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Abstract

In this note an iterated function system (IFS) on the space of distribution func-
tions is built with the aim of proposing a new class of distribution function
estimators. One IFS estimator is proposed and its properties are studied in de-
tails. Relative efficiency of the estimator, for small and moderate sample sizes,
are presented via Monte Carlo analysis. It turns out that the IFS distribu-
tion function estimator is, in several cases, more accurate than the celebrated
empirical distribution function.
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§1. Introduction

The Iterated Function Systems (IFSs) were born in mid eighties [2, 9] as applica-
tions of the theory of discrete dynamical systems and as useful tools to build fractals
and other similar sets. Some possible applications of IFSs can be found in image
processing theory [6], in the theory of stochastic growth models [17] and in the theory
of random dynamical systems [1, 4, 12]. Here we try to apply this methodology to
estimation.

The fundamental result [2] on which the IFS method is based is Banach theorem.
In practical applications the crucial problem, usually called the inverse problem in
the IFS literature, is formulated as follows: given f in some metric space (S, d), find
a contraction T : S → S that admits a unique fixed point f̃ ∈ S such that d(f, f̃)
is small enough. In fact if one is able to solve the inverse problem with arbitrary
precision, it is possible to identify f with the operator T which has it as fixed point.
The paper is organized as follows: Section is devoted to introduce a contractive
operator T on the space of distribution functions and to the definition of the inverse
problem for T . Section is devoted to estimation. We propose an IFS distribution
function estimator and we study its properties. We will also study if there is any
advantage of using IFS estimator instead of the celebrated empirical distribution
function (e.d.f) estimator when the sample size is small (n from 10 to 30) or moderate
(n from 50 to 100). Monte Carlo analysis seems to show some gain of the IFS over
the e.d.f.
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§2. A contraction on the space of distribution functions

Let us denote by F([0, 1]) the space of distribution functions F on [0, 1] and by
B([0, 1]) the space of real bounded functions on [0, 1]. Let us further define, for
F, G ∈ B([0, 1]), d∞(F, G) = supx∈[0,1] |F (x) − G(x)|. So that (F([0, 1]), d∞) is a
complete metric space.

Let N ∈ N be fixed and let:

i) wi : [ai, bi) → [ci, di) = wi([ai, bi)), i = 1, . . . , N − 1, wN : [aN , bN ] → [cN , dN ],
with a1 = c1 = 0 and bN = dN = 1;

ii) wi, i = 1 . . . N , are increasing and continuous;

iii)
N−1⋃
i=1

[ci, di) ∪ [cN , dN ] = [0, 1];

iv) if i 6= j then [ci, di) ∩ [cj , dj) = f¡ .

v) pi ≥ 0, i = 1, . . . , N , δi ≥ 0, i = 1 . . . N − 1,
N∑

i=1

pi +
N−1∑
i=1

δi = 1.

On (F([0, 1], d∞) we define an operator in the following way:

(2.1) TF (x) =





p1F (w−1
1 (x)), x ∈ [c1, d1)

piF (w−1
i (x)) +

i−1∑
j=1

pj +
i−1∑
j=1

δj , x ∈ [ci, di) , i = 2, . . . , N − 1

pNF (w−1
N (x)) +

N−1∑
j=1

pj +
N−1∑
j=1

δj , x ∈ [cN , dN ]

where F ∈ F([0, 1]). In many pratical cases wi are affine maps. The new distribution
function TF is union of distorted copies of F ; this is the fractal nature of the operator
(see Figure 1). A similar approach has been discussed in [13] but here a more general
operator is defined. We stress here that in the following we will think to the maps wi

and to the parameters δj as fixed whistle the parameters pi have to be chosen. To
put in evidence the dependence of the operator T on the vector p = (p1, . . . , pN ) we
will write Tp instead of T .

In Remark 2.1 the hypotheses ii) and v) will be weakened to allow more general
functionals.

Theorem 2.1. Tp is an operator from F([0, 1]) to itself.

Proof. It is trivial that TpF (0) = 0 and TpF (1) = 1. Furthermore if x1 > x2, without
loss of generality, we can consider the two cases:

i) x1, x2 ∈ wi([ai, bi));

ii) x1 ∈ wi+1([ai+1, bi+1)) and x2 ∈ wi([ai, bi)).
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In case i), recalling that wi are increasing maps, we have:

TpF (x1) = piF (w−1
i (x1)) +

i−1∑

j=1

pj +
i−1∑

j=1

δj

≥ piF (w−1
i (x2)) +

i−1∑

j=1

pj +
i−1∑

j=1

δj = TpF (x2)

In case ii) we obtain:

TpF (x1)− TpF (x2) = pi + δi + pi+1F (w−1
i+1(x1))− piF (w−1

i (x2))

= pi(1− F (w−1
i (x2))) + pi+1F (w−1

i+1(x1)) + δi ≥ 0

since pi ≥ 0, δi ≥ 0 and 0 ≤ F (y) ≤ 1. Finally, one can prove without difficulties the
right continuity of Tpf .

The following remark will be useful for the applications in Section .

Remark 2.1. If hypotheses i), ii) and v) in the definition of Tp are replaced by the
following

i’+ii’) wi(x) = x, ai = ci, bi = di, i = 1, . . . , N ,

v’) pi = p, δi ≥ −p, Np +
N−1∑
i=1

δi = 1,

then Tp : F([0, 1]) → F([0, 1]).

Theorem 2.2. If c = max
i=1,...,N

pi < 1, then Tp is a contraction on (F([0, 1]), d∞) with

contractivity constant c.

Proof. Let F, G ∈ (F([0, 1]), d∞) and let it be x ∈ wi([ai, bi)). We have

|TpF (x)− TpG(x)| = pi

∣∣F (w−1
i (x))−G(w−1

i (x))
∣∣ ≤ c d∞(F,G) .

This implies d∞(TpF, TpG) ≤ c d∞(F, G).

The following theorem states that small perturbations of the parameters pi produce
small variations on the fixed point of the operator.

Theorem 2.3. Let p, p∗ ∈ RN such that TpF1 = F1 and Tp∗F2 = F2. Then

d∞(F1, F2) ≤ 1
1− c

N∑

j=1

∣∣pj − p∗j
∣∣

where c is the contractivity constant of Tp.
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Proof. In fact, recalling that wi and δi are fixed, we have

d∞(F1, F2) = d∞(TpF1, TpF2)

= max
i=1,...,N

sup
x∈[ci,di)

{∣∣∣∣piF1(w−1
i (x)) +

i−1∑

j=1

pj

− p∗i F2(w−1
i (x))−

i−1∑

j=1

p∗j

∣∣∣∣
}

≤
N∑

i=1

|pi − p∗i |+ c d∞(F1, F2) ,

since ∣∣∣∣∣∣
piF1(w−1

i (x)) +
i−1∑

j=1

pj − p∗i F2(w−1
i (x))−

i−1∑

j=1

p∗j

∣∣∣∣∣∣

≤
i−1∑

j=1

|pj − p∗j |+ |piF1(w−1
i (x))− piF2(w−1

i (x))|

+ |piF2(w−1
i (x))− p∗i F2(w−1

i (x))|

≤
i−1∑

j=1

|pj − p∗j |+ pid∞(F1, F2) + |pi − p∗i |

≤ c d∞(F1, F2) +
N∑

j=1

|pj − p∗j | .

Choose F ∈ (F([0, 1]), d∞). The goal now is to find a contractive map T : F([0, 1]) →
F([0, 1]) which has a fixed point “near” to F . In fact if it is possible to solve the
inverse problem with an arbitrary precision one can identify the operator T with its
fixed point. With a fixed system of maps wi and parameters δj , the inverse problem
can be solved, if it is possible, by using the parameters pi. These have to be choosen
in the following convex set:

C =

{
p ∈ RN : pi ≥ 0, i = 1, . . . , N,

N∑

i=1

pi = 1−
N−1∑

i=1

δi

}
,

We have the following result that is trivial to prove.

Proposition 2.1. Choose ε > 0 and p ∈ C such that pi · pj > 0 for some i 6= j. If
d∞(TpF, F ) ≤ ε, then:

d∞(F, F̃ ) ≤ ε

1− c
,

where F̃ is the fixed point of Tp on F([0, 1]) and c = max
i=1,...,N

pi is the contractivity

constant of Tp.
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If we wish to find an approximated solution of the inverse problem, we have to
solve the following constrained optimization problem:

(P ) min
p∈C

d∞(TpF, F )

It is clear that the ideal solution of (P) consists of finding a p∗ ∈ C such that
d∞(Tp∗F, F ) = 0. In fact this means that, given a distribution function F , we have
found a contractive map Tp which has exactly F as fixed point. Indeed the use
of Proposition 2.1 gives us only an approximation of F . This can be improved by
increasing the number of parameters pi (and maps wi).

The following result proves the convexity of the function D(p)=d∞(TpF , F ), p ∈
RN .

Theorem 2.4. The function D(p) : RN → R is convex.

Proof. If we choose p1, p2 ∈ RN and λ ∈ [0, 1] then:

D(λp1 + (1− λ)p2) = sup
x∈[0,1]

|Tλp1+(1−λ)p2F (x)− F (x)|

≤ λ sup
x∈[0,1]

|Tp1F (x)− F (x)|

+ (1− λ) sup
x∈[0,1]

|Tp2F (x)− F (x)|

= λD(p1) + (1− λ)D(p2).

Hence for solving problem (P) one can recall classical results about convex program-
ming problems (see for instance [18]). A necessary and sufficient condition for p∗ ∈ C
to be a solution of (P) can be given by Kuhn-Tucker conditions.

§3. Distribution function estimation and applications

In this section we focus the attention on some estimation problems. Instead of
trying to solve exactly the problem in (P) we will use the properties of distribution
functions to obtain a good approximator of F that can be directly used in distribution
function estimation. Via Monte Carlo analysis, we will also show that, for small
sample sizes, this IFS estimator is better than the celebrated empirical distribution
function in several situations.

As is usual in statistical applications, given a sample of n independent and iden-
tically distributed observations, (x1, x2, . . . , xn), drawn from an unknown continuous
distribution function F ∈ F([0, 1]), one can easily contruct the empirical distribution
function (e.d.f.) F̂n that reads as

F̂n(x) =
1
n

n∑

i=1

χ(−∞,x](xi), x ∈ R ,

where χA is the indicator function of the set A. Asymptotic properties of optimality
of F̂n as estimator of the unknown F when n goes to infinity are well known and
studied [15, 16].



32 Stefano M. Iacus and Davide La Torre

Remark 3.2. This function has an IFS representation that is exact and can be found
without solving any optimization problem. We assume that the xi in the sample are
all different (this assumption is natural if F is a continuous distribution function).
Let wi(x) : [xi−1, xi) → [xi−1, xi), when i = 1 . . . n and w1(x) : [0, x1) → [0, x1),
wn+1(x) : [xn, xn+1] → [xn, xn+1],with x0 = 0 and xn+1 = 1. Assume also that every
map is of the form wi(x) = x. If we choose pi = 1

n , i = 2 . . . n + 1, p1 = 0 and

δ1 =
n− 1
n2

, δi = − 1
n2

then the following representation holds:

TpF̂n(x) =





0, i = 1
1
n F̂n(x) + n−1

n2 , i = 2
1
n F̂n(x) + i−1

n + n−i+1
n2 , i = 3, . . . , n + 1.

for x ∈ [xi−1, xi). It should be clear that any discrete distribution function can be
represented exactly with an IFS by similar arguments.

From now on we assume that δi = 0, ∀ i. To produce an estimator we should
first provide a good approximator of F . So fix an F ∈ F([0, 1]) and choose N + 1
ordered points (x1, . . . , xN+1) such that x1 = 0 and xN+1 = 1. Define the maps wi

and coefficients pi as follows

pi(F ) = F (xi+1)− F (xi) ,

wi(x) : [0, 1) → [xi, xi+1) = (xi+1 − xi) · x + xi , i = 1, . . . , N.

The functional Tp can be denoted as TN with this given set of maps and coefficients
as it depends only on the number of points. For any u ∈ F([0, 1]), TN can be written
as

TNu(x) =
N∑

i=1

piu
(
w−1

i (x)
)

=
N∑

i=1

(
F (xi+1)− F (xi)

)
· u

(
x− xi

xi+1 − xi

)
,

x ∈ R, TN is a contraction on (F([0, 1]), dsup) and it is such that TNu(xi) = F (xi),
∀ i. TN has been built by first rescaling in abscissa the whole function F from [0, 1]
to each of the intervals [xi, xi+1) and then copying it in ordinate after a translation
equal to F (xi). The idea is to use the fractal nature of the IFS (see again Figure 1).

This functional is indeed a function of F and can’t be used directly in statistical
applications as F is unknown. To this end, just think at the point xi as the quantiles
qi of F , i.e. choose N + 1 points u1 = 0 < u2 < · · ·un < uN+1 = 1 equally spaced on
[0,1] and set qi = F−1(ui). The function TN becomes

TNu(x) =
N∑

i=1

1
N

u

(
x− qi

qi+1 − qi

)
, x ∈ R

and TN depends on F only through the quantiles qi, moreover in this way, it is assured
that the profile of F is followed as smooth as possible. In fact, if two quantiles qi

and qi+1 are relatively distant each other, then F is slowly increasing in the interval
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(qi, qi+1) and viceversa. As the quantiles can be easily estimate from a sample we have
now a possible candidate for an IFS distribution function estimator. Thus, let now
x1, x2, . . . , xn be a sample drawn from F and let q̂i, i = 1, . . . , N + 1 the empirical
quantiles of order 1/N such that q̂1 = 0 and q̂N+1 = 1, then we propose as IFS
distribution function estimator the fixed point of the following IFS

T̂Nu(x) =
N∑

i=1

1
N

u

(
x− q̂i

q̂i+1 − q̂i

)
, x ∈ R ,

with u ∈ F([0, 1]).

Let N = Nn be a sequence depending on the sample size n. Denote the fixed
point of T̂Nn by T̂ ∗Nn

. Then T̂ ∗Nn
satifies

T̂ ∗Nn
(x) =

N∑

i=1

1
N

T̂ ∗Nn

(
x− q̂i

q̂i+1 − q̂i

)
, x ∈ R .

Theorem 3.5 (Glivenko-Cantelli). Let Nn →∞ as n →∞, then for any fixed F

lim
n→∞

sup
x∈R

∣∣∣T̂ ∗Nn
(x)− F (x)

∣∣∣ a.s.= 0 .

Proof. We can write
∣∣∣T̂ ∗Nn

(x)− F (x)
∣∣∣ ≤

∣∣∣T̂ ∗Nn
(x)− F̂n(x)

∣∣∣ +
∣∣∣F̂n(x)− F (x)

∣∣∣

and the first term can be estimated by 1/Nn while the second one converges to 0
almost surely by the Glivenko-Cantelli theorem for the e.d.f.

3.1 Monte Carlo analysis for small samples

The IFS estimator is as efficient as the e.d.f. in the large sample case; we will give now
empirical evidence that it can be even better in some situations for the small sample
case. The main difference between the e.d.f and the IFS estimator is that the e.d.f. is
a step-wise function whistle the IFS is somewhat “smooth” in the sense that the IFS
jumps are several order of magnitude smaller then the ones of the e.d.f. Remember
that we assume that the underline distribution function F is a continuous one.

Tables 1 and 2 report the results of Monte Carlo analysis for distribution function
estimation. At each Monte Carlo step, we have drawn samples of n = 10, 20, 30, 50, 75,
100 replications for several type of distributions. For each distribution and sample
size n we have done 100 Monte Carlo simulations. We have chosen the beta family of
distribution functions because they allow very good and well tested random number
generators, different kinds of asymmetry (beta(3,5) and beta(5,3)), bell shaped distri-
butions with (beta(5,5)) or without (beta(2,2)) tails, and also U-shaped distributions
(beta(.1,.1)). For distribution function estimation we have considered the dsup (SUP-
NORM) distance and the average mean square error (AMSE) both for T̂N and F̂n,
then we have reported in the table only the ratio of the indexes. Thus, each entry in
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Figure 1: The fractal nature of the IFS distribution function estimator T̂N . The dotted line
is the underlying truncated Gaussian distribution. The dotted rectangle is to represent the
area zoomed in the next plot (left to right, up to down). The dotted boxes are in the order:
[0, q̂2]× [0, q̂2], [0, q̂2

2 ]× [0, q̂2
2 ] and [0, q̂3

2 ]× [0, q̂3
2 ].
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n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

10 beta(.9,.1) 94.86 98.10
10 beta(.1,.9) 99.79 100.33
10 beta(.1,.1) 99.26 100.05
10 beta( 2, 2) 80.99 82.18
10 beta( 5, 5) 89.91 89.74
10 beta( 5, 3) 98.57 92.86
10 beta( 3, 5) 90.70 91.34
10 beta( 1, 1) 81.23 80.04

n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

20 beta(.9,.1) 101.56 99.1
20 beta(.1,.9) 113.31 114.50
20 beta(.1,.1) 99.77 98.84
20 beta( 2, 2) 86.05 83.34
20 beta( 5, 5) 89.27 87.49
20 beta( 5, 3) 92.89 89.31
20 beta( 3, 5) 88.27 87.29
20 beta( 1, 1) 84.89 79.27

n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

30 beta(.9,.1) 97.17 92.91
30 beta(.1,.9) 118.80 115.38
30 beta(.1,.1) 99.62 98.57
30 beta( 2, 2) 86.23 84.01
30 beta( 5, 5) 89.54 89.21
30 beta( 5, 3) 91.67 87.90
30 beta( 3, 5) 88.31 88.34
30 beta( 1, 1) 87.16 81.00

Table 1: Relative efficiency of IFS-based estimator with respect to the empirical distribution
function. Small sample sizes. In many situations the T̂N seems to be better (10 to 20%)
then the usual empirical distribution function estimator.

the table reports the percentage of error of T̂N with respect to F̂n, the error of F̂n being
100. The software used is R [10], freely available on http://cran.R-project.org,
using a beta packages ifs available as an additional contributed package.

For the estimator T̂N we have chosen to take Nn = n/2. In the small sample size
case n = 10, 20, 30 it can be noted that T̂N is sometimes better (from 10 to 20%)
then the empirical distribution function. Our advise is that this happen due to the
difference of the jumps (very high) of the e.d.f. and of T̂N (rather small ones). This
allows to follow the profile of a continuous curve better.

For moderate sample sizes (n = 50, 75, 100) the distance between T̂N and F̂n

decreases and consequently the gain of using the IFS estimator is not that evident
(on the average 5 to 10%).

Final remarks about the method

There is at least one open issue in this topic as this is a first attempt to introduce
IFS in distribution function estimation: are there other maps then the ones used
in TN that can improve the performance of the corresponding IFS estimator? We
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n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

50 beta(.9,.1) 98.59 95.87
50 beta(.1,.9) 107.85 113.85
50 beta(.1,.1) 97.77 99.87
50 beta( 2, 2) 91.55 87.40
50 beta( 5, 5) 91.57 89.64
50 beta( 5, 3) 97.80 92.73
50 beta( 3, 5) 91.90 91.40
50 beta( 1, 1) 92.84 86.24

n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

75 beta(.9,.1) 98.85 97.66
75 beta(.1,.9) 122.62 122.78
75 beta(.1,.1) 100.37 106.85
75 beta( 2, 2) 94.77 90.42
75 beta( 5, 5) 97.41 92.39
75 beta( 5, 3) 104.31 96.29
75 beta( 3, 5) 95.14 91.80
75 beta( 1, 1) 98.39 89.05

n law AMSE SUP-NORM

T̂N w.r.t. F̂n T̂N w.r.t. F̂n

100 beta(.9,.1) 98.22 96.65
100 beta(.1,.9) 114.91 152.41
100 beta(.1,.1) 102.02 110.96
100 beta( 2, 2) 97.03 91.68
100 beta( 5, 5) 95.08 93.37
100 beta( 5, 3) 95.52 93.96
100 beta( 3, 5) 97.59 94.23
100 beta( 1, 1) 101.58 92.26

Table 2: Relative efficiency of IFS-based estimator with respect to the empirical distribution
function. Moderate sample sizes. In many situations the T̂N seems to be better (around 10%
in average) then the usual empirical distribution function estimator. As T̂N is asymptotically
equivalent to the e.d.f it is clear that the advantage of using T̂N instead of F̂n reduces as the
sample size increases.

have suggested a quantile approach but some other good partition of the space, like
a dyadic sequence, can be used at the cost of the need to solve some optimization
problems. In [6] this problem is touched incidentally but not in a statistical context.

To put in evidence the fractal nature of the IFS we have added a graph (see Figure
1) of the T̂N estimator on sampled data from a Gaussian distribution rescaled on [0,1].
We have zoomed the graph three times to show the self-similarity of the fixed point.
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