NGC 2419 ) models are more ad-
equate for describing the data (at the 99.99% CL and 90% CL for the photometric and
kinematic fit, respectively), while for NGC 5139 King models provide a better fit to the
observed profiles. Even if formally King models perform better in describing the kine-
matic profiles of NGC 5139, they do not provide a satisfactory description of the kine-



Table 8.3: Quality of the fits.

King Models @) Models

NGC N, Ny Xf) (Ap)  (Ap)max Xic (Ao)  (A0)max )Zé (Ap)  (Ap)max X (Ao)  (A0)max
M @ 6 @ 0 (6) @) ©® ©) 10 an (12) (13) (14 (15)
104 231 16 3.487 041 4.68 7411 1.03 3.39 6433 0.24 1.53 10.367 1.34 2.98
288 85 6 1.251 0.30 0.98 0.442 0.21 0.33 3.891 0.46 1.10 2.040 046 0.78
362 239 8 3.113 0.58 7.09 1.307  0.99 1.74 1.563  0.15 0.92 3345 155 2.45
2419 137 6 1983 0.21 1.10 1.344 098 221 1492  0.16 0.83 0471 0.50 0.83
3201 80 16 1.308 0.38 1.49 1.783  0.83 1.73 1.289  0.36 1.48 4005 1.21 2.29
5139 72 37 3.750 0.36 2.08 1.974 1.73 4.90 21.742  0.80 1.62 3406 2.07 4.38
6121 228 10 1.460 0.27 1.33 0.450 047 0.94 1.710 0.29 1.33 0.581 0.52 0.93
6218 143 11 1.185 0.32 1.12 0.584 0.54 0.91 2.663 040 1.12 0.765 0.59 1.10
6254 162 6 5.046 0.37 2.75 0.606 0.48 0.65 4372 022 1.12 1.844  0.89 1.15
6341 118 8 8.439 041 2.51 1.418 0.51 1.02 20.589 0.33 1.06 2354 1.01 2.37
6656 143 7 1.019 0.23 0.66 0942 0.67 1.36 1.056 0.23 0.66 1.699 0.89 1.83
6809 114 13 1.165 0.32 1.04 1.103 040 0.96 4404 059 1.34 2967  0.64 1.35
7078 310 35 6.136  0.75 5.00 3229 1.33 3.06 3813 0.36 1.41 1981 1.37 3.25

Notes. For each cluster, named in column (1), we provide the number of points in the surface brightness (2) and in the velocity dispersion (3) profile.
For King and f ) models, we list: the reduced best-fit photometric chi-squared fg (Col. (4) and (10)), the mean (Col. (5) and (11)) and maximum
(Col. (6) and (12)) photometric residuals, the reduced best-fit kinematic chi-squared X3 (Col. (7) and (13)), the mean (Col. (8) and (14)) and maximum
(Col. (9) and (15)) kinematic residuals.
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Table 8.4: Derived structural properties.

King Models @) Models
NGC [ R, M Tir M M/L 00 R, To/TM M To M M/L 0o
€)) 2) ®3) 4) ©®) (6) @) 8 ) (1o @ay @@z (@3 (14 (15

104 2.00 22.60 257 2335.74 7.181 1.34 5.011 23.25 1.783 4.82 8.59 8.047 1.50 5.094
288 099 7949 751 896.85 0.740 1.88 2.043 5824 0.866 753 653 0.850 2.18 2427
362 1.77  9.88 2.65 60579 1867 1.05 4.826 1134 1786 213 3.80 1.828 1.03 4.761
2419 142 1858 1956 51697 7.843 172 1.874 20.01 0.958 2397 2295 10912 240 2.081
3201 1.30 71.58 3.85 1532.62 1.131 191 3.012 72.31  0.915 5.14 4.70 1.088 1.86 3.026
5139 1.32 12768 7.51 2861.08 26446 193 3.537 98.89 0978 746 730 35427 258 4.049
6121 1.62 7131 262 314417 0.654 1.10 3.656 7245 1868 440 823 0750 126 3.661
6218 1.28 47.81 2.47 982.45 0.614 1.96 3.306 43.45 0.890 3.03 2.69 0.786 252 3577
6254 1.32 5002 248 1125.66 1532 161 3.741 4797 0564 335 189 2161 267 4.003
6341 1.69 1418 212 72428 2866 1.83 4.638 1712 1523 243 370 3956 253 4.691
6656 1.38 80.92 3.13 2057.81 2.081 1.11  3.636 82.71 1.523 4.53 6.89 2.337 1.24 3.652
6809 092 110.09 590 1072.17 0.604 1.12 2214 7428 0.867 583 5.06 0627 116 2.628
7078 1.86 7.51 1.70 56055 3976 1.12 5.207 627 1793 292 524 4056 1.14 5420

Notes. For each cluster, listed in column (1), for the King models, we provide (2) the concentration index ¢ = log(r:/ro) (see Eq. @8)) and (5)
the truncation radius 7., in arcsec; for the ) models, in Col. (10) the ratio between the anisotropy and the half-mass radius and in Col. (12) the
anisotropy radius 7, defined as a(r) = 1 (see Eq. @EXI) for the definition of «), in pe. For both King and f*) models, we list: the core radius R.
(defined in the standard way) in arcsec (Col. (3) and (9)), the intrinsic half-mass radius ru, in pc (Col. (4) and (11), respectively), the total mass M of
the cluster (Col. (6) and (13)) expressed in units of 10° M), the V band mass-to-light ratio in solar units (Col. (7) and (14)) and the logarithm of the

central mass density po in M pc~? (Col. (8) and (15)).
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Figure 8.1: Fits by King models and f“) models to the surface brightness profiles and to the
line-of-sight velocity dispersion profiles of selected relaxed globular clusters (NGC 104 and NGC
7078). In all panels, solid lines correspond to the King-model fits, dotted lines to f*)-model fits;
the vertical solid line marks the position of the King model projected half-light radius, R., the
dotted one the position of the f ) model projected half-light radius, R.. For the surface brightness
profiles, the data from [Trager et all (1997) are indicated with circles, the data from other sources
(see Sect. B3 with squares. For each data-point, errors are shown as vertical error bars; in the
case of the velocity dispersion profile, the horizontal bars indicate the length of the radial bin in
which the data-points have been calculated and have no role in the fitting procedure.

matics of the central parts of the cluster (see Fig.B3); in this respect, the f*) models give
a better representation of the inner kinematics.

To summarize, we found that, as expected, f(*) models tend to perform globally bet-
ter than King models for the least relaxed globular cluster of our sample, NGC 2419.
For NGC 2419, the good performance of f(*) models might correspond to the partial re-
laxation condition of the cluster, consistent with the physical picture that motivates the
definition of the ) models, as outlined in the Introduction. In addition, for three clus-
ters in the second relaxation class (NGC 3201, NGC 6254,and NGC 6656), f(*) models are
competitive with King models. Furthermore, f(*) models can describe well a relatively
steep central slope of the velocity dispersion profile, even when the corresponding pho-
tometric profile is cored, while King models and other isotropic truncated models (such
as Wilson models) are unable to reproduce this kinematical behavior. This fact is evi-
dent from the kinematic fits for NGC 2419, NGC 5139 and for possibly one cluster in the
intermediate relaxation condition (NGC 6218).

As far as the behavior of the photometric profiles at large radii is concerned, we
see that, especially for NGC 104, NGC 362, NGC 6254, NGC 6341, and NGC 7078 King
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Figure 8.2: Fits by King models and anisotropic f*) models to the surface brightness profiles and
to the line-of-sight velocity dispersion profiles of selected globular clusters in the intermediate
relaxation condition (NGC 6218 and NGC 6254), in the same format as in Fig. Bl

models do not provide a good description of the truncation, as noted in a number of
previous studies (in particular, see MclLaughlin & van der Marel 2005; [lordi & Grebel
2010; Kiipper et all 20104, in which the outermost parts of the surface brightness pro-
files are appropriately modeled by using N-body simulations). In some cases, the ob-
served profile falls between the King and the f(*) profiles. This suggests that truncated
f®) models might behave systematically better than King models for describing these
stellar systems. To a large extent, the modification by truncation in phase space of the
anisotropic (nontruncated) f(*) models is complementary to the generalization of the
isotropic (truncated) King models to models characterized by anisotropic pressure, that
is, the so-called Michie-King models (in which the truncated Maxwellian is associated
with the anisotropic factor of the Eddington models; see Michid 1963, (Gunn & Griffin
1979). At this stage, it would be interesting to compare the behavior of the outer pho-
tometric and kinematic profiles of the two families of anisotropic truncated models, to
evaluate the interplay between truncation and pressure anisotropy in the two different
cases. Of course, the simple physical picture offered by King, f), and Michie-King
models still suffers from a number of limitations, as discussed in the Introduction. Such
a simple picture is bound to fail in the modeling of clusters in which core collapse has
taken place. Therefore, it is not surprising that clusters such as NGC 362 and NGC 7078,
even if they belong to the first relaxation class, are not described by isotropic King mod-
els as well as expected.

In closing, we wish to reiterate that, in general, the kinematic fits are crucial to as-
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Figure 8.3: Fits by King models and anisotropic f*) models to the surface brightness profiles and
to the line-of-sight velocity dispersion profiles of partially relaxed globular clusters, in the same
format as in Fig.

sess if a model is actually able to describe a given globular cluster. Unfortunately, the
observed velocity dispersion profiles are generally less accurate and less reliable, with
respect to the surface brightness profiles; not only the outer parts (radii close to the trun-
cation radius), but also the inner parts (inside the half-light radius) are often not well
sampled as would be desired. The present study confirms that in the future it would be
desirable to acquire new and better kinematic data.

8.4.2 King models vs. () models

The values of the relevant structural parameters derived from the best-fit models are
presented in TableB24 For the majority of the globular clusters considered in our sample,
the values of the half-mass radius from f(*) models are larger than those obtained from
King models; only for NGC 362 the opposite is true. For NGC 288, NGC 5139 and NGC
6809 the values calculated from the two models basically coincide. By comparing the
values of the total mass and of the central mass density calculated with the two families
of models, we see that for the whole sample (with few exceptions) the values calculated
with f ) models are larger than those calculated with King models; this fact is not at
all surprising, since the () models are not truncated. As to the mass-to-light ratios,
we see that there is not a tight correlation between the values calculated with King and
f®) models, the latter being almost always larger. Similar trends are noted also in the
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Table 8.5: Core and half-mass relaxation times for the best-fit King and f*) models.

King Models ¥ Models
NGC logTe. logTwm logTe. logTwm
1) 2 ©) (4) ()
362 7.565 8.971 7713  8.825
7078 7.620  8.820 7491 9.176
6121 7.818 8.774 7.836  9.137
104 7.846  9.198 7922  9.629

6341 7.881  8.904 8.142  9.052
6218 8.140 8.725 8.142  8.902
6254 8.269  8.892 8.334 9.150
6656 8.418  9.099 8.451 9.361
3201 8.523 9.123 8.545 9.305
6809 8.835  9.289 8.529  9.288

288 8.969  9.482 8.750  9.509
5139 9.515 10.140 9.429 10.191
2419 9.812 10.537 9.970 10.731

structural properties derived from (isotropic) models characterized by a more spatially
extended truncation, such as the Wilson models (seeMclLaughlin & van der Marel 2005).

In Table 85 we list the values of the core and half-mass relaxation times calculated by
using the two best-fit dynamical models for each globular cluster; the clusters are listed
in order of increasing King core relaxation times, and the separation in three classes of
relaxation here adopted is marked with horizontal lines.

When considering the core relaxation times (calculated according to Eq. (10) of Djor-
govski (1993), as in the Harris 2010 catalog), we see that the original division in the
relaxation classes proposed in this study on the basis of the values listed in the Harris
catalog is confirmed. The only exception is NGC 6341: according to the value of the core
relaxation time calculated with its best-fit f(*) model, this cluster should belong to the
second class, rather than to the first. When we list globular clusters according to increas-
ing core relaxation times estimated with the models identified in this study, we see that
the order of relaxed globular clusters changes with respect to that of Table Bl However,
there is a general agreement between values of these quantities calculated with the two
families of models.

To calculate the half-mass relaxation times we followed the definition of Eq. (5) in
Spitzet (1987), which is based on the half-mass radius. We see that the values from f ¥)
models are larger than those from King models, except for NGC 362 and NGC 6809 (for
the latter cluster, the estimated values are approximately equal). In contrast with the
case of the core relaxation times, the values of the half-mass relaxation time turn out
to be more model-dependent. Such dependence is likely to be due to the differences
between the density profiles of the two families of models, which, in general, are less
significant in the central regions and become more evident at radii larger than the half-
mass radius. The introduction of a truncation for f*) models would also lead to different
values of these parameters. We notice that usually the half-mass relaxation time is cal-
culated by inserting in the relevant definition directly the (projected) half-light radius
(see, for example, Harrid 2010 and McLaughlin & van der Mare] 2005). By following
the same procedure, we found that the values of the half-mass relaxation times are less
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model dependent, and closer to the values listed in the Harris catalog.

8.4.3 Central slope of the photometric and kinematic profiles

When considering the surface brightness profiles of our selected globular clusters, we
note that there are cases in which the observed photometric profiles deviate from the
calculated ones at small radii. In particular, by focusing on the innermost regions of the
profiles, we see that this is the case for NGC 6121, NGC 6218, and NGC 7078, for which
the models are underluminous, and NGC 288, NGC 6656, and NGC 6809, in which the
models are overluminous, and NGC 3201, for which the observed central surface bright-
ness appears to oscillate; in spite of these local discrepancies, the global values of the
statistical indicators may be satisfactory.

As far as the velocity dispersion profiles are concerned, in four cases (NGC 288, NGC
3201, NGC 6121, and NGC 6656), both models overpredict the central data-points, while,
as mentioned in Sect. four clusters (NGC 2419, NGC 5139, and, possibly, NGC 6218
and NGC 6254) show a relatively large gradient of the profile in the central regions. At
variance with the study of elliptical galaxies, the kinematic profiles of globular clusters
are often undersampled inside the half-light radius.

Recently, the central cusps in the observed photometric and kinematic profiles of
some globular clusters have been interpreted as clues of the presence of an intermediate-
mass black hole (IMBH) in the center of the system (see the analytical model by Bahcall
& Wolf[1976 and the N-body simulations byBaumgardt et all2005H and Noyola & Baum-
gardt2011), and a variety of dynamical models (either defined from distribution func-
tions or as solutions of the Jeans equations), have been used in order to constrain the
mass of such central object (the best known example is the controversial case of w Cen,
studied by Noyvola et all 2008 and van_der Marel & Anderson 2010, with different con-
clusions). However, [Vesperini & Trenti (201() showed that these shallow photometric
cusps are not decisive signatures of the presence of an IMBH, and that they might be
related to other dynamical processes; moreover, the authors emphasize the fact that the
typical accuracy in the data may be insufficient to characterize the slope of the profile as
desired.

As shown in the previous sections, the presence of radially-biased pressure anisotropy
(which occurs in the context of the family of f(*) models or of the Michie-King models,
see Michie 1963) can also produce a relatively rapid decline in the central part of the
velocity dispersion profile. Therefore, here we are reiterating a point already noted in
the literature, that the presence of a central IMBH should not be considered as the only
physical explanation of the existence of a central kinematical peakdl. Unfortunately, our
independent conclusion only confirms that the interpretation of this interesting kinemat-
ical feature is more model dependent than desired. We recall that f(*) models are char-
acterized by a “realistic” anisotropy profile (see Fig. 6 in[Trenti & Bertin2005): the central
regions are more isotropic than the outer ones in velocity space, because the models rep-
resent a scenario in which violent relaxation has acted more efficiently in the center. This
differential kinematical feature is not always present in dynamical models based on the
Jeans approach, which, to obtain a fast decline in the velocity dispersion profile in the
absence of a central IMBH, usually requires very high values of the anisotropy param-
eter, even in the central regions of the cluster (see, for example, Sect 4.2 in[Noyola et al!
2008 or Sect 5.3 in [Liitzgendorf et all[2011).

50f course, f(*) models are able to reproduce a slope in both the photometric and kinematic profile, only
when high values of the concentration parameter are considered.
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8.5 Discussion and conclusions

In this Chapter we have performed a detailed combined photometric and kinematic
study of a sample of Galactic globular clusters, representing systems under different re-
laxation conditions. For these objects, surface brightness and velocity dispersion profiles
have been fitted by means of two different families of dynamical models, the truncated
isotropic King models and the non-truncated, anisotropic f(*) models. The analysis has
been carried out by following the same procedure used in the past to study the dynamics
of elliptical galaxies. Each globular cluster is then associated with two best-fit models.
The main conclusions can be summarized as follows:

o The expected trend, that King models should perform better for more relaxed glob-
ular clusters, has been checked to exist but it is not as sharp as anticipated. The two
clusters (NGC 104 and NGC 6341) for which the global fit by King models is most
convincing indeed belong to the class of relaxed objects. King models tend to of-
fer a good representation of the observed photometric profiles (as is commonly
reported), regardless of the relaxation condition of the system. However, the qual-
ity of the fits by King models to the kinematic profiles remains to be proved, even
for relaxed clusters, because of the few data-points and the large error bars in the
observed profiles. Three clusters for which the King models appear to be inad-
equate do not actually come as a surprise: NGC 2419 is the least relaxed cluster
of the sample and NGC 362 and NGC 7078 are suspected to be post-core-collapse
clusters.

e The second expected trend, that less relaxed clusters might exhibit the character-
istic signature of incomplete violent relaxation, is also partly present but is not
as sharp as might have been hoped for. Some cases indeed point to a significant
role of radially-biased pressure anisotropy. The least relaxed cluster, NGC 2419, is
well described by the f () models. For the second least relaxed cluster, NGC 5139,
the central shallow cusp in the velocity dispersion profile appears to be well cap-
tured by the f() models. A marginal indication in favor of the f(*) models also
comes from inspection of the inner kinematic profiles of NGC 6218 and NGC 6254,
although these two clusters are not among the least relaxed objects. In contrast,
King models and other isotropic models (such as the spherical Wilson models)
have difficulty in matching significant velocity gradients inside the half-light ra-
dius. Therefore, the partial success of the f(*) models suggests that for some glob-
ular clusters radially-biased pressure anisotropy may be important. This property
could be examined further by means of better spatially-resolved kinematic data
in the inner regions (i.e., at radii out to approximately the half-light radius). This
result is in line with the conclusions of recent papers: in particular, seellbata et al!
2011 and references therein, based on the application of King-Michie models.

e In some clusters, regardless of the relaxation condition, some qualitative charac-
teristics of the observed profiles are missed by both families of models considered
in this Chapter. It may be that part of these cases would be resolved by a study in
terms of truncated f*) models. But it may also be that other ingredients ignored in
the present study, such as rotation (solid-body or differential), play a role.

o The study demonstrates that the values of some structural parameters, such as
the total mass and the half-mass radius, can be significantly model-dependent. In
view of the results listed in the previous items, this is a clear warning against an
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indiscriminate use of structural parameters for globular clusters based on only one
family of models (the spherical King models).

e In general, the kinematic fits are crucial to assess if a model is actually suited to
describe a given globular cluster. The main issue in testing dynamical models on
globular clusters is therefore the general lack of good kinematic data: the data are
available for a small fraction of the population of Galactic globular clusters and
generally made of a small number of data-points, not well distributed in radius.
Surprisingly, the kinematic profile is often not well sampled as desired inside the
half-mass radius. As discussed in the Chapter this is a key region for confronting
the performance of different dynamical models. In addition, accurate data in the
outermost parts, close to the truncation radius,would touch on other important
issues, such as the role of tides. Only after the acquisition of good kinematical
profiles will it be possible to address properly the issue of dark matter in globular
clusters.






Future directions

Within the analytical framework offered by the families of dynamical models developed
in the present Thesis, a number of projects can be devised, as a natural extension of the
line of research. In particular, the following separate yet related issues will be addressed
in the near future:

The role of angular momentum in the formation of star clusters: The majority of
present-day star clusters are only slowly rotating, but the role of angular momentum
during the initial stages of cluster formation indeed requires clarification. N-body
simulations of the merging process of two star clusters have shown that the resulting
system may be characterized by a significant amount of global angular momentum
(Makino et all[1991); therefore, in some cases, the presence of relatively strong inter-
nal rotation has been interpreted as a signature of a past merger event (for a recent
example, seelLane et all2010a). In turn, in the context formation scenarios by dissi-
pationless collapse, relatively few investigations have considered the role of angular
momentum in numerical experiments of “violent relaxation” (Goti [1973). Interest-
ingly, the final equilibrium configurations resulting from such scenario show a cen-
tral region with solid body rotation, whereas the external parts are characterized by
differential rotation. Since this kinematic behavior characterizes the family of differ-
entially rotating models studied in Chapter B it would be interesting to perform a
dedicated survey of N-body simulations and to compare the systems resulting from
the early violent dynamical evolution with the rotating equilibrium configurations
introduced in the present Thesis.

A link between internal rotation and multiple stellar populations in globular clus-
ters: The investigation described above is particularly interesting also in view of the
need to find a dynamical characterization of multiple stellar populations, the obser-
vational evidence of which is shown by a very high fraction of the globular clusters
studied to date (D’Ercole et all201(). In fact, on the observational side, a number of
correlations between internal rotation and chemical properties (such as the metallic-
ity or the Horizontal Branch Morphology parameter) have been recently found (Bel-
lazzini et al. 2012); on the theoretical side, hydrodynamical simulations suggest that
some globular clusters composed of two generations of stars had a significant amount
of rotation when they were formed (Bekki201(). Therefore, the differentially rotating
models presented in Chapter@lmay provide the appropriate initial conditions for nu-
merical simulations designed to investigate the puzzling existence of multiple stellar
populations in globular clusters, which are normally studied under the simplifying
assumption of the absence of internal rotation. In addition, we plan to carry out an
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extensive survey of N-body simulations, in which the effects of stellar evolution are
taken into account, to explore the early and long-term dynamical evolution of the
differences between the amount of rotation of the first and the second generation
stars. The results obtained from this study are expected to provide a useful guide in
the interpretation of the relevant kinematical and chemical observables that suggest
the existence of a link between internal rotation and multiple stellar populations in
globular clusters.

Central kinematic gradients: IMBH, rotation, or pressure anisotropy? The family of
differentially rotating models might help clarify the controversial issue about the use
of gradients in the velocity dispersion profiles as unequivocal signature of the pres-
ence of an Intermediate Mass Black Hole (IMBH) in globular clusters. High-precision
astrometric techniques with the HST has already made possible to use proper mo-
tions to measure the plane-of-the-sky rotation in globular clusters (Anderson & King
2003). The future mission GAIA will provide three-dimensional kinematical data of
stars in globular clusters, except for the center of very dense objects, where crowd-
ing might be a problem. Yet, even in such cases, the physical origin of a gradient
in the velocity dispersion profiles can be clarified with the help of new kinematic
data. In fact, on the one hand, the influence of a massive IMBH is expected to extend
nearly out to the half-mass radius of the globular cluster (Baumgardt et all 2005h),
and, on the other hand, a number of differentially rotating configurations studied in
the present Thesis show nontrivial gradients in the intermediate and outer parts of
the cluster, where the crowding should not be a problem. Models based on the use
of the Jeans equations seem to be less satisfactory in this respect, because, at least in
their most popular (nonrotating) application, they are used to reproduce variations
in the slope of the velocity dispersion profile of a system only by tuning the amount
of pressure anisotropy (e.g., see [Liitzgendorf et all 2011). The purpose of a study
in this direction is thus twofold: (i) on the observational side, we plan to apply the
rotating models to the interpretation of the kinematics of the central regions of clus-
ters that are claimed to host an IMBH, such as w Cen (Jalaliet all2012)) or NGC 6388
(Liitzgendorf et all 2011), in particular, we plan to estimate if a realistic amount of
internal rotation can mimic such signatures in the velocity space; (ii) on the theoret-
ical side, we will carry out a survey of N-body simulations of realistic star clusters,
characterized by either the presence of an IMBH or an appropriate amount of central
rotation, and we will perform synthetic observations of simulation snapshots, con-
sistent with the requirements of current HST and future GAIA observations (for a
similar approach, seeTrenti et all2010).

What is the appropriate dynamical interpretation of the “extra-tidal” lights? The
existence of structures in the surface brightness profile of Galactic and extragalac-
tic globular clusters extending beyond what is prescribed by spherical King models
is frequently reported (e.g., for recent studies of the structure and morphology of
globular clusters in the Milky Way, M31, NGC 5128 and M87, see [Jordi & Grebel
2010, Barmby et all 2007, Harris et all 2006, Madrid et all 2009, respectively). In this
context, spherical Wilson (1975) models, which are characterized by a different trun-
cation prescription in phase space, seem to be more successful than King models in
describing the photometric profiles of a significant fraction of globular clusters, espe-
cially in their outer parts (for a comparison of the two families of models on a sample
of globular clusters in the Local Group and in NGC 5128, see McLaughlin & van der
Marel 2005 and IMclLaughlin_et all 2008, respectively). Since the triaxial models de-
scribed in the present Thesis fully take into account the external tidal field, they are
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intrinsically more elongated than spherical King models, which simply heuristically
mimic the effect of tides, but neglect the relevant geometrical distortions. Therefore,
the triaxial models might be useful for interpreting this photometric feature and for
providing a proper dynamical interpretation of the tidal effects on the structure of
star clusters (e.g., see the recent application of the models to the globular clusters
in M87 by Webb et all2017). For this purpose, when possible, the use of high reso-
lution imaging from the HST combined with ground-based wide-field imaging and
detailed spectroscopic information is highly desirable in order (i) to accurately se-
lect stars, leading to a proper separation of members and interlopers; this selection
is critical to determine the true extension of the outskirts of a globular cluster; (ii) to
characterize the deformations induced by the external tidal fields over the entire ra-
dial extent of the stellar system; (iii) to detect the possible presence of tidal tails, to be
distinguished from nonspherical tidal structures made of stars energetically bound
to the cluster.

Escape from star clusters as self-consistent tidal models: As a star exchanges energy
with other single and binary stars in a cluster due to close and distant encounters, it
can reach an energy in excess of the escape energy and escape from the cluster. In
order to investigate the dynamical evolution of a cluster, it is necessary to understand
the rate at which this process takes place and the spatial distribution of the escapers
inside the cluster itself. Both quantities have been successfully modelled in the case
of clusters treated as isolated systems (for an summary, see Chap. 16 in[Heggie & Huf
2003). Besides, when a cluster is considered as limited by the tidal field of a galaxy,
the definition of escape becomes nontrivial. If the presence of the external tidal field
is properly modelled (as opposed to being treated in a simplified way by introducing,
for example, a spatial or an energy cutoff), stars can escape the cluster only through
the Lagrangian points of the galaxy-cluster system. It has been demonstrated that the
time needed for a star with an energy greater than the escape energy to flow through
one of the Lagrangian points and actually escape from the cluster is not negligible
Fukushige & Heggid (2000); Baumgardi (2001). In addition, stars on stable orbits
with energies above the escape energy exist and actually dominate the outer parts of
a cluster, with significant effects on the global observable velocity dispersion profile
Kiipper et all (20104d). Driven by these motivations, it may be interesting to extend
the analysis of the escape process to the case in which the perturbation induced by
the external tidal field is treated self-consistently, as in the models studied in Part I
of the present Thesis, with particular attention to the estimate of the relevant time
scale (as in[Fukushige & Heggid 2000) and spatial distribution of the escapers (as in
lohnstond [1993). Any result of this investigation will then require a comparison with
appropriate N-body simulations.

Self-consistent rigidly rotating tidally perturbed models: The families of non-
spherical models discussed in the present Thesis analyze the effects of internal ro-
tation and external tidal field on the structure of stellar systems only as separate
physical ingredients. A more realistic family of models should take into account the
presence of perturbations resulting from combined rotational and tidal effects. The
general case of a cluster in an external tidal field and characterized by internal ro-
tation about an axis with arbitrary orientation with respect to the direction of the
orbital angular momentum can be greatly simplified by assuming a circular orbit for
the cluster in host galaxy and rigid internal rotation about an axis parallel to the axis
of the orbital motion; to fully appreciate the perturbation induced by internal rota-
tion, the latter should be characterized by a different angular velocity with respect



to that of the orbital motion. In this case, a generalization of the family of spheri-
cal King models can be defined by using the relevant approximate energy integral
in an appropriate frame of reference. The perturbation method developed for the
construction of tidally perturbed models can be applied for the solution of the rele-
vant Poisson equation, provided that the deviations from synchronous conditions are
modest; the configurations should be characterized by a nontrivial geometry, with
reflection symmetry with respect to the equatorial plane. An similar physical and
mathematical problem arises in the determination of the structure of the equilibrium
configurations of a nonsynchronous circular binary star system, for which a general-
ization of the traditional Roche model has been presented (see [Kruszewski 1963 and
Limber [1963).
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APPENDIX A

Details of the perturbation method

A.1 The general equation

From the Taylor expansion about € = 0 of the right-hand side of Eq. @IJ), the structure
of the equations for w}(;m) (with k& > 2) can be expressed as:

k
[W + R (0| 0l = — [ TR (7 0) Xy | (A1)
j=2

where X, ; denotes the terms that arise from the derivatives of ) (7 €) with respect
to ¢, thus expressed as products of 1/)5"”) (with i = 1,..,k — 1). For fixed k and j, the
quantity X_; is thus a sum of products of wzgmt) with subscripts that are j-part partitions

of the integer k. Each product of z/;fmt) is multiplied by a numerical factor defined as the
ratio between k! and the factorials of the integers that are parts of the associated partition
(if an integer appears m times in the partition, the factor must also be divided by m!). In
particular, for k = 3 we have:

X320 =305 "™ and  Xg5 = (v, (A2)

because the 2-part partition of 3 is 2 4+ 1 and the 3-part partition is trivially 141+ 1, thus
the relevant equation is:

V24 Ry ()| ™ = —Ra(rs 9) 30 — R w) )L (AD)

Therefore, this formulation of the right-hand side of the general equation (together with
the term R (7 1)y on the left-hand side) brings in the Fad di Bruno formula (Faé di
Bruno [1855) for the k-th order derivative of a composite function in which the inner one
is expressed as a series in the variable with respect to which the derivation is performed.

A.2 The equation for the second order radial problem

The expansion in spherical harmonics of (z/JY’”))Q, which involves the product of two
spherical harmonics with [ = 0 or | = 2 (with m positive and even), can be performed
by means of the so-called 3-j Wigner symbols[l. Equation (Z33) thus corresponds to the

1For the definition of 3-j Wigner symbols and the expression of the harmonic expansion of the product of
two spherical harmonics, see, e.g.,[Edmondd (196(), Egs. (3.7.3) and (4.6.5), respectively.
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following set of six equations:

Doy = —Ra(73 ) == [0 + ({5)? + (53?2 (A1)

1
2,/
in 1 5 in in in in
D2¢2 ) = R2( )7\/; [\/—wl 3 QA 25 ( %,25))2_( %,25))2} ) (A.2)

Dyylihy) :—Rzoﬁ;\m% [wﬁf&? ¥i'5y — M {5y w%’é’] , (A3)
Dol :—Rgoﬁ;\m% 3430 + 51 Y;Z;))ﬂ , (A
Dytpyy) = —Ra(i \f ¥i'5e i (A.5)
Datii) = —Ra(f >2\/7EW (4175)° (A.6)

A.3 The asymptotic matching for the first order solution

To derive the first order solution, the matching between the pairs (1) ypllay)) and
(et 4p(lav)) requires that the internal (external) solution is expanded in a Taylor series
around 7 = 74, up to terms of order O((7# — #4,)?), expressed with scaled variables,
expanded up to O(€?), and re-expressed with non-scaled variables:

WO (,6,6) = v () = 08 (Gar) o = 7) + 568 G e — 77

oy
or

|00, 0,6) = (i, 0,0) (e~ 7) | e 4 308G 0,00 (AD)

Here the closed parentheses include either “int” or“ext”, to denote internal or external
solution, while the notation [ ]?) on the left-hand side indicates that a second order
expansion in € has been performed.

The boundary layer solution in the vicinity of = 0 up to O(n?), expressed with
non-scaled variables and expanded (formally) up to third order in € is given by:

[N (7,0, 8) = Fo(0, 6)(For — 7) + —
tr
+[G0(97 ¢) + Fl (97 ¢)(7:tr - 72)]6 + Gl (9a ¢)62 . (AZ)
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By equating equal powers of € and (7, — ) in (AJ)) and (A2), we find:

(") = 0 = ag- A (A3)

U ) = Fol6.0) = -3 (A4)

G ) =22 (A5)
{010,0) =Gol0.9) = -2 - T(;Ogi”
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where the equalities on the left-hand side arise from the matching of the pair () qpllay))
and identify the free angular functions (Z54)-(Z37), while those on the right-hand side
arise from the matching of the pair (¢(¢**) 1)(1%)). We also note that (AJ) is consistent
with the definition of the truncation radius and that (A0) is equivalent to (A4), because

from Eq. @Z24) we have: (mt) (Fer) = —(2/F )05 (Fiy).

The free constants (EEH) @&]I) are thus easily determined. For a given harmonic
(I,m) of Egs. (Af) and (A7), with [ > 1, the constants A;,,, and a;,,, are governed by the
linear system with ¢, 5 = 1, 2:

Mijuj =v;, (A9)

where the matrix M is given by

M= 0w i (A.10)
)i (D)D)

and the vectors are defined as (u1,u2) = (A, am) and (vi,v2) = =T (P ) (1, —2).
Such linear system (AJ9) is well posed, i.e. detM # 0.

To show this, we may integrate Eq (Z31)) for the regular solution, under the condi-
tions ;(0) = ~/(0) = 0:

i = [ U0+ 1) — Ry( )P (F)dr (A11)

In the vicinity of # = 0 the quantity Ry (7; ¥)7? is vanishingly small, so that, if the quan-
tity Ry (7; V)7? remains smaller than [(/ + 1), then the regular solution, starting positive
and monotonic, remains a positive and monotonically increasing function of 7. Indeed,
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we have checked that this condition occurs for [ > 2, because for ¥ € [0.5, 10] the quan-

tity Ry (7; ¥)7? has a maximum value in the range [4.229, 3.326]. Under this condition the

function g (7#) = ~/(7)7 + (I + 1)y(#) cannot change sign, so that detM = f't_r(“rl)m(ftr)

cannot vanish. This argument does not work for the case [ = 1, in which the function
w1 (7) does change sign at a point 0 < 7y < 7, but we have checked directly that the
property detM # 0 is satisfied also in this case.

Then expressions (Z62) and ([Z8&3) are easily recovered and we conclude that for the
harmonics that are not “driven”by the tidal potential T'(¥) the related a;,,, and A;,, must
vanish.

Similarly, for a given harmonic (I,m) with I > 1, Eq. @Z&4), which is obtained from
the second order matching, and Eq. (AS) can be cast in the form of Eq. (A9), with
(ui,u2) = (Bim,bim) and (vi,v2) = (—gim(Per), Per ) (Fer)). Therefore, the argument
provided above applies and we can conclude that for those harmonics for which the
particular solutions ¢;.,(7) are absent (or, equivalently, Eq. [Z33]] is homogeneous), the
constants B, and b;,,, must vanish. A linear system equivalent to (A.9) can be written
for a fixed harmonic (I, m) with [ > 1 of the solution of general order k and the same
argument applies. Therefore, we conclude that the k-th order term of the solution con-
tributes only to those harmonics for which the particular solutions are present.

A.4 The structure of k-th order term

Because we have noted (see argument introduced about the system [AJ]) that the k-
th order term of the solution has non-vanishing contribution only in correspondence of
those harmonics for which the component of Eq. (AJ) is non-trivial, the discussion about
the structure of the term reduces to the analysis of the structure of the expansion in spher-
ical harmonics of the right-hand side of that equation. Recalling that the harmonic ex-
pansion of the product of two spherical harmonics ({1, m1) and (2, m2) can be expressed
by means of 3-j Wigner symbols (see Edmondd {1960, Eq. [4.6.5]), we note that the com-
posed harmonic (I, m) must satisfy the following selection rules: (i) |l1 —lo| <1 <11 + 12
(“triangular inequality”), (ii) m;1 + ma2 = m, and (iii) /1 + 2 + [ must be even. The last
condition holds because in the cited expression the composed harmonic appears multi-
plied by the special case of the Wigner symbol with (l1,l2,1) as first row and (0, 0,0) as
second row. Bearing in mind that the first order term is characterized by harmonics with
[ = 0,2 and corresponding positive and even values of m and that the structure of the
right-hand side of Eq. (AJJ) can be interpreted by means of the partitions of the integer
k, it can be proved by induction that the k-th order term is characterized by harmonics
with [ = 0,2, ..., 2k and corresponding positive and even values of m.

A.5 Application to the case rigidly rotating models

The solution up to second order in terms of matched asymptotic expansions presented
in Sect. 2.4 can be adapted to the coase of the construction of rigidly rotating models
without great effort. In fact, with respect to the calculation presented in Sect. 2.4 only
two differences occur: (i) wherever the constant term —V?T = —9(1 — v) appears, it
must be replaced here by —V2C' = 18 (the sign is the same in the two cases, because
1 —v < 0), and (ii) thanks to axisymmetry, in the angular part of the Laplacian the
derivative with respect to the toroidal angle ¢ can be dropped and thus the terms of
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the asymptotic series (Z22)- (ZZ3) can be expanded by means of Legendre polynomiald]
instead of spherical harmonics. The latter property implies that the radial part of each
term of the asymptotic series is characterized by only one index, [, i.e. we can write

15)1 We note that the differential operator that appears on the left-hand side of the
relevant equations for the solution defined in the internal region is still D;, and thus also
the functions 7;(7) can be introduced in the same way as before. As to the equations
corresponding to @ZXI)-(Z33), the formal solutions of the equations in the boundary
layer, the angular functions F; and G; (with ¢ = 0, 1, 2) now depend only on the poloidal
angle 6. About the external solution, an expression analogous to (Z38) can be used, with
the particular solution given by xC instead of €I'. The centrifugal potential contributes,
as in the case of the tidal potential, only with monopole and quadrupole terms, explicitly:

Co() = —3v272 (A1)
Co(7) = 3\/?22 : (A.2)

Finally, as a result of the matching of the pair (/""" () up to second order, the
expressions for the angular functions (Z54)-@Z327) and Z64)-(Z63) are still applicable. In
addition, from the matching of the pair (y(!®%),1)°**) up to second order, we find that
the explicit expressions for the free constants follow Eqs. (Z58)-(Z63) and 6A)-CZT),
provided that we drop everywhere the index m and we replace 37Ty (7+-)/(2¢/7) with
3Co (i) /2 in @& and Too (7)) (v/7er) with 2Co(74,)/(v/274,) in @&T). Obviously,
the particular solutions fy and g; (with [ = 0, 2,4) are different from the ones obtained
in the tidal case, because the right-hand side of the relevant equations is different. Also
in this case, it can be proved by induction that the k-th order term has non-vanishing
contributions only for [ = 0,2, ..., 2k.

For completeness, we record the explicit expression of the second order equations in
the internal region:

in ~ 1 in in

Dovgy” = —Ra(3 ¥) 5 [157)° + 0157)°) (A3)
in ~ 10 7 in in in

Dy = —Ra(i 0= | vl i + i) (A4)
in ~ 3\/i in

Dagy") = —Ro( W)= (1y57)7. (A5)

We remark that the Legendre expansion of the product of two Legendre polynomials is
straightforward, because the 3§ Wigner symbols of interest all belong to the special case
with (0, 0,0) as second row.

2Following [Abramowitz & Stegurl ({{969), we use Legendre polynomials as defined in (22.3.8), i.e. with
Condon-Shortley phase, and normalized with respect to the relation (22.2.10). We remark that, although they
are structurally equivalent to zonal spherical harmonics, the normalization is different.






APPENDIX B

Details of the iteration method

B.1 General solution for the radial part of the Laplacian

The ordinary differential equation of second order expressed in Eq. Z82) can be eas-
ily solved by using the method of variation of the arbitrary constants, as the homoge-
neous solutions of the radial part of the three-dimensional Laplace differential operator
in spherical coordinates are well-known

! (B.1)
—(+), (B.2)

The method allows to find a particular solution characterized by the following structure

Yp = P1(P)y1(7) + @2 (7)y2(7) (B.3)

by imposing on the arbitrary functions ¢; e ¢, the condition that the function v, = y,,(7)
could be derived with respect to the radial variable as if the two arbitrary functions were
constants, i.e. by requiring that

@1 (P)y1(7) 4 o (7)y2(7) = 0. (B.4)

By substituing y, in Z82) and by making use of the condition expressed in Eq. (B2), a
second equation for ¢ e ¢} is recovered, therefore the following system must be solved

1 (P)y1 (7) + 5 (F)y2(7) = 0 o (B.5)
P ()Y (7) + @ (MY (1) = = 5557 P (7) '
Actually, it can be readily verified that a unique solution for such system exists, as the
determinant of the matrix of the coefficients of the system is the Wronskian W (#) of the
the two homogeneous solutions ¥; and y». By using the Cramer’s rule, it is easily found

that

’ia 9 (my a0 b2()
r)== m ")y (B.6)
o 9 )y
r)=—7 m \T ~ (B7)
where W (7) = — (21 + 1) /7%. Therefore, the particular solution y, can be written as:
P oa(n) 7
9 al Pi ) 1 / A2 5(N) (ary g7
=— - d B.
TR D) | / Pl . Pry, (F')d7 (B.8)

207



208 B.2 Numerical procedure for the construction of differentially rotating models

and the general solution of Eq. (Z82) is given by

U’l(;lm) (’F) = yl)(’ﬁv l7 m) + O‘lm'FZ + Blm'ﬁ_(H_l)- (Bg)

As for the function with [ = m = 0, by using the two conditions at the origin the con-
stants agg and [y are determined

ago =¥+

9 0 At A(N) A1\ 31
ﬁ(\I/)/ rpéo)(r )dr (B.10)

0
Boo = = / P oo ()i’ (B.11)
7o

therefore the function u((f(;) as expressed in Eq. (Z83) is now fully recovered. As for the

other functions charaterized by [ > 0 and any value of m, by using the second condition
at the origin (i.e., concerning the behavior of the radial derivative) and the condition at
large radii, the two constants assume the following expressions

9 /oo A11—1 A(R) f A1\ 747
Ay = —F——————— T P (7)dF (B.12)
G0 J, T )
By = = / Of’l+2ﬁ(”)(f’)df’ (B.13)
T+ D) o T '

which allow to reconver the the function ul(:;) as expressed in Eq. (Z84).

B.2 Numerical procedure for the construction of differentially rotat-
ing models

The construction of the equilibrium configurations for the families of differentially rotat-
ing models, defined by Eqs. ®23) and @24), has been performed by numerically solving
the relevant Poisson equation as a nonlinear equation for the unknown potential ¢. The
code which implements the iteration procedure described in Sect. starts with the
calculation of the “seed solution”, given by a selected spherical configuration from the
family of models that represent the limit in the case of vanishing internal rotation of
the family of interest (i.e., defined by Eqs. @.64) and @62, respectively). Such spherical
solution is used, in the first step of the iteration, to evaluate (by means of a Double Gaus-
sian Quadrature) the density distribution, given by pwr or ppr, on a spherical grid in
the meridional plane, defined by (r;,6;). The grid is linear in the radial coordinate and
the angular positions are defined by

0. — m(25 + 1)
T 4l7n,(l:v ’

(B.1)

where j =1, ..., 2l;pq0 + 1. Typically, we used = 300 radial steps and we set /4. = 21, in
order to have sufficient accuracy to describe the complex morphologies of the configura-
tions in the rapid and extreme rotation regimes. The discrete direct and inverse Legendre
transforms, required at each step of the iteration for the calculation of the density and
potential coefficients, defined by Eqs. @28)-@27), are performed (up to the order /,,q.)
by means of a package based on S2kit 1.0 by Kostelec & Rockmore (2004), which makes
use of FFTW 3.2.1 by Frigo & Johnston (2005). The Cauchy problems for the potential
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radial functions expressed in Eqs. @33)-@34) are evaluated by means of a numerical
integration with Romberg’s rule. The convergence condition for the solution at the n-th
step of the iteration is formally defined as

(n) (n—1)
wij - wij

<1073, (B.2)

v
for every i, j, where 1/)1(?) = ™ (ri,0;); about 10 (25) iteration steps are needed for the
construction of configurations characterized by low (high) values of . The accuracy of
the solutions found with our code has been checked by the following tests: (i) the virial
theorem is satisfied with accuracy of the order of 10~* or better; (2) the radial component
of the Jeans equation is satisfied with the accuracy of the order of 1072 or better; (3) the
asymptotic behaviors, both in the central and in the outer parts, of all the moments of
the distribution function are confirmed.
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