# WEAKLY Z-SYMMETRIC MANIFOLDS 

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI


#### Abstract

We introduce a new kind of Riemannian manifold that includes weakly-, pseudo- and pseudo projective- Ricci symmetric manifolds. The manifold is defined through a generalization of the so called $Z$ tensor; it is named weakly $Z$-symmetric and denoted by $(W Z S)_{n}$. If the $Z$ tensor is singular we give conditions for the existence of a proper concircular vector. For non singular $Z$ tensor, we study the closedness property of the associated covectors and give sufficient conditions for the existence of a proper concircular vector in the conformally harmonic case, and the general form of the Ricci tensor. For conformally flat $(W Z S)_{n}$ manifolds, we derive the local form of the metric tensor. Date: May 2011.


## 1. Introduction

In 1993 Tamassy and Binh [31] introduced and studied a Riemannian manifold whose Ricci tensor satisfies the equation:

$$
\begin{equation*}
\nabla_{k} R_{j l}=A_{k} R_{j l}+B_{j} R_{k l}+D_{l} R_{k j} \tag{1}
\end{equation*}
$$

The manifold is called weakly Ricci symmetric and denoted by $(W R S)_{n}$. The Ricci tensor and the scalar curvature are $R_{k l}=-R_{m k l}{ }^{m}$ and $R=g^{i j} R_{i j} . \nabla_{k}$ is the covariant derivative with reference to the metric $g_{k l}$. We also put $\|\eta\|=\sqrt{\eta^{k} \eta_{k}}$. The covectors $A_{k}, B_{k}$ and $D_{k}$ are the associated 1-forms. The same manifold with the 1 -form $A_{k}$ replaced by $2 A_{k}$ was studied by Chaki and Koley [6], and called generalized pseudo Ricci symmetric. The two structures extend pseudo Ricci symmetric manifolds, $(P R S)_{n}$, introduced by Chaki [4], where $\nabla_{k} R_{j l}=2 A_{k} R_{j l}+$ $A_{j} R_{k l}+A_{l} R_{k j}$ (this definition differs from that of R. Deszcz [17]).
Later on, other authors studied the manifolds [10, 20, 12]; in [12] some global properties of $(W R S)_{n}$ were obtained, and the form of the Ricci tensor was found. In [10] generalized pseudo Ricci symmetric manifolds were considered, where the conformal curvature tensor

$$
\begin{array}{r}
C_{j k l}^{m}=R_{j k l}{ }^{m}+\frac{1}{n-2}\left(\delta_{j}^{m} R_{k l}-\delta_{k}{ }^{m} R_{j l}+R_{j}{ }^{m} g_{k l}-R_{k}{ }^{m} g_{j l}\right) \\
-\frac{R}{(n-1)(n-2)}\left(\delta_{j}^{m} g_{k l}-\delta_{k}{ }^{m} g_{j l}\right) \tag{2}
\end{array}
$$

vanishes (for $n=3: C_{j k l}{ }^{m}=0$ holds identically, [27]) and the existence of a proper concircular vector was proven. In [20] a quasi conformally flat $(W R S)_{n}$ was studied, and again the existence of a proper concircular vector was proven.

[^0]In [2] $(P R S)_{n}$ with harmonic curvature tensor (i.e. $\nabla_{m} R_{j k l}{ }^{m}=0$ ) or with harmonic conformal curvature tensor (i.e. $\nabla_{m} C_{j k l}^{m}=0$ ) were considered.
Chaki and Saha considered the projective Ricci tensor $P_{k l}$, obtained by a contraction of the projective curvature tensor $P_{j k l}{ }^{m}$ [18]:

$$
\begin{equation*}
P_{k l}=\frac{n}{n-1}\left(R_{k l}-\frac{R}{n} g_{k l}\right) \tag{3}
\end{equation*}
$$

and generalized $(P R S)_{n}$ to manifolds such that

$$
\begin{equation*}
\nabla_{k} P_{j l}=2 A_{k} P_{j l}+A_{j} P_{k l}+A_{l} P_{k j} \tag{4}
\end{equation*}
$$

The manifold is called pseudo projective Ricci symmetric and denoted by $(P W R S)_{n}$ [8]. Recently another generalization of a $(P R S)_{n}$ was considered in [5] and [11], whose Ricci tensor satisfies the condition

$$
\begin{equation*}
\nabla_{k} R_{j l}=\left(A_{k}+B_{k}\right) R_{j l}+A_{j} R_{k l}+A_{l} R_{k j} \tag{5}
\end{equation*}
$$

The manifold is called almost pseudo Ricci symmetric and denoted by $A(P R S)_{n}$. In ref.[11] the properties of conformally flat $A(P R S)_{n}$ were studied, pointing out their importance in the theory of General Relativity.

It seems worthwhile to introduce and study a new manifold structure that includes $(W R S)_{n},(P R S)_{n}$ and $(P W R S)_{n}$ as special cases.

Definition 1.1. A $(0,2)$ symmetric tensor is a generalized $Z$ tensor if

$$
\begin{equation*}
Z_{k l}=R_{k l}+\phi g_{k l} \tag{6}
\end{equation*}
$$

where $\phi$ is an arbitrary scalar function. The $Z$ scalar is $Z=g^{k l} Z_{k l}=R+n \phi$.
The classical $Z$ tensor is obtained with the choice $\phi=-\frac{1}{n} R$. Hereafter we refer to the generalized $Z$ tensor simply as the $Z$ tensor.
The $Z$ tensor allows us to reinterpret several well known structures on Riemannian manifolds.

1) If $Z_{k l}=0$ the ( $Z$-flat) manifold is an Einstein space, $R_{i j}=(R / n) g_{i j}[3]$.
2) If $\nabla_{i} Z_{k l}=\lambda_{i} Z_{k l}$, the ( $Z$-recurrent) manifold is a generalized Ricci recurrent manifold [9, 26]: the condition is equivalent to $\nabla_{i} R_{k l}=\lambda_{i} R_{k l}+(n-1) \mu_{i} g_{k l}$ where $(n-1) \mu_{i} \equiv\left(\lambda_{i}-\nabla_{i}\right) \phi$. If moreover $0=\left(\lambda_{i}-\nabla_{i}\right) \phi$, a Ricci Recurrent manifold is recovered.
3) If $\nabla_{k} Z_{j l}=\nabla_{j} Z_{k l}$ (i.e. $Z$ is a Codazzi tensor, [16]) then $\nabla_{k} R_{j l}-\nabla_{j} R_{k l}=$ $\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) \phi$. By transvecting with $g^{j l}$ we get $\nabla_{k}[R+2(n-1) \phi]=0$ and, finally,

$$
\nabla_{k} R_{j l}-\nabla_{j} R_{k l}=\frac{1}{2(n-1)}\left(g_{j l} \nabla_{k}-g_{k l} \nabla_{j}\right) R
$$

This condition defines a nearly conformally symmetric manifold, $(N C S)_{n}$. The condition was introduced and studied by Roter [29]. Conversely a $(N C S)_{n}$ has a Codazzi $Z$ tensor if $\nabla_{k}[R+2(n-1) \phi]=0$.
4) Einstein's equations [14] with cosmological constant $\Lambda$ and energy-stress tensor $T_{k l}$ may be written as $Z_{k l}=k T_{k l}$, where $\phi=-\frac{1}{2} R+\Lambda$, and $k$ is the gravitational constant. The $Z$ tensor may be thought of as a generalized Einstein gravitational tensor with arbitrary scalar function $\phi$.
Conditions on the energy-momentum tensor determine constraints on the $Z$ tensor: the vacuum solution $Z=0$ determines an Einstein space with $\Lambda=\frac{n-2}{2 n} R$; conservation of total energy-momentum $\left(\nabla^{l} T_{k l}=0\right)$ gives $\nabla^{l} Z_{k l}=0$ and $\nabla_{k}\left(\frac{1}{2} R+\phi\right)=0$;
the condition $\nabla_{i} Z_{k l}=0$ describes a space-time with conserved energy-momentum density.

Several cases accomodate in a new kind of Riemannian manifold:
Definition 1.2. A manifold is Weakly Z-symmetric, and denoted by $(W Z S)_{n}$, if the generalized $Z$ tensor satisfies the condition:

$$
\begin{equation*}
\nabla_{k} Z_{j l}=A_{k} Z_{j l}+B_{j} Z_{k l}+D_{l} Z_{k j} \tag{7}
\end{equation*}
$$

If $\phi=0$ we recover a $(W R S)_{n}$ and its particular case $(P R S)_{n}$. If $\phi=-R / n$ (classical $Z$ tensor) and if $A_{k}$ is replaced by $2 A_{k}, B_{k}=D_{k}=A_{k}$, then $Z_{j l}=\frac{n-1}{n} P_{j l}$ and the space reduces to a $(P W R S)_{n}$.

Different properties follow from the $Z$ tensor being singular or not. $Z$ is singular if the matrix equation $Z_{i j} u^{j}=0$ admits (locally) nontrivial solutions, i.e. $Z$ cannot be inverted.

In sect. 2 we obtain general properties of $(W Z S)_{n}$ that descend directly from the definition and strongly depend on $Z_{i j}$ being singular or not. The two cases are examined in sections 3 and 4 . In sect. 3 we study $(W Z S)_{n}$ that are conformally or pseudo conformally harmonic with $B-D \neq 0$; we show that $B-D$, after normalization, is a proper concircular vector. Sect. 4 is devoted to (WZS) ${ }_{n}$ with non-singular Z tensor, and gives conditions for the closedness of the 1-form $A-B$ that involve various generalized curvature tensors. In sect. 5 we study conformally harmonic $(\mathrm{WZS})_{n}$ and obtain the explicit form of the Ricci tensor. In the conformally flat case we also give the local form of the metric.

## 2. General properties

From the definition of a $(W Z S)_{n}$ and its symmetries we obtain

$$
\begin{align*}
0 & =\eta_{j} Z_{k l}-\eta_{l} Z_{k j}  \tag{8}\\
\nabla_{k} Z_{j l}-\nabla_{j} Z_{k l} & =\omega_{k} Z_{j l}-\omega_{j} Z_{k l} \tag{9}
\end{align*}
$$

with covectors

$$
\begin{equation*}
\eta=B-D, \quad \omega=A-B \tag{10}
\end{equation*}
$$

that will be used throughout.
Let's consider eq.(8) first, it implies the following statements:
Proposition 2.1. In $a(W Z S)_{n}$, if the $Z$ tensor is non-singular then $\eta_{k}=0$.
Proof. If the $Z$ tensor is non singular, there exists a $(2,0)$ tensor $Z^{-1}$ such that $\left(Z^{-1}\right)^{k h} Z_{k l}=\delta^{h}{ }_{l}$. By transvecting eq.(8) with $\left(Z^{-1}\right)^{k h}$ we obtain $\eta_{j} \delta_{l}{ }^{h}=\eta_{l} \delta_{j}{ }^{h}$; put $h=l$ and sum to obtain $(n-1) \eta_{j}=0$.

Proposition 2.2. If $\eta_{k} \neq 0$ and the scalar $Z \neq 0$, then the $Z$ tensor has rank one:

$$
\begin{equation*}
Z_{i j}=Z \frac{\eta_{i} \eta_{j}}{\eta^{k} \eta_{k}} \tag{11}
\end{equation*}
$$

Proof. Multiply eq.(8) by $\eta^{j}$ and sum: $\eta^{j} \eta_{j} Z_{k l}=\eta_{l} \eta^{j} Z_{k j}$. Multiply eq.(8) by $g^{j k}$ and sum: $\eta^{k} Z_{k l}=Z \eta_{l}$. The two results imply the assertion.

The result translates to the Ricci tensor, whose expression is characteristic of quasi Einstein Riemannian manifolds [7], and generalizes the results of [12]:
Proposition 2.3. $A(W Z S)_{n}$ with $\eta_{k} \neq 0$, is a quasi Einstein manifold:

$$
\begin{equation*}
R_{i j}=-\phi g_{i j}+Z T_{i} T_{j}, \quad T_{i}=\frac{\eta_{i}}{\|\eta\|} \tag{12}
\end{equation*}
$$

Next we consider eq.(9). If $Z_{i j}$ is a Codazzi tensor, then the l.h.s. of the equation vanishes by definition, and the above discussion of eq.(8) can be repeated. We merely state the result:

Proposition 2.4. In $a(W Z S)_{n}$ with a Codazzi $Z$ tensor, if $Z$ is singular then $\omega_{k} \neq 0$. Conversely, if $\operatorname{rank}\left[Z_{k l}\right]>1$ then $\omega_{k}=0$.

## 3. HARMONIC CONFORMAL OR QUASI CONFORMAL (WZS) ${ }_{n}$ WITH $\eta \neq 0$

In this section we consider manifolds $(W Z S)_{n}(n>3)$ with $\eta_{k} \neq 0$, and the property $\nabla_{m} C_{j k l}{ }^{m}=0$ (i.e. harmonic conformal curvature tensor [3]) or $\nabla_{m} W_{j k l}{ }^{m}=0$ (i.e. harmonic quasi conformal curvature tensor [34]). We provide sufficient conditions for $\eta /\|\eta\|$ to be a proper concircular vector [28, 32].

We begin with the case of harmonic conformal tensor. From the expression for the divergence of the conformal tensor,

$$
\begin{equation*}
\nabla_{m} C_{j k l}{ }^{m}=\frac{n-3}{n-2}\left[\nabla_{k} R_{j l}-\nabla_{j} R_{k l}+\frac{1}{2(n-1)}\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) R\right] \tag{13}
\end{equation*}
$$

we read the condition $\nabla_{m} C_{j k l}{ }^{m}=0$ :

$$
\begin{equation*}
\nabla_{k} R_{j l}-\nabla_{j} R_{k l}=\frac{1}{2(n-1)}\left(g_{j l} \nabla_{k}-g_{k l} \nabla_{j}\right) R \tag{14}
\end{equation*}
$$

We need the following theorem, whose proof given here is different from that in [13] (see also [10]):

Theorem 3.1. Let $M$ be a $n>3$ dimensional manifold, with harmonic conformal curvature tensor, and Ricci tensor $R_{k l}=\alpha g_{k l}+\beta T_{k} T_{l}$, where $\alpha$, $\beta$ are scalars, and $T^{k} T_{k}=1$. If

$$
\begin{equation*}
\left(T_{j} \nabla_{k}-T_{k} \nabla_{j}\right) \beta=0 \tag{15}
\end{equation*}
$$

then $T_{k}$ is a proper concircular vector.
Proof. Since $M$ is conformally harmonic, eq.(14) gives:

$$
\begin{equation*}
\beta\left[\nabla_{k}\left(T_{j} T_{l}\right)-\nabla_{j}\left(T_{k} T_{l}\right)\right]=\frac{1}{2(n-1)}\left(g_{j l} \nabla_{k}-g_{k l} \nabla_{j}\right) S, \tag{16}
\end{equation*}
$$

where $S=-(n-2) \alpha+\beta$, and condition (15) was used. The proof is in four steps. 1) We show that $T^{l} \nabla_{l} T_{k}=0$ : multiply eq.(16) by $g^{j l}$ to obtain: a) $-\beta \nabla^{l}\left(T_{k} T_{l}\right)=$ $\frac{1}{2} \nabla_{k} S$. The result a) is multiplied by $T^{k}$ to give: b) $-\beta \nabla_{l} T^{l}=\frac{1}{2} T^{l} \nabla_{l} S$. a) and b) combine to give: c) $-\beta T^{l} \nabla_{l} T_{k}=\frac{1}{2}\left[\nabla_{k}-T_{k} T^{l} \nabla_{l}\right] S$. Finally multiply eq.(16) by $T^{k} T^{l}$ and use the property $T^{l} \nabla_{k} T_{l}=0$ to obtain:

$$
\beta T^{k} \nabla_{k} T_{j}=\frac{1}{2(n-1)}\left(T_{j} T^{k} \nabla_{k}-\nabla_{j}\right) S
$$

which, compared to c) shows that d) $T^{l} \nabla_{l} T_{k}=0$ and $\left(T_{j} T^{k} \nabla_{k}-\nabla_{j}\right) S=0$.
2) We show that $T$ is a closed 1 -form: multiply eq.(16) by $T^{l}$

$$
\beta\left[\nabla_{k} T_{j}-\nabla_{j} T_{k}\right]=\frac{1}{2(n-1)}\left(T_{j} \nabla_{k}-T_{k} \nabla_{j}\right) S
$$

$T$ is a closed form if the r.h.s. is null. This is proven by using identity a) to write: $\left(T_{j} \nabla_{k}-T_{k} \nabla_{j}\right) S=-2 \beta\left[T_{j} \nabla^{l}\left(T_{k} T_{l}\right)-T_{k} \nabla^{l}\left(T_{j} T_{l}\right)\right]=0$ by property d).
3) With condition d) in mind, transvect eq.(16) with $T^{k}$ and obtain

$$
-\beta \nabla_{j} T_{l}=\frac{1}{2(n-1)}\left(g_{j l} T^{k} \nabla_{k}-T_{l} \nabla_{j}\right) S
$$

Use d) to replace $T_{l} \nabla_{j} S$ with $T_{l} T_{j} T^{k} \nabla_{k} S$. Then:

$$
\begin{equation*}
\nabla_{j} T_{l}=f\left(T_{j} T_{l}-g_{j l}\right), \quad f \equiv \frac{T^{k} \nabla_{k} S}{2 \beta(n-1)} \tag{17}
\end{equation*}
$$

which means that $T_{k}$ is a concircular vector.
4) We prove that $T_{k}$ is a proper concircular vector, i.e. $f T_{k}$ is a closed 1-form: from d) by a covariant derivative we obtain $\nabla_{j} \nabla_{k} S=\left(\nabla_{j} T_{k}\right)\left(T^{l} \nabla_{l} S\right)+T_{k} \nabla_{j}\left(T^{l} \nabla_{l} S\right)$; subtract same equation with indices $k$ and $j$ exchanged. Since $T_{k}$ is a closed 1-form we obtain: $T_{k} \nabla_{j}\left(T^{l} \nabla_{l} S\right)=T_{j} \nabla_{k}\left(T^{l} \nabla_{l} S\right)$. Multiply by $T^{k}$ :

$$
\left(T_{j} T^{k} \nabla_{k}-\nabla_{j}\right)\left(T^{l} \nabla_{l} S\right)=0
$$

From the relation (15), one obtains: $\left(T_{k} T^{l} \nabla_{l}-\nabla_{k}\right) \beta=0$. It follows that the scalar function $f$ has the property $\nabla_{j} f=\mu T_{j}$ where $\mu$ is a scalar function. Then the 1-form $f T_{k}$ is closed.

With the identifications $\alpha=-\phi$ and $\beta=Z, T_{i}=\eta_{i} /\|\eta\|$ (see Prop. 2.3) the condition (15) is $\left(\eta_{j} \nabla_{k}-\eta_{k} \nabla_{j}\right) Z=0$. Since $Z=S-(n-2) \phi$ and $\left(\eta_{j} \nabla_{k}-\eta_{k} \nabla_{j}\right) S=$ 0 , the condition can be rewritten as $\left(\eta_{j} \nabla_{k}-\eta_{k} \nabla_{j}\right) \phi=0$. Thus we can state the following:

Theorem 3.2. In $a(W Z S)_{n}$ manifold with $\eta_{k} \neq 0$ and harmonic conformal curvature tensor, if

$$
\begin{equation*}
\left(\eta_{j} \nabla_{k}-\eta_{k} \nabla_{j}\right) \phi=0 \tag{18}
\end{equation*}
$$

then $\eta_{i} /\|\eta\|$ is a proper concircular vector.
Remark 1. If $\phi=0$ or $\nabla_{k} \phi=0$, the condition (18) is fulfilled automatically. In the case $\phi=0$ we recover a $(W R S)_{n}$ manifold (and the results of refs $[10,12]$ ).

Now we consider the case of a $(W Z S)_{n}$ manifold with harmonic quasi conformal curvature tensor. In 1968 Yano and Sawaki [34] defined and studied a tensor $W_{j k l}{ }^{m}$ on a Riemannian manifold of dimension $n>3$, which includes as particular cases the conformal curvature tensor $C_{j k l}{ }^{m}$, eq.(2), and the concircular curvature tensor

$$
\begin{equation*}
\tilde{C}_{j k l}^{m}=R_{j k l}^{m}+\frac{R}{n(n-1)}\left(\delta_{j}^{m} g_{k l}-\delta_{k}^{m} g_{j l}\right) . \tag{19}
\end{equation*}
$$

The tensor is known as the quasi conformal curvature tensor:

$$
\begin{equation*}
W_{j k l}{ }^{m}=-(n-2) b C_{j k l}{ }^{m}+[a+(n-2) b] \tilde{C}_{j k l}{ }^{m} ; \tag{20}
\end{equation*}
$$

$a$ and $b$ are nonzero constants. From the expressions (13) and (33) we evaluate

$$
\begin{equation*}
\nabla_{m} W_{j k l}{ }^{m}=(a+b) \nabla_{m} R_{j k l}^{m}+\frac{2 a-b(n-1)(n-4)}{2 n(n-1)}\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) R . \tag{21}
\end{equation*}
$$

A manifold is quasi conformally harmonic if $\nabla_{m} W_{j k l}{ }^{m}=0$. By transvecting the condition with $g^{j k}$ we get:

$$
\begin{equation*}
(1-2 / n)[a+b(n-2)] \nabla_{j} R=0 \tag{22}
\end{equation*}
$$

which means that either $a+b(n-2)=0$ or $\nabla_{j} R=0$. The first condition implies $W=C$, and gives back the harmonic conformal case. If $\nabla_{j} R=0$ it is $\nabla_{m} R_{j k l}{ }^{m}=0$ by (21), and the equations in the proof of theorem 3.1 simplify and we can state the following (analogous to theorem 3.2):

Theorem 3.3. Let $(W Z S)_{n}$ be a quasi conformally harmonic manifold, with $\eta_{k} \neq$ 0 . If $\left(\eta_{j} \nabla_{k}-\eta_{k} \nabla_{j}\right) \phi=0$, then $\eta /\|\eta\|$ is a proper concircular vector.

## 4. $(\mathrm{WZS})_{n}$ WITh NON-SINGULAR $Z$ TENSOR: CONDITIONS FOR CLOSED $\omega$

In this section we investigate in a $(W Z S)_{n}(n>3)$ the conditions the 1-form $\omega_{k}$ to be closed: $\nabla_{i} \omega_{j}-\nabla_{j} \omega_{i}=0$. We need:

Lemma 4.1 (Lovelock's differential identity, [23, 24]). In a Riemannian manifold the following identity is true:

$$
\begin{array}{r}
\nabla_{i} \nabla_{m} R_{j k l}{ }^{m}+\nabla_{j} \nabla_{m} R_{k i l}{ }^{m}+\nabla_{k} \nabla_{m} R_{i j l}{ }^{m} \\
=-R_{i m} R_{j k l}{ }^{m}-R_{j m} R_{k i l}^{m}-R_{k m} R_{i j l}{ }^{m} \tag{23}
\end{array}
$$

and also the contracted second Bianchi identity in the form

$$
\begin{equation*}
\nabla_{m} R_{j k l}^{m}=\nabla_{k} Z_{j l}-\nabla_{j} Z_{k l}+\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) \phi . \tag{24}
\end{equation*}
$$

Now we prove the relevant theorem (see also [24]):
Theorem 4.2. In a $(W Z S)_{n}(n>3)$ with non singular $Z$ tensor, $\omega_{k}$ is a closed 1 -form if and only if:

$$
\begin{equation*}
R_{i m} R_{j k l}^{m}+R_{j m} R_{k i l}^{m}+R_{k m} R_{i j l}^{m}=0 . \tag{25}
\end{equation*}
$$

Proof. The covariant derivative of eq.(24) and eq.(9) give: $\nabla_{i} \nabla_{m} R_{j k l}{ }^{m}=\left(\nabla_{i} \omega_{k}\right) Z_{j l}+$ $\omega_{k}\left(\nabla_{i} Z_{j l}\right)-\left(\nabla_{i} \omega_{j}\right) Z_{k l}-\omega_{j}\left(\nabla_{i} Z_{k l}\right)+\left(g_{k l} \nabla_{i} \nabla_{j} \phi-g_{j l} \nabla_{i} \nabla_{k} \phi\right)$. Cyclic permutations of the indices $i, j, k$ are made, and the resulting three equations are added:

$$
\begin{aligned}
& \nabla_{i} \nabla_{m} R_{j k l}^{m}+\nabla_{j} \nabla_{m} R_{k i l}^{m}+\nabla_{k} \nabla_{m} R_{i j l}^{m} \\
& =\left(\nabla_{i} \omega_{k}-\nabla_{k} \omega_{i}\right) Z_{j l}+\left(\nabla_{j} \omega_{i}-\nabla_{i} \omega_{j}\right) Z_{k l}+\left(\nabla_{k} \omega_{j}-\nabla_{j} \omega_{k}\right) Z_{i l} \\
& \quad+\omega_{j}\left(\nabla_{k} Z_{i l}-\nabla_{i} Z_{k l}\right)+\omega_{k}\left(\nabla_{i} Z_{j l}-\nabla_{j} Z_{i l}\right)+\omega_{i}\left(\nabla_{j} Z_{k l}-\nabla_{k} Z_{j l}\right) .
\end{aligned}
$$

Cancellations occur by eq.(9). By lemma 4.1, one obtains:

$$
\begin{aligned}
& -R_{i m} R_{j k l}^{m}-R_{j m} R_{k i l}^{m}-R_{k m} R_{i j l}^{m} \\
& =\left(\nabla_{i} \omega_{k}-\nabla_{k} \omega_{i}\right) Z_{j l}+\left(\nabla_{j} \omega_{i}-\nabla_{i} \omega_{j}\right) Z_{k l}+\left(\nabla_{k} \omega_{j}-\nabla_{j} \omega_{k}\right) Z_{i l} .
\end{aligned}
$$

If $\omega_{k}$ is a closed 1-form then eq.(25) is fulfilled. Conversely, suppose that eq.(25) holds: if the $Z$ tensor is non singular, there is a $(2,0)$ tensor such that $Z_{k l}\left(Z^{-1}\right)^{k m}=$ $\delta_{l}{ }^{m}$. Multiply the last equation by $\left(Z^{-1}\right)^{h l}:\left(\nabla_{i} \omega_{k}-\nabla_{k} \omega_{i}\right) \delta_{j}{ }^{h}+\left(\nabla_{j} \omega_{i}-\nabla_{i} \omega_{j}\right) \delta_{k}{ }^{h}+$ $\left(\nabla_{k} \omega_{j}-\nabla_{j} \omega_{k}\right) \delta_{i}{ }^{h}=0$. Set $h=j$ and sum: $(n-2)\left(\nabla_{i} \omega_{k}-\nabla_{k} \omega_{i}\right)=0$. Since $n>2, \omega_{k}$ is a closed 1-form.

Remark 2. By Lovelock's identity, the condition (25) is obviously true if $\nabla_{m} R_{i j k}{ }^{m}=$ 0 , i.e. the $(W Z S)_{n}$ is a harmonic manifold. However, we have shown in ref.[24] that there is a broad class of generalized curvature tensors for which the case $\nabla_{m} K_{i j k}{ }^{m}=0$ implies the same condition. This class includes several well known curvature tensors, and is the main subject of this section.

Definition 4.3. A tensor $K_{j k l}{ }^{m}$ is a generalized curvature tensor ${ }^{1}$ if:

1) $K_{j k l}{ }^{m}=-K_{k j l}{ }^{m}$,
2) $K_{j k l}{ }^{m}+K_{k l j}{ }^{m}+K_{l j k}^{m}=0$.

The second Bianchi identity does not hold in general, and is modified by a tensor source $B_{i j k l}{ }^{m}$ that depends on the specific form of the curvature tensor:

$$
\begin{equation*}
\nabla_{i} K_{j k l}{ }^{m}+\nabla_{j} K_{k i l}{ }^{m}+\nabla_{k} K_{i j l}{ }^{m}=B_{i j k l}{ }^{m} \tag{26}
\end{equation*}
$$

Proposition 4.4 ([24]). If $K_{j k l}{ }^{m}$ is a generalized curvature tensor such that

$$
\begin{equation*}
\nabla_{m} K_{j k l}^{m}=A \nabla_{m} R_{j k l}{ }^{m}+B\left(a_{l k} \nabla_{j}-a_{l j} \nabla_{k}\right) \psi, \tag{27}
\end{equation*}
$$

where $A \neq 0, B$ are constants, $\psi$ is a scalar field, and $a_{i j}$ is a symmetric $(0,2)$ Codazzi tensor (i.e. $\nabla_{i} a_{k l}=\nabla_{k} a_{i l}$ ), then the following relation holds:

$$
\begin{align*}
& \nabla_{i} \nabla_{m} K_{j k l}{ }^{m}+\nabla_{j} \nabla_{m} K_{k i l}{ }^{m}+\nabla_{k} \nabla_{m} K_{i j l}{ }^{m}  \tag{28}\\
& \quad=-A\left(R_{i m} R_{j k l}{ }^{m}+R_{j m} R_{k i l}{ }^{m}+R_{k m} R_{i j l}{ }^{m}\right) .
\end{align*}
$$

Remark 3. In [16] it is proven that any smooth manifold carries a metric such that ( $M, g$ ) admits a non trivial Codazzi tensor (i.e. proportional to the metric tensor) and the deep consequences on the structure of the curvature operator are presented (see also [25]).
Given a Codazzi tensor it is possible to exhibit a $K$ tensor that satisfies the condition (27):

$$
\begin{equation*}
K_{j k l}{ }^{m}=A R_{j k l}{ }^{m}+B \psi\left(\delta_{j}{ }^{m} a_{k l}-\delta_{k}{ }^{m} a_{j l}\right) . \tag{29}
\end{equation*}
$$

Its trace is: $K_{k l}=-K_{m k l}{ }^{m}=A R_{k l}-B(n-1) \psi a_{k l}$. Note that for $a_{k l}=g_{k l}$ the tensor $K_{k l}$ is up to a factor a $Z$ tensor. Thus $Z$ tensors arise naturally from the invariance of Lovelock's identity.

Remark 4. In the literature one meets generalized curvature tensors whose divergence has the form (27), with trivial Codazzi tensor:

$$
\begin{equation*}
\nabla_{m} K_{j k l}{ }^{m}=A \nabla_{m} R_{j k l}{ }^{m}+B\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) R . \tag{30}
\end{equation*}
$$

They are the projective curvature tensor $P_{j k l}{ }^{m}$ [18], the conformal curvature tensor $C_{j k l}{ }^{m}$ [27], the concircular tensor $\tilde{C}_{j k l}{ }^{m}[28,32]$, the conharmonic tensor $N_{j k l}{ }^{m}$ $[26,30]$ and the quasi conformal tensor $W_{j k l}{ }^{m}$ [34].

Definition 4.5. A manifold is $K$-harmonic if $\nabla_{m} K_{j k l}{ }^{m}=0$.
Proposition 4.6. In a $K$-harmonic manifold, if $K$ is of type (30) and $A \neq 2(n-$ 1) $B$, then $\nabla_{j} R=0$.

Proof. By transvecting eq.(30) with $g^{k l}$ and by the second contracted Bianchi identity, we obtain $\frac{1}{2}[A-2(n-1) B] \nabla_{j} R=0$.

[^1]Hereafter, we specialize to $(W Z S)_{n}$ manifolds with non singular $Z$ tensor, and with a generalized curvature tensor of the type (30). From eqs. (24) and (9) we obtain:

$$
\begin{equation*}
\nabla_{m} K_{j k l}{ }^{m}=A\left(\omega_{k} Z_{j l}-\omega_{j} Z_{k l}\right)+\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right)(A \phi+B R) . \tag{31}
\end{equation*}
$$

Then, the manifold is $K$-harmonic if:

$$
\begin{equation*}
A\left(\omega_{k} Z_{j l}-\omega_{j} Z_{k l}\right)=\left(g_{j l} \nabla_{k}-g_{k l} \nabla_{j}\right)(A \phi+B R) \tag{32}
\end{equation*}
$$

Lemma 4.7. In a $K$-harmonic $(W Z S)_{n}$ with non singular $Z$ tensor:

1) $\omega_{k}=0$ if and only if $\nabla_{k}(A \phi+B R)=0$;
2) If $A \neq 2(n-1) B$, then $\omega_{k}=0$ if and only if $\nabla_{k} \phi=0$.

Proof. If $\nabla_{k}(A \phi+B R)=0$ then $\omega_{k} Z_{j l}=\omega_{j} Z_{k l}$ : if the $Z$ tensor is non singular, by transvecting with $\left(Z^{-1}\right)^{l h}$ we obtain $\omega_{j} \delta^{h}{ }_{k}=\omega_{k} \delta^{h}{ }_{j}$. Now put $h=j$ and sum to obtain $(n-1) \omega_{k}=0$. On the other hand if $\omega_{k}=0$ eq.(32) gives $\left[g_{j l} \nabla_{k}-\right.$ $\left.g_{k l} \nabla_{j}\right](A \phi+B R)=0$ and transvecting with $g^{k l}$ we get the result.
If $A \neq 2 B(n-1)$ then $\nabla_{k} R=0$ and part 1) applies.
Theorem 4.8. In a $K$-harmonic $(W Z S)_{n}$ with non-singular $Z$ tensor and $K$ of type (30), if $\omega \neq 0$ then $\omega$ is a closed 1-form.

This theorem extends theorem 4.2 (where $K=R$ ), and has interesting corollaries according to the various choices $K=C, W, P, \tilde{C}, N$.

Corollary 4.9. Let $(W Z S)_{n}$ have non singular $Z$ tensor and $\omega \neq 0$. If $\nabla_{m} K_{j k l}{ }^{m}=$ 0 , and $K=P, \tilde{C}, N$, then $\omega$ is a closed 1-form.

Proof. 1) Harmonic conformal curvature: $\nabla_{m} C_{j k l}{ }^{m}=0$. Note that in this case $A=2 B(n-1)$; theorem 4.8 applies.
2) Harmonic quasi conformal curvature: $\nabla_{m} W_{j k l}{ }^{m}=0$ : Eq.(22) gives either $\nabla_{j} R=$ 0 or $a+b(n-2)=0$. If $\nabla_{j} R=0$ then $\nabla_{m} R_{j k l}{ }^{m}=0$ and theorem 4.2. If $a+b(n-2)=0$ it is $\nabla_{m} C_{j k l}^{m}=0$ and case 1) applies.
3) Harmonic projective curvature: $\nabla_{m} P_{j k l}{ }^{m}=0$. The components of the projective curvature tensor are [18, 30]:

$$
P_{j k l}^{m}=R_{j k l}{ }^{m}+\frac{1}{n-1}\left(\delta_{j}^{m} R_{k l}-\delta_{k}{ }^{m} R_{j l}\right) .
$$

One evaluates $\nabla_{m} P_{j k l}{ }^{m}=\frac{n-2}{n-1} \nabla_{m} R_{j k l}{ }^{m}$, and theorem 4.2 applies.
4) Harmonic concircular curvature: $\nabla_{m} \tilde{C}_{j k l}{ }^{m}=0$. The concircular curvature tensor is given in eq.(19), [28, 32]. Its divergence is

$$
\begin{equation*}
\nabla_{m} \tilde{C}_{j k l}^{m}=\nabla_{m} R_{j k l}^{m}+\frac{1}{n(n-1)}\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) R \tag{33}
\end{equation*}
$$

Theorem 4.8 applies.
5) Harmonic conharmonic curvature: $\nabla_{m} N_{j k l}^{m}=0$. The conharmonic curvature tensor $[26,30]$ is:

$$
N_{j k l}{ }^{m}=R_{j k l}{ }^{m}+\frac{1}{n-2}\left(\delta_{j}^{m} R_{k l}-\delta_{k}{ }^{m} R_{j l}+R_{j}^{m} g_{k l}-R_{k}^{m} g_{j l}\right) .
$$

A covariant derivative and the second contracted Bianchi identity give:

$$
\nabla_{m} N_{j k l}^{m}=\frac{n-3}{n-2} \nabla_{m} R_{j k l}^{m}+\frac{1}{2(n-2)}\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) R .
$$

Theorems 4.8 applies.
There are other cases where the 1-form $\omega_{k}$ is closed for a $(W Z S)_{n}$ manifold.
Definition 4.10 ( $[24,21]$ ). A $n$-dimensional Riemannian manifold is $K$-recurrent, $(K R)_{n}$, if the generalized curvature tensor is recurrent, $\nabla_{i} K_{j k l}{ }^{m}=\lambda_{i} K_{j k l}{ }^{m}$, for some non zero covector $\lambda_{i}$.
Theorem $4.11([24])$. In $a(K R)_{n}$, if $\lambda_{i}$ is closed then:

$$
\begin{equation*}
R_{i m} R_{j k l}^{m}+R_{j m} R_{k i l}^{m}+R_{k m} R_{i j l}^{m}=-\frac{1}{A} \nabla_{m} B_{i j k l}^{m} . \tag{34}
\end{equation*}
$$

where $B$ is the source tensor in eq.(26). In particular, for $K=C, P, \tilde{C}, N, W$ the tensor $\nabla_{m} B_{i j k l}{ }^{m}$ either vanishes or is proportional to the l.h.s. of eq.(34).
Corollary 4.12. Let $(W Z S)_{n}$ have non singular $Z$ tensor, and be $K$ recurrent with closed $\lambda_{i}$. If $K=C, P, \tilde{C}, N, W$, then $\omega$ is a closed 1-form.
Definition 4.13. A Riemannian manifold is pseudosymmetric in the sense of R. Deszcz [17] if the following condition holds:

$$
\left(\nabla_{s} \nabla_{i}-\nabla_{i} \nabla_{s}\right) R_{j k l m}=L_{R}\left(g_{j s} R_{i k l m}-g_{j i} R_{s k l m}+g_{k s} R_{j i l m}-g_{k i} R_{j s l m}\right.
$$

$$
\begin{equation*}
\left.+g_{l s} R_{j k i m}-g_{l i} R_{j k s m}+g_{m s} R_{j k l i}-g_{m i} R_{j k l s}\right), \tag{35}
\end{equation*}
$$

where $L_{R}$ is a non null scalar function.
In ref.[24] the following theorem is proven:
Theorem 4.14. In a Riemannian manifold which is pseudosymmetric in the sense of $R$. Deszcz, it is $R_{i m} R_{j k l}{ }^{m}+R_{j m} R_{k i l}{ }^{m}+R_{k m} R_{i j l}{ }^{m}=0$.

Then we can state the following:
Proposition 4.15. In a $(W Z S)_{n}$ which is pseudosymmetric in the sense of $R$. Deszcz, if the $Z$ tensor is non-singular then $\omega_{k}$ is a closed 1-form.
Definition 4.16. A Riemannian manifold is generalized Ricci pseudosymmetric in the sense of $R$. Deszcz, [15], if the following condition holds:

$$
\begin{align*}
& \left(\nabla_{s} \nabla_{i}-\nabla_{i} \nabla_{s}\right) R_{j k l m}=L_{S}\left(R_{j s} R_{i k l m}-R_{j i} R_{s k l m}+R_{k s} R_{j i l m}-R_{k i} R_{j s l m}+\right. \\
& \left.(36) \quad+R_{l s} R_{j k i m}-R_{l i} R_{j k s m}+R_{m s} R_{j k l i}-R_{m i} R_{j k l s}\right), \tag{36}
\end{align*}
$$

where $L_{S}$ is a non null scalar function.
Theorem 4.17. In a generalized Ricci pseudosymmetric manifold in the sense of R. Deszcz, it is either $L_{S}=-\frac{1}{3}$, or $R_{i m} R_{j k l}{ }^{m}+R_{j m} R_{k i l}^{m}+R_{k m} R_{i j l}{ }^{m}=0$.

Proof. Equation (36) is transvected with $g^{m j}$ to obtain

$$
\left(\nabla_{s} \nabla_{i}-\nabla_{i} \nabla_{s}\right) R_{k l}=L_{S}\left[R_{i m}\left(R_{s k l}{ }^{m}+R_{s l k}{ }^{m}\right)-R_{s m}\left(R_{i k l}{ }^{m}+R_{i l k}{ }^{m}\right)\right] .
$$

Then:

$$
\begin{aligned}
& \left(\nabla_{i} \nabla_{k}-\nabla_{k} \nabla_{i}\right) R_{j l}+\left(\nabla_{j} \nabla_{i}-\nabla_{i} \nabla_{j}\right) R_{k l}+\left(\nabla_{k} \nabla_{j}-\nabla_{j} \nabla_{k}\right) R_{i l} \\
& =3 L_{S}\left(R_{i m} R_{j k l}{ }^{m}+R_{j m} R_{k i l}^{m}+R_{k m} R_{i j l}{ }^{m}\right)
\end{aligned}
$$

By Lovelock's identity (4.1), the l.h.s. of the previous equation is:

$$
\begin{aligned}
& \nabla_{i} \nabla_{m} R_{j k l}{ }^{m}+\nabla_{j} \nabla_{m} R_{k i l}{ }^{m}+\nabla_{k} \nabla_{m} R_{i j l}{ }^{m} \\
& =\left(\nabla_{i} \nabla_{k}-\nabla_{k} \nabla_{i}\right) R_{j l}+\left(\nabla_{j} \nabla_{i}-\nabla_{i} \nabla_{j}\right) R_{k l}+\left(\nabla_{k} \nabla_{j}-\nabla_{j} \nabla_{k}\right) R_{i l} \\
& =-R_{i m} R_{j k l}{ }^{m}-R_{j m} R_{k i l}{ }^{m}-R_{k m} R_{i j l}{ }^{m} .
\end{aligned}
$$

Compare the two results and conclude that either $L_{S}=-\frac{1}{3}$, or $R_{i m} R_{j k l}{ }^{m}+$ $R_{j m} R_{k i l}{ }^{m}+R_{k m} R_{i j l}{ }^{m}=0$.

Finally we state:
Proposition 4.18. In a $(W Z S)_{n}$ which is also a generalized Ricci pseudosymmetric manifold in the sense of $R$.Deszcz, if the $Z$ tensor is non-singular and $L_{S} \neq-\frac{1}{3}$, then $\omega_{k}$ is a closed 1-form.

## 5. Conformally harmonic (WZS) $)_{n}$ : form of the Ricci tensor

In this section we study conformally harmonic $(W Z S)_{n}$ in depth. We show the existence of a proper concircular vector in such manifolds, and obtain the form of the Ricci tensor. The proof only requires the $Z$ tensor to be non singular. For the conformally flat case, in particular, we give the explicit local form of the metric tensor.

The condition $\nabla_{m} C_{j k l}{ }^{m}=0$ is eq.(14) which, by using $R_{i j}=Z_{i j}-g_{i j} \phi$ and the property eq.(9), becomes:

$$
\begin{equation*}
\omega_{k} Z_{j l}-\omega_{j} Z_{k l}=\frac{1}{2(n-1)}\left(g_{j l} \nabla_{k}-g_{k l} \nabla_{j}\right)[R+2(n-1) \phi] . \tag{37}
\end{equation*}
$$

This is the starting point for the proofs. By prop 4.7, since $Z$ is non singular, $\omega_{k} \neq 0$ if and only if $\nabla_{k}[R+2(n-1) \phi] \neq 0$.

Remark 5. 1) The condition $\nabla_{m} C_{j k l}{ }^{m}=0$ implies that the manifold is a $(N C S)_{n}$. 2) If $\nabla_{k}[R+2(n-1) \phi]=0$ the $Z$ tensor is a Codazzi tensor.

The following theorem generalizes a result in [11] for $A(P R S)_{n}$ :
Theorem 5.1. In a conformally harmonic $(W Z S)_{n}$ the 1-form $\omega$ is an eigenvector of the $Z$ tensor.

Proof. By transvecting eq.(37) with $g^{k l}$ we obtain

$$
\begin{equation*}
\omega_{j} Z-\omega^{m} Z_{j m}=\frac{1}{2} \nabla_{j}[R+2(n-1) \phi] ; \tag{38}
\end{equation*}
$$

the result is inserted back in eq.(37),

$$
\omega_{k} Z_{j l}-\omega_{j} Z_{k l}=\frac{1}{(n-1)}\left[\left(\omega_{k} Z-\omega^{m} Z_{k m}\right) g_{j l}-\left(\omega_{j} Z-\omega^{m} Z_{j m}\right) g_{k l}\right]
$$

and transvected with $\omega^{j} \omega^{l}$ to obtain $\omega_{k}\left(\omega^{j} \omega^{l} Z_{j l}\right)=\left(\omega_{j} \omega^{j}\right) \omega^{l} Z_{k l}$. The last equation can be rewritten as: $Z_{k l} \omega^{l}=\zeta \omega_{k}$

Now eq.(38) simplifies: $\omega_{j}(\zeta-Z)=-\frac{1}{2} \nabla_{j}[R+2(n-1) \phi]$. The result is a natural generalization of a similar one given in ref.[11] for $A(P R S)_{n}$.

Theorem 5.2. Let $M$ be a conformally harmonic $(W Z S)_{n}$. Then:

1) $M$ is a quasi Einstein manifold;
2) if the $Z$ tensor is non singular and if $\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) \phi=0$, then:

$$
\begin{equation*}
\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right)\left[\frac{n \zeta-Z}{n-1}\right]=0 \tag{39}
\end{equation*}
$$

and $M$ admits a proper concircular vector.

Proof. Eq.(37) is transvected with $\omega^{j}$ and theorem 5.1 is used to show that

$$
R_{k l}=\left[\frac{Z-\zeta}{n-1}-\phi\right] g_{k l}+\left[\frac{n \zeta-Z}{n-1}\right] \frac{\omega_{k} \omega_{l}}{\omega_{j} \omega^{j}}
$$

i.e. $R_{k l}$ has the structure $\alpha g_{k l}+\beta T_{k} T_{l}$ and the manifold is quasi Einstein [7]. By transvecting eq.(24) with $g^{j l}$ we obtain

$$
\frac{1}{2} \nabla_{k} Z+\frac{n-2}{2} \nabla_{k} \phi=\omega_{k} Z-\omega^{l} Z_{k l}
$$

This and theorem (5.1) imply:

$$
\begin{equation*}
\frac{1}{2} \nabla_{k} Z+\frac{n-2}{2} \nabla_{k} \phi=\omega_{k}(Z-\zeta) \tag{40}
\end{equation*}
$$

A covariant derivative gives $\frac{1}{2} \nabla_{j} \nabla_{k} Z+\frac{n-2}{2} \nabla_{j} \nabla_{k} \phi=\nabla_{j}\left[\omega_{k}(Z-\zeta)\right]$. Subtract the equation with indices $k$ and $j$ exchanged:

$$
(Z-\zeta)\left(\nabla_{j} \omega_{k}-\nabla_{k} \omega_{j}\right)+\left(\omega_{k} \nabla_{j}-\omega_{j} \nabla_{k}\right)(Z-\zeta)=0
$$

According to corollary 4.9, in a conformally harmonic $(W Z S)_{n}$ with non singular $Z$ the 1-form $\omega_{k}$ is closed. Then

$$
\begin{equation*}
\left(\omega_{k} \nabla_{j}-\omega_{j} \nabla_{k}\right)(Z-\zeta)=0 \tag{41}
\end{equation*}
$$

Multiply eq.(40) by $\omega_{j}$ and subtract from it the equation with indices $k$ and $j$ exchanged: $\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) Z+(n-2)\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) \phi=0$. Suppose that $\omega_{k}$, besides being a closed 1-form, has the property $\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) \phi=0$, then one obtains the further equation:

$$
\begin{equation*}
\left(\omega_{k} \nabla_{j}-\omega_{j} \nabla_{k}\right) Z=0 \tag{42}
\end{equation*}
$$

Eqs. $(41,42)$ imply the assertion eq.(39). The existence of a proper concircular vector follows from Theorem 3.1.

Let us specialize to the case $C_{i j k}^{m}=0$ (conformally flat $\left.(W Z S)_{n}\right)$.
It is well known [1] that if a conformally flat space admits a proper concircular vector, then the space is subprojective in the sense of Kagan.
From theorem 5.2 we state the following:
Theorem 5.3. Let $(W Z S)_{n}(n>3)$ be conformally flat with nonsingular $Z$ tensor and $\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) \phi=0$, then the manifold is a subprojective space.

In [33] K. Yano proved that a necessary and sufficient condition for a Riemannian manifold to admit a concircular vector, is that there is a coordinate system in which the first fundamental form may be written as:

$$
\begin{equation*}
d s^{2}=\left(d x^{1}\right)^{2}+e^{q\left(x^{1}\right)} g_{\alpha \beta}^{*}\left(x^{2}, \ldots, x^{n}\right) d x^{\alpha} d x^{\beta} \tag{43}
\end{equation*}
$$

where $\alpha, \beta=2, \ldots, n$. Since a conformally flat $(W Z S)_{n}$ with non singular $Z$ tensor admits a proper concircular vector field, this space is the warped product $1 \times e^{q} M^{*}$, where $\left(M^{*}, g^{*}\right)$ is a $(n-1)$-dimensional Riemannian manifold. Gebarosky [19] proved that the warped product $1 \times e^{q} M^{*}$ has the metric structure (43) if and only if $M^{*}$ is Einstein. Thus the following theorem holds:

Theorem 5.4. Let $M$ be a n dimensional conformally flat $(W Z S)_{n}(n>3)$. If $Z_{k l}$ is non singular and $\left(\omega_{j} \nabla_{k}-\omega_{k} \nabla_{j}\right) \phi=0$, then $M$ is the warped product $1 \times e^{q} M^{*}$, where $M^{*}$ is Einstein.

## References

[1] T. Adati, On Subprojective spaces-III, Tohoku Math. J., 3 (1951), 343-358.
[2] K. Arslan, R. Ezentas, C. Murathan and C. Ozgur, On pseudo Ricci-symmetric manifolds, Differ. Geom. Dyn. Syst., 3 n. 2 (2001), 1-5.
[3] A. L. Besse, Einstein Manifolds, Springer (1987).
[4] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15 (1988), 525-531.
[5] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor (N.S), 68 n. 1 (2007), 10-14.
[6] M. C. Chaki and S. Koley, On generalized pseudo Ricci symmetric manifolds, Period. Math. Hung., 28 (1994), 123-129.
[7] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), 257-306.
[8] M. C. Chaki, and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulg. J. Phys., 21 n.1-2 (1994), 1-7.
[9] U. C. De, N. Guha and D. Kamilya, On generalized Ricci recurrent manifolds, Tensor (N.S.), 56 (1995), 312-317.
[10] U. C. De and B. K. De, On conformally flat generalized pseudo Ricci symmetric manifolds, Soochow J. Math., 23 n. 4 (1997), 381-389.
[11] U. C. De and A. K. Gazi, On conformally flat almost pseudo Ricci symmetric manifolds, Kyungpook Math. J., 49 (2009), 507-520.
[12] U. C. De and G. K. Ghosh, Some global properties of weakly Ricci symmetric manifolds, Soochow J. Math., 31 n. 1 (2005), 83-93.
[13] U. C. De and S. K. Ghosh, On conformally flat pseudo symmetric manifolds, Balkan J. Geom. Appl., 5 n. 2 (2000), 61-64.
[14] F. De Felice and C. J. S. Clarke, Relativity on curved manifolds, Cambridge University Press (1990).
[15] F. Defever, R. Deszcz, On semi Riemannian manifolds satisfying the condition $R \cdot R=$ $Q(S, R)$, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci. Singapore 1991, 108-130.
[16] A. Derdzinski and C.L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lond. Math. Soc., 47 (1983), 15-26.
[17] R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg., Series A 44 (1992), 1-34.
[18] L. P. Eisenhart, Non Riemaniann Geometry, reprint Dover Ed. (2005).
[19] A. Gebarowsky, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math., Acad. Sin., 20 n. 4 (1992), 359-371.
[20] S. K. Jana and A. A. Shaikh, On quasi conformally flat weakly Ricci symmetric manifolds, Acta Math. Hung., 115 n. 3 (2007), 197-214.
[21] Q. Khan, On recurrent Riemannian manifolds, Kyungpook Math. J., 44 (2004), 269-276.
[22] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.1, Interscience, New York (1963).
[23] D. Lovelock and H. Rund, Tensors, differential forms and variational principles, reprint Dover Ed. (1988).
[24] C. A. Mantica and L. G. Molinari, A second order identity for the Riemann tensor and applications, Colloq. Math., 122 (2011), 69-82; arXiv:0802.0650v2 [math.DG] 9 Jul 2009.
[25] C. A. Mantica and L. G. Molinari, Extended Derdzinski-Shen theorem for the Riemann tensor, arXiv:1101.4157 [math.DG] 21 Jan 2011.
[26] R. S. Mishra, Structures on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad (1984).
[27] M. M. Postnikov, Geometry VI, Riemannian geometry, Encyclopaedia of Mathematical Sciences, Vol. 91 (2001), Springer.
[28] J. A. Shouten, Ricci-calculus, Springer Verlag, 2nd Ed. (1954).
[29] W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.), 46 (1987), 278-286.
[30] H. Singh and Q. Khan, On symmetric manifolds, Novi Sad J. Math., 29 n. 3 (1999), 301-308.
[31] L. Tamassy and T. Q. Binh, On weakly symmetries of Einstein and Sasakian manifolds, Tensor (N.S.), 53 (1993), 140-148.
[32] K. Yano, Concircular geometry I, concircular trasformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
[33] K. Yano, On the torseforming direction in Riemannian Spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.
[34] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differ. Geom., 2 (1968), 161-184.

Physics Department, Università degli Studi di Milano and I.N.F.N., Via Celoria 16, 20133, Milano, Italy., Present address of C. A. Mantica: I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, Italy

E-mail address: luca.molinari@mi.infn.it, carloalberto.mantica@libero.it


[^0]:    2010 Mathematics Subject Classification. 53B20, 53B21.
    Key words and phrases. Weakly-Ricci Symmetric manifolds, Pseudo- Projective Ricci symmetric, conformal curvature tensor, quasi conformal curvature tensor, conformally symmetric, conformally recurrent, Riemannian manifolds. Weakly Z symmetric Manifolds.

[^1]:    ${ }^{1}$ The notion was introduced by Kobayashi and Nomizu [22], but with the further antisymmetry in the last pair of indices.

