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We address the estimation of the loss parameter of a bosonic channel probed by Gaussian signals. We
derive the ultimate quantum bound with precision and show that no improvement may be obtained by
having access to the environmental degrees of freedom. We find that, for small losses, the variance of the
optimal estimator is proportional to the loss parameter itself, a result that represents a qualitative
improvement over the shot-noise limit. An observable based on the symmetric logarithmic derivative is
obtained, which attains the ultimate bound and may be implemented using Gaussian operations and
photon counting.
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In all the branches of physics, many quantities of interest
are not directly accessible, either in principle, like the mea-
surement of all fields [1], or due to experimental impedi-
ments. In these cases, one should resort to indirect mea-
surements, inferring the value of the quantity of interest
from its influence on a given probe. This is basically a pa-
rameter estimation problem whose solution, i.e., the deter-
mination of the most precise estimator, unavoidably in-
volves an optimization procedure [2]. Indeed, the central
result in classical estimation is the so-called Cramer-Rao
inequality, which sets a lower bound on the variance of any
estimator in terms of the Fisher information. When quan-
tum systems are involved, the optimal measurement to de-
tect an unobservable quantity may be found using tools
from quantum estimation theory [3,4]. The quantum ver-
sion of the Cramer-Rao inequality has been established [3–
6] and the lower bound imposed by the quantum Fisher
information has been shown to be achievable asymptoti-
cally [6]. In turn, this result permits us to write a parameter-
based uncertainty relation for unobservable quantities
[6,7].

Quantum estimation theory has been mostly applied to
find optimal measurements and, in turn, to evaluate the
corresponding lower bounds on precision, for the estima-
tion of parameters imposed by unitary transformations. For
bosonic systems these include single-mode phase [8–10],
displacement [11], and squeezing [12,13] as well as two-
mode transformations, e.g., bilinear coupling [14].
Concerning open quantum systems and nonunitary pro-
cesses, QET has been applied only to finite dimensional
systems [15], to optimally estimate the noise parameter of
depolarizing [16] or amplitude-damping [17] channels. On
the other hand, to the best of our knowledge, QET has been
not exploited to determine the optimal way of estimating
parameters of a lossy bosonic channel. Needless to say,
besides fundamental interest, quantum limits to the esti-
mation of bosonic lossy channels are extremely relevant
for applications, as, for example, absorption measurements
and characterization of optical media [18–20].

The precision of a measurement corresponds to the
smallest value of the parameter that can be discriminated.
In several quantum mechanical schemes, precision is im-
proved by the more efficient use of the resources employed
in the measurement process [21,22]. A relevant example is
the quadratic increase of the precision in phase estimation
by squeezed states. On the other hand, despite the improve-
ment in the resource-precision trade-off, known estimation
schemes are characterized by a threshold value, under
which the parameter cannot be measured. The results
described in this Letter, besides being the first example
of optimized parameter estimations for nonunitary maps,
show a novel feature of quantum-limited measurements:
the asymptotic variance scales with the parameter itself.
Therefore, our results may be applied to arbitrarily small
values of the parameter, with a fixed relative variance.

The scheme we are going to consider is the following:
the dynamics of a bosonic quantum system is governed by
a Lindblad master equation of the form

 

_% �
�
2
L�a�%; (1)

which results from the interaction of the system with an
external environment, as, for example, a bath of oscillators.
We want to estimate the value of the loss parameter �, and
to this purpose a set of identically prepared signals (probe
state) are sent through the channel and measured at the
output. We denote by %0 the input state and by %� �
E��%0� the state at the output of the channel, E� being
the map associated to the evolution (1). An estimation
strategy for � consists of three ingredients: a suitable input
signal, a measurement at the output, and an inference rule
to extract the value of the parameter from the experimental
sample �, i.e., the set of measurement outcomes. The
ultimate goal of choosing an estimation strategy is to find
a scheme that maximizes precision with the constraint of a
finite fixed amount of energy impinged into the channel. In
particular, we address the following questions: (1) Which
is the best probe state? (2) Which is the optimal measure-
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ment that should be performed at the output? (3) Which is
the attainable precision? (4) Can the precision be improved
by accessing the environment degrees of freedom, e.g., the
bath of oscillators?

The quantum state at the output of the channel may be
formally written as %� � E��%0� � exp��t=2L�a��%0,
whereas the constraint of finite probe energy reads as
follows: Tr�%0aya� � �n, �a; ay� � 1 being the bosonic
mode operators. We focus attention on Gaussian probe
states and consider a zero-temperature environment with-
out squeezing; i.e., we focus on lossy channels described
by a superoperator of the form L�a�% � 2ay%a�
aya%� %aya. Given the evolution time (length) t, the
aim is to estimate as precisely as possible the parameter
� in the Lindblad Master Eq. (1). In the following we
consider the parametrization exp���t� � cos2� and seek
for the best estimation strategy for �. We denote the probe
state as %0 and the evolved state as %� with the master
equation that rewrites as d%=d� � tan�L�a�%. Our goal
is to determine the optimal probe state %0 and the optimal
measurement, i.e., the probability operator-value measure
O� in order to form the estimator �̂ to infer the value of �
from the set of outcomes �. Notice that, with our estima-
tion problem uniparametric, the optimal measurement can
be realized using individual measurements on separate
(subsequent) preparations [23], so that the expectation
value of the estimator can be written as E���̂� �P
� �̂���Tr��%���NO��. We focus attention on asymptoti-

cally unbiased estimators, i.e., those for which E���̂� ! �
as N ! 1. Those are interesting because as the number of
experimental data increases, all systematic errors go to
zero. The variance of an unbiased estimator is bounded
by the Cramer-Rao inequality [2], Var���̂� �

1
F��� , where

F��� is the Fisher information of the measurement. F���
is additive, i.e., the total Fisher information of measure-
ments on multiple copies of %� is the sum of the indi-
vidual ones. It is worth mentioning that the so-called maxi-
mumlikelihood estimator asymptotically attains this bound
for large numbers of identical repeated samplings of a
probability distribution. In such case the asymptotic vari-
ancescales as 1=N, i.e., Var���̂�!�NF�����1. The Fisher
Information F��� is bounded from above by the quantum
Fisher information (QFI) F���	H���which, in turn, pro-
vides a measure of the ultimate precision available with a
given quantum state. QFI is additive too, and thus we have
Var���̂� �

1
NH��� , where H��� can be expressed in terms

of the symmetric logarithmic derivative, (SLD) ����. SLD
is implicitly defined as the Hermitian operator that satisfies

 

d%�
d�

�
1

2
�%����� 
����%��; (2)

from which the QFI can be computed as H��� �
Tr�%�����2�. ���� is an observable which depends on
� and, analogously to the classical LD, its expectation
value is zero, i.e., Tr�����%�� � 0. A biased ���̂� reveals

to which extent the measured state differs from %�̂. In
addition, it has been proved [5] that an optimal measure-
ment can be obtained by projecting onto one-dimensional
eigenspaces of ����, i.e., a measurement for which the
Fisher information is maximized, F��� � H���. Upon
this considerations, in the following we consider the one-
step adaptive strategy [10,23], in which one makes a rough
estimate �̂0 on a vanishing fraction of copies N�, 1=2<
�< 1, and then measures ���̂0� on the remaining copies
in order to refine the estimate �̂.

Notice that the Cramer-Rao inequality can be regarded
as a Heisenberg relation for parameter estimation. In the
case of pure states and unitary evolution of the form
U��� � exp�iG�� we have H��� � 4h�Gi2, where
h�Gi2 is the uncertainty of the generator G on the state
used as a probe. Overall, we get the inequality Var���̂��
h�Gi2 � 1=�4N�, which represents a parameter-based un-
certainty relation for unobservable quantities [6,7].

Any Gaussian state of a single bosonic mode may be
represented as a thermal state �� under the action of a
squeezing and a displacement operation, i.e., % � D��� �
S�����Sy���Dy���, where � � sei� is the displacement
amplitude and � � re�2i’ is the squeezing parameter;
D���� exp��ay���a�, S��� � exp�12 �

2ay2 � 1
2 �
�2a2�.

The thermal state can be expressed in terms of its purity as
���2�=�1
����1���=�1
���a

ya. At this point, some
considerations about the choice of a probe state are in
order. We aim at finding the Gaussian state %0 which, under
the action of the amplitude-damping channel, is mapped
onto %� with highest QFI. Of course, if an arbitrary amount
of energy was available, an infinite precision could be
reached. If instead one restricts to a probe with finite
energy, then a compromise between j�j, r, and � must
be achieved. From the phase symmetry of the amplitude-
damping channel, it is clear that the only relevant angular
parameter is the difference between the displacement
phase arg� and the squeezing direction arg� . Hence, we
can take � 
 r 2 R and consider � � arg� as the relevant
angle. On the other hand, as also intuitively expected, it is
of no use to spend energy in preparing a thermal state, that
is, for any given input energy �n, the optimal probe state is
pure. Therefore, the optimization problem can be reduced
to determine two parameters, the ratio x of squeezing en-
ergy to total energy and the displacement phase �. Since
for a pure Gaussian state %0 � D��0�S�r0�j0ih0jS

y�r0��
Dy��0� the mean photon number is given by �n� sinh2r0

j�0j

2 we have sinh2r0 � x �n and j�0j
2 � �1� x� �n.

The evolution of the state parameters under the action of
the channel may be explicitly evaluated [24]
 

�� � 1=
����������������������������������������������������������������������������������
cos4�
 sin4�
 2cos2�sin2� cosh2r0

q
;

r� �
1
2cosh�1����cos2� cosh2r0 
 sin2���;

s� � s0 cos�:

(3)

We can now evaluate the SLD ����, which corresponds
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to the optimal measurement and allows to calculate
the QFI. Upon writing %� in its diagonal form, %� �P
k%kj ki h kj; j ki � D���S�r�jki one easily finds

 ���� � 2 tan�
X
pq

h qjL�a�%j pi

%p 
 %q
j qih pj: (4)

A lengthy but straightforward calculation yields ���� �
2 tan�D���S�r�KSy�r�Dy���, K � �Aaya
 B�a2 

ay2� � Ca� C�ay 
 F�, where

 A�
2�

1��2 ��cosh2r�1�; B�
�2

1
�2 sinh2r;

C����coshr
�� sinhr�; F�1�
2�cosh2r

1
�2 :

(5)

All the parameters in (5) are given in Eq. (3), i.e., refer to
the state %� after the evolution in the lossy channel. We
omitted the explicit dependence on� for brevity. Using the
identity

 K � F0 
 	Sy�
�D���ayaD���S�
�; (6)

where F0 � F
 1
2 �	� A� 2	j�j2�, tan2
 � �2B=A,

	 �
��������������������
A2 � 4B2
p

, and � � �C coshr
 C� sinhr�=�	, one
sees that the eigenvectors of ���� are of the form
D���S�r�Sy�
�Dy���jni, which means that the measure-
ment of ���� may be implemented with Gaussian opera-
tions and photon counting, e.g., by squeezing and
displacing the state under investigation and then measuring
the photon number distribution by a suitable reconstruction
technique [25].

The explicit evaluation of the QFI H��� yields

 H��� �
4z �n

1
 z�2
 z
 4 �nx�

�
1� x
 2 �nx


x
z

 z

�
4 �nx2z�1
 �nx�

1
 z�2
 z
 2 �nx�

 2�1� x�

�����������������������
�nx�1
 �nx�

p �
;

(7)

where z � e�t � 1 � tan2�, and where we have already
performed the trivial optimization over the phase �, which
yields � � 0; i.e., the displacement should be performed
along the same direction of squeezing. The optimization
procedure thus reduces to maximizing the QFI H��� with
respect to the squeezing ratio x. In Fig. 1 we report the
renormalized QFI H���= �n as a function of the squeezing
ratio for different values of �n and of the actual loss pa-
rameter. As is apparent from the plots in the regime of
small losses and small probe energies, the optimal probe is
the squeezed vacuum (xopt � 1), whereas for increasing
energy there is a nonzero value of the optimal squeezing
fraction xopt, which is a monotonically decreasing function
of both the probe energy and the loss parameter itself. In
the small energy regime, with squeezed vacuum as the
optimal probe, the QFI reads

 H��� �
4 �n�1
 z2�

1
 2z�1
 �n� 
 z2 ’ 4 �n
O��2�; (8)

where the second equality expresses the attainable preci-
sion in estimating the loss parameter for weakly damping
channels. In the following, we will see that this is the
ultimate limit even if one has access to the environment
degree of freedom. In terms of � the bound reads

 Var ���̂� !
�

�nNt

O��2�: (9)

This is a remarkable result since it is valid for any value of
the loss parameter with no lower bound (see also Fig. 2).
Recall, however, that squeezed vacuum probes will not be
optimal for large enough values of �.

The maximization of the QFI in the general case may be
done numerically. In Fig. 2 (left) we report the log-log plot
of the rescaled optimal variance NVar���̂� � 1=Hmax���
as a function of the probe energy �n for different values of
the actual loss parameter. As is apparent from the plot the
variance does not dramatically depend on the actual value
of the loss parameter. The common scaling is given by
Var���̂� / � �nN�

�1.
In order to better understand the behavior in the large

energy regime an asymptotic analysis is in order. Upon
expanding the optimization equation dH=dx � 0 around
z � 0 and retaining the leading order z�1 we obtain ana-
lytically the optimal value of x for small �, which for large
�n can expressed as xopt � �4 �nz��1=2 
O�1=n�. This shows
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FIG. 1 (color online). Normalized quantum Fisher information
H���= �n as a function of the squeezing fraction of the probe state
for different values of the probe energy and two values of the
actual loss parameter. (Left): tan2� � 0:1. (Right): tan2� � 5.
In both plots, from bottom to top in the region x ’ 0, the curves
for �n � 0:5, �n � 1, �n � 2, �n � 5, �n � 10, and �n � 100.
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FIG. 2 (color online). (Left): Rescaled optimal variance
H�1��� as a function of the probe energy for different actual
values of the loss parameter: z � 0:01, 0.1, 1, 5, 10. The larger is
z (�) the closer is the curve to the asymptotic H�1��� � �4 �n��1.
(Right): Rescaled optimal variance compared to the variance
obtained for coherent probe as a function of the loss parameter
for different values of the probe energy: from top to bottom the
curves for �n � 0:1, 0.3, 0.7, 1, respectively.
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that, when a large amount of energy is available, one can
improve performances, besides squeezing, by employing a
fraction of energy to displace the probe. The QFI in this
regime reads H��� � 4z�1�1�

�����
nz
p
� 
 �2
 4n� 
 2z,

which corresponds to a variance Var���̂� !
�2

4N �

�1

���
n
p
�� 
O��4�. Finally, by rewriting this in terms

of � we have

 Var ���̂� !
�

�nNt

O

� ����������
�

� �nt�3

s �
; (10)

that is, the proportionality of the variance to the parameter
is recovered for large �n. Notice that the scaling H��� / �n
is valid also in the general case, as it is apparent from Fig. 2
(left).

It is worth stressing the improvement of precision with
respect to that attainable with coherent states (shot-noise
limit). In fact, by taking x � 0 one easily sees that in this
case the QFI reads H��� � 4 �nz=�1
 z�, which corre-
sponds to Var���̂� ! � �nNt

2��1. In other words, the pro-
portionality of the variance to � cannot be achieved using
coherent probe states. In Fig. 2 (right) we report the
optimal rescaled variance H�1��� as a function of the
loss parameter compared to the variance that can be ob-
tained using coherent probes. The improvement at small
values of the loss parameter is apparent. This can be
intuitively understood as follows: for small values of �
the action of the loss map E� on a coherent probe is only
that of a small displacement, whereas a squeezed vacuum
is dramatically ‘‘mixed up.’’ Hence, a squeezed state is
more sensitive to small losses. Contrarily, for large values
of � a coherent state is highly displaced whereas a
squeezed vacuum state becomes close to pure again, losing
its sensitivity to �.

Let us now discuss other ways in which this performance
could, in principle, be improved. The Heisenberg limit
generally describes the ultimate precision attainable for
parameter estimation. As we have seen above, this holds
in a strict sense when one deals with unitary transforma-
tions, where the QFI characterizes the sensitivity of a state
for the estimation of a parameter. However, when one deals
with nonunitary transformations, this may not be true
because the probe state evolves into an entangled state
with the environment. The access to the degree of freedom
of the environment may provide improved precision to the
measurement. In the case of the loss of a channel, some of
the energy present in the probe state is lost through cou-
pling to the environment. The master Eq. (1) can be seen as
the effective interaction of the mode a with a second
vacuum mode b through a bilinear (beam-splitter-like)
evolution of the form U��� � exp�i��ayb
 aby��. This
allows a unitary representation of the process. Here we use
this picture to derive the attainable precision in the hypo-
thetic case that one had access to the bath of oscillators. In
such a situation, the state under inspection would remain
pure, therefore ���� � 2d�=d�, as can be seen by taking
the derivative of the identity �2 � �. The generator G is

given by G � �ayb
 aby�, and the uncertainty h�Gi2 is
h�Gi2 � �n. As a consequence one gets Var���̂� !

1
4 �nN ,

which corresponds to the precision attained using squeezed
vacuum probe.

In conclusion, we have shown that using Gaussian
squeezed probes one can improve the estimation of the
loss parameter of a bosonic noisy channel. As it holds for
any single parameter quantum estimation problems, a one-
step adaptive scheme is optimal to leading order, thus
providing a practical way for implementation. We have
shown that the optimal measurement for Gaussian probe
states can be implemented by means of Gaussian opera-
tions and photon counting. Furthermore, for small losses,
the estimator variance obtained by choosing appropriate
probe states decreases proportionally to the loss parameter,
thus providing unlimited resolution for arbitrary small
losses. We have also obtained the optimal trade-off be-
tween squeezing and displacement of probe states, show-
ing that squeezed vacuum states are optimal in the small
energy limit. Finally, we have shown that even by having
access to the environment, one cannot improve the per-
formance of our scheme.
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