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Summary: A calibration procedure is generally performed in order to correctly 
translate the personal traits observed through a psychometric test into numerical 
values. The calibration process ensures the objectivity of the measure instruments. 
Psychological measures are usually of indirect type, they are obtained as a result of 
a statistical inference process. Statistical calibration makes use of particular 
models, based on the inversion of the previous mentioned indirect measures. The 
Rasch model can be considered one of this model. 
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1. Introduction 
 
Calibration is the process whereby the scale of a measuring instrument is 
determined or adjusted on the basis of a proper experiment. Statistical 
calibration is a kind of inverse prediction (Sundberg, 1999). In this paper we 
consider the calibration of a psychometric measuring instrument. In 
psychometric field classical calibration models can not be applied since the 
true unknown measure is latent and unobservable. The standard methods 
(Spearman, 1904; Thurstone, 1938), used in order to get a measure of some 
psychological attributes, are based on a direct approach, while manifest 
observed values are indirect measures of the psychological attributes. In 
psychometric applications the indirect approach is almost exclusively 
considered.  

In section 2 a brief history of the well known Intelligence Test is 
presented. In Section 3 some details about statistical calibration are given. In 
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Section 4 the Rasch model is described. In Section 5 the Rasch analysis is 
applied to an Intelligence Test and the appropriateness of the relating model 
is discussed. 
 
 
2. Psychometric tests to measure the intelligence  
 
The origin of the attribute “mental test” is traditionally connected to the 
work of Cattell (1890) who used the experimental method to measure psycho 
physic reactions and cognitive elementary processes. 

In the psychological field, intelligence is one of the most important 
dimension considered and, since the beginning of the last century, several 
instruments were made available for different purposes. With reference to 
the intelligence appraisal we can found instruments built for different 
population: for instance, the child evaluation (an example is the Binet-Simon 
(1905) scale) or test for military selection (an historical example is the Army 
test). 

What intelligence is, and consequently the ability of its evaluation,  still 
plays an important role in the nowadays scientific debate (Gould, 1996): the 
hierarchical theory and the multifactor theory are the main categories. The 
European scientific community pays more attention to the first one (see, for 
example, the work of Spearman, inter alia 1904 and 1927); the second 
approach, started with Thurstone’s (1938) work, has an important impact on 
the North American studies.  

Both theories agreed on the existence of an entity, called g factor (from 
general) which is a dimension of intelligence poorly influenced by culture. 
Some authors said that it is inherited or inborn; others agreed on the 
existence of the g dimension but refused the idea of inheritance of 
intelligence. 

The first tests expressly made to evaluate g are due to Raven (1940) and 
Cattell (1940), although they started from different assumptions. The Raven 
test, called Progressive Matrices (PM), was widely used in Great Britain 
during the WWII for selection of soldiers with the aim of evaluating subjects 
without making use of language. The Cattell test, firstly called Culture Free 
and successively Culture Fair, evaluates subjects using items not suffering 
from the influence of their different cultures. A test with characteristics 
similar to the Raven one was built by Anstey and Illing (Anstey, 1955) 
expressly made for military selection in Great Britain and to retest the 
diagnosis made with PM. It is based on domino cards and shows an higher 
saturation in the g factor (Vernon, 1947). Each item is made by a logical 
sequence of domino cards, and the subjects have to write the two missing 
numbers of the last card. The most widely used domino test in Europe is the 
D 48, that is a French version of the Anstey and Illing instrument made by 
Pichot (1949), translated into Italian in 1954. Actually it is used also in USA 
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for trans cultural studies (Domino, 2001). The D 48 test is made for subjects 
from the age of twelve. There are 48 items, 4 of them devoted to the training 
of subjects. In the original version the respondent must write the numbers to 
complete the sequence, as in the Anstey and Illing instrument. There is a 
fixed time limit and the total score is calculated as the number of right 
answers given by the subject. The items are organized in sequences that 
follow the same logic process and spatial representation, selected from the 
following five different structures: six cards disposed on two lines, nine 
cards disposed on three lines, a rose of five or eight cards, cards with spiral 
and with oval disposition (Les Editiones du Centre de Psychologie 
Appliquées, 2000). Each sequence has a growing difficulty related to the 
different logical process: spatial, numerical, arithmetical and mixed items. 
 
 
3. Statistical calibration 
 
In statistical calibration the two following measures are considered: the 
standard measure (X), which is expensive, accurate and not easy to reach; 
the test measure (Y), obtained by the measurement instrument, which is 
cheaper, less accurate and easier to reach. The calibration experiment starts 
with an initial sample of n observations (xi, yi). Classical calibration theory 
assumes that the test measure Y (stochastic variable) is linked with the 
standard measure X (not stochastic) through a linear model, whose 
parameters are estimated by the observations.  

In the prediction experiment it is possible to estimate the true unknown 
measure X when the test measure Y is observed by inverting the linear model 
(Brown, 1993). This approach is also called inverse regression (Sundberg, 
1999). 

The literature on calibration deals with the mathematical problem of 
inversion, the statistical properties of the estimators obtained with the 
inversion, the extension to the multivariate context (Salini, 2003).  

Statistical calibration models are not properly valid in psychological 
applications, since psychology deals with unobservable variables for which a 
calibration experiment is not available. On the contrary, statistical models 
with a structure formally similar to the linear models adopted for the 
calibration experiment are frequently considered in psychometric 
applications: latent attributes are expressed by a linear combination of the 
answers to a battery of items in a questionnaire (Boncori, 1993). The main 
weakness of this approach is that the linear weights are not obtained 
following a rigorous estimating procedure. Furthermore, the goodness of fit 
of the model cannot be evaluated, being the true measure not observable. 
The third, and more relevant, weakness depends on the implicit assumption 
that the psychological characteristic (Y) should be defined as a function of 
the (X1, X2, …, Xn). This natural asymmetry is actually reversed, depending 
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the answers to the items on the psychological characteristic and not vice 
versa. For example, the intelligence quotient of a subject is given and the 
results in an intelligence test hangs on the intelligence of the subject that 
carries out the test.  

In order to proceed in a correct way, a model should be available such that 
the answers to the items (Y1, Y2, …, Yn) be functions of some psychological 
characteristic (X). Since X is not perceivable, the direct model cannot be 
estimated, thus it cannot be inverted.  

Observe that models defining the measure of a latent variable by indirect 
measures of manifest variables exist and they can be considered statistical 
calibration models: the most important one is the Rasch model (Rasch, 
1960). 

 
 
4. Rasch model: an overview 

 
In 1960 Georg Rasch stated that the answers to an item depend on two 
independent factors: the ability of the subject and the intrinsic difficulty of 
the item. He proposed an item-response model, allowing to measure both the 
item difficulty and the subject ability along a shared continuum. In the 
dichotomous case the model expresses the probability of right response by 
the following relation:  
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in which xij is the answer of subject i (i=1,….,n) to item j (j=1,….,k), θi is the 
ability of the subject i and βj is the difficulty of the item j.  

The model has a unique set of properties, making it an ideal tool for testing 
the validity of ordinal scales (Wright and Linacre, 1989). 

The Rasch model uses a particular unit measure, called logit (Wright and 
Stone, 1979). With the transformation from raw scores into logits (or from 
ordinal-level data into interval-level data), the parameters θi and βj can be 
expressed in the same unit measure, just the logit, thus they can represent 
subjects and items on a shared continuum respectively. 

The Rasch model produces person-free measures and item-free 
calibrations, abstract measures that overcome specific person responses to 
specific items at a specific time. This characteristic, unique to the Rasch 
model, is called parameter separation. Thus, Rasch parameters represent a 
person ability as independent of the specific test items and item difficulty as 
independent of specific samples (Wright and Masters, 1982). Necessary 
information to estimate θi and βj is respectively contained in the number of 
items got through by the subject i (ri) and in the total number of correct 
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answers for item j (sj). So, the scores ri and sj represent sufficient statistics 
for the parameters θi and βj.  

The model is probabilistic, not deterministic, defining for each 
subject/item interaction the probability of right answer. The model is 
prescriptive, not descriptive. This also allows to estimate the precision of the 
computed measure of difficulty/ability. It requires unidimensionality, that is 
all the items measure only a single construct, and local independence, that is, 
conditionally to the latent trait, the responses to a given item are independent 
from the responses to the other items.  

It can be noticed that the difference between ability/difficulty latent traits 
and xij manifest variables is both metric as conceptual. Latent traits are not 
observable, not stochastic and expressed in a numerical interval scale. 
Manifest variables xij are observable, stochastic and expressed in a ordinal 
(dichotomous) scale. The model, as formulated, is in all respects a 
calibration model in which a multivariate measure obtained through a 
measuring instrument (the psychological test) is linked by a direct relation to 
a latent unknown measure (the ability of the subject). According with the 
typical terminology of the calibration context, an indirect test measure is 
observed to get the true standard measure. The probabilistic statement of the 
model makes it possible the construction of goodness of fit tests on the 
complete model as well as on the single items, which constitute the 
calibration of the psychological measurement instrument.  
 
 
5. Application: calibration of an Intelligence Test 
 
5.1 Preliminary analysis 
 
The Rasch model will be applied to data collected for 958 subjects 
participating in 2002 to the selection procedure for the application to the 
Psychology degree course of the Catholic University of Milan. Data refer to 
a closed version of the D 48 Intelligent Test, built for selection on large 
number of candidates. This version uses the original 44 items but 
respondents, instead of writing the numbers in each empty card, are 
requested to choose the right answer in a set of five cards, where the correct 
one is always present. In case of correct answer the score 1 is assigned, null 
otherwise1. This closed version makes the instrument easier than the open 
one. For this reason, fixed time limit of 18 minutes is assigned (25 in the 
original version), so that it may become more difficult to complete all the 

                                                 
1 It is important to note that the score 0 identifies indifferently wrong answer and 
non response too. In this context, the formalities for carrying out the test, given to 
the subjects, inform them that a non response is a wrong answer. This is a basic rule 
for the construction of this psychometric test.  
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items. The subjects can choose the question resolution order, but usually 
they tend to proceed in a sequential way (Crescentini et al. 2003). In figure 1 
the frequency distribution of raw scores is shown. The majority of the 
subjects presents raw score in the 25-35 range, with minimum 0 and 
maximum 44. This distribution is in according with previous studies 
regarding people with a secondary school degree (Cristante and Borgatti, 
1975; Boncori, 1987). A few candidates have raw score less than 15 or 
greater than 40, coherently with the idea expressed by Bruni (1966) on time 
limitation.  
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Figure 1. Frequency distribution of raw scores for 44 items 

 
The Dichotomous Rasch Model, Simple Logistic Model (Rasch, 1960), is 

available in the computer program RUMM (Rasch Unidimensional 
Measurement Models) by Andrich, Sheridan, Lyne and Luo (2000). It 
produces scale-free subject measures and sample-free item difficulties 
(Andrich, 1988; Wright and Masters, 1982). The items are calibrated from 
easy to hard and the subject measures are aligned, on the same scale,  from 
lower to higher. 

Figure 2 shows the classical “Rasch ruler” (also called the “Item map”) 
obtained for our data. The vertical dashed line represents the ideal less-to-
more continuum of “level of intelligence”; for simplicity, we prefer to use 
the term intelligence instead of the more correct “estimated intelligence”. 
Items and subjects share the same linear measurement units (logits, left 
column). Conventionally, the average item difficulty (as for intelligence we 
will use “difficulty” instead of “estimated difficulty”) is set to 0. On the right 
of the dashed line, the items are aligned from easiest to hardest, starting from 
the bottom. Along the same ruler, on the left, the subjects are aligned in 
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increasing order of intelligence from bottom to top. Each X symbol 
represents 6 subjects. One subject reaches the extreme score of 44; it is 
omitted from the analysis since, according to the Rasch model, his/her ability 
cannot be estimated.  

Subject scores range from –1.4 to 4.8 logits, while item locations from –
4.2 to 2.6. Thus we observe a spread in difficulty of almost 7 units and more 
than 6 in intelligence. The measure of the intelligence obtained by this set of 
items seems reliable being the range wide enough. If all the items have the 
same characteristics, the probabilities of the answers’ profiles are similar 
giving no raise to a continuum, but only a point. The range of items does not 
match completely the range of intelligence scores. There is a lot of subjects 
at the upper end of the scale and there are not subjects at the lower end. 
Furthermore, 84 subjects have a level of intelligence higher than the most 
difficult item (from 2.6 to 4.8 logits) and 12 items have a difficulty easier 
than the less intelligent subject (from –1.4 to –4.2 logits).  

Thus, it seems that the item difficulties are not appropriately targeted to the 
subjects (only 874 of out 958 intelligence measures (91%) are “covered” by 
item difficulty). The first part of the scale is too easy, but this fact is coherent 
with the logic of the heating exercises. 

Furthermore items are well spanned and spaced throughout the continuum. 
This can be taken as an indicator of accuracy. With the “same” increase of 
intelligence level there is the “same” increase in the total raw score. This is 
not completely true, because there is a potential redundancy when a lot of 
items are on each tick; so, when a particular level of intelligence is achieved 
an increase of 4 to 5 marks (as many items on the same tick) could be in the 
total raw score. 

 
5.2 Some problems: item redundancy and time effect 
 
This analysis outlines some potentially redundant items: those with the same 
difficulty level, that in the graph are on the same line (e.g. 19, 17, 18, 16, 26; 
or 39, 40, 41, 38). The redundant items are always part of the same sequence 
(group of items with the same logic process and spatial representation) so we 
can affirm that the difficulties are connected with the logical process that lay 
behind the item construction.  

The sequence starting with the item 14 and terminating with the item 26 
shows some redundancies. From a calibration perspective we can say that 
some of them should be eliminated or changed, but analysing the items from 
a psychometric perspective we find some problems. The difficulties of the 
items are connected, as we already observed, with the number of right 
answers given by the subjects. The items 16 and 17 (see Figure 3) have the 
same difficulty (the location value is 0.721 for item 16 and 0.689 for item 
17, corresponding respectively to 579 and 586 right answers); but if we 
observe the number of non responses there is a great difference that has to be  
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Figure 2. Item map 

 
explained: there are 2 non responses on the first item and 122 on the second 
one. This sequence is made by items disposed on a rose configuration and 
the target (position of the answer) is disposed skewed. In the set of possible 
answers for the first three items (from 14 to 16) we have the correct one, and 
also the answer that is the mirror of this one; on the item 17 the mirror 
opportunity is absent. Analysing the wrong answer in the first three items we 
find that most of them are on the mirror choice. We can suppose that if a 
subject chooses a response strategy he perseveres in his error; when he has to 
respond to the item 17 and there is not the answer coherent with this strategy 
he prefers to make no choice. The different logical sequences need items on 
the same level to verify the acquisition of the logical process. In this 
sequence the item 17 gives us the opportunity to verify our hypothesis. 
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Figure 3. D48 Test, item 16 and item 17 
 
Since time limit plays an important role in the performance of subjects 

(Csonka, 1973), some authors (Bruni, 1966) suggest to give more time up to 
45 minutes. Relating to the non responses we find that from item 35 to the 
end of the test more than 300 subjects gave no answer. We may suppose that 
many of them have not received enough time to complete the test. To further 
analyse this dimension we cut the test on item 35: figure 4 represents the 
frequency distribution of the raw scores for the remaining 34 items and 
figure 5 represents the corresponding item map. 
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Figure 4. Frequency distribution of raw scores for 34 items 
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Figure 5. Item map for 34 items 

 
So we find a ceiling effect. The modified scale seems to be easier for the 

sample. This is coherent with the hypothesis of a difficulty connected with 
the presence of a time limit, although a complete evaluation of this 
hypothesis is not made. 

Since the value of the person parameter θ may be used to select a sub-
sample of subjects with the best performance, we choose subjects with a θ 
value more than 32. We analyse the answer profile of these subjects and we 
make a comparison between this subgroup (subjects with the best 
performance) and the complete sample (958 subjects). In particular, we 
focus on the last items to check if they discriminate between clever subjects 
and the others. Observing only the items from 35 to 44 we find that the best 
subjects gave less non responses. Besides, analysing the ratio of wrong 
answers over total answers, the items from 41 to 44 show no differences 
between best performing subjects and the total sample. This suggests 
(confirming the hypotesis of Bruni, 1966) that subjects that give random 

                                                 
2 There aren’t specific methods to fix a cut-off for the person parameters; from the 
item map in figure 2 we can observe a group of subjects with θ more than 3, so we 
choose them as the subjects with best ability.   
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answers reach better results than people that prefer to leap over some items 
without giving any answer.  

Concerning the model fit indexes, the RUMM program uses the parameter 
estimates to examine the difference between the expected values predicted 
from the model and the observed values. Furthermore, the program provides 
item and subject fit statistics and two global tests-of-fit: the Item-Subject 
Interaction and the Item-Trait Interaction. 

 
Table 1. Fraction of wrong answers for the last 10 items 

Item Best 
subjects 

All 
subjects 

35 0.1 0.34 
36 0.02 0.18 
37 0.04 0.23 
38 0.22 0.3 
39 0.16 0.28 
40 0.08 0.24 
41 0.29 0.34 
42 0.23 0.24 
43 0.23 0.26 
44 0.29 0.24 

 
Table 2. Fraction of no responses for the last 10 items 

Item Best 
subjects 

All 
subjects 

35 0.02 0.37 
36 0.02 0.33 
37 0 0.34 
38 0.06 0.47 
39 0.08 0.47 
40 0.06 0.51 
41 0.02 0.44 
42 0.06 0.49 
43 0.12 0.53 
44 0.16 0.57 

 
5.3 Analysis of residuals 

 
The item-subject test-of-fit examines the response patterns of subject across 
items and item across subjects. It takes into account the residuals between 
the expected estimate and the actual values for each subject-item, summed 
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over all items for each subject and over all subjects for each item. The fit 
statistics for the item-subject interaction approximate a distribution with zero 
mean and unitary standard deviation, when the data fit the measurement 
model. 

Let xij and πij be respectively the observed and the expected values; the 
standardized residuals are then zij = (xij- πij)/(πij (1-πij))

1/2. 
We consider the sums of squares: 

for item Uj= ∑
=

n

i
ij nz

1

2 /   j=1,….,k;  

for subject Wi= ∑
=

K

j
ij kz

1

2 /   i=1,….,n. 

These are the so-called fit mean-squares, taking values from 0 to +∞ . 

Andrich (1988) proposes a transformation of ∑
j

ijz 2
for each subject i (and 

then for each item j) to obtain the following standardized residual: 
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Then a large negative value of Yi implies that the model is overfitted, while 
a positive large value implies a misfitting pattern; a value close to zero 
implies a typical pattern. 

Table 3 shows the residual printout by RUMM, for items and for subjects. 
 

Table 3. Summary of global fit statistics 

ITEM-PERSON INTERACTION 

 ITEMS PERSONS 
 Location Residual Location Residual 

Mean 0 -0.319 1.229 -0.345 
SD 1.947 1.947 1.07 0.953 

 
If mean and SD of subjects’ intelligence are overlap mean and SD of the 

items’ difficulty, the targeting of the scale is good. Subjects’ average 
intelligence (1.229) is greater than item mean difficulty (0) and item SD 
(1.947) is greater than subject SD (1.07). So, the targeting of the scale 
doesn’t seem very good.  

When data perfectly “fit” the model the residuals are expected to have zero 
mean and SD close to 1. In our case the residual means are quite good, -
0.345 for subjects and -0.319 for items; the subjects SD is good (0.953), 
while the item SD is a little too big (1.947).  
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Appendix A shows for each item the estimated parameter and the residual 
(Individual item fit); Appendix B contains for each subject the estimated 
parameter and the residual (Individual person fit), only when residuals are 
larger than 2 in absolute value. 

The fit of individual items of the measurement model is not definitely 
good: 13 item residuals are larger than 2 in absolute value (bold typed in 
Appendix A).  

As shown in Appendix B the fit of individual persons of the measurement 
model is not good at all, but only 47 person residuals have absolute value 
larger than 2.  

We analyse the residuals to check their distribution, the tails and the 
symmetry3. In figure 6 and 7 it can be noticed that the distribution of 
standardized residuals differs normal distribution4 but less than 5% values 
exceed the limit –2 and +2, so the tails are fine like in a normal distribution. 
The subjects 409 and 208 have the biggest positive residuals and subject 262 
has the biggest negative residual. Furthermore, we can also observe that the 
distribution of residuals presents higher variability for subject with very low 
level of intelligence.  
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Figure 6. Histogram of residuals 

                                                 
3 This is a descriptive analysis. Rasch model doesn’t presuppose distributional 
assumptions. 
4 The Kolmogorov-Smirnov statistic is 0.081 with p-value 0.000, so the residual 
distribution is not normal; this depends on the bias –0.345 and symmetry index 
0.610.  



F. De Battisti, S. Salini and A. Crescentini  

0 200 400 600 800 1000

Level of Intelligence

-3,00

-2,00

-1,00

0,00

1,00

2,00

3,00

4,00

R
es

id
ua

ls

262

409 208

 
Figure 7. Person residuals, sorted by Level of Intelligence 

 
We have identified the 18 subjects that show the worst fitting with the 

model, all of them have a standardized residual greater in absolute value than 
2.5. These subjects are bold typed in Appendix B. 

The 8 subjects with residual values bigger than 2.5 employ a profitable 
answer strategy. They give random answer instead of BLANK answer. This 
is observable in two factors: correct answers in items very difficult and 
wrong answers in easier items. In general intuitive items are correct, on the 
contrary items that require sequential argument approach are often non 
correct. 

The 10 subjects with residual values lower than - 2.5 employ a not 
profitable answer strategy. They proceed in a sequential way and so they 
give BLANK in the final items; may be they need more time. The mean 
score for these subjects is low and correct answers are in the first items. 
Bruni (1966) underlined the time problem in intelligence tests. The time 
limit may be rewards fast and not accurate subjects and penalizes slow and 
accurate subjects. Analysing their results we find that they made many 
mistakes during the initial part of questionnaire, for instance in item 2 all the 
errors of  respondents are due to these subjects. The mean score of this 
sample is 22.50 and the standard deviation is 5.29, while the mean score of 
the total sample is 28.77 with a standard deviation of 6.06. Nevertheless, in 
the more difficult items their performance appears better than the global 
average. Item 14 represents a turning point for the total sample; wrong 
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responses are 2% on the 13 and 43% on the 14. In item 13 the majority of 
misfitting subjects gave the right answer. They reach better results on the 
items that can be done through an intuitional basis instead of a reasoning 
basis (e.g. items 20 and 21). The subjects of this group did not use the non 
response strategy from item 24 to item 44, in fact they gave less non 
response than the total sample. We can say that these subjects are more fast 
than precise, probably they are not too engaged in doing the test or they are 
not too much concentrated in the proof; a support of this hypothesis comes 
from the bad performance on items that require a logical process with 
precise steps (e.g. 27 and 28). 
 
5.4 Item-Trait Interaction 
 
The item-trait test-of-fit examines the consistency of every item parameters 
across the subject measures: data are combined across all items to give an 
overall test-of-fit. This shows the overall agreement for all items across 
different subjects. Rasch “misfit” values indicate those items which do not 
share the same construct with the other ones (items with higher misfit should 
be removed). 

The observed answer distribution is compared with the expected answer 
distribution, calculated with the logistic function, by means of the Chi-
squared criterion. The following steps may be performed. 

i) Examine the χ2 probability (p-value) for the whole item set; there is not a 
well-defined lower limit defining a good fit (minimum acceptability level); a 
reference level may be 5%. The null hypothesis is that there is no interaction 
between responses to the items and locations of the subjects along the trait. 
In our case (see table 4) Total Item ChiSq = 826.577 and Total ChiSq Prob = 
0.000, so the null hypothesis is strongly rejected. 

 
Table 4. Summary of global statistics 

ITEM-TRAIT INTERACTION RELIABILITY INDICES 

Total Item Chi Sq 826.577  Separation Index 0.842 
Total Deg of Freedom 396  Cronbach Alpha 0.838 
Total Chi Sq Prob 0.000   

 
ii) If the overall χ2 probability is less than 5%, examine the χ

2 for each item 
to identify anomalous statements (see appendix A, where ChiSq is the Item-
trait interaction chi-square statistic for each item and Probability is the 
probability of its occurrence for the degrees of freedom listed). 

iii) Analyse each misfitting item to understand the misfit causes.  
The subjects are splitted into “intelligence level” classes, with constant 

width; in every class the observed answers’ proportions are compared with 
the model’s estimated probabilities, for each answers category, and the χ2 
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value is worked out. The overall χ2 is the sum of the single group χ2. The 
contribution’s amount to the sum highlights the misfit seriousness in the 
respective class: the highest the χ

2 value in the single class, the most serious 
the damage by the gap between data and model. This is the so called 
“Differential Item Functioning” (DIF) and the term indicates the instability 
of the hierarchy of item difficulty levels (the same scale may not be suitable 
for measuring exactly the same variable across groups). 

DIF can be observed for some items. The DIF is not an all-or-none 
phenomenon. It is always in the background, so that detection is only a 
matter of power of measurement. The greater the sample, the more any DIF 
may become statistically significant. It must be reminded that the DIF in 
itself does not bias the cumulative expected scores across groups. The Rasch 
model assigns an overall measure, an expected score to each subject, 
whatever his/her group assignment. If a given group gets a score higher than 
expected in one item, it gets a score lower than expected in at least one of the 
other items. Similarly, an item easier than expected for some groups, may 
result more difficult than expected for another.  

DIF challenges the nature of the measure, not the amount. In this case the 
ruler is not independent of the person measured. Being very restrictive on 
what would be expected, the Rasch analysis is a powerful tool to detect any 
DIF. 

DIF indicates that the instrument tackles qualitatively different constructs 
across the groups, whatever the ability measures of the subjects. A 
decreasing DIF in subsequent replications flags the right direction during the 
scale construction. 

The items with the biggest value of Chi-Square are evidenced in italics in 
the Appendix A. A more detailed search for “systematic” misfits, DIF across 
subjects’ subgroups (classes), can be conducted in a graphical way (see 
Tesio et al. 2002). 

For example, Figure 8 and Figure 9 present the so-called Item 
Characteristic Curve (ICC) of the item 26 and the item 18 respectively. The 
ICC reflects the probability of getting the maximum score of 1. The ordinate 
gives the score ideally expected by the model, ranging from 0 to 1. The 
abscissa gives the intelligence of the subjects in logit units. For dichotomous 
items (1-threshold items) the curve follows the S-shaped (logistic) function 
given by the core equation of the Rasch model (1). The two curves in figure 
8 and 9 share the same slope for each dichotomous item, but the average 
location along the abscissa changes according to the item average difficulty. 

Moreover, the sample was split into 10 equally-sized subgroups, 
representing different classes of overall ability. For each class, the mean 
expected score was plotted in dot symbols as a function of the mean ability. 
This is a basic investigation of DIF. The analysis is conducted in order to 
understand if subjects of different level of intelligence follow the Rasch 
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model and to measure if a generic item is more or less easy, in itself, in the 
various classes.  

 

  
Figure 8. ICC for Item 26 Figure 9. ICC for Item 18 
 
The item 26 (Figure 8) is easier than expected for classes of subjects with 

low level of intelligence and it is more difficult for classes of subjects with 
high level of intelligence. For the item 18 we found an opposite performance 
(Figure 9). 

In this view, absolute score deviations should be assessed in conjunction 
with standardized residuals. Whether these residuals on these items are 
acceptable or not, is a matter of context decision. The robustness of the scale 
with respect to DIF can only be ascertained from its performance in real 
applications.  

It is interesting to distinguish the analysis by the different groups of 
subject. For example sex may influence the results in some items 
(Crescentini et al. 2003), like in item 14. By RUMM is possible to appreciate 
this influence by performing the DIF analysis for multiple factor with 
multiple levels. We consider a single factor, sex, with two levels. The ICC of 
item 14 is reported in Figure 10.  

 

 
Figure 10. ICC for Item 14 divided by sex 
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From ICC of item 14 (Figure 10), it seems that low level females show 
more difficult to find the correct answer than the expectation. In this item 
males are always better than the expectation.  

The RUMM program calculates a Person Separation Index, which is the 
Rasch reliability estimate, computed as the ratio (true/(true+error)) variance 
whose estimates come from the model. A value of 1 indicates lack of error 
variance, and thus full reliability. This index is usually very close to the 
classic Cronbach α coefficient computed on raw scores. In our case (see 
table 4) the Separation Index is 0,842; this means that the proportion of 
observed subject variance considered true is 84,2%. The power of test-of-fit, 
based on the Person Separation Reliability of 0,842, is good. 
 
5.5 Factor Analysis on Residuals 
 
The Rasch model assumes that residuals are randomly distributed across 
items. A high correlation (computed on standardised residuals across pairs of 
items) would thus suggest inter-item dependency coming from an extraneous 
shared construct challenging the undimensionality of the measure. We have 
considered the highest correlations, with values almost greater than |0.5|; in 
this case there is significant dependence. 

A way of detecting important deviations from the fundamental 
undimensionality requirement of Rasch model is the application of factor 
analysis techniques to the residual matrix. If the information about person – 
item interaction modelled by Rasch and extracted from the data matrix 
leaves a random dispersion of residuals, then the claim is that the solution is 
accounting for just one dimension.  

The factor analysis, as it is shown in the scree plot in Figure 11, confirms 
all the other results obtained. In fact some residuals are correlated. The 
presence of factor loadings in the analysis of residuals would suggest the 
presence of more than one underlying test dimension. 

1 3 5 7 9 11 13 15 17 19

21 23 25 27 29 31 33 35 37 39 41 43

Com ponent Numbe r

0

1

2

3

4

5

E
ig

e
nv

al
ue

 
Figure 11. Scree Plot 
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The Component matrix, partially reported in Table 5, displays that the 
items for which the residuals are strong correlated are items from 14 to 19, in 
according with comments in Figure 2.  

 
Table 5. Component Matrix 

item Component 1 

14 -0.725 
15 -0.756 
16 -0.809 
17 -0.293 
18 -0.609 
19 -0.717 

 
5.6 Critical Themes 
 
In appendix A it is shown the χ2 test for each item. 22 items have a high 
value of χ2 with significance value less than 0,05. In order to calibrate the 
questionnaire these items have to be deleted. So the global χ2 decreases and 
the χ2 for each item becomes acceptable.  

The deleted items are chosen by considering both residuals and χ2  values 
(see appendix A). 13 items have residual value greater than |2|. Three 
homogeneous groups can be evidenced.  

 
Table 6. Misfitting and Overfitting Items 

GROUP ITEMS DESCRIPTION 

1 16, 17, 18, 19 Residuals < -2, only item 17 has χ
2 significance 

value greater than 0,05. These items are 

discriminated for the sample (see DIF) 

2 22, 23, 24, 26 Residuals > 2, no items has χ
2 significance value 

greater than 0,05. These items are not discriminated 

for the sample (see DIF) 

3 27, 28, 29, 30, 

32 

Residuals < -2, only item 27 has χ2 significance 

value greater than 0,05. These items are 

discriminated for the sample (see DIF) 

 
We have reported separately the group 1 and the group 3 because they are 

formed by items with different logic process and spatial representation.   
So 11 items can be deleted: the ones with high residuals and high χ

2 value.  



F. De Battisti, S. Salini and A. Crescentini  

The analysis is iterated step by step in order to obtain a global χ2 greater or 
near than 0.05, and also for each item. In particular, after to have deleted 11 
items, we have performed a new Rasch analysis to check if the global χ2 was 
greater or near than 0.05 and, if not, to individuate other items with χ2 

significance value lower than 0.05. We have removed these items, we have 
made another analysis, and so on, to obtain finally a global χ2 greater or near 
than 0.05, and also for each item. In this iterative procedure the items 4, 2, 
40 and 7 are step by step deleted. In the final version only 29 items are 
maintained5. As said above the items of the initial version of the instrument 
are organized in sequences that follows the same logic process and spatial 
representation. The differences between sequences help to obtain a better 
evaluation. This version of 29 items contains items from all the sequences, 
maintaining the initial structure of the test. This new instrument must be 
tested by combining time factor and evaluation of errors.  

As a preliminary analysis we apply the Rasch  Model to only the 29 items. 
The analysis on the reduced questionnaire evidences 3 items with residual 
values greater than |2|. Item 36 in particular has residuals value equal to -
2.22, item 14 equal to 2.32 and item 15 equal to 2.49. The factor analysis of 
residuals evidences the presence of one component more relevant than the 
others, correlated with item 14, 15 and 20.  

This result encourage to submit the reduced version of the test on a new 
sample of subjects.  
 
 
6. Conclusions 
 
The analysis system has shown that the closed version of the instrument has 
the same metric characteristics of the original opened one (see Csonka, 
1973), but to fill in the whole questionnaire is required less time, in 
particular 28% of time can be saved. It is also possible to automate the 
correction phase using an appropriate answer sheet. The instrument requires 
a minimum level of education,  connected with the use of numbers in the 
closed answers. The time limit question (Bruni, 1966) still remains; a time 
limit imposes a cut to the slower subjects and facilitates the faster ones. The 
time limit without a penalization for the wrong answers drives subjects to 
use a strategy that maximizes the number of given answers and reduces the 
accuracy. We are evaluating the hypothesis of using a penalty to the wrong 
answers. 

In the “Rash ruler” we found the dimensions of the instrument, which give 
the chances to make further analysis. The use of θ to select the better 
subjects makes us find a group of people that follow the same answer 

                                                 
5 The items in the final version are: 1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 
25, 27, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44. 
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strategies; the same happens with the analysis of residuals. The analysis of 
the Item Characteristic Curves with the two levels of sex operating confirms 
the hypothesis formulated by Crescentini et al. (2003) and gives some new 
perspectives. We have yet not found an acceptable hypothesis that explains 
the difference, between male and female, in the answer strategies. 

The ability of the instrument defined on the 29 not redundant items, 
proposed in the previous paragraph, has to be experimentally proved on a 
sample of subjects.   
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Appendix A 
 
Table 1a. Individual item fit 

Item Location SE Residual ChiSq Probability 

1 -3.233 0.24 -0.069 10,563 0.307 
2 -4.073 0.36 0.069 7,226 0.614 
3 -2.772 0.2 0.446 11,631 0.235 
4 -2.273 0.16 1.946 33,933 0.000 
5 -2.329 0.16 -0.732 12,903 0.167 
6 -3.199 0.24 -0.01 4,425 0.881 
7 -1.495 0.12 0.956 22,405 0.008 
8 -2.166 0.15 0.226 13,857 0.128 
9 -1.326 0.11 -1.139 16,974 0.049 
10 -1.877 0.14 0.172 7,157 0.621 
11 -2.184 0.15 -0.634 18,037 0.035 
12 -2.260 0.16 -0.217 13,309 0.149 
13 -2.833 0.2 -0.347 11,744 0.228 
14 0.897 0.07 -0.826 23,016 0.006 
15 0.936 0.07 -1.617 14,995 0.091 
16 0.721 0.07 -2.659 24,872 0.003 
17 0.689 0.07 -2.379 15,439 0.080 
18 0.714 0.07 -4.026 38,980 0.000 
19 0.619 0.07 -4.023 33,005 0.000 
20 -0.952 0.1 -1.525 20,586 0.015 
21 -1.270 0.11 -0.969 9,745 0.372 
22 -0.094 0.08 2.662 26,743 0.002 
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23 0.953 0.07 3.965 35,916 0.000 
24 2.021 0.08 2.427 19,535 0.021 
25 2.031 0.08 1.256 7,677 0.567 
26 0.773 0.07 6.152 65,082 0.000 
27 -0.422 0.09 -2.252 15,320 0.083 
28 -0.81 0.1 -3.000 29,236 0.001 
29 -0.437 0.09 -2.573 26,878 0.001 
30 -1.095 0.1 -2.381 28,740 0.001 
31 0.401 0.07 -0.458 14,108 0.119 
32 1.405 0.07 -2.240 17,291 0.044 
33 0.54 0.07 -1.243 8,977 0.439 
34 1.635 0.07 0.125 2,956 0.966 
35 2.278 0.08 -0.329 21,387 0.011 
36 1.219 0.07 -1.078 17,694 0.039 
37 1.489 0.07 0.165 14,956 0.092 
38 2.530 0.08 0.74 8,358 0.498 
39 2.473 0.08 0.339 20,173 0.017 
40 2.519 0.08 -1.693 10,683 0.298 
41 2.527 0.08 0.908 20,297 0.016 
42 2.290 0.08 0.725 15,602 0.076 
43 2.655 0.08 0.122 15,371 0.081 
44 2.785 0.09 0.973 18,793 0.027 

 
Appendix B 

 
Table 1b. Individual person fit (for subjects with residual more than +/- 2). 

ID Locn SE Residual 
13 1.375 0.4 2.371 
19 0.266 0.4 2.529 
42 -1.27 0.43 -2.042 
66 0.105 0.4 -2.063 
68 -0.058 0.4 2.165 
72 -0.222 0.41 2.428 
76 -0.908 0.42 -2.513 
93 -0.39 0.41 2.129 
94 -0.908 0.42 -2.513 
128 0.105 0.4 -2.200 
143 0.105 0.4 2.197 
184 1.875 0.42 2.100 
186 -0.058 0.4 -2.466 
208 1.538 0.41 3.060 
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212 -0.39 0.41 -2.308 
218 1.704 0.41 2.845 
254 -0.732 0.42 -2.244 
257 0.266 0.4 -2.202 
262 -0.222 0.41 -2.924 
277 -0.732 0.42 -2.701 
295 -0.222 0.41 2.280 
352 0.425 0.4 2.046 
355 1.538 0.41 2.894 
409 0.105 0.4 2.967 
422 -1.27 0.43 2.195 
431 0.583 0.4 2.537 
444 0.105 0.4 -2.604 
465 -0.559 0.41 -2.720 
550 -0.058 0.4 -2.885 
566 0.425 0.4 -2.112 
642 0.266 0.4 -2.062 
651 0.74 0.4 2.327 
668 1.214 0.4 2.413 
676 1.055 0.4 2.227 
685 0.266 0.4 -2.222 
748 0.105 0.4 -2.734 
768 -0.39 0.41 2.343 
791 0.105 0.4 -2.224 
835 0.898 0.4 2.646 
841 -1.087 0.42 -2.640 
857 -0.058 0.4 -2.585 
874 0.105 0.4 -2.192 
897 -0.222 0.41 -2.311 
901 0.266 0.4 -2.190 
916 0.74 0.4 2.816 
933 1.055 0.4 2.095 
949 -0.222 0.41 -2.267 

 


