
Identifying, Relating, and

Evaluating Design Patterns for the

Design of Software for Synchronous

Collaboration

Claudia Iacob

Department of Computer Science

University of Milan

A thesis submitted for the degree of

Doctor of Philosophy

2012

To my father.

i

Abstract

Many working environments require that geographically distributed or co-

located work group members work together - supported by software - in

developing and refining one commonly shared resource in the same time.

In Computer-Supported Collaborative Work, this is defined as synchronous

collaboration. Domains subject to such type of collaboration are many,

some such examples are drawing, searching, text editing, or game solving.

Technology has helped switching from the real to the virtual, simplifying

such collaborative efforts and providing technological support for more effi-

cient and faster collaborations. Several software applications, developed as

either research projects or commercial products, exist and are used today in

synchronous collaborative settings in domains such as drawing, searching,

text editing, and game solving. In order to further support such develop-

ments, there is a growing need for knowledge capturing and sharing with

respect to the challenges and the concerns to be faced in designing such

tools. Surely, documentations of existing applications help, but it is only a

larger and perhaps more general repository of knowledge that would do a

better job.

Several approaches for building such repositories of knowledge exist, the ap-

proach this thesis is further exploring is design patterns. On one hand, I aim

at bringing methodological support to design pattern research in answer to

the scarce landscape of methods and techniques for both identifying design

patterns in interaction design and generating pattern languages based on

existing collections of patterns. I focus mainly on one area of interaction

design, i.e. the design of applications addressing synchronous collaboration,

and I target four domains in the area, i.e. drawing, text editing, searching,

and game solving. On the other hand, I am interested in better under-

standing how design patterns are used and what is the impact of using

them in collaborative design processes. I first focus on the collaborative

processes involving novice designers, aiming to correlate the findings from

this initial study with those obtained after investigating similar processes

involving experienced users of patterns.

This work primarily impacts design pattern research at a methodologi-

cal, theoretical, practical and empirical level. Secondarily, the findings

described throughout the thesis inform behavioural research and human-

computer interaction. At a methodological level, I describe two methods

addressing design pattern research; one is used for identifying design pat-

terns in interaction design, while the second one is used for generating pat-

tern languages out of existing collections of patterns. At a theoretical level,

I describe the results of applying the pattern identification method in the

area of synchronous collaboration, providing 15 design patterns addressing

the design of applications targeting this area. Practically, I developed a

software application able to support the semi-automation of the pattern

language generation method and the execution of queries on the output

of this generation process. At the empirical level, I present a case study

designed to bring some light into the matter of collaborative use of de-

sign patterns. The results of this case study aim at identifying strategies

novice designers develop while collaboratively using design patterns during

interaction design processes.

Acknowledgements

I would like to thank all those who have helped, guided, and inspired me

throughout this process. First and foremost, I would like to extend a huge

thank you to Thomas Herrmann, Corina Sas, and Paolo Bottoni for the

valuable suggestions and feedback on the thesis. Thank you!

I would also like to thank Daniela Fogli, Loredana Parasiliti Provenza,

Ernesto Damiani, and Piero Mussio for their willingness to support and

guide me through this work, providing me with lots of insights.

Many thanks to all the participants in the workshops for the inspiring ideas

and great designs and to Alessandra Agostini, Giuseppe Boccignone, and

Stefano Valtolina for the support.

It’s been great meeting and exchanging ideas with Nicole Schadewitz, Nina

Gellersen, Irmi Wachendorff, Travis Purrington (at the Swiss Design Net-

work 2010 workshop); Peter Baumgartner, Klaus Marquardt and the Euro-

PLoP2011 workshop participants - Christian Köppe, Reinhard Bauer, Dirk

Schnelle-Walka; Hanyuda Eiiti, Joseph Yoder, and the AsianPLoP2011

workshop participants - Eduardo B. Fernandez, Rebecca Rikner, David

West, Raj Datta; Kiran Kumar on the PLoP2011 submission; Elisa Giac-

cardi, Gerhard Fischer, Peter Forbrig, and the participants in the EICS2011

and ISEUD2011 DCs; Julie Zhu and all the DESIRE fellows; the group in

Bochum led by Thomas Herrmann; the student volunteers from Mobile-

HCI2010, ECSCW2011, and CSCW2012; all the participants in the two

DESIRE summer schools.

Thank you all, you’ve made this journey absolutely captivating!

La final, dar in primul rand, multumesc familiei mele fara de care nu as fi

scris azi randurile acestea.

Publications

The list of publications from this work includes:

• Iacob, C. 2012. Using Design Patterns in Collaborative Interaction

Design Processes. ACM International Conference on Computer Sup-

ported Cooperative Work (CSCW’12), pp. 107-110.

• Iacob, C. 2010. Design Patterns as Tools to Support Social Creativ-

ity and Knowledge Management in Collaborative Design Processes.

Journal of Information & Knowledge Management, World Scientific

Publishing Co., Vol. 10, No. 4, pp. 343-350.

• Iacob, C., Fogli, D. 2011. Connecting Patterns: An Ontology Ap-

proach to a Pattern Language Definition. ACM International Confer-

ence on Pattern Languages of Programs.

• Iacob, C., Damiani, E. 2011. On the Use of Design Patterns in Col-

laborative Design Processes. ACM International Conference on Cre-

ativity and Innovation in Design, DESIRE’11, pp. 245-254.

• Iacob, C. 2011. Strategies in the Collaborative Use of Design Pat-

terns. Collaborative usage and development of models and visualiza-

tions Workshop, ECSCW2011.

• Iacob, C. 2011. Scenario-Based Design in Design Pattern Mining. 18th

International Conference on Engineering Design (ICED2011), vol. 6,

pp. 1-10.

• Iacob, C. 2011. Designing Systems for Synchronous Collaboration:

From Collaborative Software to Design Patterns. 16th European Con-

ference on Pattern Languages of Programs (EuroPLoP2011).

• Iacob, C. 2011. Does Software Speak Creativity? Creative Processes

and Techniques in the Design of Software Applications. Create’11

Interaction Design Symposium.

• Iacob, C. 2011. A Design Pattern Mining Method for Interaction

Design. ACM SIGCHI Symposium on Engineering Interactive Com-

puting Systems (EICS2011), pp. 217-222.

• Iacob, C. 2011. Identifying, Relating, and Evaluating Design Pat-

terns for the Design of Software for Synchronous Collaboration. ACM

SIGCHI Symposium on Engineering Interactive Computing Systems

(EICS2011) (doctoral consortium) pp. 323-326.

• Iacob, C. 2011. Design Patterns in the Design of Systems for Cre-

ative Collaborative Processes. International Symposium on End-User

Development (IS-EUD2011) (doctoral consortium) pp. 359-362.

• Iacob, C. 2011. Mining for Patterns in the Design of Systems for

Synchronous Collaboration. Asian Conference on Pattern Languages

of Programs (AsianPLoP2011).

• Iacob, C., Zhu, L. 2010. From the Problem Space to the Web Space:

A Model for Designing Localized Web Systems. 9th International

Conference WWW/Internet 2010 (ICWI2010), pp. 112-119.

• Iacob, C., Mussio, P., Zhu, L., Barricelli, B.R. 2010. Towards a Pat-

tern Language for the Design of Collaborative Interactive Systems.

Workshop on Visual Formalism for Patterns, IEEE Symposium on

Visual Languages and Human-Centric Computing, EASST, Vol. 31.

• Iacob, C. 2010. Design Patterns and Web Interactive Systems for

Supporting Creative Collaborative Design Processes. DESIRE’10 -

Creativity and Innovation in Design (poster).

Contents

Nomenclature xvi

1 Introduction 1

1.1 Landscape: Research Context . 1

1.2 Gap: Research Motivation and Questions 6

1.3 Goals and Itinerary: Research Objectives and Overview 8

2 Related Work: CSCW, Design Patterns and Creativity 13

2.1 Computer Supported Cooperative Work 13

2.1.1 Classifications and Modes . 15

2.1.2 Design Challenges and Concerns 17

2.1.2.1 Technology Supporting CSCW 18

2.1.2.2 Coordination and Conflict 21

2.1.2.3 Communication . 23

2.1.2.4 Notifications and Awareness 23

2.1.2.5 Interruptions . 24

2.1.2.6 The Social Side of CSCW 25

2.1.2.7 Annotations . 26

2.1.2.8 Roles in CSCW . 28

2.2 Design Patterns . 30

2.2.1 History and Evolution . 30

2.2.2 Design Pattern Collections . 32

2.2.2.1 Urban and architectural design 33

2.2.2.2 Software engineering 34

2.2.2.3 Graphical User Interface (GUI) design 36

vii

CONTENTS

2.2.2.4 Collaborative applications 38

2.2.2.5 Social interfaces . 39

2.2.2.6 Usability . 41

2.2.2.7 Ubiquitous computing 42

2.2.2.8 Interactive exhibits . 42

2.2.2.9 Accessibility . 43

2.2.3 Template Definitions of Patterns 43

2.2.4 Design Patterns versus Guidelines 52

2.2.5 Design Pattern Mining Methods 53

2.2.6 Documented Uses of Design Patterns 54

2.2.7 From Patterns to Pattern Languages 56

2.3 Creativity in Software Design . 59

2.3.1 The Creative Process - History and Evolution 59

2.3.2 Creative Techniques in Software Design 61

2.3.2.1 Scenario-based Design 61

2.3.2.2 Sketches . 62

2.3.2.3 Mockups . 63

3 Synchronous Processes: Motivation and Tool Support 68

3.1 Collaborative Drawing . 68

3.1.1 Synergo . 69

3.1.2 NetDraw . 69

3.1.3 CO2DE . 70

3.1.4 LucidChart . 73

3.1.5 DeTransDraw . 73

3.2 Collaborative Searching . 73

3.2.1 CoSearch . 75

3.2.2 Coagmento . 76

3.2.3 SearchTogether . 79

3.2.4 Cerchiamo . 81

3.2.5 VisSearch . 81

3.2.6 AntWorld . 83

3.2.7 WeSearch . 83

viii

CONTENTS

3.3 Collaborative Text Editing . 85

3.3.1 TellTable . 87

3.3.2 CodoxWord . 88

3.3.3 EtherPad . 88

3.3.4 GoogleDocs . 91

3.4 Collaborative Game Solving . 91

3.4.1 Mystery at the Museum . 93

3.4.2 Collaborative Puzzle Game . 93

3.4.3 SIDES . 95

3.4.4 STARS . 97

4 Identifying Patterns: A Collection of Patterns for the Design of Syn-

chronous Applications 98

4.1 Definition of a Design Pattern . 99

4.2 Design Pattern Mining Method . 102

4.2.1 Design Workshops . 104

4.2.2 Mining Method . 105

4.3 The Method Applied . 107

4.3.1 Mining through Design Workshops 107

4.3.1.1 Problems . 107

4.3.1.2 Participants . 108

4.3.1.3 Procedure and Results 110

4.3.1.4 Design Issues Identified 118

4.3.2 Mining through Synchronous Applications Analysis 125

4.4 The Patterns Identified . 131

4.4.1 Who is the coordinator? . 131

4.4.2 Integrated chat . 134

4.4.3 Eyes wide open . 136

4.4.4 Choose your collaborators . 139

4.4.5 Collaboration, always social . 141

4.4.6 My contribution . 143

4.4.7 Track history of collaboration 144

4.4.8 With or without collaboration 146

ix

CONTENTS

4.4.9 Annotate . 148

4.4.10 Collaborative undo . 150

4.4.11 Support versioning . 152

4.4.12 Shared summary . 154

4.4.13 Adapt application to device . 156

4.4.14 Customize collaboration . 159

4.4.15 Resume collaboration . 161

5 Relating Patterns: From the Collection to the Language 165

5.1 Definition of a Pattern Language . 165

5.2 Representing and Visualizing Pattern Languages 168

5.3 Pattern Language Generation Method 170

5.3.1 Concept Identification . 171

5.3.2 Relationship Identification . 173

5.3.3 Pattern Language Generation 174

5.3.3.1 Design Issue Language Generation 174

5.3.3.2 Pattern Language Generation 176

5.3.4 Overall Process . 177

5.3.4.1 Associated-to vs. Related-to 179

5.4 The Method Applied . 180

5.4.1 Identifying Concepts . 180

5.4.2 Identifying Relationships . 181

5.4.3 Generating the Pattern Language 181

5.5 Human Intervention and Automation in the Pattern Language Generation182

5.6 Tool Support . 185

5.6.1 Identified Requirements . 185

5.6.2 Scenarios of Use . 186

5.6.3 Design Considerations . 188

5.6.3.1 Data Representation 188

5.6.3.2 Pattern Language Generation 190

5.6.3.3 Pattern Language Querying 191

5.6.3.4 Graphical User Interface 195

5.6.4 Testing . 197

x

CONTENTS

5.6.4.1 Case 1: Synchronous Collaboration 198

5.6.4.2 Case 2: GUI Design 201

5.6.5 Open Points and Ideas for the Next Iteration 204

6 Evaluating Patterns: Impact and Strategies in the Collaborative Use

of Design Patterns 206

6.1 Objectives and Rationale . 206

6.2 Method . 209

6.2.1 Procedure . 209

6.2.2 Problems . 211

6.2.3 Participants . 212

6.2.4 Measures . 213

6.3 Results . 217

6.3.1 Direct Observation . 217

6.3.1.1 Team no. 1 - Markers 218

6.3.1.2 Team no. 2 - Selectiveness 218

6.3.1.3 Team no. 3 - Misunderstandings 219

6.3.1.4 Team no. 4 - Confirmations 219

6.3.1.5 Team no. 5 - Minimal use 220

6.3.1.6 Team no. 6 - Fundamental problems 221

6.3.1.7 Team no. 7 - Inspiration 222

6.3.1.8 Team no. 8 - Pattern-driven 222

6.3.1.9 Team no. 9 - Confidence 223

6.3.1.10 Team no. 10 - End cycle filters 223

6.3.1.11 Team no. 11 - Redundancies 224

6.3.1.12 Team no. 12 - Division of work 224

6.3.1.13 Team no. 13 - One (pattern) solves all (problems) . . . 225

6.3.1.14 Team no. 14 - Pattern mash-up 226

6.3.1.15 Team no. 15 - Turnarounds 226

6.3.1.16 Team no. 16 - Understanding the domain 226

6.3.1.17 Team no. 17 - Refactoring 227

6.3.1.18 Team no. 18 - Pattern taxonomy 227

6.3.2 Questionnaire Results . 229

xi

CONTENTS

6.3.2.1 Understandability . 229

6.3.2.2 Usage . 229

6.3.2.3 Modifiability . 231

6.3.2.4 Overall Feedback . 233

6.3.3 Transcripts . 234

6.3.3.1 Atomic Actions . 234

6.3.3.2 Action Sequences . 249

6.4 Discussion . 256

6.4.1 Perceived Behaviour vs. Actual Behaviour 256

6.4.2 Strategies Identified . 262

6.4.2.1 Customize Pattern Identification 262

6.4.2.2 Signal Patterns . 262

6.4.2.3 Search – Analyse - Apply 263

6.4.2.4 The Pattern Collection as a Checklist 263

6.4.2.5 Patterns as Startup Tools 264

6.4.2.6 Patterns as Source of Inspiration 264

6.4.2.7 Mark the Use . 264

6.4.2.8 What do you mean? 265

6.4.2.9 Beyond Patterns . 265

6.5 Implications . 265

6.6 Threats to Validity . 269

7 Conclusions: Summary, Contributions, Future Directions 271

7.1 Summary of the Thesis . 271

7.2 Contributions and Discussion . 275

7.3 Future Research Directions . 280

Glossary 283

References 283

Appendix 1 - Urban and architectural design patterns proposed by Christo-

pher Alexander 295

xii

CONTENTS

Appendix 2 - A collection of patterns for usability of web applications

proposed by Ian Graham 302

Appendix 3 - Language Generation Test Case 1 - Synchronous Collabo-

ration 304

.1 The Design Issues Map, DIM . 304

.2 The set of Keywords, K . 308

.3 The Keywords Map, KM . 311

Appendix 4 - Language Generation Test Case 2 - Web Design 318

.4 The Design Issues Map, DIM . 318

.5 The set of Keywords, K . 320

.6 The Keywords Map, KM . 323

Appendix 5 - Design Pattern Evaluation Questionnaire 327

Appendix 5 - Statistics in the evaluation workshops 331

xiii

List of Figures

1.1 The Map: Overview of the Thesis . 9

2.1 Groupware classification according to the two dimensions of a collabo-

rative process: time and space [50] . 15

2.2 Travel together design pattern from [94] - part 1 45

2.3 Travel together design pattern from [94] - part 2 46

2.4 Snapshot of Balsamiq - a tool supporting mockup creation 65

2.5 Snapshot of Mockingbird - a web-based tool supporting mockup creation 66

3.1 Synchronous drawing in NetDraw - a Java application providing 2D

collaborative drawing features in a client-server architecture [80] 71

3.2 Synchronous drawing in CO2DE - a collaborative drawing tool which

supports the creation of diagrammatic representations [73] 72

3.3 Synchronous drawing in LucidChart - a web tool which supports the col-

laborative drawing of diagrams such as UML diagrams, and flow diagrams 74

3.4 Synchronous searching in CoSearch - a searching tool which supports

co-located collaborative Web search [11] 76

3.5 Synchronous searching in Coagmento - a tool able to support collabora-

tive information seeking on the Web [97] 78

3.6 Synchronous searching in SearchTogether - a tool which enables both

synchronous and asynchronous remote collaboration in web search [84] 80

3.7 Synchronous searching in VisSearch - a collaborative Web searching ap-

plication which supports sharing Web search results among people with

similar interests [112] . 82

xiv

LIST OF FIGURES

3.8 Synchronous searching in AntWorld - an application which has as goal

making it easier ”for the members of a common-interest user group to

collaborate in searching the Web” [74] 84

3.9 Synchronous searching in WeSearch - a tabletop application which sup-

ports collaborative Web search among groups of up to 4 collaborating

users [85] . 85

3.10 Synchronous text editing in TellTable - a collaborative text editing tool

used by running the application on a server and allowing users to access

it from a java-enabled web browser [6] 89

3.11 Synchronous text editing in CodoxWord - a real time sharing and group

editing tool . 90

3.12 Synchronous text editing in EtherPad - a web-based collaborative real-

time editor . 92

3.13 Synchronous game solving in M@M - a synchronous collaborative game

meant to engage visitors in museum exhibits and to encourage them to

collaborate in solving a detective problem [61] 94

3.14 Synchronous game solving in CPG - a tabletop interactive game address-

ing children with Autism Spectrum Disorder[20] 95

3.15 Synchronous game solving in Sides [78] - a collaborative multi-player

tabletop puzzle-style computer game 96

4.1 Synthesis map of the scenarios collected from the first workshop 113

4.2 Partial results of the illumination phase - Mockup for a collaborative

search application . 119

5.1 Concept Identification Flow . 173

5.2 Relationship Identification Flow . 174

5.3 Illustrating the rule used for identifying relationships between design issues175

5.4 Design Issue Language Generation Flow 176

5.5 Pattern Language Generation Flow . 176

5.6 Pattern Language Generation Overall Flow 178

5.7 GUI of the tool supporting in querying the pattern language obtained

as result of applying the pattern language generation method 196

xv

LIST OF FIGURES

5.8 A glimpse of the method application - design issues, keywords, the DIM

and KM sets . 199

5.9 A pattern language for the design of synchronous collaborative systems 200

5.10 A pattern language for the design of GUIs for web systems 203

6.1 Evaluation workshops - Paper card representation of patterns 210

6.2 Evaluation workshops - Team member distribution 212

6.3 Understandability and usefulness rates for each of the patterns 230

6.4 Degree of usage (in percentage) of each pattern for specific actions . . . 232

6.5 Transcripts results of the evaluation workshops - Distribution of the

codes (% of codes) . 247

6.6 Frequency matrix in the transcripts results of the evaluation workshops

- Percentage of action A followed by action B 250

6.7 Questionnaire results - Use rate for each action 258

6.8 Transcripts results - Code frequency for each action 259

6.9 Mapping the questionnaire actions to the coding actions 260

1 Frequency Matrix - Z-values for the sequences of codes considered in the

evaluation workshops . 331

2 Frequency Matrix - Probability values for the sequences of codes con-

sidered in the evaluation workshops . 332

xvi

Chapter 1

Introduction

The goal of this thesis is twofold. On one hand, I aim at bringing methodological

support to design pattern research in answer to the scarce landscape of methods and

techniques for both identifying design patterns in interaction design and generating

pattern languages based on existing collections of patterns. I focus mainly on one area

of interaction design, i.e. the design of applications addressing synchronous collabo-

ration, and I target four domains in the area, i.e. drawing, text editing, searching,

and game solving. On the other hand, I am interested in better understanding how

design patterns are used and what is the impact of using them in collaborative design

processes. I first focus on the collaborative processes involving novice designers, aiming

to correlate the findings from this initial study with those obtained after investigating

similar processes involving experienced users of patterns.

1.1 Landscape: Research Context

Many working environments require that geographically distributed or co-located work

group members work together - supported by software - in developing and refining one

commonly shared resource in the same time. In Computer-Supported Collaborative

Work, this is defined as synchronous collaboration. Domains subject to such type of

collaboration are many, some such examples are drawing, searching, text editing, or

game solving.

1

• Architects, graphic designers, artists and even software analysts often gather to-

gether round the same table, sketching their ideas through drawings, diagrams,

and sketches, negotiating and discussing based on them. These processes are

highly collaborative since their complexity exceeds the capabilities of one sin-

gle individual and requires the collaboration with others [43]. Moreover, such

processes often require the presence of all those involved.

• Searching, on the other hand, has long been portrayed as an individual activity -

each individual querying a topic, without any intervention from others. However,

in the absence of collaborative means for searching, librarians, researchers or even

groups of individuals - interested in, for example, planning a trip together - have

come up with various workarounds to turn searching into a collaborative task [84].

Emails with intermediate search results sent back and forth between members of

a group or instant messaging throughout a searching session are a few examples

of such workarounds. Recent studies have identified other such strategies and

researchers have started showing a large interest in the direction of collaborative

synchronous search [85], [84], [97].

• Text editing seen as a collaborative activity is not a surprise for anyone. Whether

it is a collaborative paper writing effort [6], or a collaborative activity of creating

the summary of a lecture, text editing processes require the jointly development

and refinement of one resource (the edited document) by more people. Often

collaboratively edited documents are sent back and forth among the contributors

via e-mail or other such means, leading to what Adler et al. define as ”crude

asynchronous manner for jointly editing office suite documents” [6]. The con-

sequences of such working strategies could easily lead to inconsistencies in the

document and confusion among those who edit it. In addition to that, having

each contributor working on his/her own version of the document, makes the

problem of integration of all contributions even more complex. In answer to

that, both research and industry have focused on collaborative synchronous text

editing, as well.

• Game solving is probably one of the best examples of synchronous collaboration.

Played for entertainment or as competitions, games bring together round the

2

same board more players all having the same goal in mind - reaching the solution

of the game. Consider, for example, a group of friends trying to solve a puzzle

together. They have a common goal - that of reaching a complete puzzle - and

several constraints - there is only one puzzle they are building together and the

pieces forming the puzzle are available to all of them. They all share the puzzle

board, gradually reaching the final solution of the game. In a similar line of

thought, consider crossword solving. The goal in collaborative crossword solving

is reaching a complete filled in crossword and the game is open to contributions

from more than one player. Therefore, the crossword board is shared, each con-

tributor being allowed to add something to it. Due to their character, games are

most often played in the presence of all the players involved.

Technology has helped switching from the real to the virtual, simplifying such

collaborative efforts and providing technological support for more efficient and faster

collaborations. However, most research and development of technology to support col-

laboration has been directed towards asynchronous collaboration contexts [72] in which

collaborators work together, but not in the same time, time not being an issue. There-

fore, today, there is a growing interest in supporting synchronous interaction, as well.

Throughout this work, synchronous collaboration refers to both co-located and remote

collaboration. Surely, there are differences between the two and these differences could

bring to light various other challenges, but these are beyond the scope of this the-

sis. Several software applications, developed as either research projects or commercial

products, exist and are used today in synchronous collaborative settings in domains

such as drawing, searching, text editing, and game solving. In order to further support

such developments, there is a growing need for knowledge capturing and sharing with

respect to the challenges and the concerns to be faced in designing such tools. Surely,

documentations of existing applications help, but it is only a larger and perhaps more

general repository of knowledge that would do a better job.

In requirements engineering, the requirements of particular software applications

are captured through structures such as use cases or task descriptions. While a use

case describes a dialogue between the user and the system, modelling the interaction

provided by the system, a task description defines what the user and the system do

3

together [66]. A task description details the problem for which a solution is needed;

customers may come up with solution examples in terms of what the system might

do. On the other hand, a use case can only describe those problems for which the

analyst can illustrate a solution. Moreover, use cases do not distinguish between the

requirements and the solution.

During design phases, several approaches for capturing knowledge are used today,

even if documenting knowledge is often considered a resource-intensive process often

skipped or performed inadequately [113]. Guidelines are an example of structures

which help capturing design knowledge and support the establishment of a clear design

process. Formal and semi-formal models such as UML diagrams are used for modelling

the central design-knowledge artefacts explicitly. Such models can be further used to

generate code through model-driven software development or other similar techniques.

Documentation regarding design rationale and design-decision is, in some cases, added

to the system documentation. Also, techniques for reverse engineering of existing sys-

tems capture design knowledge embedded in such system. Using design patterns as

tools to capture and share knowledge is common to both software engineering and de-

sign.

The approach this thesis is further exploring is design patterns. The concept was

initially defined in architecture [7], [9] as a tool for documenting best practices in the

area of urban design. The idea was soon adopted by other fields, including software

engineering and Human-Computer Interaction (HCI), and more particular interaction

design. The main idea behind the concept of design pattern has not changed across

fields, even if the template of defining patterns and their audience may differ from one

field to another. Software engineering uses design patterns to express Object-Oriented

software design practices. Such patterns address communities of OO software devel-

opers and are defined in a code-oriented manner, being always accompanied by the

snippet of source code which illustrates the application of the pattern. An example of

such a pattern is Singleton which describes with illustrative code examples the solu-

tion for enforcing a class to have only one instance. The complete list of the patterns

described in software engineering is further provided in Section 2.2.

4

Interaction design views patterns as ways to ”document best practice solutions to

support user interface designers in their daily work in order to improve their productiv-

ity and make the design process more efficient” [64]. The audience of interaction design

patterns, i.e. design patterns1 are communities of designers focused on graphical user

interface (GUI) and interaction design. A design pattern is defined by a problem, the

proven solution to tackle the problem and any other relevant information which would

make this pair (problem, solution) understandable. Several areas of interaction design

have been subject to being documented through patterns, some example including web

design [103], social interfaces [30], accessibility [45]. Collaboration is not an exception,

patterns for designing for collaboration have been written by Schadewitz et al. [90], or

Lukosch and Schummer [94]. While Lukosch and Schummer look at collaboration from

a technological perspective (considering issues such as letting users identify themselves

before using an application, rewarding positive participation of groups, allowing users

to collaborate over the use of files), addressing the design of applications which support

collaboration, Schadewitz et al. take a different stand, addressing behavioural patterns

in cross-culture collaboration. None of the available collections of patterns specifically

address synchronous collaboration.

A particularly interesting aspect related to design patterns is that they may act as

boundary objects [100], [26], [99] in that they support the interaction with, negotia-

tion around and building upon an idea [41]. Design patterns facilitate communication

among collaborating designers, mediating communication gaps. For example, faced

with a challenging task, designers may turn to patterns in order to make themselves

understood to one another, to explain each other concepts and to identify the problems

to be faced and their proposed workarounds.

Usually, a collection of patterns contains inter-related patterns. Since patterns

document proven solutions to recurring design problems [22] and design problems are

never isolated, the patterns documenting them are not defined in isolation one from an-

other. A structure formed of a collection of patterns and all the relationships between

these patterns is defined as a pattern language [8]. The interesting thing about pat-

tern languages is that they help pattern users navigate within a collection of patterns

1Throughout this thesis, design patterns will refer to interaction design patterns.

5

and better understand the area the collection addresses. An isolated pattern brings

valuable insight about a specific problem, but it does not necessarily support moving

beyond that and understanding the implications of applying the solution proposed for

it. This is precisely where the pattern language comes into place, connecting the dots

and allowing one to easily grasp the relationships between patterns.

There are several scenarios in which this is helpful. First, patterns are written

with the purpose of capturing knowledge. Grasping and understanding this knowledge

asks for unfolding the individual concepts and the relationships between them. Hence,

traversing the collection supported by an underlying logic helps creating representa-

tions of the area addressed by the collection. Secondly, patterns are written with the

purpose of describing recurring problems and proven solutions to tackle them. Hence,

their goal is to support designers in reusing proven solutions and not having to rein-

vent the wheel. Using a solution, however, does not always limit to that and often

asks for considering related problems as well. Support in finding such related problems

is brought by the relationships between the patterns documenting them. Lastly, pat-

terns are written with the purpose of sharing knowledge helping to build an integrated

repository of knowledge. Adding to such a repository asks for connecting newly ac-

quired knowledge to the existing base, such connections needing to be explicit. Pattern

languages are by definition such structures, allowing the identification of relationships

between different bodies of knowledge.

1.2 Gap: Research Motivation and Questions

A closer look at the existing collections of patterns brought to light several limitations

with respect to design pattern research. Some of these limitations are addressed by this

thesis and they include:

1. The process followed by pattern writers for identifying patterns is rarely de-

scribed. At a closer look, the methodological landscape with respect to pattern

mining is scarce and rarely subject to generalization. The lack of structured

methods to be used in identifying patterns for interaction design pointed to an

6

open research question: How to identify design patterns for interaction design?

Further on, the definition of such methods needs evaluation cycles able to sup-

port the evolution and optimization of the method itself. Such evaluation cycles

should target different areas of interaction design and, possibly, a comparative

analysis of the method’s application across such areas. In order to add to the

already existing collections of patterns addressing collaborative application de-

sign and for answering the lack of a collection specifically addressing synchronous

collaborative applications, one such evaluation cycle would need to consider the

area of synchronous collaboration.

2. Most of the existing collections of patterns are described together with the re-

lationships identified between these patterns. Such structures are called pattern

languages. Even if most of the authors present their patterns in the form of a

language - connecting the patterns and sometimes describing the relationships

identified between them - none of them describes the process followed to get to

these relationships. This creates the need for the definition of a method to sup-

port pattern authors in automatically generating a language out of a collection

of patterns. Therefore, an additional research question addressed by this thesis

is: How to generate pattern languages from collections of design pattern?

3. The methodological support needs to be accompanied by tool support able to

make the application of such methods easier and more efficient. Only a close

analysis of the method can provide the requirements for a tool to support its

application. However, the general question to be addressed is: What tool support

is needed for the application of the methods described above?

4. There is an abundance of available collections of design patterns. One might ask

how these patterns are used and, moreover, by whom. The few studies run in this

direction brought to light some valuable findings. However, due to the empirical

character of such work, many more inquiries need to be investigated and, possi-

bly, answered in order to frame an understanding of the behavioural strategies

7

developed by pattern users and of the impact of using patterns in the first place.

Some such inquiries include: How are design patterns used in collaborative design

processes?, How do designers perceive the use of design patterns in collaborative

design processes?

1.3 Goals and Itinerary: Research Objectives and

Overview

Surely, answering all the questions addressed previously requires long-term collabora-

tive efforts. The goal of this thesis is to address some of these questions and possibly

suggest others; therefore, in this section I point out how far the present work goes,

what goals it tries to accomplish and what issues it leaves open (Figure 1.1). A more

detailed discussion on the contributions brought by this thesis is presented in Section

7.2. In a first instance, I go through existing literature in order to identify and frame

the landscape of the work related to what this thesis addresses. The literature review

focuses mainly on three areas: CSCW, design patterns and creativity in software de-

sign. With respect to CSCW, I look into the major challenges collaborative contexts

impose to the design of software applications able to support such contexts. Surely

such a list could very well stand for the topic of a brand new thesis and it is for that

reason that my interest mainly relates to those challenges covered by the work I present

further on in the thesis.

In terms of design patterns, I provide a bit of historical background able to clarify

how the concept came to life and how it was further adopted. I look into available

definitions of design patterns and collections widely known in various domains and

design areas. Also, I describe work done in providing methodological support in iden-

tifying design patterns and in empirical research aiming to investigate the usage of

design patterns in actual design processes. Since design patterns are rarely defined

in isolation, most of the authors structuring them in pattern languages, I look into

the concept of pattern language and in ways to generate such structures from existing

pattern collections.

8

Introduction

CSCW

Design Patterns

Creativity in Software Design

Related Work

Landscape: Research Context

Gap: Research Motivation and
Questions

Goals and Itinerary: Research
Objectives and Overview

Synchronous Processes: Motivation
and Tool Support

Collaborative Drawing

Collaborative Searching

Collaborative Text Editing

Collaborative Game Solving

Identifying Patterns: A Collection of
Patterns for the Design of Synchronous

Relating Patterns: From the Collection to the
Language

Evaluating Patterns: Impact and Strategies in
the Collaborative Use of Design Patterns

I started by framing the landscape I am looking into and this comprises three major
areas: CSCW, design pattern research, and creativity in design.

I am particularly interested in design patterns for the design of applications which
support synchronous collaboration. It is for this reason that I dedicate the third
chapter to the domains of synchronous collaboration I am addressing throughout this
thesis. I am mainly referring to drawing, text editing, searching, and game solving,
providing for each of these domains the motivation for choosing it and the detailed
descriptions of the tools existing out there which support users working together in
each of these domains.

Definition of a Design Pattern

Design Pattern Mining Method

The Method Applied

The Patterns Identified

Definition of a Pattern Language

Representing and Visualizing
Pattern Languages

Pattern Language Generation
Method

The Method Applied

Objectives and Rationale

Method

Results: Direct Observation,
Questionnaires, Transcripts

Discussion

Human Intervention and Automa-
tion in the Pattern Lg. Generation

Tool Support

Implications

Threats to Validity

I first asked how are patterns identified in interaction
design and I defined a structured method for such a
purpose, making use of the limited results of the
literature review as well. The method is defined as a
two-step process which uses both a) the results of a
series of workshops organized with designers and b)
the results of the analysis of a set of applications
addressing the area of the pattern mining. Both sets
of results are considered in identifying the most
recurring design issues in such design processes.
These recurring issues are further documented in
the form of design patterns, being validated by
similar patterns described in the literature. To
summarize, I identified 15 patterns after running 9
workshops with 50 participants and analysing 20
software applications.

Next, I defined a method for identifying relationships between the
patterns in an existing collection. The main idea behind refers to
representing the domain the patterns address in the form of an ontology,
identifying the set of concepts defining it and the relationships between
these (less abstract) concepts. Such a representation further triggers the
generation of a pattern language structure. In my attempt of applying the
method, I realized that much of the process is subject to automation.
Therefore, I proceeded to the design and the implementation of a
supporting tool able to automatically apply the method and output as
result a pattern language. This tool also allows querying the pattern
language structure, resembling a search engine only that a search engine
localized to the repository of patterns represented by the language. In
testing the tool I used two collections of patterns.

The results of the case study described in Chapter 5
provide some insight into the matter of using design
patterns. The study aimed at measuring how under-
standable patterns are for novice designers and then,
investigate how they use patterns in collaborative design
processes. 18 teams participated in the study, using the
collection of patterns described in Chapter 3.

Summary of the Thesis

Contributions

Future Research Directions

Conclusions

2

3

4 5 6

7

1

Figure 1.1: The Map: Overview of the Thesis

9

Introduction/IntroductionFigs/Tmap.eps

Much of the work described in this thesis revolves around interaction design pro-

cesses. In order to support and possibly enhance such processes, I look into creative

techniques and models documented in the literature and able to fit the context of soft-

ware design. Some of the techniques investigated (i.e. scenario-based design, mockups,

and sketches) are used further on during the data collection phases described by this

thesis. Even if not directly related to the results obtained through this work, creative

techniques and models helped shape the methodology used in getting to these results.

The discussion on creativity and its impact on the work presented in this thesis con-

cludes the literature review and opens the way to the third chapter, entirely dedicated

to the synchronous processes of interest to this work.

Since I am particularly interested in four domains subject to synchronous collab-

oration (namely drawing, searching, text editing, and game solving), in Chapter 3,

I describe the motivation for choosing each of these domains. Moreover, I look into

the efforts developed in implementing software applications to support synchronous

collaboration in each of these domains. I briefly describe a subset of these efforts as a

collection of 20 applications - commercial products or research projects.

As the title of the thesis suggests, the core of this work revolves around three major

goals: 1) identifying, 2) relating, and 3) evaluating design patterns. Each goal is further

discussed in a separate chapter, as follows:

1. Chapter 4 describes a method - together with the process of its application -

for identifying design patterns in interaction design. The method is defined by

both a series of workshops involving designers asked to design applications in the

area of the pattern mining and an analysis of a collection of software applica-

tions supporting the area targeted by the mining. The workshops bring together

teams of designers and a facilitator. Provided with a design task, the design-

ers are observed in action and the design issues they address are collected. The

application analysis aims at identifying those design issues recurring in the im-

plementations of these applications. The overall aim of the method is to identify

those commonly recurring design issues in both the design processes followed by

designers and in actual implementations already running and used. I describe

10

the application of the method in the area of synchronous collaboration and the

results of this application, i.e. a collection of 15 design patterns.

At a methodological level, I used design workshops for several reasons. On one

hand, I aimed at observing the participants involved in the workshops in action.

That allowed them to focus entirely on the design task and not feel the burden of

remembering or abstracting previous or present design tasks. On the other hand,

the design issues discussed by them were brought to light without any external

bias and they were not required to analyse their process, but just follow it. Hence,

their focus was on the task itself and not on the final goal of the whole study -

i.e. identifying patterns. In addition to that, during the workshops the partic-

ipants were encouraged to use several creative techniques able to support them

in exploring and externalizing their ideas and design options - scenario-based de-

sign supported the design space exploration, while sketching and mockups helped

them externalize their ideas and communicate based on them.

2. Chapter 5 describes a method - together with the implementation of a tool to

support the method’s application - for relating the design patterns in a collection.

The method aims at building an ontology for representing the domain addressed

by the collection of patterns and triggering the generation of a structure com-

prising these patterns and the relationships between them on the basis of this

ontology-based representation. Applying the method on the collection of pat-

terns described in Chapter 4 brings to light several areas subject to automation.

As result of that, I designed and implemented a tool able to generate a pat-

tern language from an existing collection of patterns using the method described

above and to support the execution of queries on the result of this generation pro-

cess. As test cases for the tool, I use two already existing collections of patterns,

addressing two different design areas - synchronous collaboration and GUI design.

3. Chapter 6 describes a case study aiming to evaluate the usage of design pat-

terns in collaborative design processes involving novice designers. For that, I

run a series of design workshops during which I ask teams of novice designers

11

to use design patterns in their design processes. My interest is to identify the

strategies the teams use in working with the patterns and to assess the impact

using the patterns has on the overall design process, both in terms of how the

teams perceived it and how it is actually captured through the transcripts. The

patterns used during the workshops are those identified and described in Chap-

ter 4. The reason for this is two-fold. On one hand, I aimed at evaluating the

patterns themselves through the workshops and based on the feedback received

from the participants I rewrote and clarified their content. On the other hand, the

collection has a medium size and fits well the context designed for the workshops.

A summary of the thesis together with a detailed discussion on the contributions

provided by this work and the future directions brought to light by it are addressed in

the last chapter.

12

Chapter 2

Related Work: CSCW, Design

Patterns and Creativity

This chapter goes through existing literature in order to identify and frame the land-

scape of the work related to what this thesis addresses. The literature review focuses

mainly on three areas: CSCW, design patterns and creativity in software design. With

respect to CSCW, I look into the major challenges collaborative contexts impose to

the design of software applications able to support such contexts. In terms of design

patterns, I am interested in documented methods for identifying and relating patterns

and in studies run for understanding how patterns are used. Moreover, since much of

this thesis covers interaction design processes, I also look into creative techniques and

models documented in the literature and able to fit the context of software design.

2.1 Computer Supported Cooperative Work

Back in 1988, the originators of the term ”Computer Supported Cooperative Work”,

Irene Greif and Paul Cashman, commented that they ”coined the phrase partly as a

shorthand way of referring to a set of concerns about supporting multiple individu-

als working together with computer systems” [49]. However, this loose description,

as noted by Liam Bannon, hardly allows the emergence of a coherent research area.

Therefore, the proposal of CSCW as an ”umbrella term” rephrases this definition as:

13

”What at first sight might appear to be a weakness of the field, having such a di-

versity of backgrounds and perspectives, is seen by us as a potential strength, if utilized

properly. We believe that for the moment the name CSCW simply serves as a useful

forum for a variety of researchers with different backgrounds and techniques to discuss

their work, and allows for the cross-fertilization of ideas, for the fostering of multi-

disciplinary perspectives on the field that is essential if we are to produce applications

that really are useful.” [17]

Developing as a research area, CSCW is trying to answer questions such as:

• What are the specific characteristics of cooperative work as opposed to work

performed by individuals in seclusion?

• What are the reasons for the emergence of cooperative work patterns? [16]

• How can computer-based technology be applied to enhance cooperative work

relations?

• How can computers be applied to alleviate the logistic problems of cooperative

work?

• How should designers approach the complex and delicate problems of designing

systems that will shape social relationships?

Therefore, the two-fold focus of CSCW comprises: a) understanding the nature and

the characteristics of cooperative work, and b) designing computer-based technologies

to support it [16]. In close relation to the discussion above is the recurring question:

What should be included in the category of ”groupware” or ”CSCW applications”? As

pointed out in [50], ”categorization of an application is less helpful than considering

its use in a particular setting”. A straightforward example is a mail management sys-

tem which would hardly belong to the groupware category if only used as a means of

broadcasting messages within an organization.

14

2.1.1 Classifications and Modes

A categorization of groupware is adapted by Grudin who uses two dimensions: time

and space (Figure 2.1). Therefore, collaboration can be carried out in a single place, or

in more places. Similarly, collaborators can be working together in the same time (i.e.

”in one unbroken interval”) or at different times. Based on these categories, several

types of groupware were assigned to each cell in Figure 2.1 . For example, collabora-

tive activities developed in the same time and in the same place could benefit from

tools to support meeting facilitation. Collaboration carried out in the same time and

where collaborators are located in different places can be supported by video conferenc-

ing tools. In a similar line of reasoning, collaborative activities performed at different

times from different locations can benefit from tools such as mail management systems.

Time

Same Different

Same

Different

Sp
ac

e

Meeting
facilitation

Tele/video/desktop
conferencing

Interactive multicast
seminars

Work shifts

Team rooms

E-mail
Computer bulletin
boards
Collaborative writing
Workflow

Figure 2.1: Groupware classification according to the two dimensions of a collaborative
process: time and space [50]

15

Chapter1/Chapter1Figs/cscwmodes.eps

With the growth of interest in the design and development of groupware technology,

the technological landscape fitting Figure 2.1 became much richer. However, several

considerations can be made at this point:

• Some cells benefit from more computer support than others.

• Most real work does not necessarily fall into one category or another.

• Technology designed to support activities in one cell can prove to be unproductive

for activities in other cells.

—

Collaborative activities can be performed in two modes:

1. Synchronous: All collaborators are working in the same time on the same shared

document. Information is being exchanged at the same time, such as in a face-

to-face meeting. Examples of tools which support synchronous collaboration

are instant messaging, and electronic whiteboarding. Synchronous collabora-

tion is more interactive, resembling a face-to-face conversation between collab-

orators. The immediacy character of synchronous collaboration enables a more

natural way of communicating and sharing information. One drawback of syn-

chronous collaboration is that the tools to support it are not that well spread and

used. Moreover, their diversity and capabilities are still poor. Another drawback

brought by synchronous collaboration is its lack of flexibility, oftentimes being

difficult for all the parties involved to be ready and willing to collaborate at the

same given time.

2. Asynchronous : The collaborators do not have to be simultaneously active on

a document. This implies that different people might receive the information

at different times. Examples of tools which support asynchronous collaboration

include e-mail, newsgroups, and discussion boards. Asynchronous collaboration

enables flexibility, allowing each collaborator to digest the information received

and not feel the pressure of an immediate response. Moreover, asynchronous col-

laborative tools are spread largely, e-mail management systems being an example

in this direction. Asynchronous collaboration implies less immediate interaction,

16

sometimes a longer period of time being needed for a collaborator to receive a

response or feedback on a shared document. The direct consequence of this fact

may be that the information can be out of date by the time someone views it.

Sometimes, there is no clear delimitation between the two modes and/or there could

happen that the two modes intertwine. However, specific contexts may ask for specific

modes of collaboration. For example, an immediate decision making process might

require that all the parties involved collaborate towards the decision making in the

same time, whereas less urgent actions might allow the collaboration to be conducted

in an asynchronous manner.

2.1.2 Design Challenges and Concerns

Back in 1989, Liam Bannon underlined three major issues for CSCW. First, ”any

cooperative effort involves a number of secondary tasks of mediating and controlling the

association of individuals” [16]. This leads to the need of exploring ways for articulating

cooperative work as a first core issue. A second core issue in CSCW as noted by Bannon

is supporting a shared information space since cooperative work ”may require the

interaction of people with multiple goals of different scope and nature as well as different

heuristics, conceptual frameworks”. Lastly, fitting technology into the workplace is an

acute issue for CSCW, a better understanding and control of ”the interaction between

technique and work organization” being needed. In 1994, Jonathan Grudin points out

rightfully that ”because individuals interact with a groupware application, it has all

the interface design challenges of single-user applications, supplemented by a host of

new challenges arising from its indirect involvement in group processes” [50]. As a

result, he identifies eight challenges for developers in the design of computer systems

to support cooperative work:

1. ”A groupware application never provides the same benefits to every group mem-

ber”. Therefore, it is suggested to design processes that create benefits for all

group members, along with the underlying technology.

2. ”Most groupware is only useful if a high percentage of the group members use

it”. Therefore, a solution could be reducing the work required of all and building

17

in incentives of use.

3. ”Groupware can lead to activity that violates social taboos, threatens existing

political structures or demotivates users crucial to its success”. Therefore, it is

highly recommended to work with representative users whenever possible.

4. ”Groupware may not accommodate the wide range of exception handling and

improvisation that characterizes much group activity”. Therefore, the author

suggests providing flexibility by using tailorable systems.

5. ”Groupware features will fare better if integrated with features that support

individual activity”. Therefore, it is suggested to design for accessibility.

6. ”Task analysis, design, and evaluation are much more difficult for multi-user

applications.”

7. ”Good intuition for multiuser applications is unlikely to be found anywhere in a

product development environment”

8. ”Groupware must be introduced very carefully, leaving little to chance.”

A review of the work done nowadays in identifying major challenges and concerns

in CSCW adds to the list above several other finer-grained issues, identified through

further observations and experience. Described below, there is a brief overview of the

results of the review, including those challenges also covered by or closely related to

the work described by this thesis.

2.1.2.1 Technology Supporting CSCW

Technical support of collaborative processes is a complex challenge because ”the in-

teracting people usually have differing backgrounds, ways of thinking and of self-

expression, and their collaboration is only weakly structured” [54]. Based on interviews

with 13 professionals in CSCW, Herrmann et al. developed a set of design heuristics

by categorizing and condensing the interviewees’ statements:

18

• Supporting the large picture, providing means for visualizing rich material. A

typical example which is compliant to this design heuristic is an interactive large

screen on which several ”contributions can simultaneously be made visible and

readable”.

• Malleability of shared material and stimulation of variations.

• Support of convergence within evolutionary documentation. Examples of func-

tions which support this heuristic are rating, voting, mind maps.

• Smooth transitions between the two different modes of collaboration (synchronous

and asynchronous).

• Integration of communication with work on shared material. Counter examples

are wikis which are examples of insufficient integration of communication.

• Support of role dynamics and varying mode of collaboration.

Co-located collaborative work on tabletop displays is the focus of [95] where a

set of system guidelines for the design of applications targeting tabletop devices is

identified using data sources such as: a) literature on existing digital tabletop systems,

b) HCI and CSCW literature on design requirements, implications and guidelines for

co-located CSCW systems, c) CSCW literature involving observational studies of co-

located collaboration involving traditional media, d) literature from the social sciences

on interpersonal communication and tabletop collaboration, and e) experience. The

guidelines described included:

• Support interpersonal interaction.

• Support fluid transitions between activities.

• Support transitions between personal and group work.

• Support transitions between tabletop collaboration and external work.

• Support the use of physical objects.

19

• Provide shared access to physical and digital objects

• Consideration for the appropriate arrangements of users.

• Support simultaneous user actions.

In [36], the authors hypothesize that ”shared displays within a group setting would

impact the behaviour of a group”. For evaluating the hypothesis, the authors com-

pared the participation of the members of a group in conversation with and without

the presence of a shared display used for continuously revealing how much each person

had participated. The results indicated that the shared display of social information

impacted the amount participants spoke as follows: a) ”over-participators responded to

the display by significantly decreasing the amount they spoke”, b) ”under-participators

responded by not increasing the amount they spoke”, and c) ”subjects over-estimated

their level of participation in a conversation in that under-participators rated the dis-

play as a less accurate reflection of their behaviour than over-participators did”.

Shared mobile devices are a particular category of devices supporting collaboration,

and they do share unique design concerns. Understanding of how the interfaces pro-

vided on a shared device influence mobile collaborative navigation activity is depicted

in [82]. Two interfaces providing the same route descriptions, but differing in the way

this information is combined were evaluated. Results reported that ”text facilitated

collaborating at a distance, while graphical depictions encouraged gathering around

the device”.

Single-display groupware systems enable their users to concurrently share and in-

teract with a computer. On one hand, this leads to an increase in productivity and

facilitates group communication [86]. On the other hand, it brings new challenges

related to the ways users input information and the ways information is outputted

for all users’ access. In [12], a discussion on multiple mouse text-entry techniques is

provided together with the description and the evaluation of 13 such techniques de-

signed to be used in educational contexts. The authors considered several design factors

for such techniques to be used by multiple students simultaneously in classroom set-

tings, and these factors included: cost, screen footprint, scalability, leveraging multiple

20

users, learning rate, speed, accuracy, and user preferences. The 13 techniques were

classified as on-screen keyboard techniques, multi-letter keyboard techniques, scrolling

techniques, collaborative techniques, and advanced techniques.

In [86], the authors introduce a system that allows four users to each receive sound

from a private audio channel while using a shared tabletop device. Further on, an eval-

uation of the impact such a system has on the group productivity, communication and

work strategies was performed. Results showed that: a) group members participated

more equitably in the task when using the system as opposed to when not using private

audio channels, b) they spoke to each other more frequently, and c) they managed the

available time more effectively than when individual audio channels were not available.

2.1.2.2 Coordination and Conflict

Coordination is one major concern in CSCW. Even if it highly depends on the context

of the cooperative work, several general considerations and results have been described

in the literature.

As pointed out in [60], in cooperative work ”the informal norms once known by

everyone need to be codified into explicit rules and enforced”. However, ”as communi-

ties grow, they encounter common coordination problems”. Three major coordination

mechanisms are described:

1. Peer-to-peer communication is considered to be the most basic form of coordina-

tion within a group and it is especially needed in conditions of uncertainty.

2. Group structure consists of role differentiation, division of labor, and formal and

informal management.

3. Shared mental models are defined as beliefs held in common among a set of

collaborators ”about what should be done and who should be doing it.” [60].

Shared mental models can also be imposed through standards, guidelines, or

policies.

21

The impact of each of these mechanisms was studied on a pool of wiki produc-

tion groups, results showing that: a) ”Policies and procedures were associated with

less conflict when smaller numbers of editors worked on content, but were associated

with increased conflict when many editors were involved”, and b) ”Communication

and concentration were more associated with reduction of conflict as more editors were

involved”.

In [87], a coordination framework for group tabletop usage is presented. Three

major types of conflicts are identified in collaboratively working around a tabletop: a)

global conflicts which involve changes that affect the application as a whole, b) whole-

element conflicts which involve access to a single object, and c) sub-element conflicts

which occur when several users are editing the same item simultaneously and issue

conflicting changes. To overcome these types of conflicts, three types of strategies are

proposed:

1. Proactive initiative strategies which allow an element’s owner or the initiator of

a global change to control the outcome of the conflict.

2. Reactive initiative strategies which produce an effect based only on the actions

of the other users.

3. Mixed-initiative strategies.

In addition to that, the authors describe several coordination policies for each type

of conflict. As global conflicts coordination policies, they propose ”No selections, no

touches, no holding documents”, ”Voting”, ”Rank”, ”Privileged objects”, ”Anytime”,

whereas whole-element conflict coordination policies they propose ”Public”, ”Private”,

”Duplicate” (view a read-only copy of the original document), ”Personalized views”,

”Stalemate” (if a user tries to take a document someone else is working on, the docu-

ment becomes temporarily inactive to both users), ”Tear” (breaks the document into

two pieces), ”Rank” (a higher-ranking user can always take documents from a lower-

ranking user), ”Speed, force” (physical measurements determine the ”winner” of a

specific document), ”Sharing”, ”Explicit” (a document’s owner retains explicit control

over which other users can access that document), ”Dialog” (a popup dialog box ap-

pears for the owner of a document through which s/he gives access to another user to

22

that document).

An investigation of the conditions ”under which conflict arises, and the effectiveness

of coordination mechanisms in managing conflict different scales” in wiki production

groups is described in [60]. Results suggest that the density of the information space

is a key determinant of conflict, as opposed to the absolute number of contributors.

The authors consider as measure of conflict the number of reverts in the wiki per month.

2.1.2.3 Communication

With respect to communication, there are several factors that may affect the dynamics

of a conversation as well as participants’ perceptions of one another [14]. Two of them

are discussed in [14]: timing and responsiveness (i.e. the time until a person responds

to communication) in semi-synchronous communication, such as instant messaging.

The questions addressed by the authors are: a) How does the user’s ongoing activity

affect his or her responsiveness to incoming communication?, b) Will responsiveness

vary based on who sent the message?, c) Will people respond at different speeds during

different parts of the day?, d) How does the content of the communication affect the

user’s responsiveness to it?, e) Will responsiveness, when the communication is already

ongoing, differ from responsiveness to attempts to initiate new communication? The

results obtained lead to the identification of several design opportunities. First, the

fact that ”open requests for help may be neglected in favor of new ones merely for

being in the background”, asks for the need to ensure the prominence of ongoing help

requests when new ones arrive. Moreover, in order to improve users’ ability to discuss

external resources (such as URLs), a seamless link between the conversation, the URL

reference and the browser is needed. Lastly, distinguishing between task and sub-task

boundaries across applications would allow avoiding the disruption of high-level tasks.

2.1.2.4 Notifications and Awareness

Questions such as ”how do notifications support users’ need for information aware-

ness?” and ”what effect does this need have on their focus on tasks that are interrupted

23

by the arrival of notifications?” are addressed in [58] where a comparative study on

users’ reactions to notifications for email communications is described. The goal of the

authors was to ”understand how interruptions caused by notifications influence users’

focus on ongoing tasks and to contrast this with task focus if notifications are turned

off”. Results showed that users react to only about a quarter of all mail notifications

and that user focus on the primary task is largely unaffected if the notifications are

disabled.

The effects of intelligent notification management systems on users and their tasks

are described in [58] where the OASIS system is presented. OASIS was designed on two

major considerations: 1) probe strategies for detecting interruptible moments leverag-

ing the structure of users’ tasks, and 2) build statistical models to detect interruptible

moments during tasks. Therefore, the system: a) allows notifications to be deferred

until breakpoints are reached during interactive tasks, b) permits the users to identify

breakpoints and correlate with those detected, and c) generates notifications that are

relevant to the user’s ongoing activity.

Multi-synchronous authoring tools allow simultaneous work in isolation of members

of the group and the subsequent integration of their contributions. In such a context,

private workspaces are essential for collaboration since they give co-authors the possi-

bility to ”carry out polishing and revision of their contributions before communicating

or including them in shared documents” [57]. An awareness mechanism to support

users in filtering the amount of information about their changes to be delivered to

their collaborators is described in [57]. The mechanism is based on user defined pri-

vacy levels.

2.1.2.5 Interruptions

In collaborative work, interruptions are frequent. Their effects at different moments

within task execution are studied in [5]. The assumption the authors are verifying

is that ”poorly timed interruptions can adversely affect task performance and emo-

tional state”. Different computer-mediated strategies for notification on interruption

24

are highlighted, including visual strategies, multimodal presentations, or appropriate

timing. As result of their analysis, the authors identify several implications for the de-

sign of an attention manager system. First, several alternate modalities for interruption

should be considered. Moreover, in order to develop an effective attention manager, one

should either supply it with the task models or it must learn the task models over time.

A slightly different perspective on dealing with interruptions is presented in [51],

where the authors underline the importance of an efficient mechanism for prevent-

ing and/or recovering from disconnections especially in synchronous collaborative pro-

cesses. This is due to the fact that ”a central assumption of synchronous groupware

is that the members of the group are temporally present – that is, they are actively

observing changes to the shared workspace and noticing new updates as they arrive”.

The authors describe an application-level framework for dealing with disconnection in

synchronous groupware together with a classification of possible disconnections. They

identify three types of disconnections: 1) delay-based interruptions, 2) network outages,

and 3) explicit departures. The framework considers all types of disconnections through

identification of absence, adaptive behavior during disconnection, and re-establishment

of the synchronous interaction.

2.1.2.6 The Social Side of CSCW

The social aspects of CSCW and their influence on the effectiveness of collaborative

processes are pointed out from early on in the CSCW literature [16]. The interest in

these aspects has not faded overtime, some examples being described below.

Kalnikaite et al. investigate the utility of tagging to construct social summaries of

complex multimedia material through a study during which students were allowed to

apply time-indexed tags (such as handwritten annotations or photos) to different parts

of the lecture in real-time [59]. Also, the students were presented with information

about which tags are most frequently accessed by others. The authors addressed three

questions: 1) Do users make greater use of systems offering social feedback?, 2) Which

types of social tags (notes or photos) are most useful for retrieving lecture materials?,

25

and 3) What are the benefits of using this type of system? Results showed that the

benefits of the social feedback were clear, 49% of all tag accesses were for popular tags.

Moreover, students preferred notes over photos, the authors explaining: ”because they

provided a finer granularity of access (recall that there were almost three times as many

word tags as pictures)”.

Gaming is yet another domain where one would expect to find benefits of social

features in collaboration. As result, recommendations for the design and support of

social activities within multiplayer games are described in [38], based on an analysis of

the player-to-player interactions in a multiplayer game.

2.1.2.7 Annotations

Annotations are association of specially marked knowledge elements with specific docu-

ments or elements within them [33]. They support several cognitive functions as follows

[24]:

• Remembering - by highlighting the most important parts of a document.

• Thinking - by supporting each user in adding his/her own ideas and feedback to

the document.

• Clarifying – by rephrasing the content of a document on the words of its reader.

Pioneering initiatives in allowing annotation of web content (such as Annotea) force

the user to disrupt his/her navigation activity in order to start an annotation appli-

cation. To answer this drawback, Bottoni et al. focus on smoothly integrating tools

which support annotation in existing browsers. Their results are presented in [24],

where MADCOW - a digital annotation system ”organized in a client-server archi-

tecture, where the client is a plug-in for a standard web browser and the servers are

repositories of annotations to which different clients can login” - is presented.

An annotation model specifically targeting collaborative writing is described in

[110]). The model provides the following advantages:

26

• Supports in-situ communication and decision making via threaded annotations.

• Improves cross-role awareness via ”smooth transitions or interactions between

work done by people of different roles, such as reviewer and author”.

• Provides a rational version control mechanism by ”capturing integrated version

history and annotations leading to revisions”.

• Improves the shared workspace and the group awareness.

Within the model, each annotation is defined in greater detail by the following 11

elements:

1. Context: the description of the object the annotation is attached to.

2. Message body: the actual text of the annotation.

3. Annotation creator: information about the author of the annotation.

4. Annotation recipient: information about those users to whom the annotation

specifically addresses.

5. Annotation time: the creation time of the annotation.

6. Response deadline: the time by which the annotation should be addressed.

7. Responses: information useful for forming threaded discussions.

8. Status: indicates whether there are responses to an annotation, whether annota-

tions are incorporated in new versions, etc.

9. Category: captures the characteristics of the problems brought up in an annota-

tion.

10. Rating: label the annotation with either ”positive feedback” or ”negative feed-

back”.

11. Urgency: sets up the priority for annotations.

27

A comprehensive group-memory aid for software developers which acts by pushing

content and annotations form a link target (in this case, online documentation of com-

monly used APIs) to its source (in this case, commonly used IDEs such as Eclipse) is

described in [33]. The authors’ motivation found its roots in the belief that ”readers

of a document in a linked information space can benefit not only from the knowledge

and experiences of its original authors but also from those of subsequent readers and

contributors”.

In a similar context, TagSEA [3] allows tagging locations of interest in Eclipse. The

framework is developed using both social bookmarking techniques and geographic nav-

igation methods and it supports tagging locations of interest by means of keywords,

adding data and author metadata, filtering tags, navigating to places once tagged,

creating both shared tags and private tags. The tags apply to any of the following

elements: source code, breakpoints, tasks and resources.

2.1.2.8 Roles in CSCW

An in-depth discussion of the concepts of ’role’ and ’role mechanism’ is presented in

[53] and the motivation for this is introduced as two-fold. On one hand, ”social sys-

tems create and change themselves by reciprocal expectations towards behaviour” and

on the other hand, ”communities can only develop and build up, if the participants

accept the conditions under which they can interact and the scope of options which

determine their activities” [53]. The synthesised description of the concept of ’role’

would include four characteristics: position, functions/tasks, behaviour/expectations,

and social interaction. Seven role-mechanisms - ”interaction patterns for role-taking

and role-making” - are defined in [53]: role-assignment, role-taking, to allow someone’s

role-taking, role-change, role-making, role-definition, inter-role-conflict. The discussion

takes a sociological stand and it is meant as a ”foundation for building and supporting

socio-technical community systems”[53].

Lukosch and Schummer define the concept of role as combining prototypical be-

havior, rights, capabilities, and obligations [68]. The authors address the problem of

28

users structuring their interaction in the group and propose a set of design patterns for

describing what the owner of the role is supposed to do. Moreover, a discussion on the

tools to be used in order to reach the role’s intended goal is provided. Some examples

of applications which support the assignment of roles are:

• Blackboard is an software application used for educational purposes where each

user has a specific role defined by a set of permission levels:

– Course builder: has access to all the features except ”Assessments” and

”Course tools”.

– Grader: has access to the grade book and is able to edit ”Assessments”.

– Instructor: has access to all of the course functions.

– Student: has read-only access to all of the course content.

– Teaching assistant: shares the same level of access as the instructor.

– Administrator: assigns the roles to the users.

• SourceForge is an open source software development web site in which each

project’s members can have a specific role as developer, administrator, trans-

lator, and so on.

—

The subsection brings together some of the challenges to be faced when design-

ing software applications for synchronous collaboration. Surely, an exhaustive list of

such challenges could very well stand for the topic of a brand new thesis and it is for

that reason that my interest mainly relates to those challenges covered by the work I

present further on in the thesis. All of the above address the context in which groups

of people work together - either remotely or co-located - in the same time, sharing

the same resource. In that respect, technology is one key aspect since moving from

individual to collaborative use of tools asks for new means of capturing and displaying

feedback, innovative displays and communication channels. Socio-related factors such

as coordination, conflict, communication, awareness, roles go hand in hand with any

29

collaborative process. If designing for individual use had very little to do with these

issues, shifting to collaborative use brings to light additional challenges and concerns

such as: how to make sure that collaborators coordinate their effort?, how to deal with

conflicts among them?, how to support the representation of role-structures similar to

those existing in real-life?, how to make sure that all those collaborating are aware of

each others contributions?, how to support common understanding among those work-

ing together?.

2.2 Design Patterns

2.2.1 History and Evolution

Patterns and pattern languages were introduced by the architect Christopher Alexan-

der in the seventies [7] [9] [8] as tools for capturing and making available and com-

municable knowledge related to urban spaces. Alexander conceived urban spaces as

artifacts, where ”people enjoy living in” and which ”have a certain, timeless ’Quality

without a Name’ that cannot be reduced to a single dimension” [9]. These environments

must provide affordances which support ”the patterns of events that frequently happen

there” [8]. Patterns of events that frequently happen in a space and the relationships

among them are not created by the architects themselves, but emerge from the inter-

action among their inhabitants and the space itself. Urban spaces are not designed in

insulation but as a system: they refer to each other, smaller spaces being defined in

the context of larger ones. Design becomes a process in which space is differentiated

to create a complex solution. To design urban spaces of the desired quality, Alexander

saw the necessity for architects to explain their views to their clients, to discuss within

the architects community about the reached solutions of design problems and to have

a repository of the knowledge created through the design activities performed by the

community. This repository evolves in time, recording new solutions to the (possibly

new) problems arising in design activities.

Alexander conceived documents to be used by architects: 1) as knowledge repos-

itories about the solutions of often recurring urban design problems, 2) as means of

30

communication of the solutions among the architect communities and, 3) as commu-

nication means between architects and their clients in the design of urban spaces.

He called these documents ”patterns”. Alexander established a precise structure and

layout of a design pattern: each pattern has a name, a descriptive entry, and some

cross-references to other design patterns which support and contextualize the solution

described. Each structural section is characterized by a specific graphical layout. The

uniform format of presentation improves the usability of design patterns, because read-

ers can develop reading patterns [56], adaptable to the different uses of the documents

required by their activities. Design patterns are not independent but they constitute a

network of inter-related documents, the ”pattern language”. A pattern language is a

network of patterns which organizes good design practices within a domain. Alexander

did not propose any formal definition of design patterns and design pattern languages

but only informal guidelines for their development. His proposal is limited to the use

of paper based documents organized in a hypertext fashion.

Alexander’s approach had a wide impact in several domains, including Computer

Science and HCI. Software engineering (SE) applied design patterns for expressing

Object-Oriented software design experience. Software engineering patterns address

mainly professional programmers and computer scientists and are not intended to a

general audience. Moreover, the collection of design patterns and the relationships

among them are not complete enough to form a pattern language in the Alexandrian

sense [46]. The HCI community was attracted by the Alexander’s approach in two di-

rections. First, HCI designers adopted the metaphor which maps an interactive system

to a space which offers affordances for humans to develop their activities and to face the

variances which can affect them. Reenskaug coined the term habitable spaces to define

these virtual spaces [81]. Secondly, many HCI designers adopted the design pattern

and the design pattern language approach to document and describe ”the reasons for

design decisions and the experience from past projects, to create a corporate memory

of design knowledge” [22].

Borchers evolves Alexander’s notions of design pattern and design pattern language

while recognizing the HCI design as a complex process. He adheres to the view that

the design of complex processes requires more knowledge than any single person can

31

posses [42]. Therefore, he proposes a user centered approach to HCI design in which

stakeholders from the application domain, HCI and SE collaborate to the design. This

leads to the definition of three pattern languages: one for describing the problems met

by stakeholders in the targeted domain, one for describing the problems in the HCI

domain and one for describing the problems met by stakeholders in SE. These lan-

guages facilitate the communication among all the stakeholders involved in the design.

Moreover, Borchers recognizes the importance of formalism as a support for reasoning

and creation of software tools. Therefore, he introduced a graph based definition for

design pattern languages, which he uses for developing a new way of visualization and

access to design patterns and patterns language. However, the definition underlies

the design pattern construction. To be usable by their users, patterns are presented

as multimedia information, including images, sketches and graphical schema and not

as formulae. Design patterns become Web documents (nodes of the graphs) and the

pattern language is presented to users as a browsable map representing the graph and

deploying the hyper-textual structure of the language in a way understandable by all

stakeholders in the design team. To reach this result and exploit the affordances of the

Web 2.0, the Pattern Language Mark-up Language (PLML) was defined for allowing

the translation of the definition of a design pattern into an XML Web document and

presents a sample authoring and browsing tool to work with pattern languages.

2.2.2 Design Pattern Collections

Several collections of design patterns have been published, the diversity of areas they

are targeting growing in the past few years. Initially addressing urban and architecture

design, the concept of design pattern has inspired and was adopted in design areas such

as: software engineering, interaction and web design, collaborative applications, social

interfaces, usability, ubiquitous computing, interactive exhibits, and accessibility. This

section aims at providing various examples of such collections for: a) a comparative

analysis of the concept across different domains and design areas and b) a walk-through

of the evolution of the concept from its initial definition in architectural design till its

current use in different other domains.

32

2.2.2.1 Urban and architectural design

”Towns and buildings will not be able to become alive, unless they are made by all the

people in society, and unless these people share a common pattern language, within

which to make these buildings, and unless this common pattern language is alive itself”

[8]. This is how Christopher Alexander motivates his initiative of writing a collection of

253 inter-related design patterns (Appendix 7.3) to be used by architects in urban and

architectural design. These patterns are ordered, beginning with more general ones –

such as INDEPENDENT REGIONS or MAGIC OF THE CITY – and ending with

more specific ones – such as SITTING WALL or POOLS OF LIGHTS. They ”create

a coherent picture of an entire region, with the power to generate such regions in a

million forms, with infinite variety in all the details”.

The first 94 patterns define a town or a community, the patterns relating to:

• The regional policies which protect the land and mark the limits of the city.

• The city policies which encourage the formation of the major structures which

define a city.

• Self-governing communities which ”exist as physically identifiable places”.

• Connecting communities for encouraging the growth of the city network.

• Neighbourhood policies which help control ”the character of the local environ-

ment”.

• Boundaries which encourage the formation of local centers.

• Work communities.

• Public open land.

The second part of the collection comprises design patterns addressing groups of

buildings and individual building in three dimensions. Some of the aspects discussed

by these patterns are:

• The height and number of the building in a group of buildings.

33

• The entrances to the site.

• Main parking areas.

• Lines of movement through the complex.

• The position of individual buildings on the site, within the complex of buildings.

• The shaping of the volume of the buildings and of the space between the buildings,

at the same time.

• The most important areas or rooms within a building.

Lastly, the last part of the collection includes design patterns targeting the design

of specific details of construction such as:

• The exact positions for openings (doors and windows), and the frame of these

openings.

• Surfaces, indoors and outdoors details.

• Ornament the building with lights and colors.

2.2.2.2 Software engineering

Software engineering adopted the concept of design pattern around 1987, but it was

only on 1995 when Gamma et al. published a first collection of design patterns for

object-oriented software design [46]. The collection contains three types of patterns:

1. Creational patterns address class instantiation and are further divided into class-

creation patterns and object-creation patterns. The creational patterns are:

• Abstract factory groups object factories which have a common theme.

• Builder separates construction and representation of complex objects.

• Factory method creates objects without specifying their class.

• Prototype allows cloning existing objects.

34

• Singleton restricts the object creation for a class to only one instance.

2. Structural patterns use inheritance to compose objects and define ways to com-

pose objects for obtaining new functionality. These patterns are:

• Adapter wraps its interface around that of an existing class for allowing

incompatible interfaces to work together.

• Bridge decouples the abstraction from the implementation.

• Composite composes several objects so that they can be used as one.

• Decorator dynamically adds behavior in an existing method of an object.

• Facade provides a simplified interface to a complex part of code.

• Flyweight reduces the cost of manipulating a large number of similar objects.

• Proxy provides a placeholder for another object to control the access to it.

3. Behavioral patterns address communication issues between objects and include:

• Chain of responsibility delegates command to a chain of processing objects.

• Command creates objects which encapsulate actions and parameters.

• Interpreter implements a specialized language.

• Iterator accesses the elements of a complex object sequentially without ex-

posing the object’s representation.

• Mediator couples classes by knowing the details of their methods.

• Memento provides undo capabilities for complex objects.

• Observer allows a number of observer objects to be notified of an event.

• State allows an object to modify its behaviour when its state changes.

• Strategy allows the selection of one algorithm out of a family of algorithms

to be selected for execution at runtime.

• Template method defines the skeleton of an algorithm to be defined as an

abstract class, which has further subclasses providing concrete behaviour.

• Visitor separates an algorithm from an object structure.

35

2.2.2.3 Graphical User Interface (GUI) design

”Design engaging and usable interfaces with more confidence and less guesswork” is

what Jennifer Tidwell is supporting in [103]. The book describes a collection of design

patterns for interaction design, comprising desktop applications, web sites, web appli-

cations, and mobile devices. The collection of patterns comprises eleven categories of

patterns as follows:

1. Patterns of users behaviour: Safe Exploration; Instant Gratification; Satisficing ;

Changes in Midstream; Deferred Choices ; Incremental Construction; Habitua-

tion; Microbreaks; Spatial Memory ; Prospective Memory, Streamlined Repetition;

Keyboard Only ; Other People’s Advice; Personal Recommendations.

2. Patterns on information architecture and application structure: Feature, Search,

and Browse; News Stream; Picture Manager ; Dashboard ; Canvas Plus Palette;

Wizard ; Settings Editor ; Alternative Views; Many Workspaces; Multi-Level Help.

3. Patterns on navigation, signposts, and wayfinding: Clear Entry Points ; Menu

Page; Pyramid ; Modal Panel ; Deep-linked State; Escape Hatch; Fat Menus ;

Sitemap Footer ; Sign-in Tools ; Sequence Map; Breadcrumbs; Annotated Scroll-

bar ; Animated Transition.

4. Patterns for organizing the page (i.e. the layout of the page elements): Visual

Framework ; Center Stage; Grid of Equals ; Titled Sections; Module Tabs ; Ac-

cordion; Collapsible Panels ; Movable Panels ; Right/Left Alignment ; Diagonal

Balance; Responsive Disclosure; Responsive Enabling ; Liquid Layout.

5. Patterns for images, messages, search results: Two-Panel Selector ; One-Window

Drilldown; List Inlay ; Thumbnail Grid ; Carousel ; Row Striping ; Pagination;

Jump to Item; Alphabet Scroller ; Cascading Lists ; Tree Table; New-Item Row.

6. Patterns on actions and commands: Button Groups ; Hover Tools; Action Panel ;

Prominent ”Done” Button; Smart Menu Items; Preview ; Progress Indicator ;

Cancelability ; Multi-Level Undo; Command History ; Macros.

7. Patterns for showing complex data through trees, graphs and other information

graphics: Overview Plus Detail ; Datatips ; Data Spotlight ; Dynamic Queries;

36

Data Brushing ; Local Zooming ; Sortable Table; Radial Table; Multi-Y Graph;

Small Multiples; Treemap.

8. Patterns for getting input from users: Forgiving Format ; Structured Format ;

Fill-in-the-Blanks ; Input Hints ; Input Prompt ; Password Strength Meter ; Auto-

completion; Dropdown Chooser ; List Builder ; Good Defaults ; Same-Page Error

Messages.

9. Patterns on using social media: Editorial Mix ; Personal Voices; Repost and Com-

ment ; Conversation Starters ; Inverted Nano-Pyramid ; Timing Strategy ; Special-

ized Streams ; Social Links; Sharing Widget ; News Box ; Content Leaderboard ;

Recent Chatter.

10. Patterns for mobile devices: Vertical Stack ; Filmstrip; Touch Tools ; Bottom Nav-

igation; Thumbnail-and-Text List ; Infinite List ; Generous Borders ; Text Clear

Button; Loading Indicators ; Richly Connected Apps; Streamlined Branding.

11. Patterns on visual style and aesthetics: Deep Background ; Few Hues, Many Val-

ues ; Corner Treatments; Borders that Echo Fonts; Hairlines ; Contrasting Font

Weights ; Skins and Themes.

Van Welie published online a separate collection of design patterns for interaction

design and specifically for web design1, the author classifying the patterns into:

• Patterns addressing the user’s needs which include navigation, searching, dealing

with data, making choices, giving input, personalizing, and other basic interac-

tions.

• Patterns addressing the needs of the application are further classified into pat-

terns for drawing attention, providing feedback, and simplifying interaction.

• Patterns related to the context of the design classify sites, experiences, and pages.

1 A complete list of these patterns is available online at:
http://www.welie.com/patterns/index.php.

37

A collection of design patterns for developing Silverlight applications is available at

[2]. Several patterns included in this collection are similar to patterns in other collec-

tions. Some such examples are: Undo, Visual Framework, Wizard.

2.2.2.4 Collaborative applications

Design patterns in the field of computer-mediated interaction have been written by

Stephan Lukosch and Till Schummer who, in their book ””Patterns for Computer-

mediated Interaction” [94], described patterns for community building support, group

interaction support, and base technology.

The patterns addressing community building target issues such as:

• How to arrive in a community: QUICK REGISTRATION, LOGIN, WELCOME

AREA, MENTOR, VIRTUAL ME, USER GALLERY, and BUDDY LIST.

• How to deal with quality: QUALITY INSPECTION, LETTER OF RECOM-

MENDATION, BIRDS OF A FEATHER, EXPERT FINDER, HALL OF FAME,

and REWARD.

• How to protect users: RECIPROCITY,MASQUERADE, AVAILABILITY STA-

TUS, ATTENTION SCREEN, and QUICK GOODBYE.

The patterns targeting group interaction support address issues such as:

• How to modify shared material together: GROUP, SHARED FILE REPOSI-

TORY, SHARED BROWSING, VOTE, APPLICATION SHARING, SHARED

EDITING, and FLOOR CONTROL.

• How to create places for collaboration: ROOM, ACTIVE MAP, INTERACTION

DIRECTORY, BELL, INVITATION, and BLIND DATE.

• How to support textual communication: EMBEDDED CHAT, FORUM, THREADED

DISCUSSIONS, FLAG, SHARED ANNOTATION, FEEDBACK LOOP, DIGI-

TAL EMOTIONS, and FAQ.

38

• How to provide synchronous group awareness: USER LIST, SPONTANEOUS

COLLABORATION, ACTIVE NEIGHBOR, INTERACTIVE USER INFO, RE-

MOTE FIELD OF VISION,REMOTE SELECTION, REMOTE CURSOR, TELE-

POINTER, and ACTIVITY INDICATOR.

• How to maintain asynchronous group awareness: ACTIVITY LOG, TIMELINE,

PERIODIC REPORT, CHANGE INDICATOR,ALIVENESS INDICATOR, and

AWAY MESSAGE.

The group of patterns related to base technology address issues such as:

• How to handle sessions: COLLABORATIVE SESSION, PERSISTENT SES-

SION, STATE TRANSFER, and REPLAY.

• How systems manage common data: CENTRALIZED OBJECTS, REMOTE

SUBSCRIPTION, REPLICATED OBJECTS, NOMADIC OBJECTS, MEDI-

ATED UPDATES, DECENTRALIZED UPDATES, and DISTRIBUTED COM-

MAND.

• How systems ensure data consistency: PESSIMISTIC LOCKING, OPTIMISTIC

CONCURRENCY CONTROL, CONFLICT DETECTION, OPERATIONAL TRANS-

FORMATION, LOVELY BAGS, and IMMUTABLE VERSIONS.

In addition to that, the same authors have proposed patterns for assigning roles in

collaborative processes [68], and shared object management [67].

A collection of design patterns for cross-culture collaboration is identified by Nicole

Schadewitz in [91] and comprises the following 11 patterns: GRAND OPENING, COM-

MUNITY WATCH, INTERNATIONAL HOME, STRUCTURED CHAT, SUMMING

UP, MOOD OF THE MOMENT, ANNOTATED DESIGN GALLERY, WHO WHEN

WHAT, LOCAL VARIATIONS, GLOBAL RESOLUTION, and GRAND FINALE.

2.2.2.5 Social interfaces

The rapid growth of interest in social networks led to the need of a knowledge base

comprising best practices in designing social interfaces. Such a knowledge base is the

39

collection of design patterns presented in [30]. The issues addressed by the collection

are:

• Broadcasting and publishing.

• Identity and reputation.

• Sharing and collaboration.

• Community management.

• Communication and feedback.

• Social media.

The patterns related to collaboration target collaborative editing in wiki-based ap-

plication, crowdsourcing, voting, and project management.

Design patterns for e-Government applications are presented in [79]. The authors

initiate by listing down a set of user interface design golden rules, following to describe

three types of design patterns:

• Basic components are recommendations such as: CONDITIONAL ACTIVA-

TION OF FIELDS, DOWNLINK LINK, MANDATORY FIELDS, NON TEX-

TUAL OBJECTS, PRE-FORMATTED FORM FIELDS, and TYPOGRAPHY.

• Page level patterns include: ACKNOWLEDGMENT OF RECEIPT,ADVANCE-

MENT BOX, CLEAR ENTRY POINTS, FILTER A LIST, OVERVIEW, and

WIZARD STEP.

• Screen flow level patterns comprise: CONSULT AND MODIFY DATA, FILE

MANAGEMENT, HUB AND SPOKE, INTEGRATION IN A PORTAL,MULTI-

STEP WIZARD, and ROLE MANAGEMENT.

A different stance to social aspects is described in Douglas Schuler’s book, ”Lib-

erating voices: A Pattern Language for Communication Revolution” [93]. The col-

lection of 136 patterns presented by the book address different behavioural patterns

40

and relate to organizing principles, enabling systems, policy, collaboration, commu-

nity and organizational building, self representation, tactics. The full collection is

available online and it is open to further modifications from interested communities

(http://www.publicsphereproject.org/patterns/pattern-table-of-contents.php).

2.2.2.6 Usability

In his book ”A Pattern Language for Web Usability” [47], Ian Graham describes 79

design patterns organized as a collection and addressing usability of web applications.

These patterns are categorized into:

• Patterns for getting started on a site design.

• Patterns for improving usability.

• Patterns for adding detail to a design to enhance usability even further.

• Patterns for dealing with workflow and security issues.

The full collection of patterns can be found in Appendix 7.3.

Patterns for usability have been also explored in [70], where four types of patterns

have been identified:

• Patterns of tasks give developers ”an insight into the functionality which should

be provided and how it will be used”.

• Patterns of users ”can be used to explore the forces involved in the context of

a particular kind of user accessing the system and to specify the user-interface

accordingly”.

• Patterns of user-interface elements ”help detailed designers and programmers un-

derstand where it is appropriate to use a certain user-interface element, possibly

as a replacement for traditional documentation on toolkit usage”.

• Patterns of entire systems capture issues involved in their development.

41

2.2.2.7 Ubiquitous computing

The applications for ubiquitous computing are ”systems that make use of sensors,

computing devices in a variety of form factors, and wireless networking to assist us in

all kinds of tasks” [29]. This is the target of the collection of pre-patterns described in

[29]. These patterns describe:

• Ubiquitous computing genres: they provide a taxonomy of the emerging ubiq-

uitous applications. Some examples of such patterns are SMART HOMES, and

PERSONAL MEMORY AIDS.

• Physical-virtual spaces: they help designers understand the ways to improve

the users’ navigation through such spaces. Some examples of such patterns are

ACTIVE MAP, FIND A PLACE, and NOTIFIER.

• Developing successful privacy: they address policy, systems, and interaction is-

sues in designing privacy-sensitive systems. As examples of such patterns consider

PRIVACY MIRRORS, and INVISIBLE MODE.

• Designing fluid interactions: they describe the ways to design applications which

involve a large number of sensors and devices, allowing the users to feel in con-

trol. Some examples of such patterns are SCALE OF INTERACTION, ACTIVE

TEACHING, and KEEPING USERS IN CONTROL.

2.2.2.8 Interactive exhibits

One of the promoters of the concept of design patterns in interaction design is Jan

Borchers who describes a collection of patterns for the design of interactive exhibits

in [22]. The collection includes the following 17 patterns: ATTRACT-ENGAGE-

DELIVER, ATTRACTION SPACE, COOPERATIVE EXPERIENCE, EASY HAN-

DOVER, SIMPLE IMPRESSION, INCREMENTAL REVEALING, FLAT AND NAR-

ROW TREE, AUGMENTED REALITY, CLOSED LOOP, LANGUAGE INDEPEN-

DENCE, DOMAIN-APPROPRIATE DEVICES, INNOVATIVE APPEARANCE, IM-

MERSIVE DISPLAY, INVISIBLE HARDWARE, DYNAMIC DESCRIPTOR, IN-

42

FORMATION JUST IN TIME, and ONE INPUT DEVICE.

2.2.2.9 Accessibility

Design patterns aiming to provide ”a structured model of the design knowledge in the

accessibility domain” are described in [45]. The patterns are classified according to two

dimensions:

1. Functionality, leading to patterns on presentation (such as SEPARATE CON-

TENT FROM PRESENTATION), navigation (such as NAVIGATING HIER-

ARCHICAL INFORMATION), and interaction (such as LIVE REGION).

2. Level of abstraction, describing high level (MULTI-FORMAL PRESENTATION,

EASY NAVIGATION, INTERACTION AT USER’S PACE), mid level (MEAN-

INGFUL STRUCTURE, WHERE IS THE FOCUS?, ALERT STOP AND RE-

SUME) and low level patterns (COLOR AND CONTRAST, SELECTION EL-

EMENT, EXCLUSIVE CHOICE).

—

As illustrated above, the coverage of the existing collections of patterns is quite

broad. Different areas and domains are subject to being documented through pat-

terns. However, none of the collections specifically address synchronous collaboration

and this thesis aims at filling in that particular gap. Moreover, at a closer look, these

collections use different template definition for the patterns they comprise. This led to

an investigation of the template definitions used across collections for a better under-

standing of what these elements refer to and in which way they help.

2.2.3 Template Definitions of Patterns

The set of all the defining elements used to describe the patterns in a specific collec-

tion is referred to as the template of definition of the patterns. Several different such

templates have been proposed. They generally include the name of the design pattern,

43

the description of the problem it addresses together with the forces that influence this

problem, some examples of situations in which this problem can be met and a possible

solution to tackle the problem [35]. The results of a survey of the used template defini-

tions for design patterns are presented in [64], the authors identifying 4 major parts in

the definition of patterns: the head, the body, additional information, and references.

Each of these parts is further defined by a set of elements1. Figures 2.2 and 2.3 present

an example of a design pattern, comprising a subset of the defining elements listed

below.

1 Each author decides on the elements to use for defining a design pattern, not all the elements
being mandatory. The final goal is for the pattern to be understandable to its readers.

44

F
ig
u
re

2.
2:

T
ra
ve
l
to
ge
th
er

d
es
ig
n
p
at
te
rn

fr
om

[9
4]

-
p
ar
t
1

45

Chapter1/Chapter1Figs/pattex1.eps

F
ig
u
re

2.
3:

T
ra
ve
l
to
ge
th
er

d
es
ig
n
p
at
te
rn

fr
om

[9
4]

-
p
ar
t
2

46

Chapter1/Chapter1Figs/pattex2.eps

HEAD

The head in the definition of a design pattern provides an overview of the problem

addressed by the pattern together with a set of metadata such as the name of the

author, and the creation date of the pattern. A full list of elements which can be found

in the head of a design pattern definition is provided below.

1. Pattern number. A pattern number is associated to a design pattern in order

to uniquely identify it in a collection of patterns. This element supports the

indexing and the referencing of patterns. Even if the pattern number is usually

a number, it might happen that this identifier contains an additional code used

for categorizing the pattern.

2. Pattern name. The pattern name suggests the main idea of the pattern. It is

used mainly to create a vocabulary within the community using a collection of

patterns (hence, it should be easy to remember) and it should provide a significant

hint to the content described by the pattern.

3. Alternative pattern name. An alternative name for a design pattern can be

provided for making it more understandable or for following a set of constraints.

4. Rating/ranking. Being used within communities of designers, design patterns

are subject to the designers’ feedback. Hence, they can be rated or ranked so

that pattern users are supported in making informed decisions on what patterns

to consider. However, such an element becomes relevant in time and only when

intensively used within a specific community.

5. Image. An image suggesting the main idea of the pattern can be associated to

it. Usually, images are suggestive and do not require a lot of time to grasp. It

is for this reason that images associated to patterns prove to be helpful when

collections of patterns are browsed by pattern users.

6. Author name. The author of the pattern is the person who wrote the pattern

and made it available.

47

7. Pattern classification. Usually, pattern collections are classified according to

some criteria (more on this in Section 2.2.2). The definition of a pattern should

also provide information on the category the pattern belongs to.

8. Creation date. The creation date points to the date when the pattern was

created.

9. Last revision date. Patterns are dynamic entities, subject to modification.

Hence, each pattern may at any time be revised either by its author or by other

users. In these situations, storing the date of the last revision proves to be helpful.

10. Level. The level of a pattern refers to the level of abstraction the pattern ad-

dresses. High-level patterns describe problems at an abstract level and point to

medium or low level patterns which provide descriptions to more concrete prob-

lems. The level is a means of triggering a hierarchy within a collection of patterns.

BODY

The body definition of a design pattern details the information included in the

head, adding to that other elements, relevant to the understandability of the

problem addressed by the pattern.

11. Context. The context of a design pattern is regarded as a precondition which

decides the applicability of a specific pattern. As opposed to guidelines, design

patterns support their users in understanding the overall landscape to which a

pattern adheres by specifying the context element in its definition.

12. Problem description. The description of the problem addressed by the pattern

is one of the core defining elements of a pattern. This description presents the

major point of the problem, being further supported by other defining elements

comprised in the body.

13. Forces. The forces illustrate the tradeoffs to be considered when applying the

pattern. Some implications the pattern has might be conflicting and might gen-

erate or ask for specific consideration. This is the kind of information provided

by the forces.

48

14. Solution. The solution element describes proven solutions to the problem de-

scribed by the patterns. As opposed to guidelines, the pattern solution is not

a step-by-step list of instructions to be followed to get to one specific solution.

The pattern solution can be used ”a million times over, without ever doing it the

same way twice” [9].

15. Rationale. The rationale element provides a proof of concept, showing why the

pattern works and how the forces described are balanced by the application of

the solution.

16. Diagram. The diagram is a graphical representation of the solution proposed by

the pattern. Depending on the level of the pattern and on the domain the problem

belongs to, this diagram can be a sketch, or even a more complex representation

such as an UML diagram.

17. Resulting context (consequences). The application of the pattern triggers

a set of consequences described by the resulting context element. These conse-

quences might ask for the application of other patterns or might require further

design considerations and decisions.

18. Examples. The examples are illustrating applications of the solution proposed

by the pattern. They are usually accompanied by illustrative screenshots and

links to the working instances of the solution described by the pattern.

19. Known uses. Quite similar to the examples, the known uses point to applica-

tions of the design pattern in already implemented applications. They are meant

to support the pattern users in understanding the pattern by examples.

20. Counter examples. As opposed to the examples, the counter examples show

poor design in the context of the design pattern described. The counter examples

are meant to show the consequences of either not applying the pattern in a given

context or applying it wrongly.

ADDITIONAL INFORMATION

49

Considering the problem and the solution as being the core elements in the def-

inition of a design pattern, their understandability is enhanced by any other

additional information. Some of these additional elements have been described

above and are comprised in the body of the pattern. Others are included in the

additional information part.

21. Related literature. References to literature which discusses the mechanisms

and concepts described by the pattern may be added to the ’Related literature’

element.

22. References to implementations. Patterns may also be described by a set of

references to their implementations.

23. Code example. Design patterns for software engineering use the code element

as a core defining element. However, since HCI design patterns address a differ-

ent audience and have a slightly different goal, the code element is seldom met

in the definition of HCI design patterns.

REFERENCES

The ’References’ part contains information on design patterns related to the one

described.

24. Related patterns. Patterns related to the one described (either from the same

collection or from different collections) are described as references. As result, the

pattern users are redirected to other patterns, describing related and possibly

influencing problems to the one described by the current pattern.

Table 2.1 identifies the pattern defining elements used in the definitions of the de-

sign pattern collections described in Section 2.2.3.

Within a collection of design patterns, authors use one single template for defining

all the patterns in the collection. This is meant to support the pattern users in devel-

oping reading patterns and easily finding relevant information within the collection.

50

D
efi
n
in
g
E
le
m
en
t

(A
le
x
an

d
er
,
19
77
)
[9
]

(G
am

m
a,

19
95
)
[4
6]

(B
or
ch
er
s,
20
01
)
[2
2]

(S
ch
u
le
r,
20
02
)
[9
3]

(G
ra
h
am

,
20
03
)
[4
7]

(v
an

W
el
ie
,
20
03
)
[1
05
]

(T
id
w
el
l,
20
05
)
[1
03
]

(S
ch
u
m
m
er
,
20
07
)
[9
4]

(C
ru
m
li
sh
,
20
09
)
[3
0]

Number X X X

Name X X X X X X X X X

AltName X X X

Rank X X X

Image X X X X X X

Author X X X
Class X

Creation
Revision

Level
Context X X X X X X

Problem X X X X X X X X X
Forces X X X X X

Solution X X X X X X X X X

Rationale X X X X X X

Diagram X X X X

Conseq. X X X

Examples X X X X

Uses X X X X

CounterEx

Literature X
Implemen. X

Code X
Related X X X X X X X X

Table 2.1: Templates of definition for various design pattern collections

51

2.2.4 Design Patterns versus Guidelines

There have been several parallels made between design patterns and guidelines, since

guidelines have been used to capture and describe ergonomic knowledge, as well. Fol-

lowing some of these parallels’ reasoning, guidelines prove to be very versatile, being

employed during several phases of the development process such as design and evalu-

ation [79]. Due to this fact, guidelines are often ambiguous and can only be applied

correctly by experts. Moreover, experts may experience difficulties in selecting and

applying guidelines since they are sometimes conflicting with one another and there is

a wide gap between the recommendation of the guideline and its application.

As opposed to guidelines, design patterns ”focus on the context of a very specific

problem at a time and provide a solution that not only includes the ergonomic knowl-

edge but also guides the designers to apply it in a practical way” [79]. This overcomes

the versatility and ambiguity of guidelines. Since design patterns are easier to apply

than guidelines, the number of patterns required for covering a specific design area is

higher. Moreover, due to their semi-formal template of definition, design patterns al-

low designers to form reading patterns, guiding them in browsing entire collections [56].

According to Borchers, ”style guidelines, guidelines, and standards are the forms of

expressing HCI design experience that are close to HCI design patterns”[22]. However,

one of the major differences he identifies between design patterns and guidelines resides

in the fact that design patterns are primarily constructive in that they suggest how

a problem could be solved, whereas guidelines are mainly descriptive, ”merely stating

desirable general features of a good finished interactive system”. In the author’s words:

”Patterns can improve these forms through their structured inclusion of existing

examples and an insightful explanation not only of the solution, but also of the problem

context in which this solution can be used, and the structured way in which individual

patterns are integrated into the hierarchical network of a pattern language, similar to

the distinction between general, category-specific, and product-specific guidelines.”

52

2.2.5 Design Pattern Mining Methods

Often, design patterns are identified by experts in the field of application of the pat-

terns [37] and the process these experts follow is seldom described. However, literature

documents two types of methods for design pattern mining: a). inductive methods

which start by observing the specifics of a context and move towards generalizations,

and b). deductive methods which start from generalizations and move towards identi-

fying the specifics of a context [15], [111].

Inductive methods include:

• ad-hoc discussions among experts in fields such as computer gaming where ele-

ments of game design or narratives are discussed.

• structural analysis and play testing in fields such as game design.

• multi-disciplinary descriptions and validations through which collaborative learn-

ing patterns are identified by collaborative learning practitioners, and validated

by pedagogy experts [111].

• systematic pattern development cycles targeting the design of e-learning systems.

Such a cycle is proposed in [83], where a 4-phase pattern development process

based on the reverse engineering of e-learning systems which embed good designs

is described.

Deductive methods include:

• drawing mind maps for:

– free exploration of a central topic,

– exploration of the five questions of a scenario: who, why, how, when, where,

– map of things learned through the years [15]

• describing metaphors such that ”the attributes of one general environment and

the functions of these attributes are translated towards functions of another type

of environment” [15].

53

• experts’ experience in confronting themselves with a recurrent problem.

• discussions held during the PLoP workshops where patterns are discussed in small

groups, feedback being provided in the form of a face-to-face peer review.

• shepherding [111] which is essentially a reviewing process organized within PLoP

conferences. Shepherds are individuals, with experience in pattern writing, as-

signed to an author’s paper with the expressed interest in helping the author

improve the pattern.

• open calls for patterns [93] soliciting patterns in the field of civic participation.

From the 170 such patterns that have been received from contributors through

the web, a committee of 34 members selected 64 for presentation and further

refinement.

• using preexisting organizational ontologies as formal specifications of shared se-

mantics [90].

Each of these methods is suited for specific domains of use; nonetheless, often times

both inductive and deductive methods are used during pattern mining processes [90].

2.2.6 Documented Uses of Design Patterns

Teaching. Findings of teaching and evaluating Computer Science courses that dealt

with HCI design patterns are summarized in [23]. They suggest that HCI design pat-

terns are useful tools to teach HCI design principles as well as to support students in

formulating their own design experiences. Two major ways of using design patterns for

teaching have been identified. Firstly, taught as a method, they should be considered

”as a segment of a larger advanced class in HCI design methodologies”. Secondly,

design patterns serve well as a tool and format for teaching HCI design principles.

A specific added value for the use of design patterns is identified in [63] as being

the support in acquiring design skills and domain knowledge. The three case studies

described in [63] support the following propositions: a) ”Novices will faster gain under-

standing in problem solving and design skills, when they learn to design with the design

54

patterns approach first, before they learn to understand entire systems”, b) ”Experi-

enced designers will not experience a learning effect from the use of design patterns,

but might find them useful in other ways”, and c) ”Training novices with the use of de-

sign patterns will increase the quality of the schemas they build to represent a system”.

Design. An initial and emerging collection of 45 pre-patterns for ubiquitous com-

puting have been described and evaluated in [29]. Sixteen (16) pairs of designers used

the pre-patterns for designing location-enhanced applications. The pre-patterns were

emailed to the participants prior to the 90-minute design sessions. The design ses-

sions were directly observed, results showing evidence of the following: a) pre-patterns

helped novice designers, b) pre-patterns helped designers with the unfamiliar domain,

and c) pre-patterns helped designers avoid some design problems.

An extension to this work is presented in [89] where the same collection of pre-

patterns was evaluated by 22 pairs of professional designers. Half of the pairs per-

formed a 120-minute design creation task without any external aid, while the other

half was given access to the pre-pattern collection via a browser for performing the

same task. Results show that the pre-patterns were mostly effective in supporting de-

signers generate design ideas, and allowing them to go back to the pre-patterns to get

clarifications on open issues.

A slightly different approach to evaluating design patterns is described in [32] where

the contribution that a collection of interrelated patterns could make to the user par-

ticipation in the design of interactive systems is investigated. A designer-facilitator

worked with a user to develop the design of either a travel website or a web-based

learning resource using a collection of design patterns addressing web design. Direct

observations revealed that users made extensive reference to the patterns’ illustrations,

often without referring to the text of the patterns. Also, it proved to be important that

only a small number of patterns were presented to the users at the same time. The

patterns were also used as a checklist to ensure that all the issues have been discussed.

If design patterns emphasize capturing a problem-solution pair in a certain context,

design claims focus on describing the positive and the negative implications of a design

55

decision [4]. The case study described in [4] evaluates the benefits of structuring design

advice in a pattern or a claim form and, instead of declaring the pattern or the claim

structure as a clear winner, proposes a hybrid structure for sharing design advice. The

paper also underlines an under-appreciated contribution of design patterns which is

their ability to offer ”a way to capture and share successful design trade-offs in con-

text” [4].

2.2.7 From Patterns to Pattern Languages

A collection of design patterns together with all the relationships identified between

the patterns was defined by Alexander as a pattern language [9]. Each of the patterns

described by Alexander is connected to other patterns, so that the entire collection is

grasped as a whole, as a language, ”within which you can create an infinite variety of

combinations”. Adopting the idea of a pattern language, Jan Borchers notes: ”pattern

languages essentially aim to provide laymen with a vocabulary to express their ideas

and designs and to discuss them with professionals”. He identifies inter-related pattern

languages able to define three levels of an application design: software engineering,

interaction design, and the target domain of the application. In [22], the three lan-

guages address interactive exhibits and are for software engineering, interaction design

of interactive exhibits, and music composition.

The advantages of pattern languages over less structured collections of patterns are

many. First, patterns are written with the purpose of capturing knowledge. Grasping

and understanding this knowledge asks for unfolding the individual concepts and the

relationships between them. Hence, traversing the collection supported by an underly-

ing logic, i.e. the relationships between the patterns, helps creating representations of

the area addressed by the collection. Secondly, patterns are written with the purpose of

describing recurring problems and proven solutions to tackle them. Hence, their goal is

to support designers in reusing proven solutions and not having to reinvent the wheel.

Using a solution, however, does not always limit to that and often asks for considering

related problems as well. Support in finding such related problems is brought by the

relationships between the patterns documenting them. Lastly, patterns are written

56

with the purpose of sharing knowledge helping to build an integrated repository of

knowledge. Adding to such a repository asks for connecting newly acquired knowledge

to the existing base, such connections needing to be explicit. Pattern languages are by

definition such structures, allowing the identification of relationships between different

bodies of knowledge.

Common to all the authors proposing pattern languages is the lack of a method

for identifying the relationships between the patterns. The only contribution in this

direction is the description of some possible relationships between two patterns, X and

Y [105]:

• X uses Y in its solution

• X is similar to Y

• X can be combined to Y

• X is a sub-pattern of Y

• X is related to Y

Similarly, in [114], a classification of possible relationships between software design

patterns is provided and this includes the following types: X uses Y in its solution, X is

similar to Y, X can be combined to Y. Based in these relationships, the authors relate

the software patterns in [46], forming a pattern language. Moreover, these patterns

are separated in 3 different layers: design patterns specific to an application domain,

design patterns for typical software patterns, and basic design patterns and techniques.

However, no method for actually identifying such relationships between patterns has

been described.

The goal in [25] is to provide a ”language independent formalization of the notion

of pattern, so that it allows its application to different modelling languages and tools,

as well as generic methods to enable pattern discovery, instantiation, composition, and

conflict analysis”. The goal is met by proposing a mechanism for suggesting model

transformations in a way that models become consistent with the patterns. Even if

57

the authors specifically target software engineering patterns, the approach has proven

powerful enough to formalize patterns from other domains, including interaction pat-

terns.

All in all, there is very little documented support in generating a pattern language

out of an existing collection. Surely, classifying possible relationships between patterns

is a valuable contribution, but then this area is lacking a method to support relating

(apparently) independent patterns. Interesting enough, most of the pattern authors

present their patterns in the form of pattern languages, being aware of all the advan-

tages of a language over a collection. However, they are solely supported by experience,

valuable but not easy to replicate and evaluate as a method. Deriving from this, one

of the gaps this work is aiming to fill in is precisely describing a method which would

support the semi-automation of a pattern language generation.

—

Even if the concept of design pattern has been around since the ’70s, there is still

work to be done in supporting research in this field by means of methods and tools.

A broad spectrum of domains are subject to being documented by patterns and most

of the collections of patterns addressing these domains are further structured as pat-

tern languages. However, the methodological landscape for identifying and relating

design patterns is quite scarce, most of the authors basing their judgement mainly on

experience. Moreover, even if communities are formed around the existing collections

of patterns - their role being to manage and use such repositories - their is still little

understanding of the ways these collections are used. Having as starting point the

findings described above, I aim to bring further methodological support in the areas

of identifying and relating patterns. Moreover, inspired by the studies described above

for understanding the use of design patterns in teaching and design, I look into the use

of design patterns specifically in collaborative interaction design processes.

58

2.3 Creativity in Software Design

Software is rarely associated with creativity. However, software design, as any type

of design, is a highly creative endeavor [71]. It implies the key steps of any design

process - problem finding and problem solving, understanding and defining problems,

balancing forces and coming up with creative solutions. For that reason, it could highly

benefit from the techniques and concepts revolving around creativity.

2.3.1 The Creative Process - History and Evolution

The history of the creative process definition dates way back to the late 19th century,

beginning of the 20th century. A first attempt of a creative process model definition

was proposed in 1926 by Graham Wallas [108] who identifies four phases in a creative

process: i). preparation as the phase in which the problem to be solved is clarified

and understood, ii). incubation when one no longer consciously considers the problem,

iii). illumination as the phase in which the creative insight occurs, and iv). verifi-

cation, the last phase during which it is verified that the creative insight is indeed a

solution for the problem to be solved. Osborn [77] refines this definition and proposes

a two-phase model for defining a creative process. The first phase consists of the idea

generation, being followed by a second phase called idea evaluation. Idea generation is

developed in two sub-phases. First, the problem at hand is being clearly defined and

understood (fact finding phase), and secondly, new ideas are being produced through

the combination of already existing ones (idea finding phase). Idea evaluation implies

assessing the ideas generated in order to identify creative solutions. Another similar

model was proposed by Amabile [10] which defines the creative process based on four

phases: i). problem presentation, ii). preparation, iii). response generation, and iv).

response verification. The preparation phase implies building up knowledge about the

problem and researching what a potential solution may necessitate. During the last

two phases, possible solutions are generated for the problem and then verified in the

given context.

The particularity of all these models of creativity is that they look at one individ-

ual or a small group of individuals solving a problem, creating the image of designers

59

working in isolation. This, however, is rarely the case today due to the exponential

complexity of design problems and to the expanding scale of design projects. The con-

cept of community became central to design and this brought new challenges related

to the way knowledge is being created, shared and reused within a specific community.

In [98], Schneiderman proposes the genex framework for defining creative collaborative

processes, identifying four phases of a creative process: i). collect, ii). relate, iii). create,

and iv). donate. During the first phase, previous similar work is studied and learned

from. The relate phase brings people together in order for them to consult with each

other and exchange knowledge on the problem at hand. The create phase assumes the

exploration, composition and evaluation of possible solutions to the problem at hand.

The last phase allows the dissemination of the solutions reached, contributing in this

way to the global knowledge within a community.

The dynamic and complex nature of collaborative design problems certainly involves

more comprehensive knowledge than a single person can possess [42]. The knowledge

associated with design problems is tacitly distributed among the various individuals

or communities involved in the collaborative design process [43]. Thus, involving all

the stakeholders in problem solving collaboration is necessary and leads to social cre-

ativity. Social creativity arises not in one individual’s mind, but from ”the interaction

between a person’s thoughts and a socio-cultural context” [42]. It exploits the cre-

ativity of groups of minds while their interaction through tools and artifacts. There

are three major principles of social creativity: i). knowledge creation, ii). knowledge

integration, and iii). knowledge dissemination. Knowledge creation is defined as the

process of externalization of an individual’s tacit knowledge. As a further step, knowl-

edge integration assumes merging the information that is collaboratively constructed

into the problem-solving context. Lastly, knowledge dissemination not only asks for

efficient techniques for knowledge sharing, but also requires the possibility of provid-

ing the ’right’ information at the ’right’ time and in the ’right’ way [42]. One of the

challenges that arise in collaborative design processes comes from the need to support

social creativity through tools and techniques appropriate to each stakeholder involved

in the process. Supporting the interaction, communication and common reasoning [39]

on the problem at hand is, nowadays, a must in the context of collaborative design.

60

2.3.2 Creative Techniques in Software Design

There are several creative techniques documented in the literature; of interest to this

work are some of those mostly fitting the context of software design. The subsection

will introduce scenario-based design, sketches, and mockups.

2.3.2.1 Scenario-based Design

”Software design is fundamentally about envisioning and facilitating new ways of doing

things and new things to do.” [28]. The complexity of software design problems ex-

ceeds one’s individual ability to tackle them and asks for the collaboration of stakehold-

ers with different expertise and backgrounds. Graphic designers, software engineers,

programmers, human-computer interaction specialists, and marketing people come to-

gether and collaborate in the design of software applications [43]. In addition to that,

it is often the case that software addresses the problems of clients (often, the users)

which may not be (and are not willing to be) experts in software design. However,

they need to communicate with the software designers which are not experts in the

domain of the clients/users. Therefore, one of the challenges in designing software ap-

plications is finding ways to communicate design ideas and interaction representations.

One way to do that is by describing as in a story the actors (the potential users of

the application) and the activities (the actions the application supports) they would

perform when engaged in the interaction with the application under design. Such de-

scriptions are called scenarios. They are stories which describe people in action, their

goals, and motivation, the concrete descriptions of activities that engage the user when

performing a specific task [104]. Scenarios prove to be powerful design tools in that:

• they are easily understandable by all those involved in the design process – soft-

ware designers, programmers, clients/users,

• they allow reasoning about situations of use even before those situations actually

exist [28],

• they support software designers in understanding the requirements expressed

by the client/user, providing ”a description sufficiently detailed so that design

implications can be inferred and transformed into actual models” [104],

61

• they constitute a bridge between the specialized language of the client/user and

the specialized language of the designer,

• they provide insight into the ways to tackle usability aspects, since they provide

”snapshots” of the application in use.

Defining a scenario should answer a set of pre-requisites. First, any scenario should

have a narrative character; it should sound like a story. This not only supports the

communication and common understanding among the stakeholders involved in the

design process, but it also supports the dialog of the designers with the clients/users

and vice versa. In addition to that, any scenario should answer a set of questions,

such as: who are the users?, what are their goals?, what is their motivation to use

the software application?, how could they use the application, and when and where

can the application be used?. scenario-based design – i.e. the technique of using

scenarios during design processes – has been applied in various stages of the software

development cycle, such as requirements analysis, user-designer communication, design

rationale, documentation and training, evaluation, abstraction and team building [104].

2.3.2.2 Sketches

”Designers explore new ideas and concepts at various stages of their design cycle using

different material artifacts” [107]. Examples of such artifacts are sketches. They are

tools for capturing preliminary observations and ideas [106]. In addition to supporting

externalization processes, sketches have been documented to enhance social interaction

[96], coordination among collaborating designers [18], and introspection [92]. Design

processes often times require moving from abstract, non-structured ideas to concrete,

well-defined concepts. This move may not always be linear, requiring the designers to

”initiate, explore, combine, transform, refine, and reject different ideas” [71]. In that

respect, sketches are tools which support designers in the exploration of the design

space, in the same time allowing them not to commit to design ideas too early in the

process. sketches can be of several types; they can be concrete or abstract, represen-

tational or symbolic, improvisational or rehearsed [106]. Moreover, they are used in

various domains and contexts, of interest to this work being their use in software design

62

processes, and more particular during GUI design.

The initial phases of GUI design are governed by uncertainty. Objects belonging

to the GUI may have ”uncertain types, sizes, shapes, and positions” [65]. It is because

of this uncertainty that designers do not feel the burden of deciding on details such

as colors, alignments, and fonts which should be decided on during later phases of the

process. Sketching GUIs gives the process certain fluidity, since sketches are rough

representations and may be modified at any time based on the continuous exploration

of the design space of the application. Sketches have been documented to encourage

and enhance creativity in GUI design in that ”when the designers generated a new idea

in a freehand sketch, they quickly followed it with several variations.” [65]. The more

ideas get generated during design processes, ”the greater the probability of achieving

an efficient solution” [109]. Hence, the more creative the design process is, ”the greater

the probability of designing useful and usable software applications and computer sys-

tems” [109].

2.3.2.3 Mockups

Mockups are ’very early prototypes’ made of cardboard or otherwise low-fidelity ma-

terials. They resemble the final product, but only at a surface level, having little of

the eventual functionality [48]. Mockups help designers negotiate on UI design related

aspects and may be easily created by anyone involved in the process. Several tools exist

for creating mockups, the most popular being Balsamiq (Figure 2.4) and Mockingbird

(Figure 2.5).

Balsamiq promotes the idea according to which mockups reproduce the experience

of sketching interfaces on a whiteboard, only that on a computer. That implies mockups

are easier to share, modify, and store. Moreover, Balsamiq supports the following:

• Quick idea generation.

• Sooner review and iteration processes.

• Improved communication between designers, developers and product managers.

63

• Real-time iterations involving all parties.

Mockingbird is a fully web-based mockup editor which allows dragging and drop-

ping UI elements to the page. These elements may be rearranged and resized. Several

mockups can be linked together obtaining a flow of the application as a whole. Each

mockup can be shared through a link which, if made available to other users, allows

its real-time edit. Final mockups can be exported to commonly used formats for visu-

alization purposes such as pdf or png.

64

F
ig
u
re

2.
4:

S
n
ap

sh
ot

of
B
al
sa
m
iq

-
a
to
ol

su
p
p
or
ti
n
g
m
o
ck
u
p
cr
ea
ti
on

65

Chapter1/Chapter1Figs/balsamiq.eps

F
ig
u
re

2.
5:

S
n
ap

sh
ot

of
M
o
ck
in
gb

ir
d
-
a
w
eb
-b
as
ed

to
ol

su
p
p
or
ti
n
g
m
o
ck
u
p
cr
ea
ti
on

66

Chapter1/Chapter1Figs/mockingbird.eps

—

In this chapter, I looked into three areas related to the topic of this thesis, aim-

ing at underlying present work done and gaps overlooked. First, I described a set of

documented challenges and concerns in the design of synchronous collaborative appli-

cations. The purpose of this was to get an overview of what is there to expect when

initiating such designing efforts. Surely, the survey is not exhaustive, but it aims at

supporting the findings further described in this thesis.

Secondly, I looked into design pattern research only to discover that even if there is a

large number of collections of patterns available today, there is very little documented

methodological support in terms of identifying such patterns. In addition to that,

most pattern authors present their collections in the form of pattern languages, but

base their reasoning mainly on experience and very little methodology relies behind. I

also looked into studies documenting how patterns are used and these studies target

mainly the use of patterns in teaching and generally in design. However, patterns are

usually used in collaborative contexts since communities are formed around existing

collections, so there is the need of investigating how patterns are used by collaborating

designers working in teams.

Lastly, I described some of the creative techniques used throughout this work.

Even if not directly related to the results and findings described by this thesis, these

techniques helped shape the methodology defined and proposed below.

67

Chapter 3

Synchronous Processes: Motivation

and Tool Support

Most research and development of technology to support collaboration has been di-

rected towards asynchronous collaboration contexts [72]. Therefore, today, there is a

growing interest in supporting synchronous interaction, as well. Several software ap-

plications, developed as either research projects or commercial products, exist and are

used today in synchronous collaborative settings in domains such as drawing, search-

ing, text editing, and game solving. The aim of this chapter is to describe a collection

of such applications, providing a few examples of tool support and helping frame the

landscape this work is looking into.

3.1 Collaborative Drawing

Collaborative drawing is common to several design-oriented domains such as archi-

tecture, engineering, and graphic design [80]. It is often that architects or designers

gather around a table to draw together, sketching their ideas and communicate based

on them. Their processes are characterized by: a) a shared drawing surface accessible

to each member of the team, and b) the possibility to mark up their drawings and

comment on them. Switching from the real to the virtual and allowing designers to

work together in the same time using software tools should not limit their freedom

68

of expression and their creativity. Education is another area in which synchronous

collaboration is common. Moreover, distance learning has triggered the development

and use of software applications to support such collaborative processes.

3.1.1 Synergo

Synergo [72] is a synchronous collaborative tool used for building several types of

diagrammatic representations. Libraries for building flowcharts, entity-relationship di-

agrams, concept maps, data flow diagrams have been built in the tool; however, its use

can go beyond that, allowing different extensions to be added. Synergo is targeted to

small groups of students, but it also provides analyzing and supervision tools for the

teachers. The tool has a built-in chat feature, allowing all team members to exchange

ideas and discuss their results. A color-scheme is used to differentiate each collabo-

rator’s messages. Synergo produces log files containing the actions and the messages

exchanged by the members of the group. Based on these log files, the tool allows the

playback of the activities performed by the collaborators. Also, log files can be viewed,

commented, and annotated. At any time during the collaboration, the tool is able to

measure the state of collaboration, defined as ”a combination of machine-learning and

statistical techniques”.

3.1.2 NetDraw

NetDraw [80] is a Java application which provides 2D collaborative drawing features in

a client-server architecture (Figure 3.1). It is trying to bridge the gap between complex

drawing applications which require users to buy into an entire CAD package and simple

whiteboard programs with simple diagramming tools. NetDraw has a thin client, suit-

able for running on any device that supports Java. Any number of users can log in to

the server and use their browsers to observe and participate in a synchronous drawing

session. The server notifies all the clients of any drawing and editing actions. Drawing

and editing actions include: a) group and ungroup objects, b) gesture command for

marking the drawing, c) providing objects with different appearances and behaviors.

The tool includes an instant messaging feature and it also records snapshots of the

69

drawing in progress. These snapshots may then be played back for reviewing purposes.

Drawn objects can be annotated and, during a collaborative session, any of the col-

laborators may leave or join the process at any time. Notifications of their absence or

appearance are sent to those logged in to the session. Objects drawn can be linked to

annotations consisting of descriptive text. Gesture objects, which are only temporary,

can be drawn as well for marking parts of the actual drawing; they help in clarify-

ing issues during the collaborative process by pointing to those parts. Based on their

unique identifiers, the objects drawn are subject to a locking mechanism for ensuring

proper coordination among collaborators. Each object’s lock status is shown with a

color scheme, marking three possible states of an object: 1) waiting to be granted a

lock from the server, 2) being locked, and 3) being unlocked.

3.1.3 CO2DE

CO2DE [73] is a collaborative drawing tool which supports the creation of diagram-

matic representations, including UML diagrams (Figure 3.2). The application includes

a versioning mechanism, providing the collaborators with support in reverting changes.

Moreover, whenever a new user joins the collaboration, he is able to navigate through

the versioning structure being aware of and comparing different versions. He can

analyze contributions and changes made to the shared document, but also messages

exchanged among the collaborators and annotations made on the document. Tele-

pointers are another feature of CO2DE which allow collaborators to see in which part

of the shared workspace other participants are located. Editing the shared document is

only permitted after it is locked. At all times, a list with all the users logged in to the

application (hence, available for collaboration) is displayed to all the other users. The

user who initiates one collaborative session is assigned the role of coordinator through-

out the process. An instant messaging feature is included in the application and all

the objects collaboratively created may be annotated. All the editing operations of one

user are instantly reflected in the other’s shared workspace.

70

Figure 3.1: Synchronous drawing in NetDraw - a Java application providing 2D col-
laborative drawing features in a client-server architecture [80]

71

Chapter2/Chapter2Figs/netdraw.eps

Figure 3.2: Synchronous drawing in CO2DE - a collaborative drawing tool which sup-
ports the creation of diagrammatic representations [73]

72

Chapter2/Chapter2Figs/co2de.eps

3.1.4 LucidChart

LucidChart (LucidChart, 2008) is a web tool released in 2008 which supports the col-

laborative drawing of diagrams such as UML diagrams, and flow diagrams (Figure

3.3). Documents collaboratively created may be shared online, published as a web

page or shared on social networks. Any user may invite the people s/he chooses to

work with and all the changes made by one collaborator are instantly reflected in the

others’ workspace. The tool includes a revision history feature which supports revert-

ing changes, or starting a new document from a previous version of an existing one.

LucidChart is available on any device that supports browsing and it allows the export

of the documents created to other formats such as pdf, or jpg. Annotations are avail-

able for any object collaboratively created. Moreover, groups of collaborators which

form a community in itself may choose to create and share a repository of templates

in a community library.

3.1.5 DeTransDraw

DeTransDraw (DeTransDraw) is a decentralized collaborative graphical editor which

provides the collaborators with a shared drawing area. The tool provides graphic sup-

port for notifications about other users’ activities. Moreover, collaborators may join

and leave the application (hence, the collaborative process) at any time without relying

on any central point of control.

3.2 Collaborative Searching

Even if web search is usually considered a solitary activity, there are several real-life

scenarios in either educational contexts or among knowledge workers where people col-

laborate in search tasks [84]. Some of these scenarios include planning travel or events,

researching medical conditions, or finding information related to a specific project. As

a concrete example, Amershi et al. conclude in [11] that there are many situations in

which teachers, librarians, and researchers gather around a single computer to jointly

search for information online. On one hand, resource constraints are often a factor,

73

Figure 3.3: Synchronous drawing in LucidChart - a web tool which supports the col-
laborative drawing of diagrams such as UML diagrams, and flow diagrams

74

Chapter2/Chapter2Figs/lucidchart.eps

since the ratio of, for example, students to computers in public schools is most of the

times skewed. On the other hand, even when resource constraints are looser, ”the social

and pedagogical benefits of face-to-face collaboration and shared viewing of informa-

tion can be a compelling reason for collaborators to share a single computer” [11]. The

results of a survey described in [84] show that often respondents instant-message other

people to coordinate real-time Web search or divide responsibility for parts of a search

task and then share the results. Moreover, in the absence of a tool to support their

collaborative search, respondents have developed their own strategies for that purpose

(emailing links back and forth, instant messaging).

3.2.1 CoSearch

CoSearch [11] is a searching tool which supports co-located collaborative Web search

(Figure 3.4). Groups of users gather around a single computer, and each user has

access to his/her own mouse controlling unique cursor (distinguished by color). For

identification purposes, each user is associated with a name and a color. At any time,

there are two roles each user might have: 1) driver – actually performing the search,

and 2) observer – overlooking the results. These roles are, however, inter-changeable,

a user acting as a driver being able to switch to the role of observer and vice versa.

Since CoSearch allows co-located collaboration, each collaborator can visualize and be

aware of what the others are searching for. Notes may be added to each of the websites

reached through the search. At any time during a search session, users can choose to

create a shared summary of their search results, keeping track of the shared sessions’

findings. This also permits tracking the history of a collaborative search process for

further analysis. The summaries contain information on the pages’ URLs, and the

notes associated to each page. CoSearch can be used on both desktops and mobile

devices. Collaborative features for mobile devices are not fewer, users being able to

use the application in a similar way and even collaborate with others using the desktop

version of it. However, due to the technical constraints imposed by a mobile device,

such as a phone, the interaction flow between the user and the application is simplified.

Users have access to a global menu through which they can: a) send a query to the

browser, b) get and share the search results, c) get the tabs of other search running in

75

parallel, and d) get the summaries of the other searches performed.

Figure 3.4: Synchronous searching in CoSearch - a searching tool which supports co-
located collaborative Web search [11]

3.2.2 Coagmento

Having in mind several documented conditions for a successful collaboration, Shah et

al. designed Coagmento [97], a tool able to support collaborative information seeking

on the Web (Figure 3.5). These conditions include diversity of opinion, independence,

decentralization, aggregation, awareness, division of labor, and persistence [101] [84].

Coagmento allows two people – either co-located or from remote locations – to work

76

Chapter2/Chapter2Figs/cosearch.eps

together for seeking information. However, the tool can be used in a collaborative

manner as well as individually. The application provides its users with a chat feature

for communication. It also displays the collaborators’ information, making all collab-

orators aware of the actions the others are performing. For example, if one document

reached through the search is viewed by one of the collaborators, the document is high-

lighted for both collaborators.

All queries of a session are logged, and documents obtained through the query may

be saved or flagged. Therefore, at any time during the search, one user may save a

document, flag it as candidate for further discussion and assign it a note. Even if notes

proved particularly useful, users would also benefit from simply highlighting and saving

portions of a page of a document. In answer to that, Coagmento provides ways for

users to ”snip” passages of documents. Search session states are preserved in Coag-

mento, meaning that if a user leaves the session, he will find it as it was upon return.

Changes made by the other collaborator would be updated to the session and at each

moment of the collaborative process each user is aware of the presence status of his/her

collaborator.

77

F
ig
u
re

3.
5:

S
y
n
ch
ro
n
ou

s
se
ar
ch
in
g
in

C
oa
gm

en
to

-
a
to
ol

ab
le

to
su
p
p
or
t
co
ll
ab

or
at
iv
e
in
fo
rm

at
io
n
se
ek
in
g
on

th
e

W
eb

[9
7]

78

Chapter2/Chapter2Figs/coagmento.eps

3.2.3 SearchTogether

SearchTogether [84] was designed to enable both synchronous and asynchronous remote

collaboration in web search (Figure 3.6). The application has a client-server architec-

ture, the server having two major roles: 1) sending shared state among clients, and 2)

storing session data in order to enable session persistence. On the client side, each time

a user executes a search, the query terms are associated to him/her and this history is

synchronized across all group members’ clients, creating awareness of the other users’

activities. This history is also interactive, allowing each user to click on any of the

query terms in order to view the results it produced. Users can rate and comment on

the pages searched for. Moreover, each page searched for is associated with a set of

metadata which includes information on the visitation (such as the date and time, and

the id of the visitor), ratings, and comments. Every time a user views a webpage in the

SearchTogether ’s browser, the page is associated with the date, the time, and the iden-

tity of the visitor. Moreover, this information is visible to others, so that if one page

has already been visited by a member of the group the others are aware of that and

avoid visiting the same page several times. An instant messaging feature able to allow

collaborators to discuss the current task and coordinate their efforts is provided by the

application. All the conversations are stored and made available to all collaborators for

later review. Another collaboration enabling mechanism provided by SearchToghether

is a recommendation mechanism. Any user may recommend a webpage to a group or

another individual. Search results can be obtained in SearchTogether in three ways:

a) Standard search: a user’s query is run and the results are displayed to all the col-

laborators logged in the session, b) Split search: a user’s query is run and the results

are divided up among all online group members in a robin-round fashion, facilitating

parallelization and avoiding the duplication of efforts, c) Multi-engine search: a user’s

query is sent to n different search engines, where n is the number of online collabora-

tors. All aspects of a search session in SearchTogether are persistent, including instant

messaging conversations, query histories, recommendation queues, and page specific

metadata. Therefore, whenever a user pauses his/her work, s/he is able to resume it

without losing any information. In addition to that, at the end of any search session,

collaborators are allowed to create a shared summary of it. The content of such a

summary can be decided by its creator based on predefined criteria.

79

F
ig
u
re

3.
6:

S
y
n
ch
ro
n
ou

s
se
ar
ch
in
g
in

S
ea
rc
h
T
og
et
h
er

-
a
to
ol

w
h
ic
h
en
ab

le
s
b
ot
h
sy
n
ch
ro
n
ou

s
an

d
as
y
n
ch
ro
n
ou

s
re
m
ot
e
co
ll
ab

or
at
io
n
in

w
eb

se
ar
ch

[8
4]

80

Chapter2/Chapter2Figs/searchtogether.eps

3.2.4 Cerchiamo

Cerchiamo [40] is a ”collaborative exploratory search system that allows teams of

searchers to explore document collections synchronously” in both co-located and remote

settings. The system provides each user with a dedicated search interface s/he can use

independently of other users. The search process is customized, collaborators having

different roles in the process:

• Prospector: the user who issues a query, discovering directions for exploration.

• Miner: the user who browses the results for making relevance judgements on

them.

Both prospectors and miners may visualize and interact with a shared display con-

taining information relevant to the progress of the search session.

3.2.5 VisSearch

VisSearch [112] is a collaborative Web searching application which supports sharing

Web search results among people with similar interests (Figure 3.7). Searching sessions

are evolving collaborative processes which allow collaborators to go back to previous

search results and use these results as further queries. In VisSearch, this is allowed

by representing a search session as a graph where nodes represent search queries and

relation links (i.e. relations between pairs of Web search query nodes). Such graphs

can be saved and restored, allowing users to track and replay their search process.

Search results can be bookmarked and commented on, text notes being associated

to the page. VisSearch incorporates a recommendation mechanism able to recommend

two types of information:

• Search queries associated with either a Web search query or a URL of a useful

Web site.

• URLs and a useful Web site.

81

Figure 3.7: Synchronous searching in VisSearch - a collaborative Web searching appli-
cation which supports sharing Web search results among people with similar interests
[112]

82

Chapter2/Chapter2Figs/vissearch.eps

3.2.6 AntWorld

AntWorld [74] is an application developed in 2000 which has as goal making it easier

”for the members of a common-interest user group to collaborate in searching the Web”

(Figure 3.8). The application has a client-server architecture, where:

• On the client side, each user is provided with ranked lists of suggested web sites,

and marked lists to suggested pages from the page the user is currently viewing.

Moreover, each user is allowed to provide feedback on the pages visited through

ranks, comments and annotations.

• On the server side, database profiles of all AntWorld quests ever run by the mem-

bers of a group are stored. Whenever a user submits a comment on a webpage,

the profile of the associated quest is updated and all the other clients are notified

by the change.

AntWorld ’s user interface is designed as a ”browser assistant”, allowing a user to

view suggested pages, provide feedback on a specific page, view similar quests, and

edit his/her current quest. Other uses envisioned for AntWorld include bookmark and

search management, directory creation (lists of links on a specific topic may be cre-

ated), query refinement or generation.

3.2.7 WeSearch

WeSearch [85] is a tabletop application which supports collaborative Web search among

groups of up to 4 collaborating users (Figure 3.9). Each collaborator is associated with

a color. Such a color scheme is designed to support the identification of each collabo-

rator’s contribution to the search. The application supports touch-based interactions

such as moving, rotating, scaling the browser. Pages searched for can be tagged and

associated with metadata containing information on the user who reached the page,

the type of its content, the URL of the page, and the query keywords used to find

the page. A search session may be saved in formats accessible on other devices as

well. This allows the visualization of a search session’s results on other devices (such

as mobile ones). Moreover, the current state of a search session can be stored, allowing

83

Figure 3.8: Synchronous searching in AntWorld - an application which has as goal
making it easier ”for the members of a common-interest user group to collaborate in
searching the Web” [74]

84

Chapter2/Chapter2Figs/antworld.eps

collaborators to pause it and resume it later on.

Figure 3.9: Synchronous searching in WeSearch - a tabletop application which supports
collaborative Web search among groups of up to 4 collaborating users [85]

3.3 Collaborative Text Editing

Another frequent area of synchronous collaboration is text editing, contexts where

more collaborators edit together the same document being met often [6]. Such edit-

ing processes go through various stages of refinement, and asynchronous tools such as

85

Chapter2/Chapter2Figs/wesearch.eps

e-mail prove to be too cumbersome and inefficient. On one hand, multiple copies of

the same document can lead to confusion. On the other hand, users might need to

collaboratively decide on changes to be performed on the document and discuss this

changes in real-time.

Twelve challenges in the design of synchronous collaborative editing software are

identified in [6]:

• Time and space: synchronous applications need to take into account issues such

as the physical distribution of the potential users.

• Awareness: various methods for promoting awareness have been developed and

used. Some of them include: using different colors for each collaborator’s input,

sending a notification whenever a document is modified, showing each collabora-

tor’s cursor in a synchronous system, or showing the status of each collaborator.

• Communication: synchronous applications are particular candidates for being

integrated with communication tools (such as instant messaging systems). How-

ever, there are both advantages and disadvantages to be considered for such

integrations. On one hand, they place the conversation in the right context, sup-

porting the common understanding among collaborators. On the other hand,

messages from other collaborators may be seen as a source of disruption.

• Private and shared work spaces: the issue of privacy is particularly important in

synchronous applications where users can see each other’s contributions imme-

diately. Therefore, users might need to keep part of their work private. This,

however, may influence their commitment to using the system collaboratively.

• Intellectual property: seldom discussed as an issue, intellectual property is be-

coming one in the context of collaborative applications where artifacts are being

shared and collaboratively created. Labeling and tracking artifacts for which the

authors have assigned special rights should be possible.

• Simultaneity and locking: synchronous collaboration often leads to the situation

in which more collaborators edit one shared document in the same time. Mutual

exclusion allows only one collaborator to edit a shared artifact at any time, while

86

locking allows several people to work on a document at the same time by making

the part of the document that one person is working on unavailable to others.

• Protection: protecting the work of all collaborators is a major concern in syn-

chronous applications, since deleting one’s contributions may delay the collabo-

rative process and lead to conflict. Some of the protection mechanisms used in

text editing synchronous applications include undo, change tracking, and version

control.

• Workflow: in situations where the collaborative development of documents is in

itself a managerial activity, organizations need assistance in correctly controlling

workflow processes. A concrete example of such a situation is a document needing

the signatures of A and B before being approved by C.

• File format: file format issues can introduce significant difficulties for collabo-

rative applications, which must either store information in a binary format, or

convert contents to and from these formats.

• Platform independence: two classes of collaborative applications can be iden-

tified: 1) network-based collaborative tools which allow users to use different

computing platforms, and 2) web-based systems which use web browsers with

different capabilities.

• User benefit: collaborative tools only prove successful if they provide their users

with an overall benefit, whether this is ease of use, flexibility, or any other gain.

Making a tool beneficial for its users so that they find enough motivation to be

part collaborative processes is a challenge addressed often in the literature.

3.3.1 TellTable

TellTable [6] tries to answer some of the challenges described above, being a ”single

user application to be used collaboratively by running the application on a server and

allowing users to access it from a java-enabled web browser” (Figure 3.10). Upon log-

ging in, users are provided with a list of files to edit. When a file is selected for being

edited, it is opened on the server (using OpenOffice), and the display is exported to

87

a browser via a network protocol (VNC). Further on, the user’s browser loads a java

VNC viewer, and all keyboard and mouse activity in the applet are sent to the server.

The full history of the development of a document is being maintained by a versioning

system (CVS), but there is no communication tool integrated in TellTable. Coordina-

tion is supported in two ways: a). by completely locking the document once a user

starts editing it, or b). by allowing a writer to share the document edited with others

and agreeing as a group on a form of coordination. TellTable supports awareness by

displaying the current version number and giving access to past versions or change

tracking. By placing the application on a central server, TellTable ensures that all

users use the same version of the application.

3.3.2 CodoxWord

Released in 2007, CodoxWord (CodoxWord, 2010) is a real time sharing and group

editing tool (Figure 3.11). Upon installing CodoxWord, Microsoft Word is enhanced

with real-time collaborative capabilities, the sharing of documents being possible in

a Peer2Peer mode. Instant updates of the others’ activities are available and these

updates are either visual or audio. Coloring schemes help highlight concurrent edits

on the shared document. The application embeds a versioning system which sup-

ports recovering from errors, backtracking to previous versions, and reverting changes

made to a document without affecting the work of the other collaborators. CodoxWord

automatically merges all the simultaneous edits, no matter where they take place in

the shared document, which asks for the collaborators to coordinate their edits in

a consistent manner. However, the tool provides several conflict resolution policies

and strategies. Different roles and rights may be assigned to each collaborator, so

the collaboration process is subject to customization. For example, some users may

be assigned reading only rights, while others may also edit the content of the document.

3.3.3 EtherPad

EtherPad (EtherPad, 2008) is a web-based collaborative real-time editor (Figure 3.12).

Each user is assigned a name and a color to support the identification of individual

88

Figure 3.10: Synchronous text editing in TellTable - a collaborative text editing tool
used by running the application on a server and allowing users to access it from a
java-enabled web browser [6]

89

Chapter2/Chapter2Figs/telltable.eps

Figure 3.11: Synchronous text editing in CodoxWord - a real time sharing and group
editing tool

90

Chapter2/Chapter2Figs/codoxword.eps

contributions to the document edited. Communication among collaborators is made

available through an instant messaging feature included in the application. Any user

may invite the collaborators s/he chooses to work with through e-mail invites. The

document edited may be exported to other formats such as html, txt, pdf, doc and

the editing process may be customized. As result of that, all the collaboration op-

tions (such as visualization settings) set by one collaborator affect the view of all the

other collaborators. EtherPad provides the collaborators with the possibility of saving

the revisions made on a document, so that the history of the collaborative process is

tracked. Previous versions of a document may either be viewed on a time slider or

restored. Moreover, any user may see at all times the list of all users logged in to the

application.

3.3.4 GoogleDocs

Synchronous collaborative text editing is supported also by GoogleDocs (GoogleDocs).

The tool has a chat feature integrated and it allows each participant to invite his/her

collaborators. Revisions show at any time who changed what and when within the

document edited. GoogleDocs supports web based collaboration, allowing each user to

set the level of privacy desired. In this way, the tool allows collaborative text editing

as well as individual text editing.

3.4 Collaborative Game Solving

Games have been played for literally thousands of years, being an important part of

human life. Technology has brought forth a multitude of gaming alternatives, some

targeting multiplayer use and focusing on collaborative problem solving. Even more,

games create a social situation characterized by players sitting together around the

same table, looking at each other to interpret mimics and gestures which may help

them understand the others’ actions [69]. Besides their social character, games have

proven to be useful in developing ”educational and rehabilitation tools to support learn-

ing” [20]. However, the positive effects of using technology for such learning purposes

91

Figure 3.12: Synchronous text editing in EtherPad - a web-based collaborative real-
time editor

92

Chapter2/Chapter2Figs/etherpad.eps

are somehow neutralized by the fact that most such games are designed for one player

working directly with the application, not supporting interaction between more players.

Even if not yet fully explored, a solution to this issue is represented by computerized

systems that can support co-located interaction of multiple players.

3.4.1 Mystery at the Museum

”Mystery at the Museum” (M@M) [61] is a synchronous collaborative game meant to

engage visitors in museum exhibits and to encourage them to collaborate in solving

a detective problem, i.e. a band of thieves had left their calling card in an exhibit

case indicating that they had stolen a priceless object from the museum and replaced

it with a replica (Figure 3.13). The players have been brought in as a team of ex-

perts to try to solve the crime, apprehend the criminals, and identify and retrieve the

stolen artifact. Players take one of three possible roles during the problem solving: a

technologist, a biologist, and a detective. The game was completed when players had

accumulated enough evidence to obtain a virtual warrant for the arrest of the culprits.

The system is adapted to Pocket PCs. It is able to track the individual contribution

of each collaborator to the problem solving and it provides a chat feature.

3.4.2 Collaborative Puzzle Game

Collaborative Puzzle Game (CPG) [20] is a tabletop interactive game addressing chil-

dren with Autism Spectrum Disorder (ASD) (Figure 3.14). Two players can work

together on the same display, dragging and dropping pieces of the puzzle in an area

of the screen designated for solving the puzzle. The coordination of the players is

enforced in that a piece of the puzzle can only be moved when both players drag it.

Any player can, at any time, visualize what his/her collaborator is doing. Feedback

on the players’ actions is provided through both visual and auditory media. For ex-

ample, during the game, an animation is executed when a player tries to release a

puzzle piece over another piece that is already anchored to the solution area (the piece

being released jumps away with a spring sound and moves to a random position on the

surface). Moreover, when a piece is released in an incorrect position on the solution

93

Figure 3.13: Synchronous game solving in M@M - a synchronous collaborative game
meant to engage visitors in museum exhibits and to encourage them to collaborate in
solving a detective problem [61]

94

Chapter2/Chapter2Figs/mm.eps

area, an unpleasant buzz is played and a red halo surrounds the piece until it is removed.

Figure 3.14: Synchronous game solving in CPG - a tabletop interactive game addressing
children with Autism Spectrum Disorder[20]

3.4.3 SIDES

Sides [78] is a collaborative multi-player tabletop puzzle-style computer game that ”en-

courages meaningful application of group work skills” (Figure 3.15). At the beginning

of a game, each player receives nine square tiles with arrows. Arrows are divided among

participants and they are asked to work together to build a path with their pieces to

95

Chapter2/Chapter2Figs/cpg.eps

allow a frog” to travel from the start lily pad to the finish lily pad. Each player has

a control panel containing information on the state of the game, voting buttons to

test the solution of the game, reset, or quit the game. The coordination mechanism

embedded in the application ensures the participation of all the players by allowing

them to move to a new state in the game solely after all the players have given their

vote on the current state of the game. The game does not enforce rules such as turn

taking or piece ownership.

Figure 3.15: Synchronous game solving in Sides [78] - a collaborative multi-player
tabletop puzzle-style computer game

96

Chapter2/Chapter2Figs/sides.eps

3.4.4 STARS

STARS [69] is a software platform used for realizing computer augmented tabletop

games. The platform supports the players in coordinating themselves as a community

and it considers persistency in that it record the game events and allows the creation

of a game history. Also, players are supported in customizing the game. Both pri-

vate and public communication is available through instant messaging features. Two

games have been developed using the platform: Monopoly and KnightMage. The first

one embeds private communication features and mechanisms to support competition

among players. The second one uses both audio and visual channels for capturing and

transmitting the information.

—

In this chapter, I aimed at describing a few examples of synchronous collaborative

applications which are used today in domains such as drawing, searching, text editing,

and game solving. These applications form the basis of further investigations described

later on in Chapter 4. For now, though, these descriptions are aimed to help the reader

get a better picture of the type of applications this thesis is focusing on and on the

overall technological landscape it addresses.

97

Chapter 4

Identifying Patterns: A Collection

of Patterns for the Design of

Synchronous Applications

Although there are lots of collections of design patterns described and available, there

is very little indication on the methods the authors of these collections used to reach

the patterns. Surely, as most of them explain, most of the times they base their judge-

ment on experience and derive and document from past projects best practices to be

considered. However, experience as a method in itself, can not be evaluated or repli-

cated (easily); hence the need of methodological support able to allow such evaluations

and replication processes. The aim of this chapter is just that - to describe a method

designated for identifying design patterns in interaction design. The application of

the method addresses the design of synchronous collaborative applications and it is

described in this chapter together with the results derived form this application - a

collection of 15 design patterns to be used in the design of applications which support

synchronous collaboration.

98

4.1 Definition of a Design Pattern

Several different templates for defining design patterns have been proposed. A com-

plete description of these templates is provided in Chapter 2, Section 2.2.3. They

generally include the name of the design pattern, the description of the problem it

addresses together with the forces that influence this problem, some examples of sit-

uations in which this problem can be met and a possible solution to tackle the problem.

For the scope of this thesis, a design pattern is defined by the tuple:

P = (id, n, c, pb, F, E, SYM, CON, d, K, s, R, IN, OUT)

The description of these elements is presented below:

• The identifier, id is a string of characters that uniquely identifies a pattern. In

the example 2.2, the identifier of the pattern is 2.10.

Questions answered by this element: What is the unique identifier of the pattern?

• The name, n of the pattern is a string of characters which helps refer to the cen-

tral idea of the pattern. In the example 2.2, the name of the pattern is ’TRAVEL

TOGETHER’.

Questions answered by this element: What is the name of the pattern? How

should one refer to the pattern?

• The context, c is the description of the design context in which the pattern can

be used. In the example 2.2, the context of the pattern is the second textual

element.

Question answered by this element: When is the problem addressed by the pattern

identified?

• The problem, pb is the description of the major issue the pattern is trying to

solve. It may embed textual, graphical, audio and video content. In the example

2.2, the problem is ’When finding their way through an unknown environment,

99

users can often get lost ’.

Questions answered by this element: What is the recurring problem addressed?

• The set of forces, F = f1, ... , fi is a set of the tradeoffs to be considered when

applying the pattern. In the example 2.2, the forces are not described.

Questions answered by this element: What should one give up in the design pro-

cess? What would be the benefits and the loses for eliminating or adding an el-

ement to the design process? What additional factors are involved in the problem?

• The set of examples, E = e1, ... , ej presents the description of a set of existing

applications in whose design the problem described by the pattern arose. In the

example 2.3, the examples are described as Known Uses.

Questions answered by this element: Where has the pattern been applied?

• The set of symptoms, SYM = sym1, ... , symp is the set of preconditions which

ask for the application of the pattern. In the example 2.2, the symptoms initiate

with ’You should consider to apply the pattern when...’.

Questions answered by this element: What goes wrong before the identification

of the problem?

• The set of consequences, CON = con1, ... , conq is the set of benefits and li-

abilities resulting from the application of the pattern. In the example 2.2, the

consequences are not described.

Questions answered by this element: What is the result of applying the pattern?

What is being won? What is being lost?

• The diagram, d is a graphical illustration of the pattern. No restriction on the

type of the diagram are imposed, its goal being to transmit visually the main

idea of the pattern. In the example 2.2, the diagram is presented at the very

beginning together with the picture illustrating the place of the pattern in the

100

overall collection of patterns.

Questions answered by this element: What is the visual clue associated to the

pattern?

• The set of keywords, K = k1, ... , kt is introduced to list the keywords (strings

of characters) associated to the pattern, which may be either part of an existing

glossary or new (with respect to the glossary) concepts related to the pattern. In

this way, the keywords are the kernel for the creation of a glossary to be used for

indexing and managing the pattern’s description elements. In the example 2.2,

no keywords are associated with the pattern.

Questions answered by this element: What are the words mostly associated to the

pattern?

• The solution, s is the description of a method or process for solving the prob-

lem addressed by the pattern. In the example 2.2, the solution is described as:

’Therefore: Browse through the information space together. Provide means for

communication and collaborative browsers that show the same information at each

client’s side’.

Questions answered by this element: How can the problem be solved?

• The references, R = r1, ... , ru set is a set of literature references related to the

pattern. In the example 2.2, no references are described for the pattern.

Questions answered by this element: What has been written about the pattern?,

What similar patterns have been written by other authors?

• The input, IN = in1, ... , ina is the set of identifiers of the design patterns which

define a context for the pattern, i.e. the design situations in which the pattern

can be used. In the example 2.3, related patterns are associated to the pattern

described, without specifying the type of relationship existing between the pat-

terns.

101

Questions answered by this element: What are the patterns pointing to the pat-

tern? 1

• The output, OUT = out1, ... , outb is the set of identifiers of the design patterns

which define the design situations that refine the one in which the pattern is used.

In the example 2.3, related patterns are associated to the pattern described, with-

out specifying the type of relationship existing between the patterns.

Questions answered by this element: What are the patterns to which the pattern

points? 2

The general reading template for each of the patterns is: The pattern n addresses

the problem pb which is generally met in the context c. You should consider applying

the pattern when SYM. When applying the pattern you should consider F. Applying

the pattern translates into applying the proposed solution s which has as consequences

CON. Literature references related to the pattern are found in R and some examples of

the pattern’s application are E.

4.2 Design Pattern Mining Method

Methods for identifying design patterns are scarcely described in the literature, the few

examples existing being presented in Section 2.2.5. Most of the times, experienced de-

signers write collections of patterns without any reference to the process they followed

to reach them. On one hand, identifying patterns involves a great deal of experience

in the area addressed by the patterns, so experience in itself can be a method for such

mining processes. On the other hand, without a structured described method, the vali-

dation and the replication of such processes are hard to accomplish. Therefore, through

my work, I propose a structured method for identifying design patterns in interaction

design. The core idea of the method is inspired by the definition of a design pattern

(”a proven solution to a recurring design problem” [22]) and by the related literature

1More on this in 5.
2More on this in 5.

102

in the field (see Section 2.2.5 for details).

The method consists in running a series of workshops during which teams of de-

signers are asked to design the GUI and the interaction process of an application in the

design area targeted by the pattern mining process. The design process of each team

follows a set of steps and uses several creative techniques such as scenario-based design

[28], free associations, sketching, and mockup creation. Each team is observed by a

facilitator and the designers are encouraged to externalize the design ideas, problems,

concerns, solutions they might find useful, and any issue relevant to the design of the

application. These design issues form the basis of the pattern identification process.

The most recurring design issues throughout the workshops point to potential candi-

dates for design patterns in the field of the application under design.

To support the results of the workshops, a set of software applications in the area of

the mining process are analysed in order to identify in what measure the design issues

discussed during the workshops are considered in the implementation of existing appli-

cations. Such analysis implies getting familiar with the application, using its features,

and studying its documentation in order to identify those design issues considered in

each application’s implementation.

The method has a two-fold focus. On one hand, it investigates issues designers

address in designing applications from scratch with a clear focus on those issues mostly

recurring. On the other hand, it looks at already developed and used applications for

pointing out those design considerations mostly considered in their design. There are

several advantages to this. First of all, the method uses several sources of data to

validate its results. It does not rely only on the results designers provide and which do

not go through any cycle of evaluation or only on the existing applications which do

not leave much room for any additional considerations (since they are already running

and used). Partial results from both the workshops and the applications analysis are

correlated to lead to the final results. The overlap between the two sets of data is

specifically interesting with respect to the final results. In addition to that, results

obtained from the workshops and not identified during the application analysis open

the door for possible innovative ideas worth being further explored.

103

4.2.1 Design Workshops

A design workshop provides a team of 3-5 designers (the participants) with a set of

problems. These problems are chosen from the area of interest for the design pattern

mining process. For example, for identifying design patterns for the design of sys-

tems to support synchronous collaboration, the problems would address domains of

synchronous collaboration such as collaborative drawing or collaborative text editing

(eg. design an application which would allow a group of users to draw together in the

same time one drawing). Participants are asked to design the GUI and the interaction

process for an application to tackle one of the problems proposed (concrete examples

of this further on in Section 4.3.1.1). A design workshop brings together the team of

designers and a facilitator. The role of the facilitator is to: a). describe the problems

to the participants, b). walk the participants through each phase of the workshop, c).

take notes of the participants’ conversations, and d). observe the participants through-

out the workshop and support them if needed. Each workshop lasts for approximately

2 hours and has 3 phases, adapted from the definition of a creative process as proposed

by Wallas [108]. The model proposed by Wallas best fits the time length considered

for a workshop and this is one of the motivation for choosing this as underlying model.

• During the first phase - the preparation phase - participants are encouraged to

choose one problem from the set and to define as many scenarios as they can

consider for software solutions (applications) to tackle the problem. In defining

a scenario, they would consider answering the questions: a). who are the users?,

b). what are they allowed to do through the application?, c). how could they

achieve their goals using the application?, d). what is their motivation for using

the application?, and e). when and where could the application be used? [28].

• The second phase - the incubation phase - asks the participants to choose another

problem from the list and to find similarities and differences between the two

problems (the one chosen during the first phase and the one chosen during the

second phase). The purpose of this exercise is to identify commonalities and

major differences between applications addressing different domains. Similarities

104

would indicate the possibility of abstracting design details related to the two

domains, while differences would suggest that similar design problems would

require different design solutions for the two domains compared.

• Lastly, during the illumination phase, participants are asked to design the GUI

and the interaction process of the application related to the problem they initially

chose during the first phase. For that, they are strongly encouraged to sketch

their ideas, express all the design problems they encounter and, possibly, create

a mock up of their overall design.

4.2.2 Mining Method

A first step in the design pattern mining process is running a set of design workshops

as described in Section 4.2.1. Examples of such concrete workshops are presented later

on in Section 4.3.1. Throughout the design processes followed during the workshops,

participants are encouraged to externalize any design problem, solution, or decision

they consider relevant to their design process. In addition to that, the facilitator takes

notes of their conversations. This leads to a list of design issues, a design issue being

defined as any idea (problem, decision, solution, consequence, secondary effect) con-

taining relevant information or concepts about the design of the application considered.

After each of the workshops conducted, all the design issues provided by the par-

ticipants are collected. This sequence of steps (i.e. running a workshop and collecting

the design issues discussed by the participants) is repeated until a fairly large (more

than 100) number of different design issues are collected. Further on, for each of the

design issues collected, its degree of recurrence with respect to the workshops (DoRw)

is computed as:

DoRw(di) =
numberOfOccurences(di)

numberOfWorkshops
∗ 100 (4.1)

, where numberOfOccurrences represents the number of workshops during which

the design issue di has been discussed and numberOfWorkshops is the total number of

105

workshops conducted. The list of design issues is sorted based on the computed DoRws.

As a second step in the design pattern mining, a set of existing software applica-

tions in the area of the mining process is analyzed. The analysis consists in walking

through a scenario for each application and in collecting the design issues - relevant to

the interaction affordances provided - considered in the application’s implementation.

The scenario should cover all the features provided by the application and should be

tailored to each application in particular. For identifying the features provided, design

documentation and/or requirements specification are used. Scenarios are written in-

dependently of the design workshops.

The goal of the software application analysis is identifying in what measure the

design issues discussed during the workshops are considered in the implementation of

existing applications. Moreover, the list of issues could be extended in the event that

the analysis brings to light design issues not addressed throughout the workshops. For

each of the design issues, its DoRs is computed with respect to the software analysis

as:

DoRs(di) =
numberOfOccurences(di)

numberOfApplications
∗ 100 (4.2)

, where numberOfOccurrences represents the number of applications in whose im-

plementations the design issue di was considered and numberOfApplications is the total

number of applications analyzed.

Candidates for being documented as design patterns are those design issues with a

higher degree of recurrence with respect to both the workshops’ results and the soft-

ware analysis.

106

4.3 The Method Applied

4.3.1 Mining through Design Workshops

A number of 9 design workshops have been held with graduate and undergraduate

students and professional designers. The list of problems they were provided with in-

cluded collaborative drawing, collaborative text editing, collaborative searching, and

collaborative game solving. The common requirement for all of the problems was the

design of a software application to support one of the above activities in a synchronous

manner. Each workshop was structured according to the description provided in Sec-

tion 4.2.1 and a facilitator was present throughout each workshop, collecting all the

design issues discussed by the participants. Those design issues mostly recurring were

considered for further analysis.

4.3.1.1 Problems

The list of problems proposed during the workshops included collaborative drawing,

collaborative text editing, collaborative searching, and collaborative game solving.

• The problem of collaborative drawing asked for the design of a software appli-

cation which would allow painters, graphic designers and/or visual artists to

collaboratively create one diagrammatic representation, working together in the

same time.

• The problem of collaborative text editing required participants to design an ap-

plication which would allow a group of users to create a summary of a written

text in a synchronous collaborative fashion.

• The problem of collaborative searching required that more users are able to per-

form one search in the same time either from remote locations or being co-located.

The problem had a concrete context of application: movie database searching.

The requirements for this application asked that several users (possibly a group

of friends) would be able to create through visual virtual tools a query on a

database containing information about movies.

107

• The set of games considered for collaborative solving consisted in puzzles and

crosswords. Both of these games have in common several aspects:

– Each game can be seen as a problem with only one possible solution.

– Reaching the solution asks for trials and decision making and marks the end

of the game.

The common requirement for both was that more users solve one game in the

same time.

Overall, the motivation for choosing these four problems included the following

aspects:

• As described in Chapter 3, the four activities considered are widely met in various

contexts and domain.

• The identification of requirements for applications to support such activities does

not necessarily require precise domain expertise. For example, defining the re-

quirements for an application to support collaborative diagnosing requires strong

medical expertise (hence the involvement of physicians). This is not necessarily

the case for the activities considered throughout this work.

• All four activities are subject to synchronous collaboration.

The long-term goal of this work is to extend the results of the mining process across

other activities subject to synchronous collaboration, as well. For the purpose of this

thesis, however, the above mentioned activities are the target of the mining process.

4.3.1.2 Participants

The total number of participants in the workshops was 50, out of which 20% were

female, and 80% were male1. They worked in 13 teams as follows:

1 There could be gender differences at play in the results obtained; however, these differences are
beyond the scope of this thesis to explore.

108

Workshop Design HCI DB TC Male Female Total %
1 4 0 0 0 1 3 4 8

2 0 0 19 0 14 15 19 38
3 0 0 4 0 4 0 4 8

4 0 0 4 0 4 0 4 8

5 0 5 0 0 3 2 5 10

6 0 0 4 0 4 0 4 8

7 0 0 0 3 3 0 3 6

8 4 0 0 4 4 0 4 8

9 0 0 0 3 3 0 3 6

Total 4 17 19 10 40 10 50 100

Table 4.1: Participants distribution across workshops

• 19 participants (38%) were Master students in a ”Multimedia databases” class

(DB), so they were divided in five teams and worked simultaneously1 on the

collaborative database searching problem.

• 17 of the participants (34%) were Master students in a ”Human Computer Inter-

action” class (HCI). They worked in 4 teams, each team working on one of the

following problems: drawing, puzzle solving, text editing, and crosswords solving.

• 10 participants (20%) were undergraduate students in a course on ”Technologies

for Collaboration” (TC). They were divided into 3 teams, and they worked on

the following problems: drawing, puzzle solving, and crosswords solving.

• 4 of the participants (8%) were professional designers (Design) with more than

5 years experience in graphic design. They worked as a team in designing an

application for collaborative drawing.

Out of the 13 teams, 9 of them had 4 members, 3 had 3 members, and one team

was constituted of 5 members. However, the slight difference between the number of

team members had little (if any) impact on the collaborative design processes followed

by the participants (judging by the number of design issues collected from each team).

1 The 19 participants were divided into 5 teams, independent one of another. All the teams
participated in one workshop, working in parallel.

109

Problem Design HCI DB TC Male Female Total %
Drawing 4 4 0 3 8 3 11 12

Searching 0 0 19 0 14 15 19 38
Text
editing

0 4 0 0 4 0 4 8

Puzzle
solving

0 4 0 3 7 0 7 14

Crossword
solving

0 5 0 4 7 2 9 18

Total 4 17 19 10 40 10 50 100

Table 4.2: Participants distribution across problems

A more elaborate reasoning on this fact is provided further on, in subsection 4.3.1.3.

Table 4.1 describes the distribution of the participants across workshops considering

their background and gender.

As for the distribution of the participants across the problems addressed by the

workshops (Table 4.2), 22% of them (three teams) worked on the problem of collabora-

tive drawing, 38% (five teams) worked on the problem of collaborative searching, and

8% (one team) chose the problem of collaborative text editing. Moreover, two teams

comprising 14% of the participants worked on the problem of collaborative puzzle solv-

ing and two other teams (18% of the participants) chose the problem of collaborative

crossword solving.

4.3.1.3 Procedure and Results

The workshops were organized according to the description provided in Section 4.2.1,

each workshop having three phases and lasting two hours. During each phase, the par-

ticipants were encouraged to use different creative techniques for exploring the problem

chosen. The participants were provided with postits, paper cards and other such means

and they were encourage to put their thoughts down on them. After each phase, each

team displayed the postits and the paper cards they wrote and discussed them with

the facilitator. For sketching, they were provided with paper sheets and they were en-

110

Problem Number of teams Number of ideas
Drawing 3 45

Searching 5 72
Text editing 1 19

Puzzle solving 2 32

Crossword solving 2 47

Total 13 143

Table 4.3: Number of teams and scenarios generated for each problem

couraged to describe their ideas and results at the end of the session. Those interested

in creating mockups were encouraged to use either Mockingbird or Balsamiq tools (see

Section 2.3.2.3). At the end of the two-hour workshops, all such material was collected

for further analysis.

Phase 1: Preparation

The first phase asked the participants to choose a problem from the list provided

and to generate as many scenarios as they can consider for software solutions (appli-

cations) to tackle the problem. In defining a scenario, they would consider answering

the questions: a). who are the users?, b). what are they allowed to do through the

application?, c). how could they achieve their goals using the application?, d). what

is their motivation for using the application?, and e).when and where could the appli-

cation be used?. The total number of scenario generated was 143 (Table 4.3).

Three teams worked on the problem of designing a software application for collab-

orative drawing, generating a total of 45 ideas. The first team generated 26 scenarios,

including: a). networks of friends come together and draw collaboratively as in playing

a game, b). drawing collaboratively and projecting the drawing in different parts of

the world, c). creating a city event which brings citizens together and providing them

with a recording wall for drawing, d). create an online gallery and see it as a recruiting

place. The second team generated 4 scenarios. Some of the ideas they generated were

common to those coming from the first team. One example of common idea is allowing

the application to revolve around a city event where people come together and, using

111

different drawing techniques, draw collaboratively. Another idea proposed was seeing

the overall drawing as the composition of individual drawings that each user could cre-

ate in a private area of the application. Lastly, the third team proposed 15 scenarios.

The recurring idea for the users’ synchronous collaboration was allowing each collab-

orator to draw separately and compose the individual drawings into a collaboratively

created drawing.

One team worked on the problem of collaborative text editing and 19 scenarios were

generated. They included: a). groups of students collaboratively editing a document

while discussing through an instant messaging feature, b). having a group of students

take notes collaboratively during a lecture on a tablet PC, c). groups of users basing

their collaboration on social features such as ranking, tagging, annotating, comment-

ing, d). allowing each user to identify his/her contribution to the document or the

contributions of others, e). allowing users to visualize the evolution of the shared re-

source throughout the synchronous collaborative process.

Four teams worked on the problem of the two collaborative games – puzzle solving

and crosswords solving. They generated 79 ideas, including: a). the puzzle can be seen

as a game or as an artistic act which brings people together, b). the puzzle can be used

with medical goals such as helping elderly people in remembering things, d). allowing

users to create personalized crosswords, e). supporting users in answering crossword

questions in a round, each user’s answer being timed.

The five teams working on the collaborative search problem generated 72 scenarios.

These included: a). a group of friends trying to decide on a movie to watch, each hav-

ing a criteria for their choice, b). several users remember scenes from a given movie,

but can’t recall the title of it, c). users from remote locations are trying to find the

closest cinema to all of them.

112

F
ig
u
re

4.
1:

S
y
n
th
es
is

m
ap

of
th
e
sc
en
ar
io
s
co
ll
ec
te
d
fr
om

th
e
fi
rs
t
w
or
k
sh
op

113

Chapter3/Chapter3Figs/mindmap.eps

Problem Users Goals Usage Motivation Location Time
Drawing 10 12 9 10 4 0

Text editing 1 4 13 1 0 0
Puzzle solving 5 9 13 1 1 3

Crossword
solving

4 15 20 5 2 1

Total 14% 28% 38% 12% 5% 3%

Table 4.4: Results of preparation phase - scenarios classification

A rough classification of these scenarios grouped them into issues related to users,

their goals and motivation, the actual features of the application and the affordances

these features provide, location, and time (Table 4.4). Moreover, the ideas expressed

by each team were represented through mind maps to facilitate their further analysis.

An example of such a mind map is presented in Figure 4.1.

This first phase aimed at allowing the teams to explore possible solutions for the

problems they were looking into. The large number of ideas generated is an indicator

of the fact that the teams found the design space exploration not only useful for finding

possible solutions, but also a means of understanding the other members’ backgrounds

and expertise.

Phase 2: Incubation

The second phase asked the participants to choose another problem from the list

and to find similarities and differences between the two problems (the one chosen dur-

ing the first phase and the one chosen during the second phase). Incubation is defined

as the phase during which the problem to be solved is no more conscientiously consid-

ered, but it is still running in the background of one’s mind. Moving the focus from

that particular problem to a similar one supports incubation in two ways. On one

hand, exploring the second problem allows the identification of associations meant to

help in reaching a solution for the problem initially considered (especially since both

problems are in many respects similar). On the other hand, not thinking about the

problem initially chosen allows the exploration of different reasoning thoughts which

114

might provide valuable insight useful also for clarifying the initial problem.

Problem Similarities/Difference

Drawing vs.

Text Editing

• Similarities:

– For both, parts of the document

drawn/edited can be modified indepen-

dently of each other.

– Instant messaging features can be integrated

in both types of applications.

– Social features such as ranking, tagging, com-

ments can be included in both types of appli-

cations.

• Differences

– Searching in an edited document is performed

differently than in a drawing.

– An editing document supports the creation

of a table of contents.

115

Table 4.5 – continued from previous page

Drawing vs.

Puzzle Solving

• Similarities:

– Both types of applications can be used for

medical purposes.

– Both types of applications support team work

and competitions.

• Differences

– There is one right solution in a puzzle game

and the game imposes a set of rules.

– Drawing may not follow any rules and there

is no right or wrong solution to a drawing.

Crosswords vs.

Puzzle Solving

• Similarities:

– Both of them are games, so they support

competitions among teams and may have dif-

ferent levels of difficulty.

– Both have one final solution.

– Both games can be personalized.

• Differences

– Puzzles work with images, while crosswords

use a language, hence collaborating players

must speak the same language.

– Puzzles offer a preview of the solutions, while

crosswords don’t.

116

Table 4.5 – continued from previous page

Text editing vs.

Crosswords

Solving

• Similarities:

– Both can be used with educational goals.

– Both types of applications can be used on var-

ious devices such as mobile phones, laptops.

– Both require a mechanism of notification of

changes made to the edited document/board

game.

• Differences

– Crosswords solving is an activity with a pre-

cisely defined end, while text editing does

not have a defined end (a document may be

edited at any time, while a game is over when

the board is completely filled in).

Table 4.5: Results of incubation phase - Similarities and

differences between two distinct problem domains

The total number of ideas generated (these including both similarities and differ-

ences) was 110, out of which 44 were similarities between 2 different problem spaces

and 66 were differences. The teams explored the similarities and differences between

applications addressing drawing and text editing, drawing and puzzle solving, cross-

words solving and puzzle solving, text editing and crosswords. Some of their ideas are

depicted in Table 4.5. After exploring possible solutions for the problem they chose, the

participants shifted their focus on a different problem. This supported them in switch-

ing to a different context and creating associations between contexts. As a consequence

of that, the participants were encouraged to understand the secondary implications in

their design processes and to get a different perspective.

117

Phase 3: Illumination

During the last phase, the participants were asked to design the GUI and the inter-

action process of the application related to the problem they initially chose during the

first phase. Their final results consisted in sketches or mockups, an example of such a

design being depicted in Figure 4.2. Both the preparation phase and the incubation

phase impacted this phase. On one hand, a large number of the scenarios the teams

discussed during the first phase were considered for being part of their final designs.

On the other hand, associations made during the incubation phase were referenced and

considered in the design process. During sketching/mockup creation, the teams would

constantly go back to the postits/paper cards written during the previous two phases

(and displayed after each phase) to identify the issues they’ve discussed and to consider

including them in their final results.

All the design issues discussed by the teams throughout their design processes were

collected by the facilitator present during the workshops - independently from one team

to another. In addition to the issues collected, the notes made by the participants on

their design results were also considered for further analysis.

4.3.1.4 Design Issues Identified

The collected design issues were assigned a DoRw (the percentage in which they were

discussed throughout all the workshops) and, based on these values, they were sorted.

Table 4.6 briefly describes the list of design issues discussed. All of the workshops

addressed the problem of coordination, the teams providing different solutions for sup-

porting collaborators in coordinating their work. Each solution depends on the context

of the collaborative activity explored. Most of the teams considered locking as a solu-

tion. Others, looked into the possibility of allowing each group to coordinate itself or

in designating one of the collaborators as the coordinator and letting him/her decide

on the coordination of the others. Also, a large number of workshops addressed the

issue of communication and suggested integrating a chat within the application they

were designing. Similarly, participants considered adapting the applications they were

118

Figure 4.2: Partial results of the illumination phase - Mockup for a collaborative search
application

119

Chapter3/Chapter3Figs/mockup.eps

designing to several devices, some of them providing different interfaces for different

types of devices considered (i.e. phones, laptops). Social features were considered by

most of the teams, as well as supporting the awareness of the collaborating users with

respect to each other’s actions on the shared resource.

ID Design Issue DoRw

14

How to support the coordination of a collaborative

process in order to ensure that all collaborators

participate in the process and that the resource remains

consistent at all times?

100

14.1
— use timers so that each collaborator gets access to the

resource for a given amount of time
7.69

14.2

— use separate, independent blocks for each collaborator

so that there is no dependency among contributions

coming from different members of the same team

15.38

14.3
— link the application to a community and let this

community decide how to coordinate itself
23.07

14.5 — support the creation and execution of workflows 7.69

14.6

— any time a collaborator starts editing the shared

resource or part of it, the resource or that specific part

are locked until they are saved

23.07

14.8

— one of the collaborators (for example, the creator of

the resource) is the coordinator of the entire process,

being the decision maker

23.07

6
Integrate communication tools within the application -

instant messaging, chat
76.92

2
Interaction through Web based recorded walls; Web based

collaboration
69.23

120

Table 4.6 – continued from previous page

22 Adapt the application to the several devices 69.23

22.3 — target mobile devices 15.38

22.1 — use one shared device such as a tabletop 7.69

22.2 — use different inter-connected devices 7.69

22.5
— have a script for identifying automatically the device

and adapt the application to that device
7.69

1
Provide separate layers for collaborative and non

collaborative activities
53.84

4 Support the users in choosing their collaborators 46.15

7
Allow each collaborator to visualize what the others are

doing in real-time
46.15

9
Support collaborators in tagging, ranking, commenting

the shared resource they are working on
46.15

15 Usability - users decide how they will use the application 38.46

15.1
— allow the users to appropriate the application to their

needs, provide flexibility
15.38

15.2 — multi-language application 15.38

18 Support the competitions among different teams 38.46

17
Use different media for transmitting/capturing

information (various input, output channels)
30.76

28
Support the creation of groups of collaboration; users can

join such groups, leave them or create new ones
30.76

121

Table 4.6 – continued from previous page

5
Transform the collaborative process into a game; use it

for entertainment
23.07

33

Adapt the application to the participants; allow them to

decide on the parameters of their collaborative work so

that they can customize their collaboration

23.07

11
Design the application as a teaching application; embed

educational goals
23.07

45
Envision the collaborative process as a city event -

citizens’ collaboration
23.07

52
Provide ways for the application to support its users

through feedback on their actions and corrections
23.07

30
Support collaborators in visualizing who else is connected

to the application at a given time
23.07

16

Collaboration is the composition of individual

contributions created in a non-collaborative manner;

divide the overall work in blocks

23.07

20 Registered users have additional privileges 15.38

43 Create mind maps of the collaborative process 15.38

44 Design the collaboration as a street art event 15.38

122

Table 4.6 – continued from previous page

10
Provide tools for searching/filtering data related to the

collaborative process
15.38

24
Track and support the visualization of the history of the

collaboration through timelines or log files
15.38

54 Include translation features 15.38

55 Include help features (such as tooltips) 15.38

58

Each user may manage his/her own profile, which would

include information relevant to the collaborative process

targeted by the application

15.38

59

Link the application to other applications such as

calendars or maps, depending on the type of collaborative

process the application supports

15.38

24 Track one individual’s contribution 15.38

24.1
— use colors for visualizing individual contributions; each

user is associated with a color
7.69

24.2

— click on the name of the user and visualize only

his/her contribution to the shared resource, all other

contributions being faded

7.69

3
Provide means for rewarding all collaborators; provide

direct benefits for all the users working together
7.69

42
Visualize the collaboration process on walls displayed

remotely on different sites
7.69

123

Table 4.6 – continued from previous page

46 See people you admire draw in real time 7.69

47 Build the application as a recruiting place 7.69

48
Bring people with different expertise together and allow

then to use different tools and work together
7.69

49 Connect people 7.69

12
Gather social data from the collaborative process to

support further analysis of the collaborators’ interactions
7.69

50 Use layers 7.69

13
What is someone is making trouble? How to apply

censorship?
7.69

51
Evolve the application as a perpetual beta; support

prototyping, and different versions
7.69

53 Address elderly people 7.69

19
The application is used with medical goals, in various

contexts
7.69

56 Create physical places for using the application 7.69

21 Integrate the application with social network services 7.69

124

Table 4.6 – continued from previous page

57
Support the collaborators in asking for suggestions from

the application
7.69

Table 4.6: Design issues collected from the workshops

The issues discussed by the teams did not always address synchronous collaboration

in particular. On one hand, there is a fuzzy line between the synchronous and asyn-

chronous mode of a collaborative process, features supporting mostly asynchronous

collaboration providing benefits to collaborative processes held synchronously. For

example, tracking the history of a collaborative process would prove beneficial in asyn-

chronous contexts, when the collaborators would need to go back to the results of their

collaboration long after the collaborative process ended. However, being provided with

ways to visualize in real-time the evolution of a synchronous collaborative process might

as well support those collaborators involved in the process. On the other hand, tools

which support synchronous collaboration might be suited for asynchronous contexts as

well, depending on the time dimension in which they are being used. Therefore, the

requirements of these types of applications would have several similarities.

4.3.2 Mining through Synchronous Applications Analysis

The applications analyzed are those described in Chapter 3 of this thesis (for a brief

reminder, see Table 4.7). Each application was associated with a scenario and each

scenario was further on walked through, the purpose of the scenarios being to support

the facilitator in identifying those design issues considered in the implementation of

each application.

For each design issue, its DoRs was computed as the percentage in which the issue

was considered across the designs of the applications analysed. Table 4.8 lists down

these issues together with their DoRss. A large number of the applications considered

addressed the issue of coordination, several solutions to this being used. Locking was

125

Application Domain Application Domain
Synergo 3.1.1 drawing Coagmento 3.2.2 searching

NetDraw 3.1.2 drawing SearchTogether 3.2.3 searching
DeTransDraw 3.1.5 drawing Cerchiamo 3.2.4 searching

CO2DE 3.1.3 drawing VisSearch 3.2.5 searching

LucidChart 3.1.4 drawing AntWorld 3.2.6 searching

TellTable 3.3.1
text

editing
WeSearch 3.2.7 searching

GoogleDocs 3.3.4
text

editing
M@M 3.4.1

game
solving

CodoxWord 3.3.2
text

editing
CPG 3.4.2

game
solving

EtherPad 3.3.3
text

editing
Sides 3.4.3

game
solving

CoSearch 3.2.1 searching STARS 3.4.4
game
solving

Table 4.7: Synchronous applications analysed

popular, as well as embedding the possibility for the collaborating group to coordinate

itself. Tracking the history of the collaborative process supported by each tool was

one of the most frequent concerns considered. In addition to that, issues such as sup-

porting communication through integrated chat mechanism or supporting awareness

among collaborating users were considered by half of the applications considered. Social

features and device adaptation were also included in some of the applications analysed.

ID Design Issue DoRs

14

How to support the coordination of a collaborative

process in order to ensure that all collaborators

participate in the process and that the resource remains

consistent at all times?

75

14.3
— link the application to a community and let this

community decide how to coordinate itself
50

14.4 — voting, agreement rate 5

126

Table 4.8 – continued from previous page

14.7

— any time a collaborator starts editing the shared

resource or part of it, the resource or that specific part

are locked until they are saved

15

14.8

— one of the collaborators (for example, the creator of

the resource) is the coordinator of the entire process,

being the decision maker

5

23
Track and support the visualization of the history of the

collaboration through timelines or log files
60

23.2 — support versioning 15

23.2 — support reverting changes 20

23.4
— history is interactive; click on search result, redirects

to page
10

23.5 — timelines 5

6
Integrate communication tools within the application -

instant messaging, chat
50

7
Allow each collaborator to visualize what the others are

doing in real-time
50

7.1 — the server echoes instantly drawing and editing actions 25

9
Support collaborators in tagging, ranking, commenting

the shared resource they are working on
45

2
Interaction through Web based recorded walls; Web based

collaboration
40

22 Adapt the application to the several devices 35

22.1 — use one shared device such as a tabletop 10

22.6 — tabletop 15

127

Table 4.8 – continued from previous page

22.3 — target mobile devices 10

22.7 — handheld computers that support Java 5

24 Track one individual’s contribution 30

24.1
— use colors for visualizing individual contributions; each

user is associated with a color
15

4
Support the users in choosing their collaborators though

invites (e-mails or shared links)
20

5
Transform the collaborative process into a game; use it

for entertainment
20

27 Annotate the objects subject to collaboration 20

33

Adapt the application to the participants; allow them to

decide on the parameters of their collaborative work so

that they can customize their collaboration

20

33.1 — assign roles and rights to collaborators 10

1
Provide separate layers for collaborative and non

collaborative activities
15

17
Use different media for transmitting/capturing

information (various input, output channels)
15

17.1 — visual and audio cues on what the others are doing 5

25 Import/export facility to other formats 15

25.1 — publish doc as a web site/wiki 5

25.2 — pdf, jpg 10

128

Table 4.8 – continued from previous page

8 Include playback tools based on log files 15

8.1 — records snapshots of the drawing 5

38 Includes a recommendation mechanism 15

28 Collaborators can leave and join collaboration at all times 15

28.1 — notifications are sent on their status 5

19
The application is used with medical goals, in various

contexts
10

30

Support collaborators in visualizing who else is connected

to the application at a given time. Display a list with all

available collaborators

10

31 Provide templates in the community library 10

34 Identify each collaborator with a name/color 10

36 Each searched page is associated with metadata 10

39 Provide a shared summary of the collaboration 10

39.1 — summary of the findings of the search 10

26 Communicate with other similar tools 10

26.1 — share docs online 15

26.1 — AutoCAD via file transfer 5

129

Table 4.8 – continued from previous page

11
Design the application as a teaching application; embed

educational goals
5

18 Support the competitions among different teams 5

20 Registered users have additional privileges 5

21 Integrate the application with social network services 5

21.1 — share doc on social networks 5

29
Uses colors to indicate an object status (locked, available

for editing)
5

32 Conflict resolution strategies 5

35 Associate a query history to a search topic 5

37 Includes mechanisms for division of labor 5

40 Provide similar docs of interest to other collaborators 5

41 Store one session’s state and resume it later 5

Table 4.8: Design issues collected from analysing the col-

lection of application in Chapter 3

At a closer look, most of the issues collected through the two phases are the same.

However, several issues relevant to designing synchronous collaborative systems have

been collected only from one of the phases. As example, several applications from

130

those analysed considered supporting each collaborating in identifying his/her individ-

ual contribution to the collaborative process. The workshops did not point this as

a recurring issue. Supporting collaborative undo processes, allowing collaborators to

go back to previous steps of their collaboration is yet another example of issue that

was brought to light by the applications analysis but not considered throughout the

workshops.

4.4 The Patterns Identified

Starting from the identified recurring issues, I moved on to writing the patterns docu-

menting them. In this process, I made use of several pattern writing tutorials, including

Meszaros’s paper ”A pattern language for pattern writing” [75]. I started by framing

the problem addressed by each issue and then I associated it with the solution proposed

for it. Once the patterns written, I had them discussed at both EuroPLoP20111 and

AsianPLoP20112 conferences, rewriting them based on the feedback received from the

pattern community. The patterns went through two reviewing rounds before being

workshop-ed (i.e. face-to-face peer reviewed) in the two conferences. In addition to

that, the identified patterns are validated by similar documented issues which I will

discuss in the ”References” section of each of the patterns presented below3.

4.4.1 Who is the coordinator?

Context. A group of collaborators work together on the same shared resource (i.e.

a shared drawing, a text document, a game board). Each of them contributes to the

creation and the evolution of the resource, making sure that together they reach a

version of the resource agreed by all those involved in the process.

1http://www.hillside.net/europlop/europlop2011/
2http://patterns-wg.fuka.info.waseda.ac.jp/asianplop
3As a general comment, the following pattern descriptions will exclude the identifier, the keywords,

the input and the output defining elements, since Chapter 5 provides an ample discussion on them
and the way they are used and inferred.

131

Problem. If more users work on the same resource in the same time, there needs

to exist a coordination mechanism which: a). allows all collaborators to take part in

the collaborations and b). maintains the resource in a consistent state at all times.

The problem is how to determine who coordinates the collaborative process or what is

the suited coordination mechanism for each concrete case.

Symptoms. You should consider applying the pattern when:

• Groups of users work together in the same time on one shared resource. As a

general remark, most of the synchronous collaborative applications require the

application of this pattern.

• Parallel editing operations are a threat to the consistency of the shared resource.

Forces. When applying the pattern you should consider:

• It may be that the application addresses groups which act as communities with

unwritten rules. Such a situation would not ask for an enforced coordination

mechanism for the system.

• Some cases ask for a (small) group of users to come to an agreement before specific

actions are executed on the shared resource. Such an example is collaborative

searching where a group of users should be able to create a query using visual

virtual tools and the collaborators may change their contribution to the query

at any time. The coordination issue at this point is to make sure that the query

gets executed only when all collaborators agree on its content.

• The access to the shared resource and the changes to it may be subject to timing.

For example, in particular cases such as games competitions could be supported.

Solution. Therefore: Identify the context of the application and address the coor-

dination issue according to the following considerations:

• If the application addresses a well formed community with unwritten rules, then

link the application to the community and to the way the community as a whole

132

coordinates itself. As example, a group using the crosswords solving application

may decide that a participant gives the control to another participant at his/her

first wrong answer.

• If the context requires one user to initiate the collaboration, then that user might

be the coordinator of the whole process. In the case of collaborative search, the

user who initiated the query may be in charge of deciding when the query gets

executed.

• Locking is a solution for coordination in cases in which time is not necessary an

issue and where the common resource supports this operation. Text editing may

be subject to this solution by allowing the user who starts editing the document

to lock it until s/he saves her/his contribution to the document. It is only after

the lock is released that some other collaborator can contribute to the editing of

the resource.

• Timers support coordination by allowing each participant to the process to gain

control of the resource for a limited time. Games are an example of applications

where this coordination option would fit.

• Having separate blocks for each collaborator may also be a solution in cases in

which the overall activity does not require to conform to some standards of defi-

nition. An example of such a case would be drawing as an artistic activity, where

each participant to the collaboration may be in charge of one area of the common

display.

References. Patterns addressing coordination in computer mediated collaboration

have been written also by Lukosch and Schummer in their book ”Patterns for Computer

Mediated Interaction” [94].

• Floor control is such an example and it specifically addresses synchronous in-

teraction which can ”lead to parallel and conflicting actions that confuse the

interacting users”, making interaction difficult. The solution proposed by the

pattern suggests allowing only one user at a time act on the shared resource.

133

The right to interact with the shared resource is passed among all the interacting

users.

• Vote is a pattern addressing the issue of quickly testing a group’s agreement on a

specific issue. The solution proposed by the aforementioned authors is providing

an easy way of setting up and running a poll within the application.

• Locking is addressed in Pessimistic locking. Locks may be requested and received

and it is only after receiving them, one is allowed to modify the state of a shared

resource.

Examples. CoSearch is an example of application which allows the initiator of

a search query to act as a coordinator, being allowed to decide when the query gets

executed. Also, as examples of applications which implement locking as a coordination

mechanism consider CO2DE and TellTable.

4.4.2 Integrated chat

Context. A group of collaborators share a common resource which is the subject of

their collaboration. However, they work from different locations, without being able

to meet and discuss about their collaborative process.

Problem. Since communication is one of the main aspects of any collaborative

process, collaborators should be able to exchange messages related to their collabora-

tion, share knowledge based on each individual’s expertise, and clarify any additional

misunderstandings.

Symptoms. You should consider applying the pattern when:

• The collaborative activity requires collaborators to exchange messages.

• There is no other communication mechanism considered and embedded in the

application.

134

Forces. When applying the pattern you should consider:

• Real-time communication allows collaborators with different expertise to share

and clarify any misunderstandings that might come up throughout their process.

• Real-time communication can be used as a coordination tool for those applica-

tions which do not embed any coordination mechanism, but allow the community

as a whole to decide on a way to coordinate itself.

Solution. Therefore: Integrate an instant messaging feature in the design of the

application. In doing that, either link the application to an existing real-time com-

munication application or embed a chat feature within the application. In the cases

which allow it, the application could consist in a mash-up between a chat feature and

a collaborative activity feature. An example of such a case is the collaborative text

editing application, which could be a mash-up between a chat feature and a real-time

document editor.

Consequences. Applying the pattern leads to:

• Supporting collaborators in communicating without the burden of switching to

another tool when in need to exchange messages.

• Allowing the documentation of the collaborative process by means of a message

exchange log.

• Integrating a real-time communication feature in a collaborative application might

disturb collaborators from their main collaborative tasks. It is for this reason

that the location of a chat feature in the user interface of a collaborative inter-

face should be peripheral, possibly hidden.

References. Lukosch and Schummer wrote the pattern Embedded chat [94]. The

two are addressing the same problem, proposing the same solution - the integration of

a chat mechanism in the collaborative application.

135

Examples. Examples of applications which integrate a chat feature in their func-

tionality are: NetDraw, CO2DE, LucidChart, EtherPad, SearchTogether, Stars, Syn-

ergo, GoogleDocs, Coagmento, Mystery at the Museum. A more detailed description

of these applications is presented in Chapter 3.

4.4.3 Eyes wide open

Context. Groups of collaborators are working from geographically remote locations.

They need to be aware of the others’ activity on the shared resource so that they can

contribute to it accordingly.

Problem. Synchronous collaboration asks for all the collaborators to be aware at

all times of the evolution of the collaboration. For that, each collaborator must be able

to visualize what the others are contributing to the process at any time. In addition

to that, each contribution should be made visible to all the collaborators in real-time

and possibly made explicit.

Symptoms. You should consider applying the pattern when:

• Updating changes on the shared resource is mandatory for all synchronous col-

laborative processes.

• Notifying the changes performed on the shared resource is specially important

in cases when collaborators are not familiar with each other or when real-time

communication is not available.

Forces. When applying the pattern you should consider:

• Some collaborative activities such as drawing or text editing would be highly

interrupted by notifications of all updates on the shared resource. Hence, a more

selective notification process is needed and needs to be decided on.

• On the other hand, in cases like games it is of major importance that all the

collaborators are aware of the others’ actions on the shared board. Moreover, in

136

cases where time is an issue, identifying updates on the board should be fast, and

straightforward.

Solution. Therefore: Update any changes on the commonly shared resource (draw-

ing canvas, text area, puzzle/crosswords board) in the collaboration and notify (in

real-time) all collaborators of these updates. The choice of notifications would depend

on the context of the application:

• An update of the shared resource without any notification would suffice in cases

in which the collaborative process would get disturbed by an abundance of noti-

fications. An example would be the collaborative drawing where updates to the

canvas would not require notifications and would disturb the collaborators.

• Mail notifications are helpful in the cases in which collaborators would need

to keep a track of the collaboration and go back to any step of it after the

synchronous process ends.

• Pop-up notifications would suit applications where a). the updates cannot be

easily spotted or/and b). the overall collaboration highly depends on the aware-

ness of each collaborator. As example, it might not be straightforward noticing

the addition of one piece in a collaboratively solved puzzle. On the other hand,

for a game application where collaborators’ participation is sequential it is highly

important that each collaborator is notified of the changes his/her peers have

made along the process.

Consequences. Applying the pattern leads to:

• Collaborators are informed of each others actions, being supported in coordinat-

ing themselves as a group.

• Using a notification mechanism not suited for the type of collaborative activity

may bring more disadvantages than advantages to the entire process.

References. Awareness and notification techniques are the interest of some of the

patterns proposed by Lukosch and Schummer [94]:

137

• Remote field of vision is a pattern addressing the problem of multiple users work-

ing simultaneously with a shared text editor. The intent of the solution proposed

is to ”explicitly indicate the location and scope of each user’s view [of the shared

document] to every other user”. This pattern does not specifically address the

awareness of the collaborators with respect to the changes each other make on

the shared resource, but with their location in the shared document edited.

• Awareness with respect to the selection of objects located in a shared space is

discussed in Remote selection. The pattern suggests notifying all collaborators

that a specific shared objects has been selected by one of them. No discussion on

the type of notification is proposed, however. Moreover, the nature of the shared

objects is not specified.

• Still on the topic of collaborative text editing, the pattern Remote cursor ad-

dresses the awareness issue with respect to the user’s interaction with the appli-

cation (such as the mouse or cursor movements). The solution proposed by the

pattern is showing the ”text cursor of remote users on a local user’s view of the

shared editor”.

• Activity indicator pattern points to the context in which users would require some

time to perform an action before that action is made visible to the others. For

example, sending a message in an instant messaging application requires some

time for the message to be typed by the sender. At the other, the receiver should

be notifying about the fact that the message is being typed in. The message

exchange example is quite straightforward and it basically resumes the idea of

the whole pattern, i.e. ”provide an indication of other user’s activities while not

showing the activity’s intermediate results”.

• Change indicator discusses the issue of indicating that a shared artifact has been

changed. The information related to such a change should also include details

about the type of change and a link to the new version of the artifact.

Examples. EtherPad automatically updates all the edits on the shared document

on all the views of the document without any explicit notification. In CPG (Collab-

orative Puzzle Game), notifications of changes on the shared puzzle are sent through

138

both visual and auditory media. Sounds are played when a user places a correct piece

in the puzzle.

4.4.4 Choose your collaborators

Context. Co-workers get connected to the synchronous collaborative application and

they are interested in finding and working with their peers.

Problem. In order to start a synchronous collaborative process, users must meet,

either in real spaces or in the virtual. Users should be provided with the option of

getting together and collaborating with their own peers.

Symptoms. You should consider applying the pattern when:

• It is expected that members of the same team will use the application.

• The application is game-based or used for educational purposes.

• The effectiveness of the collaboration depends on collaborators knowing each

other.

Forces. When applying the pattern you should consider:

• In game applications, users might want to challenge each other and start compe-

titions among collaborative teams.

• In some contexts, it is necessary that people who know each other collaborate,

so they need a way to find their collaborators and form a team.

• Each user might need to know who the users available for collaboration are.

Moreover, the application needs to embed a feature which would support users

in inviting their peers to collaborate.

Solution. Therefore: Allow each user to choose his/her collaborators as follows:

139

• Provide a list with all the users currently available.

• Allow a user to search for his/her peers in the list of available users.

• Allow users to invite each other to collaborate by creating a group. In the case

of games, one user may challenge others to join a collaborative game.

• Allow each user to join a group already created after s/he logs in to the applica-

tion.

Consequences. Applying the pattern leads to:

• Supporting community building by allowing users to form and manage groups.

• Allowing users to be aware of the presence of other peers.

References. Several variations and specializations of this pattern are described in

[94].

• The pattern Group is perhaps one of the basic ideas to start with, i.e. ”allow

users to manage groups and interact with a group in the same way in which they

would interact with a user”.

• Closely related to the above, there is the pattern Bell, whose basic intent is to

inform a group’s members already engaged in a collaborative session that a user

wants to join that session.

• Invitation pattern addresses the issue of one user wanting to specifically collab-

orate with another one/others. The solution proposed by the pattern is sending

and tracking invitations from one user to another/others.

• Ways to provide information about the users participating in a collaborative ses-

sion are described by the pattern User list. They include showing who is currently

participating in a session, showing who is currently accessing an artifact, and en-

suring that the information is always valid.

140

Examples. LucidChart provides each collaborator with a list of all the other

available collaborators. Other tools with similar features are EtherPad, GoogleDocs,

Coagmento.

4.4.5 Collaboration, always social

Context. Groups of collaborators are working together. They are not a well-formed

community and they need support in building a trust level within their group.

Problem. Collaboration is, more than anything else, a social process. Collabora-

tors need to be supported in meeting and sharing feedback on the shared resource with

each other.

Symptoms. You should consider applying the pattern when:

• The target users do not know each other.

• Collaborators are working on a large number of shared resources.

• The collaborative process supports competitions (eg. games).

Forces. When applying the pattern you should consider:

• Collaboration triggers the formation of communities with common interests and/or

common goals. Trust becomes an important issue in such a context, hence sup-

porting communities through social tools enhances their collaboration.

Solution. Therefore: Integrate mechanisms of tagging, ranking, and commenting

in the application, as follows:

• Tagging supports the assignment of a label to a resource. This operation supports

searching and identifying resources with common characteristics.

141

• Ranking allows the creation of value scales based on which the resources can be

ordered. In this way, one could easily identify the resources ranked higher by

his/her community or the group s/he is part of.

• Comments allow collaborators to give feedback on the collaborative process or

on the shared resource.

Consequences. Applying the pattern leads to:

• Tagging supports the tracking and retrieving of shared objects.

• Ranking brings a sense of awareness with respect to how a group comparatively

evaluates shared objects.

• Comments support knowledge exchange, and communication among the mem-

bers of a collaborating group.

References. An ample discussion on patterns for the design of social interfaces is

presented in [30]. However, not all the patterns written for the area of social interfaces

design would prove useful for collaborative applications design. Lukosch and Schummer

address some of them in their book, [94].

• Letter of recommendation provides solutions for allowing users rate each other on

their expertise. Such solutions include providing a method of rating interactions

and making these ratings available for all the users of the application.

• Birds of a feather suggests supporting users with similar profiles or interaction

histories in finding and collaborating with each other.

• Tagging important artifacts using flags for a better retrieval is the issue addressed

by the pattern Flag.

Examples. Social features are included in tools such as AntWorld, Mystery at the

Museum.

142

4.4.6 My contribution

Context. One shared resource is being edited by a group of collaborators, changes

being performed by all the members of the group.

Problem. It is often the case that one might need to know what a particular

collaborator has contributed or what s/he her/himself has added to the collaborative

process. Users should have available a straightforward and user friendly way to track

their own contribution to the collaborative process.

Symptoms. You should consider applying the pattern when:

• Reports on individual contributions are required at some point during the col-

laborative process.

• Individual contributions must be tracked for further analysis or ranking.

Forces. When applying the pattern you should consider:

• Identifying each collaborators contribution supports quantitative assessments of

the collaborative process as well as competitions among teams.

• Collaborative efforts are often the composition of individual non-conflicting con-

tributions towards a common goal. It is therefore useful to allow the identification

of these individual contributions to the overall process.

Solution. Therefore: Support each collaborator in tracking down his/her contri-

bution to the collaboration, as follows:

• For the cases where the shared resource is textual (text editing, crosswords solv-

ing) and where the group of collaborators is relatively small, assigning different

colours (hence, defining a colour scheme for the application) to each collaborator

is a solution. In this way, each user’s contribution is highlighted in a different

colour.

143

• The applications for which the shared resource is an image may highlight one’s

contribution by representing (at one’s request) only those shapes (in cases such

as drawing) or pieces (in cases like puzzle solving) added by a particular user.

• A more intrusive solution to this problem would provide each user with the pos-

sibility of dragging the mouse over parts of the shared resource and, as answer

to that, visualize (locally) tooltips containing information on the author of that

particular part.

Consequences. Applying the pattern leads to:

• A possible overloaded interface (too many colours, too many signs).

• The need for the users to learn and recognize the identifiers of each other’s con-

tribution.

• Supporting awareness by allowing each user to know what others and him/herself

have added to the process.

References. None of the patterns available in the literature address specifically

this problem.

Examples. In text editing applications such as EtherPad and CodoxWord, each

user is associated with a colour and the text edited by a specific user is highlighted in

his/her colour.

4.4.7 Track history of collaboration

Context. Groups of collaborators follow a collaborative process with a particular final

goal in mind. After the synchronous collaboration ends, they might want to replay the

process or gather specific data with respect to it.

Problem. Synchronous collaboration processes are being held in real-time, so it

could be the case that a lot of the information on the dynamics of the collaborative

144

group and on the knowledge exchanged is lost. Hence, providing a way of tracking the

history of the collaboration supports: a). replaying the process, b). gathering social

data relevant to the collaboration, and c). learning processes.

Symptoms. You should consider applying the pattern when:

• The collaborative process needs to be replayed after it has ended.

• Additional data captured by the process needs to be collected and analysed later

on.

• The evolution of the shared resource needs to be tracked step by step.

Forces. When applying the pattern you should consider:

• One benefit of collaborative processes is that they allow collaborators to learn

from each other. Such learning processes can be supported by going through

the actions performed and messaged exchanged during the collaboration and

analyzing them.

• It is often important to go back to previous steps of a process, hence to have

access to previous versions of the shared resource. Also, changes made on the

shared resource might need to be undone.

Solution. Therefore: Track the history of the collaboration and make it available

either through repositories, log files or timelines.

• Repositories are a useful solution for tracking the history of collaborative pro-

cesses and for having a versioning system of the resources shared.

• Log files offer the possibility of rewinding and replaying the process. They are

written in a standard format decided with respect to the context of the applica-

tion, and they contain information on the actions performed and the messages

exchanged by the collaborators.

145

• Timelines provide a helpful visual tool for tracking the collaboration process.

Consequences. Applying the pattern leads to:

• Ensuring collaborators no data is lost along the way.

• Supporting learning processes on the basis of replaying ended ones.

References. Saving the history of a collaborative process is the focus of the fol-

lowing patterns described in [94]:

• Activity log suggests storing all users’ activities on the shared artifacts in a log.

Access to the log should be provided to all users.

• The idea of a timeline is pointed out in the Timeline pattern in the context of

long-term asynchronous and synchronous interaction. This makes it easy under-

standing who has been active at a specific point in time.

Examples. LucidChart includes a revision history feature which supports revert-

ing changes, or starting a new document from a previous version of an existing one.

EtherPad provides the collaborators with the possibility of saving the revisions made

on a document, so that the history of the collaborative process is tracked. Lastly,

SearchTogether not only stores the entire history of a collaborative search session, but

it also makes this history interactive, allowing each user to click on any of the query

terms in order to view the results it produced.

4.4.8 With or without collaboration

Context. Collaborating users share a public area of the application.

Problem. Users might need, at times, to sketch their ideas before adding them to

the area visible to all collaborators. They need tools to support them in externalizing

and evaluating their ideas before sharing them with their collaborators. Also, it might

146

be the case that users need to try out solutions without interfering with the others’

actions or without blocking the collaborative process.

Symptoms. You should consider applying the pattern when:

• Making a contribution to the shared resource requires more trials and time.

• Collaborators prefer to keep certain contributions private.

Forces. When applying the pattern you should consider:

• One coordination mechanism used in collaborative systems would lock the shared

resource as long as one collaborator edits it. However, synchronous processes ask

for multiple collaborators to work together in real-time. The resource being

locked by one user leads to the situation in which the other collaborators are

denied any contributions.

• On the other hand, some might feel more comfortable using an application in a

non-collaborative way unless they find real benefits in the collaborative process.

Solution. Therefore: Provide users with an additional private area, not available

to the other collaborators. Inside this area, each collaborator has total control and

s/he is provided with tools specific to the context of the application. For example, in

the cases of applications where sketching plays a major role, the private area of the

application should provide the user with sketching tools.

Consequences. Applying the pattern leads to:

• Supporting externalization processes.

• Also targeting users not necessarily interested in using the application as collab-

orative.

147

References. Close to the idea of the current pattern is the Masquerade pattern

which supports controlling how much private information one reveals to other users

”when interacting in a collaborative environment”[94]. However, Masquerade only re-

lates to the user’s profile and to the control of the information contained within it. It

does not refer to the users’ activity and to the way it should be controlled prior or

during being shared.

Examples. Coagmento supports both individual and collaborative search session.

In GoogleDocs, one can sketch individual contributions in a private document prior ro

making them public to his/her collaborators through a shared document.

4.4.9 Annotate

Context. Groups of collaborators share a common resource and work from different

locations. Their collaboration heavily relies on the resource they share and work on,

synchronously.

Problem. Synchronous remote collaboration could bring a series of misunderstand-

ings among the collaborators. The issue raised is how to support the collaborators’

common understanding and their reasoning on the shared resource.

Symptoms. You should consider applying the pattern when:

• A group of users is working on a shared resource in real-time from remote loca-

tions.

• Users have different expertise and a chat feature might not be enough for them

to reach a common understanding of the issue, subject to their collaboration.

Forces. When applying the pattern you should consider:

• Common understanding is highly important in collaborative processes. It im-

proves the overall productivity of the collaborative group. However, collabora-

148

tors may have different backgrounds and expertise, hence misunderstandings and

communication gaps can occur at any time.

• Having as support the object of the misunderstanding and being able to point to

it and associate it with the description of the issue of concern supports commu-

nication among collaborators. Moreover, different domains use different channels

of communication (audio, textual, video). It is for that reason that users should

be provided with various channels for expressing themselves.

Solution. Therefore: Allow the collaborators to annotate the shared resource they

are collaboratively creating. Annotations may be textual, audio or video material. As-

signing an annotation to the resource or to parts of the resource signals a possible open

issue or misunderstanding coming from one of the collaborators. For any annotation,

it should be possible that the other collaborators answer, using textual, audio or video

channels. Design explicit controls which allow users to:

• Select the area they want to annotate using either a mouse, keyboard, or gestures

(for touch screens). Also, provide users with the option of selecting the entire

content of the shared resource.

• Create an annotation associated to the selected area by either typing text, or

uploading audio or video material in an designated area of the GUI.

• Associate an annotated area with a visual link to the actual annotation. By

clicking the link, the user is shown the content of the annotation.

• Once visualizing an annotation, any user may add to it, by either commenting

as answer to the issue raised or uploading additional material to the annotation.

Consequences. Applying the pattern leads to:

• A more efficient communication among the collaborating users.

• A rough way of documenting the collaborating process.

149

• A fast growth of the number and content size of the annotations on a shared

resource might signal major insufficiencies in the resource.

References. Annotations have been discussed in various pattern collections, such

as [30] or [94]. As examples, consider the following:

• The issue of sharing comments on specific content is addressed in the pattern

Shared annotation. Users should be able to enter such comments on specific

parts of the shared resource and their comments should be displayed together

with the actual content of the resource.

• The structure of an annotation is further discussed in Threaded discussions. Al-

though this pattern’s authors defined it for the context of a textual communica-

tion channel such as a forum, a threaded discussion may constitute the structure

of an annotation as well. This would allow collaborators to answer each others

comments on specific parts of the shared document.

Examples. In NetDraw, any collaborator can link the object collaboratively drawn

with descriptive text that others could read and add to.

4.4.10 Collaborative undo

Context. Collaborators working on the same shared resource in real-time agree to

give up some of the changes performed on the resource. They identify redundancies in

the document or discover error in the editing process.

Problem. Negotiation is common to collaborative processes. As result of negotia-

tion processes, the collaborators may decide to renounce (partially or totally) to specific

contributions. They need a mechanism that allows them to identify the changes they

want to give up and to obtain a stable version of the shared resource for continuing

their collaboration.

Symptoms. You should consider applying the pattern when:

150

• Users are prone to undo modifications made collaboratively.

• The collaborative process involves a larger number of users.

Forces. When applying the pattern you should consider:

• Undoing actions performed in a collaborative context may affect the other col-

laborators’ contributions, which could be related to the one being undone.

• Misunderstandings are common to collaborative processes; hence it might happen

that parts of the document collaboratively edited become redundant or unneces-

sary.

Solution. Therefore: Track changes performed by each collaborator and allow

collaborators to undo modifications on the shared resource. This might ask them to

go back to previous versions of the document. The undoing mechanism should allow:

• Undoing the last modification made on the resource,

• Undoing the last n modifications made on the resource, in the reverse order they

were made (the last modification made is the first to be undone),

• Going back to a particular version of the document, identified by metadata such

as the date of the creation, the date of the last modification,

• Selecting the changes to give up from a chronological list of all the changes per-

formed on the shared resource by the collaborators.

Consequences. Applying the pattern leads to:

• The possibility of undoing changes to the shared resource without affecting other’s

contribution.

• Allowing losing partial contributions to the document collaboratively edited.

151

References. Specific situations of collaborative undo are discussed by Lukosch

and Schummer in [94]:

• The case in which a collaborator has performed conflicting changes is addressed

in Optimistic concurrency control. As solution, the authors propose rolling back

or transforming the change.

• The authors also propose a way to detect such conflicting changes, the issue being

addressed in Conflict detection.

Examples. LucidChart is one example of applications which supports reverting

changes or starting a new document from a previous existing version of one. Codox-

Word supports the undo of any editing actions without affecting the work of the other

collaborators.

4.4.11 Support versioning

Context. A group of collaborators contribute to the development of a shared common

resource. This development processes could have different phases, each phase providing

an intermediary version of the resource.

Problem. Users may be interested in the evolution of the shared resource, the

object of the collaboration. How to allow them to visualize or/and edit the previous

states of the shared resource? Moreover, how to support users in exploring different

alternatives in the development of the resource, and possibly develop (in parallel) two

paths that have started as one?

Symptoms. You should consider applying the pattern when:

• The shared resource is subject to various phases of development, the results of

each phase being needed for further developments.

• Users need to go through, and possibly edit older versions of the resource they

are sharing at a given moment.

152

Forces. When applying the pattern you should consider:

• Often times, collaborators get insight from following the evolution of the resource

they commonly share and work on. For that, they need a way to visualize the

various versions of the resource and the changes performed from one version to

another.

• Keeping a history of the versions of a document asks for a structure able to

store the tree-like evolution of resource, and which includes a naming conven-

tion/protocol.

• Domains such as games may not need a mechanism for tracking the versions of

the shared game board since going back to previous states of the game does not

necessarily occur.

Solution. Therefore: Support the creation of a versioning system for each docu-

ment edited. This would consist in:

• Creating an initial version of the document at its first creation. This version

would be stored by the versioning mechanism.

• At every save of the document a new version is added to the versioning system

of the document.

• Going back to a previous version, editing, and saving it leads to the creation of a

branch in the versioning system of the document. The branch would start from

the version chosen for editing prior to any modification being made on it.

• Each version stored is identified by a set of metadata comprising an identifier of

the version, the changes it includes, and the author(s) of these changes.

Consequences. Applying the pattern leads to:

• A better organization of the collaborative process.

• An efficient structure for tracking the evolution of the shared resource.

153

• Means of documenting aspects of the collaborative process.

References. Lukosch and Schummer address the issue of versioning in the pat-

tern Immutable versions, where they suggest storing all shared objects in a version

tree making sure that all the versions stored are immutable. As a consequence, any

modification of the object will then be stored as a new version.

Examples. CO2DE supports versioning by creating a mask structure of the docu-

ment edited which shows how work has evolved. Such a mask stores the contributions

of each collaborator, the changes made from the previous mask, alternative proposals,

and negotiations among collaborators. Released in 2007, CodoxWord is a real time

sharing and group editing tool. CodoxWord allows the recovery from errors and the

backtracking to previous versions of the shared document through a versioning mech-

anism.

4.4.12 Shared summary

Context. The collaborative process ended and, after a while, the collaborators want

to go through the highlights of their collaboration. They would either want to know the

final results of their process or visualize statistical data related to their collaboration.

Problem. How to allow and support the collaborators to go through the highlights

of their collaborative process without being forced to reread all the details of the pro-

cess at the end of a collaborative session or longer after the session ended?

Symptoms. You should consider applying the pattern when:

• The highlight of the results of the collaboration is relevant to the user even long

after the collaborative process ends.

• The domain of the collaboration and the type of the shared resource allow the

summarization of any relevant data.

154

Forces. When applying the pattern you should consider:

• Tracking the history of a collaborative process may lead to large documents,

hard to read, understand and search in. Results obtained through collaborative

processes may be useful long after the process ends. Hence, collaborators are

forced to go back and search for those results mostly relevant to the collaboration.

• For some domains, collaborative processes follow cycles of development and the

results relevant to the overall process may be the end results of each cycle. An

example for that is collaborative searching where one cycle would represent the

process of reiteration of a query until all collaborators are satisfied with the re-

sults.

Solution. Therefore: Automatically generate a summary of the results obtained

through the collaborative process and make it available to all collaborators. This

summary may include:

• Results obtained through the collaborative search, in case of applications target-

ing collaborative searching. Collaborative searching usually goes through more

iterations, each iteration contributing a set of partial results to the final result.

The collection of these partial results would help both document the searching

process and provide a summary of the results obtained at each step of it.

• Statistics on the evolution of the collaboration, in case of collaborative game

applications. Games support competition among various teams. Generating a

shared summary with the partial results of the game at various moments in the

game allows tracking the highlights of the game’s evolution.

• Simplified lists of the changes performed on the shared resource, in cases such

as collaborative text editing. Going through all the changes performed on a text

during a synchronous collaborative editing session may be tedious and inefficient.

Therefore, filtering these changes based on some criteria (such as time of editing,

author, keyword) and providing a summarized list of them would support collab-

orators in finding relevant information related to the process even after this has

ended.

155

Consequences. Applying the pattern leads to:

• Supporting collaborators in filtering the essential results of their collaboration.

• Documenting the collaborative process, making available its summarized results

even after it ends.

References. None of the patterns available in the literature address specifically

this problem.

Examples. An earlier version of WeSearch is SearchTogether, an application which

was designed to enable both synchronous and asynchronous remote collaboration in web

search. The application automatically creates for each collaborative search session a

shared artifact that summarizes the findings of the search session. The particularity

of the application is that this summary is also interactive in that one user may access

the results of the search directly from the shared summary.

4.4.13 Adapt application to device

Context. Groups of users who use different devices (e.g. mobile phones, iPads, lap-

tops) wish to collaborate in real-time using the same application.

Problem. The problem is to support each user in using the device of his/her choice

while still being able to collaborate with other users which use different devices.

Symptoms. You should consider applying the pattern when:

• The system is designed for a team whose members are obliged (due to their role

in the collaboration) to use different devices for interacting with the system.

• The system is designed for larger communities.

Forces. When applying the pattern you should consider:

156

• Different devices have different technical constraints. Screen size, memory size,

input/output means impose a set of technical constrains that affect the design

processes of applications. Hence, it is required that throughout the design of an

application which targets several devices such constraints are considered.

• On the other hand, providing different designs for one application (a design for

each device) highly affects the overall quality of the final software product in

terms of maintenance, understandability, and reusability. Keeping consistent a

large number of instances of the same application is error prone and risky.

Solution. Therefore: Provide different interaction techniques for different devices

and support the materialization of one application on different devices. Materializing

a specific application on a set of different devices asks for a level of abstraction which

decouples the technical details characterizing the device and the specification of how

these details affect the materialization of the system on that device. Describe the

following characteristics independently of the functionality of the application (common

on all devices):

• Display characteristics refer to the screen size, and resolution. The materializa-

tion of a dialog box might require one screen on a laptop and several screens on

an iPhone, even if the functionality behind it is the same. Hence, decouple the

representation of the appearance of the application from the implementation of

its functionality. Design the GUI for each device independently from the single

implementation of the functionality.

• Input/output means differ from one device to another. For example, the same

application may be materialized on a laptop device which uses a mouse and a

standard keyboard and on a tabletop device which uses gestures for input.

• Interaction affordances are dictated by the nature of each device and must be

considered accordingly. As example, a tabletop allows all collaborators to gather

around it, hence being able to communicate more efficiently. A mobile device

allows each collaborator to move freely while interacting with it, having in the

same time a lower attention span. Therefore, consider such implications when

157

designing for a specific device.

Consequences. Applying the pattern leads to:

• Providing different materializations of the same system, suited for different de-

vices.

• Being able to decouple the functionality of the application from its appearance

and interaction affordances on different devices. This facilitates the maintenance

of the application and its understandability.

References. The purpose of this pattern is not to go into hardware and architec-

tural details on platform specific adaptation, but to point out the issue and hint on

how to tackle it. A thorough discussion on such details is presented by Nobel and Weir

in their book ”Small Memory Software: Patterns for Systems with Limited Memory”

[76] which contains patterns on issues such as:

• managing memory use;

• using secondary storage;

• compressed representation of data;

• memory allocation techniques;

Examples. NetDraw is a Java application which provides 2D collaborative draw-

ing features in a client-server architecture. It has a thin client, suitable for running

on any device that supports Java. LucidChart is a web tool released in 2008 which

supports the collaborative drawing of diagrams such as UML diagrams, flow diagrams.

LucidChart is available on any device that supports browsing.

158

4.4.14 Customize collaboration

Context. A well formed community, following a set of rules, collaborates through the

application. The members of the community have diverse backgrounds and expertise

and there is a protocol of collaboration they follow. They may not find useful a set of

default options embedded in the application.

Problem. How to support collaborators in customizing their collaborative process

based on the rules of their community and on their preferences?

Symptoms. You should consider applying the pattern when:

• The system is addressing well-formed communities.

• The collaborative process is clearly defined, assuming that users have particular

roles in the collaboration.

• The visualization and the editing of the shared resource support different param-

eters of customization.

Forces. When applying the pattern you should consider:

• One of the issues of concern in collaborative processes is the division of labor,

i.e. the rules based on which collaborators decide what will each of them be

responsible for. For that, each group should decide on the ways to adapt this

division to its dynamics.

• More than often collaboration brings together people with different backgrounds

and expertise. In order to support them in complementing each other, the ap-

plication should allow them to choose the collaborative tasks they want to be in

charge of.

Solution. Therefore: Support collaborators in customizing their collaborative pro-

cesses by allowing them to:

159

• Assign each other roles in the collaborative process. Each collaborator might

choose the role for him/her self to have in the process or one of the collaborators

– the coordinator – assigns the roles for the others.

• Assign each other rights on the collaborative resource that would allow them to

perform different tasks on the same document. Each collaborator might choose

the rights for him/her self to have in the process or one of the collaborators – the

coordinator – assigns the rights for the others. For example, one might choose to

only be able to visualize the shared resource and have no possibility to edit it.

• Set visualization or editing options such as: the size of each area of the user

interface, and/or document specific editing features. Once a user changes such

options, all the modifications are made visible to all the rest of the collaborators.

Consequences. Applying the pattern leads to:

• Providing the collaborating users with the freedom of deciding the parameters of

their collaborative process.

• This would be useless or even inefficient in the cases when the collaborators are

not familiar with one another or do not follow a well-defined process in their work.

References. In their paper, ”The Role of Roles in Computer-mediated Interaction”[68],

Lukosch and Schummer address the issue of customizing a collaborative process by

proposing three patterns on this:

• The pattern Role aims at modelling ”the expected interaction in the collabora-

tive application”. The pattern answers the problem of users finding it difficult

to structure their interaction in the group using the application collaboratively,

proposing as solution the definition of roles which describe ”what the owner of

the role is supposed to do”.

• In order to make all the members of the group aware of each other’s role, the

pattern Role indicator suggests visualizing the role of each user whenever the

user is shown in the interface.

160

• Users who are not interested in participating in the collaborative process, but in

observing it are allowed to have the role of Spectator.

Examples. CodoxWord allows the assignment of different roles and rights to the

collaborators editing one document. In EtherPad, any collaborator may set visualiza-

tion options of the shared workspace. These settings automatically affect the view of

all the other collaborators and examples of such options are: the display of the number

of each line within the document, or of the authorship colors (the color identifying a

specific collaborator’s contribution).

4.4.15 Resume collaboration

Context. Breaks and interruptions may occur in real-time collaboration. At some

point during the collaboration of a group of users, their process is interrupted by one

of the collaborators who leaves temporarily the application.

Problem. Due to interruptions, users might want to pause the collaborative pro-

cess for a while and resume it later, starting over from the state they left the application

in.

Symptoms. You should consider applying the pattern when:

• The presence of all the collaborators is vital to the collaborative process.

• The absence of one user generates a deadlock in the collaborative process.

Forces. When applying the pattern you should consider:

• Synchronous collaboration requires all collaborators to be present and use the

application in the same time. One collaborator’s absence may trigger overhead

to the overall collaborative process; hence, all collaborators are forced to pause

their work for a while.

161

• Reconstructing the partial results of a collaborative process from scratch may re-

quire a lot of extra effort and time and may not lead to the same results obtained

in the first place.

Solution. Therefore: Allow collaborators to pause the collaborative process by

providing intuitive controls for that action, Furthermore, store the state of the session

they shared in a format that would allow its resume. Pausing may occur in one of the

following situations:

• After all collaborators agree to it, case in which the entire collaborative process

is paused. Restoring the session would be initiated by one collaborator.

• One user decides to take a break, case in which the pause only occurs on his/her

side. This disables him/her from viewing the interactions of the other users and

the evolution of the shared resource. Also, his/her absence is signalled to all the

other collaborators. Once s/he resumes his/her participation to the collaborative

process, s/he gets an update of the changes performed meanwhile by his/her col-

laborators. Also, s/he may continue his/her interaction with the shared resource

in its current state.

Consequences. Applying the pattern leads to:

• Allowing each collaborator to signal his/her absence and allow the others to pause

the process.

• A mechanism for dealing with interruption without losing any information or

putting the burden on part of the collaborators.

References. The pattern Persistent session touches on the issue of resuming the

collaborative process described above by aiming to make the results obtained in a col-

laborative session ”available for reviewing or resuming collaborative activities”. For

that, it suggests storing the results of a collaborative session on a central server and

allowing users to access this master copy for either reviewing purposes or for resuming

162

the session.

Examples. WeSearch is a tabletop application which supports collaborative Web

search among groups of up to 4 users. Each collaborator is allowed to pause the collab-

orative process. As result, session files store the current state of a session and allow its

resume. These files store each session in a format viewable on other platforms as well,

hence the results of a resumed collaborative session can be accessed on other devices.

—

In this chapter, I describe a design pattern mining method to be used in interaction

design together with its application and the results derived through that - a collection

of 15 design patterns for the design of applications which support synchronous collab-

oration. The definition of this method is based mostly on techniques broadly used in

interaction design, but not consider in the context of pattern identification. The main

strength of the method relies in the fact that it supports the exploration of different

data sources, allowing the correlation of the different results obtained. Both design

workshops and existing applications analysis are used for identifying recurring design

problems and solutions to tackle them. In addition to that, the method may easily

be replicated in other mining areas, allowing the identification of patterns for various

areas of interaction design.

One of the limitations of the method right now relies in the fact that it requires

several other evaluation cycles for better understanding how far it can go. According

to such cycles, the method might go through slight modifications in order to adapt

to the requirements of other areas of design. The purpose of this work is to look at

one such application cycle and try to derive some lessons learned based on it. Crucial

to the success of this method is the involvement of professional designers during the

workshops as well as the consideration of a large collection of software applications

during the second phase. The larger the pool of design issues collected, the better.

Compared to the other methods described for pattern mining (see 2.2.5), the method

presented below provides a structured approach for pattern identification mixing both

inductive and deductive techniques, and it uses several sources of data to derive the

163

final results. Once described, the identified patterns may be validated by existing lit-

erature or related collections.

This chapter describes 15 patterns derived using the method. Once the recurring

design issues have been identified, I proceeded to actually writing the patterns. This

process was supported by literature documenting pattern writing processes [75] and it

usually initiated by identifying the core problem addressed by the design issue and the

solution most commonly adopted for tackling it during the workshops and through the

implementations considered. At this point, this chapter does not propose any grouping

for the patterns, this issue being the core topic of the next chapter.

164

Chapter 5

Relating Patterns: From the

Collection to the Language

Most of the available collections of design patterns are organized as pattern languages.

On one hand, patterns are never isolated, relationships between them existing. On the

other hand, pattern language structures are easier understood and browsed. Even if

authors of patterns usually group and relate the patterns they describe, none of these

processes are documented. The goal of this chapter is to describe a method for gen-

erating a pattern language out of a collection of design patterns. Such efforts address

mainly pattern authors willing to structure their collections in pattern languages and

heavily support pattern users in understanding and making use of patterns organized

in such fashion.

5.1 Definition of a Pattern Language

In Christopher Alexander’s words, ”a pattern language has the structure of a network.

[...] when we use the network of a language, we always use it as a sequence, going

through the patterns, moving always from the larger patterns to the smaller, always

from the ones which create structures, to the ones which then embellish those struc-

tures, and then to those which embellish the embellishments...

165

Since the language is in truth a network, there is no one sequence which perfectly

captures it. But the sequence which follows, captures the broad sweep of the full net-

work; in doing so, it follows a line, dips down, dips up again, and follows an irregular

course, a little like a needle following a tapestry.

The sequence of patterns is both a summary of the language, and at the same time,

an index to the patterns. If you read through the sentences, you will get an overview of

the whole language. And once you get this overview, you will then be able to find the

patterns which are relevant to your own project” [9].

Borchers [22] brings some formalization to the notion of pattern language, defining

a formal syntactic notation:

1. A pattern language is a directed graph PL = (P, R) with nodes P = p1, ..., pn

and edges R = r1, ..., rm.

2. Each node p ∈ P represents a pattern.

3. For two nodes p, q ∈ P, we say that P references Q if and only if there is a

directed edge r ∈ R leading from p to q.

4. The set of edges pointing away from the node p ∈ P is called its references and

the set of edges pointing to it is called its context.

Borchers addresses the rationale behind using design patterns, and more particular

pattern languages pointing out that ”to use the pattern language framework in the

process of designing an interactive software system, it is not mandatory to follow a

single fixed design method” [22]. In other words, the use of pattern languages flexibly

fits into several development processes and their steps, patterns appearing at most of

the stages of development as follows:

1. Know the user [22]. The issue at this point is identifying whether the application

domain considered is suitable for expressing its concepts in pattern format. As

hinted by the author, any application domain comprising ”some sort of creative,

166

designing, or problem-solving activity” is subject to being expressed in terms of

patterns ”because the rules and guidelines that lead people in that application

domain in their activity can be formulated as design patterns”. Using the pat-

tern format may be regarded at this stage as a convention for putting on paper

requirements-related issues which are tracked anyway, but with an explicit focus

on capturing forces, alternatives, and connections in the working patterns pro-

vided by the users.

2. Competitive analysis [22]. During this phase, an investigation of similar prod-

ucts existing in the market is performed for identifying ”different solutions to the

problems of the product area”. Through a process similar to the one described

in Chapter 3, successful recurring solutions observed in competing products can

be captured and expressed through inter-related design patterns, i.e. pattern

languages.

3. Setting usability goals [22]. Usability goals include learnability, efficiency of use,

memorability, low error rate. They get weighted against each other and priori-

tized. In terms of design patterns, they translate into forces in patterns, explain-

ing the trade-offs of each of these goals.

4. Parallel design [22]. Parallel design allows the exploration of a larger design space

through the design of several initial prototypes of a user interface. These proto-

types can be designed in parallel by independent teams. Similar to guidelines,

design patterns can at this point provide a source for consistency across paral-

lel designed prototypes, creating a common ground and preserving the usability

goals. In addition to that, patterns provide a shared vocabulary within a team

supporting efficient communication and ensuring that ”the same design concepts

are known and respected throughout the interface”.

5. Empirical testing [22]. Design patterns for the application domain may consti-

tute a ”resource to construct realistic scenarios for testing”, closely modeling the

167

concept pertaining to the domain itself. Moreover, problems discovered during

testing may further be documented as design patterns, since a pattern language

is a dynamic structure open to changes throughout its application. Therefore,

”all pattern languages used will and should evolve even during the project, to

capture the progress in understanding the problem space and improving the de-

sign solution”.

6. Collect feedback from field use [22]. Deploying an application asks for collect-

ing further feedback from its actual use in the field. This type of knowledge

is expressed by the users, following to be used by the designers for improve-

ments. Therefore, the vocabulary used for such purposes should bridge different

communities (assuming that the end-users work in domain remote from software

design). At this point, the application domain pattern language ”plays an im-

portant role as a common vocabulary between UI experts and users”. Moreover,

feedback is also a possible source of improvement suggestions for the patterns

in themselves, since successful solutions documented through patterns find their

validation, while suboptimal results get to be reconsidered.

5.2 Representing and Visualizing Pattern Languages

In 2003, the participants at the CHI workshop ”Perspectives on HCI patterns: concepts

and tools” defined an XML DTD for a language for design pattern description, the

Pattern Language Markup Language (PLML) [1]. The main goal for the definition of

such a language was to reach a consistent template across those pattern authors have

used by providing a general structure for pattern documents. Some of the consequences

of this are:

• Patterns from a collection could refer to patterns in other collections.

• Common elements across collections of patterns can be identified.

• Patterns from disparate authors could be combined into specific, thematic col-

lections.

168

The elements included in the DTD are: pattern id, name, alias, illustration, prob-

lem, context, forces, solution, synopsis, diagram, example, rationale, confidence, liter-

ature, implementation, related pattern. In addition to that, PLML contains a series of

elements that indicate authorship and change management; they are: author, credits,

creation date, last modified, and revision number.

Being defined as graphs, pattern languages may use the visualization benefits pro-

vided by specialized graph visualization tools. A brief survey of such tools includes the

following:

• Medusa. Medusa is a graph visualization tool developed in Java. It is designed

to be ”a simple and an intuitive tool for customization of interaction graphs of

any kind” [55]. Medusa handles large graphs easier by layout algorithms and the

option to hide certain edge types. Users can create their own data files which are

simply tab-delimited text fields describing edges relationships. These files are the

input for the graph rendering process. Medusa displays up to 10 multiple edges

concurrently between nodes and several node properties can be described, such

as color, position, shape, and annotation.

• Graphviz. Graphviz is an open source graph visualization software. The Graphviz

layout programs take descriptions of graphs in a simple text language, and make

diagrams in useful formats, such as images and SVG for web pages, PDF or

Postscript for inclusion in other documents or display in an interactive graph

browser. Graphs may be generated from external data sources, but they can also

be created and edited manually, either as raw text files or within a graphical

editor provided by Graphviz.

• Gephi. Gephi is an open source software for graph and network analysis [19].

The goal of the tool is to ”help data analysts make hypothesis, intuitively dis-

cover patterns, isolate structure singularities or faults during data sourcing”. The

visualization module uses a special 3D render engine to render graphs in real-

time. Highly configurable layout algorithms can be run in real-time on the graph

169

window, this feature providing especially useful for displaying large graphs. The

architecture of Gephi supports graphs whose structure or content varies over time,

and proposes a timeline component where a slice of the network can be retrieved

at different times.

• CCVisu. In the specialized category of software-structure extraction, there is

CCVisu, ”a lightweight tool that takes as input a software graph model and

computes a visual representation of the system’s structure, i.e., it structures the

system into separated groups of artifacts that are strongly related” [21].

5.3 Pattern Language Generation Method

Generating a pattern language implies:

1. identifying a collection of design patterns and

2. identifying the relationships existing between the patterns in the collection

An overall description of the methods to be used in identifying patterns is covered by

this thesis in Section 2.2.5. Moreover, in Chapter 4, I described, as one of the results of

my work, a pattern mining method for interaction design. In this section, I will cover

the second step in the generation of a pattern language, presenting an approach for

identifying relationships between design patterns in an existing collection.

The approach is based on the definition of an ontology for representing the do-

main addressed by the pattern collection. As examples of domains, one could consider

interactive exhibits [22], e-government [70], web accessibility [45] or, as in the case

described in this thesis, synchronous collaboration. A domain is initially described by

a set of design issues, these design issues being collected during design workshops and

through the analysis of software applications in the particular domain (more on this

in 4.2). They represent problems, solutions, examples, consequences, and any other

information relevant to the design of a system in the area targeted, therefore bits of

170

knowledge from a specific domain. Design patterns are documentations of those de-

sign issues mostly discussed throughout the workshops and mostly considered in the

implementation of concrete applications.

The ontology is build in two steps: 1) by identifying the set of concepts it models,

and 2) by determining the relationships between these concepts. The set of concepts

includes two types of concepts: design issues, and keywords. The keywords are part of

a glossary able to comprise elements of the domain’s vocabulary. The set of relation-

ships are identified between design issues and keywords, and among keywords. The

approach makes use of 5 types of relationships: Equality, Equivalence, Specialization,

Composition, Association - to be detailed further on in the chapter. Therefore, each

design issue is associated with a set of keywords and different relationships are iden-

tified between pairs of keywords. Once the ontology defined, it drives the generation

of a structure connecting design issues, and implicitly those design issues further doc-

umented as patterns. This structure is the basis of the pattern language.

More formally, three phases are defining the approach: 1) the concepts identification

phase, 2) the relationships identification phase, and 3) the pattern language generation

phase.

5.3.1 Concept Identification

During a series of design workshops and through the analysis of a set of software ap-

plications, a collection of design issues, D = {d1, ... , dn}, is collected (Section 4.2).

These issues represent problems, solutions, examples, consequences, and any other in-

formation relevant to the design of a system in the area targeted. Each design issue

has a unique identifier, this identifier being used throughout this process for pointing

to a specific design issue. Once a design issue gets documented as a design pattern,

the identifier remains unchanged and it is used in the identification of the pattern.

An initial step towards the generation of a pattern language consists in associating

each design issue (di) with a set of keywords (Ki). In order to avoid undesired noise

171

in the finally generated pattern language, a word can be a keyword only if used in less

than 10% of the associations. Hence,

∀di ∈ D, ∃Ki = {ki1, ki2, ..., kini
}s.t.di → kip, p = 1, ..., ni (5.1)

, where → is the association function1.

These keywords are words belonging to the statement of the issue and/or words

strongly related to the statement of the issue. As example, the design issue ”Support

collaborators in providing tags, comments, annotations, rankings” is associated with

the set of keywords - tagging, ranking, comments, social, community .

Associating each of the design issues considered with a set of keywords leads to:

d1 → K1 = {k11, ..., k1n1}
d2 → K2 = {k21, ..., k2n2}

...

dn → Kn = {kn1, ..., knnn}

The set

DIM = {(di, kiβ)/di ∈ D, kiβ ∈ Ki, di → Ki} (5.2)

is defined as the Design Issues Map and represents all the pairs associating a design

issue with a keyword. The set of all the keywords is:

K = K1 ∪K2 ∪ ... ∪Kn (5.3)

and it represents a glossary comprising elements of the domain’s vocabulary.

The input of this first phase consists in the collection D of design issues, used for de-

scribing a specific design domain. The output, on the other hand, is the set of keywords

K 5.3 and the set DIM 5.2, pairing design issues with associated keywords (Figure 5.1).

1The association function directly maps a design issue to a set of keywords, hence implicitly to
each keyword in the set.

172

D Concept Identification K
DIM

Figure 5.1: Concept Identification Flow

5.3.2 Relationship Identification

A second step towards the pattern language generation is the identification of relation-

ships between the keywords, i.e. the elements of the set K 5.3. The approach makes

use of 5 types of relationships, R:

1. Equality (”=”). Two keywords – k1, k2 – are in a ”=” relationship if k1 is equal

to k2.

As example, ”collaborator” = ”collaborator”.

2. Equivalence (”≡”). Two keywords – k1, k2 – are in a ”≡” relationship if k1 is a

synonym of k2.

As example, ”online” ≡ ”web based”.

3. Specialization (”ISA”). Two keywords – k1, k2 – are in a ”ISA” relationship if k1

is a sub-type of k2.

As example, ”tabletPC” ISA ”device”.

4. Composition (”HASA”). Two keywords – k1, k2 – are in a ”HASA” relationship

if k2 is a part of k1.

As example, ”library” HASA ”templates”.

5. Association (”RELATEDTO”). Two keywords – k1, k2 – are in a ”RELAT-

EDTO” relationship if k1 is associated to k2.

As example, ”Instant Messaging” RELATEDTO ”communication”.

Moreover, the RELATEDTO relationship is enhanced with a description ex-

plaining the association between the 2 keywords. Going back to the example,

”Instant Messaging” RELATEDTOused−for ”communication”.

173

Chapter4/Chapter4Figs/conceptsIdentification.eps

Identifying all the relationships between the keywords, leads to the definition of the

Keywords Map, representing all the pairs of related keywords:

KM = {(kαx, kβy, R)/kαx ∈ Kα, kβy ∈ Kβ, kαxRkβy} (5.4)

, where R ∈ {Equality, Equivalence, Specialization, Composition, Association}.

K Relationship Identification KM

Figure 5.2: Relationship Identification Flow

The input of the second phase is the set K 5.3 of keywords, decided on during the

first phase. The output of the Relationship Identification phase consists in KM 5.4, the

Keywords Map which pairs any two related keywords (Figure 5.2). The Design Issue

Map (DIM) 5.2 and the Keywords Map (KM) 5.4 make up the ontology supporting

the generation of the pattern language as specified below.

5.3.3 Pattern Language Generation

The generation of the pattern language requires two sub-phases: 1) the generation of

the Design Issue Language, and 2) the generation of the Pattern Language.

5.3.3.1 Design Issue Language Generation

In identifying the relationships between the design issues collected, the following gen-

eration rule is applied:

Consider dα ∈ D and dβ ∈ D

dα → Kα = {kα1, ..., kαnα}
dβ → Kβ = {kβ1, ..., kβnβ

}

174

Chapter4/Chapter4Figs/relationshipsIdentification.eps

Then, dα R dβ if ∃ kαx ∈ Kα and kβy ∈ Kβ such that kαx R kβy.

This is to say that a design issue, dα is in a relationship R with another design issue

(i.e. is related to), dβ if dα is associated with a keyword, kαx which is in a relationship

R with another keyword kβy to which dβ is associated (Figure 5.3).

d
i

d
jR

RK
i

K
j

k
i1

k
i2

k
ini

k
iu

k
j1

k
j2

k
jnj

k
jv

... ...

1

2

1

3

Figure 5.3: Illustrating the rule used for identifying relationships between design issues

The rule is applied to all the design issues in the set D, generating the Design Issue

Language (DIL), comprising all the design issues and the relationships between them.

DIL = (D, {(dα, dβ, R)/dα ∈ D, dβ ∈ D, dαRdβ}) (5.5)

For outputting the DIL 5.5, this sub-phase takes as input the collection of design

issues, D, together with the set KM 5.4, the output of the previous phase, and the

set DIM 5.2 (providing information on the keywords associated to each design issue)

(Figure 5.4).

175

Chapter4/Chapter4Figs/genrule.eps

D
KM
DIM

Design Issue Language
Generation DIL

Figure 5.4: Design Issue Language Generation Flow

5.3.3.2 Pattern Language Generation

Not all the design issues are design patterns. All the design issues discussed throughout

the workshops and all those considered in the implementation of concrete applications

are collected. For each design issue, its degree of recurrence is computed as the percent-

age in which the issue has been addressed throughout the workshops (DoRw) and the

implementations considered (DoRs), as defined in Section 2.2.5. Further on, the design

issues are sorted based on their degrees of recurrence, and those design issues with the

highest degrees are documented through design patterns. Hence, a design issue, di, is

considered to be documented as a pattern, pi, if DoRw(di) and DoRs(di) belong to the

top DoRs computed with respect to both the workshops and the applications analysis.

Consider P = {p1, p2, ..., pn} ⊆ D the set of design issues with the highest degrees

of recurrence and which are further documented as design patterns. Therefore, the

Pattern Language is defined, as:

PL = (P, {(pα, pβ, R)/pα ∈ P, pβ ∈ P, pαRpβ}) (5.6)

P
DIL

Pattern Language
Generation PL

Figure 5.5: Pattern Language Generation Flow

For outputting the Pattern Language, the input for this sub-phase is the collection

of patterns, P, and the language DIL 5.5 (Figure 5.5).

The generation of the DIL 5.5 offers the possibility of placing the pattern language

176

Chapter4/Chapter4Figs/dilggen.eps
Chapter4/Chapter4Figs/ptlggen.eps

in a context, modelling - together with KM 5.4 - the domain addressed by the patterns,

and supporting a better understanding of each pattern and the implications of its use.

Moreover, design issues that are not documented as patterns might contain information

relevant to the considered design patterns. This allows designers to better investigate

specific design problems/solutions that have not been included in the patterns yet.

5.3.4 Overall Process

To summarize, this section describes the entire workflow in the application of the

method. As described in Figure 5.6, there are 9 steps to it:

1. The set of collected design issues, D, triggers the identification of the set of design

patterns, P (see Section 4.2 for details).

2. The set D is the input of the first phase of the process, the Concept Identification

phase. The goal of this phase is to associate each design issue with a set of

keywords which both characterize and relate to the statement of the issue.

3. The Concept Identification phase outputs two sets:

• The set DIM 5.2 containing pairs of the form (di, kij), associating a design

issue (di) with a keyword (kij).

• The set K 5.3 containing the set of all the keywords used in the above

mentioned associations.

4. The set K 5.3 is the input of the Relationship Identification phase. The goal of this

phase is to identify possible relationships between the keywords in K 5.3. The five

types of relationships used are Equality, Equivalence, Specialization, Composition,

Association, a complete description of them being available in Section 5.3.2.

5. The Relationship Identification phase outputs the set KM 5.4, which contains

tuples of the form (kiu, kjv, R), representing pairs of related keywords.

177

D P

KDIM

KM

DIL

PL

Concept
Identification

Relationship
Identification

Design Issue Lg.
Generation

Pattern Language
Generation

1

2

3

4

5

6 66

7

8 8

9

3
Equality

Equivalence
Specialization
Composition
Association

d
i

d
jR

RK
i

K
j

k
i1

k
i2

k
ini

k
iu

k
j1

k
j2

k
jnj

k
jv

... ...

1

2

1

3

Figure 5.6: Pattern Language Generation Overall Flow

178

Chapter4/Chapter4Figs/ptlgworkflow.eps

6. The Design Issue Language Generation phase takes as input the sets D, DIM

5.2, and KM 5.4 and has as goal deriving relationships between the elements of

the set D according to the rule 5.3.3.1.

7. The output of the Design Issue Language Generation phase is the Design Issue

Language 5.5, a directed graph structure comprising the set of design issues (the

nodes) and all the relationships identified between them (the edges).

8. DIL 5.5 is the input of the Pattern Language Generation phase. In order to gen-

erate the pattern language, all the design issues considered for being documenting

as patterns are extracted from DIL 5.5. The relationships identified between the

issues are considered as relationships between the corresponding patterns.

9. The Pattern Language Generation phase outputs the pattern language, PL 5.6

representing the directed graph structure containing all the patterns (the nodes)

together with the relationships between them (the edges).

5.3.4.1 Associated-to vs. Related-to

Throughout this chapter, I have used both ”...is associated to...” and ”...is related

to...” in various contexts. These two mean different things in different contexts and

help framing the process. At this point, some clarification notes are in order:

• A design issue/pattern is directly associated to a set of keywords, hence to each

of the keywords in the set.

• Two keywords are directly related to each other, a relationship R being identified

between them.

• Two design issues/patterns are indirectly related to each other, the relationship

between them being derived according to the generation rule 5.3.3.1.

179

Design issue Keywords
6 (Integrated

chat)
communication, Instant Messaging, chat

7 (Eyes wide
open)

visualization, awareness

9
(Collaboration,
always social)

tagging, ranking, comments, social, community

1 (With or
without

collaboration)

separate layers, non-collaborative, collaborative,
brainstorming

33 (Customize
collaboration)

customize, collaboration, community, rights, roles

Table 5.1: Design Issues Map (fragment)

• A design issue/pattern is indirectly related to a keyword (k) if the set (Ki) of

keywords associated with the design issue/pattern contains a keyword (kiα) such

that k R kiα.

5.4 The Method Applied

Starting from the collection of patterns described in the previous chapter, I went

through the steps depicted in Figure 5.6 in order to derive possible relationships be-

tween the patterns in the collection.

5.4.1 Identifying Concepts

The set of design issues, D, is described in details in Section 4.3. Out of this set, a

collection of 15 patterns were derived 4.4. As a first step in the process, I associated

each design issue in D with a set of keywords. Table 5.1 presents some examples of

design issues and the keywords associated to them, the complete DIM 5.2 set (i.e. the

output of this first phase) being presented in Appendix 7.3.

180

Each design issue was represented by its unique identifier, the mapping between

identifiers and design issues following the description in Tables 4.6 and 4.7. For as-

sociating the issues with keywords, I split the statement of the issue in words and I

considered as keywords the representative words with a less than 10% degree of usage

in the associations. In addition to that, for some of the design issues, I associated as

keywords words closely related to the statement of the design issue (a major conse-

quence, a possible symptom).

5.4.2 Identifying Relationships

As a second phase of the process, I proceeded to identifying relationships between the

keywords. The complete KM 5.4 set (i.e. the output of this phase) is described in

Appendix 7.3, some examples of such relationships being presented below:

• awareness = awareness,

• groups ≡ teams, availability ≡ user status, initiator ≡ first editor,

• pdf ISA format, education ISA goals, first editor ISA coordinator,

• session HASA session state, community HASA library, collaborators HASA roles,

groups HASA collaborators,

• visualization RELATEDTOsupports awareness, track RELATEDTOapplies−to changes,

invites RELATEDTOtriggers join, highlight RELATEDTOused−for identify data,

join RELATEDTOapplies−to groups.

5.4.3 Generating the Pattern Language

Based on DIM 5.2 and KM 5.4, I derived relationships between the design issues,

following the generation rule 5.3.3.1. A few examples of such relationship inferences

are reported below:

• tabletop ISA device, hence 22.6 ISA 22,

181

• groups ≡ community, hence 4 ≡ 9,

• visualization HAS shared resource, hence 7 HASA 27,

• rights RELATEDTOapplies−to shared resource, hence 33 RELATEDTOapplies−to

27,

• community RELATEDTOrequires coordination, hence 9 RELATEDTOused−for

14.

The set of design issues together with all the relationships derived between them

form the Design Issue Language. The pattern language, PL 5.6, comprising the collec-

tion of patterns described in Section 4.4, is obtained after eliminating the design issues

which were not considered for being documented through design patterns and all the

relationships involving such design issues. At this point, potential areas for automation

became clear and the next section aims at clarifying them. Following this discussion,

the automatic pattern language generation gets described later on in this chapter.

5.5 Human Intervention and Automation in the Pat-

tern Language Generation

The application of the pattern language generation method raised a couple of questions,

opening the issue I raise in this section:

• What can be automatized when applying the method or, in other words, where

can the computer help?

• What is the human intervention in the process or, put in other words, what are

the decisions that need to be made by the person applying the method?

In answering these questions, I decided to follow each phase of the process described

in Figure 5.6 and identify answers to the questions above:

182

1. Concept Identification.

During this phase, there is room for automation in a few areas. First, natural

language processing tools can be used for splitting the statement of each design

issue in tokens (words) and, therefore, associate the issue with these tokens as

keywords. However, a total automation at this level would generate a lot of noise

in the final results since words such as adverbs, prepositions are heavily used,

hence being part of each design issue’s statement. Ways to reduce such noise

include:

• Allowing human intervention, so that the relevant keywords are decided by

the human.

• Introducing a threshold which would determine whether a word can be con-

sidered a keyword (i.e. if a word is used as a keyword for more that a given

percentage of design issues, that it is no longer considered a keyword). This

makes room for a second possibility of automation, allowing the computa-

tion of such percentages for each of the words and deciding on the least used

to represent the pool of keywords.

• A mixed approach using both of the above.

The representation of the output of this phase - the sets DIM 5.2 and K 5.3 -

may take various formats from simple text files using a human-defined protocol

to more complex data base structures.

2. Relationship Identification.

During this second phase, relationships between keywords are identified. Even

if the set of possible relationships is determined and limited, there is still little

room for automation. Except for the case in which all the possible keywords and

all the possible relationships existing between them are stored in a dictionary,

the tuples representing related keywords 5.4 need to be decided by the person

183

applying the method.

The representation of the output of this second phase - the set KM 5.4 - can be

organized through various formats, the basic one being a text file using a human-

defined protocol.

3. Design Issue Language Generation.

Deriving the relationships between the design issues in the set D is totally subject

to automation. Taking as input the sets D, DIM 5.2 and KM 5.4, it is possible

that the machine automatically triggers the relationships between the design is-

sues, applying the rule 5.3.3.1. The representation of the input sets is discussed

above and the design issues are all represented by their unique identifiers, a map

of the identifiers to the design issues being provided additionally for support.

The representation of the output of this phase is a graph, which is defined by the

set of design issues as the nodes and the relationships between them as the edges.

Such representations can be expressed through basic tools such as text files using

a human-defined protocol or more complex tools for representing graphs.

4. Pattern Language Generation.

Generating the pattern language translates into identifying a sub-graph of the

graph representing DIL 5.5. Knowing which of the design issues are documented

by patterns, the generation of the pattern language is subject to full automation

as follows:

• The set of patterns, P, is decided on a priori.

• The set of relationships between the patterns is obtained after eliminating

from DIL 5.5 all the pairs of related design issues which are not further

considered to be documented as patterns.

184

The representation of the pattern language is a graph and, similar to the DIL 5.5,

can use complex representation tools or simply text files. The issue at this point

is supporting the visualization of the pattern language in a useful and under-

standable way, text files not falling necessarily in this category. For this reason,

specialized tools for graph visualization can be used. Such tools use a textual

representation (of a specific format) of a graph in order to represent it graphically.

The output of the method - the pattern language - may, therefore, be described in

such a format so that it allows its input and graphical representation in a graph

visualization tool.

5.6 Tool Support

Thoughts on automatizing the process of generating a pattern language have led me

to consider the development of a software tool able to support both the application of

the method and the usage of its results. The tool would be used to both automatically

generate the pattern language and query the knowledge base represented by the lan-

guage.

5.6.1 Identified Requirements

As described in Section 5.5, several areas of automation can be identified in the appli-

cation of the method hereby described. These areas trigger the definition of a set of

requirements for the development of a tool able to support the following:

1. Data Representation. Each of the data sets considered throughout the process

(either as input or output parameters) gets stored in files in defined protocols of

representation.

2. Pattern Language Generation. The tool automatically generates the pattern lan-

guage according to the process described in Figure 5.6, being provided with the

185

sets D, DIM 5.2, and KM 5.4.

3. Pattern Language Visualization. The tool supports the export of the pattern

language in formats which allow its graphical representation through specialized

applications.

4. Pattern Language Querying. Designers using a pattern language should be able

to query the language. The tool should be able to answer the following types of

queries:

(a) Given the unique identifier of a design pattern, it returns the set of design

patterns related to it, specifying for each pattern the type of relationship.

(b) Given the unique identifiers of 2 design patterns, it returns the type of

relationship existing between them.

(c) Given a type of relationship (R), it outputs the pairs of design patterns

between which R exists.

(d) Given a keyword, it returns all the design patterns associated with that

keyword.

(e) Given 2 design patterns, it returns the set of keywords associated to both

patterns.

(f) Given a set of keywords, it returns the collection of design patterns related

to the keywords.

A detailed description of ”associated-to” and ”related-to” concepts is provided

in 5.3.4.1.

5.6.2 Scenarios of Use

Considering the above described requirements, the questions are: ”Who does such a

tool address to?” and ”What scenarios of use can be identified?”. A set of such sce-

narios are described below:

186

• From a collection to the language.

First, as one of the goals of the tool is to support the automatic generation of a

pattern language, the tool addresses communities of pattern writers interested in

translating their collections of patterns in graph structures representing pattern

languages. The advantages of a pattern language over a collection of patterns

are discussed in details in Section 2.2.7, the main one consisting in the possibility

of relating design problems and being provided with solutions for such inter-

dependent problems.

• From keywords to patterns.

As a second goal, the tool aims at supporting designers interested in using already

generated pattern languages. Facing a design problem, one would be interested

in knowing what are the design patterns describing partially and/or entirely the

specific problem. Since more patterns may describe different facets of the same

problem, these patterns are inter-related. Hence, the solutions they propose are

influenced by each other’s forces. The designer faced with this situation should

be able to create a query consisting in a set of keywords related to the problem

and get as result a collection of design patterns related to the query (i.e. those

design patterns related to the set of keywords contained in the query).

• From patterns to other patterns.

After identifying a useful design pattern and applying the solution proposed by

the pattern, one would be interested in knowing how does this impact the overall

design process and what consequences are triggered. Moreover, the application

of one pattern might ask for the application of a related pattern, as well. The

tool would support the identification of such related patterns as well as the con-

sequences triggered by each pattern applied.

187

• From patterns to relationships.

A designer might use two different patterns, possibly in different parts of the same

project. S/he would want to know if these patterns are in some way related and,

if so, how they are related. Specific relationships between patterns might trigger

modifications in other parts of the project, as well. For example, a pattern pi as

a specialization of another pattern pj might ask for the consideration of both its

forces and the forces of pattern pj .

• From the language to its graph.

Not being familiar with the domain addressed by a pattern language, one would

like to explore it for getting insight on the issues to be faced during design pro-

cesses within such a domain. This would translate into browsing the patterns

included in the language and exploring the relationships between them. For lan-

guages containing a smaller number of patterns this is not necessarily an issue.

However, even in these cases and mostly in the cases of larger languages, the

graphical representation of the pattern language would prove useful.

5.6.3 Design Considerations

After clarifying the high-level requirements and the audience of the tool, I moved on to

considering several design decisions and goals. These considerations constitute a first

iteration of the tool, able to bring to light additional aspects and features.

5.6.3.1 Data Representation

For each of the data sets used throughout the process, I considered a specific represen-

tation protocol to support storing the data sets in files.

• D:

188

di <newline>, where di is the unique identifier of the ith design issue.

• P:

pi <newline>, where pi is the unique identifier of the ith design pattern.

• DIM 5.5:

di <space> kij <newline>, where di is the unique identifier of the i
th design issue

and kij is the jth keyword associated to it.

• K 5.3:

ki <newline>, where ki is the ith keyword in the set.

• KM 5.4:

kiu <space> kjv <space> R <newline>, where kiu is the uth keyword associated

to the ith design issue, kjv is the vth keyword associated to the jth design issue,

and R is the relationships between them.

• DIL 5.5:

*nodes

di <newline>

...

∗edges
di <space> dj <space> R <newline>

...

, where *nodes marks the beginning of the nodes representation (i.e. the design

issues), and *edges marks the beginning of the edges representation (i.e. tuples

comprising the identifiers of pairs of design issues together with the relationship

identified between them).

189

• PL 5.6:

*nodes

pi <newline>

...

∗edges
pi <space> pj <space> R <newline>

...

, where *nodes marks the beginning of the nodes representation (i.e. the pat-

terns), and *edges marks the beginning of the edges representation (i.e. tuples

comprising the identifiers of pairs of patterns together with the relationship iden-

tified between them).

5.6.3.2 Pattern Language Generation

The algorithm for the design issue language generation is described below:

foreach di ∈ D

foreach dj ∈ D

{
foreach kiu ∈ Ki

foreach kjv ∈ Kj

if (i != j)

switch (R)

{
”=”: addEdge(di, dj, =); break;

”≡”: addEdge(di, dj, ≡); break;

”ISA”: addEdge(di, dj, ISA); break;

”HASA”: addEdge(di, dj, HASA); break;

”RELATEDTO”: addEdge(di, dj, RELATEDTO); break;

}
}

190

The algorithm parses the set D, pairing any two design issues and identifying

whether there is a pair of keywords (kiu, kjv) such that:

• One of the design issues is associated to kiu.

• The other design issues is associated to kjv.

• The two keywords are related.

All the tuples of the form (di, dj, R) are stored, following to be parsed so that for

each pair (di, dj) the strongest identified relationship is considered for the graphical

representation. The generation of the pattern language will exclude those design issues

not considered for being documented as patterns and the pairs (di, dj), involving such

design issues. The detour via the design issues is motivated by two aspects. First,

design issues (even those not documented through patterns) contain valuable design

information and some of them are related to those which get documented through

patterns. Hence, ignoring them would lead to loosing potential valuable information.

Secondly, some design issues might, in time, be considered for being documented as

patterns since design, in general, is quite flexible and constantly pushed further by

innovation and creative ideas.

5.6.3.3 Pattern Language Querying

The six types of queries supported by the tool are briefly described in Section 5.6.1.

The input and output parameters for each of the queries together with the short de-

scription of the algorithm which answers the query are described below:

1. Given the unique identifier of a design pattern, it returns the set of design pat-

terns related to it, specifying for each pattern the type of relationship.

• Input.

(pα), where pα is the unique identifier of a design pattern.

191

• Output.

(pα, pβ , R, R.description)*, where pα is given as input, and pβ is the identi-

fier of a pattern related to the input pattern by the relationship R. In case

R is of type RELATEDTO, the R.description provides information on the

relationship type.

• Algorithm.

The algorithm parses the structure representing PL 5.6 and returns those

pairs of edges in which one of the patterns is identified by the input identifier

pα. In case no such pair is identified, the result returned is void.

2. Given the unique identifiers of 2 design patterns, it returns the type(s) of rela-

tionship(s) existing between them.

• Input.

(pα, pβ), where pα and pβ are the identifiers of the two design patterns.

• Output.

(pα, pβ, R, R.description)*, where pα and pβ are given as input, and R is

the relationship existing between them. In case R is of type RELATEDTO,

the R.description provides information on the relationship type.

The output consists in all the tuples of the form described above, represent-

ing all derived relationships between the two patterns provided as input.

Even if the strongest relationship gets graphically represented within the

pattern language, additional relationships could provide relevant informa-

tion on the applicability of the two patterns.

• Algorithm.

The algorithms parses the structure representing PL 5.6 and returns the

edges defined by the two input identifiers together with the type of relation-

192

ship existing between them. In case the two patterns are not related (i.e. no

edge defined by their identifiers exists in PL 5.6), the returned result is void.

3. Given a type of relationship (R), it outputs the pairs of design patterns between

which R exists.

• Input.

(R), where R is a type of relationship.

• Output.

(pα, pβ)*, where pα and pβ are related by relationship R, provided as input.

• Algorithm.

The algorithm parses the structure representing PL 5.6, returning all the

pairs of patterns related by a relationship of type R.

4. Given a keyword, it returns all the design patterns associated with that keyword.

• Input.

(k), where k is a keyword.

• Output.

(pα)*, where pα is the identifier of the pattern to which the keyword pro-

vided as input is associated.

• Algorithm.

The algorithm parses the structure DIM 5.2 and checks for each design is-

sue: a) if it is a pattern and b) if the input keyword is associated to it.

The output result consists in the identifiers of those patterns to which the

input keyword is associated. In case the keyword is not associated to any

193

patterns, the returned result is void.

5. Given 2 design patterns, it returns the set of keywords associated to both patterns.

• Input.

(pα, pβ), where pα and pβ are the identifiers of the two design patterns.

• Output.

(ki)*, where ki is associated to the patterns given as input.

• Algorithm.

The algorithms parses the structure DIM 5.2, identifying the set of keywords

associated to the input patterns. The two sets are further parsed in order

to identify their common elements. In case the two patterns have no words

in common, the returned result is void.

6. Given a set of keywords, it returns the collection of design patterns related to the

keywords.

• Input.

(ki)*, where (ki)* is a set of keywords.

• Output.

(pα, ki, R, R.description)*, where pα is the identifier of the pattern related

to one of the keywords given as input, and ki is associated to the pattern

pα and related by relationship R to one of the keywords given as input. In

case R is of type RELATEDTO, the R.description provides information on

the relationship type.

194

• Algorithm.

The algorithm parses the structure DIM 5.2 and checks for each design issue:

a) if it is a pattern and b) if any of the input keywords is associated to it.

All the direct associations are added to the result set (due to the average

size of pattern collections, efficiency concerns are not an issue at this point).

Further on, for each of the input keywords associated to any of the patterns,

the structure representing KM 5.4 is parsed in order to identify keywords

related to them. The keywords related to the input ones are looked for in

associations with other patterns. In case such associations are identified,

the patterns are indirectly related to the input keywords. All the indirect

relationships are also added to the result set. In case none of the keywords

are related to any of the patterns, the returned result is void. A detailed

description of the ”associate-to” and ”related-to” concepts is provided in

Section 5.3.4.1.

5.6.3.4 Graphical User Interface

The tool’s interface (Figure 5.7) provides a simple query editor allowing the user to

input his query (i.e. a set of keywords or the identifiers of one or more design patterns).

Keywords or identifiers are separated by spaces similarly to the input mode of search

engines.

An area containing the possible types of queries the user might be interested in is

also provided - the query option area. The user selects the type of query and inputs

the keywords/identifiers for the query to be run. In case the text input from the user

(provided in the query editor) does not match the type of query selected, an error

message is displayed on the screen.

For the third type of query, the user is required to input a type of relationship

existing between patterns. For that, the tool provides an area containing the possible

relationships existing between patterns. For such a query to be executed, the user needs

to simply select the type of query (in the query option area) and a type of relationship.

195

Figure 5.7: GUI of the tool supporting in querying the pattern language obtained as
result of applying the pattern language generation method

196

Chapter4/Chapter4Figs/tool.eps

Results are displayed in an designated area - the results of the query area. For now,

the results are displayed according to the output protocols described in Section 5.6.3.3.

Improvements in the result presentation are an open issue to be considered in a second

iteration in the development of the tool. In the example depicted in Figure 5.7, the user

runs a query of type 6, asking for the patterns related to a set of keywords provided

as input. The keywords in the example are ”support”, ”community” and ”building”.

The results include the patterns directly associated to each of the keywords provided

(the first 8 entries) and the patterns related to each of the keywords provided. For

example, ”groups” is a synonym of ”community”, and the patterns identified as 28

is associated with the keyword ”groups”; hence the pattern identified as 28 is in an

Equivalence relationship with the keyword ”community”.

5.6.4 Testing

In order to test the features of the above described application, I run the pattern

language generation feature on two existing collections of design patterns:

1. The collection described in Section 4.4, addressing synchronous collaboration.

2. The collection provided by Jennifer Tidwell on web application design [103].

Surely, more test cases would provide stronger evidence of the tool’s strengths,

but for the purpose of this work the two collections listed above are considered. The

motivation for choosing the two is two-fold. On one hand, the collections address two

different domains and include patterns addressing different communities. This aims at

showing that the tool (and the method underlying it) is independent of the domain

addressed by the collection used as input. On the other hand, the two collections are

different in size, the second one being much larger. This aims at proving that the tool

(and the method underlying it) is scalable, hence it can be used for larger collections

as well. The tests aimed at investigating the following:

• The application of the method described above in this chapter.

197

• The generation algorithm for the pattern language generation.

• The querying algorithms on the generated pattern languages.

5.6.4.1 Case 1: Synchronous Collaboration

I started from the data presented in Section 5.4 and used it as input of the Pattern

Language Generation phase. As intermediary result, Figure 5.8 illustrates the graph

representation of the design issues (represented by their identifiers), the set of keywords,

and both the DIM 5.2 (set of pairs mapping a design issue to a keyword) and KM 5.4

(set of pairs mapping two keywords) sets. Different colored arrows represent different

types of relationships. The graphical representation was made through Medusa1, an

interaction graph viewer and editor described in more details in Section 5.2.

The Pattern Language Generation phase had as output the PL 5.6, depicted in

Figure 5.9. The output PL 5.6 is described according to the protocol used by Medusa

for input files, allowing the visual representation of the language as a directed graph.

Each of the nodes in the graph are associated to the identifier of a design pattern and

each directed edge links two related patterns. Different colours indicate different types

of relationships, according to the legend provided. Surely, the set of relationships be-

tween the patterns may be extended providing that new relationships - not identified

by the tool - are spotted once the language is used. For validating the relationships

outputted by the tool, I walked them all through trying to identify the extent in which

the patterns are related and compare this with the output of the tool. For example,

the pattern Support versioning ISA pattern Track history of collaboration since the

history of a collaborative process is kept through a versioning system. Moreover, the

pattern Integrated chat is associated to the pattern Who is the coordinator? since an

integrated chat mechanism can be used for the coordination of a collaborating group.

1Available at: http://sourceforge.net/projects/graph-medusa/

198

Figure 5.8: A glimpse of the method application - design issues, keywords, the DIM
and KM sets

199

Chapter4/Chapter4Figs/dilgraph.eps

R

ed
 –

 E
qu

al
ity

N
av

y
–

Eq
ui

va
le

nc
e

B
lu

e
–

IS
A

B
la

ck
 –

 H
A

SA

V
io

le
t –

 R
EL

A
TE

D
TO

F
ig
u
re

5.
9:

A
p
at
te
rn

la
n
gu

ag
e
fo
r
th
e
d
es
ig
n
of

sy
n
ch
ro
n
ou

s
co
ll
ab

or
at
iv
e
sy
st
em

s

200

Chapter4/Chapter4Figs/sync_lg.eps

Design issue Keywords
1 (Two-Panel

Selector)
two panel selector, selectable lists, easy access

2 (One-Window
Drilldown)

one window, option menu, space navigation

3 (Wizard)
wizard, ordered navigation, branched tasks,

chunking the task, physical structure
4 (Extras On
Demand)

on demand, hide features, simplification, dropdown

5 (Intriguing
Branches)

additional branches, original flow, clear return,
resume task

Table 5.2: Design Issues Map Web Design Case (fragment)

5.6.4.2 Case 2: GUI Design

As a second test case, I considered the collection of design patterns proposed by Jenifer

Tidwell and made available online at: http://designinginterfaces.com/firstedition/. I

started by assuming that the 44 design patterns made available represent the set of

design issues, D which describes the domain targeted by the collection - interaction de-

sign of web applications. That is to say that I considered the set P of design patterns

to contain the same elements as the set D of design issues, hence all the potentially

identified design issues were documented through patterns. This simplification does

not reduce in any way the workflow of application of the method. It is solely meant to

allow the focus to be placed on the pattern language generation.

I associated each design issue/pattern with a set of keywords. For these associations

I used the documentation of each pattern. First, I used the name of the pattern as

a keyword and I added keywords relevant to the descriptions of the problem and the

solution as proposed by Tidwell. The number of keywords associated to each pattern

varied between 2 and 5. In addition to that, I considered a keyword as such only if it

appeared in less than 10% of the associations. A fragment of the DIM 5.2 is described

in Table 5.2, the full structure being presented in Appendix .3.

All the keywords used in the associations belong to the set K 5.3, which is entirely

presented in Appendix .3. Further on, I identified relationships between the elements

201

of the set K 5.3. Some of these relationships are described below, the full KM 5.4

structure being presented in Appendix .3.

• wizard = wizard,

• hide features ≡ hide flow, distinguishing sections ≡ separate sections, magni-

fied projection ≡ zoomed area,

• ordered navigation ISA space navigation, alternate shades ISA color codes, con-

strained resize ISA resizing,

• resizing HASA resize modes, single page HASA physical structure, unfolding task

HASA additional branches, ordered navigation HASA transition,

• initiate navigation RELATEDTOapplies−to space navigation,

jump to item RELATEDTOsupports complex value selection,

row striping RELATEDTOtriggers chuncking the content,

command history RELATEDTOincludes initiate navigation,

memorable names RELATEDTOused−for label actions.

Taking as input the DIM 5.2 and the KM 5.4 (in this case, D = P), the tool outputs

the pattern language depicted in Figure 5.10. Since D = P, DIL 5.5 is the same as

PL 5.6. Similar to the previous test case, the set of relationships between the patterns

may be extended providing that new relationships - not identified by the tool - are

spotted once the language is used. For validating the relationships outputted by the

tool, I walked them all through trying to identify the extent in which the patterns are

related and compare this with the output of the tool. For example, the pattern Good

Defaults ISA Input Hints, since intuitive default input values are subtypes of input

hints. Moreover, the pattern Action Panel HASA Progress Indicator, since indicating

the progress of an action is part of any executing action interaction display (each action

in the panel is associated with a progress indicator once executed).

202

R

ed
 –

 E
qu

al
ity

N
av

y
–

Eq
ui

va
le

nc
e

B
lu

e
–

IS
A

B
la

ck
 –

 H
A

SA

V
io

le
t –

 R
EL

A
TE

D
TO

 F
ig
u
re

5.
10
:
A

p
at
te
rn

la
n
gu

ag
e
fo
r
th
e
d
es
ig
n
of

G
U
Is

fo
r
w
eb

sy
st
em

s

203

Chapter4/Chapter4Figs/tidwell_lg.eps

5.6.5 Open Points and Ideas for the Next Iteration

After the first iteration of the support tool for generating and querying pattern lan-

guages, several open issues and improvement ideas became clear.

1. Additional support in automatizing the initial steps of the process. Associat-

ing each design issue with a set of keywords and then identifying relationships

between these keywords requires human intervention. However, as discussed in

Section 5.5, several techniques can be investigated for improving this and sup-

porting further automation of these steps.

2. More intuitive GUI features in the query results presentation. For now, the tool’s

interface is quite simple and it is meant as proof-of-concept. Further develop-

ments are needed for the GUI to be user-friendly and support a more efficient

exploration of the query results.

3. Support in browsing the graphical representation of the PL 5.6. The pattern

language is represented as a graph which may be further browsed. For now, the

tool exports the PL in the format supported by Medusa and the graph can be

browsed solely through Medusa. Investigating ways to support such processes is

much needed.

4. Generating pattern languages from other existing collections of patterns. Two

collections have been test subjects for the tool. However, more tests are needed,

hence other collections of patterns available today could be the input of the tool.

This would support both testing the limitations of the tool and helping find room

for improvements or additional needed features not yet included.

—

In this chapter, I introduce a method to be used for generating pattern language

structures out of collections of design patterns. This comes as an answer to the lack of

methodological support in the area and aims at supporting both pattern authors in-

terested in generating pattern languages out of the collections they wrote and pattern

users interested in retrieving and browsing knowledge captured by such collections.

204

The major strength of the method relies in supporting the semi-automation of such a

generation process. Human intervention is still needed, but the process is largely au-

tomated. In addition to that, it is supported by a tool able to help guide through the

method’s application. This tool acts as a pattern language generator and as a search

engine localized on the pattern language, supporting the execution of queries on it.

A limitation now is that the method and the tool supporting its application need

to be strengthened by several other evaluation cycles. The two test cases described in

this chapter address two collections documenting different domain (synchronous col-

laboration and GUI design), but other test cases would strengthen and validate the

applicability of the method. Also, the tool’s implementation requires a more user-

friendly GUI and possibly some accompanying usability tests.

205

Chapter 6

Evaluating Patterns: Impact and

Strategies in the Collaborative Use

of Design Patterns

The usefulness of a knowledge repository represented as a collection of design patterns

is largely recognized [31], [35], [52], but little work has been done in investigating and

measuring the impact such a collection has on collaborative design processes involving

designers. An overview of the documented investigations is described in Section 2.2.6

and includes examples of patterns being used in teaching, design, and in particular

participatory design. The aim of my work is to understand how design patterns are

used in collaborative design processes. An initial step towards such understanding is

the case study described in this chapter, involving novice designers.

6.1 Objectives and Rationale

The overall objective of the case study is the evaluation of the concept of design pattern

in the context of collaborative design processes. Given a collection of design patterns,

how would a team of designers make use of this collection and what would be the impact

of this use? This is, in other words, the question this chapter addresses. A first step

consists in involving novice designers - students in Computer Science - and have them

use the collection of patterns described in Chapter 4. The participants are grouped in

206

teams and, being provided with the patterns, are asked to use them in performing a

simple GUI design task. Even if strong conclusions with respect to generalizations of

the use of design patterns in collaborative design processes ask for more empirical work,

the present efforts provide a starting point for further understanding and investigation.

In designing the case study, I initially addressed the question of understandability

and tried to evaluate in what measure the concept and the content of the design pat-

terns are easily grasped by novice designers. A low degree of understandability would

strongly bias the results of an investigation on usefulness, since not understanding the

rationale of the concept would lead to either not using the concept at all or using it

without taking advantage of its full capacities.

Having ensured the fact that the patterns presented do not impose any understand-

ability constraints, I further considered addressing the issue of usage and investigate

what actions do novice designers perform on the collection of patterns. I started with a

pool of actions documented in the literature as being subject to design pattern support

- browsing the collection, searching for a documented problem, analysing and applying

a solution proposed by the patterns - and analysed the degree in which each of these ac-

tivities is performed, and whether there are other common actions participants perform.

An additional decision with respect to the design of the case study was the form

of representing the patterns. Considering that the collection provided is rather small

(15 patterns) and that the participants work together around a table, the decision on

the representation form to use consisted in paper cards. However, after observing the

use of the patterns represented as paper cards, I addressed the issue of the feasibility

of this type of representation and of the possible alternatives.

The case study also aims at getting some insight on the overall picture, trying to

get feedback from the participants on their experience using the patterns. The interest

at this point is in understanding how the patterns made a difference from the point of

view of the (novice) designers. These results are further correlated with the analysis

of the dialogues and the interactions held during the design task in order to assess

the connection between the designers’ feedback and the course of actions performed

207

throughout the task.

Lastly, I aimed at looking into abstracting strategies participants develop while

working with the patterns. The rationale for this relies in understanding the processes

followed by designers while working with patterns in experimental contexts of collab-

orative design processes and in deriving the requirements for tools to support the use

of design patterns in real-world similar contexts.

To summarize, I considered addressing the following research questions:

1. Are the format and the content of an existing collection of design patterns easy

to understand for novice software designers?

2. Having available a collection of design patterns targeting a design area, what

are the actions mostly performed by novice designers while collaboratively using

them?

3. What pattern representation would best fit for working with a collection of design

patterns?

4. What is the overall impact of using design patterns in collaborative design pro-

cesses?

5. What strategies do novice designers develop in working with a collection of design

patterns?

208

6.2 Method

6.2.1 Procedure

The case study was organized in the form of a series of design workshops, each work-

shop bringing into the lab one team of novice designers. Each such workshop lasted

for 2 hours, one facilitator being present each time. The facilitator’s role was to: a).

introduce the participants to the workshop, b). walk them through each phase of the

workshop, c). take notes of their interactions, and d). observe them throughout the

workshop and support them if needed.

Each team was presented with a brief overview of the goals of the workshop and

with the collection of the 15 patterns described above. Each pattern was represented

on a paper card, being described by its name, its unique ID, the set of keywords as-

sociated to it, a representative illustration, the problem addressed by the pattern, and

the solution proposed to tackle the problem (Figure 6.1). The restrictive description

was mainly enforced by the paper card representation of the patterns and by the time

length of each workshop.

209

F
ig
u
re

6.
1:

E
va
lu
at
io
n
w
or
k
sh
op

s
-
P
ap

er
ca
rd

re
p
re
se
n
ta
ti
on

of
p
at
te
rn
s

210

Chapter5/Chapter5Figs/patts.eps

The initial phase of each workshop asked the participants to go through the pat-

terns and to get familiar with them. No strategy was suggested, all of the teams being

free to follow their own approach for looking the patterns over. All the misunder-

standings or unclear issues were discussed with the facilitator and collected for further

analysis. As a second phase, each team was presented with a list of problems and was

encouraged to choose one problem for which to design, using the patterns provided,

a software application. The problems addressed different areas of synchronous collab-

oration, such as collaborative drawing, collaborative text editing, collaborative game

solving, or collaborative search.

The designs were meant to consider solely the GUI and the interaction process of

the application. To support their design processes, the teams were encouraged to an-

swer the following questions: a) who are the users targeted?, b) what is the motivation

of the users’ collaboration?, c) when and where can the application be used?, and d)

how can the users interact with the application? [28]. Also, they were asked to sketch

their ideas, express all the design problems they encounter and, possibly, create a mock

up of their overall design. Their conversations were recorded and a facilitator observed

all of the teams, taking notes of their interactions. Lastly, each participant answered a

questionnaire providing feedback on the overall process followed and on the use of the

patterns. The complete questionnaire is provided in Appendix .6.

6.2.2 Problems

The list of problems proposed during the workshops included collaborative drawing,

collaborative text editing, collaborative search, and collaborative game solving.

The problem of collaborative drawing asked for the design of a software application

which would allow painters, graphic designers and/or visual artists to collaboratively

create one diagrammatic representation. The problem of collaborative text editing

required participants to design an application which would allow a group of users to

create a summary of a written text in a synchronous collaborative fashion. The set of

games considered for collaborative solving consisted of puzzles and crosswords. The

211

common requirement for both was that more users solve one game in the same time.

The problem of collaborative search required that more users are able to perform one

web-search from remote locations.

6.2.3 Participants

The total number of participants was 75, out of which 75% were male, and 25% were

female1. 66 of them (88%) were first year students in Computer Science, 8 (11%) were

following their second year, while 1 of them was a third year student in Design. Out

of the 75 participants, only two have had prior experience with working with design

patterns. Solely 9 of the participants (12%) had more than 3 years experience with

designing software applications, while the rest of 88% were novice software designers,

with less than 3 years experience in software design.

Figure 6.2: Evaluation workshops - Team member distribution

The 75 participants were divided into 18 teams with the member distribution of

each team depicted in Figure 6.2. The majority of the teams were formed of 5 partici-

pants, while 2 of the teams were formed of 2 participants each. The differences between

the number of participants in each team had little impact on the results obtained, a

1There could be gender differences at play in the results obtained; however, these differences are
beyond the scope of this thesis to explore.

212

Chapter5/Chapter5Figs/teamdistr.eps

detailed analysis on that being provided further on in Section 6.3.

6.2.4 Measures

This evaluation process addresses the set of questions described in Section 6.1. For

each of the questions, measures were defined and used to quantify the final results.

These measures were derived for the following data collection sources:

• audio recordings of each team’s conversations;

• notes taken by a facilitator present during each of the workshops;

• questionnaire .6 filled in by each participant at the end of the workshop (used for

providing feedback on the process followed);

• results of the design task followed (annotated sketches);

1. Are the format and the content of the existing collection of design patterns easy

to understand for novice software designers?

Having used the patterns provided, the participants were asked to choose the

most useful and the least useful pattern defining element (i.e. name, ID, key-

words, picture, problem, solution) in understanding the patterns. Moreover, they

were asked to order the pattern defining elements from the most useful element

to the least useful element in supporting the understandability of the presented

patterns. After having gone through all the patterns and having used them, the

participants were asked to rate on a Likert-type scale (with 1 – not at all un-

derstandable, 2 – not understandable, 3 – I can’t say, 4 – understandable, and

5 – very understandable) the degree of understandability of each of the patterns

presented. The patterns were available to the participants throughout the rating.

The average rate was computed for each of the patterns, and a global rate was

calculated for identifying the overall understandability of the whole collection.

213

This measure helped in various ways. On the one hand, I identified those patterns

which proved to be difficult to grasp and rewrote them based on the participants’

feedback. On the other hand, the quantitative data collected allowed measur-

ing the rate of the entire collection. It is safe to assume that participants went

through all of the patterns, hence their rates are based on their experience brows-

ing all of the patterns, since the collection provided was rather small. In the case

of larger collections, the settings for such an evaluation would have to differ at

least with respect to the time length of each workshop.

2. Having available a collection of design patterns targeting a design area, how do

novice designers make use of it during collaborative design processes?

Through the questionnaire, the participants were asked to rate on a Likert-type

scale (with 1 being not at all useful, 2 – not useful, 3 – I can’t say, 4 – useful, and

5 - very useful) the degree of usefulness of the patterns for each of the following

documented uses of patterns:

(a) understanding the design space of the application;

(b) searching for design problems;

(c) searching for solutions for already identified design problems;

(d) communicating with the other members of the team;

(e) remembering similar design situations encountered;

(f) brainstorming for design ideas for the application;

For each of the above activities, the average rate of the answers was computed.

Moreover, the feedback from the participants tried to identify which of the above

activities was mostly supported by each of the patterns.

The activities considered initially are the common documented uses of design

patterns. It is for that reason that I considered them as starting point. The

rationale behind this measure was understanding the degree in which designers

214

perceive their involvement in each of these activities. In addition to that, sub-

ject to this evaluation is also the exploration of other activities and sequences of

activities designers perform using the patterns (more on that to follow at 5).

3. What pattern representation would best fit for working with a collection of design

patterns?

After having used the patterns in their paper card representation, the partici-

pants were asked to choose which, in their opinion, would be the most suitable

representation for a collection of patterns having as options the following:

• paper cards;

• wiki applications;

• search engines;

• specialized application with personalized features;

Bearing in mind that the participants only used the patterns in their paper card

representation, I was aiming to obtain feedback on the appropriateness of this

form of representation as opposed to other possible forms. All of the participants

were familiar with wikis, search engines, and they were explained what a special-

ized application for working with patterns would be (i.e. it would support the

most common activities performed using the patterns; an example of such a tool

is the one described in Chapter 5). However, their answers reflect their personal

preference and are not yet supported by a comparative study for drawing further

conclusions.

4. What is the overall impact of using design patterns in collaborative design pro-

cesses?

The overall impact of using the patterns was measured by:

215

(a) the Likert-type scale (with 1 being not at all useful, 2 – not useful, 3 – I

can’t say, 4 – useful, and 5 - very useful) ratings participants assigned for

each of the patterns with respect to the usefulness of the pattern in the

overall process

(b) the qualitative feedback provided by the participants as answer to the open

ended question: ”How have the patterns supported your design process?”

Rating each pattern allowed the computation of an overall rate for the entire

collection. Such a value gets complemented by qualitative data coming from the

open-ended question addressed to the participants. Overall, the goal at this point

is to get a feeling of how the participants perceived the overall design task, and

in particular, in what degree they felt the patterns made a difference.

5. What strategies do novice designers develop in working with a collection of design

patterns?

The conversations of all the teams were recorded and transcribed. Their dialogues

were divided into sentences (i.e. small fragments of dialogues – usually lines of

the dialogues – related to a particular concept or action), all those sentences

containing references to the patterns provided being filtered and considered for

further analysis. The coding scheme used for coding the sentences referencing

patterns classified these sentences as indicating :

(a) Browsing the collection - going through the patterns one by one.

(b) Reading a pattern - holding a card and reading the entire content of the

patter described by it.

(c) Using a solution - explicitly applying the solution proposed by a patterns

or applying the solution after studying the pattern, without explicitly indi-

cating this fact.

(d) Adapting a pattern - adjusting the solution proposed by a pattern and ap-

plying the adapted solution in the given context.

216

(e) Modifying a pattern - changing the form of a pattern and making these

changes explicit. For example, adding a new defining element for a pattern

would count as modifying the pattern.

(f) Searching for a pattern - identifying a problem and searching for a pattern

which addresses this problem.

(g) Discussing a pattern with other members of the team - explaining the el-

ements of a pattern to each other, possibly making associations to similar

situations met in other projects.

(h) Referencing a pattern - pointing a pattern or reminding of a pattern (either

by its name, identifier or some keyword associated to the pattern).

(i) Re-referencing a pattern - coming back to a pattern already discussed for

clarifying open points.

(j) Generating a design idea inspired by a pattern - coming up with a new design

element (and incorporating it in the team’s design) based on consulting a

pattern.

The strategies used by the teams were abstracted from:

• the sequences of actions (i.e. those defined by the coding scheme) they

followed in isolated contexts of their design processes; more on this in Section

6.3.3.2.

• the ratio of the sentences in each category over the total number of sentences

considered; more on this in Section 6.3.3.1.

• the facilitator’s notes on the participants’ interactions; more on this in Sec-

tion 6.3.1.

6.3 Results

6.3.1 Direct Observation

All of the teams were closely observed by a facilitator who took notes on their design

processes. Before detailing the quantitative results obtained, I will briefly describe the

217

process followed by each of the teams, according to the notes taken through direct

observation.

6.3.1.1 Team no. 1 - Markers

The first team chose the problem of collaborative puzzle solving and started by reading

together each pattern, one by one. Four of the patterns (i.e. Shared summary, Revert

changes, Track history, Who’s the coordinator) were not clear to the team and the fa-

cilitator discussed them in more details. Further on, the team assigned to each pattern

a word characterizing its core idea. During their design process they referred to each

pattern using the word associated to it. While going through the patterns, the team

made no reference to the name of each pattern; they only paid attention to the text of

the problem and the solution. Often, they tried to find examples of application for each

pattern in order to better understand and clarify its idea and the way they can use it.

In the initial stage of the design process, the team made a list with all the problems

they were interested in addressing in the design of the application they were working

on. Then, they went through the patterns in order to identify those which addressed

the problems on the list. For each pattern they used, they marked its identifier on

the sketch they were working on. Going back to previous steps of their process, they

would remind themselves about the decisions taken at that step through the help of

the pattern marked as used at that point.

6.3.1.2 Team no. 2 - Selectiveness

The second team chose the problem of collaborative puzzle solving. They read the pat-

terns all together and, in the end, one member of the team went through all of them

once again explaining to the others the main idea of each pattern. Three patterns

were not clear, the team asking the facilitator to provide more details on these. The

team initially ignored the patterns and began with setting the context for their design

process (i.e. thinking about the target users and the main affordances of the applica-

tion). Moreover, they did not consider necessary the use of all the patterns, motivating

that they would only turn to them when faced with a difficult situation or when in

218

search for new ideas. This is precisely what they did. First, they faced the problem of

designing a mechanism to be used by the application for pointing out who placed each

piece of the puzzle on the board. For the answer, they turned to the patterns and used

one of them (i.e. My contribution). Further on, they faced the problem of more users

accessing the same piece of the puzzle in the same time. They remembered that this

was one of the issues addressed by the patterns and turned back to them. Towards the

end of their design process, the team agreed to go through the entire collection again

and check for ideas they were not considering until that point. As result of this walk

through, they added to their design social features such as rankings.

6.3.1.3 Team no. 3 - Misunderstandings

The third team worked on the collaborative text editing problem. They initially went

through the patterns, each one reading a subset of them. They moved on to the design

of an application for the problem considered and initially ignored the patterns. When

asked about them by the facilitator, the participants went through them all in order

to check which ones they already considered and how the others were reflected in their

work. They stopped at the pattern With or without collaboration and considered ap-

plying it only that the main idea of the pattern was misunderstood, the team being

inclined to switch to an application to be used individually. It was only after the facil-

itator’s intervention that the participants got back on track. The team continued their

process with little influence from the patterns. It was only by the end of the workshop

that they all went through the entire collection in order to evaluate which of the issues

they considered and how.

6.3.1.4 Team no. 4 - Confirmations

The fourth team chose the problem of collaborative puzzle solving. They placed the

patterns on the table and each of the members of the team randomly read some of the

patterns. Being inspired by one of the patterns (i.e. With or without collaboration),

they initiated their design with the idea of a private area of the application. Further

on, all their process revolved around this idea. Faced with the problem of having the

219

users of the application coordinate while using a shared resource (the puzzle board),

the team turned to the patterns and identified the one dealing with this problem (i.e.

Who is the coordinator?). It is only now that they asked the facilitator to provide them

with more details on the pattern and on the solution proposed by it. After discussing

all the options, the team agreed to apply one of the solutions proposed. There were

several times when the team was not sure about what decisions to make. This made

them search for confirmation from the patterns. One example is the situation where it

was not clear how to point out who are those users trying to solve the puzzle at a given

time. The team hinted a possible solution, but it was only after reading the pattern

Choose your collaborators that they agreed on how to proceed and applied the solution

proposed. The team went through the collection over and over again throughout all

the process. They learned the patterns while going through them and trying to find

ideas and solutions, as opposed to other teams which did not start the design process

before all the members of the team got familiar with all the patterns. Browsing the

collection was also a way to conclude and evaluate the completeness of their work -

they made clear what patterns they used and in which way and why some of them

remained unused.

6.3.1.5 Team no. 5 - Minimal use

The fifth team chose the problem of collaborative drawing. Each member of the team

went through 3-4 patterns, the whole team covering all the collection of patterns. Each

member of the team further explained the patterns s/he read to the rest of the team,

making sure that all are aware of all the patterns. Three of the patterns were not clear

and the team asked the facilitator to provide more background on them (i.e. Choose

your collaborators, Who is the coordinator?, and Revert changes). This team made

a minimal use of the patterns. They initially placed them aside and focused on the

design without hinting to them. Due to the fact that the decisions taken by the team

did not point towards a collaborative application, the facilitator intervened, asking

the team to specifically refer to the patterns. This brought little change, the team

browsing the collection of patterns once. However, this one time browsing moved their

focus from an application designed for individual use to an application designed for

220

collaboration. Moreover, at this point the team enhanced their design with some of

the solutions proposed by the patterns (eg. the chat mechanism, social features), but

without specifically referring to the patterns themselves.

6.3.1.6 Team no. 6 - Fundamental problems

The sixth team chose the problem of collaborative drawing. They all went through

the patterns, making sure that each member of the team is aware of the core idea of

each pattern. Some of the patterns (namely, Collaboration, always social and Choose

your collaborators) reminded the team of other types of applications such as social

networks. This kind of associations helped the team better understand how to choose

one possible starting point for their design process. The team spent a considerably

large amount of time discussing the patterns at the beginning of their work, even prior

to choosing the problem they would design for. They expressed the fact that it was

due to this discussions that they explored their options and understood how to struc-

ture their overall design process. The specific thing they did for each pattern was to

explain to themselves the problem addressed by it, so that they become aware of all

the ”fundamental problems” (as they called them) they should be aware of. During

designing, they would come back to a pattern and analyse its solution once they faced

the problem addressed by it. Interesting enough, initially the team planned on using

all the patterns. It was only after one of the members explained the following ”we don’t

have to use them all. If you decide to implement that and solve that problem, then the

pattern proposes you a solution” that they gave up this idea. As already documented

in the literature and observed during teaching design patterns, novices are specifically

biased towards making use of a larger number of patterns. After deciding on the prob-

lem, the team filtered out all the patterns they were considering using. Further on, at

a later stage of their process, they walked through all of them once more in order to

make sure they did not miss anything fundamental.

221

6.3.1.7 Team no. 7 - Inspiration

The seventh team chose the problem of collaborative puzzle solving. They all went

through the patterns and discussed them between themselves, trying to find for each

pattern a situation where it would be applicable. Annotate pattern was not clear for

the team, the facilitator providing more background on it. In addition to that, the

team asked for a detailed comparison between the patterns Annotate and Integrated

chat, with an emphasis on the differences between these two. During the actual design

process, the team made little use of the patterns. It is only after the facilitator asked

about the patterns used that the team walked through all of them and discussed those

used and those not used, but relevant to their work. At this point, they got some ideas

on things they were not considering and incorporated them in their sketch. It was the

case of the Shared summary - at first not considered at all, but after going through the

patterns discussed and adapted to their application as final game statistics displayed as

a summary of the collaborative game. Going through the patterns as through a check

list, the team did not recognize that they actually used one of them (Eyes wide open).

They initially considered that this pattern had nothing to do with their design and

asked for more details on it. After being explained the its core idea, the team realized

that they initially misunderstood it and actually used it in their design without being

aware of this fact.

6.3.1.8 Team no. 8 - Pattern-driven

The eighth team chose the problem of collaborative crosswords solving. The team

placed all the patterns on the table, arranged as in a matrix and read them all to-

gether. Immediately after choosing the problem, the team decided to turn to the

patterns and go through them one by one. Starting from the problem addressed by

each pattern, they asked themselves how the particular problem would match their

design context. For example, they phrased the following: ”For example, how can you

undo a wrong word written by another player? (starting from Collaborative undo)”.

In other words, the patterns drove their design process, inspiring them and providing

them with hints. The team heavily used the patterns also for getting ideas on how to

structure their design process and how to address fundamental collaboration problems.

222

They went through the solutions proposed for each of the patterns and discussed on

how should each solution match their context. It is safe to say that the patterns rep-

resented the kernel of this team’s work, since they were discussed, applied, adapted,

referenced throughout all the workshop. It was not clear for the team whether they

should use the entire collection or just a sub-collection. The facilitator allowed them to

make a decision on that and did not influence them in any way. Eventually, they did

not make use of all the patterns, but they walked through all of them for several times

to make sure they did not miss anything. The patterns they did not use fell in two

categories: 1) patterns which they considered difficult (such as Support versioning) or

2) patterns which they did not consider fundamental for the problem they chose (for

example, Annotate).

6.3.1.9 Team no. 9 - Confidence

The ninth team chose the problem of collaborative crosswords solving. They went

through the patterns all together, each one reading a subset of them. After they

started designing, they referred to the patterns as ”the problems”. Each time they

would come across an issue addressed by the patterns (such as coordination, or aware-

ness), they would be remembered of the patterns. They would go to the specific pattern

addressing the issue at hand and discuss the possibility of applying it. Overall, the

collection had a small impact on the team’s process, supporting them, however, to

make design decisions with a higher degree of confidence.

6.3.1.10 Team no. 10 - End cycle filters

The tenth team chose the problem of collaborative drawing. They initially arranged

all the patterns on the table and went through them so that each member of the team

reads a few of them. After having done that, they turned their attention to the problem

they chose and started coming up with possible ideas for its design. They ignored the

patterns for a while, but when facing the problem of making part of the application

private they turned to them for support. This triggered a walkthrough of all of the

patterns, helping the team enhance their design and address issues not considered until

223

that point. To conclude an initial cycle of their work, they went through the entire

collection again and put aside all those patterns used. Moving on and bringing new el-

ements to their design, the team did not reference the patterns any more. However, the

issues they addressed were closely related to the problems (if not the problems them-

selves) documented by the patterns. It is safe to assume that at this point the team was

familiar with the collection and used it (even if without referencing it) being aware of it.

6.3.1.11 Team no. 11 - Redundancies

The eleventh team chose the problem of collaborative puzzle solving. The team’s

approach to working with the patterns was to initially filter some they considered

”fundamental”. Some of these patterns were Integrated chat, Adapt application to

device, and Collaboration, always social. Moreover, they considered some of the pat-

terns redundant. As example, they considered the pattern Annotate to be similar to

the pattern Collaboration, always social. It is for this reason that the team decided

to exclude from the very beginning some of them. Throughout their work, the team

went through the patterns and considered addressing each of the problems documented

by them. They analysed the solutions proposed by each pattern and collaboratively

decided on which solution fits their design or how the solution proposed should be

adapted to their work. For the patterns they have used, they marked their identifier

on the sketch (in the place where the pattern was considered). Moreover, they only

referred to the patterns through their identifiers. For the patterns they did not use

(even from those remaining after filtering them initially), they explained to themselves

why the particular pattern is not useful in their design context.

6.3.1.12 Team no. 12 - Division of work

Team number 12 chose the problem of collaborative puzzle solving. Each member of

the team selected one pattern from the collection. They read the five patterns se-

lected and discussed them among themselves. These patterns were: With or without

collaboration; Collaboration, always social; Integrated chat; My contribution; Eyes

wide open. Further on, as a result of their discussions, they chose one pattern and

224

decided to only use that one. It was soon after they started their work that they

realized that one pattern would not support much of their process. As a consequence

of that, they turned to the collection and went through it. This time, they read each

pattern aloud and wrote down those that were addressing the problems they thought

relevant for the design of the application they chose. They divided their work so that

some of them focused on the actual design and others constantly went through the

patterns and checked which of them would fit to be discussed and possibly applied

in the current context of their work. Once a pattern was considered suitable to be

applied, the team would collaboratively discuss the solutions proposed and the way to

apply this solution to their design. The common constant of their work was the divi-

sion of work as described above and the constant synchronization of the two sub-teams.

6.3.1.13 Team no. 13 - One (pattern) solves all (problems)

The thirteenth team chose the problem of collaborative crosswords solving. The team

went through the collection of patterns before starting their work, each member of

the team reading a few of the patterns. They chose to use Integrated chat pattern to

solve several problems. First, they addressed the problem of communication within the

application under design and, for that purpose, the pattern answered clearly. However,

they decided on sticking to this one pattern and use it as a coordination and visu-

alization mechanism as well, even if the two issues were addressed in other patterns

thoroughly. Because the team did not make much use of the collection, the facilitator

decided to go through the patterns together with the team and explain the core idea of

each of them once again. The facilitator made no reference to the problem chosen by

the team, so she did not in any way bias the team towards using specific patterns in

specific situations of their design context. This intervention, however, did not change

much of the team’s behaviour, the team remaining reluctant to using any other pat-

terns. They motivated their behaviour by the fact that they had never worked with

patterns before, so they felt the concept needs more time to be explained and under-

stood.

225

6.3.1.14 Team no. 14 - Pattern mash-up

The fourteenth team chose the problem of collaborative drawing. Initially, each mem-

ber of the team read all the patterns, so by the end of this phase all of the members

of the team were aware of the entire collection and of the issues it addressed. Their

approach was pattern driven in that they basically thought of how to incorporate the

patterns they considered more relevant in one application. They took each pattern at

a time and designed a feature in the application based on the solution it proposed. By

the end of their design process, what they came up with was a mash-up of several solu-

tions proposed by the patterns provided to them. Asked by the facilitator to describe

their final result, the team made intensive reference to the collection, pointing out that

their intention was to use as many of the solutions proposed as possible.

6.3.1.15 Team no. 15 - Turnarounds

Team number 15 chose the problem of collaborative drawing. The team initially placed

all the patterns on the table, arranged as a map and all read the patterns together.

Discussing the patterns all together several things became clear for the team. First

they all agreed that all the collection describes one domain and that each pattern

documents a specific problem in the domain. Such insight was not provided by the

facilitator, so the team was in no way biased. Further on, they selected some of the

patterns they considered mostly relevant and put them aside for further consideration.

Moreover, when faced with a problem such as the situation where more users would

draw in the same time, they turned to the whole collection in search of the one ad-

dressing the coordination problem. Such turnarounds were common to the work of

this team, the participants turning to the patterns often for searching for the prob-

lems they were facing or for checking what other ideas they can include in their designs.

6.3.1.16 Team no. 16 - Understanding the domain

The sixteenth team chose the problem of collaborative searching. They initially went

through the patterns in a random fashion, each member of the team reading a few

of them. They focused intensively on the design of the application considered and in

226

trying to come up with scenarios in which a group of people would search together

synchronously. It was unclear for them how such a process would develop and only

after the facilitator described an example, things became clearer. However, they did

not make use of the patterns throughout this struggle. It was only by the end of the

workshop that they turned to the collection in an attempt to check how this would fit

in the design they came up with. They considered each pattern and discussed whether

the problem addressed by it was considered by them and if not, they explained to

themselves why the pattern is not applicable in their situation.

6.3.1.17 Team no. 17 - Refactoring

Team number 17 chose the problem of collsaborative crosswords solving. The team di-

vided the patterns among themselves and each member of the team read 3-4 patterns.

After each one read a sub-group of patterns, they swapped them so that everybody

gets to read them all. Then, they proceeded to the design without looking too much

at the patterns. After they reached a draft of their design, they went through all

the collection in order to check which ones they have used. Discussing the patterns

helped them clarify several points in their design and made them realize that some of

the design decisions taken were leading towards a dead-end. Based on these insights,

the team refactored their design, applying solutions proposed by the patterns. Also

common to this team was adding elements initially not considered after consulting the

patterns. As example of such a situation is adding a new screen to the application

under design after discussing the pattern Choose your collaborators. The screen would

address specifically the issue of allowing each user of the application to choose his/her

collaborators.

6.3.1.18 Team no. 18 - Pattern taxonomy

The eighteenth team chose the problemlem of collaborative drawing. The team read

the patterns one by one, all together and divided them in three categories as follows:

• Shared summary; Integrated chat; Choose your collaborators; Resume collabo-

ration;

227

• Track history of collaboration; Support versioning; With or without collabora-

tion;

• All the other patterns in the collection;

They considered the patterns in the first category easy to understand and apply;

those from the second category were assigned a medium level of difficulty; the last

category was considered to be containing patterns difficult to understand. The team

initially used in their design only the solutions proposed by the patterns in the first

category. Later on, they reconsidered their option and agreed to go through all of the

patterns, motivating ”See if looking at the patterns, you find something else we should

add”. Going through the patterns and discussing them, they eventually added to their

design new elements. Also, patterns which at first seemed difficult became more clear

once discussed collaboratively. In addition to that, the team associated these patterns

with examples of their application the team was familiar with and suggested the facilita-

tor to add to the description of each pattern at least one example of the its application.

—

All in all, the teams made use of the patterns even if not all the teams considered

them fundamental to their work. They found the patterns’ representation accessible

and somehow fun to use which, in addition to the team work, motivated them to get

engaged in the whole process. The facilitator’s intervention was minimal, so they were

not biased in any direction and the choice of using or not using the patterns was all

theirs. Even if the concept of design pattern was new to most of them, they were

interested in learning about it and using it in this context helped them considerably.

The teams turned to the patterns when in doubt, or when searching for ideas. The pat-

terns helped the teams validate their decisions or get more confidence in the path they

were following. Some of the teams were somehow selective in terms of the patterns,

filtering those they considered fundamental and only using those. Others, on the other

hand, were completely driven by the patterns and made extensive use of them. A more

detailed description of the strategies of use for the patterns is presented in Section 6.4.2.

228

6.3.2 Questionnaire Results

Each participant filled in the questionnaire provided in Appendix .6. Based on their

answers, this subsection provides their feedback in terms of the level of understand-

ability of the patterns, the degree of usage of the collection, the extent in which they

considered modifying the patterns and the overall impact of using patterns in their

collaborative work.

6.3.2.1 Understandability

The problem and the solution described by each pattern were the elements considered

the most useful in understanding a design pattern, 51% of the participants rating them

as such. On the other hand, 78.7% of the participants found the unique ID of each pat-

tern as the least useful element for understanding patterns. As expected, a relatively

large number of participants (32.4%) found the name of the patterns helpful. However,

even if the illustration assigned to each pattern was expected to help the participants

grasp the main idea of each pattern, results showed little evidence of the usefulness of

this element.

The average rate of understandability of the collection of patterns provided was

3.91 (S.D. 0.341) on a scale from 1 to 5 (with 5 being very understandable), proving

that, overall, the participants faced little trouble in grasping the idea of each pattern

and its usefulness. The complete information on the rate of understandability of each

pattern is depicted in Figure 6.3.

6.3.2.2 Usage

As answer to the question ”To what extent were the patterns useful for the following

(on a Likert-type scale, with 1 – not at all useful, 2 – not useful, 3 – I can’t say, 4 –

useful, and 5 – very useful)?”, participants rated:

• Searching for documented problems with an average rate of 4.28 (with 46.7% of

the participants rating it as very useful)

229

Figure 6.3: Understandability and usefulness rates for each of the patterns

230

Chapter5/Chapter5Figs/pattsres.eps

• Searching for solutions for already identified problems with an average rate of

4.13 (with 45.9% of the participants rating it as very useful)

• Communicating with other members in your team, 3.93 (with 44% of the partic-

ipants rating it as very useful)

• Brainstorming for design ideas for the application under design, 3.79 (with 34.6%

of the participants rating it as useful)

• Understanding the design space of the application, 3.48 (with 25.3% of the par-

ticipants rating it as very useful)

• Remembering similar design situations previously encountered, 3.32 (with 26.7%

of the participants rating it as very useful)

Moreover, some patterns proved specifically useful for some of the above mentioned

actions, according to the data provided in Figure 6.4. For example, much debate

has been around the pattern ”Choose your collaborators”, the participants trying to

come up with solutions for allowing users to start their collaborative process and to

choose the users they want to work with. The pattern ”My contribution” reminded

the participants of several contexts which request the identification of one individual’s

contribution and of existing applications which support this action. Also, throughout

their design processes, the participants mostly searched for solutions for the problems

of: a) adapting the application to a specific device, b) allowing the undo operation on

a collaboratively edited resource, and c) versioning.

6.3.2.3 Modifiability

Sixty-one (61) of the participants (81.33%) mentioned that the information provided

for defining each pattern was enough and that no additional information would be

needed. Eight (8) of the participants (10.66%) would have found a set of examples

of application of each pattern useful in better understanding the idea of each pattern.

Two (2) of the participants (2.66%) suggested adding some more details in the de-

scription of each pattern, while keeping the same defining elements. Lastly, one of the

231

Figure 6.4: Degree of usage (in percentage) of each pattern for specific actions

232

Chapter5/Chapter5Figs/pattsactions.eps

participants (1.33%) suggested adding a defining element for each pattern able to list

down some frequently asked questions related to the pattern.

Having to choose a representation for the collection of patterns which would best

suit collaborative design processes, 62.5% of the participants opted for the paper card

representation, 28.8% chose a search engine application, 13.9% opted for a wiki-like

application, while only 4.2% of the participants considered the option of a specialized

application to work with design patterns.

6.3.2.4 Overall Feedback

Asked to rate the overall usefulness of the patterns, participants provided an average

rate of the collection (computed as the mean of the usefulness rates of all the patterns –

Figure 3) of 3.53 out of 5 (S.D. 0.346). As support for the above mentioned quantitative

data, some of the answers to the open question ”How have the patterns supported your

design process?” included:

• ”They [the patterns] helped us in searching possible problems. We analyzed all of

them to check how each pattern applies to our design process.”

• ”They [the patterns] were very useful in the beginning of the workshop for under-

standing what should we consider and in which way. Also, during the work, they

helped us maintain a coherent and detailed line of work.”

• ”They were fundamental in guiding us through the realization of the project. They

helped us consider things that we wouldn’t have considered without them.”

• ”The patterns allowed the discussion among the group members and the exchange

of ideas.”

• ”The patterns provided indications and a precise schema on which to reason for

solving the problems encountered during the workshop.”

233

6.3.3 Transcripts

The conversations of the teams were recorded and transcribed for further analysis.

The transcripts were divided into sentences (i.e. small fragments of dialogues – usually

lines of the dialogues – related to a particular concept or action) and those sentences

referring to patterns were coded according to the coding scheme described in 5. The

tool used for coding and synthesising results is QDA Miner 3.21.

6.3.3.1 Atomic Actions

Browsing the collection was marked in cases when participants:

• were checking not to have missed any of the issues addressed by the patterns:

– ”Is there anything else we’ve missed?”

– ”Let’s look at the patterns again not to forget something fundamental.”

– ”Let’s think about something that we didn’t use and we should consider (look-

ing at the patterns).”

– ”Ok, let’s see what else (looking at the patterns).”

• were evaluating which of the patterns they have already used until that point in

the process:

– ”So how many patterns did we use?”

– ”Let’s see which of the patterns we used (went through the patterns and put

aside those used).”

• were trying to come up with new ideas for their design and searching for inspi-

ration:

– ”Yes, let’s look at them [the patterns] one by one.”

– ”Let’s just finish this and then we go through all the patterns together.”

1http://www.provalisresearch.com/QDAMiner/QDAMinerDesc.html

234

• were uncertain about the role of the patterns in the whole process and were try-

ing to understand how the patterns could help - ”Let’s see what to do with the

patterns. Are we looking at each of them separately, one by one?”.

—

Reading a pattern during the task was usually performed by one of the members of

a team who would afterwards inform the others of the main idea of the pattern:

• ”Ok, there is a thing I read here (the patterns): for understanding who has placed

a certain piece, how could this be done?”

• ”Ok, I have just read this - statistics of the application use in cases of games.”

In other cases, a team would read a pattern all together either in search of inspiration

- ”We read the solutions, maybe we get some ideas” - or for a better understanding

of the problems to be faced in their design process - ”Everyone, read it again and we

should find what we think that could be problems (i.e. what applies to our design) and

write them down”. Reading a pattern was not always specifically expressed by the

participants, but sometimes only noted by the facilitator who observed them - ”Went

on to reading [Collaboration, always social]”.

—

Using (applying) the solution proposed by a pattern would sometimes be marked

by a simple acknowledgement of the fact, such as ”Chat, we have the chat” or ”Great,

considered!”. Other times, the main idea of the solution proposed would be explicitly

expressed after having been included in the design:

• ”Ok, ok, when you roll over with the mouse, the square gets illuminated and the

tooltip would tell you who the author is.”

• ”Clicking on the name of the person here, it highlights all the pieces placed by

that person.”

235

• ”Each player is assigned a colour.”

• ”We created a control for anyone who would like to pause the game and being an

online game, the other players continue to play.”

Using a solution was sometimes marked by a justification of its use; the team would

provide arguments on why that specific solution is used in that particular context:

• ”Do we add the chat on the first page as well? yes, because we said users can

create groups based on the chat.”

• ”When you solve a puzzle you should have a private area where you try out the

pieces and when a piece works well where it is placed, you just add it to the whole

puzzle.”

• ”Ok, instead of colouring the pieces in the colour of the author, you could have

them extracted a little bit from the context of the board so you can identify them.”

• ”I am user 1. I choose piece X. I click on it. He is user 2 and he can see that

the piece is used, it is locked. The others see that it is locked.”

• ”So, we could say that who gets the piece first puts a lock on it, so the piece

remains with that person until it is placed.”

• ”Then, you have the pieces on the board, you roll the mouse over them and you

see their border coloured in the colour of the person who inserted the piece.”

The use of a proposed solution was also made explicit while the participants were

checking to see which of the patterns they have already considered until a certain

point in their design process:

• ”We used this one with the memory, and the updates.”

• ”We have said that a piece is locked when one clicks on it.”

• ”Coordinator [Who is the coordinator?] we are using surely, because the area gets

blocked.”

236

Other times, after discussing a problem, the team would conclude to use the solution

proposed for it by the patterns - ”So we use this one [Collaborative Undo]”, or ”So in

the end, one can see how many pieces each one placed. So we can use this one with the

colours [My Contribution].” Using a solution also came as a continuation of a thinking

process, as if the team would describe the flow of their reasoning and include the use of

a proposed solution in their discourse - ”Yeah, and then we add a notification like this

one (point to pattern) saying something has changed”. When using a solution, some of

the participants would mark the identifier of the pattern describing it on the sketch of

their design - ”We could include here the thing of the break. If all the members agree

with the pause, they can take a pause; otherwise there is no pause - mark the id of the

pattern resume [Resume collaboration]”.

—

For adapting a pattern, the participants would start from a pattern in the collection

and try to use the solution proposed by the pattern only to discover that the solution is

either not completely matching their design or is missing some specific elements. Here

are some examples of adaptations the teams decided on:

• For the pattern Choose your collaborators, one of the teams decided to adapt the

solution proposed (i.e. inviting other peers to join a collaborative session) so that

one can invite others by tagging them - ”Decided on tagging a person in order to

invite a user to play with you”. Also, choosing one’s collaborators would require

the creation of a group to which they can be invited to join - ”After I choose the

users I want to work with, I can create a group of my own and invite them”

• For the pattern My contribution, several ways to adapt the solution were pro-

posed:

– ”So should we add in the corner of each piece the initial of the player who

placed it?”

– ”Each player gets an automatic ID - a, b, c, d. The ID is generated at the

login So the representation of one’s contribution is made by placing a b c in

the corner of the piece placed.”

237

• For the Integrated chat pattern, several teams came up with several ways to

adapt the solution to their own design:

– ”Add also a dialogue box for discussing with the coordinator.”

– ”In the chat we can also add colours for each user so that the lines of each

player are marked in a different colour to support readability.”

Moreover, they considered adapting the position of the chat feature in the GUI

they were designing considering the context in which such a feature can be used -

”The chat must remain on the first page also because one might not know anything

about the game so he can ask for opinions in the chat”. For the case of an

application designed for a small device such as a phone, they even considered

a simplified version of a chat feature - ”We can have a minichat with phrases

already defined”.

• The pattern Who is the coordinator? suggested locking as a solution. One of the

teams working on the puzzle solving problem adapted this solution to answer the

context of the game:

– ”Ok, so when one locks a piece, the piece gets obscure yes, and if I don’t find

the right place to put it, then it goes back to the pool of available pieces.”

– ”Well, you click on the piece, it gets locked, you drag it on its position on

the board, and that position is blocked as well so no one can place another

piece on the same position.”

A different solution to approach the problem of coordination was timers (included

in the pattern Who is the coordinator?). One of the teams considered enhancing

it with audio feedback such that it better matched the context of a game played

by competing teams - ”Ok, so you would have a timer with the audio for the time

passed so you get nervous”.

Adapting a pattern also referred to proposing alternative solutions for a problem

- ”We can choose between: a. click on a piece and get the control for 10 seconds or

b. continuous click release it when the piece is placed”, or ”What if we keep the list of

238

players ordered in real time?”.

—

Modifying a pattern was rare, the participants being reluctant to changing the pat-

terns. None of the teams attempted to change the form in which the patterns were

presented. Some of them did, however, express some criticism through the question-

naire.

—

Searching for a pattern was, in most cases performed when a team was dealing with

a problem. The sentences coded with the code ’searching’ would mostly be phrased as

questions:

• ”Actually, when you start the game, how do you determine who participates in

the game?”

• ”The problem is: when you selected a piece, the others select pieces in the same

time.”

• ”But in that way how do you know what pieces were placed by each user?”

• ”And what if I click on the same definition as you?”

• ”There has to be a way I can notify you about the fact that I am modifying it.”

• ”But how can I find someone in particular? Like if I want to play with you, how

do I find you?”

• ”The first problem is how are we indicating, how are you differentiating the

users.”

Searching for a pattern was also common in situations when the team was insecure

about the ”right” way to go about a certain problem. In some cases, the team already

had an idea of a solution in mind, but was not sure it would lead anywhere - ”Also,

239

we should consider that showing what each person did may be very annoying, so the

question is how to show this in the right manner”. In other cases, they had no precise

idea on how to tackle the problem and would search for guidance - ”How do we do

it? Like there is someone who is coordinating the others, or there is no coordinator?”.

Some of the teams would also set a high-level goal of their design process and then they

would search for the patterns documenting the problems which met that goal - ”Ok,

this is indeed a track. It remembers who, how, what each one did, and when. Hence,

this is a track. ok, this is the goal that we are setting. Now, what are the problems that

one might face to accomplish this goal?”. Lastly, the teams would go back to patterns

already discussed during their work, searching for them - ”Where was that? (patterns)”.

—

Discussing a pattern with other members of the team was common. The partici-

pants would discuss possible scenarios of application of a certain pattern in order to

share with each other their understanding of the patterns:

• ”If I am new and I don’t know anyone, I see the list of all available users and I

can choose to work with some of them.”

• ”What if I pause and then I start looking at the pieces? No, you can’t because

once you pause, the screen goes blank, you can’t see the pieces anymore.”

• ”We should design what the pattern says. If I want to see my contribution to the

puzzle or drawing or whatever, I need a practical way to achieve this.”

At times, it was not clear for the teams how much a pattern covers, or in other words,

what are the boundaries of the pattern’s application. Some of their conversations were

addressing precisely those concerns:

• ”No, what about the compatibility between computers. For example, mac and

windows. Is that included there? Ok, let’s just decide on java and it can be

materialized on all.”

240

• ”It works on any device: phone, computer yes, we can do that and then make

a version for each device yeah, I would like to see you with a photoshop mobile,

though.”

A lot of the conversations the teams had were structured as negotiations in which

participants of the same team would provide arguments in favour of the point they were

trying to make. In most of the cases, these negotiations were around understanding if

and how to use a specific solution proposed by the patterns:

• ”It’s like having a private area in which you could try out pieces/ no, this makes

no sense. You already try it out on the board/ no, it is a puzzle, you couldn’t

have a puzzle next to it where you play by yourself what if a piece is misplaced?

well, we have said that in that case it remains there on the board. Someone else

can correct it.”

• ”Should we add some comments? no. no because then people will use strange

comments ok, but if I want to comment something, I should be able to do that. I

say we add it.”

• ”If you want it to be a competition, you make it as turns. Each one has 20 seconds

to place a piece and basta! ok, but the competition already consists in who placed

more pieces on the board but it is more like collaboration, not competition.”, or

”So should we let them draw each one in his own area?”

• ”No, we can just put here the button pause and let them decide when to take the

break.”

Misunderstandings were also the focus of the teams’ discussions. Such misunder-

standings would relate both to the content of the patterns - ”No, we are deciding the

rules of the game; not the rules of the collaboration [Customize collaboration]” - or to

the applicability of a pattern in a certain context - ”This is a collaboration, not a com-

petition, so a global chat would be enough it would be a bit too much to have a private

chat on a game like this. what happens if for example, we 4 want to play with each

other but it is not about playing, it is more about I go there to see if I manage to give a

contribution”. In addition to solving misunderstandings, the teams’ conversations were

241

also meant to bring clarifications with respect to each member’s understanding of the

patterns. The participants would explain to each other the content and the main idea

of the patterns:

• ”Exactly, this was one of the issues in the patterns. If one clicks on the piece and

drags it, in that moment that piece is locked.”

• ”What is fundamental? The chat or the real time? I think that the real time.

The chat is connected to the real-time. If there is no real time, then you don’t

need a chat.”

In some cases, the teams would make associations between the issues addressed by

the patterns and similar issues they were familiar with and implemented in existing

software applications:

• ”In poker yes, because it is a time competition, but for the puzzle, I can stay there

one hour and not place any piece on the board.”

• ”The chat is real time is the chat integrated in the application? No, the chat opens

automatically when you start the application as an insider to the application. It

is basically like a pallete that you can open and close as you wish I think this

is not very usable. They should all be in the same level ok, we can make it like

facebook, you can reduce the chat window when you don’t use it, and leave it open

when you want to chat.”

Many of the conversations the participants had were meant to help them get a better

understanding of the patterns:

• ”And for the pieces we would have a scroll or something to allow you to visualize

them all/ ok, and the pieces you select are they in the public area or in the private

area?/ they are private well, it depends on how we think about it. If we say that

everything you do gets shared with all, then they are public or we could have a

private puzzle and a preview of the public one with everything that others have

done.”

242

• ”No, it is like she said you block the area of the word so you can’t overwrite

something written by someone else so, when I select the definition for 1, the area

for that definition is locked and noone else can click it/ yes, exactly/ no, but one

can modify it, but not in the same time but I would say it’s better to make turns.”

While discussing the patterns, the participants would also evaluate some of the pat-

terns as being unclear or difficult to understand - ”So if you want to delete something,

the author gets a notification and may agree or disagree about the deletion. Let’s put

this pattern aside, it is not clear”. Moreover, for some of the patterns, the participants

brought to light possible drawbacks of applying a specific pattern in a certain context

- ”Yes, but if the puzzle is already coloured? If you mark the piece with a color, you

can’t see the image anymore”.

—

Discussing the case of referencing a pattern brings up two issues:

1. In what situations would a team reference a pattern?

2. In which way would a team reference a pattern?

As answer for the first question, one of the situations when a team would reference a

pattern was when one member of a team would summarize the content of a pattern to

the rest of the team. In most cases, such summaries would only contain a few words

about the pattern, its main idea:

• ”This one. Sketch the ideas before adding them to the public area.”

• ”This one talks about keeping track of what has been done.”

Another situation of a participant referencing a pattern would include the case in

which s/he would signal a pattern to the rest of the team, bringing the specific pattern

to the attention of the team as a whole:

• ”Look at this, this is interesting. (points to pattern with or without collabora-

tion).”

243

• ”Look at this (points to pattern Choose your Collaborators) - provide a list with

all the available users!!”

• ”I mean this one, look - [Who is the coordinator?]’

Also asking for clarifications - ”Revert changes: now, this one is the difficult one”

- or further explanations - ”This one, what is it? [Choose your collaborators]” would

lead to referencing a pattern.

As for the second issue (i.e. how the participants actually referenced the patterns),

in most cases they used a keyword associated to the pattern (either by the paper cards

or by them themselves) to bring the patterns to the attention of the team. Some

examples of such cases are:

• ”We should use the one with the puzzle [Customize Collaboration].”

• ”So in the end, one can see how many pieces each one placed. So we can use this

one with the colours [My Contribution].”

• ”The one with the chat we don’t need because there is no chat.”

• ”The pause one we skip it?”

• ”This one with the eye [Eyes wide open] does not have anything to do with our

work.”

In other cases, the teams used the pattern’s identifier (marked on the paper card)

to reference it - ”And we should also write what happens if they do not agree, which is

this one - id 14”. Lastly, working all together round the same table, they also pointed

to a pattern or simply picked it up from the pile of cards and showed it to the others.

—

Re-referencing a pattern allowed the participants to go back to patterns previously

discussed:

• ”The pause [Resume Collaboration] we discussed it.”

244

• ”Well, I proposed it and you all said we shouldn’t have it.”

Going back to a pattern for reminding themselves what the pattern was about is

yet another situation of re-referencing a pattern; take as example the following sen-

tence ”The pause [Resume Collaboration], what did we say about the pause?”. Other

times, a pattern would be re-referenced as being used in the design already - ”Back

to the chat/ The chat [Integrated Chat] we placed it”. The patterns as a whole were

sometimes re-referenced, as well; such an example is the case when part of the patterns

were previously filtered for being considered - ”They are all [the patterns used] here, I

put them aside”.

—

Generating a design idea inspired by a pattern occurred in one of the following

situations:

• Participants combined different ideas described by different patterns to get to a

new one:

– ”Make a mash-up: chat and drawing.”

– ”We make 2 tabs. One says: ”show to” and then you can choose a person

in the contacts you want to share it with by sending him an invite by mail

or searching him by name in the contacts list. Also add a control ”Send”

for sharing the drawing.”

– ”Or have a list will all the users and clicking on a user would tell you the

group he is in or that he is available (in the case he does not belong to a

group).”

• Participants were searching for graphical representations of design elements de-

scribed by the patterns:

– ”Represent the timer in the UI as a clock.”

– ”Let’s represent the chat as a mobile phone situated in the backpack.”

245

– ”Add a track history to the UI in the right side - a video icon which allows

you to replay all the process.”

• Participants would make associations between the ideas described by the patterns

and other features, common to social/collaborative applications but not included

in the patterns:

– ”We can add a box for comments like a guestbook.”

– ”So each group has a level. You may join a group based on the level you

choose.”

• Participants would first try to adapt an existing pattern to their own context

and then add some new element to it. Consider as example: ”You can see in one

colour the people in your team and in another colour those other online users”.

The team started from the pattern My contribution, adapting it to the context of

a game design and adding a new element to it, i.e. the colour of a team. Similarly,

consider ”Each one is associated with a percentage indicating is contribution to

the puzzle so to the left, you have the id of each of the 4 players with the percentage

of puzzle covered by each, the number of remaining piece”.

• Participants would come up with new solutions for a problem documented by the

patterns:

– ”We can record all the process as a video so you can re-watch it later.”

– ”No, let’s do this: add three photos in the UI with the photo of the drawing

after I finish, the photo after the 2nd one finishes and the photo after the

last one finishes.”

—

An overall synthesis of the coding process (Figure 6.5) points out that browsing the

collection of patterns was quite common, 7.3% of the sentences being coded as such.

Similarly, 7.1% of the sentences were pointing to situations where participants were

searching for a pattern, more than often searching for a pattern leading to browsing

246

the entire collection for finding it. However, searching for a pattern did not always

lead to reading the pattern (and by this I mean reading the entire content presented

by the card on the pattern), since the percentage of sentences coded as ”readPatt”was

significantly lower (4.3%).

Figure 6.5: Transcripts results of the evaluation workshops - Distribution of the codes
(% of codes)

Somehow unexpected, this low percentage associated to reading a pattern is an

indication that participants would discuss and even use patterns without completely

reading them. Sometimes, the name or even the solution was enough for them to grasp

the idea of the pattern and not proceed to reading the pattern even further. More-

over, they deepened their understanding of the patterns by discussing them together

and explaining them to each other, 20.6% (the highest percent) of the sentences coded

indicating this.

As expected, the percentage of sentences coded as referencing patterns (19.7%)

was just as high as the one of sentences coded as discussing patterns. Referencing a

247

Chapter5/Chapter5Figs/codesPerc.eps

pattern would indicate bringing it to the attention of the whole team for being further

discussed and explained. The discussions related to the pattern would compensate

the lack of a complete reading of the content of the pattern. A complete reading of

a pattern would only be performed when the team would still be unclear about the

idea of the pattern or in the case of patterns they considered from the very beginning

”difficult” (an example of that is Support versioning).

Sentences pointing to cases where solutions proposed by the patterns have been used

in the process sum up 16% of all the sentences coded. 12.4% of the sentences were

indicating adapting a pattern. These two - using and adapting - are closely related;

solutions may have been discussed and then used as they were proposed or adapted

to the current design context. A common situation was discussing a pattern and then

trying to use the solution as proposed, leading to further debate. As a result of this,

the team agreed that the solution can not be applied as it is proposed; hence it needs

to be adapted to the context. Trying to use the solution of a pattern first, failing

and adapting the pattern after further debate and only in the cases where the solution

could not be used as it was proposed explain the higher distribution of the ”usePatt”

code.

A similar reasoning holds true for the distribution of the ”genIdea” code which

marked those sentences pointing to the cases where participants would come up with

new ideas for their design after going through the patterns and discussing them. The

percentage of these sentences was 8.9%, relatively close to the one associated to the

sentences coded as browsing the collection. The common situation observed was that

browsing the collection, the team would check for design elements not yet considered

by them and possibly comprised in between the lines of the patterns. As result of this

walk through and based on a continuous communication process, the teams came up

with new design ideas and incorporated them in their work.

An interesting thing brought to light by this distribution is that the percentage of

sentences marking the use of a solution proposed by a pattern is twice the percentage

of sentences indicating the generation of new design ideas. Surely, more empirical work

is needed to deepen such an observation, but this is a possible indication of the fact

248

that much of the knowledge is reused in design processes rather that generated. Also,

another explanation of these results could be that having the repository of patterns

available, the team did not feel the pressure of coming up with new ideas and heavily

relied on understanding and applying the proposed patterns.

Few sentences were re-referencing patterns (3.2%) and even fewer were pointing

to cases where participants would want to modify a pattern (0.5%). The latter could

be explained by the fact that the concept of design pattern was rather new to the

participants; hence their reluctance to modify what has been proposed.

6.3.3.2 Action Sequences

Coding alone gives a hint on the actual behaviour of the teams in using the patterns.

However, it is only by looking at their overall processes that one can better understand

this behaviour. As a further step in this direction, I looked into the sequences of codes

assigned to the sentences referring to the use of patterns. For defining a sequence of

codes, consider the consecutive sentences p1, p2 (i.e. p1 and p2 are not separated by

any other sentence) in the transcript document of one of the teams. If p1 is associ-

ated with the code x and p2 is associated with the code y, then xy is a sequence of codes.

As shown in Figure 6.6, for each code x from column A, the percentage of sequences

of codes of the form xy (where y is any other code from the list of codes considered)

is computed out of all the sequences of codes starting with x. In other words, the

maximum on each line of the table basically says: ”Out of all the sequences of codes

starting with x, most of them are of the form xy, where y is the code representing the

column of this maximum value” or ”A sentence coded with x was in the maximum

percent of the cases followed by a sentence coded with y”. Together with a further

discussion on the significance of these values, I will provide examples of consecutive

sentences coded by such sequences. Consider code x one of the following:

Adapting a pattern (adaptPatt).

249

B

A

ad
ap

tP
att

br
ow

se

dis
cu

ssP
att

ge
nI

de
a

mo
dif

Pa
tt

rea
dP

att

ref
Pa

tt

rer
efP

att

se
arc

hP
att

us
eS

ol

adaptPatt 15.7% 8.6% 15.7% 14.3% 1.4% 8.6% 18.6% 2.9% 5.7% 21.4%
browse 9.8% 7.3% 26.8% 7.3% 4.9% 34.1% 4.9% 17.1% 17.1%
discussPatt 10.3% 8.6% 23.3% 12.1% 1.7% 6.9% 33.6% 3.4% 8.6% 17.2%
genIdea 18.0% 14.0% 24.0% 2.0% 4.0% 12.0% 6.0% 12.0% 10.0%
modifPatt 66.7% 33.3% 33.3%
readPatt 16.7% 29.2% 8.3% 16.7% 4.2% 8.3% 37.5%
refPatt 15.3% 7.2% 39.6% 3.6% 4.5% 22.5% 2.7% 6.3% 24.3%
rerefPatt 11.1% 16.7% 16.7% 11.1% 27.8% 16.7% 11.1%
searchPatt 10.0% 2.5% 42.5% 7.5% 5.0% 17.5% 5.0% 15.0% 12.5%
useSol 21.1% 8.9% 17.8% 7.8% 2.2% 27.8% 1.1% 5.6% 27.8%

0% - 10% 10.1% - 20% 20.1% - 30% 30.1% - 40% > 40%

Figure 6.6: Frequency matrix in the transcripts results of the evaluation workshops -
Percentage of action A followed by action B

250

Chapter5/Chapter5Figs/ABFreq.eps

In most of the cases where the participants would try to adapt a pattern to their

current design context, the next thing they did was to use the solution of another pat-

tern (21.4 % of the sentences coded with adaptPatt were followed by sentences coded

with usePatt). The common scenario occurring was the following: a) the team would

be close to the completion of the task, b) they would adapt the solution of a pattern to

the current context of their work, c) this would remind them of a previously discussed

pattern, in most cases related to the adapted solution just mentioned, d) they would

consider using this later solution, incorporating it in the design together with the adap-

tation first discussed. Some examples of such consecutive sentences are described below:

p1: ”In the chat we can also add colours for each user so that the lines of each

player are marked in a different colour to support readability.”

p2: ”And then we add the list of available user.”

p1: ”Ok, so when one locks a piece, the piece gets obscure/ yes, and if I don’t find

the right place to put it, then it goes back to the pool of available pieces.”

p2: ”And also, to know who blocked it, the piece gets a border in the colour of the user

who blocked it.”

Browsing the collection (browse).

Somehow expected, the majority of the sentences coded as indicating browsing the

collection of patterns were followed by sentences referencing patterns (34.1%). Going

through the patterns, participants often stopped and referenced the patterns for fur-

ther discussing them within the team. Some examples of such consecutive sentences

are described below:

p1: ”Ok, let’s see what else (looking at the patterns).”

p2: ”Tagging, votes (while looking at the patterns). Are we considering tagging or

votes?”

p1: What else is here?

p2: Annotations.

251

p1: ”Ok, let’s go through all the patterns and see how could we use them.”

p2: ”Shared summary.”

p1: ”Let’s think about something that we didn’t use and we should consider (looking

at the patterns).”

p2: ”My contribution can be something like in the end we would provide statistics on

how many pieces each one placed.”

Discussing a pattern (discussPatt).

Discussing a pattern led in most cases to referencing other patterns, the percentage

of sentenced coded with discussPatt followed by sentences referencing patterns being

33.6%. Some examples of such consecutive sentences are described below:

p1: ”If we create a puzzle played in turns, we solve the problem of the pieces placed

in the wrong location. Or you could say I want to place this piece here and then every-

body votes, but that because really long.”

p2: ”I would also add a chat, a simple chat. So I could say: I don’t think your piece

works well there.”

p1: ”I would say there is no coordinator. All users are at the same level As for

the real-time, I am thinking about a timer, so each person waits for his turn to place a

piece on the board yes, this is better. Otherwise you create a mess.”

p2: ”Yes, and then there is also the pattern with the pause.”

Generating a design idea (genIdea).

24% of the sentences pointing to the generation of new design ideas were followed

by similar sentences. Some examples of such consecutive sentences are described below:

p1: ”So we can decide that more users form a group and they can draw together in

the same time. The drawing is shared only with the group and the chat contains only

252

the collaborators at a given time.”

p2: ”We make 2 tabs. One says: ”show to” and then you can choose a person in the

contacts you want to share it with by sending him an invite by mail or searching him

by name in the contacts list. Also add a control ”Send” for sharing the drawing.”

p1: ”We can do the same here. You divide the general list on categories: people

I already know, people I don’t know so, you could have the list of the people you have

drawn with before.”

p2: ”You can see in one colour the people in your team and in another colour those

other online users.”

p1: ”Also, you can see the list of already created teams and join one.”

p2: ”If you can not find a team you want to join, you can create a new team.”

p1: ”Also represent a chat in a fb style.”

p2: ”Let’s represent the chat as a mobile phone situated in the backpack.”

Modifying a pattern (modifPatt).

A relatively small number of sentences were coded as indicating the modification

of a pattern, therefore the results with respect to this action are rather insignificant.

However, most of the sentences coded with modifPatt were followed by sentences indi-

cating the browsing of the collection of patterns. Some examples of such consecutive

sentences are described below:

p1: ”Ok, but for me this is useless knowing at what time what each person did and

if you see a piece you can easily see who has placed it and after half an hour you don’t

really care about what each person did in the game. It’s a game.”

p2: ”Ok, so we have gone through everything.”

Reading a pattern (readPatt).

Reading a pattern led in most of the cases to either using the solution proposed

253

by the pattern (37.5% of the cases) or discussing the pattern even further (29.2% of

the cases). Somehow expected, this indicates that reading a pattern either made clear

to the participants how to proceed with applying its solution or asked for more expla-

nation on its content. Some examples of such consecutive sentences are described below:

p1: ”Read this (the coordinator pattern).”

p2: ”If we create a puzzle played in turns, we solve the problem of the pieces placed in

the wrong location. Or you could say I want to place this piece here and then everybody

votes, but that because really long.”

p1: ”Ok, I have just read this - statistics of the application use in cases of games.”

p2: ”Great, considered!”

Referencing a pattern (refPatt).

Referencing a pattern led to further discussing it in 39.6% of the cases. Referencing

a pattern basically brings it to the attention of the entire team, the pattern becoming

the subject for further clarifications and explanations. Some examples of such consec-

utive sentences are described below:

p1: ”This one... sketch the ideas before adding them to the public area.”

p2: ”It’s like having a private area in which you could try out pieces no, this makes no

sense. You already try it out on the board no, it is a puzzle, you couldn’t have a puzzle

next to it where you play by yourself what if a piece is misplaced? Well, we have said

that in that case it remains there on the board. Someone else can correct it.”

p1: ”How do they choose the collaborators? (pointing to the pattern).”

p2: ”It can be done randomly or in groups, because it is possible to create groups./ Oh,

you mean groups./ Yes, like the playing rooms in poker, you enter, you see the rooms,

and you can choose the room so you could either play random, or choose the room.”

p1: ”The pause one we skip it?”

p2: ”Yes, you can just say that in the chat. / Yes, but what if I get out for one hour?/

254

You can save and then you leave save what? save all what is done so far and when

you enter again you are asked: do you want to update the session? And the drawing is

updated with what else has been done.”

p1: ”Just thinking about undo.”

p2: ”How should the undo work then? Could I delete other people’s work we could say

like this: if I like the drawing I could just save it locally or I can make it private.”

Re-referencing a pattern (rerefPatt).

Re-referencing a pattern was not often in the first place. However, 27.8% of the sen-

tences re-referencing a pattern were followed by sentences referencing other patterns.

As an explanation of this is the fact that going back to a pattern previously discussed,

pushed the participants to check other patterns proposed in search of connections and

associations able to help them better understand the collection of patterns as a whole.

Some examples of such consecutive sentences are described below:

p1: ”We could include here the thing of the break. If all the members agree with the

pause, they can take a pause; otherwise there is no pause - mark the id of the pattern

resume. back to the identification...”

p2: ”Yes, exactly. It is actually this - My contribution.”

Searching for a pattern (searchPatt).

Somehow expected, searching for a pattern mostly led to further discussing it (42.5%

of the cases). On the other hand, the unexpected thing was that in a relatively small

number of cases (5%) searching for a pattern led to reading the complete content of the

pattern. Some examples of consecutive sentences coded with searchPatt-discussPatt

are described below:

p1: ”Where was that?... (patterns).”

p2: ”But you can add the chat in the profile area in the profile you have image, stats,

chat. You see someone online, you can just send him a message./ So a chat/email?/

255

Yes. So before you start playing you can just ask someone ”do you want to play?”/

Ok, so we add an option for writing.”

Using a solution (useSol).

Using a solution proposed by the patterns led to using other solutions or referencing

other patterns in 27.8% of the cases. This is explained by the fact that the patterns

in the collection are not independent. The problems they document are not indepen-

dent, hence the documentation of these problems (i.e. the patterns) are related to

each other. As a consequence, using a pattern leads to using other related patterns or

simply referencing other related pattern. Some examples of such consecutive sentences

are described below:

p1: ”Chat, we have the chat.”

p2: ”Then, you have the pieces on the board, you roll the mouse over them and you see

their border colored in the color of the person you inserted the piece.”

p1: ”When you solve a puzzle you should have a private area where you try out

the pieces and when a piece works well where it is placed, you just add it to the whole

puzzle.”

p2: ”Yeah, and then we add a notification like this one (point to pattern) saying some-

thing has changed.”

Appendix .6 illustrates the computed Z-values and the probability values for each

of the sequences of codes.

6.4 Discussion

6.4.1 Perceived Behaviour vs. Actual Behaviour

In this section, I will address the parallel between the two following aspects:

1. The way the participants perceived their use of the patterns during the workshops.

256

This was captured by the answers they provided through the questionnaires at

the end of each workshop. Interesting in this respect was the question asking the

participants to mark which of the following actions they consider they mostly

performed using as support the collection of patterns:

• understand the design space of the application;

• search for design problems;

• search for solutions for already identified design problems;

• communicate with the other members of the team;

• remember similar design situations encountered;

• brainstorm for design ideas for the application;

2. Their actual behaviour in using the patterns for completing the given design task.

This was captured by the recorded conversations and interactions between the

participants throughout the workshops. The coding scheme used to analyse the

recordings associated the sentences of the transcripts with the following codes:

• browse the collection (browse);

• read a pattern (readPatt);

• use a proposed solution (useSol);

• adapt a proposed solution (adaptPatt);

• modify a pattern (modifPatt);

• search for a pattern (searchPatt);

• discuss a pattern (discussPatt);

• reference a pattern (refPatt);

• re-reference a pattern (rerefPatt);

• generate a design idea based on consulting a pattern (genIdea);

257

A detailed description of how these codes were used and what observations they

allowed to be inferred is presented in Section 6.3.3.

Figure 6.7: Questionnaire results - Use rate for each action

The questionnaires’ results (Figure 6.7) indicate that the participants have per-

ceived searching as the most common action they performed. Whether it was search-

ing for problems or for proposed solutions, they rated searching as the most common

action they performed during their work. Rated as the third most common action was

communicating with other members of the team on the basis of the patterns, closely

followed by brainstorming for new design ideas. Interesting enough, the participants

did not perceive the patterns as being of much help in supporting them in understand-

ing the design space of the application or in remembering similar design situations.

On the other hand, looking at the transcripts, it can be inferred that the actions

the participants mostly performed are discussing a pattern, referencing a pattern and

using a solution proposed by a pattern (Figure 6.8). At the opposite pole, participants

258

Chapter5/Chapter5Figs/questSynthesis.eps

Figure 6.8: Transcripts results - Code frequency for each action

rarely modified patterns, re-reference them or even completely read their content. As a

first remark, even if searching seemed to the participants as the most recurring action

they performed, communication paid a much more important role in their work.

Looking in more detail, I tried to define a mapping (Figure 6.9) between the two

sets of actions: the one provided in the questionnaires and the one described by the

coding scheme. The reason they are not the same is that, since the participants were

not expected to reflect on their behaviour in using the patterns but rather in perform-

ing the design task, the list of actions they were provided with is at a higher level

of generality. For them, the patterns were a support which might have even been ig-

nored. It was not expected from them to reason on the way they use the patterns, but

to simply use them in case they see fit. On the other hand, the transcripts allowed a

more in-depth analysis; therefore, the coding scheme was defined to comprise a larger

number of actions.

259

Chapter5/Chapter5Figs/codesPercSorted.eps

Search problem Search solution Communicate- Brainstorm Understand space
Remember similar

situations

browse

readPatt

adaptPatt

useSol

modifPatt

searchPatt discussPatt

refPatt

rerefPattgenIdea

Questionnaires

Transcripts

Figure 6.9: Mapping the questionnaire actions to the coding actions

What the questionnaires portrayed as searching for problems could be associated to

the searchPatt, refPatt and browse codes used for the transcripts. On a similar line of

thought, communicating with other members of the team can be directly associated to

discussPatt. Brainstorming is the action represented in the coding scheme by genIdea,

and modifPatt; whereas, understanding the design space of the application is associ-

ated to readPatt and browse. In the context of this mapping, remembering similar

design situations is associated to rerefPatt. Lastly, searching for solutions is associated

to usedSol, adaptSol, browse and refPatt.

I used the definition of the mapping described above in establishing the relationship

between the two variable: rates computed based on the questionnaires, code percent-

ages computed based on the transcripts’ coding. Consider:

X = 4.28, 4.13, 3.93, 3.79, 3.48, 3.32

as the variable representing the questionnaires’ rates computed for the following

actions, respectively search problems, search solutions, communicate, brainstorm, un-

260

Chapter5/Chapter5Figs/actionsMapping.eps

Var Mean StDev Variance Sum Min Max Range
X 3.82 0.37 0.13 22.93 3.32 4.28 0.96

Y 9.91 6.64 44.19 59.46 3.2 20.6 17.4

Table 6.1: Perceived vs. actual behaviour - Descriptive statistics

derstand, remember. Moreover, consider the mapping between the two sets of actions

defined above (Figure 6.9):

Search problems → searchPatt, browse, refPatt,

Search solution → useSol, adaptPatt, browse, refPatt,

Communicate → discussPatt,

Brainstorm → genIdea, modifPatt,

Understand → readPatt, browse,

Remember → rerefPatt.

For representing the second variable, consider:

Y = 11.36, 13.85, 20.6, 4.7, 5.8, 3.2

, where

y1 = avg(%searchPatt + %browse + %refPatt) = 11.36,

y2 = avg(%useSol + %adaptPatt + %browse + %refPatt) = 13.85,

...

y6 = avg(%rerefPatt) = 3.2

The descriptive statistics for the two variables, X and Y, are illustrated in Table

6.1. The correlation coefficient, r is 0.64745. Surely, any generalization requires more

empirical work and this result can not lead to any firm conclusive statement. However,

this is a timid indication of the fact that the participants interpretation of their use of

the patterns differed from the way they actually used the collection. Therefore, further

implications of this case study will be inferred with a closer look at the transcripts, the

facilitator’s notes and the participants qualitative feedback.

261

6.4.2 Strategies Identified

As a further step in analysing the results of the case study, I tried to identify possible

overall strategies the participants developed (willingly or not) while using the patterns.

Abstracting from:

• the sequences of actions the teams performed on the collection of patterns in

isolated contexts of their design processes

• the ratio of each category of actions the teams performed

• the facilitator’s notes on the participants’ interactions,

I identified a set of strategies the participants developed while using the design patterns.

6.4.2.1 Customize Pattern Identification

In going through the patterns and trying to get familiar with the problems addressed

by them, the teams often tried to associate each pattern with a characteristic word.

Having done that, their dialogues would contain references to the patterns through the

words associated to them (e.g. ”We can decide on a fixed time for all the game and

during the game one can take maximum 2 breaks, and then we look into the solution for

the pause one [the pattern Resume collaboration]”). Interesting enough, these words

were not always consciously chosen from the list of keywords provided in the descrip-

tion of the patterns. However, with the exception of one case, all the words the teams

associated with the patterns already belonged to the list of keywords provided by the

cards. Two of the teams filtered the collection of patterns after going through it and

discussing it once and chose a subset of these patterns they considered fundamental

for their design process. Throughout their work, they referred mostly to these patterns.

6.4.2.2 Signal Patterns

Often times, while some of the members of a team were focusing on the design task,

the other(s) browsed the collection of patterns and tried to relate the team’s design de-

cisions to the solutions proposed by the patterns. When the team member(s) browsing

the patterns identified a useful pattern at a specific moment, s/he signalled this pattern

262

to the team. Some examples of such references are: ”Ok, there is a thing I read here

[My contribution]: for understanding who has placed a certain piece”, or ”Look at this,

this is interesting [points to pattern With or without collaboration] When you solve a

puzzle you should have a private area where you try out the pieces and when a piece

works well where it is placed, you just add it to the whole puzzle”. Signalling a pattern

would bring the pattern to the attention of the entire team for further discussions. In

a larger scale project, signalling a pattern could help in both:

• dividing the labour so that part of a team makes the rest of the team aware of

the issues already documented by the repository of patterns used;

• recommending patterns among collaborators in a recommender system fashion;

6.4.2.3 Search – Analyse - Apply

The most common strategy the teams were expected to choose consisted in: a) initiate

by writing down possible problems they would face, b) browse the collection of pat-

terns searching for those patterns documenting the problems they considered, c) point

to a pattern once found and read it, d) analyze the solutions proposed by the pattern

and assess which solution to apply. Contrary to the expectations, less than half of the

teams adopted this precise path of actions.

6.4.2.4 The Pattern Collection as a Checklist

Ten out of the 18 teams used the collection of patterns also as a checklist. They ini-

tiated their work after going through the patterns, but initially ignored them. After

reaching an idea for the application they were designing and sketching a draft of it,

they went through all the patterns, one by one, in order to make sure that they cov-

ered all the issues addressed by the collection. For each of the patterns, they analysed

whether they considered the issue addressed by the pattern or not. In the affirmative

case, they identified the solution they used or adapted. Such an example is: ”We used

this one with the updates [pattern Eyes wide open], and we sent notifications”. In the

negative case, they explained the reasons for which the pattern did not apply to their

263

design context. An example of such a reference is: ”The pause one [pattern With or

without collaboration], we skip it?/ Yes, we have included that in the chat feature”.

6.4.2.5 Patterns as Startup Tools

Four of the teams initiated their design processes by going through the patterns, one

by one, and identifying how each pattern could be applied in the context of their ap-

plication’s design. Then, when faced with a problem during their design process, the

teams tried to remember which of the patterns addressed that problem. Examples of

such references are: ”Yes, there was a pattern on that”, or ”There was one [pattern]

that was mentioning the saving because if we are 5 and we decide to save, we should be

able to do that”. Moreover, specific situations faced during the design process reminded

the teams of the patterns they browsed at the beginning of the process. As example,

consider ”Exactly, this was one of the issues in the patterns. If one clicks on the piece

and drags it, in that moment that piece is locked”.

6.4.2.6 Patterns as Source of Inspiration

A common behaviour of all the teams was to consult the patterns ever so often during

their design processes. This helped them explore their design options and take informed

decisions on the solutions to consider applying. Moreover, once going through the pat-

terns, the teams considered problems and design ideas they wouldn’t have considered

otherwise. The patterns inspired the teams in adding elements to their designs, and

some example of such situations are: ”Let’s add something about notifications [after

reading Eyes wide open]”, or ”How do they choose the collaborators? [pointing to the

pattern Choose your collaborators]”.

6.4.2.7 Mark the Use

The final result provided by each team was a sketch or a mockup of their overall design.

No strategy was suggested to the participants for marking the patterns used. How-

ever, there were three ways they decided to address this. The majority of the teams

264

grouped together all the patterns they used, putting them aside. Others have decided

to arrange the patterns in the order they used them throughout the process. A more

systematic approach was adopted by two of the teams which annotated their sketches

with the identifiers of the patterns they used, marking the use of each pattern in a

specific context of the application’s design.

6.4.2.8 What do you mean?

Patterns were often used as means of making oneself understood. The teams used the

patterns in order to explain each other concepts or to discuss open issues or misunder-

standings. For example, one of the most challenging concepts to grasp was reverting

changes, the teams making use of the Collaborative undo pattern to explain each other

the concept and the way it can be addressed in the context of the applications they

were designing. Similar results have been identified in [35].

6.4.2.9 Beyond Patterns

During their work with the patterns, some of the teams went beyond the definition

provided by the cards and pointed out examples of applications of the patterns in soft-

ware systems commonly used or identified associations between the issues addressed

by the patterns and concrete implementations of software applications. Moreover, one

of the teams identified possible relationships existing between patterns. For example,

they considered the patterns Track history of collaboration, Collaborative undo, and

Support versioning related to each other, even if they did not specify exactly in which

way these patterns are related. A similar association was identified among the patterns

Collaboration, always social, Annotate, and Customize collaboration.

6.5 Implications

The strategies described above trigger a set of implications to the use of design patterns

in collaborative design processes. Such a discussion addresses both:

265

• The design of future tools to support the use of patterns in collaborative processes.

Identifying possible strategies of use supports the definition and implementation

of scenarios of use for tools addressing pattern-driven design.

• Teaching design patterns to novices and supporting them in grasping the full

efficiency of the concept.

Customize Pattern Identification. A collection of patterns helps the communities

using it in creating a pattern-oriented vocabulary, customized to the community and

able to associate each pattern with a set of keywords. This is a simplification meant

to support members of the same community in better understanding each other and in

getting to more efficient communication processes. As observed throughout the study,

the situations in which the participants would refer to a pattern by its full name were

extremely rare, most of the times they either directly pointed to a pattern or used asso-

ciated keywords to refer to it. A tool able to support designers in working with design

patterns should consider such issues and allow its users to both reference a pattern by

a set of keywords and contribute to a vocabulary able to represent the collection of

patterns managed by the tool. Such a vocabulary would be a dynamic entity able to

evolve according to the community managing it.

Signal Patterns. A collection of design patterns is a repository of knowledge. Judg-

ing by the collections of patterns available today, such a repository could have sizes

larger than one individual can manage. In such cases, it is required that more than one

individual would browse the repository and mark in some way those patterns relevant

to the collaborative design process as a whole. The study showed that even when small

size collections (i.e. 15 patterns) are used, such division of labour seamlessly occurs

even in small size teams. The design of a pattern-oriented tool support should include

mechanisms of signalling patterns among collaborating designers. Flagging relevant

patterns is one way to do it. Recommending patterns based on one’s expertise is an-

other solution.

Search - Analyse - Apply. Searching in a pattern repository proved to be common.

Even more, the participants in the study perceived searching as the most common

266

action they performed. Surely, such a task can be more cumbersome and give the

impression it is more often performed. For larger repositories of inter-related patterns

especially, but also for more restricted collections, searching can be customized such

that different types of queries can be performed on the repository. A more detailed

discussion on such queries is presented in Section 5.6.1. Analysing a pattern in order

to understand how it can be applied proved to be very common. Surely, supporting

discussions among designers on the basis of the patterns they are using should be one

of the goals of any tool addressing this area. A specialized tool should also support

workflows such as: a) querying the pattern repository in search for patterns relevant

in a specific context, b) reasoning on the applicability of the results of the query, c)

reiterating the query based on the results of such reasoning, d) applying the solution

best suited.

The Pattern Collection as a Checklist. A collection of patterns basically describes

a set of fundamental problems in a specific domain and best practices to tackle such

problems. Having such a collection at hand allows the evaluation of design results on

the basis of the patterns. In other words, a collection of patterns can ensure that no

fundamental issue in the design domain targeted had been missed. Surely, the goal in

design is not making use of all such patterns, but ensuring that those relevant are used

and that those unused are not suited for that particular design. Results above point

out that novice designers view such checklists as powerful support tools for evaluating

their own work and make extensive use of them.

Patterns as Startup Tools. Getting familiar with a set of patterns targeting a do-

main prior to initiating a design process supports getting an overall picture with respect

to issues to be addressed further on in the process. This would particularly help novices

or designers joining an already working team. In the case described above, the ma-

jority of the participants were novices and those with more than 3 years experience

have never designed applications targeting synchronous collaboration. For them this

domain was a novelty and therefore they considered the patterns to be an efficient

introduction to it. Surely, larger repositories of patterns can only be browsed (and

not thoroughly studied) and it is for this reason that any tool supporting designers

working with patterns should provide its users with visualization techniques able to

267

allow browsing such structures.

Mark the Use. Documentation is often portrayed as a cumbersome yet needed de-

sign activity. Seen from this perspective, patterns can be used as documenting tools in

that design results can be enhanced with information on the patterns used throughout

the process. Marking the use of a pattern on the design result points to the detailed

documentation of the problem faced at that specific point in the design and at the

complete description of the solution applied. Surely, the efficiency of such types of

documentations needs to be studied over a longer period of time and involving de-

signers, but judging by the results presented above such a technique looks promising.

Participants who marked the patterns used on their design, found it much easier to go

back to previous steps of their work and understand the implications of past decisions

on the current context.

What do you mean? Collaborative design processes are often marked by misun-

derstandings among the collaborating designers. Such misunderstandings come from

various reasons, such as collaborators have different backgrounds and expertise [88], the

domain addressed by the design process is new to them, they do not make use of any

shared representation of knowledge [98], [13]. As the study described above indicates,

design patterns are forms of knowledge representation to which the participants often

referred, and which were the support of extensive negotiations and debate. Integrating

such support in collaborative design processes not only allows the representation of

shared knowledge, but it also makes it available to others in a form which allows the

creation of communication bridges among different collaborating designers.

Beyond Patterns. The application of a pattern might lead to the need of consider-

ing other related patterns. Designing a tool supporting the work with patterns should

consider such an issue and include a mechanism able to recommend related patterns

once a specific pattern has been used. Related patterns can be organized and managed

as pattern languages, a detailed discussion on that being provided in Chapter 5.

268

6.6 Threats to Validity

Even if they have been sporadically criticized for ”offering a poor basis for general-

ization” [34], case studies are powerful empirical methods used mainly for exploratory

investigations. Using them at their full potential implies defining their objectives, the

criteria for interpreting the findings, and their limitations [44], [102]. The latter con-

sist in exploring and identifying the validity of the design and the results of the case

study. One of the limitations of the case study presented above refers to not involving

a sufficiently large number of professional designers. The small percentage of experi-

enced designers (12% of the participants had more than 3 years experience in software

design) is not convincing enough for any generalization of the results to professional

designers. Therefore, all the implications the results trigger address mainly novice

software designers. The patterns provided to the designers addressed a particular area

– the design of synchronous collaborative applications. Moreover, the collection con-

tained a relatively small number of patterns – 15. However, as support for the findings

brought to light by the case study, the results presented in [35] identify several similar

points even if the collection of patterns used by the authors addressed web design and

contained 22 design patterns. In [35], Diaz et al. identified the ”Read one-by one”

browsing strategy and defined it as ”participants went through all the patterns as a

first strategy to identify candidates and look for ideas”. Also, the web patterns proved

to be intuitive and easily understood by the designers involved.

Some of the implications of the results described above are addressed through the

design of CACE [62], a tool to support ”pattern-based design of collaboration processes

following the Collaboration Engineering approach”. The tool is mainly addressing col-

laboration engineers and it supports the analysis of a collaborative task, the decompo-

sition of a collaborative process, the visualization and the validation of a collaboration

process flow. The goal of the tool however focuses on thinkLets - ”a codified packet of

facilitation skill that can be applied by practitioners to achieve predictable, repeatable

patterns of collaboration, such as divergence or convergence”[27]. However, as opposed

to thinkLets, design patterns are design tools meant for externalizing and sharing best

practices in various areas of design.

269

Strong conclusions with respect to generalizations of the use of design patterns in

collaborative design processes ask for further empirical work. Nevertheless, this work

aims at bringing more knowledge to the matter and provides a starting point for further

understanding and investigation.

—

In this chapter, I described a case study designed to bring some understanding on

the ways design patterns are used in collaborative contexts. Having to complete a de-

sign task collaboratively, teams of novice designers were provided with a collection of

design patterns and were asked to use the collection through the design process. The

chapter discusses the results obtain from several data sources including the transcripts

of the conversations the participants had, the questionnaire each participant filled in

at the end of each workshop, the notes takes by the facilitator present during the work-

shops, and the design results of the teams processes.

The teams made use of the patterns even if not all the teams considered them

fundamental to their work. They found the patterns’ representation accessible and

somehow fun to use which, in addition to the team work, motivated them to get engaged

in the whole process. According to their feedback, searching was the most commonly

performed action with respect to the patterns. In reality, they mostly discussed the

patterns, most of the knowledge they’ve build around them coming from exchanging

ideas and communicating. During the participants’ working with the patterns, some

common strategies they’ve developed came to light. As also described in [32], the

patterns were seen as checklists by some of the teams, being walked-through to evaluate

whether they were all considered. Other teams decided to mark the use of the patterns

on their design results and this proved to be an efficient way to document their design

decisions. The teams turned to the patterns when in doubt, or when searching for

ideas. The patterns helped the teams validate their decisions or get more confidence

in the path they were following. Some of the teams were somehow selective in terms of

the patterns, filtering those they considered fundamental and only using those. Others,

on the other hand, were completely driven by the patterns and made extensive use of

them.

270

Chapter 7

Conclusions: Summary,
Contributions, Future Directions

The goal of this thesis has been twofold. On one hand, I aimed at bringing methodolog-

ical support to design pattern research in answer to the scarce landscape of methods

and techniques for both identifying design patterns in interaction design and generating

pattern languages based on existing collections of patterns. I focused mainly on one

area of interaction design, i.e. the design of applications addressing synchronous collab-

oration, and I targeted four domains in the area, i.e. drawing, text editing, searching,

and game solving. On the other hand, I was interested in better understanding how

design patterns are used and what is the impact of using them in collaborative de-

sign processes. I first focused on the collaborative processes involving novice designers,

aiming to correlate the findings from this initial study with those obtained after inves-

tigating similar processes involving experienced users of patterns.

7.1 Summary of the Thesis

Related work and background. I started by framing the landscape I am looking

into and this comprises three major areas: CSCW, design pattern research, and cre-

ativity in design. CSCW helped me understand what synchronous collaboration refers

to, how the concept evolved over time and how it differs from other collaboration

modes. Also, I looked into the documented challenges faced in the design of software

applications which support synchronous collaboration, classifying these challenges into

271

several categories, such as technology supporting CSCW, coordination and conflict,

communication, notifications and awareness, interruptions, the social side of CSCW,

annotations, and roles in CSCW.

My interest in design pattern research led me to first investigate how the concept

of design pattern appeared and how it evolved. Getting aware of the existence of mul-

tiple design pattern collections, I proceeded to reviewing these collections, trying to

understand what design areas they address and how they are defined and described.

The results of this review are synthesised and classified, nine areas being identified as

associated with several collections of design patterns. Moreover, several templates for

defining design patterns are used across collections, a synthesis of these templates and

where they are used is described in Section 2.2.3. Going through the available collec-

tions and consulting literature in the matter, I searched for methodological support in

identifying patterns only to discover that methods and techniques addressing such a

goal are scarce and somewhat lacking the possibility of being generalized.

The concept of design pattern is more than often related to the concept of pattern

language, since design patterns are never described independently from each other. Re-

viewing the literature in the matter, I addressed pattern languages, pointing out their

documented advantages over plain collections of patterns. Similarly to the identifica-

tion of design patterns, the methodological landscape with respect to pattern languages

proved to be scarce. Pattern authors describe pattern languages without any indication

to the way such languages are generated. Surely, experience plays an important role

in first identifying patterns and then finding relationships between them, connecting

them in a pattern language structure. However, such generation processes can not be

replicated or even evaluated in the absence of a method describing them.

Lastly, having in mind the second goal of this thesis (i.e. understanding the be-

haviour around the collaborative use of design patterns), I went through some doc-

umented uses of patterns. The results of this review pointed out that patterns are

specifically useful in teaching, design and more particularly participatory design, sup-

porting the involvement of users in design processes. Even if these documented studies

brought to light specific behavioural features observed during the use of patterns, many

272

questions have been left unanswered or have not even been asked.

Much of the work described in this thesis revolves around interaction design. There-

fore, I was particularly interested in models and creative techniques to support inter-

action design processes. I needed such models and techniques as tools for structuring

and organizing what is left to be described.

—

Synchronous Collaborative Processes and Tools. I am particularly interested

in design patterns for the design of applications which support synchronous collabora-

tion. It is for this reason that I dedicate the third chapter to the domains of synchronous

collaboration I am addressing throughout this thesis. I am mainly referring to draw-

ing, text editing, searching, and game solving, providing for each of these domains the

motivation for choosing it and the detailed descriptions of the tools existing out there

which support users working together in each of these domains.

—

Identifying patterns. I further asked how are patterns identified in interaction

design and I defined a structured method for such a purpose, making use of the limited

results of the literature review as well. The method is defined as a two-step process

which uses both a) the results of a series of workshops organized with designers and

b) the results of the analysis of a set of applications addressing the area of the pattern

mining. Both sets of results are considered in identifying the most recurring design

issues in such design processes. These recurring issues are further documented in the

form of design patterns, being validated by similar patterns described in the literature.

To summarize, I identified 15 patterns after running 9 workshops with 50 participants

and analysing 20 software applications.

—

273

Relating patterns. Next, I defined a method for identifying relationships between

the patterns in an existing collection. The main idea behind refers to representing the

domain the patterns address in the form of an ontology, identifying the set of con-

cepts defining it and the relationships between these (less abstract) concepts. Such a

representation further triggers the generation of a pattern language structure. In my

attempt of applying the method, I realized that much of the process is subject to au-

tomation. Therefore, I proceeded to the design and the implementation of a supporting

tool able to automatically apply the method and output as result a pattern language.

This tool also allows querying the pattern language structure, resembling a search en-

gine only that a search engine localized to the repository of patterns represented by

the language. In testing the tool I used two collections of patterns: the one described

in Chapter 4 and the collection proposed by Jenifer Tidwell addressing web design [103].

—

Evaluating Pattern. The results of the case study described in Chapter 6 provide

some insight into the matter of using design patterns. The study aimed at measuring

how understandable patterns are for novice designers and then, investigate how they

use patterns in collaborative design processes. 18 teams participated in the study,

using the collection of patterns described in Chapter 4. The description of the results

focuses on all the data sources used:

• A facilitator observed all the teams and took notes of their interactions. Direct

observation brought to light several issues to be further explored, such as the

possibility of identifying common strategies participants used in working with

the patterns.

• Each participant provided his/her feedback through a questionnaire. The results

from the questionnaires show that the patterns were easy to understand and that

the participants perceived searching for patterns as the most common action they

performed.

• All the conversations of the teams were recorded, transcribed and further coded

according to a defined coding scheme. The coding results come to point out that

274

communication was of major importance in the processes recorded and also al-

lowed the identification of specific action patterns in the participants’ behaviour

with respect to the use of the design patterns.

In the sections that follow, I discuss the contributions of this work and outline fu-

ture research directions.

7.2 Contributions and Discussion

This work primarily impacts design pattern research at a methodological, theoretical,

practical and empirical level. Secondarily, the findings described throughout the thesis

inform behavioural research and human-computer interaction. Table 7.1 summarizes

these contributions.

This work aims at describing the overall landscape in design pattern research

through reviews of the available collections of design patterns, of the template defi-

nitions used for describing patterns, and of previous work in identifying and evaluating

design patterns (Section 2.2). In addition, being particularly interested in patterns for

the design of synchronous applications, I focused on the CSCW literature addressing

synchronous collaboration and specifically on the documented challenges and concerns

in the design of applications to support such collaboration mode. Multiple domains

are subject to synchronous collaboration, those of interest to this work being drawing,

searching, text editing, and game solving. Even if most of the tools targeting collabo-

rative processes are designed to support asynchronous modes of collaboration, present

efforts have acknowledged the need for applications addressing users working together

in the same time (i.e. synchronously). A brief review of such applications is described

in Chapter 3.

There are four questions this thesis addresses and the contributions brought to each

question’s area are discussed below:

275

Ch. Contribution Type

2
Review of documented challenges in designing syn-
chronous applications

theoretical

2 Review of available collections of design patterns theoretical

2
Review of previous work in identifying and evaluating
patterns

theoretical

3
Review of tools supporting synchronous collaboration in
drawing, searching, text editing, and game solving

theoretical

4
Development and application of a method for identifying
design pattern for interaction design

methodological,
empirical

4
A collection of patterns for the design of synchronous
collaboration

theoretical

5
Development and application of a method for pattern
language generation

methodological,
practical

5
Development of a proof-of-concept tool able to support
both the method’s application and the resulting pattern
language’s querying

practical

5
Testing the tool using as input two available collections
of patterns

practical

6
Investigation of the impact of using design patterns in
collaborative design involving novices

empirical

6
Identification of behavioural strategies developed by
novices while using patterns collaboratively

empirical

6
Discussion of the implications of the evaluation and of
its results

theoretical,
practical

Table 7.1: Contributions brought by this thesis

276

• How to identify design patterns for interaction design?

Methods for identifying design patterns in interaction design are classified as in-

ductive and deductive methods [15]. Whether moving from generalizations to

specifics or vice-versa, their goal is to identify recurring design problems and

document their proven solutions. The literature in the matter points to some

examples of such methods, most of them however based on the experience of

the designers involved. A systematic pattern development cycle targeting the

design of e-learning systems is described in [83] and makes use of reverse en-

gineering techniques. Since no generalization of this method is described and

considering the fact that interaction design does not always allow the application

of reverse engineering techniques, the present efforts address the definition of a

design pattern mining method to be used for interaction design processes. Chap-

ter 4 describes such a method defined by the correlation of results collected from

both design workshops involving designers and from the analysis of existing ap-

plications used in the area of the pattern mining. Surely, the evaluation of such a

method needs a large number of application cycles. This thesis illustrates some of

them, the application of the pattern mining method leading to the identification

of 15 design patterns for the design of synchronous applications, documented in

4.4. These patterns are not entirely novel, but they are validated by and help

validating similar work done in this area [94].

• How to generate pattern languages from collections of design pattern?

The advantages of a pattern language over a collection of patterns is largely ad-

mitted, pattern authors structuring their patterns in pattern languages [68], [90].

Even so, pattern authors rarely describe the process by which they reach the

languages, basing themselves mostly on experience. Classifications of possible re-

lationships between patterns have been described in [25] and [105], but very little

work has been done in actually framing a method which would support relating

patterns based on such relationships. To answer this gap, chapter 5 illustrates

a method for relating design patterns comprised in a collection for generating a

pattern language structure. The application of the pattern language generation

method uses two test cases - the collection of patterns described in Chapter 4

277

and the collection proposed by Jenifer Tidwell addressing web design [103].

• What tool support is needed for the application of the methods described above?

My work also comprises the implementation of a prototypical tool designed to

support both pattern writers interested in automatically generating a pattern

language out of the collection of patterns they wrote and pattern users. The

tool follows the pattern language generation method described in Chapter 5 out-

putting a pattern language in a format interpretable by the Medusa 5.2 graph

visualization tool. Moreover, the tool allows the execution of six types of queries,

acting as a search engine on the repository of patterns represented by the lan-

guage.

• How are design patterns used in collaborative design processes?, How do designers

perceive the use of design patterns in collaborative design processes?

Previous findings with respect to the ways design patterns are used point out

things such as patterns are useful tools for teaching design principles [23], pat-

terns help designers get familiar to a new domain [29], a collection of patterns

can be used as a checklist [31], or browsed in a read one-by-one manner [35]. The

aim of this work is to build on these findings, the case study described in Chapter

6 contributing to a better understanding of the way patterns are used by novice

designers in collaborative contexts. As a first general observation, the patterns

pose no difficulty to the participants in the study in terms of understandability,

validating that the simplified format chosen to present the patterns provided just

enough information. When working with patterns and especially when novice

designers are involved, less (information) is more. Also because results from the

case study showed that reading a pattern completely was rare, most of the partic-

ipants’ understanding of the patterns coming from them discussing the patterns

together and reading fragments of what the description of each pattern provided.

The participants considered searching as the most recurring action they per-

formed. This, however, comes to contradict the results drawn from the actual

transcripts which point out that communication had a far more important role

278

in their processes. Now, how is this relevant? On one hand, this points out a

gap between what the participants perceived they were doing and what they ac-

tually did. Getting a better understanding of the strategies they used in working

with the patterns definitely needs a closer look at the actual process and less

attention to the feedback from the participants. On the other hand, the feedback

from the participants indicates that searching is probably the most cumbersome

action when using patterns since it was perceived as the most often performed.

This leads to the belief that efficiently searching in a repository of patterns should

be a main consideration for any tool designed to support pattern-oriented design.

Results also showed that once a pattern is referenced, in most cases it is further

discussed. Brought to the attention of the entire team, the pattern becomes an

object used for negotiation, common understanding, debate. It supports collabo-

rating designers in co-creating a shared representation of a common ground to be

used further on in their process. Also, encouraging enough is the indication that

generating ideas based on the use of design patterns leads to generating more

ideas relevant to the design process. Limited as it is, this is an indication that

patterns support brainstorming processes, allowing their users to come up with

new ideas on the basis of the issues addressed by the patterns.

Several strategies were brought to light by abstracting from the set of data sources

gathered during the study. These strategies are a first attempt to model and

describe the behaviour of novices while collaboratively using design patterns.

Surely, more empirical studies are needed for deepening such aspects. However,

the results of this study indicate several valuable findings, further pointing to new

questions to ask and new paths to follow. Some of the implications brought by

the current results address both the design of tools to support the use of patterns

and teaching processes involving patterns.

279

7.3 Future Research Directions

Several aspects presented in this thesis are pointing to future research direction worth

exploring. First, the methodological contributions require more empirical evaluation.

Applying the pattern mining method in other areas with an eye on the efficiency and

the validity of the obtained results is one of those directions. The method is, of course,

subject to evolution. It might be improved or enhanced upon being further applied.

Moreover, replicating the process of applying it in the area of synchronous collaborative

design choosing different domains of collaboration would enhance the confidence in the

method’s efficiency and power and would probably lead to the identification of other

patterns as well.

Similar observations hold true for the second method described by this work. Eval-

uating the method using as input other available collections of design patterns is a

future goal. In parallel to such evaluations, the supporting tool would need to go

through other iterations since any modification of the method asks for the tool to be

updated accordingly. Efforts are required for the design of a more intuitive GUI, as

well. Such designs ask for the involvement of users interested in providing feedback

on the tool’s efficiency and intuitiveness. At this point, the tool is meant as a proof

of concept; it is, however, suited for other contexts of use as depicted in the scenarios

describing its possible uses.

A critical limitation of the evaluation of the use of design patterns is the exter-

nal validity of the laboratories studies. The design task participants were confronted

with was constructed to simulate real-world design processes. Exploring the questions

addressed by the case study using this artificial design task pointed out some interest-

ing and valuable findings. However, it remains somewhat unclear how these questions

would be answered in a real work environment, involving professional designers. In the

field, professional designers base their design decisions on experience and intuition and

might think of the patterns as best practices they are familiar with and apply even

at an unconscious level (without specifically pointing out they do so). The questions

would therefore translate into:

• How does experience impact the use of design patterns? Are experienced design-

280

ers more prone to using patterns without making this explicit in any way?

• Are patterns more suited to be used in an organizational context? What benefits

would they bring when used in such a context?

• What feedback would experienced designers provide when using design patterns

in a collaborative context? Would their process be helped in any way? What

kind of disadvantages would the enforced use of patterns bring?

Observing both novice and experienced designers would surely require different re-

search methods. Investigating the behaviour of novices would require observing them

in action, hence the workshops approach seems to be better suited. Experienced design-

ers, having a vaster experience, are able to reflect on their own actions and behaviour.

Therefore, interviews could prove more efficient in their case.

I described several implications of the results of the evaluation case study, each of

these implications needing further investigation. As few hints on such investigations,

consider:

• Identifying the efficiency of design patterns acting as documentation tools.

• Analysing the efficiency of using a collection of patterns for evaluating design

results.

• Informing design processes of the usefulness of design patterns in training design-

ers joining an already formed team or novice designers.

281

Glossary

association function function which directly maps a design issue to a set of key-

words, hence implicitly to each keyword in the set.

collection group of design patterns without the specification of any relationships be-

tween these patterns.

CSCW Computer-Supported Cooperative Work.

design issue design idea, problem, concern, solution found useful, or/and any issue

relevant to the design of the application.

design pattern way to document proven solutions to recurring design problems.

guideline structure which helps capturing design knowledge and supports the estab-

lishment of a clear design process.

HCI Human-Computer Interaction.

mockups very early prototypes made of cardboard or otherwise low-fidelity materials.

pattern language structure representing a collection of design patterns together with

all the relationships between them.

problem design task provided during the workshops.

scenario-based design technique of using scenarios during design processes.

sketches tools for capturing preliminary observations and ideas.

282

Glossary

synchronous collaboration collaboration mode which requires that geographically

distributed or co-located work group members work together - supported by

software - in developing and refining one commonly shared resource in the same

time.

task description details on a problem for which a solution is needed.

use case description of the dialogue between the user and the system, modelling the

interaction provided by the system.

283

References

[1] http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html. 168

[2] http://quince.infragistics.com/html/home.aspx. 38

[3] http://tagsea.sourceforge.net/. 28

[4] Atwood M. E. Abraham, G. Patterns or claims: do they help in communicating

design advice? Proceedings of OZCHI ’09, 2009. 56

[5] Bailey B. P. Adamczyk, P. D. If not now, when?: the effects of interruption at

different moments within task execution. Proceedings of the SIGCHI conference

on Human factors in computing systems (CHI ’04), 2004. 24

[6] Nash J. C. Noel S. Adler, A. Evaluating and implementing a collaborative office

document system. Interact. Comput, 2006. xv, 2, 85, 86, 87, 89

[7] C. Alexander. The Oregon Experiments. Oxford University Press, 1975. 4, 30

[8] C. Alexander. The Timeless Way of Building. Oxford University Press, 1979. 5,

30, 33

[9] Ishikawa S. Silverstein M. Alexander, C. A pattern language: Towns, buildings,

construction. New York: Oxford University Press, 1977. 4, 30, 49, 51, 56, 166

[10] T.M. Amabile. The Social Psychology of Creativity. Springer-Verlag, New York,

1983. 59

[11] Ringel Morris M. Amershi, S. Cosearch: a system for co-located collaborative

web search. Proceeding of CHI ’08, 2010. xiv, 73, 75, 76

284

REFERENCES

[12] Ringel Morris M. Moraveji N. Balakrishnan R. Toyama K. Amershi, S. Multiple

mouse text entry for single-display groupware. Proceedings of ACM conference

on Computer supported cooperative work (CSCW ’10), 2010. 20

[13] E. G. Arias and G. Fischer. Boundary objects: their role in articulating the task

at hand and making information relevant to it. Proceeding of International ICSC

Symposium on Interactive and Collaborative Computing (ICC 2000), 2000. 268

[14] Fussell S. R. Hudson S. E. Avrahami, D. Im waiting: timing and responsiveness in

semi-synchronous communication. Proceeding of ACM conference on Computer

supported cooperative work (CSCW ’08), 2008. 23

[15] Rusman E. Poggi C. Baggetun, R. Design patterns for collaborative learning:

From practice to theory and back. Proceedings of International Conference on

Educational Multimedia, Hypermedia and Telecommunications, 2004. 53, 277

[16] L. Bannon. Cscw: Four characters in search for a context. 1989. 14, 17, 25

[17] N. Bjørn-Andersen Bannon, L. and B. Due-Thomsen. Computer support for co-

operative work: An appraisal and critique. EURINFO ‘88, Information Systems

for Organizational Effectiveness, 1988. 14

[18] M. Baskinger. Pencils before pixels: a primer in hand-generated sketching. In-

teractions, 2008. 62

[19] Heymann S.-Jacomy M. Bastian, M. Gephi: An open source software for explor-

ing and manipulating networks. International AAAI Conference on Weblogs and

Social Media, 2009. 169

[20] D. Tomasini M. Zancanaro G. Esposito P. Venuti A. Ben Sasson E. Gal Battoc-

chi, F. Pianesi and P. L. Weiss. Collaborative puzzle game: a tabletop interactive

game for fostering collaboration in children with autism spectrum disorders. Pro-

ceedings of the International Conference on Interactive Tabletops and Surfaces

(ITS ’09), 2009. xv, 91, 93, 95

[21] D. Beyer. Ccvisu: Automatic visual software decomposition. ICSE’08, 2008. 170

285

REFERENCES

[22] J. Borchers. A Pattern Approach to Interaction Design. John Wiley Sons, Inc.,

2001. 5, 31, 42, 51, 52, 56, 102, 166, 167, 168, 170

[23] J. Borchers. Teaching hci design patterns: Experience from two university

courses. patterns in practice: A workshop for ui designers. CHI2002, 2002. 54,

278

[24] Civica R. Levialdi S. Orso L. Panizzi E. Trinchese R. Bottoni, P. Madcow: a

multimedia digital annotation system. Proceedings of the working conference on

Advanced visual interfaces (AVI ’04), 2004. 26

[25] Guerra E. de Lara J. Bottoni, P. A language-independent and formal approach to

pattern-based modelling with support for composition and analysis. Information

and Software Technology, 2010. 57, 277

[26] Star S. L. Bowers, G. Sorting things out: Classification and its consequences.

1999. 5

[27] Vreede G. Nunamaker J. Briggs, R. O. Collaboration engineering with thinklets

to pursue sustained success with group support systems. Journal of Management

Information Systems, 2007. 269

[28] J.M. Carroll. Scenario-Based Design: Envisioning Work and Technology in Sys-

tem Development. John Wiley Sons, Inc., 1995. 61, 103, 104, 211

[29] Hong J. I. Lin J. Prabaker M. K. Landay J. A. Liu A. L. Chung, E.S. Development

and evaluation of emerging design patterns for ubiquitous computing. Proceedings

of DIS ’04, 2004. 42, 55, 278

[30] Malone E. Crumlish, C. Designing Social Interfaces. O’Reilly Media, Inc., 2009.

5, 40, 51, 142, 150

[31] Finlay J. Dearden, A. Pattern languages in hci: A critical review. Human

Computer Interaction Journal, 2006. 206, 278

[32] Finlay J. Allgar E. Mcmanus B. Dearden, A. Using pattern languages in partici-

patory design. Proceedings of the Participatory Design Conference (PDC 2002),

2002. 55, 270

286

REFERENCES

[33] Herbsleb J. D. Dekel, U. Pushing relevant artifact annotations in collaborative

software development. Proceedings of ACM conference on Computer supported

cooperative work (CSCW ’08), 2008. 26, 28

[34] S. Easterbrook S. M. Dewayne E. Perry, Elliott Sim. Case studies for software

engineers. Proceedings of the 26th International Conference on Software Engi-

neering (ICSE ’04), 2004. 269

[35] Rosson M.B. Aedo I. Carroll J.M. Diaz, P. Web design patterns: Investigating

user goals and browsing strategies. Proceedings of the International Symposium

on End-User Development (IS-EUD ’09), 2009. 44, 206, 265, 269, 278

[36] Pandolfo A. Bender W. DiMicco, J. M. Influencing group participation with a

shared display. Proceedings of ACM conference on Computer supported coopera-

tive work (CSCW ’04), 2004. 20

[37] Zhao Y. Peng T. Dong, J. A review of design pattern mining techniques. In-

ternational Journal of Software Engineering and Knowledge Engineering, 2009.

53

[38] Moore R. J. Ducheneaut, N. The social side of gaming: a study of interaction

patterns in a massively multiplayer online game. Proceedings of ACM conference

on Computer supported cooperative work (CSCW ’04), 2004. 26

[39] C. A. et al. Ellis. Groupware: some issues and experiences. Commun. ACM,

1991. 60

[40] Golovchinsky et al. Cerchiamo: A collaborative exploratory search tool. Pro-

ceedings of CSCW’08, 2008. 81

[41] G. Fischer. Social creativity, symmetry of ignorance and meta-design. Knowledge-

Based Systems Journal, 2000. 5

[42] G. Fischer. Social creativity: turning barriers into opportunities for collaborative

design. Proceedings of PDC’04, 2004. 32, 60

287

REFERENCES

[43] Ostwald J. Fischer, G. Knowledge communication in design communities. Bar-

riers and Biases in Computer-Mediated Knowledge Communication, 2005. 2, 60,

61

[44] B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative

Inquiry, 2006. 269

[45] L. Bernareggi C. Fogli, D. Parasiliti Provenza. A design pattern language for

accessible web sites. Proceedings of AVI 2010, 2010. 5, 43, 170

[46] R. Helm R. Johnson Vlissides J. Gamma, E. Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. 31, 34,

51, 57

[47] I. Graham. A Pattern Language of Web Usability. Addison-Wesley, 2003. 41, 51

[48] S. T. Gregory. On prototypes vs. mockups. SIGSOFT Softw. Eng. Notes, 1984.

63

[49] I. Greif. Remarks in panel discussion on “cscw: What does it mean?”. CSCW’88,

1988. 13

[50] J. Grudin. Groupware and social dynamics: Eight challenges for developers.

Communications of the ACM, 1994. xiv, 14, 15, 17

[51] Graham T. C. N. Wolfe C. Wong N. de Alwis B. Gutwin, C. Gone but not

forgotten: designing for disconnection in synchronous groupware. Proceedings of

ACM conference on Computer supported cooperative work (CSCW ’10), 2010. 25

[52] Hoffmann M. Jahnke I. Kienle A. Kunau G. Loser K. Menold N. Herrmann, T.

Concepts for usable patterns of groupware applications. Proceedings of the ACM

SIGGROUP conference on Supporting group work (GROUP ’03), 2003. 206

[53] Jahnke I. Loser K. Herrmann, T. The role concept as a basis for designing com-

munity systems. Proceedings of the ACM SIGGROUP conference on Supporting

group work (GROUP ’03), 2004. 28

288

REFERENCES

[54] T. Herrmann. Support of collaborative creativity for co- located meetings, from

cscw to web 2.0. European Developments in Collaborative Design Computer Sup-

ported Cooperative Work, 2010. 18

[55] Bork P. Hooper, S.D. Medusa: a simple tool for interaction graph analysis.

Bioinformatics Applications Note, 2005. 169

[56] Frøkjær E. Hornbæk, K. Reading patterns and usability in visualizations of

electronic documents. ACM Trans. Comput.-Hum. Interact., 2003. 31, 52

[57] Papadopoulou S. Oster G. Norrie M. C. Ignat, C. L. Providing awareness in

multi-synchronous collaboration without compromising privacy. Proceedings of

the ACM conference on Computer supported cooperative work (CSCW ’08), 2008.

24

[58] Horvitz E. Iqbal, S. T. Notifications and awareness: a field study of alert usage

and preferences. Proceedings of the ACM conference on Computer supported

cooperative work (CSCW ’10), 2010. 24

[59] Whittaker S. Kalnikaite, V. Social summarization: does social feedback improve

access to speech data? Proceedings of the ACM conference on Computer sup-

ported cooperative work (CSCW ’08), 2008. 25

[60] Kraut R. E. Kittur, A. Beyond wikipedia: coordination and conflict in online

production groups. Proceedings of the ACM conference on Computer supported

cooperative work (CSCW ’10), 2010. 21, 23

[61] Perry J. Squire K. Jan M.F. Steinkuehler C. Klopfer, E. Mystery at the museum:

a collaborative game for museum education. Proceedings of CSCL ’05, 2005. xv,

93, 94

[62] De Vreede G. J. Briggs R. O. Kolfschoten, G. L. Computer aided pattern-based

collaboration process design: a computer aided collaboration engineering tool.

13th international conference on Groupware: design implementation, and use

(CRIWG’07), 2007. 269

289

REFERENCES

[63] Lukosch S. Verbraeck A. Valentin E. de Vreedea G.J. Kolfschoten, G. Cognitive

learning efficiency through the use of design patterns in teaching. Computers and

Education, 2010. 54

[64] Hitz M. Kruschitz, C. Human-computer interaction design patterns: Structure,

methods, and tools. International Journal on Advances in Software, 2010. 5, 44

[65] Myers B. A. Landay, J. A. Sketching interfaces: Toward more human interface

design. Computer, 2001. 63

[66] Kuhail M. Lauesen, S. Task descriptions versus use cases. Springer Requirements

Eng, 2011. 4

[67] Schümmer T. Lukosch, S. Communicating design knowledge with groupware

technology patterns: The case of shared object management. Proceedings of the

CRIWG 2004, 2004. 39

[68] Schümmer T. Lukosch, S. The role of roles in computer-mediated interaction.

13th European Conference on Pattern Languages of Programs, 2008. 28, 39, 160,

277

[69] Memisoglu M. Engelke T. Streitz N. Magerkurth, C. Towards the next generation

of tabletop gaming experiences. Proceedings of the GI ’04, 2004. 91, 97

[70] Johnston L. J. Mahemoff, M. J. Pattern languages of usability: An investigation

of alternative approaches. Proceedings of the APCHI 98, 1998. 41, 170

[71] Baker A. Dempsey M. Navarro E. van der Hoek A. Mangano, N. Software design

sketching with calico. Proceedings of the IEEE/ACM international conference on

Automated software engineering (ASE ’10), 2010. 59, 62

[72] Avouris N. Kahrimanis G. Margaritis, M. On supporting users’ reflection during

small groups synchronous collaboration. Proceedings of the 12th International

Workshop on Groupware, CRIWG 2006, 2006. 3, 68, 69

[73] Borges M.R.S. Araujo R.M. Meire, A.P. Supporting collaborative drawing with

the mask versioning mechanism. Proceedings of 9th International Workshop on

Groupware, 2003. xiv, 70, 72

290

REFERENCES

[74] Neu D. Shi Q. Menkov, V. Antworld: A collaborative web search tool. Proceedings

of the Workshop on Distributed Communities on the Web (DCW ’00), 2000. xv,

83, 84

[75] Doble J. Meszaros, G. A pattern language for pattern writing. Proceedings of

International Conference on Pattern languages of program design (1997), 1997.

131, 164

[76] Weir C. Noble, J. Small Memory Software: Patterns for systems with limited

memory (Software Patterns Series). Addison-Wesley Professional, 2000. 158

[77] A. Osborn. Applied Imagination: Principles and Procedures of Creative Problem

Solving. New York, New York: Charles Scribner’s Sons, 1953. 59

[78] O’Brien E. Ringel Morris M. Winograd T. Piper, A.M. Sides: a cooperative

tabletop computer game for social skills development. Proceedings of CSCW ’06,

2006. xv, 95, 96

[79] Winckler M. Limbourg Q. Pontico, F. Organizing user interface patterns for

e-government applications. Proc. Engineering Interactive Systems (EIS 2008),

2008. 40, 52

[80] M.D. Qian. Collaborative design with netdraw. Proceedings of Computer Aided

Architectural Design Futures ’99, 1999. xiv, 68, 69, 71

[81] T.M.H. Reenskaug. The model-view-controller (mvc) - its past and present.

JavaZONE, Oslo, 2003. 31

[82] Mackay B. Watters C. R. Inkpen K. M. Reilly, D. F. Small details: using one

device to navigate together. Proceedings of the ACM conference on Computer

supported cooperative work (CSCW ’08), 2008. 20

[83] Georgiakakis P. Dimitriadis Y. Retalis, S. Eliciting design patterns for e-learning

systems. Computer Science Education, 2006. 53, 277

[84] Horvitz E. Ringel Morris, M. Searchtogether: an interface for collaborative web

search. Proceedings of UIST ’07, 2007. xiv, 2, 73, 75, 76, 79, 80

291

REFERENCES

[85] Lombardo J. Wigdor D. Ringel Morris, M. Wesearch: supporting collaborative

search and sensemaking on a tabletop display. Proceedings of the ACM conference

on Computer supported cooperative work (CSCW ’10), 2010. xv, 2, 83, 85

[86] Morris D. Winograd T. Ringel Morris, M. Individual audio channels with single

display groupware: effects on communication and task strategy. Proceedings of

the ACM conference on Computer supported cooperative work (CSCW ’04), 2004.

20, 21

[87] Ryall K. Shen C. Forlines C. Vernier F. Ringel Morris, M. Beyond ”social pro-

tocols”: multi-user coordination policies for co-located groupware. Proceedings

of the ACM conference on Computer supported cooperative work (CSCW ’04),

2004. 22

[88] H. Rittel. Second-generation design methods. Developments in Design Method-

ology, 1984. 268

[89] Prabaker M. K Abowd G.D. Landay J. A. Saponas, T.S. The impact of pre-

patterns on the design of digital home applications. Proceedings of DIS ’06,

2006. 55

[90] Jachna T. Schadewitz, N. Comparing inductive and deductive methodologies for

design patterns identification and articulation. International Design Research

Conference, 2007. 5, 54, 277

[91] N. Schadewitz. Design patterns for cross-cultural collaboration. International

Journal of Design, 2009. 39

[92] D. Schön. The reflective practitioner: How professionals think in action. NY:

Basic Books, 1983. 62

[93] D. Schuler. A pattern language for living communication. Proceedings of PDC’02,

2002. 40, 51, 54

[94] Lukosch S. Schummer, T. Patterns for Computer-Mediated Interaction. John

Wiley Sons, Ltd, 2007. xiv, 5, 38, 45, 46, 51, 133, 135, 137, 140, 142, 146, 148,

150, 152, 277

292

REFERENCES

[95] Grant K. D. Mandryk R. L. Scott, S. D. System guidelines for co-located, col-

laborative work on a tabletop display. Proceedings ECSCW’03, 2003. 19

[96] A. Sellen and R. Harper. The Myth of the Paperless Offices. MIT Press, MA,

2002. 62

[97] Marchionini G. Kelly D. Shah, C. Learning design principles for a collaborative

information seeking system. Proceedings of CHI ’09, 2009. xiv, 2, 76, 78

[98] B. Shneiderman. Creating creativity: user interfaces for supporting innovation.

ACM Trans. Comput.-Hum. Interact, 2000. 60, 268

[99] B. Shneiderman. Creativity support tools: Accelerating discovery and innovation.

CACM, 2007. 5

[100] S. L. Star. The structure of ill-structured solutions: Boundary objects and het-

erogeneous distributed problem solving. Distributed Artificial Intelligence, 1990.

5

[101] J. Surowiecki. Wisdom of Crowds: Why the Many Are Smarter Than the Few

and How Collective Wisdom Shapes Business, Economies, Societies and Nations.

Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collec-

tive Wisdom Shapes Business, Economies, Societies and Nations, 2004. 76

[102] W. Tellis. Introduction to case study. The Qualitative Report, 1997. 269

[103] J. Tidwell. Designing Interfaces: Patterns for Effective Interaction Design.

O’Reilly Media, 2005. 5, 36, 51, 197, 274, 278

[104] S. G. Turner. A case study using scenario-based design tools and techniques in

the formative evaluation stage of instructional design: Prototype evaluation and

redesign of a web-enhanced course interface. Ph.D. Thesis, 1998. 61, 62

[105] van der Veer G. C. van Welie, M. Pattern languages in interaction design: Struc-

ture and organization. Proceedings of Interact’03, 2003. 51, 57, 277

[106] Sapp C. Mathews M. Verplank, B. A course on controllers. 2001. 62

293

REFERENCES

[107] Heylen D. Nijholt A. Vyas, D. and G. van der Veer. Collaborative practices that

support creativity in design. Proc. of ECSCW ’09, 2009. 62

[108] G. Wallas. The Art of Thought. New York, Harcourt, Brace and Company, 1926.

59, 104

[109] O’Neill E. Warr, A. Understanding design as a social creative process. Proceedings

of the 5th conference on Creativity cognition (C C ’05), 2005. 63

[110] Gennari J. H. Weng, C. Asynchronous collaborative writing through annotations.

Proceedings of the 2004 ACM conference on CSCW’04, 2004. 26

[111] Mor Y. Winters, N. Dealing with abstraction: Case study generalization as a

method for eliciting design patterns. Computers in Human Behavior, 2009. 53,

54

[112] L. Young-Jin. Vissearch: a collaborative web searching environment. Comput.

Educ, 2005. xiv, 81, 82

[113] U. Zdun. Capturing design knowledge. IEEE Software, 2009. 4

[114] W. Zimmer. Relationships between design patterns. Pattern Languages of Pro-

gram Design, 1995. 57

294

Appendix 1 - Urban and

architectural design patterns

proposed by Christopher Alexander

1. INDEPENDENT REGIONS

2. THE DISTRIBUTION OF TOWNS

3. CITY COUNTRY FINGERS

4. ARCHITECTURAL VALLEYS

5. LACE OF COUNTRY STREETS

6. COUNTRY TOWNS

7. THE COUNTRYSIDE

8. MOSAIC OF SUBCULTURES

9. SCATTERED WORK

10. MAGIC OF THE CITY

11. LOCAL TRANSPORT AREA

12. COMMUNITY OF 7000

13. SUBCULTURE BOUNDARY

14. IDENTIFIABLE NEIGHBOR-

HOOD

15. NEIGHBORHOOD BOUNDARY

16. WEB OF PUBLIC TRANSPORTA-

TION

17. RING ROADS

18. NETWORK OF LEARNING

19. WEB OF SHOPPING

20. MINI-BUSES

21. FOUR-STORY LIMIT

22. NINE PER CENT PARKING

23. PARALLEL ROADS

295

24. SACRED SITES

25. ACCESS TO WATER

26. LIFE CYCLE

27. MEN AND WOMEN

28. ECCENTRIC NUCLEUS

29. DENSITY RINGS

30. ACTIVITY NODES

31. PROMENADE

32. SHOPPING STREET

33. NIGHT LIFE

34. INTERCHANGE

35. HOUSEHOLD MIX

36. DEGREES OF PUBLICNESS

37. HOUSE CLUSTER

38. ROW HOUSES

39. HOUSING HILL

40. OLD PEOPLE EVERYWHERE

41. WORK COMMUNITY

42. INDUSTRIAL RIBBON

43. UNIVERSITY AS A MARKET-

PLACE

44. LOCAL TOWN HALL

45. NECKLACE OF COMMUNITY

PROJECTS

46. MARKET OF MANY SHOPS

47. HEALTH CENTER

48. HOUSING IN BETWEEN

49. LOOPED LOCAL ROADS

50. T JUNCTIONS

51. GREEN STREETS

52. NETWORK OF PATHS AND

CARS

53. MAIN GATEWAYS

54. ROAD CROSSING

55. RAISED WALK

56. BIKE PATHS AND RACKS

57. CHILDREN IN THE CITY

58. CARNIVAL

59. QUIET BACKS

60. ACCESSIBLE GREEN

61. SMALL PUBLIS SQUARES

62. HIGH PLACES

63. DANSING IN THE STREET

64. POOLS AND STREAMS

296

65. BIRTH PLACES

66. HOLY GROUND

67. COMMON LAND

68. CONNECTED PLAY

69. PUBLIC OUTDOOR ROOM

70. GRAVE SITES

71. STILL WATER

72. LOCAL SPORTS

73. ADVENTURE PLAYGROUND

74. ANIMALS

75. THE FAMILY

76. HOUSE FOR A SMALL FAMILY

77. HOUSE FOR A COUPLE

78. HOUSE FOR ONE PERSON

79. YOUR OWN HOME

80. SELF-GOVERNING WORK-

SHOPS AND OFFICES

81. SMALL SERVICES WITHOUT

RED TAPE

82. OFFICE CONNECTIONS

83. MASTER AND APPRENTICES

84. TEENAGE SOCIETY

85. SHOPFRONT SCHOOLS

86. CHILDREN’S HOME

87. INDIVIDUAL OWNED SHOPS

88. STREET CAFÉ

89. CORNER GROCERY

90. BEER HALL

91. TRAVELER’S INN

92. BUS STOP

93. FOOD STANDS

94. SLEEPING IN PUBLIC

95. BUILDING COMPLEX

96. NUMBER OF STORIES

97. SHIELDED PARKING

98. CIRCULATION REALMS

99. MAIN BUILDING

100. PEDESTRIAN STREET

101. BUILDING THOROUGHFARE

102. FAMILY OF ENTRANCES

103. SMALL PARKING LOTS

104. SITE REPAIR

105. SOUTH FACING OUTDOORS

106. POSITIVE OUTDOOR SPACE

107. WINGS OF LIGHT

297

108. CONNECTED BUILDINGS

109. LONG THIN HOUSE

110. MAIN ENTRANCE

111. HALF-HIDDEN GARDEN

112. ENTRANCE TRANSITION

113. CAR CONNECTION

114. HIERARCHY OF OPEN SPACE

115. COURTYARDS WHICH LIVE

116. CASCADE OF ROOFS

117. SHELTERING ROOF

118. ROOF GARDEN

119. ARCADES

120. PATHS AND GOALS

121. PATH SHAPE

122. BUILDING FRONTS

123. PEDESTRIAN DENSITY

124. ACTIVITY POCKETS

125. STAIR SEATS

126. SOMETHING ROUGHLY IN THE

MIDDLE

127. INTIMACY GRADIENT

128. INDOOR SUNLIGHT

129. COMMON AREAS AT THE

HEART

130. ENTRANCE ROOM

131. THE FLOW THROUGH ROOMS

132. SHORT PASSAGES

133. STAIRCASE AS A STAGE

134. ZEN VIEW

135. TAPESTRY OF LIGHT AND

DARK

136. COUPLE’S REALM

137. CHILDREN’S REALM

138. SLEEPING TO THE EAST

139. FARMHOUSE KITCHEN

140. PRIVATE TERRACE ON THE

STREET

141. A ROOM OF ONE’S OWN

142. SEQUENCE OF SITTING

SPACES

143. BED CLUSTER

144. BATHING ROOM

145. BULK STORAGE

146. FLEXIBLE OFFICE SPACE

147. COMMUNAL EATING

148. SMALL WORK GROUPS

298

149. RECEPTION WELCOMES YOU

150. SMALL MEETING ROOMS

151. HALF-PRIVATE OFFICE

152. ROOMS TO RENT

153. TEENAGER’S COTTAGE

154. OLD AGE COTTAGE

155. SETTLED WORK

156. HOME WORKSHOP

157. OPEN STAIRS

158. LIGHT ON TWO SIDES OF EV-

ERY ROOM

159. BUILDING EDGE

160. SUNNY PLACE

161. NORTH FACE

162. OUTDOOR ROOM

163. STREET WINDOWS

164. OPENING TO THE STREET

165. GALLERY SURROUND

166. SIX-FOOT BALCONY

167. CONNECTION TO THE EARTH

168. TERRACED SLOPE

169. FRUIT TREES

170. TREE PLACES

171. GARDEN GROWING WILD

172. GARDEN WALL

173. TRELISSED WALK

174. GREENHOUSE

175. GARDEN SEAT

176. VEGETABLE GARDEN

177. COMPOST

178. ALCOVES

179. WINDOW PLACE

180. THE FIRE

181. EATING ATMOSPHERE

182. WORKSPACE ENCLOSURE

183. COOKING LAYOUT

184. SITTING CIRCLE

185. COMMUNAL SLEEPING

186. MARRIAGE BED

187. BED ALCOVE

188. DRESSING ROOM

189. CEILING HEIGHT VARIETY

190. THE SHAPE OF INDOOR SPACE

191. WINDOWS OVERLOOKING

LIFE

299

192. HALF-OPEN WALL

193. INTERIOR WINDOWS

194. STAIRCASE VOLUME

195. CORNER DOORS

196. THICK WALLS

197. CLOSETS BETWEEN ROOMS

198. SUNNY COUNTER

199. OPEN SHELVES

200. WAIST-HIGH SHELF

201. BUILT-IN SEATS

202. CHILD CAVES

203. SECRET PLACE

204. STRUCTURE FOLLOWS SOCIAL

PLACES

205. EFFICIENT STRUCTURE

206. GOOD MATERIALS

207. GRADUAL STIFFENING

208. ROOF LAYOUT

209. FLOOR AND CEILING LAYOUT

210. THICKENING THE OUTER

WALLS

211. COLUMNS AT THE CORNERS

212. FINAL COLUMN DISTRIBU-

TION

213. ROOF FOUNDATION

214. GROUND FLOOR SLAB

215. BOX COLUMNS

216. PERIMETER BEAMS

217. WALL MEMBRANES

218. FLOOR-CEILING VAULTS

219. ROOF VAULTS

220. NATURAL DOORS AND WIN-

DOWS

221. LOW SILL

222. DEEP REVEALS

223. LOW DOORWAY

224. FRAMES AS THICKENED

EDGES

225. COLUMN PLACE

226. COLUMN CONNECTION

227. STAIR VAULT

228. DUCT SPACE

229. RADIANT HEAT

230. DORMER WINDOWS

231. ROOF CAPS

232. FLOOR SURFACE

300

233. LAPPED OUTSIDE WALLS

234. SOFT INSIDE WALLS

235. WINDOWS WHICH OPEN WIDE

236. SOLID DOORS WITH GLASS

237. FILTERED LIGHT

238. SMALL PANES

239. HALF-INCH TRIM

240. SEAT SPOTS

241. FRONT DOOR BENCH

242. SITTING WALL

243. CANVAS ROOFS

244. RAISED FLOWERS

245. CLIMBING PLANTS

246. PAVING WITH CRACKS BE-

TWEEN THE STONE

247. SOFT TILE AND BRICK

248. ORNAMENT

249. WARM COLORS

250. DIFFERENT CHAIRS

251. POOLS OF LIGHT

252. THINGS FROM YOUR LIFE

301

Appendix 2 - A collection of

patterns for usability of web

applications proposed by Ian

Graham

• Patterns for getting started on a site design: ESTABLISHING THE BUSI-

NESS OBJECTIVES, BUSINESS PROCESS MODEL, ESTABLISH THE USE

CASES, TIMEBOXES, GRADUAL STIFFENING, AUTOMATE TESTING,

USABILITY TESTING, GET-IT?, RETEST WHEN CONTENT UPDATED,

TWO-YEAR-OLD BROWSER, CLASSIFY YOUR SITE, SITE MAP, USER-

CENTERED SITE STRUCTURE, SEARCH BOX, SENSE OF LOCATION,

AESTHETICS, CONTEXT-SENSITIVE HELP.

• Patterns for improving usability: PRIMING AND INTERFERENCE, STRUC-

TURED MENUS, THE RHETORIC OF ARRIVAL AND DEPARTURE, CANON-

ICAL LOCATION, SYMMETRY AND IDEMPOTENCE, BREADCRUMBS,

SITE LOGO AT TOP LEFT, NAVIGATION BAR, THREE-REGION LAY-

OUT, NO FRAMES ON PUBLIC SITES, HOME PAGE, TRITE FONTS, THE

HUMAN TOUCH, LINKS TO MANY SITES,AVATAR, CONTEXT-SENSITIVE

CONTACT LINK, GO BACK TO A SAFE PLACE, BACK BUTTON, FOL-

LOW STANDARDS, PRISONER OF WAR.

302

• Patterns for adding detail to a design to enhance usability even further: KEEP

IT SIMPLE, EXPLOIT CLOSURE, NO MODES, FEEDBACK, DOWNLOAD

TIME,DESIGN PAGES FOR SCANNING, SHORT TEXTS, ANCHORS AWAY,

NO UNPLEASANT SURPRISES, SEPARATE PRINT PAGES, SENSE OF

PROGRESS, FINAL SLASH ON URLs, ACCEPTABLEWORDING, THE HALT

AND THE LAME AND THE STRANGER AT THE DOOR, INTERNATION-

ALIZATION, USE OF COLOR, TESSELLATE GRAPHICS, CONTENT BE-

FORE GRAPHICS, NATURAL METAPHORS,WORDS BEFORE ICONS,WHITE

SPACE SEPARATES CONTENT, BROKEN BUTTONS, MAGIC MARGINS,

TRACK MULTIPLE IDENTICAL REQUESTS, UNIQUE NAMES FOR PAGES

TITLES AND META-TAGS, CONTEXT-DEPENDENT SEARCH CATEGORIES,

STORE CONTENT IN A DATABASE.

• Patterns for dealing with workflow and security issues: EQUAL OPPORTU-

NITY, AVOID PRE-EMPTION, CACHE TRANSACTIONS, RETURN VISI-

TORS, SUPPORT COLOR WITH SPATIAL METAPHORS, WHAT YOU SEE

IS WHAT YOU CAN USE, MANDATORY FIELDS, SECURITY AND EN-

CRYPTION, OBLIQUE LANDMARKS, PARANOID SECURITY, SENSE OF

LOCATION IN WORKFLOW, CONTENT IS LINKED TO NAVIGATION,

BUTTON GRAVITY, PIPELINE INTERACTION, DISPLAY THE OPTIONS.

303

Appendix 3 - Language Generation

Test Case 1 - Synchronous

Collaboration

.1 The Design Issues Map, DIM

• 1: separate layers, non collaborative, collaborative, brainstorming;

• 2: web-based;

• 3: rewarding, collaborators;

• 4: choose, collaborators, invites, groups;

• 5: transform, game, entertainment, goals;

• 6: communication, IM, chat;

• 7: visualization, awareness;

• 7.1: instant echos, notifications;

• 8: playback, logfiles, save data;

• 8.1: record, snapshots;

• 9: tagging, ranking, comments, social, community;

304

• 10: data, search, data filter;

• 11: teaching, education, goals;

• 12: social data;

• 13: cenzorship, making trouble;

• 14: coordinator, coordination, mechanism;

• 14.1: timers;

• 14.2: separate blocks;

• 14.3: community, community application;

• 14.4: voting, agreement, rate;

• 14.5: workflows;

• 14.6: first editor, locking, unlock after save;

• 14.7:first editor, decides, majority agreement;

• 14.8: initiator, coordinator;

• 15: usability, appropriation, usage;

• 15.1: users decision;

• 15.2: multilanguage;

• 16: composition, individual contributions, non collaborative, blocks;

• 17: media, transmitting data, capturing data;

• 17.1: visual cues, audio cues, visualization, awareness;

• 18: competition, teams;

• 19: medical, goals;

• 20: registered users, priviledges;

305

• 21: social networks integration;

• 21.1: share data, social networks;

• 22: adapt application, device, data, brainstorming;

• 22.1: shared device;

• 22.2: inter connected devices;

• 22.3: mobile devices;

• 22.4: tablet pc;

• 22.5: script, automatic identification of device;

• 22.6: tabletop;

• 22.7: handheld computer, java;

• 23: save data, history, timelines, logfiles;

• 23.1: versioning, history;

• 23.2: revert, changes;

• 23.3: track, changes;

• 23.4: interactive history, redirect;

• 23.5: timeline;

• 24: track, contribution, awareness;

• 24.1: individual contribution, color scheme;

• 24.2: individual contribution, highlight contribution;

• 25: import, export, other formats;

• 25.1: publish, wiki;

• 25.2: import, export, pdf, jpg;

306

• 26: communication, similar tools;

• 26.1: share, online;

• 26.2: similar tools, file transfer;

• 27: annotate, shared resource, community, discussion;

• 28: collaborators, groups, leave collaboration, join collaboration;

• 28.1: notifications, status;

• 29: color scheme, object status, locked, unlocked;

• 30: list, available, collaborators, connected collaborators;

• 31: templates, community, library;

• 32: conflict resolution;

• 33: customize collaboration, community;

• 33.1: roles, rights, collaborators;

• 34: color scheme, individual contribution, collaborators, identity;

• 35: search topic, query history;

• 36: searched page, metadata, shared resource;

• 37: division of labor, community;

• 38:recommendation mechanism;

• 39: shared summary, collaboration;

• 39.1: summary, search findings;

• 40: similar resources, shared resource, collaborators;

• 41: session state, store data, resume session, session;

• 42: project shared resource, awareness;

307

• 43: mind map;

• 44: street art;

• 45: city event, citizens;

• 46: ;

• 47: recruiting place, goals;

• 48: different expertise, collaborators;

• 49: connect people, goals;

• 50: layers;

• 51: perpetual beta, prototype, versions;

• 52: feedback, corrections;

• 53: elderly people, goals;

• 54: translation;

• 55: help;

• 56: a;

• 57: a;

• 58: a;

• 59: a;

.2 The set of Keywords, K

• adapt

• agreement rate

• annotate

• appropriation

• audio cues

• availability

308

• awareness

• brainstorm

• capturing data

• cc

• cenzorship

• changes

• chat

• choose

• citizens

• city event

• collaboration

• collaborative

• collaborators

• color scheme

• comments

• communication

• community

• community application

• competition

• conflict

• connect people

• connected collaborators

• coordination

• coordinator

• corrections

• customization

• data

• device

• device identification

• different expertise

• division of labor

• education

• elderly

• entertainment

• export

• features

• feedback

• file transfer

• filter data

• first editor

• formats

• game

• goals

• groups

• handheld

• help

• highlight

• history

• identify data

• identity

• IM

• import

• individual contribution

• initiator

• instant echoes

• integration

• inter connected devices

• interactive

• invites

• java

• join

• jpg

• layers

• leave

• library

• list

• locked

309

• locking

• logfiles

• making trouble

• mechanism

• media

• medical

• metadata

• mind map

• mobiles

• multilanguage

• non collaborative

• notifications

• online

• pdf

• perpetual beta

• playback

• priviledges

• prototype

• publish

• query hostory

• ranking

• reasoning

• recommendation

• records

• recruiting

• redirect

• registered users

• resolution

• resource status

• result

• resume session

• revert

• rewarding

• rights

• roles

• save data

• script

• search data

• search results

• search topic

• searched page

• separate blocks

• separate layers

• session

• session state

• share data

• shared device

• shared resource

• similar resources

• similar tools

• snapshots

• social

• social data

• social networks

• street art

• summary

• tablet

• tabletop

• tagging

• teaching

• teams

• templates

• timelines

• timers

• track

• transformation

• translation

310

• transmitting data

• unlocked

• unlocking

• usability

• usage

• user status

• versioning

• versions

• visual cues

• visualization

• voting

• web based

• wiki

• workflows

.3 The Keywords Map, KM

• Equivalence

– chat ≡ IM ;

– community ≡ groups;

– groups ≡ teams ;

– collaborators ≡ connected collaborators;

– availability ≡ user status ;

– filter data ≡ search data;

– initiator ≡ first editor ;

– cenzorship ≡ making trouble;

– web based ≡ online;

– searched page ≡ search topic;

• Specialization

– handheld ISA device;

– inter connected ISA device;

– java ISA device;

– web based ISA device;

– mobiles ISA device;

311

– tablet ISA device;

– shared device ISA device;

– tabletop ISA device;

– annotate ISA social ;

– comments ISA social ;

– corrections ISA social ;

– feedback ISA social ;

– ranking ISA social ;

– recommendation ISA social ;

– registered users ISA social ;

– social networks ISA social ;

– tagging ISA social ;

– voting ISA social ;

– wiki ISA social ;

– coordination ISA mechanism;

– recommendation ISA mechanism;

– city event ISA goals ;

– competition ISA goals ;

– education ISA goals ;

– elderly ISA goals ;

– entertainment ISA goals ;

– game ISA goals ;

– medical ISA goals ;

– recruiting ISA goals ;

– street art ISA goals ;

– teaching ISA goals ;

312

– connect people ISA goals ;

– identity ISA social ;

– citizens ISA collaborators;

– first editor ISA coordinator ;

– help ISA features;

– import ISA features;

– export ISA features;

– locking ISA features;

– unlocking ISA features;

– file transfer ISA features;

– highlight ISA features;

– layers ISA features;

– playback ISA features;

– publish ISA features;

– redirect ISA features;

– resume session ISA features;

– translation ISA features;

– versioning ISA features;

– pdf ISA format ;

– jpg ISA format ;

– filter data ISA data;

– identify data ISA data;

– save data ISA data;

– search data ISA data;

– share data ISA data;

– transmit data ISA data;

313

– capturing data ISA data;

– multilanguage ISA usability ;

– query history ISA history ;

• Composition

– visualization HASA shared resource;

– session HASA session state;

– library HASA templates ;

– community HASA library ;

– search results HASA summary ;

– versioning HASA versions ;

– shared resource HASA resource status ;

– resource status HASA unlocked ;

– resource status HASA locked ;

– collaborators HASA different expertise;

– history HASA interactive;

– registered users HASA priviledges;

– device HASA resolution;

– collaborators HASA rights ;

– collaborators HASA roles ;

– groups HASA collaborators;

• Association

– connect people RELATEDTOby adapt ;

– adapt RELATEDTOinfluences data;

– device identification RELATEDTOseq adapt ;

– device RELATEDTOneeds adapt ;

314

– community RELATEDTOneeds social ;

– visualization RELATEDTOsupports awareness ;

– color scheme RELATEDTOused−for visualization;

– notifications RELATEDTOused−for visualization;

– audio cues RELATEDTOused−for visualization;

– visual cues RELATEDTOused−for visualization;

– user status RELATEDTOused−for visualization;

– instant echoes RELATEDTOused−for visualization;

– identity RELATEDTOused−for visualization;

– collaborative RELATEDTOnon non collaborative;

– chat RELATEDTOused−for communication;

– annotate RELATEDTOused−for communication;

– file transfer RELATEDTOused−for share data;

– agreement rate RELATEDTOused−for coordination;

– chat RELATEDTOused−for coordination;

– community RELATEDTOused−for coordination;

– division of labor RELATEDTOused−for coordination;

– workflows RELATEDTOused−for coordination;

– timers RELATEDTOused−for coordination;

– first editor RELATEDTOused−for coordination;

– locking RELATEDTOused−for coordination;

– separate blocks RELATEDTOused−for coordination;

– customization RELATEDTOapplies−to collaboration;

– appropriation RELATEDTOsupports brainstorm;

– track RELATEDTOapplies−to changes ;

– revert RELATEDTOapplies−to changes ;

315

– cenzorship RELATEDTOused−for filter data;

– voting RELATEDTOused−for filter data;

– filter data RELATEDTOapplies−to summary ;

– identify data RELATEDTOsupports awareness ;

– identify data RELATEDTOsupports versioning ;

– identify data RELATEDTOsupports revert ;

– identify data RELATEDTOapplies−to individual contribution;

– highlight RELATEDTOused−for identify data;

– save data RELATEDTOapplies−to shared resource;

– save data RELATEDTOapplies− to comments ;

– save data RELATEDTOapplies−to changes ;

– save data RELATEDTOapplies−to metadata;

– save data RELATEDTOapplies−to results ;

– logfiles RELATEDTOused−for save data;

– library RELATEDTOused−for save data;

– records RELATEDTOused−for save data;

– save data RELATEDTOapplies−to session state;

– snapshots RELATEDTOused−for save data;

– save data RELATEDTOapplies−to social data;

– file transfer RELATEDTOused−for share data;

– audio cues RELATEDTOused−for transmit data;

– visual cues RELATEDTOused−for transmit data;

– mind map RELATEDTOused−for share data;

– join RELATEDTOapplies−to groups;

– leave RELATEDTOapplies−to groups;

– track RELATEDTOapplies−to history ;

316

– history RELATEDTOused−for save data;

– invites RELATEDTOtrigger join;

– media RELATEDTOused−for transmit data;

– media RELATEDTOused−for capturing data;

– search topic RELATEDTOtrigger search results ;

– timelines RELATEDTOused−for save data;

– rights RELATEDTOapplies−to shares resource;

– import RELATEDTOapplies−to similar tools ;

– export RELATEDTOapplies−to similar tools ;

– script RELATEDTOused−for adapt ;

– rewarding RELATEDTOapplies−to collaborators;

– separate blocks RELATEDTOused−for composition;

– prototype RELATEDTOused−for usage;

– perpetual beta RELATEDTOused−for usage;

– versions RELATEDTOused−for usage;

– separate layers RELATEDTOtrigger adapt application;

317

Appendix 4 - Language Generation

Test Case 2 - Web Design

.4 The Design Issues Map, DIM

1. Two-Panel Selector : two panel selector, selectable lists, easy access;

2. One-Window Drilldown: one window, option menu, space navigation;

3. Wizard : wizard, ordered navigation, branched tasks, chunking the task, physi-

cal structure;

4. Extras On Demand : on demand, hide features, simplification, dropdown;

5. Intriguing Branches: additional branches, original flow, clear return, resume task;

6. Clear Entry Points : entry points, clear start, initiate navigation, hide flow;

7. Global Navigation: global navigation, support navigation;

8. Color-Coded Sections: color codes,distinguishing sections;

9. Animated Transition: animated, transition,transformation, connect states;

10. Visual Framework : visual, framework, flexibility, overall look and feel;

11. Center Stage: center stage, cluster secondary tools, visual hierarchy, clear focus;

12. Titled Sections: separate sections, strong title, memorable names, chuncking the content;

318

13. Card Stack : card stack, separate panels, panel selector, memorable names, chunck-

ing the content;

14. Closable Panels : closable panels, flexibility, sections;

15. Movable Panels : movable panels, custom layout;

16. Diagonal Balance: balance, visual weight;

17. Responsive Disclosure: complex task, single page, unfolding task, dynamically growing UI,

hide content;

18. Responsive Enabling : unfolding task, disable content, single page;

19. Liquid Layout : liquid layout, resizing, synchronisation, page filled, wrap content;

20. Action Panel : action panel, group actions, label actions;

21. Smart Menu Items: smart menu, synchronisation;

22. Progress Indicator : progress indicator, time consuming task, animated indicator,

cancel operation;

23. Multi-Level Undo: undo, revert changes;

24. Command History : command history, running list actions;

25. Overview Plus Detail : overview detail, zoomed area, inset panel, additional panel,

viewport, magnified projection, synchronisation;

26. Row Striping : row striping, color backgrounds, alternate shades;

27. Sortable Table: sortable table, clickable header;

28. Jump to Item: jump to item, continous filter;

29. Cascading Lists : cascading lists, hierarchy, selectable lists;

30. Tree-Table: tree table, hierarchical data, indented structure, support sorting;

31. Forgiving Format : forgiving format, interpret input;

319

32. Fill-in-the-Blanks : fill in the blanks, format input, self explanatory UI;

33. Input Hints : input hints, suggest input, example input, short hint;

34. Input Prompt : input prompt, prefill input;

35. Dropdown Chooser : dropdown chooser, hide content, complex value selection;

36. Illustrated Choices: illustrated choices, available choices, images;

37. Good Defaults : defaults, prefill forms;

38. Edit-in-Place: dynamic text editor, edit in place;

39. Smart Selection: smart selection, automatic selection;

40. Composite Selection: composite selection;

41. One-Off Mode: switch mode, automatic transition, one-off mode;

42. Constrained Resize: constrained resize, resize modes, resizing;

43. Deep Background : deep background, soft focus, color gradients, depth cues, no strong focal point

44. Few Hues Many Values : max color hues, color pallette;

.5 The set of Keywords, K

• two panel selector

• transition

• additional panel

• prefill input

• transformation

• viewport

• dropdown chooser

• easy access

• connect states

• dynamically growing UI

• magnified projection

• one window

• visual

• complex value selection

• option menu

• framework

• row striping

• illustrated choices

• space navigation

• flexibility

• disable content

320

• color backgrounds

• available choices

• wizard

• overall look and feel

• single page

• alternate shades

• images

• ordered navigation

• center stage

• liquid layout

• sortable table

• defaults

• branched tasks

• cluster secondary tools

• resizing

• clickable header

• prefill forms

• chunking the task

• visual hierarchy

• jump to item

• dynamic text editor

• physical structure

• clear focus

• page filled

• continous filter

• edit in place

• on demand

• separate sections

• wrap content

• cascading lists

• smart selection

• hide features

• strong title

• action panel

• hierarchy

• automatic selection

• simplification

• memorable names

• group actions

• selectable lists

• composite selection

• dropdown

• label actions

• tree table

• switch mode

• additional branches

• card stack

• smart menu

• hierarchical data

• automatic transition

• original flow

• separate panels

• synchronisation

• indented structure

• one-off mode

• clear return

• panel selector

• progress indicator

• support sorting

• constrained resize

• resume task

• time consuming task

• forgiving format

• resize modes

• entry points

• chuncking the content

• animated indicator

321

• interpret input

• clear start

• closable panels

• cancel operation

• fill in the blanks

• deep background

• initiate navigation

• undo

• format input

• soft focus

• hide flow

• sections

• revert changes

• self explanatory UI

• color gradients

• global navigation

• movable panels

• command history

• input hints

• depth cues

• support navigation

• cutom layout

• running list actions

• suggest input

• no strong focal points

• color codes

• balance

• overview detail

• example input

• max color hues

• distinguishing sections

• visual weight

• zoomed area

• short hint

• color pallette

• animated

• complex task

• inset panel

• input prompt

• prefill input

• dropdown chooser

• hide content

• complex value selection

• illustrated choices

• available choices

• images

• defaults

• prefill forms

• dynamic text editor

• edit in place

• smart selection

• composite selection

• switch mode

• automatic transition

• one-off mode

• constrained resize

• resize modes

• resizing

• deep background

• soft focus

• color gradients

• depth cues

• no strong focal points

• max color hues

• color pallette

322

.6 The Keywords Map, KM

• Equivalence

– hide features ≡ hide flow ;

– distinguishing sections ≡ separate sections ;

– strong title ≡ memorable names ;

– hide content ≡ disable content ;

– single page ≡ one window ;

– physical structure ≡ visual hierarchy ;

– time consuming task ≡ complex task ;

– group actions ≡ chunking the task ;

– cluster secondary tools ≡ group actions ;

– magnified projection ≡ zoomed area;

– fill in the blanks ≡ suggest input ;

• Specialization

– ordered navigation ISA space navigation;

– two panel selector ISA panel selector ;

– closable panels ISA separate panels ;

– separate sections ISA sections ;

– movable panels ISA separate panels ;

– liquid layout ISA custom layout ;

– action panel ISA separate panels ;

– animated indicator ISA animated ;

– alternate shades ISA color codes ;

– visual hierarchy ISA hierarchy ;

– hierarchical data ISA hierarchy ;

323

– dropdown chooser ISA smart menu;

– illustrated choices ISA available choices ;

– defaults ISA short hints ;

– prefill forms ISA example input ;

– dynamic text editor ISA dynamically growing UI ;

– deep background ISA color backgrounds;

– automatic transition ISA transition;

– constrained resize ISA resizing ;

– prefill forms ISA prefill input ;

• Composition

– one window HASA option menu;

– physical structure HASA distinguishing sections ;

– ordered navigation HASA transition;

– physical structure HASA framework ;

– complex task HASA branched tasks ;

– unfolding task HASA additional branches ;

– dynamically growing UI HASA visual hierarchy ;

– single page HASA physical structure;

– action panel HASA cancel operation;

– color codes HASA color backgrounds;

– resizing HASA resize modes;

– color codes HASA color gradients ;

– soft focus HASA no strong focal points ;

– color pallette HASA color codes ;

• Association

324

– separate sections RELATEDTOused−for separate panels ;

– initiate navigation RELATEDTOapplies−to space navigation;

– global navigation RELATEDTOapplies−to space navigation;

– support navigation RELATEDTOapplies−to space navigation;

– connect states RELATEDTOused−for space navigation;

– clear focus RELATEDTOused−for clear return;

– hide content RELATEDTOapplies−to hide flow ;

– page filled RELATEDTOapplies−to single page;

– liquid layout RELATEDTOused−for simplification;

– resume task RELATEDTOapplies−to complex task ;

– balance RELATEDTOused−for resizing ;

– memorable names RELATEDTOused−for label actions ;

– smart menu RELATEDTOused−for easy access ;

– progress indicator RELATEDTOvisualize transitions ;

– undo RELATEDTOapplies−to complex task ;

– resizing RELATEDTOtriggers zoomed area;

– command history RELATEDTOincludes initiate navigation;

– revert changes RELATEDTOtriggers clear return;

– resizing RELATEDTOtriggers magnified projection;

– row striping RELATEDTOtriggers chuncking the content ;

– jump to item RELATEDTOsupports flexibility ;

– cascading lists RELATEDTOsupports ordered navigation;

– indented structure RELATEDTOapplies−to physical structure;

– support sorting RELATEDTOby sortable table;

– input hints RELATEDTOsupport forgiving format ;

– jump to item RELATEDTOsupport complex value selection;

325

– illustrated choices RELATEDTOapplies−to visual hierarchy ;

– dynamic text editor RELATEDTOsupport flexibility ;

– memorable names RELATEDTOsupport self explanatory UI ;

326

Appendix 5 - Design Pattern

Evaluation Questionnaire

General Information

1. Level of study:

2. Your experience in software design (in number of years):

3. Have you used/worked with design patterns before? If yes, please specify the

domain of the patterns.

Understanding the Patterns

1. Which of the elements defining a pattern helped you more in understanding the

patterns?

ID Name Keywords Problem Solution Illustration

2. Which of the elements defining a pattern was the least useful for you?

ID Name Keywords Problem Solution Illustration

3. How would you order the elements defining each pattern from the most useful to

the least useful?

327

Pattern Grade Pattern Grade
Who is the coordinator? Support versioning

Integrated chat Support reverting changes

Eyes wide open
With or without
collaboration

Choose your collaborators Adapt application to device

Collaboration, always
social

Customize collaboration

Annotate Shared summary

My contribution Resume collaboration
Track history of
collaboration

Table 2: Participants distribution across workshops

ID Name Keywords Problem Solution Illustration

4. How would you grade the understandability (the easiness to understand) of each

pattern?

1 – not at all understandable – 5 – very easy to understand

See Table 2.

Using the Patterns

1. In what extent were the patterns useful for

1 – not at all useful – 5 – the most useful

• Understanding the design space of the application?

• Searching for the problems?

• Searching for solutions for identified problems?

• Communicating with your group members?

• Remembering similar design situations you have encountered?

328

• Brainstorming for design ideas for the application?

• Other:

2. What patterns did you use? Assign a letter from above (a – g) for each pattern

used.

See Table 2.

3. How many times did you search for a problem?

4. How many times did you apply a solution proposed by the patterns?

5. Did you search for solutions to problems which were not documented by the pat-

terns? If yes, please mention these problems.

Understanding the Patterns

1. What information would you add in the definition of a pattern?

2. What representation would best fit for working with pattern?

• Paper cards.

• Wiki application.

• Search engine application.

• Personalized application with the following features.

Overall Assessment

329

1. How would you rate the usefulness of each pattern in the overall process?

1 – not at all useful – 5 – the most useful

See Table 2.

2. Did the patterns support the overall group work? If yes, how?

3. Any other comments or suggestions

330

Appendix 5 - Statistics in the

evaluation workshops

B

A

ad
ap

tP
att

br
ow

se

di
sc

us
sP

att

ge
nI

de
a

m
od

ifP
att

re
ad

Pa
tt

re
fP

att

re
re

fP
att

se
ar

ch
Pa

tt

us
eS

ol

adaptPatt 0.40 0.11 -1.47 1.18 0.89 1.47 -0.73 -0.34 -0.71 0.73
browse -1.08 -0.45 0.03 -0.82 -0.18 1.23 0.24 1.73 -0.55
discussPatt -1.54 -0.20 -0.63 0.30 1.39 0.73 2.12 -0.31 -0.12 -0.75
genIdea 1.13 -1.21 3.68 1.40 -0.12 -1.43 1.09 1.30 -1.20
modifPatt 3.29 0.22 0.27
readPatt 0.22 0.47 -0.38 -0.80 0.08 -0.04 2.21
refPatt -0.10 -0.71 3.17 -2.51 -0.40 -0.55 -0.71 -0.97 1.07
rerefPatt -0.33 1.33 -0.62 0.18 0.59 3.00 -0.73
searchPatt -0.82 -1.36 2.64 -0.60 0.00 -0.83 0.41 1.51 -1.00
useSol 1.62 0.05 -1.49 -0.88 -1.24 0.90 -1.34 -1.00 2.03

<-2.00 -2.00 - -1.00 -0.99- -0.50 -0.50-0.00 0.00–0.50 0.51-1.00 1.01-2.00 >2.01

Figure 1: Frequency Matrix - Z-values for the sequences of codes considered in the
evaluation workshops

331

Chapter5/Chapter5Figs/Zvalue.eps

B

A

ad
ap

tP
att

br
ow

se

di
sc

us
sP

att

ge
nI

de
a

m
od

ifP
att

re
ad

Pa
tt

re
fP

att

re
re

fP
att

se
ar

ch
Pa

tt

us
eS

ol

adaptPatt .393 .519 .088 .162 .344 .121 .285 .535 .331 .275
browse .195 .455 .543 .296 .605 .146 .509 .080 .372
discussPatt .073 .502 .304 .423 .183 .285 .025 .499 .535 .266
genIdea .177 .148 .001 .239 .629 .101 .223 .152 .154
modifPatt .029 .603 .585
readPatt .495 .388 .518 .297 .610 .660 .033
refPatt .522 .302 .002 .004 .447 .334 .342 .215 .170
rerefPatt .539 .175 .386 .541 .358 .025 .359
searchPatt .289 .134 .010 .390 .676 .266 .446 .114 .216
useSol .074 .533 .082 .247 .156 .216 .137 .213 .033

.000-.099 .100-.199 .200-.299 .300-.399 .400-.499 .500-.599 >.600

Figure 2: Frequency Matrix - Probability values for the sequences of codes considered
in the evaluation workshops

332

Chapter5/Chapter5Figs/probability.eps

	Nomenclature
	1 Introduction
	1.1 Landscape: Research Context
	1.2 Gap: Research Motivation and Questions
	1.3 Goals and Itinerary: Research Objectives and Overview

	2 Related Work: CSCW, Design Patterns and Creativity
	2.1 Computer Supported Cooperative Work
	2.1.1 Classifications and Modes
	2.1.2 Design Challenges and Concerns
	2.1.2.1 Technology Supporting CSCW
	2.1.2.2 Coordination and Conflict
	2.1.2.3 Communication
	2.1.2.4 Notifications and Awareness
	2.1.2.5 Interruptions
	2.1.2.6 The Social Side of CSCW
	2.1.2.7 Annotations
	2.1.2.8 Roles in CSCW

	2.2 Design Patterns
	2.2.1 History and Evolution
	2.2.2 Design Pattern Collections
	2.2.2.1 Urban and architectural design
	2.2.2.2 Software engineering
	2.2.2.3 Graphical User Interface (GUI) design
	2.2.2.4 Collaborative applications
	2.2.2.5 Social interfaces
	2.2.2.6 Usability
	2.2.2.7 Ubiquitous computing
	2.2.2.8 Interactive exhibits
	2.2.2.9 Accessibility

	2.2.3 Template Definitions of Patterns
	2.2.4 Design Patterns versus Guidelines
	2.2.5 Design Pattern Mining Methods
	2.2.6 Documented Uses of Design Patterns
	2.2.7 From Patterns to Pattern Languages

	2.3 Creativity in Software Design
	2.3.1 The Creative Process - History and Evolution
	2.3.2 Creative Techniques in Software Design
	2.3.2.1 Scenario-based Design
	2.3.2.2 Sketches
	2.3.2.3 Mockups

	3 Synchronous Processes: Motivation and Tool Support
	3.1 Collaborative Drawing
	3.1.1 Synergo
	3.1.2 NetDraw
	3.1.3 CO2DE
	3.1.4 LucidChart
	3.1.5 DeTransDraw

	3.2 Collaborative Searching
	3.2.1 CoSearch
	3.2.2 Coagmento
	3.2.3 SearchTogether
	3.2.4 Cerchiamo
	3.2.5 VisSearch
	3.2.6 AntWorld
	3.2.7 WeSearch

	3.3 Collaborative Text Editing
	3.3.1 TellTable
	3.3.2 CodoxWord
	3.3.3 EtherPad
	3.3.4 GoogleDocs

	3.4 Collaborative Game Solving
	3.4.1 Mystery at the Museum
	3.4.2 Collaborative Puzzle Game
	3.4.3 SIDES
	3.4.4 STARS

	4 Identifying Patterns: A Collection of Patterns for the Design of Synchronous Applications
	4.1 Definition of a Design Pattern
	4.2 Design Pattern Mining Method
	4.2.1 Design Workshops
	4.2.2 Mining Method

	4.3 The Method Applied
	4.3.1 Mining through Design Workshops
	4.3.1.1 Problems
	4.3.1.2 Participants
	4.3.1.3 Procedure and Results
	4.3.1.4 Design Issues Identified

	4.3.2 Mining through Synchronous Applications Analysis

	4.4 The Patterns Identified
	4.4.1 Who is the coordinator?
	4.4.2 Integrated chat
	4.4.3 Eyes wide open
	4.4.4 Choose your collaborators
	4.4.5 Collaboration, always social
	4.4.6 My contribution
	4.4.7 Track history of collaboration
	4.4.8 With or without collaboration
	4.4.9 Annotate
	4.4.10 Collaborative undo
	4.4.11 Support versioning
	4.4.12 Shared summary
	4.4.13 Adapt application to device
	4.4.14 Customize collaboration
	4.4.15 Resume collaboration

	5 Relating Patterns: From the Collection to the Language
	5.1 Definition of a Pattern Language
	5.2 Representing and Visualizing Pattern Languages
	5.3 Pattern Language Generation Method
	5.3.1 Concept Identification
	5.3.2 Relationship Identification
	5.3.3 Pattern Language Generation
	5.3.3.1 Design Issue Language Generation
	5.3.3.2 Pattern Language Generation

	5.3.4 Overall Process
	5.3.4.1 Associated-to vs. Related-to

	5.4 The Method Applied
	5.4.1 Identifying Concepts
	5.4.2 Identifying Relationships
	5.4.3 Generating the Pattern Language

	5.5 Human Intervention and Automation in the Pattern Language Generation
	5.6 Tool Support
	5.6.1 Identified Requirements
	5.6.2 Scenarios of Use
	5.6.3 Design Considerations
	5.6.3.1 Data Representation
	5.6.3.2 Pattern Language Generation
	5.6.3.3 Pattern Language Querying
	5.6.3.4 Graphical User Interface

	5.6.4 Testing
	5.6.4.1 Case 1: Synchronous Collaboration
	5.6.4.2 Case 2: GUI Design

	5.6.5 Open Points and Ideas for the Next Iteration

	6 Evaluating Patterns: Impact and Strategies in the Collaborative Use of Design Patterns
	6.1 Objectives and Rationale
	6.2 Method
	6.2.1 Procedure
	6.2.2 Problems
	6.2.3 Participants
	6.2.4 Measures

	6.3 Results
	6.3.1 Direct Observation
	6.3.1.1 Team no. 1 - Markers
	6.3.1.2 Team no. 2 - Selectiveness
	6.3.1.3 Team no. 3 - Misunderstandings
	6.3.1.4 Team no. 4 - Confirmations
	6.3.1.5 Team no. 5 - Minimal use
	6.3.1.6 Team no. 6 - Fundamental problems
	6.3.1.7 Team no. 7 - Inspiration
	6.3.1.8 Team no. 8 - Pattern-driven
	6.3.1.9 Team no. 9 - Confidence
	6.3.1.10 Team no. 10 - End cycle filters
	6.3.1.11 Team no. 11 - Redundancies
	6.3.1.12 Team no. 12 - Division of work
	6.3.1.13 Team no. 13 - One (pattern) solves all (problems)
	6.3.1.14 Team no. 14 - Pattern mash-up
	6.3.1.15 Team no. 15 - Turnarounds
	6.3.1.16 Team no. 16 - Understanding the domain
	6.3.1.17 Team no. 17 - Refactoring
	6.3.1.18 Team no. 18 - Pattern taxonomy

	6.3.2 Questionnaire Results
	6.3.2.1 Understandability
	6.3.2.2 Usage
	6.3.2.3 Modifiability
	6.3.2.4 Overall Feedback

	6.3.3 Transcripts
	6.3.3.1 Atomic Actions
	6.3.3.2 Action Sequences

	6.4 Discussion
	6.4.1 Perceived Behaviour vs. Actual Behaviour
	6.4.2 Strategies Identified
	6.4.2.1 Customize Pattern Identification
	6.4.2.2 Signal Patterns
	6.4.2.3 Search – Analyse - Apply
	6.4.2.4 The Pattern Collection as a Checklist
	6.4.2.5 Patterns as Startup Tools
	6.4.2.6 Patterns as Source of Inspiration
	6.4.2.7 Mark the Use
	6.4.2.8 What do you mean?
	6.4.2.9 Beyond Patterns

	6.5 Implications
	6.6 Threats to Validity

	7 Conclusions: Summary, Contributions, Future Directions
	7.1 Summary of the Thesis
	7.2 Contributions and Discussion
	7.3 Future Research Directions

	Glossary
	References
	Appendix 1 - Urban and architectural design patterns proposed by Christopher Alexander
	Appendix 2 - A collection of patterns for usability of web applications proposed by Ian Graham
	Appendix 3 - Language Generation Test Case 1 - Synchronous Collaboration
	.1 The Design Issues Map, DIM
	.2 The set of Keywords, K
	.3 The Keywords Map, KM

	Appendix 4 - Language Generation Test Case 2 - Web Design
	.4 The Design Issues Map, DIM
	.5 The set of Keywords, K
	.6 The Keywords Map, KM

	Appendix 5 - Design Pattern Evaluation Questionnaire
	Appendix 5 - Statistics in the evaluation workshops

