WEAKLY Z-SYMMETRIC MANIFOLDS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

ABSTRACT. We introduce a new kind of Riemannian manifold that includes weakly-, pseudo- and pseudo projective- Ricci symmetric manifolds. The manifold is defined through a generalization of the so called Z tensor; it is named weakly Z-symmetric and denoted by $(WZS)_n$. If the Z tensor is singular we give conditions for the existence of a proper concircular vector. For non singular Z tensor, we study the closedness property of the associated covectors and give sufficient conditions for the existence of a proper concircular vector in the conformally harmonic case, and the general form of the Ricci tensor. For conformally flat $(WZS)_n$ manifolds, we derive the local form of the metric tensor.

Date: May 2011.

1. INTRODUCTION

In 1993 Tamassy and Binh [31] introduced and studied a Riemannian manifold whose Ricci tensor satisfies the equation:

(1)
$$\nabla_k R_{jl} = A_k R_{jl} + B_j R_{kl} + D_l R_{kj}.$$

The manifold is called weakly Ricci symmetric and denoted by $(WRS)_n$. The Ricci tensor and the scalar curvature are $R_{kl} = -R_{mkl}{}^m$ and $R = g^{ij}R_{ij}$. ∇_k is the covariant derivative with reference to the metric g_{kl} . We also put $\|\eta\| = \sqrt{\eta^k \eta_k}$. The covectors A_k , B_k and D_k are the associated 1-forms. The same manifold with the 1-form A_k replaced by $2A_k$ was studied by Chaki and Koley [6], and called generalized pseudo Ricci symmetric. The two structures extend pseudo Ricci symmetric manifolds, $(PRS)_n$, introduced by Chaki [4], where $\nabla_k R_{jl} = 2A_k R_{jl} + A_j R_{kl} + A_l R_{kj}$ (this definition differs from that of R. Deszcz [17]).

Later on, other authors studied the manifolds [10, 20, 12]; in [12] some global properties of $(WRS)_n$ were obtained, and the form of the Ricci tensor was found. In [10] generalized pseudo Ricci symmetric manifolds were considered, where the conformal curvature tensor

(2)

$$C_{jkl}{}^{m} = R_{jkl}{}^{m} + \frac{1}{n-2} (\delta_{j}{}^{m}R_{kl} - \delta_{k}{}^{m}R_{jl} + R_{j}{}^{m}g_{kl} - R_{k}{}^{m}g_{jl}) - \frac{R}{(n-1)(n-2)} (\delta_{j}{}^{m}g_{kl} - \delta_{k}{}^{m}g_{jl})$$

vanishes (for n = 3: $C_{jkl}^m = 0$ holds identically, [27]) and the existence of a proper concircular vector was proven. In [20] a quasi conformally flat $(WRS)_n$ was studied, and again the existence of a proper concircular vector was proven.

²⁰¹⁰ Mathematics Subject Classification. 53B20, 53B21.

Key words and phrases. Weakly-Ricci Symmetric manifolds, Pseudo- Projective Ricci symmetric, conformal curvature tensor, quasi conformal curvature tensor, conformally symmetric, conformally recurrent, Riemannian manifolds. Weakly Z symmetric Manifolds.

In [2] $(PRS)_n$ with harmonic curvature tensor (i.e. $\nabla_m R_{jkl}{}^m = 0$) or with harmonic conformal curvature tensor (i.e. $\nabla_m C_{jkl}{}^m = 0$) were considered.

Chaki and Saha considered the projective Ricci tensor P_{kl} , obtained by a contraction of the projective curvature tensor P_{jkl}^m [18]:

(3)
$$P_{kl} = \frac{n}{n-1} \left(R_{kl} - \frac{R}{n} g_{kl} \right),$$

and generalized $(PRS)_n$ to manifolds such that

(4)
$$\nabla_k P_{jl} = 2A_k P_{jl} + A_j P_{kl} + A_l P_{kj}.$$

The manifold is called *pseudo projective Ricci symmetric* and denoted by $(PWRS)_n$ [8]. Recently another generalization of a $(PRS)_n$ was considered in [5] and [11], whose Ricci tensor satisfies the condition

(5)
$$\nabla_k R_{jl} = (A_k + B_k)R_{jl} + A_j R_{kl} + A_l R_{kj}$$

The manifold is called *almost pseudo Ricci symmetric* and denoted by $A(PRS)_n$. In ref.[11] the properties of conformally flat $A(PRS)_n$ were studied, pointing out their importance in the theory of General Relativity.

It seems worthwhile to introduce and study a new manifold structure that includes $(WRS)_n$, $(PRS)_n$ and $(PWRS)_n$ as special cases.

Definition 1.1. A (0,2) symmetric tensor is a generalized Z tensor if

where ϕ is an arbitrary scalar function. The Z scalar is $Z = g^{kl} Z_{kl} = R + n\phi$.

The classical Z tensor is obtained with the choice $\phi = -\frac{1}{n}R$. Hereafter we refer to the generalized Z tensor simply as the Z tensor.

The Z tensor allows us to reinterpret several well known structures on Riemannian manifolds.

1) If $Z_{kl} = 0$ the (Z-flat) manifold is an Einstein space, $R_{ij} = (R/n)g_{ij}$ [3].

2) If $\nabla_i Z_{kl} = \lambda_i Z_{kl}$, the (Z-recurrent) manifold is a generalized Ricci recurrent manifold [9, 26]: the condition is equivalent to $\nabla_i R_{kl} = \lambda_i R_{kl} + (n-1) \mu_i g_{kl}$ where $(n-1)\mu_i \equiv (\lambda_i - \nabla_i)\phi$. If moreover $0 = (\lambda_i - \nabla_i)\phi$, a Ricci Recurrent manifold is recovered.

3) If $\nabla_k Z_{jl} = \nabla_j Z_{kl}$ (i.e. Z is a Codazzi tensor, [16]) then $\nabla_k R_{jl} - \nabla_j R_{kl} = (g_{kl}\nabla_j - g_{jl}\nabla_k)\phi$. By transvecting with g^{jl} we get $\nabla_k [R + 2(n-1)\phi] = 0$ and, finally,

$$\nabla_k R_{jl} - \nabla_j R_{kl} = \frac{1}{2(n-1)} (g_{jl} \nabla_k - g_{kl} \nabla_j) R.$$

This condition defines a *nearly conformally symmetric* manifold, $(NCS)_n$. The condition was introduced and studied by Roter [29]. Conversely a $(NCS)_n$ has a Codazzi Z tensor if $\nabla_k [R + 2(n-1)\phi] = 0$.

4) Einstein's equations [14] with cosmological constant Λ and energy-stress tensor T_{kl} may be written as $Z_{kl} = kT_{kl}$, where $\phi = -\frac{1}{2}R + \Lambda$, and k is the gravitational constant. The Z tensor may be thought of as a generalized Einstein gravitational tensor with arbitrary scalar function ϕ .

Conditions on the energy-momentum tensor determine constraints on the Z tensor: the vacuum solution Z = 0 determines an Einstein space with $\Lambda = \frac{n-2}{2n} R$; conservation of total energy-momentum $(\nabla^l T_{kl} = 0)$ gives $\nabla^l Z_{kl} = 0$ and $\nabla_k (\frac{1}{2}R + \phi) = 0$; the condition $\nabla_i Z_{kl} = 0$ describes a space-time with conserved energy-momentum density.

Several cases accomodate in a new kind of Riemannian manifold:

Definition 1.2. A manifold is *Weakly Z-symmetric*, and denoted by $(WZS)_n$, if the generalized Z tensor satisfies the condition:

(7)
$$\nabla_k Z_{jl} = A_k Z_{jl} + B_j Z_{kl} + D_l Z_{kj}.$$

If $\phi = 0$ we recover a $(WRS)_n$ and its particular case $(PRS)_n$. If $\phi = -R/n$ (classical Z tensor) and if A_k is replaced by $2A_k$, $B_k = D_k = A_k$, then $Z_{jl} = \frac{n-1}{n}P_{jl}$ and the space reduces to a $(PWRS)_n$.

Different properties follow from the Z tensor being singular or not. Z is singular if the matrix equation $Z_{ij}u^j = 0$ admits (locally) nontrivial solutions, i.e. Z cannot be inverted.

In sect.2 we obtain general properties of $(WZS)_n$ that descend directly from the definition and strongly depend on Z_{ij} being singular or not. The two cases are examined in sections 3 and 4. In sect.3 we study $(WZS)_n$ that are conformally or pseudo conformally harmonic with $B-D \neq 0$; we show that B-D, after normalization, is a proper concircular vector. Sect.4 is devoted to $(WZS)_n$ with non-singular Z tensor, and gives conditions for the closedness of the 1-form A - B that involve various generalized curvature tensors. In sect.5 we study conformally harmonic $(WZS)_n$ and obtain the explicit form of the Ricci tensor. In the conformally flat case we also give the local form of the metric.

2. General properties

From the definition of a $(WZS)_n$ and its symmetries we obtain

(8)
$$0 = \eta_j Z_{kl} - \eta_l Z_{kj},$$

(9) $\nabla_k Z_{jl} - \nabla_j Z_{kl} = \omega_k Z_{jl} - \omega_j Z_{kl},$

with covectors

(10)

$$\eta = B - D, \qquad \omega = A - B$$

that will be used throughout.

Let's consider eq.(8) first, it implies the following statements:

Proposition 2.1. In a $(WZS)_n$, if the Z tensor is non-singular then $\eta_k = 0$.

Proof. If the Z tensor is non singular, there exists a (2,0) tensor Z^{-1} such that $(Z^{-1})^{kh}Z_{kl} = \delta^h{}_l$. By transvecting eq.(8) with $(Z^{-1})^{kh}$ we obtain $\eta_j\delta_l{}^h = \eta_l\delta_j{}^h$; put h = l and sum to obtain $(n-1)\eta_j = 0$.

Proposition 2.2. If $\eta_k \neq 0$ and the scalar $Z \neq 0$, then the Z tensor has rank one:

(11)
$$Z_{ij} = Z \frac{\eta_i \eta_j}{\eta^k \eta_k}$$

Proof. Multiply eq.(8) by η^j and sum: $\eta^j \eta_j Z_{kl} = \eta_l \eta^j Z_{kj}$. Multiply eq.(8) by g^{jk} and sum: $\eta^k Z_{kl} = Z \eta_l$. The two results imply the assertion.

The result translates to the Ricci tensor, whose expression is characteristic of *quasi Einstein* Riemannian manifolds [7], and generalizes the results of [12]:

Proposition 2.3. A $(WZS)_n$ with $\eta_k \neq 0$, is a quasi Einstein manifold:

(12)
$$R_{ij} = -\phi g_{ij} + Z T_i T_j, \qquad T_i = \frac{\eta_i}{\|\eta\|},$$

Next we consider eq.(9). If Z_{ij} is a Codazzi tensor, then the l.h.s. of the equation vanishes by definition, and the above discussion of eq.(8) can be repeated. We merely state the result:

Proposition 2.4. In a $(WZS)_n$ with a Codazzi Z tensor, if Z is singular then $\omega_k \neq 0$. Conversely, if rank $[Z_{kl}] > 1$ then $\omega_k = 0$.

3. Harmonic conformal or quasi conformal (WZS)_n with $\eta \neq 0$

In this section we consider manifolds $(WZS)_n$ (n > 3) with $\eta_k \neq 0$, and the property $\nabla_m C_{jkl}{}^m = 0$ (i.e. harmonic conformal curvature tensor [3]) or $\nabla_m W_{jkl}{}^m = 0$ (i.e. harmonic quasi conformal curvature tensor [34]). We provide sufficient conditions for $\eta/||\eta||$ to be a proper concircular vector [28, 32].

We begin with the case of harmonic conformal tensor. From the expression for the divergence of the conformal tensor,

(13)
$$\nabla_m C_{jkl}{}^m = \frac{n-3}{n-2} \left[\nabla_k R_{jl} - \nabla_j R_{kl} + \frac{1}{2(n-1)} (g_{kl} \nabla_j - g_{jl} \nabla_k) R \right]$$

we read the condition $\nabla_m C_{jkl}{}^m = 0$:

(14)
$$\nabla_k R_{jl} - \nabla_j R_{kl} = \frac{1}{2(n-1)} (g_{jl} \nabla_k - g_{kl} \nabla_j) R.$$

We need the following theorem, whose proof given here is different from that in [13] (see also [10]):

Theorem 3.1. Let M be a n > 3 dimensional manifold, with harmonic conformal curvature tensor, and Ricci tensor $R_{kl} = \alpha g_{kl} + \beta T_k T_l$, where α , β are scalars, and $T^k T_k = 1$. If

(15)
$$(T_j \nabla_k - T_k \nabla_j)\beta = 0$$

then T_k is a proper concircular vector.

Proof. Since M is conformally harmonic, eq.(14) gives:

(16)
$$\beta[\nabla_k(T_jT_l) - \nabla_j(T_kT_l)] = \frac{1}{2(n-1)}(g_{jl}\nabla_k - g_{kl}\nabla_j)S,$$

where $S = -(n-2)\alpha + \beta$, and condition (15) was used. The proof is in four steps. 1) We show that $T^l \nabla_l T_k = 0$: multiply eq.(16) by g^{jl} to obtain: a) $-\beta \nabla^l (T_k T_l) = \frac{1}{2} \nabla_k S$. The result a) is multiplied by T^k to give: b) $-\beta \nabla_l T^l = \frac{1}{2} T^l \nabla_l S$. a) and b) combine to give: c) $-\beta T^l \nabla_l T_k = \frac{1}{2} [\nabla_k - T_k T^l \nabla_l] S$. Finally multiply eq.(16) by $T^k T^l$ and use the property $T^l \nabla_k T_l = 0$ to obtain:

$$\beta T^k \nabla_k T_j = \frac{1}{2(n-1)} (T_j T^k \nabla_k - \nabla_j) S$$

which, compared to c) shows that d) $T^l \nabla_l T_k = 0$ and $(T_j T^k \nabla_k - \nabla_j) S = 0$. 2) We show that T is a closed 1-form: multiply eq.(16) by T^l

$$\beta[\nabla_k T_j - \nabla_j T_k] = \frac{1}{2(n-1)} (T_j \nabla_k - T_k \nabla_j) S_j$$

T is a closed form if the r.h.s. is null. This is proven by using identity a) to write: $(T_j \nabla_k - T_k \nabla_j) S = -2\beta [T_j \nabla^l (T_k T_l) - T_k \nabla^l (T_j T_l)] = 0$ by property d). 3) With condition d) in mind, transvect eq.(16) with T^k and obtain

$$-\beta \nabla_j T_l = \frac{1}{2(n-1)} (g_{jl} T^k \nabla_k - T_l \nabla_j) S$$

Use d) to replace $T_l \nabla_j S$ with $T_l T_j T^k \nabla_k S$. Then:

(17)
$$\nabla_j T_l = f \left(T_j T_l - g_{jl} \right), \quad f \equiv \frac{T^k \nabla_k S}{2\beta(n-1)}$$

which means that T_k is a concircular vector.

4) We prove that T_k is a proper concircular vector, i.e. fT_k is a closed 1-form: from d) by a covariant derivative we obtain $\nabla_j \nabla_k S = (\nabla_j T_k)(T^l \nabla_l S) + T_k \nabla_j (T^l \nabla_l S)$; subtract same equation with indices k and j exchanged. Since T_k is a closed 1-form we obtain: $T_k \nabla_j (T^l \nabla_l S) = T_j \nabla_k (T^l \nabla_l S)$. Multiply by T^k :

$$(T_j T^k \nabla_k - \nabla_j) (T^l \nabla_l S) = 0$$

From the relation (15), one obtains: $(T_k T^l \nabla_l - \nabla_k)\beta = 0$. It follows that the scalar function f has the property $\nabla_j f = \mu T_j$ where μ is a scalar function. Then the 1-form fT_k is closed.

With the identifications $\alpha = -\phi$ and $\beta = Z$, $T_i = \eta_i / ||\eta||$ (see Prop. 2.3) the condition (15) is $(\eta_j \nabla_k - \eta_k \nabla_j) Z = 0$. Since $Z = S - (n-2)\phi$ and $(\eta_j \nabla_k - \eta_k \nabla_j) S = 0$, the condition can be rewritten as $(\eta_j \nabla_k - \eta_k \nabla_j)\phi = 0$. Thus we can state the following:

Theorem 3.2. In a $(WZS)_n$ manifold with $\eta_k \neq 0$ and harmonic conformal curvature tensor, if

(18)
$$(\eta_j \nabla_k - \eta_k \nabla_j) \phi = 0$$

then $\eta_i / \|\eta\|$ is a proper concircular vector.

Remark 1. If $\phi = 0$ or $\nabla_k \phi = 0$, the condition (18) is fulfilled automatically. In the case $\phi = 0$ we recover a $(WRS)_n$ manifold (and the results of refs [10, 12]).

Now we consider the case of a $(WZS)_n$ manifold with harmonic quasi conformal curvature tensor. In 1968 Yano and Sawaki [34] defined and studied a tensor $W_{jkl}{}^m$ on a Riemannian manifold of dimension n > 3, which includes as particular cases the conformal curvature tensor $C_{jkl}{}^m$, eq.(2), and the concircular curvature tensor

(19)
$$\tilde{C}_{jkl}{}^m = R_{jkl}{}^m + \frac{R}{n(n-1)} (\delta_j{}^m g_{kl} - \delta_k{}^m g_{jl}).$$

The tensor is known as the *quasi conformal* curvature tensor:

(20)
$$W_{jkl}{}^m = -(n-2) b C_{jkl}{}^m + [a+(n-2)b] \tilde{C}_{jkl}{}^m;$$

a and b are nonzero constants. From the expressions (13) and (33) we evaluate

(21)
$$\nabla_m W_{jkl}{}^m = (a+b)\nabla_m R_{jkl}{}^m + \frac{2a-b(n-1)(n-4)}{2n(n-1)}(g_{kl}\nabla_j - g_{jl}\nabla_k)R.$$

A manifold is quasi conformally harmonic if $\nabla_m W_{jkl}{}^m = 0$. By transvecting the condition with g^{jk} we get:

(22)
$$(1-2/n)[a+b(n-2)] \nabla_i R = 0,$$

which means that either a + b(n-2) = 0 or $\nabla_j R = 0$. The first condition implies W = C, and gives back the harmonic conformal case. If $\nabla_j R = 0$ it is $\nabla_m R_{jkl}{}^m = 0$ by (21), and the equations in the proof of theorem 3.1 simplify and we can state the following (analogous to theorem 3.2):

Theorem 3.3. Let $(WZS)_n$ be a quasi conformally harmonic manifold, with $\eta_k \neq 0$. If $(\eta_j \nabla_k - \eta_k \nabla_j) \phi = 0$, then $\eta/||\eta||$ is a proper concircular vector.

4. $(WZS)_n$ with non-singular Z tensor: conditions for closed ω

In this section we investigate in a $(WZS)_n$ (n > 3) the conditions the 1-form ω_k to be closed: $\nabla_i \omega_j - \nabla_j \omega_i = 0$. We need:

Lemma 4.1 (Lovelock's differential identity, [23, 24]). In a Riemannian manifold the following identity is true:

(23)
$$\nabla_i \nabla_m R_{jkl}{}^m + \nabla_j \nabla_m R_{kil}{}^m + \nabla_k \nabla_m R_{ijl}{}^m = -R_{im} R_{jkl}{}^m - R_{jm} R_{kil}{}^m - R_{km} R_{ijl}{}^m$$

and also the contracted second Bianchi identity in the form

(24)
$$\nabla_m R_{jkl}{}^m = \nabla_k Z_{jl} - \nabla_j Z_{kl} + (g_{kl} \nabla_j - g_{jl} \nabla_k)\phi$$

Now we prove the relevant theorem (see also [24]):

Theorem 4.2. In a $(WZS)_n$ (n > 3) with non singular Z tensor, ω_k is a closed 1-form if and only if:

(25)
$$R_{im}R_{jkl}{}^m + R_{jm}R_{kil}{}^m + R_{km}R_{ijl}{}^m = 0.$$

Proof. The covariant derivative of eq.(24) and eq.(9) give: $\nabla_i \nabla_m R_{jkl}{}^m = (\nabla_i \omega_k) Z_{jl} + \omega_k (\nabla_i Z_{jl}) - (\nabla_i \omega_j) Z_{kl} - \omega_j (\nabla_i Z_{kl}) + (g_{kl} \nabla_i \nabla_j \phi - g_{jl} \nabla_i \nabla_k \phi)$. Cyclic permutations of the indices i, j, k are made, and the resulting three equations are added:

$$\begin{aligned} \nabla_i \nabla_m R_{jkl}{}^m + \nabla_j \nabla_m R_{kil}{}^m + \nabla_k \nabla_m R_{ijl}{}^m \\ &= (\nabla_i \omega_k - \nabla_k \omega_i) Z_{jl} + (\nabla_j \omega_i - \nabla_i \omega_j) Z_{kl} + (\nabla_k \omega_j - \nabla_j \omega_k) Z_{il} \\ &+ \omega_j (\nabla_k Z_{il} - \nabla_i Z_{kl}) + \omega_k (\nabla_i Z_{jl} - \nabla_j Z_{il}) + \omega_i (\nabla_j Z_{kl} - \nabla_k Z_{jl}). \end{aligned}$$

Cancellations occur by eq.(9). By lemma 4.1, one obtains:

$$-R_{im}R_{jkl}{}^m - R_{jm}R_{kil}{}^m - R_{km}R_{ijl}{}^m$$

= $(\nabla_i\omega_k - \nabla_k\omega_i)Z_{jl} + (\nabla_j\omega_i - \nabla_i\omega_j)Z_{kl} + (\nabla_k\omega_j - \nabla_j\omega_k)Z_{il}.$

If ω_k is a closed 1-form then eq.(25) is fulfilled. Conversely, suppose that eq.(25) holds: if the Z tensor is non singular, there is a (2,0) tensor such that $Z_{kl}(Z^{-1})^{km} = \delta_l^m$. Multiply the last equation by $(Z^{-1})^{hl}$: $(\nabla_i \omega_k - \nabla_k \omega_i) \delta_j^h + (\nabla_j \omega_i - \nabla_i \omega_j) \delta_k^h + (\nabla_k \omega_j - \nabla_j \omega_k) \delta_i^h = 0$. Set h = j and sum: $(n-2)(\nabla_i \omega_k - \nabla_k \omega_i) = 0$. Since $n > 2, \omega_k$ is a closed 1-form.

Remark 2. By Lovelock's identity, the condition (25) is obviously true if $\nabla_m R_{ijk}^m = 0$, i.e. the $(WZS)_n$ is a harmonic manifold. However, we have shown in ref.[24] that there is a broad class of generalized curvature tensors for which the case $\nabla_m K_{ijk}^m = 0$ implies the same condition. This class includes several well known curvature tensors, and is the main subject of this section.

Definition 4.3. A tensor $K_{jkl}{}^m$ is a generalized curvature tensor¹ if: 1) $K_{jkl}{}^m = -K_{kjl}{}^m$, 2) $K_{jkl}{}^m + K_{klj}{}^m + K_{ljk}{}^m = 0$.

The second Bianchi identity does not hold in general, and is modified by a tensor source B_{ijkl}^{m} that depends on the specific form of the curvature tensor:

(26)
$$\nabla_i K_{jkl}{}^m + \nabla_j K_{kil}{}^m + \nabla_k K_{ijl}{}^m = B_{ijkl}{}^n$$

Proposition 4.4 ([24]). If K_{jkl}^{m} is a generalized curvature tensor such that

(27)
$$\nabla_m K_{jkl}{}^m = A \nabla_m R_{jkl}{}^m + B(a_{lk} \nabla_j - a_{lj} \nabla_k) \psi$$

where $A \neq 0$, B are constants, ψ is a scalar field, and a_{ij} is a symmetric (0,2) Codazzi tensor (i.e. $\nabla_i a_{kl} = \nabla_k a_{il}$), then the following relation holds:

(28)
$$\nabla_i \nabla_m K_{jkl}{}^m + \nabla_j \nabla_m K_{kil}{}^m + \nabla_k \nabla_m K_{ijl}{}^m$$
$$= -A(R_{im}R_{jkl}{}^m + R_{jm}R_{kil}{}^m + R_{km}R_{ijl}{}^m)$$

Remark 3. In [16] it is proven that any smooth manifold carries a metric such that (M, g) admits a non trivial Codazzi tensor (i.e. proportional to the metric tensor) and the deep consequences on the structure of the curvature operator are presented (see also [25]).

Given a Codazzi tensor it is possible to exhibit a K tensor that satisfies the condition (27):

(29)
$$K_{jkl}{}^m = A R_{jkl}{}^m + B \psi \left(\delta_j{}^m a_{kl} - \delta_k{}^m a_{jl}\right).$$

Its trace is: $K_{kl} = -K_{mkl}{}^m = A R_{kl} - B(n-1)\psi a_{kl}$. Note that for $a_{kl} = g_{kl}$ the tensor K_{kl} is up to a factor a Z tensor. Thus Z tensors arise naturally from the invariance of Lovelock's identity.

Remark 4. In the literature one meets generalized curvature tensors whose divergence has the form (27), with trivial Codazzi tensor:

(30)
$$\nabla_m K_{jkl}{}^m = A \nabla_m R_{jkl}{}^m + B(g_{kl}\nabla_j - g_{jl}\nabla_k)R.$$

They are the projective curvature tensor P_{jkl}^m [18], the conformal curvature tensor C_{jkl}^m [27], the concircular tensor \tilde{C}_{jkl}^m [28, 32], the conharmonic tensor N_{jkl}^m [26, 30] and the quasi conformal tensor W_{jkl}^m [34].

Definition 4.5. A manifold is *K*-harmonic if $\nabla_m K_{jkl}^m = 0$.

Proposition 4.6. In a K-harmonic manifold, if K is of type (30) and $A \neq 2(n-1)B$, then $\nabla_{i}R = 0$.

Proof. By transvecting eq.(30) with g^{kl} and by the second contracted Bianchi identity, we obtain $\frac{1}{2}[A - 2(n-1)B]\nabla_j R = 0$.

 $^{^{1}}$ The notion was introduced by Kobayashi and Nomizu [22], but with the further antisymmetry in the last pair of indices.

Hereafter, we specialize to $(WZS)_n$ manifolds with non singular Z tensor, and with a generalized curvature tensor of the type (30). From eqs. (24) and (9) we obtain:

(31)
$$\nabla_m K_{jkl}{}^m = A(\omega_k Z_{jl} - \omega_j Z_{kl}) + (g_{kl} \nabla_j - g_{jl} \nabla_k)(A\phi + BR).$$

Then, the manifold is K-harmonic if:

(32)
$$A(\omega_k Z_{jl} - \omega_j Z_{kl}) = (g_{jl} \nabla_k - g_{kl} \nabla_j) (A\phi + BR).$$

Lemma 4.7. In a K-harmonic $(WZS)_n$ with non singular Z tensor: 1) $\omega_k = 0$ if and only if $\nabla_k(A\phi + BR) = 0$; 2) If $A \neq 2(n-1)B$, then $\omega_k = 0$ if and only if $\nabla_k \phi = 0$.

Proof. If $\nabla_k (A\phi + BR) = 0$ then $\omega_k Z_{jl} = \omega_j Z_{kl}$: if the Z tensor is non singular, by transvecting with $(Z^{-1})^{lh}$ we obtain $\omega_j \delta^h{}_k = \omega_k \delta^h{}_j$. Now put h = j and sum to obtain $(n-1)\omega_k = 0$. On the other hand if $\omega_k = 0$ eq.(32) gives $[g_{jl}\nabla_k - g_{kl}\nabla_j](A\phi + BR) = 0$ and transvecting with g^{kl} we get the result. If $A \neq 2B(n-1)$ then $\nabla_k R = 0$ and part 1) applies.

Theorem 4.8. In a K-harmonic $(WZS)_n$ with non-singular Z tensor and K of type (30), if $\omega \neq 0$ then ω is a closed 1-form.

This theorem extends theorem 4.2 (where K = R), and has interesting corollaries according to the various choices $K = C, W, P, \tilde{C}, N$.

Corollary 4.9. Let $(WZS)_n$ have non singular Z tensor and $\omega \neq 0$. If $\nabla_m K_{jkl}^m = 0$, and $K = P, \tilde{C}, N$, then ω is a closed 1-form.

Proof. 1) Harmonic conformal curvature: $\nabla_m C_{jkl}{}^m = 0$. Note that in this case A = 2B(n-1); theorem 4.8 applies.

2) Harmonic quasi conformal curvature: $\nabla_m W_{jkl}{}^m = 0$: Eq.(22) gives either $\nabla_j R = 0$ or a + b(n-2) = 0. If $\nabla_j R = 0$ then $\nabla_m R_{jkl}{}^m = 0$ and theorem 4.2. If a + b(n-2) = 0 it is $\nabla_m C_{jkl}{}^m = 0$ and case 1) applies.

3) Harmonic projective curvature: $\nabla_m P_{jkl}{}^m = 0$. The components of the projective curvature tensor are [18, 30]:

$$P_{jkl}{}^{m} = R_{jkl}{}^{m} + \frac{1}{n-1} (\delta_{j}{}^{m}R_{kl} - \delta_{k}{}^{m}R_{jl}).$$

One evaluates $\nabla_m P_{jkl}{}^m = \frac{n-2}{n-1} \nabla_m R_{jkl}{}^m$, and theorem 4.2 applies.

4) Harmonic concircular curvature: $\nabla_m \hat{C}_{jkl}{}^m = 0$. The concircular curvature tensor is given in eq.(19), [28, 32]. Its divergence is

(33)
$$\nabla_m \tilde{C}_{jkl}{}^m = \nabla_m R^m_{jkl} + \frac{1}{n(n-1)} (g_{kl} \nabla_j - g_{jl} \nabla_k) R$$

Theorem 4.8 applies.

5) Harmonic conharmonic curvature: $\nabla_m N_{jkl}{}^m = 0$. The conharmonic curvature tensor [26, 30] is:

$$N_{jkl}{}^{m} = R_{jkl}{}^{m} + \frac{1}{n-2} (\delta_{j}{}^{m}R_{kl} - \delta_{k}{}^{m}R_{jl} + R_{j}{}^{m}g_{kl} - R_{k}{}^{m}g_{jl}).$$

A covariant derivative and the second contracted Bianchi identity give:

$$\nabla_m N_{jkl}{}^m = \frac{n-3}{n-2} \nabla_m R_{jkl}{}^m + \frac{1}{2(n-2)} (g_{kl} \nabla_j - g_{jl} \nabla_k) R.$$

Theorems 4.8 applies.

There are other cases where the 1-form ω_k is closed for a $(WZS)_n$ manifold.

Definition 4.10 ([24, 21]). A *n*-dimensional Riemannian manifold is *K*-recurrent, $(KR)_n$, if the generalized curvature tensor is recurrent, $\nabla_i K_{jkl}^m = \lambda_i K_{jkl}^m$, for some non zero covector λ_i .

Theorem 4.11 ([24]). In a $(KR)_n$, if λ_i is closed then:

(34)
$$R_{im}R_{jkl}{}^m + R_{jm}R_{kil}{}^m + R_{km}R_{ijl}{}^m = -\frac{1}{A}\nabla_m B_{ijkl}{}^m.$$

where B is the source tensor in eq.(26). In particular, for $K = C, P, \tilde{C}, N, W$ the tensor $\nabla_m B_{ijkl}{}^m$ either vanishes or is proportional to the l.h.s. of eq.(34).

Corollary 4.12. Let $(WZS)_n$ have non singular Z tensor, and be K recurrent with closed λ_i . If $K = C, P, \tilde{C}, N, W$, then ω is a closed 1-form.

Definition 4.13. A Riemannian manifold is *pseudosymmetric in the sense of* R. Deszcz [17] if the following condition holds:

$$(\nabla_s \nabla_i - \nabla_i \nabla_s) R_{jklm} = L_R \left(g_{js} R_{iklm} - g_{ji} R_{sklm} + g_{ks} R_{jilm} - g_{ki} R_{jslm} \right)$$

(35)
$$+ g_{ls} R_{jkim} - g_{li} R_{jksm} + g_{ms} R_{jkli} - g_{mi} R_{jkls},$$

where L_R is a non null scalar function.

In ref.[24] the following theorem is proven:

Theorem 4.14. In a Riemannian manifold which is pseudosymmetric in the sense of R. Deszcz, it is $R_{im}R_{jkl}^{\ m} + R_{jm}R_{kil}^{\ m} + R_{km}R_{ijl}^{\ m} = 0.$

Then we can state the following:

Proposition 4.15. In a $(WZS)_n$ which is pseudosymmetric in the sense of R. Deszcz, if the Z tensor is non-singular then ω_k is a closed 1-form.

Definition 4.16. A Riemannian manifold is generalized Ricci pseudosymmetric in the sense of R. Deszcz, [15], if the following condition holds:

$$(\nabla_s \nabla_i - \nabla_i \nabla_s) R_{jklm} = L_S (R_{js} R_{iklm} - R_{ji} R_{sklm} + R_{ks} R_{jilm} - R_{ki} R_{jslm} +$$

 $(36) +R_{ls}R_{jkim} - R_{li}R_{jksm} + R_{ms}R_{jkli} - R_{mi}R_{jkls}),$

where L_S is a non null scalar function.

Theorem 4.17. In a generalized Ricci pseudosymmetric manifold in the sense of R. Deszcz, it is either $L_S = -\frac{1}{3}$, or $R_{im}R_{jkl}{}^m + R_{jm}R_{kil}{}^m + R_{km}R_{ijl}{}^m = 0$.

Proof. Equation (36) is transvected with g^{mj} to obtain

$$(\nabla_s \nabla_i - \nabla_i \nabla_s) R_{kl} = L_S[R_{im}(R_{skl}^m + R_{slk}^m) - R_{sm}(R_{ikl}^m + R_{ilk}^m)].$$

Then:

$$(\nabla_i \nabla_k - \nabla_k \nabla_i) R_{jl} + (\nabla_j \nabla_i - \nabla_i \nabla_j) R_{kl} + (\nabla_k \nabla_j - \nabla_j \nabla_k) R_{il}$$

= $3L_S(R_{im} R_{jkl}^m + R_{jm} R_{kil}^m + R_{km} R_{ijl}^m)$

By Lovelock's identity (4.1), the l.h.s. of the previous equation is:

$$\nabla_i \nabla_m R_{jkl}{}^m + \nabla_j \nabla_m R_{kil}{}^m + \nabla_k \nabla_m R_{ijl}{}^m$$

= $(\nabla_i \nabla_k - \nabla_k \nabla_i) R_{jl} + (\nabla_j \nabla_i - \nabla_i \nabla_j) R_{kl} + (\nabla_k \nabla_j - \nabla_j \nabla_k) R_{il}$
= $-R_{im} R_{jkl}{}^m - R_{jm} R_{kil}{}^m - R_{km} R_{ijl}{}^m$.

Compare the two results and conclude that either $L_S = -\frac{1}{3}$, or $R_{im}R_{jkl}^m + R_{jm}R_{kil}^m + R_{km}R_{ijl}^m = 0$.

Finally we state:

Proposition 4.18. In a $(WZS)_n$ which is also a generalized Ricci pseudosymmetric manifold in the sense of R.Deszcz, if the Z tensor is non-singular and $L_S \neq -\frac{1}{3}$, then ω_k is a closed 1-form.

5. Conformally harmonic $(WZS)_n$: form of the Ricci tensor

In this section we study conformally harmonic $(WZS)_n$ in depth. We show the existence of a proper concircular vector in such manifolds, and obtain the form of the Ricci tensor. The proof only requires the Z tensor to be non singular. For the conformally flat case, in particular, we give the explicit local form of the metric tensor.

The condition $\nabla_m C_{jkl}{}^m = 0$ is eq.(14) which, by using $R_{ij} = Z_{ij} - g_{ij} \phi$ and the property eq.(9), becomes:

(37)
$$\omega_k Z_{jl} - \omega_j Z_{kl} = \frac{1}{2(n-1)} (g_{jl} \nabla_k - g_{kl} \nabla_j) [R + 2(n-1)\phi].$$

This is the starting point for the proofs. By prop 4.7, since Z is non singular, $\omega_k \neq 0$ if and only if $\nabla_k [R + 2(n-1)\phi] \neq 0$.

Remark 5. 1) The condition $\nabla_m C_{jkl}{}^m = 0$ implies that the manifold is a $(NCS)_n$. 2) If $\nabla_k [R+2(n-1)\phi] = 0$ the Z tensor is a Codazzi tensor.

The following theorem generalizes a result in [11] for $A(PRS)_n$:

Theorem 5.1. In a conformally harmonic $(WZS)_n$ the 1-form ω is an eigenvector of the Z tensor.

Proof. By transvecting eq.(37) with g^{kl} we obtain

(38)
$$\omega_j Z - \omega^m Z_{jm} = \frac{1}{2} \nabla_j [R + 2(n-1)\phi];$$

the result is inserted back in eq.(37),

$$\omega_k Z_{jl} - \omega_j Z_{kl} = \frac{1}{(n-1)} [(\omega_k Z - \omega^m Z_{km})g_{jl} - (\omega_j Z - \omega^m Z_{jm})g_{kl}],$$

and transvected with $\omega^j \omega^l$ to obtain $\omega_k(\omega^j \omega^l Z_{jl}) = (\omega_j \omega^j) \omega^l Z_{kl}$. The last equation can be rewritten as: $Z_{kl} \omega^l = \zeta \omega_k$

Now eq.(38) simplifies: $\omega_j(\zeta - Z) = -\frac{1}{2}\nabla_j[R + 2(n-1)\phi]$. The result is a natural generalization of a similar one given in ref.[11] for $A(PRS)_n$.

Theorem 5.2. Let M be a conformally harmonic $(WZS)_n$. Then: 1) M is a quasi Einstein manifold;

2) if the Z tensor is non singular and if $(\omega_j \nabla_k - \omega_k \nabla_j)\phi = 0$, then:

(39)
$$(\omega_j \nabla_k - \omega_k \nabla_j) \left[\frac{n\zeta - Z}{n-1} \right] = 0,$$

and M admits a proper concircular vector.

10

Proof. Eq.(37) is transvected with ω^{j} and theorem 5.1 is used to show that

$$R_{kl} = \left[\frac{Z-\zeta}{n-1} - \phi\right] g_{kl} + \left[\frac{n\zeta-Z}{n-1}\right] \frac{\omega_k \omega_l}{\omega_j \omega^j},$$

i.e. R_{kl} has the structure $\alpha g_{kl} + \beta T_k T_l$ and the manifold is quasi Einstein [7]. By transvecting eq.(24) with g^{jl} we obtain

$$\frac{1}{2}\nabla_k Z + \frac{n-2}{2}\nabla_k \phi = \omega_k Z - \omega^l Z_{kl}.$$

This and theorem (5.1) imply:

(40)
$$\frac{1}{2}\nabla_k Z + \frac{n-2}{2}\nabla_k \phi = \omega_k (Z - \zeta).$$

A covariant derivative gives $\frac{1}{2}\nabla_j\nabla_k Z + \frac{n-2}{2}\nabla_j\nabla_k \phi = \nabla_j[\omega_k(Z-\zeta)]$. Subtract the equation with indices k and j exchanged:

$$(Z-\zeta)(\nabla_j\omega_k-\nabla_k\omega_j)+(\omega_k\nabla_j-\omega_j\nabla_k)(Z-\zeta)=0.$$

According to corollary 4.9, in a conformally harmonic $(WZS)_n$ with non singular Z the 1-form ω_k is closed. Then

(41)
$$(\omega_k \nabla_j - \omega_j \nabla_k)(Z - \zeta) = 0$$

Multiply eq.(40) by ω_j and subtract from it the equation with indices k and j exchanged: $(\omega_j \nabla_k - \omega_k \nabla_j)Z + (n-2)(\omega_j \nabla_k - \omega_k \nabla_j)\phi = 0$. Suppose that ω_k , besides being a closed 1-form, has the property $(\omega_j \nabla_k - \omega_k \nabla_j)\phi = 0$, then one obtains the further equation:

(42)
$$(\omega_k \nabla_j - \omega_j \nabla_k) Z = 0$$

Eqs.(41,42) imply the assertion eq.(39). The existence of a proper concircular vector follows from Theorem 3.1. \Box

Let us specialize to the case $C_{ijk}{}^m = 0$ (conformally flat $(WZS)_n$). It is well known [1] that if a conformally flat space admits a proper concircular vector, then the space is subprojective in the sense of Kagan. From theorem 5.2 we state the following:

Theorem 5.3. Let $(WZS)_n$ (n > 3) be conformally flat with nonsingular Z tensor and $(\omega_j \nabla_k - \omega_k \nabla_j) \phi = 0$, then the manifold is a subprojective space.

In [33] K. Yano proved that a necessary and sufficient condition for a Riemannian manifold to admit a concircular vector, is that there is a coordinate system in which the first fundamental form may be written as:

(43)
$$ds^{2} = (dx^{1})^{2} + e^{q(x^{1})}g_{\alpha\beta}^{*}(x^{2},\dots,x^{n})dx^{\alpha}dx^{\beta},$$

where $\alpha, \beta = 2, ..., n$. Since a conformally flat $(WZS)_n$ with non singular Z tensor admits a proper concircular vector field, this space is the warped product $1 \times e^q M^*$, where (M^*, g^*) is a (n - 1)-dimensional Riemannian manifold. Gebarosky [19] proved that the warped product $1 \times e^q M^*$ has the metric structure (43) if and only if M^* is Einstein. Thus the following theorem holds:

Theorem 5.4. Let M be a n dimensional conformally flat $(WZS)_n$ (n > 3). If Z_{kl} is non singular and $(\omega_j \nabla_k - \omega_k \nabla_j)\phi = 0$, then M is the warped product $1 \times e^q M^*$, where M^* is Einstein.

References

- [1] T. Adati, On Subprojective spaces-III, Tohoku Math. J., 3 (1951), 343-358.
- [2] K. Arslan, R. Ezentas, C. Murathan and C. Ozgur, On pseudo Ricci-symmetric manifolds, Differ. Geom. Dyn. Syst., 3 n.2 (2001), 1-5.
- [3] A. L. Besse, Einstein Manifolds, Springer (1987).
- [4] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15 (1988), 525-531.
- [5] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, *Tensor (N.S)*, 68 n.1 (2007), 10-14.
- [6] M. C. Chaki and S. Koley, On generalized pseudo Ricci symmetric manifolds, *Period. Math. Hung.*, 28 (1994), 123-129.
- [7] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), 257-306.
- [8] M. C. Chaki, and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulg. J. Phys., 21 n.1-2 (1994), 1-7.
- U. C. De, N. Guha and D. Kamilya, On generalized Ricci recurrent manifolds, *Tensor (N.S.)*, 56 (1995), 312-317.
- [10] U. C. De and B. K. De, On conformally flat generalized pseudo Ricci symmetric manifolds, Soochow J. Math., 23 n.4 (1997), 381-389.
- [11] U. C. De and A. K. Gazi, On conformally flat almost pseudo Ricci symmetric manifolds, *Kyungpook Math. J.*, 49 (2009), 507-520.
- [12] U. C. De and G. K. Ghosh, Some global properties of weakly Ricci symmetric manifolds, Soochow J. Math., 31 n.1 (2005), 83-93.
- [13] U. C. De and S. K. Ghosh, On conformally flat pseudo symmetric manifolds, Balkan J. Geom. Appl., 5 n.2 (2000), 61-64.
- [14] F. De Felice and C. J. S. Clarke, *Relativity on curved manifolds*, Cambridge University Press (1990).
- [15] F. Defever, R. Deszcz, On semi Riemannian manifolds satisfying the condition $R \cdot R = Q(S, R)$, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci. Singapore 1991, 108-130.
- [16] A. Derdzinski and C.L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lond. Math. Soc., 47 (1983), 15-26.
- [17] R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg., Series A 44 (1992), 1-34.
- [18] L. P. Eisenhart, Non Riemaniann Geometry, reprint Dover Ed. (2005)
- [19] A. Gebarowsky, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math., Acad. Sin., 20 n.4 (1992), 359-371.
- [20] S. K. Jana and A. A. Shaikh, On quasi conformally flat weakly Ricci symmetric manifolds, Acta Math. Hung., 115 n.3 (2007), 197-214.
- [21] Q. Khan, On recurrent Riemannian manifolds, Kyungpook Math. J., 44 (2004), 269-276.
- [22] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.1, Interscience, New York (1963).
- [23] D. Lovelock and H. Rund, Tensors, differential forms and variational principles, reprint Dover Ed. (1988).
- [24] C. A. Mantica and L. G. Molinari, A second order identity for the Riemann tensor and applications, *Collog. Math.*, **122** (2011), 69-82; arXiv:0802.0650v2 [math.DG] 9 Jul 2009.
- [25] C. A. Mantica and L. G. Molinari, Extended Derdzinski-Shen theorem for the Riemann tensor, arXiv:1101.4157 [math.DG] 21 Jan 2011.
- [26] R. S. Mishra, Structures on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad (1984).
- [27] M. M. Postnikov, Geometry VI, Riemannian geometry, Encyclopaedia of Mathematical Sciences, Vol. 91 (2001), Springer.
- [28] J. A. Shouten, Ricci-calculus, Springer Verlag, 2nd Ed. (1954).
- [29] W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.), 46 (1987), 278-286.
- [30] H. Singh and Q. Khan, On symmetric manifolds, Novi Sad J. Math., 29 n.3 (1999), 301-308.
- [31] L. Tamassy and T. Q. Binh, On weakly symmetries of Einstein and Sasakian manifolds, *Tensor (N.S.)*, 53 (1993), 140-148.

- [32] K. Yano, Concircular geometry I, concircular trasformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
- [33] K. Yano, On the torseforming direction in Riemannian Spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.
- [34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differ. Geom., 2 (1968), 161-184.

Physics Department, Università degli Studi di Milano and I.N.F.N., Via Celoria 16, 20133, Milano, Italy., Present address of C. A. Mantica: I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, Italy

 $[\]textit{E-mail address: luca.molinari@mi.infn.it, carloalberto.mantica@libero.it}$