
The Pyrimidine Nucleotide Biosynthetic Pathway
Modulates Production of Biofilm Determinants in
Escherichia coli
Marco Garavaglia., Elio Rossi., Paolo Landini*

Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Milan, Italy

Abstract

Bacteria are often found in multicellular communities known as biofilms, which constitute a resistance form against
environmental stresses. Extracellular adhesion and cell aggregation factors, responsible for bacterial biofilm formation and
maintenance, are tightly regulated in response to physiological and environmental cues. We show that, in Escherichia coli,
inactivation of genes belonging to the de novo uridine monophosphate (UMP) biosynthetic pathway impairs production of
curli fibers and cellulose, important components of the bacterial biofilm matrix, by inhibiting transcription of the csgDEFG
operon, thus preventing production of the biofilm master regulator CsgD protein. Supplementing growth media with
exogenous uracil, which can be converted to UMP through the pyrimidine nucleotide salvage pathway, restores csgDEFG
transcription and curli production. In addition, however, exogenous uracil triggers cellulose production, particularly in
strains defective in either carB or pyrB genes, which encode enzymes catalyzing the first steps of de novo UMP biosynthesis.
Our results indicate the existence of tight and complex links between pyrimidine metabolism and curli/cellulose production:
transcription of the csgDEFG operon responds to pyrimidine nucleotide availability, while cellulose production is triggered
by exogenous uracil in the absence of active de novo UMP biosynthesis. We speculate that perturbations in the UMP
biosynthetic pathways allow the bacterial cell to sense signals such as starvation, nucleic acids degradation, and availability
of exogenous pyrimidines, and to adapt the production of the extracellular matrix to the changing environmental
conditions.
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Introduction

Bacteria are able to switch between two different ‘‘lifestyles’’:

single planktonic cells and sessile microbial communities, or

biofilms. Biofilm cells are characterized by production of adhesion

factors and extracellular polysaccharides (EPS) constituting the so-

called ‘‘biofilm matrix’’ that, in addition to promoting cell-cell

aggregation and cell-surface adhesion, can confer bacterial cell

resistance to various environmental stresses [1–4]. Transition from

planktonic cells to biofilm, as well as biofilm maturation and

dispersal, responds to environmental and physiological cues,

usually relayed to the bacterial cell by signal molecules.

Accumulation of signal molecules triggers biofilm formation and

maintenance by stimulating the production of adhesion factors,

either by activating transcription of corresponding genes or by

increasing activity of EPS biosynthetic enzymes. In Gram negative

bacteria, the modified nucleotide cyclic-di-GMP (c-di-GMP) plays

a pivotal role in biofilm formation and maintenance by stimulating

production of EPS and adhesion factors [5–8], while negatively

affecting cell motility [9,10]. Another class of signal molecules,

homoserine lactones, can promote biofilm formation in the

opportunistic pathogen Pseudomonas aeruginosa by promoting

production of biosurfactants [11,12], and by stimulating produc-

tion of extracellular DNA [13] and of lectins, proteins able to

promote cell adhesion to sugar moieties [14]. In addition to

dedicated signal molecules, intermediates and products of different

metabolic pathways can also affect biofilm formation: for instance,

indole, a product of tryptophan degradation, stimulates EPS

production in Vibrio cholerae [15]. Likewise, glucose and glycolysis

intermediates can greatly impact adhesion factors’ production

through different regulatory mechanisms (reviewed in [16]).

In Escherichia coli and other enterobacteria, curli amyloid fibers

greatly enhance cell aggregation and adhesion to surfaces. Genes

involved in curli biosynthesis are clustered in the csgBAC operon,

encoding curli structural components, and the csgDEFG operon,

encoding the CsgD transcription regulator and proteins involved

in curli assembly and transport [17,18]. The CsgD protein

activates transcription of the csgBAC operon and of several genes

involved in production of cell surface-associated structures and in

cell adaptation to the biofilm lifestyle [19–21], including the adrA

gene, encoding a diguanylate cyclase able to trigger cellulose

production via c-di-GMP synthesis [6,22]. Thus, curli, cellulose

and other cell surface-associated structures are co-produced in a

CsgD-dependent fashion to constitute the biofilm extracellular
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matrix. Expression of the csg operons takes place in response to a

combination of environmental conditions: low growth temperature

(,32uC), low osmolarity, and slow growth [18], and it is strongly

dependent on the signal molecule c-di-GMP [7,8]. A number of

regulators, including OmpR, IHF, H-NS, CpxR, Crl, and the

RpoS protein, play a role in curli gene expression [18,23–25].

However, several aspects of curli regulation are still unclear: for

instance, the molecular mechanisms of temperature dependence

have not yet been fully elucidated, and no c-di-GMP sensor

element involved in csg activation has been identified so far.

In this work, we show that curli and cellulose production are

tightly linked to nucleotide biosynthetic pathways. In particular,

transcription of the curli operons is strongly affected by pyrimidine

nucleotide availability, while cellulose production is activated in

the presence of exogenous uracil. Our observations suggest that

production of cellulose and curli, usually co-regulated, can be

unbalanced depending on the activity of different UMP biosyn-

thetic pathway. Coupling of curli and cellulose production to

UMP biosynthesis modulates formation of extracellular structures

in response to physiological and environmental cues, such as

starvation, nucleic acid turnover, and availability of exogenous

pyrimidines.

Results

Mutations in the carB gene affect curli production
Amyloid fibers such as curli bind to the dye Congo red very

efficiently [17]; thus, phenotype on Congo red-supplemented agar

medium (CR medium, see Materials and Methods) provides a

convenient method for curli detection and an easy way to screen

mutants affected in curli production (Figure 1). To identify novel

genes involved in curli regulation, we carried out transposon

mutagenesis in the E. coli strain MG1655; mutants were screened

for their phenotype on CR medium both at 30uC and 37uC, i.e., at

permissive and non-permissive temperature for curli production.

Several mutants were isolated that showed altered phenotype on

CR medium (data not shown): one mutant displaying a dark red

phenotype at 30uC and a weak red coloration at 37uC, suggesting

increased curli production (Figure 1), was further characterized.

Mapping of the Tn5,R6Kcori/KAN-2. transposon indicated

that the insertion site lay in the carB gene, encoding a subunit of

carbamoyl phosphate synthetase, which catalyzes the first step in

the de novo pyrimidine nucleotide biosynthetic pathway (Figure 2).

To verify that changes in phenotype in the carB::Tn5kan mutant of

MG1655 were indeed due to altered curli production, we

transduced the mutation in a strain unable to produce curli: the

MG1655carB::Tn5kan DcsgA::cat double mutant displayed a white

phenotype on CR medium both at 30uC and at 37uC (Figure 1),

thus indicating that the dark red phenotype of the

MG1655carB::Tn5kan mutant is totally dependent on curli fibers.

Several pieces of evidence indicated that the carB::Tn5kan

mutation does not result in the inactivation of carbamoyl

phosphate synthase activity: the MG1655carB::Tn5kan mutant

was not auxotrophic for pyrimidines, nor did it show any defect in

growth rate on minimal medium. Finally, its phenotype on CR

medium was not reversed by complementation with the wild type

carB allele on a multicopy plasmid (data not shown). The insertion

site for the Tn5kan transposon occurs at nucleotide 2720 of the carB

gene, corresponding to the 907th codon, likely resulting in the

production of a truncated form of the CarB protein lacking its

regulatory domain involved in allosteric inhibition of protein

activity by UMP [26]. Loss of the regulatory domain suggests that

CarB protein activity might be increased in the MG1655carB::Tn5-

kan mutant strain. To verify this hypothesis, we constructed a carB

mutant in which the portion of the gene encoding the catalytic

domain of the CarB protein had been deleted (MG1655DcarB::cat).

As expected, this mutant was auxotrophic for pyrimidines, and

showed reduced growth rate in LB1/4 medium (data not shown).

Addition of uracil at 0.25 mM to LB1/4 medium (LB1/4(ura))

fully overcame MG1655DcarB::cat partial growth defect (data not

shown). The MG1655DcarB::cat mutant displayed a white

phenotype on CR medium, suggesting inability to produce curli

(Figure 1), thus confirming the hypothesis that the carB::Tn5kan

mutation does indeed result in enhanced carbamoyl phosphate

synthetase activity.

Inactivation of UMP biosynthetic genes inhibits curli
production at gene transcription level

To investigate whether the effects of carB inactivation could

also be observed for other genes belonging to the de novo UMP

biosynthetic pathway, we constructed knock out mutants in the

pyrB, pyrC and pyrE genes, and tested them for their phenotypes

on CR medium. As shown in Figure 3, inactivation of any UMP

biosynthetic gene resulted in white phenotype on CR medium,

Figure 1. Determination of curli production by Congo red binding. Phenotypes on CR medium of MG1655 (wild type strain), AM70 (csgA
deletion mutant, unable to produce curli), MG1655carB::Tn5kan, MG1655carB::Tn5kan DcsgA::cat and MG1655DcarB::cat. Strains were grown either at
30uC (for 24 hours) or at 37uC (for 18 hours). Plates were incubated for 48 hours at 4uC to enhance Congo red binding.
doi:10.1371/journal.pone.0031252.g001
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indicating that curli production is inhibited by pyrimidine

nucleotide starvation, rather than by lack (or accumulation) of

any specific intermediate in the UMP biosynthetic pathway.

Consistent with this result, strains impaired in de novo UMP

biosynthesis were deficient in surface attachment experiments

(Figure S1). To elucidate the mechanism of curli inhibition by

perturbation of UMP biosynthesis, we measured transcript levels

of the csgD and csgB genes, representatives of the two curli

biosynthetic operons, using quantitative Real Time PCR

(Table 1). Transcript levels of both csgD and csgB genes were

dramatically decreased in every mutant deficient in UMP

biosynthesis; in contrast, they were increased by approximately

3.5-fold in the MG1655carB::Tn5kan, in agreement with the dark

red phenotype observed in this mutant (Figure 1). Consistent

with inhibition of csgDEFG transcription, transcript levels of the

CsgD-dependent adrA gene were also reduced by roughly 10-fold

by mutations negatively affecting de novo UMP biosynthesis

(Table 1).

Figure 2. UMP biosynthetic pathways in Escherichia coli. Adapted from Ecocyc (http://ecocyc.org/).
doi:10.1371/journal.pone.0031252.g002
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In contrast to the genes belonging to the CsgD regulon, relative

amounts of 16S rRNA, used as reference gene in Real Time PCR

experiments, were similar in MG1655 and in the strains carrying

non-functional alleles of UMP biosynthetic genes (data not shown),

as were transcript levels of the cellulose biosynthetic bcsA gene,

which is not regulated by the CsgD protein [27,28] (Table 1).

These results strongly suggest that pyrimidine starvation leads to a

reduction in csgD and csgB transcript levels via a specific

mechanism rather than through a general inhibition of transcrip-

tion. To determine whether reduction in csgD transcript levels

could depend on decreased mRNA stability, we performed mRNA

decay experiments, which did not show any significant difference

in csgD mRNA half-lives in MG1655DcarB::cat in comparison to

MG1655 (data not shown), suggesting that knock out mutations in

the de novo UMP biosynthetic pathway affects csgD expression at

the transcription initiation step.

Upon addition of 0.25 mM uracil to LB1/4 medium (LB1/

4(ura) medium) transcription of both csgD and csgB was re-

established in mutant strains affected in de novo UMP biosynthesis

(Table 1), thus confirming that csgDEFG expression is repressed by

pyrimidine starvation. However, surprisingly, addition of uracil to

CR medium (CR(ura) medium) failed to restore the curli-

dependent red phenotype in the carB and pyrB strains (Figure 3),

in apparent contradiction with the results of the gene expression

experiments. In contrast, the MG1655 strain, as well as the

MG1655DpyrC and MG1655DpyrE mutants, displayed a red

phenotype on CR(ura) medium, which was not affected by

supplementing uracil up to a final concentration of 1 mM (data

not shown). Surface adhesion experiments showed that growth in

LB1/4(ura) only partially restored ability to form biofilm in the

MG1655DcarB::cat and MG1655DpyrB::cat strains (Figure S1).

These results could suggest that, although curli operon transcrip-

tion was fully resumed in the presence of additional uracil, curli

subunit production might still be impaired in the MG1655DcarB::-

cat and MG1655DpyrB::cat strains. However, determination of curli

fibers’ production using the SDS-agarose electrophoresis method

[29] performed on MG1655DcarB::cat showed that was fully

competent for curli production when grown in LB1/4(ura) solid

medium (Figure S2), in agreement with gene expression

experiments (Table 1).

Effects of regulatory proteins affecting pyrimidine
metabolism and of inhibition of purine biosynthesis on
curli production

We investigated whether pyrimidine starvation might affect

curli production and csg gene expression via known pyrimidine-

sensing regulatory proteins. To this aim, we constructed isogenic

mutants of MG1655 in which either the cytR or the rutR gene were

inactivated. The CytR protein is a repressor of genes involved in

pyrimidine uptake and degradation; negative regulation by CytR

is relieved by high intracellular concentrations of cytidine [30].

Interestingly, in Vibrio cholerae, a CytR-like protein negatively

controls biofilm formation by repressing EPS production [31].

DNA binding by RutR, a regulator of genes involved both in

pyrimidine biosynthesis and degradation, is inhibited by uracil

Figure 3. Congo red binding by E. coli strains deficient in UMP biosynthesis. The MG1655 strain and isogenic mutants deficient in UMP
biosynthetic genes were spotted on either CR medium or CR(ura) medium (CR medium supplemented with 0.25 mM uracil) and grown for 24 hours
at 30uC. Plates were incubated for 48 hours at 4uC to enhance Congo red binding.
doi:10.1371/journal.pone.0031252.g003

Table 1. Determination of gene expression levels.

LB1/4 LB1/4(ura)

csgD csgB adrA bcsA csgD csgB adrA bcsA

MG1655 100* 100* 100* 100* 84.7 81.8 107 79.6

MG1655carB::Tn5kan 386 352 227 106 101 114 119 88.5

MG1655DcarB::cat 1.3 0.7 12.5 85.4 91.2 90.7 102 92.9

MG1655DpyrB::cat 0.7 0.1 n.d. 88.6 100.3 78.4 n.d. 102.5

MG1655DpyrC::cat 0.8 0.1 10.8 91.4 90.6 92.1 113 83.1

MG1655DpyrE::cat 0.5 0.2 n.d. 82.1 83.4 86.2 n.d. 86.4

Relative expression of the csgD, csgB, adrA and bcsA genes determined by Real-Time PCR on RNA extracted from overnight cultures. 16S RNA transcript was used as
reference gene. DCt values between the genes of interest and 16S RNA were set at 100 for MG1655 in LB1/4 medium, and transcript levels in other strains and/or
growth conditions are expressed as relative values. Experiments were repeated at least three times, each time in duplicate; standard deviations were always lower than
5%.
doi:10.1371/journal.pone.0031252.t001
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[32]. Thus, both CytR and RutR proteins regulate gene

expression in response to intracellular pyrimidine concentrations.

We tested the effects of the cytR and of the rutR mutations on CR

phenotype, either in the presence or in the absence of exogenous

uracil (Figure 4A): inactivation of the rutR gene did not affect CR

phenotype, while, in contrast, the MG1655DcytR mutant strain

displayed a white phenotype both on CR and on CR(ura)

medium, indicative of reduced curli production. csgD transcript

levels are reduced by roughly 5-fold in the DcytR mutant strain

grown in LB1/4 medium, but they are restored to wild type levels

by addition of 0.25 mM uracil (Figure 4B). In contrast, expression

of the CytR-dependent udp gene, used as a control in gene

expression experiments, are increased in the cytR mutant

regardless of the presence of exogenous uracil, as expected

(Figure 4B). Thus, the behavior of the cytR mutant with respect to

curli production and csgD gene expression strongly resembles the

MG1655DcarB::cat and MG1655DpyrB::cat strains (see Figure 3

and Table 1). These observations suggest that the CytR protein

does not mediate pyrimidine-dependent regulation of the csg

operons directly; however, lack of a functional cytR gene likely

results in altered intracellular pyrimidine concentrations, which

would in turn affect csgDEFG expression and curli production.

Our results show that pyrimidine starvation-dependent down-

regulation of csgDEFG expression and of curli production is not

mediated by regulatory proteins directly involved in sensing

intracellular pyrimidine concentrations. Thus, we hypothesized

that pyrimidine starvation might downregulate csgDEFG expres-

sion through a general effect on intracellular nucleotide pools. As

an initial verification of this hypothesis, we tested the effects of

purine starvation on curli production and csgDEFG expression.

Inactivation of the purine biosynthetic gene purH resulted in

white phenotype on CR medium (Figure 4A) and in a 7-fold

reduction of csgDEFG transcript levels (Figure 4B). Similar to

what observed for mutations in de novo pyrimidine biosynthesis,

purH inactivation does not result in a non-specific downregulation

of transcription, since transcript levels of the CsgD-independent

udp gene were unaffected in the purH mutant strain (Figure 4B).

As expected, addition of 0.25 mM uracil did not revert the effects

of the purH mutation (Figure 4), indicating that uracil can only

counteract the effects of mutations specifically affecting UMP

concentrations.

Since curli production and csgDEFG expression are strongly

dependent upon the signal molecule c-di-GMP [7,8], it is conceivable

that changes in the nucleotide pools due to mutation in nucleotide

biosynthetic genes could affect c-di-GMP production. This would be

in agreement with our previous observations that sulfathiazole, a

sulfonamide drug interfering with nucleotide biosynthesis, can inhibit

c-di-GMP biosynthesis [33]. Determination of intracellular c-di-

GMP concentrations did not show significant differences in

MG1655DcarB::cat and the MG1655carB::Tn5kan strains in compar-

ison to MG1655 (data not shown); however, c-di-GMP concentra-

tions in MG1655 cells are in the nanomolar range [33], making a

Figure 4. Congo red binding by E. coli strains deficient in pyrimidine sensing (cytR and rutR mutants) and purine biosynthesis (purH
mutant). 4A. The MG1655 strain and its isogenic mutants in the purH, cytR and rutR genes were spotted either on CR medium (left panel) or on
CR(ura) medium (right panel) and grown for 24 hours at 30uC. Plates were incubated for 48 hours at 4uC to enhance Congo red binding.
Determination of transcript levels. 4B. Relative expression of either the csgD gene (left panel) or the udp gene (right panel) was determined by Real-
Time PCR on RNA extracted from overnight cultures of MG1655 and of its isogenic purH and cytR mutants. 16S RNA transcript was used as reference
gene. DCt values between the genes of interest and 16S RNA were set at 1 for MG1655 in LB1/4 medium, and transcript levels in other strains and/or
growth conditions are expressed as relative values. Experiments were repeated at least three times, each time in duplicate; standard deviations were
always lower than 5%.
doi:10.1371/journal.pone.0031252.g004
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precise determination of c-di-GMP in cell extracts rather difficult. In

addition, it must be pointed out that induction of one specific

diguanylate cyclase, sufficient for activation of its corresponding

target, might not result in any significant increase in the overall

concentration of intracellular c-di-GMP.

Uracil triggers cellulose production
Results presented in this work (Figure 3, Table 1, Figure S1)

suggest that, in the MG1655DcarB::cat and MG1655DpyrB::cat

strains grown in LB1/4(ura) medium, exposure of curli fibers on

the cell surface might be hindered by production of additional

extracellular structures. Indeed, it is known that overproduction of

cellulose and other EPS can prevent curli-mediated Congo red

binding and cell adhesion [34–37]. To test the possibility that

exogenous uracil might affect phenotypes on CR medium in the

MG1655DcarB::cat and the MG1655DpyrB::cat strains via cellulose

overproduction, we inactivated bcsA, the first gene of the cellulose

biosynthetic operon, in these genetic backgrounds. Deletion of the

bcsA gene restored, albeit partially, the red phenotype on CR(ura)

medium (Figure 5, data not shown), suggesting that the white

phenotype on CR(ura) medium might indeed depend on EPS

overproduction. Likewise, it resulted in efficient surface attach-

ment by the MG1655DcarB::cat DbcsA::kan double mutant (Figure

S1). In contrast, deletion of the bcsA gene did not affect either CR

phenotype or surface attachment in the MG1655 strain (data not

shown), in agreement with previous observations [35]. To confirm

our hypothesis further, we determined cellulose amounts in the

MG1655, MG1655DcarB::cat and MG1655DpyrC::tet strains grown

either in LB1/4 or in LB1/4(ura). Although growth in LB1/4(ura)

enhanced cellulose production in all strains tested, this effect was

much stronger in MG1655DcarB::cat, leading to production of a

3.5-fold higher amount of cellulose in comparison to MG1655

grown in the same conditions (Figure 6).

Enzymatic activity of the cellulose biosynthetic machinery is

subject to regulation by the signal molecule c-di-GMP. Two distinct

c-di-GMP synthetases, the AdrA and YedQ proteins, can activate

cellulose production; although AdrA overexpression has been

reported to affect curli production [7,35], in physiological

conditions AdrA sole function is to activate cellulose production

[27,37]. AdrA and YedQ act independently and belong to two

distinct regulatory circuits [6,27,38]: indeed, while AdrA is encoded

by a CsgD-dependent gene [22], thus presiding to co-ordinated

production of curli and cellulose, YedQ expression and activity are

independent of CsgD [38,39]. We tested the hypothesis that

exogenous uracil might affect cellulose production via c-di-GMP

synthesis by either AdrA or YedQ. Interestingly, inactivation of the

yedQ gene, but not of adrA, in either the MG1655DcarB::cat (Figure 5)

or the MG1655DpyrB::cat (data not shown) genetic backgrounds

partially restored red phenotypes on CR medium, similar to the

MG1655DcarB::cat DbcsA double mutant, thus suggesting that

cellulose overproduction in the presence of exogenous uracil is

mediated by the YedQ protein.

Discussion

In this work, we have shown that mutations in genes belonging

to de novo nucleotide biosynthetic pathways strongly affect csgDEFG

expression and curli production in E. coli (Figure 1, Figures 3–4,

Table 1, Figures S1, S2). Interplay between nucleotide metabolism

and biofilm appears to be conserved in different bacteria; however,

specific effects and mechanism may vary substantially. Indeed,

although our results are consistent with previous findings showing

that active de novo UMP biosynthesis is necessary for biofilm

formation in P. aeruginosa [40,41], in this bacterium inhibition of

purine biosynthesis through inactivation of the purH gene does not

affect adhesion factors’ production [41], in contrast to what

observed in E. coli (Figure 4). Likewise, pyrimidines appear to

control EPS production and biofilm formation in V. cholerae

through the dedicated regulator CytR [31], which does not appear

to play a direct role in curli regulation in E. coli (Figure 4). Despite

these differences, it seems that absence of de novo pyrimidine

biosynthesis can act as a signal for severe nutrient starvation,

which can in turn prevent biofilm formation and promote biofilm

dispersal [42].

In E. coli, the effects of mutations in the de novo UMP

biosynthesis on curli production can be complemented by

supplementing growth medium with uracil, thus suggesting that

pyrimidine nucleotide availability, regardless whether it is

achieved via de novo UMP biosynthesis or the pyrimidine salvage

pathway, allows efficient csgDEFG transcription and expression of

the CsgD regulon (Table 1, Figure S2). Regulation of csgDEFG

expression by intracellular nucleotide concentrations might take

place by direct modulation of transcription initiation by RNA

polymerase, similar to transcription control by GTP availability

described for ribosomal promoters [43], or through not yet

identified nucleotide-sensing regulatory proteins. Alternatively,

perturbations in nucleotide pools might affect accumulation of c-

di-GMP, a signal molecule necessary for csgDEFG expression [7,8],

possibly by impairing diguanylate cyclases’ enzymatic activity.

Diguanylate cyclases play a role in pyrimidine-dependent

regulation of cellulose production. Cellulose production is

Figure 5. Effect of cellulose production on Congo red binding. Phenotypes on CR medium of MG1655, MG1655DcarB::cat, MG1655DcarB::cat
DbcsA::kan, MG1655DcarB::cat DyedQ::kan, MG1655DcarB::cat DadrA::kan. Strains were spotted on either CR medium or CR(ura) medium (CR medium
supplemented with 0.25 mM uracil) and grown for 24 hours at 30uC. Plates were incubated for 48 hours at 4uC to enhance Congo red binding.
doi:10.1371/journal.pone.0031252.g005
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regulated by a more complex mechanism since, in addition to

pyrimidine availability, it seems to respond to the relative activity

of the two UMP biosynthetic pathways. Indeed, MG1655

produces twice as much cellulose when grown in the presence of

exogenous uracil (Figure 6), i.e., in conditions in which UMP

biosynthesis is mostly carried out via the pyrimidine salvage

pathway and de novo UMP biosynthesis is inhibited [32,44].

Induction of cellulose production by exogenous uracil is further

enhanced in mutants carrying non-functional carB or pyrB alleles

(Figures 3, 5–6 and data not shown): in contrast, strains carrying

mutations in later steps of the de novo UMP biosynthetic pathway,

such as MG1655DpyrC::tet, do not overproduce cellulose in

response to uracil (Figure 3, Figure 6). These observations suggest

that bacterial cells might sense the molecular ratio between UMP

and intermediates in the de novo UMP biosynthesis such as

carbamoyl-L-aspartate, which accumulates in the pyrC mutant

strain, as a signal of the relative balance between the two UMP

biosynthetic pathways. An unbalance towards UMP biosynthesis

via the pyrimidine salvage pathway triggers cellulose production,

and this effect relies on the activity of the diguanylate cyclase

YedQ (Figure 5).

The interplay between nucleotide salvage pathway and cellulose

production might be connected to the role of cellulose and other

EPS in the response to environmental stresses such as desiccation

and resistance to bacteriophages [3,35,45]. In bacterial biofilms,

events leading to extensive cell lysis, such as exposure to antibiotics

or attack by bacteriophages, would release cell components into

the local environment: thus, a sudden increase in concentrations of

exogenous nucleotides due to bacterial lysis might function as an

‘‘alarm signal’’ to neighboring cells, which would react by

producing EPS as a defense mechanism against environmental

stresses. For intracellular pathogenic enterobacteria, sensing an

increase of exogenous nucleotide concentration might instead

signal stress events in the host cell, such as leakage of nucleotides

from the nuclear compartment. Consistent with our observations,

it has been reported that allosteric inhibition of the CarB protein

by exogenous uracil strongly influences production of extracellular

structures and negatively affects expression of type III secretion

systems in the intracellular pathogen Shigella flexneri [46]. In

Pseudomonas fluorescens, a spontaneous mutation in the carB gene

affects the proportion of capsulated and non-capsulated subpop-

ulations via yet unknown molecular mechanisms [47]. Our results

complement and expand these observations, and underline the

importance of the interplay linking biofilm formation, bacterial

virulence, production of extracellular structures, and nucleotide

biosynthetic pathways: better understanding of these connections

at the molecular level will allow us to improve our strategies in

preventing (or promoting) bacterial biofilms. In this perspective,

our results provide strong evidence to confirm previous findings

suggesting that drugs targeting nucleotide biosynthetic pathways

have a strong potential as antibiofilm agents [33,41].

Materials and Methods

Bacterial strains and growth conditions
Bacterial strains used in this work are listed in Table 2. For

strain construction and manipulation, bacteria were grown in LB

medium (10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L NaCl).

Figure 6. Determination of cellulose amounts. Strains MG1655, MG1655DcarB::cat, and MG1655DpyrC::tet were grown 48 hours at 30uC on
either LB1/4 agar (no added uracil, Cellulose extraction and determination was performed as described [35]. Data shown are the average of two
independent experiments giving very similar results. For strains MG1655DcarB::cat and MG1655DpyrC::tet grown on LB1/4 agar no glucose was
detectable in the assays. A value of 0.5 nmol glucose, corresponding to the lowest detectable concentration in the assay, as determined by a glucose
standard curve, was thus arbitrarily assigned to these strains.
doi:10.1371/journal.pone.0031252.g006
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For adhesion assays and gene expression regulation studies,

bacteria were grown in LB medium diluted 1:4 in H2O (LB1/4).

The LB1/4 medium was used since it allows efficient induction of

the CsgD regulon [48] and provides sufficient pyrimidines to

partially overcome the growth defect of strains mutated in de novo

UMP biosynthetic pathway. When required, LB1/4 medium was

supplemented with 0.25 mM uracil (LB1/4(ura) medium); uracil

was dissolved in 50% dimethyl sulfoxide (DMSO) in water at a

concentration of 10 mM. DMSO to a 1.25% final concentration

was always added to control cultures.

For Congo red (CR) binding assays, overnight cultures were

spotted, using a replicator, on LB1/4 agar medium to which

0.004% Congo red and 0.002% Coomassie blue were added after

autoclaving (CR medium). Bacteria were grown for 20 h at 30uC;

phenotypes were better detectable after 24–48 h incubation at

4uC. When needed, antibiotics were used at the following

concentrations: ampicillin, 100 mg/ml; chloramphenicol, 50 mg/

ml; kanamycin, 50 mg/ml; tetracycline, 25 mg/ml; rifampicin,

100 mg/ml.

Genetic techniques
Transposon insertion mutagenesis was carried out using the EZ-

Tn5,R6Kcori/KAN-2. transposome (Epicentre). Transposon

mutagenesis and determination of transposon insertion site by

rescue cloning were carried out according to the manufacturer’s

instructions. E. coli MG1655 mutant derivatives were constructed

either using the l Red technique [49] or by bacteriophage P1

transduction [50]. The list of primers used for gene inactivation

and for confirmation of target gene disruption by PCR is

presented in Table S1. Construction of the pCR2.1-carB plasmid

was carried out by PCR amplification of the carB gene from the

MG1655 genome followed by direct cloning of the PCR product

into the pCR2.1vector (Invitrogen).

Gene expression studies
Determination of relative gene expression levels was performed

by quantitative Real Time PCR, using bacterial cultures grown

either in LB1/4 or in LB1/4(ura) at 30uC, and harvested either

from overnight cultures or from exponential phase (OD600 nm = 0.6

for MG1655 and MG1655carB::Tn5kan, OD600 nm = 0.2 for strains

carrying null mutations in UMP biosynthetic genes). Primers for

Real-Time PCR are listed in Table S1. mRNA stability was

measured by Real-Time PCR experiments in the presence of

rifampicin as described [51]. 16S RNA was always used as reference

gene.

Other methods
Detection of curli amyloid fibers was performed using the SDS-

agarose electrophoresis method as described [29]. Cellulose amount

was estimated on bacterial cultures grown on solid medium for

48 hours; cells were collected, resuspended in H2O and centrifuged

at 12.0006g for 10 minutes; cellulose was determined as glucose

released from cellulase treatment on culture supernatants as

previously described [35]. Biofilm formation was determined with

Table 2. Escherichia coli strains and plasmids used in this work.

Escherichia coli
Strains Relevant genotype or characteristics Reference or source

MG1655 K-12, F2 l2 rph-1 Standard laboratory strain [52]

AM70 MG1655 DcsgA::cat [37]

LG28 MG1655 DbcsA::kan [35]

LG30 MG1655 DadrA::kan obtained by P1 transduction from 3934adrA [38] This work

MG1655carB::Tn5kan Tn5::kan transposon inserted at nucleotide 2720 of the carB gene This work

MG1655DcarB::cat Replacement of the nucleotides 1–550 of the carB gene with
a chloramphenicol resistance cassette

This work

MG1655DcytR::cat Replacement of the cytR gene with a chloramphenicol resistance cassette This work

MG1655DpurH::cat Replacement of the purH gene with a chloramphenicol resistance cassette This work

MG1655DpyrB::cat Replacement of the pyrB gene with a chloramphenicol resistance cassette This work

MG1655DpyrC::tet Replacement of the pyrC gene with a tetracycline resistance cassette This work

MG1655DpyrE::tet Replacement of the pyrE gene with a tetracycline resistance cassette This work

MG1655DrutR::cat Replacement of the rutR gene with a chloramphenicol resistance cassette This work

MG1655DyedQ::kan Replacement of the yedQ gene with a kanamycin cassette This work

MG1655carB::Tn5kan DcsgA::cat Obtained by P1 transduction from AM70 into MG1655carB::Tn5kan This work

MG1655DcarB::cat DbcsA::kan Obtained by P1 transduction from LG28 into MG1655DcarB::cat This work

MG1655DcarB::cat DadrA::kan Obtained by P1 transduction from LG30 into MG1655DcarB::cat This work

MG1655DcarB::cat DyedQ::kan Obtained by inactivation of the yedQ gene by l red technique This work

MG1655DpyrB::cat DbcsA::kan Obtained by P1 transduction from LG28 into MG1655DpyrB::cat This work

MG1655DpyrB::cat DadrA::kan Obtained by P1 transduction from LG30 into MG1655DpyrB::cat This work

MG1655DpyrB::cat DyedQ::kan Obtained by inactivation of the yedQ gene by l red technique This work

Plasmids

pCR2.1 Control vector allowing direct cloning of PCR products, ampicillin resistance Invitrogen

pCR2.1-carB carB gene cloned as PCR product into pCR2.1 vector This work

doi:10.1371/journal.pone.0031252.t002
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the surface attachment assay in microtiter plates [35] performed on

bacterial cultures grown overnight in LB1/4 at 30uC.

Supporting Information

Figure S1 Surface adhesion on polystyrene microtiter
plates. Surface adhesion experiments were performed as previously

described [35]. White bars: overnight cultures grown in LB1/4

medium; grey bars: overnight cultures grown in LB1/4(ura) medium.

Three independent experiments were performed and standard

deviations are shown.

(TIF)

Figure S2 SDS-agarose gel. Curli production was detected

using the SDS-agarose gel method [29]. The same amount of total

protein was loaded in each sample. Insoluble material, mostly

constituted by curli amyloids, cannot migrate into the agarose gel

and is stained by Coomassie blue. Cultures were grown on solid

medium (LB1/4 agar or LB1/4(ura) agar) for 24 hours at 30uC.

(TIF)

Table S1 Primers used in this work.

(DOC)
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Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-

dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at
the onset of stationary phase and can be produced in the absence of LasR. Mol

Microbiol 50: 29–43.

15. Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH (2009) Indole acts as

an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191:
3504–3516.

16. Karatan E, Watnick PI (2009) Signals, regulatory networks, and materials that
build and break bacterial biofilms. Microbiol Mol Biol Rev 73: 310–347.

17. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S (1995) Expression of two
csg operons is required for production of fibronectin- and congo red-binding curli

polymers in Escherichia coli K-12. Mol Microbiol 18: 661–670.

18. Romling U, Sierralta WD, Eriksson K, Normark S (1998) Multicellular and

aggregative behaviour of Salmonella typhimurium strains is controlled by mutations
in the agfD promoter. Mol Microbiol 28: 249–264.

19. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, et al. (2005) BapA,
a large secreted protein required for biofilm formation and host colonization of

Salmonella enterica serovar Enteritidis. Mol Microbiol 58: 1322–1339.

20. Gibson DL, White AP, Snyder SD, Martin S, Heiss C, et al. (2006) Salmonella

produces an O-antigen capsule regulated by AgfD and important for

environmental persistence. J Bacteriol 188: 7722–7730.

21. Gualdi L, Tagliabue L, Landini P (2007) A biofilm formation-gene expression

relay system in Escherichia coli: modulation of sS-dependent gene expression by
the CsgD regulatory protein via sS protein stabilization. J Bacteriol 189:

8034–8043.

22. Romling U, Rohde M, Olsen A, Normark S, Reinkoster J (2000) AgfD, the
checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium

regulates at least two independent pathways. Mol Microbiol 36: 10–23.

23. Pratt LA, Silhavy TJ (1998) Crl stimulates RpoS activity during stationary phase.
Mol Microbiol 29: 1225–1236.

24. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, et al.

(2001) Complex regulatory network controls initial adhesion and biofilm
formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:

7213–7223.

25. Gerstel U, Park C, Romling U (2003) Complex regulation of csgD promoter

activity by global regulatory proteins. Mol Microbiol 49: 639–654.

26. Delannay S, Charlier D, Tricot C, Villeret V, Piérard A, et al. (1999) Serine 948
and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli

carbamoylphosphate synthetase and illustrate coupling effects of activation and

inhibition pathways. J Mol Biol 286: 1217–1228.

27. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular
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