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Abstract

In this paper, we do a comparative simulation study of the standard empirical distribution function
estimator versus a new class of nonparametric estimators of a distribution function F, called the
iterated function system (IFS) estimator.The target distribution functionF is supposed to have compact
support. The IFS estimator of a distribution function F is considered as the fixed point of a contractive
operator T defined in terms of a vector of parameters p and a family of affine mapsW which can be
both dependent on the sample (X1, X2, . . . , Xn). GivenW, the problem consists in finding a vector p
such that the fixed point of T is “sufficiently near” to F. It turns out that this is a quadratic constrained
optimization problem that we propose to solve by penalization techniques. Analytical results prove
that IFS estimators for F are asymptotically equivalent to the empirical distribution function (EDF)
estimator. We will study the relative efficiency of the IFS estimators with respect to the empirical
distribution function for small samples via the Monte Carlo approach.
For well-behaved distribution functions F and for a particular family of the so-called wavelet maps

the IFS estimators can be dramatically better than the empirical distribution function in the presence
of missing data, i.e. when it is only possible to observe data on subsets of the whole support of F.
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1. Introduction

Let X1, X2, . . . , Xn be an i.i.d. sample drawn from a random variable X with unknown
distribution function F with compact support [0, 1]. The empirical distribution function
(EDF)

F̂n(x) = 1
n

n
∑

i=1
!(Xi !x)

is one commonly used estimator of the unknown distribution function F (here !A is the
indicator function of the set A). The EDF has an impressive set of good statistical properties
such as it is first-order efficient in the minimax sense (see [2,4,8,14,15]). More or less
recently, other second-order efficient estimators have been proposed in the literature for
special classes of distribution functions F. Golubev and Levit [9,10] and Efromovich [5]
are two such examples. It is rather curious that a step-wise function can be such a good
estimator and, in fact, Efromovich [5] shows that, for the class of analytic functions, for
small sample sizes, the EDF is not the best estimator. In this paper, we study the properties
of a new class of distribution function estimators based on iterated function systems (IFSs)
introduced by the authors in a previous work [12]. IFSs have been introduced in [1,11]. The
main idea on which this method is based consists of considering the estimation of F as the
fixed point of a contraction T on a complete metric space. The operator T is defined in terms
of a family of affinemapsW and a vector of parameters p. For a given familyW, T depends
only on the choice p. The idea, known as inverse approach (see Section 2), is to determine p
by solving a constrained quadratic optimization problem built in terms of sample moments.
The nature of affine maps allow to derive easily the Fourier transform of F and, when
available, an explicit formula for the density of F via anti-Fourier transform. In this way,
givenW and p we have at the same time estimators for the distribution, characteristic and
density functions.
The paper is organized as follows. In Section 2 some details concerning IFS techniques

are recalled. In Section 3 numerical results and comparisons with classical estimators are
shown for small samples via Monte Carlo analysis. Finally, we show an application of these
estimators when the empirical distribution function (or the kernel density estimator) cannot
be applied.We will consider situations of missing data when, for example, the data can only
be observed on some windows of the support of F. This can be the case of directional data
analysis when, for some reason, instruments are not able for technical or physical reasons
to collect data in same range of angles say A and B, A, B ⊆ [0, 2"]. For x in A or B the
EDF will be constant and, at the same time, the kernel density estimator will estimate a
plurimodal distribution for these data. In this case we will show some examples in which
the IFS estimator works better than classical estimators.

2. An IFS estimator

The theory of distribution function approximation via IFSs that we will use to derive
estimators is due to Forte and Vrscay [6]. Results from this section, are from the cited
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authors. Let M(X) be the set of probability measures on B(X), the #-algebra of Borel
subsets of X where (X, d) is a compact metric space (if not otherwise remarked, in this
paper X will be [0, 1] and d the Euclidean metric even if all the results can be extended to
X = [$,%]).
In the IFSs literature the following Hutchinson metric plays a crucial role:

dH(&, ') = sup
f ∈Lip(X)

{
∫

X
f d& −

∫

X
f d'

}

, &, ' ∈ M(X),

where

Lip(X) = {f : X → R, |f (x) − f (y)|!d(x, y), x, y ∈ X},
thus (M(X), dH) is a complete metric space (see [11]).
We denote by (w,p) an N-maps contractive IFS on X with probabilities or simply an

N-maps IFS, that is, a set of N affine contraction maps, w = (w1, w2, . . . , wN),

wi = ai + bix, with |bi | < 1, bi, ai ∈ R, i = 1, 2, . . . , N ,

with associated probabilities p= (p1, p2, . . . , pN), pi "0, and
∑N

i=1 pi = 1. The IFS has
a contractivity factor defined as

c = max
1! i !N

|bi | < 1.

Consider the following (usually called Markov) operatorM : M(X) → M(X) defined as

M& =
N

∑

i=1
pi& ◦ w−1

i , & ∈ M(X), (1)

where w−1
i is the inverse function of wi and ◦ stands for the composition. In [11] it

was shown that M is a contraction mapping on (M(X), dH) i.e. for all &, ' ∈ M(X),
dH(M&, M')!cdH(&, '). Thus, there exists a unique measure &̄ ∈ M(X), the invariant
measure of the IFS, such that M&̄ = &̄ by Banach theorem. Associated to each measure
& ∈ M(X), there exists a distribution function F. In terms of this the previous operator M
can be rewritten as

T F(x) =











0 if x!0,
N
∑

i=1
piF (w−1

i (x)) if 0< x < 1,

1 if x"1.

2.1. Minimization approach

For affine IFSs there exists a simple and useful relation between the moments of prob-
ability measures onM(X). Given an N-maps IFS(w,p) with associated Markov operator
M, and given a measure & ∈ M(X) then, for any continuous function f : X → R,

∫

X
f (x) d'(x) =

∫

X
f (x) d(M&)(x) =

N
∑

i=1
pi

∫

X
(f ◦ wi)(x) d&(x), (2)
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where ' = M&. In our case X = [0, 1] ⊂ R so we readily have a relation involving the
moments of & and '. Let

gk =
∫

X
xkd&, hk =

∫

X
xkd', k = 0, 1, 2, . . . , (3)

be the moments of the two measures, with g0 = h0 = 1. Then, by (2), with f (x) = xk , we
have

hk =
k

∑

j=0

(

k

j

)

{

N
∑

i=1
pib

j
i a

k−j
i

}

gj , k = 1, 2, . . . .

Let & and &(j) ∈ M(X), j = 1, 2, . . ., with associated moments of any order gk and

g
(j)
k =

∫

X
xk d&(j).

Then, the following statements are equivalent (as j → ∞ and ∀k"0):

1. g
(j)
k → gk ,

2. ∀f ∈ C(X),
∫

X f d&(j) →
∫

X f d&, (weak* convergence),
3. dH(&(j),&) → 0.

(here C(X) is the space of continuous functions on X). This result gives a way for finding
out an appropriate set of maps and probabilities by solving the so-called problem ofmoment
matching. With the solution in hand, given the convergence of the moments, we also have
the convergence of the measures and then the stationary measure of M approximates with
given precision (in a sense specified by the collage theorem below) the target measure &
(see [1]).
The next result, called the collage theorem, is a standard product of the IFS theory and

is a consequence of Banach theorem.

Collage theorem. Let (Y, dY ) be a complete metric space. Given y ∈ Y , suppose that there
exists a contractive map f onY with contractivity factor 0!c < 1 such that dY (y, f (y)) < (.
If ȳ is the fixed point of f, i.e. f (ȳ) = ȳ, then dY (ȳ, y) < (/(1− c).

So if one wishes to approximate a function y with the fixed point ȳ of an unknown
contractivemap f, it is only needed to solve the inverse problem of finding fwhichminimizes
the collage distance dY (y, f (y)).
The main result in [6,7] that we will use to build one of the IFS estimators is that the

inverse problem can be reduced to minimize a suitable quadratic form in terms of the pi

given a set of affine maps wi and the sequence of moments gk of the target measure. Let

)N =
{

p= (p1, p2, . . . , pN) : pi "0,
N

∑

i=1
pi = 1

}
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be the simplex of probabilities. Let w = (w1, w2, . . . , wN), N = 1, 2, . . . , be subsets of
W= {w1, w2, . . .} the infinite set of affine contractive maps on X = [0, 1] and let g be the
set of the moments of any order of & ∈ M(X). Denote by M the Markov operator of the
N-maps IFS (w,p) and by 'N = M&, with associated moment vector of any order hN . The
collage distance between the moment vector of & and 'N

*(p) = ‖g − hN‖l̄2 : )N → R

is a continuous function and attains an absolute minimum value *min on)N , where

‖x‖l̄2 = x20 +
∞
∑

k=1

x2k
k2
.

Moreover, *N
min → 0 as N → ∞. Thus, the collage distance can be made arbitrarily small

by choosing a suitable number of maps and probabilities.
The above inverse problem can be posed as a quadratic programming one in the following

notation:

S(p) = (*(p))2 =
∞
∑

k=1

(hk − gk)
2

k2
,

D(X) = {g = (g0, g1, . . .) : gk =
∫

X
xk d&, k = 0, 1, . . . ,& ∈ M(X)}.

Then by (2) there exists a linear operator A : D(X) → D(X) associated to M such that
hN = Ag. In particular,

hk =
N

∑

i=1
Akipi, k = 1, 2, . . . where Aki =

∞
∑

j=0

(

k

j

)

b
j
i a

k−j
i gj . (4)

Thus,

(QP) S(p) = ptQp+ Btp+ C,

where

Q = [qij ], qij =
∞
∑

k=1

AkiAkj

k2
, i, j = 1, 2, . . . , N ,

Bi = −2
∞
∑

k=1

gk

k2
Aki, i = 1, 2, . . . , N and C =

∞
∑

k=1

g2k
k2
. (5)

The above series are convergent as 0!Ani !1 and theminimumcanbe found byminimizing
the quadratic form on the simplex)N .
In [6] the following two sets of wavelet-type maps are proposed for solving the inverse

problem. Fixed and index i∗ ∈ N, define

+ij = x + (j − 1)
2i

, i = 1, 2, . . . , i∗, j = 1, 2, . . . , 2i
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and

,ij = x + (j − 1)
i

, i = 2, . . . , i∗, j = 2, . . . , i.

Then set N = ∑i∗
i=1 2i or N = i∗(i∗ − 1)/2, respectively. To choose the maps, consider the

natural ordering of the maps -ij and operate as follows:

W1 = {w1 = +11, w2 = +12, w3 = +21, . . . , w6 = +24, w7 = +31, . . . , wN = +i∗2i∗ }

and

W2 = {w1 = ,22, w2 = ,32, w3 = ,33, w4 = ,42, . . . , w6 = ,44, . . . , wN = ,i∗i∗},

respectively.

2.2. Fourier analysis results

We now recall some results concerning Fourier analysis of IFS operators [7]. These will
be very useful for doing density estimation in the presence of missing data. We recall that,
without loss of generality, the support of the measures is X = [0, 1].
Given a measure & ∈ M(X), the Fourier transform (FT) . : R → C, where C is the

complex space, is defined by the relation

.(t) =
∫

X
e−itxd&(x), t ∈ R,

with the well-known properties .(0) = 1 and |.(t)|!1, ∀t ∈ R. It can be shown that the
space of characteristic functionsFT(X) is complete with an opportune metric (see again
[7]). Thus, given an N-maps affine IFS(w,p) it is possibile to define a new linear operator
B : FT(X) → FT(X) whose unique fixed point reads as

.̄(t) =
N

∑

k=1
pke−itak .̄(bkt), t ∈ R.

This .̄(t) is the FT of the fixed point of the N-maps affine IFS(w,p). Now (see e.g. [16]),
suppose that the target distribution F admits a density f. It is possible to write the density f
via Fourier expansion. In fact,

.(t) =
∫ 1

0
f (x)e−itx dx =

∫ 1

0
e−itx dF(x),

thus

f (x) = 1
2"

+∞
∑

k=−∞
Bkeikx where Bk = .(k).
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3. Estimation by IFSs

After showing some classical results concerning IFS methodology, we are now interested
in applying this procedure to estimation. To do this, first of all we need to specify some
computational details concerning:

(a) the solution of the inverse problem by quadratic optimization and
(b) the choice of the affine maps.

In the previous section we saw that the inverse problem can be reduced to (QP). However,
when practical cases are considered the series in the function Shave to be truncated and so the
matrixQ could not be definite positive. Standard numerical procedures for the minimization
of constrained quadratic optimization problems involving positive definite quadratic forms
cannot be used in this context. To solve this problem an approach is to build the following
penalized function L/:

L/(p) = ptQp+ Btp+ C + /

(

1−
N

∑

i=1
pi

)2

and then to study the following problem:

(LOP) min L/(p), 0!pi !1.

Trivially, an optimizer p∗ of (LOP) such that
∑N

i=1 p∗
i = 1 is also an optimizer for the

problem

(OP) min S(p), p ∈ )N

To solve (LOP) numerically, we use the L-BFGS-B method due to Byrd et al. [3] which
allows to minimize a nonlinear function with box constraints, i.e. when each variable can
be given a lower and/or upper bound. The initial value of this procedure must satisfy the
constraints. This uses a limited-memory modification of the BFGS quasi-Newton method.
Themethod “BFGS” is a quasi-Newtonmethod (also known as a variablemetric algorithm).
As for point (b): in the previous section we recalled two types of wavelet maps proposed

by Forte and Vrscay. In [12] we proposed the following quantile-based maps:

Q1 = {wi(x) = (qi+1 − qi)x + qi, i = 1, 2, . . . , N},

where qi = F−1(ui), and 0 = u1< u2 < · · · < uN < uN+1 = 1 are N + 1 equally spaced
points on [0, 1]. With these maps, it has been shown that, there is no need to use a moment
matching approach. In particular, given pi = 1/N , the IFSs turn out to be a smoother of
the EDF and so it has nice small sample and asymptotic statistical properties (see cited
reference) even for noncompact support distribution functions F. Here we will also mix the
quantile information with the moment matching idea. To distinguish the two cases (fixed
pi = 1/N or p solution of (QP) in the following we will use the notation Q1 and Q2.
Suppose we were to have an i.i.d. (independent and identically distributed) sample on n

observationsX1, X2, . . . , Xn with common unknown distribution function Fwith compact
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support on [0, 1] which has all the moments up to order M. An IFS estimator of F is the
fixed point of the functional TF where the Nmaps are chosen in advance and the pi are the
solution of the (QP) quadratic programming problem where in Aik , Bi and C we replace
the true moments gk with the sample moments mk (see Eqs. (5) and (4)), k = 0, 1, . . . , M
for a fixedM and we consider the firstM terms of the series involved. Sample moments are
calculated as follows:

mk = 1
n

n
∑

i=1
Xk

i , k"0

Given the solution of (QP), we have an estimator forF and an estimator for the characteristic
function of F, say .̂. Suppose that F possesses a density f then we also have a (Fourier)
density estimator for f

f̂ (x) = 1
2"

+m
∑

k=−m

B̂keikx

= 1
2"

+ 1
"

m
∑

i=1

{

Re(B̂k) cos(kx) − Im(B̂k) sin(kx)
}

,

where B̂k = .̂(k) and m, the number of Fourier terms, is chosen in the usual way, i.e.

if |B̂m+1|2 and |B̂m+2|2 <
2

n + 1
then use the first m coefficients

(see again [16]).

3.1. Monte Carlo analysis

Tables 1 and 2 show some comparisons between the empirical cumulative distribution
function F̂n and the IFS estimator, say T̂N , for some target distributions F, in terms of
average mean square error (AMSE) and sup-norm (SUP) distance. For assessing the quality
of the IFS estimator, we choose target distribution functions in the family of beta distribution
functions. This allows to test the estimator against a wide family of shapes of distribution
functions, i.e. symmetric and asymmetric, heavy tails or no tails, U-shaped and uniform.
In particular we focus our attention on the following beta family members: beta(0.9,0.1),
beta(0.1,0.9), beta(0.1,0.1), beta(2,2), beta(5,5), beta(3,5), beta(5,3) and beta(1,1). For each
target distribution we run 100 simulations for different sample sizes, i.e. we draw 100
samples of size n = 10, 20 or 30 (small sample sizes, respectively, n = 50, 100, 250 for
moderate sample sizes) from the corresponding beta distribution and we evaluate both the
IFS estimator and the empirical distribution function on each sample. Then we measure, for
each sample, the quality of the estimation using the AMSE and the SUP distance defined
as follows:

AMSE1 = 1
512

512
∑

i=1
(TN(zi) − F(zi))

2
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Table 1
Relative efficiency of IFS estimators with different set of mapsW1,W2,Q1 andQ2 with respect to the empirical
distribution function (i.e. IFS/EDF)

Parameters AMSE SUP

n Law W1 W2 Q1 Q2 W1 W2 Q1 Q2

10 beta(0.9,0.1) 81.08 77.05 203.53 149.68 85.76 75.44 110.11 110.81
10 beta(0.1,0.9) 211.78 2024.68 203.39 258.88 175.32 441.32 114.51 161.55
10 beta(0.1,0.1) 118.27 416.17 182.88 104.07 114.87 192.94 119.57 106.56
10 beta(2,2) 56.47 80.53 67.68 112.46 53.31 69.24 70.36 98.21
10 beta(5,5) 52.77 57.90 110.35 152.29 53.99 54.83 81.61 125.67
10 beta(3,5) 55.95 71.07 99.92 142.52 51.93 60.58 81.72 116.79
10 beta(5,3) 52.50 57.34 91.75 131.37 51.74 52.47 77.97 109.84
10 beta(1,1) 73.35 119.04 79.01 102.04 65.63 90.40 70.89 90.85

20 beta(0.9,0.1) 94.69 85.25 201.85 169.78 90.30 79.92 105.02 123.28
20 beta(0.1,0.9) 388.83 4183.36 203.70 195.36 257.13 612.55 109.10 122.99
20 beta(0.1,0.1) 154.1 690.08 125.35 97.53 139.65 255.26 103.56 99.28
20 beta(2,2) 61.46 93.37 85.46 95.49 55.34 73.95 84.42 91.38
20 beta(5,5) 54.31 52.89 105.84 131.84 53.76 48.73 85.85 106.27
20 beta(3,5) 60.42 67.33 93.30 118.51 55.98 60.88 85.39 101.16
20 beta(5,3) 53.82 57.72 92.26 114.84 53.46 52.20 85.23 102.85
20 beta(1,1) 95.93 89.79 71.66 154.54 63.20 106.95 81.56 82.54

30 beta(0.9,0.1) 107.46 90.27 195.39 143.00 101.83 81.05 108.59 109.85
30 beta(0.1,0.9) 540.73 6462.03 190.82 213.45 107.80 137.26 314.53 759.57
30 beta(0.1,0.1) 112.66 97.04 233.50 1342.44 186.70 356.91 103.39 99.98
30 beta(2,2) 60.30 92.92 88.90 96.88 53.71 72.06 84.92 89.11
30 beta(5,5) 62.04 56.07 100.26 121.41 60.08 51.82 89.26 100.16
30 beta(3,5) 70.31 76.90 93.02 108.76 61.68 66.29 86.36 95.24
30 beta(5,3) 55.78 56.85 92.10 102.02 55.56 51.21 88.20 94.75
30 beta(1,1) 71.88 211.28 94.36 88.17 63.15 121.23 83.74 83.40

Based on 100 Monte Carlo simulations for each target beta($,%) distribution. Small sample sizes n = 10, 20
and 30.

and the SUP distance

SUP1 = max
i=1,...,512

|TN(zi) − F(zi)|,

where zi , i=1, . . . , 512 are equally spaced points on [0, 1],F is one of the beta distributions
and TN is the IFS estimator. The same applies for the empirical distribution function, i.e.
we calculate

AMSE2 = 1
512

512
∑

i=1
(F̂n(zi) − F(zi))

2

and the SUP distance

SUP2 = max
i=1,...,512

|F̂n(zi) − F(zi)|.
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Table 2
Relative efficiency of IFS estimators with different set of mapsW1,W2,Q1 andQ2 with respect to the empirical
distribution function (i.e. IFS/EDF)

Parameters AMSE SUP

n Law W1 W2 Q1 Q2 W1 W2 Q1 Q2

50 beta(0.9,0.1) 132.67 115.10 163.33 129.24 109.18 88.77 103.37 101.90
50 beta(0.1,0.9) 1044.12 12573.16 181.99 180.42 421.49 991.33 104.37 123.39
50 beta(0.1,0.1) 306.49 1917.23 105.68 97.27 214.27 430.63 100.13 98.04
50 beta(2,2) 63.03 106.56 95.35 95.66 58.39 80.00 89.42 89.36
50 beta(5,5) 68.94 60.19 102.22 114.92 66.77 55.49 91.86 97.40
50 beta(3,5) 79.98 93.80 96.20 102.32 66.76 77.57 91.39 93.76
50 beta(5,3) 63.13 62.21 93.59 98.47 62.04 55.95 90.66 93.19
50 beta(1,1) 73.47 304.41 97.24 92.19 62.69 150.39 87.38 86.30

100 beta(0.9,0.1) 195.54 158.80 140.55 108.27 138.93 105.31 102.25 99.07
100 beta(0.1,0.9) 1557.30 20324.60 135.45 125.94 536.84 1267.81 103.87 106.05
100 beta(0.1,0.1) 554.11 3918.62 102.67 98.29 304.59 625.75 99.10 98.04
100 beta(2,2) 61.63 165.60 95.58 97.46 57.18 98.50 92.11 93.09
100 beta(5,5) 87.97 67.79 99.28 108.21 78.94 60.96 94.83 96.52
100 beta(3,5) 111.30 134.54 100.68 103.31 79.59 100.20 95.35 95.72
100 beta(5,3) 61.03 57.19 97.28 101.32 65.97 55.08 94.14 95.42
100 beta(1,1) 67.91 558.50 97.71 94.87 58.71 201.10 90.83 89.97

250 beta(0.9,0.1) 338.72 255.23 115.25 101.55 180.29 131.97 100.68 99.43
250 beta(0.1,0.9) 3979.61 50448.13 117.81 105.37 874.65 2045.15 100.82 99.73
250 beta(0.1,0.1) 1345.72 10051.20 100.60 98.97 480.12 977.30 99.16 98.73
250 beta(2,2) 79.01 275.93 98.59 98.30 67.14 132.87 95.50 95.24
250 beta(5,5) 163.68 99.35 99.07 100.54 111.38 78.48 96.40 96.83
250 beta(3,5) 212.17 228.58 99.45 99.69 113.70 142.21 96.57 96.32
250 beta(5,3) 91.32 73.31 99.05 99.20 88.87 67.13 96.84 97.24
250 beta(1,1) 69.03 1165.61 99.47 98.46 61.07 293.58 94.88 94.55

Based on 100 Monte Carlo simulations for each target beta($,%) distribution. Moderate to large sample sizes
n = 50, 100, 250.

Finally, as usual in statistics, the comparison between estimators is measured in terms of
relative efficiency, which means that we actually consider the following ratios:

AMSE = 100 ∗ AMSE1
AMSE2

, SUP = 100 ∗ SUP1
SUP2

.

Values lower than 100 in AMSE and SUP mean that the IFS estimator TN is more efficient
than the empirical distribution function F̂n in estimating the unknown F. Tables 1 and 2
report the average of AMSE and SUP over 100 replications for different sample sizes and
for TN using four different sets of mapsW1,W2, Q1 and Q2 (for wavelet maps we make
use of the first 30 sample moments). It is possible to notice that the IFS estimator based on
mapsW1 has good properties for symmetric bell-shaped distributions and distributionswith
not so heavy tails (see also Fig. 2). From our numerical results the asymptotic equivalence
between IFSs and EDF is also evident when quantile maps are used. Note that we used
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Fig. 1. Data from a Beta(2,2) distribution when only the observations in (0.1, 0.15) ∪ (0.37, 0.43) ∪ (0.7, 0.8) are
available to the observer all the others being truncated by the instrument. The observations are marked as vertical
ticks. The IFS estimator withW1 maps seems to be able to reconstruct the underlying distribution and density
function, whilst, for obvious reasons both the edf and the kernel estimators fail. Notice that the arbitrary choice of
the window of observation can be changed without substantial loss or gain. In this example the relative efficiency
(IFS/EDF) is 7% for the AMSE and 23% for the SUP-norm.

62 maps for W1, 28 maps for W2 and n/2 quantiles for the quantile maps Q1 and Q2
(Figs. 1–4).

3.2. What if data are missing?

Suppose now that for some reason, the sample of n observations from F are in fact a
subset of a larger sample, of unknown size. In practice we do not observe the data on the
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Fig. 2. Relative efficiency of IFS estimator for different set of maps W1, W2, Q1 and Q2 with respect to the
empirical distribution function. Based on 100 Monte Carlo simulations. SUP-norm up, AMSE bottom. Values
lower than 1.0 mean that the IFS estimator performs better than the EDF.

whole support of F but only on some windows. This sample reduction is due to some sort of
censoring. So we are in the presence of missing data when we do not know how many data
aremissing andwhere exactly theyweremissed, i.e. we are not in a classical censoring setup.
A motivation for this scheme of (non)-observation is the following: suppose one wants to
estimate the distribution of the angle of the wind registered by some instruments in degrees
(0,360). For some reason, data from angles (15,37) and (62,79) are missing for technical
failures or physical obstacles. In this case the empirical distribution function will be flat on
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Fig. 3. Relative efficiency of IFS estimator for different set of maps W1, W2, Q1 and Q2 with respect to the
empirical distribution function. Based on 100 Monte Carlo simulations. SUP-norm up, AMSE bottom. Values
lower than 1.0 mean that the IFS estimator performs better than the EDF.

these windows and a kernel density estimator will probably show a multimodal shape. This
is due to the fact that quantile estimation is inappropriate in this context. At the same time,
moment estimation tends to be more robust, in particular if the distribution is symmetric.
We only report a graphical example of what can happen. Fig. 1 is about a sample from a
Beta(2,2) distribution when only the observations in (0.1, 0.15) ∪ (0.37, 0.43) ∪ (0.7, 0.8)
are available to the observer all the others being truncated by the instrument (we have chosen
this interval by hazard). The IFS estimator withW1 maps seems to be able to reconstruct
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Fig. 4. Relative efficiency of IFS estimator for different set of maps W1, W2, Q1 and Q2 with respect to the
empirical distribution function. Based on 100 Monte Carlo simulations. SUP-norm up, AMSE bottom. Values
lower than 1.0 mean that the IFS estimator performs better than the EDF.

the underlying distribution and density function, while, for obvious reasons, both the EDF
and the kernel estimators fail. In this example the relative efficiency (IFS/EDF) is 7% for
the AMSE and 23% for the SUP-norm which is dramatically better than expected!

3.3. Algorithm flow for estimation

1. Choose the family of mapsW.
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2a. IfW=W1 orW2,

(i) calculate sample moments,
(ii) build the quadratic form and solve it for p.

2b. W=Q1 or Q2

(i) estimate the sample quantiles.

3. If you want to estimate F at point x: take any distribution function, for example the
uniform over [0, 1] and start to iterate T.

4. Stop after a few iterations (normally 5 is enough).
5. The “fixed point” of T evaluated in x is the estimate of F(x).

In case the support of F is not known one case uses the range of the sample but the re-
sulting IFS estimator will then try to approximate a distribution function which has ex-
actly that support. If any hints on the shape of the distribution F is available, use it to
choose the maps. All the examples, tables and graphics have been done by some soft-
ware developed by the authors. In particular, a package called ifs is freely available
for the R environment system [13] in the CRAN (Comprehensive R Archive Network)
http://cran.R-project.org under the contributed section.

4. Conclusions

It seems that this kind of approach can be used to make nonparametric inference when
data are missing or sample size are small. Note that with this method it is only possible to
work with distributions with compact support. Moreover, a knowledge of the support itself
it is needed. Nevertheless, it seems a promising approach and the use of different sets of
maps can be the object of further investigations.
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