Contents lists available at ScienceDirect

Review of Palaeobotany and Palynology

journal homepage: www.elsevier.com/locate/revpalbo

Pollen morphology of alpine butterworts (Pinguicula L., Lentibulariaceae)

Graziella Rodondi, Mario Beretta, Carlo Andreis*

Sezione di Botanica Sistematica e Geobotanica, Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, MI, Italy

ARTICLE INFO

Article history: Received 17 December 2009 Received in revised form 11 March 2010 Accepted 18 March 2010 Available online 27 March 2010

Keywords: Pinguicula pollen morphology perforate rugulate-microreticulate taxonomy

ABSTRACT

The pollen morphology of *Pinguicula alpina*, *P. arvetii*, *P. grandiflora* subsp. grandiflora, *P. grandiflora* subsp. rosea, *P. hirtiflora*, *P. leptoceras*, *P. poldinii*, *P. reichenbachiana*, and *P. vulgaris*, belonging to the Alpine flora, was studied.

The pollen grains, coming from different populations, were investigated using light microscopy and scanning electron microscopy. The pollen size, the shape (P/E ratio), the number of colpori and the exine ornamentation are, for *Pinguicula*, important diagnostic characters.

Pinguicula pollen grains are medium sized (\sim 30 µm), trinucleate, isopolar, radially symmetric. The shape of the grains is variable from oblate spheroidal to prolate spheroidal and they are (4)–5–9–(10)-zonocolporate. The prevalent ornamentation is rugulate–microreticulate, *P. alpina* has a rugulate–reticulate ornamentation and only *P. hirtiflora* has a perforate ornamentation.

A pollen key, based on micromorphological data, is presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Pinguicula L., the second largest genus of the family Lentibulariaceae, contains about 100 currently accepted species. They are distributed in arctic, temperate, mediterranean and tropical areas of Eurasia, North America (Mexico has the largest number of species = 44; Zamudio, 2005), Central America, South America and Africa only in the northernmost region of Morocco (Zamora et al., 1996; Steiger, 1998; Degtjareva et al., 2004, 2006; Cieslak et al., 2005). In Europe, 12 species were reported by Casper (1972), but this number was expected to change due to the description of new species: the most recent were described in Italy (Tammaro and Pace, 1987; Casper and Steiger, 2001; Conti and Peruzzi, 2006; Ansaldi and Casper, 2009) and in Spain (Blanca et al., 1999). Alpine species are P. alpina L., P. arvetii Genty (endemic of Cozie Alps), P. grandiflora Lam. subsp. grandiflora, P. grandiflora subsp. rosea (Mutel) Casper (endemic in the calcareous mountains near Grenoble, France), P. leptoceras Rchb., P. reichenbachiana Schindler (endemic of Maritime Alps) and P. vulgaris L. (Casper, 1966; Pignatti, 1982; Aeschimann et al., 2004; Pascal et al., 2008; Compostella et al., 2010). P. hirtiflora Ten. is reported by Aeschimann et al. (2004) and only one population is known in Roya Valley, France: this population is considered to have been introduced by man because it is out of the typical area of the species (Central-Eastern Mediterranean according to Casper, 1966) (Peruzzi et al., 2004; Steiger and Tassara, 2006). Recently Casper and Steiger (2001) described *P. poldinii* Steiger et Casper, a new endemic species in the hilly region of North-Eastern Venetian Prealps, Italy.

Alpine *Pinguicula* are herbaceous perennial insectivorous plants having leaves in a basal rosette, zygomorphic flowers and capsular fruits. They grow in nutrient-poor and partially sunny wet habitats: mainly vertical dripping limestone cliffs (*Cratoneurion* plant communities often involved in the processes of the travertine formation), hydromorphic alpine meadows but also banks of oligotrophic marshes and acidic *Sphagnum* bogs. The geographical distribution, for all the species of the genus, is highly fragmented due to the peculiarity and rarity of these habitats.

The published data on the pollen morphology of butterworts are still few, old, incomplete and based mainly on light microscopy observations. We focused on previous papers about the same species even if studied in different areas of the world. Concerning the alpine species, the pollen grains of *P. vulgaris* (but also *P. alpina* and *P. villosa*) are polycolporate (number of colpi 6-8), prolate spheroidal $(39 \times 37 \,\mu\text{m})$, the exine is 2 μ m thick and the sexine is finely reticulate (Erdtman et al., 1961). P. vulgaris was studied also by Sohma (1975) and Moore et al. (1991). Morphological data about P. grandiflora pollen grains were provided for the first time by Heslop-Harrison (2004) which reported a similarity with the ones of *P. vulgaris*. Recently Tsymbalyuk et al. (2008) described, using LM and SEM, the pollen grains of Ukrainian populations of P. vulgaris and P. alpina. P. alpina is also reported by Hesse et al. (2009). Albanian populations of P. hirtiflora (var. hirtiflora and var. louisii) have been studied by Shuka et al. (2007) where a slight difference between the pollen grains of the two varieties was noticed.

Fossil pollen of *Pinguicula* has been recorded only by Mitchell (1954).

^{*} Corresponding author. Tel.: + 39 02 50314847; fax: + 39 02 50314840.

E-mail addresses: graziella.rodondi@unimi.it (G. Rodondi), mario.beretta1@unimi.it (M. Beretta), carlo.andreis@unimi.it (C. Andreis).

^{0034-6667/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.revpalbo.2010.03.005

Aim of this study is: a) to increase the knowledge about the pollen morphology of butterworts belonging to the Alpine Region, b) to compare our palynological data with those of previous authors, c) to give a pollen key based on micromorphological and quantitative data resulting from the study of different populations of alpine butterworts, d) to provide a valuable tool for pollen diagrams.

2. Materials and methods

Pollen grains of 9 taxa of the genus *Pinguicula* (belonging to the flora of the Alps) were studied. Specimens of different populations were collected in the field (Table 1; Fig. 1) during springs 2003–2008 and identified according to Casper (1966, 1974), Pignatti (1982), Casper and Steiger (2001), Aeschimann et al. (2004) and Pascal et al. (2008). Only flowers at the anthesis were picked up for a total of ~10 flowers for each population.

The *exsiccata* are housed in the herbarium of the Department of Biology, University of Milano: *Herbarium Universitatis Mediolanensis* (MI).

The palynological terminology used is according to Punt et al. (2007) and Hesse et al. (2009).

2.1. Light microscopy (LM)

Only flowers with mature anthers were used. Some pollen grains, removed from the anthers, were hydrated with distilled water on filter paper as in Rodondi et al. (2004), fixed in 2.5% glutaraldehyde, and stained with 4,6-diamidino-2-phenylindole (DAPI) dissolved in McIlvain buffer to detect DNA (Vergne et al., 1987). The observations were made with a LEICA DM-RD epifluorescent microscope equipped with a Ploëmopack 1 System and a mercury lamp (OSRAM HBO 100 W) with an excitation filter 340-380 nm, a dichroic beamsplitting mirror RKP 400, and a barrier filter at 420 nm. For the palynological studies, pollen grains were acetolyzed according to Erdtman (1960) and then concentrated and purified by using a density gradient of sucrose pads (Chissoe and Skvarla, 1974). The measures of P (= polar axis) and E (= equatorial diameter) of the pollen grains, mounted in glycerine jelly, were taken at 100× with a Leitz Wetzlar (Germany) microscope. The mean of P and E and the ratio P/E, useful to determine the shape, were obtained from the data based on measurements of 50 pollen grains for each population. The data elaboration is reported in Table 2.

Table 1

Sampling and ecology of the examined taxa.

2.2. Scanning electron microscopy (SEM)

Acetolyzed pollen, concentrated and purified according to Chissoe and Skvarla (1974) or stained in a sequence of osmium (O) and thiocarbohydrazide (T) solutions known as OTOTO method (Chissoe et al., 1995), was observed using a Leo 1430 and a Cambridge Stereoscan 360 scanning electron microscopes.

3. Results

3.1. LM survey (Plate I; Table 2)

The mature pollen grains of the investigated species of *Pinguicula* are released as free monads of medium size (\sim 30 µm) (Plate I, 1–8). The pollen colour varies from whitish to yellow. Each grain is trinucleate (3-celled) (Plate I, 1).

Moreover, the grains are isopolar, stephanoaperturate, zonocolporate. Each aperture is associated with a colpus that is perpendicular to the equator and a bridge or constriction which seems to divide the colpus into two parts is often visible (Plate I, 3, 7). The number of colpori varies from species to species with a minimum of (4)-5-(6)colpori in *P. grandiflora* subsp. rosea, and a maximum of 8–9–(10) colpori in P. hirtiflora. Moreover the two subspecies of P. grandiflora show a different shape and number of colpori: suboblate and (5)-6-7-(8) colpori in subsp. grandiflora (Plate I, 2); oblate spheroidal and (4)–5–(6) colpori in subsp. rosea (Plate I, 3). Pollen grains of P. poldinii show a large number of anastomosing colpori. Around 60%, of the approximatively 600 grains observed, has this characteristic feature, which makes these grains asymmetric and anomalous (Plate I, 7). The pollen grains of *Pinguicula* in polar view have a circular equatorial outline and the shape is oblate spheroidal. In P. reichenbachiana prolate pollen grains are the most frequent (Plate I, 8).

3.2. SEM survey (Plates II-V; Table 2)

Each grain is stephanocolporate and its pores have a rectangular profile (Plate IV, 5; Plate V, 5, 9). The colpus membrane is often covered with granular elements (Plate III; 4) and the colpori are not normally fused at the polar edge. The inner structure of the sporoderm of some broken pollen grains was observed: there are two patterns of exine, one with a nearly continuous tectum like in *P. hirtiflora*, the other with a discontinuous tectum like in *P. reichenbachiana* (Plate II, 1–2).

Species	Site (see also Fig. 1)	Elevation (m a.s.l.)	Habitat
P. alpina L.	1a — Alpe Gera (SO, Italy)	2100	Neutrophyle alpine grasslands
	1b – Monte Alben (BG, Italy)	1500	Carex firma, hydromorphic alpine grasslands, NE slope
	1c — Grigna Settentrionale (LC, Italy)	1600	Carex firma, hydromorphic alpine grasslands, SE slope
P. arvetii Genty	2 — Pian del Re, Monviso, Crissolo (CN, Italy)	2020	Acidophylous bog
P. grandiflora Lam. subsp. grandiflora ^a	3 — Rutor Valley (AO, Italy)	2135	Alpine heath
P. grandiflora subsp. rosea (Mutel) Casper	4 — Chapareillan (Département Isère, France)	1000	Wet banks of a sandy stream
P. hirtiflora Ten.	5 — Fontan, Val Roya (Département Alpes-Maritimes, France)	520	Dripping limestone cliffs
P. leptoceras Rchb.	6a — Monte Alben (BG, Italy)	1500	Carex firma, hydromorphic alpine grasslands, SE slope
	6b — Alpe Lago, Chiesa Val Malenco (SO, Italy)	1620	Marshes
	6c — Val Porcellizzo, Val Masino (SO, Italy)	1800	Wet acidophylous grasslands
	6d — Piano dell'acqua nera, Passo S. Marco (BG, Italy)	1750	Acidophylous bog
P. poldinii Steiger et Casper	7 — Campone, Tramonti di Sotto (PN, Italy)	450	Dripping limestone cliffs
P. reichenbachiana Schindl. ^b	8a — Fontan, Val Roya (Département Alpes-Maritimes, France)	520	Dripping limestone cliffs
	8b — Villaggio Rocca Barbena (SV, Italy)	800	Dripping limestone cliffs
P. vulgaris L.	9a — Sauze D'Oulx (TO, Italy)	1500	Wet meadows
	9b — Passo Campo Carlo Magno, Pinzolo (TN, Italy)	1620	Wet meadows
	9c — Col de Tende (Département Alpes-Maritimes, France)	1250	Dripping limestone cliffs
	9d — Chapareillan (Département Isère, France)	1000	Wet meadows

^a As P. grandiflora Lam. subsp. grandiflora f. grandiflora.

^b As P. longifolia Ram. var. reichenbachiana (Schindler) Rouy or P. longifolia subsp. reichenbachiana (Schindler) Casper.

Fig. 1. Map of sites of the investigated species (see also Table 1): 1 (a, b, c) = *P. alpina*; 2 = P. arvetii; 3 = P. grandiflora subsp. grandiflora; 4 = P. grandiflora subsp. rosea; 5 = P. hirtiflora; 6 (a, b, c, d) = *P. leptoceras*; 7 = P. poldinii; 8 (a, b) = *P. reichenbachiana*; 9 (a, b, c, d) = *P. vulgaris*.

The exine ornamentation of *P. hirtiflora* is perforate (Plate IV, 4), while the ornamentation of all the other investigated species is rugulate–microreticulate or rugulate–reticulate (*P. alpina*) (Plate III, 2, 4, 6; Plate IV, 2, 6; Plate V, 3, 6, 9).

3.2.1. P. alpina (Plate III, 1-2)

The grains are suboblate, radially symmetric, isopolar and zonocolporate with (5)–6–7–(8) colpori. Rare anastomoses of colpori apices are visible. The profile of colpus margin is irregular and there are granules on the colpus membrane. The sexine ornamentation is rugulate–reticulate with thick curved muri (~1.0 µm thick), irregular narrow lumina (often wider than 1.0 µm) and rare perforations on the mesocolpium margin. There is usually no differentiation of the sexine towards the poles and/or colpori.

3.2.2. P. arvetii (Plate III, 3-4)

The grains are oblate spheroidal, radially symmetric, isopolar and zonocolporate with 5-6-(7) colpori. Anastomoses of colpori between the polar margins are very rare. The sexine ornamentation is rugulate–microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rounded or polygonal) and they

are rarely wider than 1.0 $\mu m.$ The muri are thick (thickness 0.5–1.0 $\mu m).$

3.2.3. P. grandiflora (Plate III, 5-6; Plate IV, 1-2)

In *P. grandiflora* the grains are suboblate in subsp. *grandiflora* and oblate spheroidal in subsp. *rosea*. The grains are radially symmetric, isopolar and zonocolporate with (5)-6-7-(8) colpori in subsp. *grandiflora*; (4)-5-(6) colpori in subsp. *rosea*. Rare anastomoses of colpori apices are visible. The sexine ornamentation is rugulate-microreticulate with thin curved muri (0.2–0.5 µm thick) and the lumina are very variable in size and shape (rarely wider than 1.0 µm). There is usually no differentiation of the sexine towards the poles and/ or colpori.

3.2.4. P. hirtiflora (Plate II, 1; Plate IV, 3-4)

The grains are oblate spheroidal, radially symmetric, isopolar, zonocolporate and parasyncolporate with 8-9-(10) colpori. The tectum is nearly continuous and perforated. Puncta (diameter $<0.5 \,\mu$ m) have different shapes and sizes and their density on the mesocolpium margins and on the apocolpium is lower. The splitting of some pollen grains allowed observation of the thickness of the sporoderm layers: foot layer (0.2 μ m), columellae (0.4 μ m), tectum (0.4 μ m). The whole thickness is around 1.0 μ m.

Table 2

Biometric measures, based on 50 pollen grains for each population, of the examined taxa. Abbreviations: P = polar axis; E = equatorial diameter; SO = suboblate; OS = oblate spheroidal; P = polar experimentary of the examined taxa.

Species		P (μm)	E (μm)	P/E	Shape	Sexin ornamentation	Muri width (µm)	Number of colpori
P. alpina P. arvetii P. grandiflora P. hirtiflora P. leptoceras P. poldinii P. reichenbachia P. vulgaris	subsp. grandiflora subsp. rosea na	$\begin{array}{c} 27.5 \pm 0.15 \ (23.4 - 32.0) \\ 28.5 \pm 0.29 \ (24.3 - 32.9) \\ 26.9 \pm 0.28 \ (23.4 - 31.5) \\ 28.6 \pm 0.31 \ (24.3 - 33.3) \\ 29.4 \pm 0.25 \ (25.2 - 33.3) \\ 28.9 \pm 0.28 \ (23.4 - 39.2) \\ 31.3 \pm 0.20 \ (27.0 - 34.2) \\ 30.2 \pm 0.26 \ (23.4 - 35.1) \\ 32.3 \pm 0.14 \ (27.0 - 37.8) \end{array}$	$\begin{array}{c} 32.1 \pm 0.15 \ (28.8 - 36.0) \\ 29.9 \pm 0.28 \ (26.1 - 33.8) \\ 32.1 \pm 0.29 \ (27.0 - 36.0) \\ 31.2 \pm 0.29 \ (27.0 - 34.2) \\ 33.3 \pm 0.26 \ (28.8 - 36.9) \\ 31.1 \pm 0.26 \ (26.1 - 41.0) \\ 34.7 \pm 0.27 \ (28.8 - 39.6) \\ 29.1 \pm 0.23 \ (22.5 - 34.2) \\ 32.4 \pm 0.13 \ (27.0 - 36.0) \end{array}$	0.86 0.96 0.84 0.92 0.88 0.93 0.90 1.04 1.00	SO OS SO OS OS OS OS PS S	Rugulate-reticulate Rugulate-microreticulate Rugulate-microreticulate Rugulate-microreticulate Perforate Rugulate-microreticulate Rugulate-microreticulate Rugulate-microreticulate	~1.0 0.5-1.0 0.2-0.5 0.2-0.5 - 0.5-1.0 0.5-1.0 0.2-0.5 0.5-1.0	$\begin{array}{c} (5)-6-7-(8)\\ 5-6-(7)\\ (5)-6-7-(8)\\ (4)-5-(6)\\ 8-9-(10)\\ 5-6-(7)\\ 5-6\\ (-7)\\ 5-6\\ 6-7-(8)\end{array}$

Plate I. LM micrographs (1 DAPI stain; 2–8 acetolyzed pollen). Scale bars = 10 μm.

1. 2. 3	<i>P. hirtiflora</i> : pollen grains showing a vegetative nucleus (arrowhead) and two sperm nuclei (arrows), also 9 equatorial apertures are visible. <i>P. grandiflora</i> subsp. <i>grandiflora</i> : polar view of a 7-colporate pollen grain.
4. and 5. 6.	<i>P. alpina:</i> pollen grain in polar view, at two different focal planes, showing a reticulate ornamentation, colpori and the equatorial pores. <i>P. reichenbachiana</i> : pollen grain in equatorial view showing a reticulate ornamentation.
7. 8.	<i>P. poldinii</i> : irregularly anastomized colpori (arrowhead) are very frequent in this species. An equatorial bridge is also visible (arrow). <i>P. reichenbachiana</i> : pollen grain in equatorial view with the typical prolate shape.

3.2.5. P. leptoceras (Plate IV, 5-6)

The grains are oblate spheroidal, radially symmetric, isopolar and zonocolporate with 5–6–(7) colpori. Anastomoses of colpori between

the polar margins are very rare. The sexine ornamentation is rugulate-microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina

Plate II. SEM micrographs of acetolyzed broken pollen grains (OTOTO-stained pollen). Abbreviations: t = tectum; c = columellae; fl = foot layer. Scale bars = 1 µm.

1. *P. hirtiflora*: pollen wall with a nearly continuos tectum a perforation is also visible (arrow).

are very variable in size and shape (rounded or polygonal) and they are rarely wider than $1.0 \,\mu\text{m}$. The muri are thick (thickness $0.5 - 1.0 \,\mu\text{m}$).

3.2.6. P. poldinii (Plate V, 1-3)

The grains are oblate spheroidal, radially symmetric or asymmetric, isopolar and zonocolporate with 6-(7) colpori. Many different types of anastomosing colpori are often visible on the grain. The sexine ornamentation is rugulate–microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rarely wider than 1.0 µm) while the muri are thick (thickness 0.5–1.0 µm).

3.2.7. P. reichenbachiana (Plate II, 2; Plate V, 4-6)

The grains are prolate spheroidal, radially symmetric, isopolar and zonocolporate with 5–6 colpori and rarest anastomoses close to the polar margins. The sexine ornamentation is rugulate–microreticulate, near the margin of the colpi, the muri merge and lumina become smaller resembling perforations. Lumina are vary variable in size and their shape is often circular (rarely wider than 1.0 μ m). The muri are thin (thickness 0.2–0.5 μ m). The splitting of some pollen grains allowed observation of the thickness of the sporoderm layers: foot layer (0.4 μ m), columellae (0.4 μ m), tectum (0.5 μ m). The whole thickness is around 1.3 μ m.

3.2.8. P. vulgaris (Plate V, 7-9)

The grains are spheroidal, radially symmetric, isopolar and zonocolporate with 6-7-(8) colpori. Anastomoses between the polar margins are very rare. The sexine ornamentation is rugulate-microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rarely wider than $1.0 \,\mu\text{m}$). The muri are thick (thickness $0.5-1.0 \,\mu\text{m}$).

Table 2 summarizes the main features.

4. Discussion

The institution of *Pinguicula poldinii* as a new species (Casper and Steiger, 2001), the discovery of new sites for *P. arvetii* (Pascal et al., 2008) and *P. grandiflora* subsp. *grandiflora* (Compostella et al., 2010) as new species of the Italian flora, together with the fact that the palynological data are still few, old and based mainly on light microscopy investigations, induced a methodical research on the micromorphology of the pollen grains of butterworts belonging to Alpine flora.

The comparative LM and SEM analysis of the pollen grains of the nine investigated taxa confirmed the general typology of the pollen grains of *Pinguicula* L. Detailed palynomorphological characteristics of the not yet investigated species *P. arvetii*, *P. grandiflora* (two subspecies), *P. leptoceras*, *P. poldinii*, *P. reichenbachiana* are provided for the first time.

In all the species of *Pinguicula* the pollen grains are released as monads which are isopolar, radially symmetric, stephanoaperturate, zonocolporate and trinucleate (3-celled). The pollen colour, on fresh material, does not have any diagnostic relevance. The number of colpori is lower than 8, except in *P. hirtiflora* in which the number of colpori rises up to 10. The shape is from suboblate to oblate spheroidal (P < E), except for *P. reichenbachiana*, that is prolate spheroidal (P > E) (Table 2).

According to the pollen terminology (Punt et al., 2007; Hesse et al. 2009) the rugulate-microreticulate or rugulate-reticulate ornamentation characterizes the pollen wall of the butterworts investigated; only *P. hirtiflora* has a perforate ornamentation. *P. alpina* shows a rugulate-reticulate ornamentation characterized by very thick (around 1.0 μ m) and twisted muri that make the lumina very narrow and irregular; the lumina sometimes are simple perforations. The microreticulum of *P. arvetii*, *P. leptoceras*, *P. poldinii* and *P. vulgaris* present thick muri (0.5–1.0 μ m) in contrast with the thin muri (0.2–0.5 μ m) of *P. grandiflora* (subsp. *grandiflora* and subsp. *rosea*) and *P. reichenbachiana*. The reticulum meshes of these last two species are larger than the one of the previous four species but nevertheless the ornamentation is still microreticulate. *P. grandiflora* and *P. reichenbachiana* differ because the first one has the muri more twisted and

^{2.} P. reichenbachiana: pollen wall with discontinuous tectum.

its sexine ornamentation usually do not differentiate towards the poles and/or colpori. The microreticulate ornamentation of the mesocolpium margin (around 2.0 µm) changes from reticulate to perforate and the tectum varies from discontinuous to nearly continuous in almost all the taxa but not in *P. alpina* and *P. grandiflora* (subsp. *grandiflora* and subsp. *rosea*).

The perforate sexine ornamentation of *P. hirtiflora* shows a drastic reduction of puncta density near the margin of mesocolpium and on apocolpium.

The pollen of *P. poldinii* is very peculiar: around 60%, of the nearly 600 pollen grains observed, showed a large number of anastomoses between colpori and the grains are often asymmetric and anomalous. The anastomoses are very irregular and involve each part of the grain. Often it is impossible to distinguish between the polar and the equatorial region (Table 2); a similar feature has been reported also in *Utricularia bremii* Heer (Lentibulariaceae) (Huynh, 1968; Casper and Manitz, 1975; Käsermann and Moser, 1999). Casper and Steiger (2001) described briefly the pollen grains of *P. poldinii* and they found 6–8-colporate grains; even if we have never found 8-colporate grains we use this value to complete the proposed pollen key (Table 3).

The exine micromorphology by itself does not allow a clear separation of *P. arvetii*, *P. leptoceras*, *P. poldinii* and *P. vulgaris*. There are small differences regarding: the shape, the size and the number of colpori. Grains of *P. vulgaris* are spheroidal while they are oblate spheroidal in the other three species. Pollen grains of *P. vulgaris* and *P. poldinii* are larger than the ones of *P. arvetii* and *P. leptoceras*. 5-colporate pollen grains are frequent in *P. arvetii* and *P. leptoceras* while they have never been observed in *P. poldinii* and *P. vulgaris* (their minimum is 6-colporate) (Table 2). *P. arvetii* is so close to *P. leptoceras* that it is difficult to separate them properly using palynological data.

LM observations confirmed the general pollen morphology of *P. vulgaris* described by Sohma (1975) from Japanese herbarium specimens, and by Tsymbalyuk et al. (2008) from Ukrainian herbarium specimens. The SEM observations of Sohma (1975) of *P. vulgaris*, described the ornamentation fairly irregular reticulate to rugulate, Tsymbalyuk et al. (2008) describe a perforate ornamentation, while our data show a rugulate–microreticolate ornamentation. Also our data about the rugulate–reticulate sexine ornamentation of *P. alpina*

differs from Tsymbalyuk et al. (2008) and Hesse et al. (2009) because they describe a micro-perforate ornamentation and an incomplete reticulum respectively.

The pollen grains of *P. vulgaris* and *P. grandiflora* from Alps are smaller than the one reported by Heslop-Harrison (2004) from English plants.

Finally a recent work of Shuka et al. (2007) exhaustively described two varieties of *P. hirtiflora* in Albania: var. *hirtiflora* and var. *louisii*. They described the grains stephano-7–9(–10) colporate, the shape from oblate to spheroidal and the ornamentation strongly microreticulate on equatorial mesocolpi and somewhat perforated on apocolpi in var. *hirtiflora*; microreticulate to vermiculate on equatorial mesocolpi in var. *louisii*. Our data cannot be properly compared with theirs because they worked on non-acetolyzed pollen grains. Be that as it may the ornamentation of our samples is always perforated and never microreticulate or vermiculate (as described in the Albanian varieties).

Our observations improve the knowledge on alpine butterworts and provide the diagnostic characters for the identification of their pollen grains. The diagnostic characters are: the size, the shape, the number of colpori and the exine ornamentation. These characters are combined to draw up a pollen key (Table 3) for the identification of the different species. This pollen key is an important tool for pollen diagrams and consequently for the recostruction of paleo-wet oligotrophic-environments through the Holocene.

Acknowledgements

The authors are grateful to Filippo Tassara for the specimens from Rocca Barbena and Sauze D'Oulx and for the detailed informations about the location of some sites. We are thankful to Roberto Cavatorta (Dip. di Biologia, Università degli Studi di Milano) for his assistence in computer graphics.

SEM micrographs were provided by CIMA (Centro Interdipartimentale di Microscopia Avanzata, Università degli Studi di Milano) and some by Agostino Rizzi, CNR (Centro Geodinamica Alpina e Quaternaria).

Plate III. SEM micrographs of acetolyzed pollen grains. Scale bars: 1, 3, 5=10 µm; 2, 4, 6=1 µm. (see on page 7).

- 1. *P. alpina*: pollen grain in polar view.
- 2. *P. alpina*: rugulate-reticulate ornamentation with thick and twisted muri, and rare perforations (arrows).
- 3. *P. arvetii*: pollen grain in polar view.
- 4. *P. arvetii*: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin and granular elements on the colpus membrane.
- 5. *P. grandiflora* subsp. *grandiflora*: pollen grain in polar view.
- 6. *P. grandiflora* subsp. *grandiflora*: rugulate-microreticulate ornamentation on apocolpium with thin and twisted muri; the reticulum has the same pattern even on mesocolpium margin.

Plate IV. SEM micrographs of acetolyzed pollen grains. Scale bars: 1, 3, $5 = 10 \mu m$; 2, 4, $6 = 1 \mu m$. (see on page 8)

- 1. *P. grandiflora* subsp. *rosea*: a 4-colporate pollen grain. Inset: the reticulum has the same pattern even on mesocolpium margin.
- 2. *P. grandiflora* subsp. *rosea*: rugulate-microreticulate ornamentation with thin and twisted muri.
- *P. hirtiflora*: pollen grain in polar view.
 P. hirtiflora: the number of perforations in the number of perforations in the number of perforations in the number of perforations.
 - P. hirtiflora: the number of perforations is reduced close to the apocolpium and the mesocolpium margin.
- 5. *P. leptoceras*: pollen grain in equatorial view showing a rectangular pore (arrowhead).
- 6. *P. leptoceras*: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin.

Plate V. SEM micrographs of acetolyzed pollen grains. Scale bars: 1-2, 4, $7-8=10 \mu m$; 3, 5-6, $9=1 \mu m$. (see on page 9)

- 1. *P. poldinii*: pollen grains showing anastomosing colpori close to the polar margins (arrow).
- 2. *P. poldinii*: pollen grain with an extreme irregularity in its colpori.
- 3. *P. poldinii*: rugulate-microreticulate ornamentation.
- 4. *P. reichenbachiana*: pollen grain in equatorial view showing a bridge (arrow). The alteration of the ornamentation pattern on mesocolpium, near the colpus margin, is also visible.
- 5. *P. reichenbachiana*: perforations (arrows) near the colpus margin and a rectangular pore (arrowhead).
- 6. *P. reichenbachiana*: rugulate–microreticulate ornamentation with thin muri.
- 7. and 8. *P. vulgaris*: pollen grain in oblique equatorial view, showing a small difference in the size of the polar regions.
- 9. *P. vulgaris*: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin and a rectangular pore (arrowhead).

Plate III.

Plate IV (caption on p. 6).

Plate V (caption on p. 6).

Table 3

1. Tectum nearly continuous with a perforate ornamentation, number of colpori ≥ 8	P. hirtiflora
1.* Tectum discontinuous with a rugulate-microreticulate or rugulate-reticulate ornamentation, number of colpori \leq 8	
2. Tectal muri thin: 0.2–0.5 μm thick	
3a. Prolate spheroidal shape, rugulate-microreticulate ornamentation, 5–6 colpori	P. reichenbachiana
3b. Suboblate shape, rugulate-microreticulate ornamentation with twisted muri, (5)-6-7-(8) colpori	P. grandiflora subsp. grandiflora
3c. Oblate spheroidal shape, rugulate-microreticulate ornamentation with twisted muri, (4)-5-(6) colpori	P. grandiflora subsp. rosea
2.* Tectal muri thick: 0.5–1.0 μm thick	
4. Suboblate shape, rugulate-reticulate ornamentation with compact and twisted muri (\sim 1.0 µm thick)	P. alpina
4.* Shape from oblate spheroidal to spheroidal, rugulate-microreticulate ornamentation with muri 0.5–1.0 μm thick	
5. Spheroidal shape, P and E>30 μm, 6–7–(8) colpori	P. vulgaris
5.* Oblate spheroidal shape	
6a. P and E<30 µm, 5–6–(7) colpori	P. arvetii
6b. P<30 μm and E>30 μm, 5–6–(7) colpori	P. leptoceras
$6c.* P$ and $E>30 \mu m$, $6-(7-8)^a$ colpori. Asymmetric, anomalous pollen grains with frequent anastomosing colpori	P. poldinii

^a Our data, 6(-7) colpori, combined with Casper and Steiger (2001), 6-8 colpori.

References

- Aeschimann, D., Lauber, K., Moser, D.M., Theurillat, J.P., 2004. Flora Alpina, Vol. 1-3. Zanichelli, Bologna,
- Ansaldi, M., Casper, S.J., 2009. Pinguicula mariae Casper nova spec. and Pinguicula apuana Casper et Ansaldi nova spec. - A contribution to the occurrence of the genus Pinguicula L. (Lentibulariaceae) in the Apuan Alps (Italy). Wulfenia 16, 1-31.
- Blanca, G., Ruíz-Rejón, M., Zamora, R., 1999. Taxonomic revision of the genus Pinguicula L. in the Iberian Peninsula. Folia Geobotanica 34, 337-361.Casper, S.J., 1966. Monographie der Gattung Pinguicula L. Bibliotheca Botanica 127/128, 1-210.
- Casper, S.J., 1966. Monographie der Gattung Pinguicula L. Bibliotheca Botanica 127/128, 1-210 (in German).
- Casper, S.J., 1972. Pinguicula L. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A. (Eds.), Flora Europaea, Vol. 3. Cambridge University Press, Cambridge, UK, pp. 294-296.
- Casper, S.J., 1974. 119. Familie Lentibulariaceae. In: Hartl, D., Wagenitz, G., Hegi, G. (Eds.), Illustrierte Flora von Mitteleuropa, Band VI, Teil 1. Berlin & Hamburg, Parey, pp. 506-550 (in German).
- Casper, S.J., Manitz, H., 1975. Beiträge zur Taxonomie und Chorologie der mitteleuropäischen Utricularia-Arten. 2. Androsporogenese, Chromosomenzahlen und Pollenmorphologie. Feddes Repertorium 86 (4), 211-232 (in German with English Abstr.).
- Casper, S.J., Steiger, J., 2001. A new Pinguicula (Lentibulariaceae) from the pre-alpine region of northern Italy (Friuli-Venezia Giulia): Pinguicula poldinii Steiger et Casper spec. nov. Wulfenia 8, 27-37.
- Chissoe, W.F., Skvarla, J.J., 1974. Sucrose density pads for concentration and purification of pollen grains. Stain Technol. 49, 123-124.
- Chissoe, W.F., Vezey, E.L., Skvarla, J.J., 1995. The use of osmium-thiocarbohydrazide for structural stabilization and enhancement of secondary electron images in scanning electron microscopy of pollen. Grana 34, 317-324.
- Cieslak, T., Polepalli, J.S., White, A., Müller, K., Borsch, T., Barthlott, W., Steiger, J., Marchant, A., Legendre, L., 2005. Phylogenetic analysis of Pinguicula (Lentibulariaceae): chloroplast DNA sequences and morphology support several geographically distinct radiations. Am. J. Bot. 92 (10), 1723-1736.
- Compostella, C., Beretta, M., Caccianiga, M., 2010. Pinguicula grandiflora Lam. (Lentibulariaceae), specie nuova per la flora italiana. Informatore Botanico Italiano 42 (1), 63-66 (in Italian with English Abstr. and Figs. Captions).
- Conti, F., Peruzzi, L., 2006. Pinguicula (Lentibulariaceae) in Central Italy: taxonomic study. Ann. Bot. Fennici 43, 321-337.
- Degtjareva, G., Casper, J., Hellwig, F., Sokoloff, D., 2004. Seed morphology in the genus Pinguicula (Lentibulariaceae) and its relation to taxonomy and phylogeny. Bot. Jahrb. Syst. 125, 431-452.
- Degtjareva, G.V., Casper, S.J., Hellwig, F.H., Schmidt, A.R., Steiger, J., Sokoloff, D.D., 2006. Morphology and nrITS phylogeny of the genus Pinguicula L. (Lentibulariaceae), with special attention to embryo evolution. Plant Biol. 8, 778-790.
- Erdtman, G., 1960. The acetolysis method, a revised description. Svensk Bot Tidskr 54, 561-564.
- Erdtman, G., Berglund, B., Praglowski, J., 1961. An introduction to a Scandinavian pollen flora. Almqvist & Wiksell. Stockhom.
- Heslop-Harrison, Y., 2004. Biological flora of the British Isles, No. 237: Pinguicula L. J. Ecol. 92, 1071-1118.

Pollen Terminology – An Illustrated Handbook, Springer Wien, New York, (264 pp),

- Huynh, K.-L., 1968. Étude de la morphologie du pollen du genre Utricularia L. Pollen Spores 10 (1), 11-55 (in French with English Abstr.).
- Käsermann, C., Moser, D.M., 1999. Fiches pratiques pour la conservation Plantes à fleurs et fougères. Office fédéral de l'environnement, des forêts et du paysage (OFEFP), Bern, 344 pp. (in French).
- Mitchell, G.F., 1954. The Late-Glacial flora of Ireland. Danm. Geol. Unders. 80 (II), 73–86. Moore, P.D., Webb, J.A., Collinson, M., 1991. Pollen Analysis, 2nd ed. Blackwell, London. (216 pp).
- Pascal, R., Garraud, L., Varese, P., Selvaggi, A., Albis, O., 2008. Note floristiche piemontesi n.171. Pinguicula arvetii Genty (Lentibulariaceae). In: Selvaggi, A., Soldano, A., Pascale, M., Pascal, R. (Eds.), Riv. Piem. St. Nat, 29, pp. 439-474 (in Italian).
- Peruzzi, L., Passalacqua, N.G., Cesca, G., 2004. Pinguicula crystallina Sibth. et Smith subsp. hirtiflora (Ten.) Strid (Lentibulariaceae) in Calabria (Southern Italy). Cytotaxonomical study and ex situ conservation in the Botanic Garden of Calabria University. Carniv Pl Newslett 33 (3), 68-74.
- Pignatti, S., 1982. Flora d'Italia. Edagricole, Bologna. (in Italian).
- Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S., Le Thomas, A., 2007. Glossary of pollen and spore terminology. Rev. Palaeob. Palynol. 143, 1-81.
- Rodondi, G., Beretta, M., Andreis, C., 2004. The genus Drosera L. in northern Italy: pollen morphology as a taxonomic tool. Plant Biosystems 138 (2), 157-164.
- Shuka, L., Xhulaj, M., Kashta, L., Casper, S.J., 2007. The genus Pinguicula L. (Lentibulariaceae) in Albania - a critical review. Wulfenia 14, 15-65.
- Sohma, K., 1975. Pollen morphology of the Japanese species of Utricularia L. and Pinguicula L, with notes on fossil pollen of Utricularia from Japan. The. Journal of Japanese Botany 50 (164-179), 193-208.
- Steiger, J.F., 1998. Pinguicula (Lentibulariaceae): the cool climate species of the northern hemisphere - morphology, biology, cultivation. Second Conference of the International Carnivorous Plant Society, Bonn, Germany, May 30-June 1st.
- Steiger, J.F., Tassara, F., 2006. P. crystallina subsp. hirtiflora from Roya Valley an introduced population or not? Or P. longifolia var. reichenbachiana on the way of an disappearing? http://www.pinguicula.org/pages/divers/Natural_or_not.htm.
- Tammaro, F., Pace, L., 1987. Il genere Pinguicula L. (Lentibulariaceae) in Italia Centrale ed istituzione di una nuova specie P. fiorii Tamm. et Pace. Informatore Botanico Italiano 19, 429-436 (in Italian with English Abstr. and Figs. Captions).
- Tsymbalyuk, Z.M., Mosyakin, S.L., Bezusko, L.G., 2008. Comparative morphological characterization of pollen grains of species of Pinguicula L. and Utricularia L. in the flora of Ukraine. Ukr. Bot. Journ. 65, 520–534 (in Ukrainian with English Abstr. and Figs. Captions).
- Vergne, P., Delvellee, I., Dumas, C., 1987. Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Techn 63, 299-304.
- Zamora, R., Jamilena, M., Rejón, M.R., Blanca, G., 1996. Two new species of the carnivorous genus Pinguicula, (Lentibulariaceae) from Mediterranean habitats. Pl. Syst. Evol. 200, 41-60.
- Zamudio, S., 2005. Dos especies nuevas de Pinguicula (Lentibulariaceae) de la Sierra Madre Oriental, México. Acta Botanica Mexicana 70, 69-83 (in Spanish with English Abstr.).

Hesse, M., Halbritter, H., Zetter, R., Weber, M., Buchner, R., Frosch-Radivo, A., Ulrich, S., 2009.