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Abstract

We consider transverse-momentum (qT ) resummation for Drell–Yan lepton pair
production in hadron collisions. At small values of qT , the logarithmically-enhanced
QCD contributions are resummed up to next-to-leading logarithmic accuracy. At
intermediate and large values of qT , resummation is consistently combined with the
fixed-order perturbative result. We present numerical results for e+e− pairs from the
decay of Z bosons produced at Tevatron energies. We perform a detailed study of the
scale dependence of the results to estimate the corresponding perturbative uncertainty.
We comment on the comparison with the available Tevatron data.
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1 Introduction

The production of W and Z bosons in hadron collisions is important for physics studies within and
beyond the Standard Model (SM). The large production rates and clean experimental signatures
make these processes standard candles for calibration purposes. At the LHC, W and Z boson
production has even been proposed as a luminosity monitor. In the search for new physics, an
excess of di-lepton events with large invariant mass or missing energy may signal the production
of new gauge bosons or of SUSY particles.

Because of the above reasons, it is essential to have accurate theoretical predictions for the
vector-boson production cross sections and distributions. Theoretical predictions with high pre-
cision demand detailed computations of radiative corrections. The QCD corrections to the total
cross section [1] and to the rapidity distribution of the vector boson [2] are known up to the next-
to-next-to-leading order (NNLO) in the strong coupling αS. The fully exclusive NNLO calculation,
including the leptonic decay of the vector boson, has been completed more recently [3]. As for
electroweak effects, full O(α) corrections have been computed for both W [4] and Z production [5].

Among the various distributions, an important role is played by the transverse-momentum
(qT ) spectrum of the vector boson. In the case of W production, the uncertainty in the shape of
the qT spectrum directly affects the measurement of the W mass. A good understanding of the
qT spectrum of the Z boson gives important information on the production mechanism of the W
boson.

In the region where qT ∼ mV , mV being the mass of the vector boson, the QCD perturbative
series is controlled by a small expansion parameter, αS(mV ), and fixed-order calculations are
theoretically justified. In this region, the QCD radiative corrections are known up to next-to-
leading order (NLO) [6, 7, 8]. In the small qT region (qT ≪ mV ), the convergence of the fixed-order
expansion is spoiled, since the coefficients of the perturbative series are enhanced by powers of
large logarithmic terms, αn

S lnm(m2
V /q2

T ). To obtain reliable predictions, these terms have to be
resummed to all perturbative orders.

The method to systematically perform all-order resummation of classes of logarithmically-
enhanced terms at small qT is known [9]–[17]. The resummed and fixed-order procedures at
small and large values of qT can then be matched at intermediate values of qT , to obtain QCD
predictions for the entire range of transverse momenta. Phenomenological studies of the vector-
boson qT distribution have been performed by combining resummed and fixed-order perturbation
theory at various levels of accuracy [18]–[28].

In Refs. [17, 29] we have proposed a method to perform transverse-momentum resumma-
tion that introduces some novel features. The resummed distribution is factorized in terms of a
universal transverse-momentum form factor and a single process-dependent hard function. In the
small-qT region, the logarithmic terms of the form factor are systematically resummed in exponen-
tial form by working in impact-parameter and Mellin-moment space. A constraint of perturbative
unitarity is imposed on the resummed terms, to the purpose of reducing the effect of unjustified
higher-order contributions at large values of qT and, especially, at intermediate values of qT . This
constraint decreases the uncertainty in the matching procedure of the resummed and fixed-order
contributions. The method has so far been applied to SM Higgs boson production [30, 29, 31], WW
[32] and ZZ [33] production, and slepton pair production [34]. Related methods on transverse-
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momentum resummation have been applied to the transversely-polarized Drell–Yan (DY) process
[35] and longitudinally-polarized semi-inclusive deep-inelastic scattering (SIDIS) [36].

The explicit form of the universal form factor is known up to next-to-leading logarithmic (NLL)
[14, 37] and next-to-next-to-leading logarithmic (NNLL) [38, 39, 40] level. The general form of
the process dependent hard function is known up to the first relative order in αS [40]. The hard
function has been computed up to the second relative order in αS only in the case of SM Higgs
boson production [41].

In the present paper we concentrate on DY lepton pair production, and we apply the resum-
mation formalism of Ref. [29] to the production of Z bosons at Tevatron energies. In this work,
we limit ourself to presenting results up to NLL accuracy. We perform a detailed study of the
scale dependence of our results and we provide an estimate of the corresponding perturbative
uncertainty. We also comment on the comparison with the available Tevatron data. In this way,
we set the stage for a forthcoming NNLL analysis, which will be possible once the computation
of the hard function up to second order is completed.

The paper is organized as follows. In Sect. 2 we briefly review our resummation formalism
and we comment on its application to vector boson production in hadron collisions. In Sect. 3 we
present numerical results on Z boson production at the Tevatron. The fixed-order and resummed
predictions are discussed and compared with the data in Sect. 3.1 and Sect. 3.2, respectively. Our
results are summarized in Sect. 4.

2 Transverse-momentum resummation

The resummation formalism that we use in this paper is discussed in detail in Ref. [29]. The
formalism can be applied to a generic process in which a high-mass system of non strongly-
interacting particles is produced in hadron–hadron collisions. In this section we briefly recall the
main points of the formalism, by considering the specific case of the production of a vector boson
V (V = W+, W−, Z/γ∗) that subsequently decays in a lepton pair of invariant mass M .

The transverse-momentum differential cross section for this process is written as

dσV

dq2
T

(qT , M, s) =
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa/h1
(x1, µ

2
F ) fb/h2

(x2, µ
2
F )

dσ̂V ab

dq2
T

(qT , M, ŝ; αS(µ
2
R), µ2

R, µ2
F ) ,

(1)
where fa/h(x, µ2

F ) (a = q, q̄, g) are the parton densities of the colliding hadrons (h1 and h2) at the
factorization scale µF , dσ̂V ab/dq2

T are the partonic cross sections, s (ŝ = x1x2s) is the hadronic
(partonic) centre–of–mass energy, and µR is the renormalization scale.

The resummation is performed at the level of the partonic cross section, which is first decom-
posed as follows:

dσ̂V ab

dq2
T

=
dσ̂

(res.)
V ab

dq2
T

+
dσ̂

(fin.)
V ab

dq2
T

. (2)

The ‘resummed’ component, dσ̂
(res.)
V ab , of the cross section contains all the logarithmically-enhanced

contributions at small qT , and it has to be evaluated by resumming them to all orders in αS. The
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‘finite’ component, dσ̂
(fin.)
V ab , is free of such contributions, and it can thus be evaluated at fixed order

in perturbation theory.

The resummation procedure of the logarithmic terms is carried out in the impact-parameter
space. The resummed component of the partonic cross section is then obtained by performing the
inverse Fourier (Bessel) transformation with respect to the impact parameter b. We write:

dσ̂
(res.)
V ab

dq2
T

(qT , M, ŝ; αS(µ
2
R), µ2

R, µ2
F ) =

M2

ŝ

∫ ∞

0

db
b

2
J0(bqT ) WV

ab(b, M, ŝ; αS(µ
2
R), µ2

R, µ2
F ) , (3)

where J0(x) is the 0th-order Bessel function. The factor W embodies the all-order dependence
on the large logarithms ln(M2b2) at large b, which correspond to the qT -space terms ln(M2/q2

T )
at small qT . By considering the N -moments WN of W with respect to the variable z = M2/ŝ
at fixed M , the resummation structure of WV

ab, N can be factorized and organized in exponential

form†:

WV
N (b, M ; αS(µ

2
R), µ2

R, µ2
F ) = HV

N

(
M, αS(µ

2
R); M2/µ2

R, M2/µ2
F , M2/Q2

)

× exp{GN(αS(µ
2
R), L; M2/µ2

R, M2/Q2)} , (4)

were we have defined the logarithmic expansion parameter L,

L ≡ ln
Q2b2

b2
0

, (5)

and the coefficient b0 = 2e−γE (γE = 0.5772... is the Euler number) has a kinematical origin. The
function HV

N does not depend on the impact parameter b, and it includes all the perturbative terms
that behave as constants in the limit b → ∞. The function GN includes the complete dependence
on b and, in particular, it contains all the terms that order-by-order in αS are logarithmically
divergent as b → ∞.

This separation (actually, factorization) between finite and divergent (or logarithmically-en-
hanced) terms involves some degree of arbitrariness. The arbitrariness is parametrized by the
introduction of the resummation scale Q [29], which sets the scale of the expansion parameter L
in Eq. (5). Although the resummation factor WV

N does not depend on Q when evaluated at each
fixed order in αS, its explicit dependence on Q appears when WV

N (and, more precisely, GN) is
computed by truncation of the resummed expression at some level of logarithmic accuracy (see
Eq. (6) below). The resummation scale Q has to be chosen of the order of the hard scale M ;
variations of Q around M can then be used to estimate the effect of yet uncalculated higher-order
logarithmic contributions.

All the large logarithmic terms αn
SLm, with 1 ≤ m ≤ 2n, are included in the form factor

exp{GN} on the right-hand side of Eq. (4). More precisely, all the logarithmic contributions to
GN with n + 2 ≤ m ≤ 2n are vanishing. Therefore, the exponent GN can be organized in classes
of logarithmic contributions that can systematically be expanded in powers of αS = αS(µ

2
R), at

fixed value of λ = αSL. The logarithmic expansion of GN reads

GN (αS, L; M2/µ2
R, M2/Q2) = L g(1)(αSL) + g

(2)
N (αSL; M2/µ2

R, M2/Q2)

+
αS

π
g

(3)
N (αSL, M2/µ2

R, M2/Q2) + . . . (6)

†Here, to simplify the notation, flavour indices are understood. In other words, we limit ourselves to discussing
the flavour non-singlet contribution. A complete discussion of the exponentiation structure in the general case can
be found in Appendix A of Ref. [29].
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where the term L g(1) collects the leading logarithmic (LL) contributions, the function g
(2)
N includes

the NLL contributions, g
(3)
N controls the NNLL terms and so forth.

An important feature of the resummation formalism [29] is that the form factor exp{GN} is
process independent (and independent of the factorization scale, as well). In other words, the

functions g
(i)
N are universal: they only depend on the flavour of the partons that contribute to

the cross section in each specific partonic channel. More precisely, each function g
(i)
N has a known

functional form that is completely specified [12, 16] in terms of few perturbatively-computable (and
process independent) coefficients and of the customary parton anomalous dimensions γab,N(αS).

These perturbative coefficients, which are flavour-dependent, are usually denoted by A
(n)
a , B

(n)
a

and C
(n)
ab,N . The explicit expressions of g

(i)
N up to i = 3 can be found in Ref. [29]. In the case of DY

production (and in any production process that occurs through qq̄ annihilation at the Born level),

the LL function g(1) depends on the coefficient A
(1)
q = CF , the NLL function g

(2)
N also depends on

B
(1)
q and A

(2)
q [14], and the NNLL function g

(3)
N also depends on C

(1)
qa,N (a = q, g) [38], B

(2)
q [39, 40]

and A
(3)
q . All these coefficients are known, with the sole exception of A

(3)
q . It is usually assumed

that the value of A
(3)
q is the same as the one [42, 43] that appears in resummed calculations of

soft-gluon contributions near partonic threshold.

To compute the resummed component of the partonic cross section, Eq. (4) has to be inserted
in the right-hand side of Eq. (3). Using the expression in Eq. (6), the resummation of the large
logarithmic contributions in exp{GN} affects not only the small-qT region (qT ≪ M), but also
the large-qT region (qT ∼ M). This can easily be understood by observing that the logarithmic
expansion parameter L is divergent when b → 0. To avoid the introduction of large and unjustified
higher-order contributions in the small-b (or, equivalently, large-qT ) region, the logarithmic variable
L in Eq. (5) is replaced by the variable L̃ [29]:

L → L̃ , L̃ ≡ ln

(
Q2b2

b2
0

+ 1

)
. (7)

The variables L and L̃ are equivalent (to arbitrary logarithmic accuracy) when Qb ≫ 1, but they
lead to a different behaviour of the form factor at small values of b (i.e. large values of qT ). In
fact, when Qb ≪ 1 we have L̃ → 0 and exp{GN} → 1. The replacement‡ in Eq. (7) has thus a
twofold consequence [29]: it reduces the impact of resummation at large values of qT , and it acts
as a constraint of perturbative unitarity since it allows us to exactly recover the fixed-order value
of the total cross section upon integration over qT of the resummed calculation of dσ/dqT . (i.e.,
the resummed terms give a vanishing contribution to the total cross section).

The process dependence (as well as the factorization scale dependence) of the resummation
factor WV

N is fully encoded in the hard function HV
N on the right-hand side of Eq. (4). Since this

‡We observe that the divergent behaviour of the logarithmic parameter ln(M2b2) when b → 0 can be removed
by a generic replacement of type ln(M2b2) → Lc = ln(M2b2 + c), where c is some positive constant of order unity.
The effect of the constant c can be rewritten as Lc = L̃c + ln c, where L̃c = ln(M2b2/c + 1). Using the variable
Lc as argument of the form factor exp{GN} would spoil the constraint of perturbative unitarity, since the term
ln c in Lc does not vanish at b = 0. We are interested to maintain this constraint and, therefore, we have to
remove the term ln c from Lc and we are left with the variable L̃c. We note that L̃c is completely analogous to the
logarithmic variable L̃ in Eq. (7) (e.g., we can simply set c = b2

0M
2/Q2). In particular, the quantitative effect of

chosing different values of the constant c in L̃c is completely equivalent to the effect of using different values of the
resummation scale Q in L̃.
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function does not contain large logarithmic terms to be resummed, it can be expanded in powers
of αS = αS(µ

2
R) as follows:

HV
N (M, αS; M

2/µ2
R, M2/µ2

F , M2/Q2) = σ
(0)
V (M)

[
1 +

αS

π
HV (1)

N (M2/µ2
F , M2/Q2)

+
(αS

π

)2

HV (2)
N (M2/µ2

R, M2/µ2
F , M2/Q2) + . . .

]
, (8)

where σ
(0)
V is the partonic cross section at the Born level.

In the case of production of the DY lepton pair ℓ ℓ′, σ
(0)
V is the electroweak cross section of

the process qq̄ → V → ℓ ℓ′, and the corresponding first-order coefficients HV (1)
qq̄←ab,N in Eq. (8) are

known [38]. They are:

HV (1)
qq̄←qq̄,N = CF

(
1

N(N + 1)
− 4 +

π2

2

)
−

(
B(1)

q +
1

2
A(1)

q ln
M2

Q2

)
ln

M2

Q2
+ 2γ

(1)
qq, N ln

Q2

µ2
F

, (9)

HV (1)
qq̄←gq,N = HV (1)

qq̄←qg,N =
1

2(N + 1)(N + 2)
+ γ

(1)
qg,N ln

Q2

µ2
F

, (10)

HV (1)
qq̄←gg,N = HV (1)

qq̄←qq,N = HV (1)
qq̄←q̄q̄,N = 0 , (11)

where γ
(1)
ab,N are the leading order (LO) anomalous dimensions. The second-order coefficients

HV (2)
qq̄←ab,N for the DY process have not yet been computed.

We now turn to consider the finite component, of the cross section (see Eq. (2)). Since dσ̂
(fin.)
V ab

does not contain large logarithmic terms, it can be computed by truncation of the perturbative
series at a given fixed order (LO, NLO and so forth). This component is evaluated by starting
from the usual perturbative truncation of the partonic cross section dσ̂V ab at a given order and
subtracting the expansion of the resummed component dσ̂

(res.)
V ab at the same perturbative order

(see Sect. 2.4 of Ref. [29]). Using this procedure, the resummed and fixed-order calculations are
consistently matched by avoiding double-counting of perturbative contributions in the region of
intermediate and large values of qT .

The formalism that we have briefly recalled in this section defines a systematic ‘order-by-order’
(in extended sense) expansion [29] of Eq. (2): it can be used to obtain predictions that contain
the full information of the perturbative calculation up to a given fixed order plus resummation of
logarithmically-enhanced contributions from higher orders. The various orders of this expansion
are denoted§ as LL, NLL+LO, NNLL+NLO, etc., where the first label (LL, NLL, NNLL, . . . )
refers to the logarithmic accuracy at small qT and the second label (LO, NLO, . . . ) refers to the
customary perturbative order at large qT . To be precise, the NLL+LO term of Eq. (2) is obtained

by including the functions g(1), g
(2)
N and the coefficient HV (1)

N in the resummed component, and by
computing the finite (i.e. large-qT ) component at the LO (i.e. at O(αS) for the DY process). At

NNLL+NLO accuracy, the resummed component includes also the function g
(3)
N and the coefficient

HV (2)
N , while the finite component is expanded up to NLO (i.e. at O(α2

S) for the DY process).
It is worthwhile noticing that the NLL+LO (NNLL+NLO) result includes the full NLO (NNLO)

§In the literature on qT resummation, other authors sometime use the same labels (NLL, NLO and so forth)
with a meaning that is different from ours.
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perturbative contribution in the small-qT region. In particular, the NLO (NNLO) result for total
cross section is exactly recovered upon integration over qT of the differential cross section dσ/dqT

at NLL+LO (NNLL+NLO) accuracy.

In the case of the DY process, the second-order coefficient HV (2)
N is still unknown: this prevents

us from performing calculations at NNLL+NLO accuracy. In the following we limit ourself to
presenting results of calculations at NLL+LO accuracy¶.

We note that the inclusion of the function g
(3)
N and of the finite component at NLO is feasible at

present. This procedure implements the complete NLO information at large qT , but it does not lead
to a consistent systematic improvement of the perturbative accuracy at small qT . For instance, this
procedure does not recover the total cross section at NNLO: the missing NNLO (i.e. O(α2

S)) contri-

bution to the total cross section is due to HV (2)
N , and it is localized in the small-qT region. Moreover,

starting from O(α3
S), the contribution αS g

(3)
N (αSL) in Eq. (6) and the missing contribution from the

combined effect of α2
S H

V (2)
N and L g(1)(αSL) (i.e. α2

S H
V (2)
N L g(1)(αSL) = αS HV (2)

N αSL g(1)(αSL))
are of the same logarithmic order, namely, they are both NNLL contributions (∝ αS(αSL)n).

Within our formalism, the resummation factor WV
N (b, M) is directly defined, at fixed M , in

the space of the conjugate variables N and b. To obtain the hadronic (partonic) cross section, as
function of the kinematical variables s (ŝ) and qT , we have to perform inverse integral transforma-
tions. These integrals are carried out numerically. We recall [29] that the resummed form factor

exp{GN(αS(µ
2
R), L̃)} (more precisely, each of the functions g

(i)
N (αSL̃) in Eq. (6)) is singular at the

values of b where αS(µ
2
R)L̃ ≥ π/β0 (β0 is the first-order coefficient of the QCD β function). When

performing the inverse Fourier (Bessel) transformation with respect to the impact parameter b (see
Eq. (3)), we deal with this singularity by using the regularization prescription of Refs. [47, 25]:
the singularity is avoided by deforming the integration contour in the complex b space.

The singularity of the resummed form factor occurs at large values of the impact parameter:
b∼> 1/ΛQCD, where ΛQCD is the momentum scale of the Landau pole of the perturbative running
coupling αS(q

2)/π ∼ [β0 ln(q2/Λ2
QCD)]−1. This singularity signals the onset of non-perturbative

phenomena at very large values of b or, equivalently, in the region of very small transverse mo-
menta. The regularization prescription that we use has to be regarded as a ‘minimal prescription’
[48, 47] within a purely perturbative framework. The prescription leaves unchanged the perturba-
tive result to any (and arbitrarily-high) fixed order in αS, it does not require any infrared cut-off,
and it can be implemented without introducing an explicit model of non-perturbative (NP) contri-
butions. Owing to these features, the prescription is suitable to examine the perturbative effects
and the ensuing perturbative uncertainty. This does not imply that NP contributions are small
and can be neglected. We comment on NP effects at the end of Sect. 3.2.

3 Z production at Tevatron energies: numerical results

In this section we present a selection of our numerical results, by considering the production of
Drell–Yan e+e− pairs in pp̄ collisions at Tevatron energies. The numerical results are also compared

¶ Perturbative information with comparable accuracy at small and intermediate values of qT is implemented in
the Monte Carlo event generators MC@NLO [44] and POWHEG [45, 46].
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with the data collected by the CDF and D0 experiments at the energies
√

s = 1.8 TeV (Run I)
[49, 50] and

√
s = 1.96 TeV (Run II, D0 only) [51].

As for the electroweak couplings, we use the scheme where the input parameters are GF , mZ ,
mW and α(mZ). In particular, we use the values GF = 1.16639×10−5 GeV−2, mZ = 91.188 GeV,
mW = 80.419 GeV and α(mZ) = 1/128.89. Our calculation implements the decays γ∗ → e+e−

and Z∗ → e+e− at fixed value of the invariant mass of the e+e− pair. In particular, we include
the effects of the γ∗ Z interference and of the finite width of the Z boson. Nonetheless, the
numerical results of this section are obtained by simply using the narrow-width approximation
and neglecting the photon contribution. We find that this approximation works to better than
1% accuracy in the inclusive regions of e+e− invariant mass that are covered by the CDF and
D0 data. We recall that the measured qT spectra are inclusive over the following ranges of e+e−

invariant mass: 66–116 GeV [49], 75–105 GeV [50] and 70–110 GeV [51] .

3.1 Fixed-order results

We start the presentation of the numerical results by considering QCD calculations at fixed order.
To compute the LO and NLO hadronic cross section we use the MRST2002 LO [52] and MRST2004
NLO [53] parton distribution functions, with αS evaluated at 1 and 2 loops, respectively. As for
renormalization and factorization scale, we choose µF = µR = mZ as central value. The fixed-
order predictions for the qT -spectrum are obtained by using a numerical program that implements
the analytical results of Refs. [6, 7, 8]. Similar numbers are obtained by using the Monte Carlo
code of the MCFM package [54].

In Fig. 1 we plot the qT spectrum of Drell–Yan e+e− pairs at the Tevatron Run I (
√

s =
1.8 GeV) at LO and NLO accuracy. The bands are obtained by varying independently the fac-
torization (µF ) and renormalization (µR) scales in the range 0.5mZ ≤ µF , µR ≤ 2mZ , with the
constraint 0.5 ≤ µF/µR ≤ 2. At the LO level, the scale dependence is about ±25% at large qT ,
it decreases as qT decreases, and it becomes about ±15% at qT ∼ 20 GeV. The scale dependence
at NLO is about ±8% at qT ∼ 20 GeV, with a slight reduction at large qT . We note that the LO
and NLO bands do not overlap in the region where qT ∼< 70 GeV. This proves that, in this region
of transverse momenta, the size of the band obtained through scale variations at LO definitely
underestimates the theoretical uncertainty due to the missing NLO corrections.

The inset plot of Fig. 1 shows the K-factor, obtained by normalizing the NLO band with the
LO result at µF = µR = mZ . The impact of the NLO corrections, at central values of the scales,
ranges from about +10% at qT ∼ 200 GeV to about +50% at qT ∼ 20 GeV.

In Fig. 2 we compare the results of the fixed-order calculations with CDF and D0 data. The
experimental error bars reported in Fig. 2 include statistical and systematic contributions, but
they do not include the overall normalization uncertainty due to the luminosity measurement. The
CDF and D0 luminosity uncertainties are ±3.9% and ±4.4%, respectively. The corresponding cross
sections are σCDF = 248± 11 pb [49] and σD0 = 221± 11 pb [55], where the errors are dominated
by the luminosity uncertainties. We note that, using the MRST2004 parton distribution functions
[53] and including the effect of scale variations, the values of the QCD cross section at NLO and
NNLO are σNLO = 226 ± 5 pb and σNNLO = 236 ± 2 pb, respectively.
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Figure 1: The qT spectrum of the Drell-Yan e+e− pairs produced in pp̄ collisions at the Tevatron
Run I: theoretical predictions at LO (dashed lines) and NLO (solid lines). The inset plot shows
the ratio K of the NLO and LO results.

From Fig. 2 we see that the NLO result is in agreement with the experimental data over a
wide region of transverse momenta, from large to relatively-small values of qT . In particular, in
the region 20 GeV∼<qT ∼< 70 GeV, the sizeable increase of the LO result produced by the NLO
corrections is important to achieve the agreement between the data and the NLO calculation.
In the small qT region, which is shown in the inset plot, the LO and NLO calculations do not
describe the data. This is not unexpected since, when qT → 0, the LO and NLO cross section
eventually diverges to +∞ and −∞, respectively. This is the region where the effects of soft-gluon
resummation are essential and have to be taken into account.

A more effective comparison between the fixed-order calculations and the data can be per-
formed by considering the fractional difference (X − theory)/theory. We choose the NLO result
at central value of the scales as ‘reference theory’ and we define the following fractional difference
(see Fig. 3):

(dσ/dqT )X − (dσ/dqT )NLO(µF = µR = mZ)

(dσ/dqT )NLO(µF = µR = mZ)
, (12)

where the label X refers to either the LO and NLO results, including scale variations (dashed and
solid curves in Fig. 3), or the experimental data.

The perturbative QCD predictions at NLO have an associated theoretical uncertainty due to
missing higher-order terms. By comparing the numerical results at LO and NLO, we can try to
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Figure 2: The qT -spectrum of the Drell-Yan e+e− pairs produced in pp̄ collisions at the Tevatron
Run I. The data are from Refs. [49, 50]. Theoretical results are shown at LO (red dashed lines)
and NLO (blue solid lines) including scale variations.

consistently estimate this uncertainty. At large values of qT , the LO and NLO bands overlap.
In this region of transverse momenta, we can thus use the scale variation band as uncertainty
estimate: we obtain that the NLO predictions have a perturbative uncertainty of about ±8%. As
qT decreases below the value qT ∼ 70 GeV, the LO and NLO bands do not overlap (see Fig. 3),
and this signals that scale variations (up to NLO) tend to underestimate the effect of higher-order
contributions. To obtain a more reliable estimate of the uncertainty of the NLO central value,
we assign it a theoretical error as given by its difference with respect to its closest value in the
LO band (i.e., the value on the upper curve of the LO band in Fig. 3). Using this procedure,
we obtain a NLO uncertainty that increases as qT decreases, and that reaches the value of about
±20% at qT ∼ 20 GeV. In the region of smaller values of qT , the LO and NLO results show a
pathological behaviour. This behaviour, which is discussed below, prevents us from making a
sensible quantitative estimate of the theoretical uncertainty of the NLO predictions. We can only
draw a qualitative conclusions: the uncertainty of the NLO predictions systematically increases
as qT decreases.

We know that, in the small-qT region, the convergence of the fixed-order perturbative expansion
is spoiled by the presence of large logarithmic corrections. This behaviour is clearly seen in Fig. 3
by comparing the LO and NLO results at qT ∼ 1 GeV. We also recall that, as qT → 0, the LO
cross section diverges to +∞ whereas the NLO cross section diverges to −∞. Since the NLO
corrections increase the LO results at large qT , the LO and NLO cross sections have to coincide at
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Figure 3: Fractional difference of fixed-order predictions and Tevatron Run I data with respect to
the NLO result at µF = µR = mZ (see Eq. (12)).

some intermediate value of qT , before reaching the small-qT region where their different divergent
behaviour sets in. The numerical agreement of the LO and NLO results occurs in the region
where qT ∼ 2–3 GeV (Fig. 3). Since this region is so close to that where the convergence of
the fixed-order is definitely spoiled, it cannot be regarded as a region where the order-by-order
expansion is well-behaved. Therefore, the systematic decrease of the difference between the LO
and NLO cross sections when qT varies from about 20 GeV to 2–3 GeV is simply driven by the
sickness of the LO and NLO results at smaller qT . This decrease cannot be interpreted as an
increase of the theoretical accuracy of the NLO predictions. The behaviour of the LO and NLO
results below qT ∼ 20 GeV signals the necessity to include the effect of higher-order contributions
and, eventually, of resummed calculations.

Having estimated the perturbative uncertainty of the NLO predictions, we can add some
comments on the comparison with the experimental data (see Fig. 3). We consider the region where
qT ∼> 20 GeV, since at smaller values of qT the NLO calculation looses predictivity. Throughout
this region, the data agree with the NLO predictions. The experimental errors are typically larger
(smaller) than the NLO uncertainty when qT ∼> 70 GeV (20 GeV∼< qT ∼< 30 GeV). The experimental
errors and the corresponding NLO errors overlap, with the sole exception of a couple of D0 data
points. We note that part of the differences between data and theory have a systematic component
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due to the luminosity uncertainties (±3.9% at CDF, and ±4.4% at D0) and to the values of the
total cross sections. The NLO predictions for dσ/dqT correspond to the value‖ σ = 233 pb of the
total cross section; this value is about 6% smaller than the CDF value, and it is about 5% larger
than the D0 value. Therefore, by inspection of Fig. 3, we see that considering the normalized
distribution 1

σ
dσ
dqT

(i.e. the shape of the qT spectrum) would lead to an overall improvement of the
agreement between the CDF data, the D0 data and the NLO predictions.

The D0 collaboration has performed a measurement [51] of the normalized qT distribution,
1
σ

dσ
dqT

, from data at the Tevatron Run II (
√

s = 1.96 GeV). To obtain fixed-order QCD predictions

for the normalized distribution, we have to consistently compute dσ/dqT and σ. The cross section
dσ/dqT at NLO (LO) is computed by convoluting the corresponding NLO (LO) partonic cross
sections with NLO (LO) parton distributions. These differential partonic cross sections at NLO
(LO) contribute to the total partonic cross sections at NNLO (NLO). Therefore, to normalize
dσ/dqT at NLO (LO), the total cross section σ is computed by convoluting the total partonic
cross sections at NNLO (NLO) with NLO (LO) parton distributions. In conclusion, our fixed-
order calculations of the normalized qT distribution are obtained by using the following relation:

(
1

σ

dσ

dqT

)

(N)LO

(µF , µR) ≡ 1

σ(N)NLO(µF , µR)

(
dσ

dqT

)

(N)LO

(µF , µR) , (13)

where the two factors, 1/σ and dσ/dqT , on the right-hand side are evaluated with the same parton
distributions and at the same values of the renormalization and factorization scales.

The D0 data and the LO and NLO results for the normalized distribution 1
σ

dσ
dqT

at the Tevatron
Run II are presented in Fig. 4. The LO and NLO bands are obtained by varying µF and µR in the
same range as in the fixed-order calculations at Run I. The fractional difference (X−theory)/theory
at Run II is shown in Fig. 5; this fractional difference differs from that in Eq. (12) by the sole
replacement of dσ

dqT

with 1
σ

dσ
dqT

.

Comparing Figs. 2 and 3 with Figs. 4 and 5, we can see that the overall features of the fixed-
order results are unchanged in going from Run I to Run II. The main quantitative differences
are due to the fact that, at Run II, we are considering the normalized qT distribution. The NLO
corrections to 1

σ
dσ
dqT

are smaller than the NLO corrections to dσ
dqT

. The scale dependence of the

fixed-order results is only marginally reduced by considering 1
σ

dσ
dqT

rather than dσ
dqT

.

The perturbative uncertainty of the NLO predictions at Run II can be estimated in the same
way as at Run I. We conclude that the NLO error increases from about ±6–8% in the region
where qT ∼> 50 GeV (see the size of the NLO band in Fig. 5) to about ±15% at qT ∼ 20 GeV (see
the upper value of the LO band in Fig. 5). At smaller values of qT the NLO calculation looses
predictivity. In the region where qT ∼> 90 GeV, the D0 data agree with the NLO predictions. In
the region where 20 GeV∼<qT ∼< 90 GeV, the experimental errors are typically smaller than the
NLO uncertainty; in this region, three data points overshoot the NLO predictions (they differ by
about two standard deviations from the upper value of the NLO uncertainty band).

We add a comment on the fixed-order calculations presented in the papers of the D0 collabora-
tion. The labels “Fixed-order (O(α2

S))” in Ref. [50] and “NNLO” in Ref. [51] refer to perturbative

‖This value is obtained by convoluting the NNLO partonic cross sections with NLO parton distributions (see
the comment above Eq. (13)).
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Figure 4: The qT -spectrum of the Drell-Yan e+e− pairs produced in pp̄ collisions at the Tevatron
Run II, normalized to the total cross section. The data are from Ref. [51]. Theoretical results are
shown at LO (red dashed lines) and NLO (blue solid lines) including scale variations.

calculations that use the same NLO partonic cross sections of our NLO calculations. The differ-
ences between these calculations can be due to the use of different parton distributions and of
different renormalization and factorization scales. In the region where qT ∼> 20 GeV, the fixed-order
results of Refs. [50, 51] are systematically smaller than our NLO central values: the differences
can reach the level of about 12% in the case of the “Fixed-order (O(α2

S))” result (compare Fig. 26
of the second paper in Ref. [50] with our Fig. 3) and of about 7% in the case of the “NNLO” result
(compare Fig. 2b in Ref. [51] with our Fig. 5). We note that the differences tend to reduce the
agreement with the D0 data; we also note that these differences are consistent with our estimate
of the perturbative uncertainty of the NLO predictions. This observation underlines the relevance
of quantifying the uncertainty of the perturbative QCD predictions.

3.2 Resummed results

In the following we present our resummed results at NLL+LO accuracy and we compare them
with the Tevatron data. To compute the hadronic cross sections, we use the MRST2004 NLO
parton distributions [53], with αS evaluated at 2-loop order.

In the small-qT region, the use of NLO parton distributions is fully consistent with the NLL+LO
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Figure 5: Same as Fig. 3 for 1/σ (dσ/dqT ) at the Tevatron Run II.

accuracy of the partonic cross section. Indeed, at small values of qT , the NLL+LO partonic cross
section includes the complete perturbative expansion up to NLO (i.e., O(αS)) and the resummation
of the LL and NLL terms. The use of NLO parton distributions is justified also at intermedi-
ate values of qT , where the calculation of the partonic cross section is driven by the small-qT

resummation and constrained by the value of the total cross section at NLO.

The resummed calculation depends on the factorization and renormalization scales and on the
resummation scale Q. As in fixed-order calculations, we choose µF = µR = mZ as central value.
Factorization and renormalization scale uncertainties are computed as described in Sect. 3.1, by
considering variations of µF and µR by a factor of two around (above and below) the central
value. A similar procedure is applied to the resummation scale: we choose Q = mZ/2 as central
value and consider scale variations in the range mZ/4 < Q < mZ . As discussed below, we
regard this central value of the resummation scale and the corresponding range mZ/4 < Q < mZ

as sufficiently conservative (e.g., more conservative than the range mZ/2 < Q < 2mZ) from a
theoretical viewpoint†.

†Also in the case of Higgs boson production, we used [29] the range mH/4 < Q < mH (mH being the mass of
the Higgs boson) to estimate the resummation scale uncertainty.
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The resummed logarithmic terms depend on Q through the variable L̃ in Eq. (7). This implies
that the logarithmic contributions are mostly effective in the b-space region where bQ∼> 1, which
corresponds to the transverse-momentum region where qT ∼<Q. By decreasing Q, the resummation
effects are depleted in the region where qT ∼>Q and enhanced in the region where qT ∼< Q. The
bulk of the Z production cross section and, thus, the main effect of the logarithmic terms are
located at values of qT that are certainly smaller than mZ : indeed, we observe that the average
transverse momentum of the Z boson is of the order of αS(mZ) mZ . Therefore, it is physically
sensible to use a central value of Q that is smaller than mZ . Nonetheless, too small values of Q
have to be avoided. As we have pointed out in Sect. 3.1, the fixed-order perturbative expansion
shows instabilities (due to higher-order logarithmic corrections) in the region where qT ∼< 20 GeV.
Therefore, in our NLL+LO calculation we should exclude values of Q that are smaller than about
20 GeV. In this respect, a value of Q as low as Q ∼ mZ/4 can be regarded as a conservative value
from a perturbative viewpoint. The NLL+LO calculation with such a value of Q will be closer
to the corresponding fixed-order calculation throughout region of intermediate values of qT where
the fixed-order expansion is relatively well behaved.

Figure 6: The NLL+LO qT spectrum at the Tevatron Run I.

The NLL+LO qT spectrum at the Tevatron (
√

s = 1.8 TeV) is presented in Fig. 6. In the
left panel, the NLL+LO result (solid line) at the default scales (µF = µR = mZ , Q = mZ/2)
is compared with the corresponding ‡ LO result (dashed line). We observe that soft-gluon re-
summation leads to a well-behaved distribution: it vanishes as qT → 0, has a kinematical peak
at qT ∼ 2 GeV, and tends to the corresponding LO result at larger values of qT . The LO finite
component of the spectrum (see Eq. (2)), rescaled by a factor of 10 to make it more visible, is also
shown for comparison (dotted line). This component smoothly vanishes as qT → 0 and gives a
small contribution to the NLL+LO result in the low-qT region. The contribution is smaller than

‡Here and in the inset plot of Figs. 8, the LO result refers to the convolution of the partonic cross section at LO
with the parton distributions at NLO. This LO result thus differs from the customary LO calculation, which uses
parton distributions at LO and is presented in Sect. 3.1. Incidentally, we note that the difference produced by using
NLO vs. LO parton distributions is much smaller than the scale uncertainty of the corresponding results. We find
that the difference is below the level of about ±2% (−6%) if 20 GeV∼< qT ∼< 140 GeV (140 GeV∼< qT ∼< 200 GeV).
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1% at the peak and becomes more important as qT increases: it is about 8% at qT ∼ 20 GeV, about
20% at qT ∼ 30 GeV and about 60% at qT ∼ 50 GeV. A similar quantitative behaviour is observed
by considering the contribution of the LO finite component to the LO result; the contribution is
about 13% at qT ∼ 20 GeV, about 30% at qT ∼ 30 GeV and about 75% at qT ∼ 50 GeV. In the
region of intermediate values of qT (say, around 20 GeV), the difference between the NLL+LO and
LO results is much larger than the size of the LO finite component. This difference is produced by
the logarithmic terms (at NLO and beyond NLO) that are included in the resummed calculation
at NLL accuracy. At large values of qT the contribution of the LO finite component sizeably
increases. This behaviour indicates that the logarithmic terms are no longer dominant and that
the resummed calculation cannot improve upon the predictivity of the fixed-order expansion.

In the right panel of Fig. 6 we show the scale dependence of the NLL+LO result. The band
(dashed lines) is obtained by varying the renormalization and factorization scales as described
in Sect. 3.1. Although µR and µF are varied independently, we find that the dependence on µR

dominates at any values of qT . In the region of small and intermediate values of qT , the scale
dependence of the NLL+LO result is definitely much smaller than the difference between the
NLL+LO and LO results. The scale dependence of the resummed result is about ±5% at the
peak, and it increases to ±9% at qT ∼ 50 GeV.

The renormalization/factorization scale dependence of the NLL+LO spectrum (the band en-
closed by the solid lines) is more clearly visible in Fig. 7. Here the CDF and D0 data at Tevatron
Run I are also superimposed on the NLL+LO result. There is an overall agreement between
the data and the resummed calculation in the region from small to intermediate values of qT .
In particular, the agreement tends to improve by decreasing the value of µR from µR = mZ to
µR = mZ/2. The inset plot shows the region of intermediate and large values of qT . At large
qT , the NLL+LO result deviates from the data, and the deviation increases as qT increases. As
previously observed on purely theoretical grounds, the NLL+LO calculation looses predictivity in
the large-qT region. The lost of predictivity is also signalled by the systematic increase of the scale
dependence, whose size is about ±9% at qT ∼ 50 GeV and becomes about ±22% at qT ∼ 90 GeV.
As we shall see in the next figure, at large values of qT , the dependence on the resummation scale
Q is even stronger than the dependence on µR and µF .

In Fig. 8 we show how the NLL+LO result depends on the resummation scale Q. We fix
µR = µF = mZ , and we present the result of the NLL+LO calculation at three different values of
the resummation scale: Q = mZ (dashed line), Q = mZ/2 (solid line) and Q = mZ/4 (dot-dashed
line). In the region of small and intermediate values of qT , large values of Q (Q ∼ mZ , mZ/2) lead
to a better agreement with the experimental data. In this region, the qT spectrum at NLL+LO
becomes softer by decreasing the value of Q. This behaviour is not unexpected. The resummed
calculation cures the instabilities of the fixed-order calculations by implementing the physical
transverse-momentum smearing produced by soft multiparton radiation. The size of the qT region
where the smearing takes place is controlled by the value of Q. By increasing Q, the resummation
smearing is extended to larger values of qT , and the qT spectrum becomes harder.

The inset plot of Fig. 8 refers to the region of intermediate and large values of qT . We present
the NLL+LO results and the corresponding LO result (dotted line), which does not depend on
Q. Considering large values of Q (Q ∼ mZ , mZ/2), the NLL+LO results follow the data up
to qT ∼ 50 GeV and deviates from the data at larger values of qT . At large qT , the deviation
decreases if we consider the NLL+LO calculation with smaller values of Q. We also notice that
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Figure 7: Comparison of Tevatron Run I data with the NLL+LO result including variations of
the scales µF and µR.

the LO result is approximated better by the NLL+LO calculation if Q is smaller. This fact is not
surprising. Varying Q, we smoothly set the transverse-momentum scale below which the resummed
logarithmic terms are mostly effective; if Q is smaller, the resummation effects are confined to a
range of smaller values of qT . Independently of these observations, the sizeable Q dependence of
the resummed calculation at large qT confirms the lost of predictivity of the NLL+LO result in
this transverse-momentum region.

The variations of the NLL+LO cross section produced by varying the resummation scale give
further insight on the size of yet uncalculated higher-order logarithmic contributions at small and
intermediate values of qT . To quantify the resummation scale uncertainty on the cross section, we
choose Q = mZ/2 as central value and vary Q between mZ and mZ/4. We find that the uncertainty
is about ±12% in the region of the peak, it decreases in the region around qT ∼ 5 GeV, and then
it increases to about ±15% in the region where qT ∼ 20 GeV.

The integral over qT of the NLL+LO spectrum is in agreement (for any values of µR, µF and
Q) with the value of the NLO total cross section to better than 1%, thus checking the numerical
accuracy of our code. We also note that the large-qT region gives a little contribution to the
total cross section; therefore, the total cross section constraint mainly acts as a perturbative
constraint on the NLL+LO spectrum in the region from intermediate to small values of qT . To
confirm this statement at the quantitative level, we consider the cross section ratio σ(qTmax)/σ,
where σ(qTmax) is the contribution to the total cross section σ from the transverse-momentum
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Figure 8: NLL+LO results at the Tevatron Run I for different values of the resummation scale
Q.

region where qT ≤ qTmax. The cross section σ(qTmax) can be computed either at the NLO or
at NLL+LO accuracy (i.e. by integration of the NLL+LO spectrum over qT ). Provided qTmax

is not small, we find that the NLO and NLL+LO values of σ(qTmax) are very close and that
σ(qTmax) constitutes a large fraction of σ. For example, the NLO (NLL+LO) value of the cross
section ratio is σ(qTmax)/σ = 0.86 (0.87) at qTmax = 20 GeV and σ(qTmax)/σ = 0.93 (0.94) at
qTmax = 30 GeV. The resummation scale uncertainty of σ(qTmax) at NLL+LO accuracy is about
±2% at qTmax = 20 GeV, and it is below the 1% level in the region where qTmax ∼> 30 GeV.

In analogy with our presentation of the fixed-order results in Sect. 3.1, we consider the re-
summed results and introduce a corresponding fractional difference (X − theory)/theory. Now, at
variance with Eq. (12), we choose the NLL+LO result at central value of the scales as ‘reference
theory’ and we define the following fractional difference:

(dσ/dqT )X − (dσ/dqT )NLL+LO(µF = µR = 2Q = mZ)

(dσ/dqT )NLL+LO(µF = µR = 2Q = mZ)
, (14)

where the label X refers to either the experimental data or the NLL+LO result at various values
of the scales.

This fractional difference is shown in Fig. 9. The band enclosed by the solid lines corresponds
to our computation of the scale uncertainty. It includes the combined effect from varying µF , µR
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Figure 9: Fractional difference of Tevatron data with respect to the NLL+LO prediction at µF =
µR = 2Q = mZ (see Eq. (14)). The band represents the combined effect of varying the scales as
described in the text.

and Q as previously described. We find that the resummation scale uncertainty is larger than the
factorization/renormalization scale uncertainty at (almost) all values of qT . We comment on the
results in Fig. 9 by considering various regions of transverse momenta in turn.

We first consider the large-qT region. At qT ∼ 40 GeV, the scale uncertainty of the NLL+LO
result is of about ±20%. At high qT , the scale uncertainty is definitely larger and quickly increases
as qT increases. The decrease of the scale uncertainty in the region around qT ∼ 60 GeV has no
physical interpretation: it has to be regarded as an accidental fact rather than a reduction of the
theoretical uncertainty. Comparing the uncertainty of the NLL+LO calculation with that of the
fixed-order calculations (see Sect. 3.1), we thus conclude that, in the large-qT region, the NLL+LO
predictions are less accurate than the NLO predictions.

In the region of intermediate values of qT , the scale uncertainty of the NLL+LO result is
moderate (see Fig. 9). In this region it is appropriate to perform a more detailed comparison
between the NLL+LO calculation and the fixed-order calculations. We consider Eq. (12), which
uses the NLO central value as ‘reference theory’, and we compute the fractional difference of the
NLL+LO calculation. The results are presented in Fig. 10, which shows the NLL+LO calculation
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Figure 10: Fractional difference of LO (dashed), NLO (solid) and NLL+LO (dot dashed) predic-
tions with respect to the NLO result at µF = µR = mZ (see Eq. (12)).

at central value of the scales (central dot-dashed line) and the corresponding scale uncertainty
(upper and lower dot-dashed lines). The NLO (solid lines) and LO (dashed lines) bands in Fig. 10
are exactly the same bands as those in Fig. 3. In the region where 10 GeV∼<qT ∼< 40 GeV,
the NLL+LO and NLO central values are quite close: their difference is, at most, of about
8%. Decreasing the value of qT , the scale uncertainty at NLL+LO decreases from about ±20%
(qT ∼ 40 GeV), to about ±15% (qT ∼ 20 GeV) and ±10% (qT ∼ 10 GeV). We also recall our
conclusions (see Sect. 3.1) about the uncertainty of the fixed-order perturbative expansion: the
perturbative uncertainty of the NLO predictions is at the level of about ±20% in the region where
20 GeV∼<qT ∼< 40 GeV (see the upper line of the LO band), and it does not decrease at smaller
values of qT . We conclude that, at intermediate values of qT , the NLL+LO and NLO results
are fully consistent and have a comparable perturbative uncertainty. The NLL+LO calculation
provides us with QCD predictions that can be extended to smaller values of qT (qT ∼< 20 GeV)
with a controllable and relatively-small perturbative uncertainty.

The bulk of the production cross section is contained in the small-qT region. Considering the
region above the peak of the qT distribution (2 GeV∼< qT ∼< 20 GeV), the scale uncertainty of the
NLL+LO calculation is below the level of about ±15% (Fig. 9). The size of the scale uncertainty
increases in the region below the peak. The effect of the scale variations is larger in the region
below the peak since the shape of the qT distribution is much steeper in this region (see Figs. 7
and 8). Note also that this region is expected to be most sensitive to NP effects. The sizeable
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reduction of the scale uncertainty in the interval qT ∼ 3–7 GeV can be accidental and, thus, it
can underestimate the perturbative uncertainty of the NLL+LO result.

The detailed comparison in Fig. 9 shows that the experimental data are consistent with the
NLL+LO predictions in the small-qT region. As in the case of Fig. 3, we also recall that part
of the differences between data and theory have a systematic component due to the luminosity
uncertainties and to the values of the total cross sections. In particular, the central value of dσ/dqT

at NLL+LO accuracy corresponds to the NLO values, σ = 226 pb, of the total cross section; this
value is about 9% smaller than the CDF value, and it is about 2% larger than the D0 value. These
differences between the total cross sections are consistent with the fact that the NLL+LO result
tends to agree better with the D0 data than with the CDF data.

The quantitative predictions presented up to now are obtained in a purely perturbative frame-
work. It is known (see e.g. Ref. [13] and references therein) that the transverse-momentum
distribution is affected by NP effects, which become important as qT becomes small. A custom-
ary way of modelling these effects is to introduce an NP transverse-momentum smearing of the
distribution. In the case of resummed calculations in impact parameter space, the NP smearing is
implemented by multiplying the b-space perturbative form factor by an NP form factor. Different
procedures to relate the two form factors and several different parametrizations of the NP form
factor are available in the literature [39, 56, 23]; the corresponding NP parameters are obtained
by global fits to DY data [23, 27, 57].

Figure 11: The NLL+LO spectrum at the Tevatron Run I supplemented with the NP form factor
of Eq. (15).
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A detailed study of the NP effects is beyond the aim of this work. We limit ourselves to
illustrate the possible impact of NP effects on our resummed calculation. To this purpose, we
simply multiply the b-space resummation factor WV

N (b, M) (see Eqs. (3) and (4)) by a NP factor,
SNP , which includes a gaussian smearing of the form

SNP = exp{−gNP b2} . (15)

In Fig. 11 we show the NLL+LO distribution at central values of the scales with (solid) and
without (dashed) the inclusion of the NP factor. The numerical value of the NP coefficient gNP

is taken to be gNP = 0.8 GeV2 [25]. Using this values of gNP , the NP effects reduce (increase)
the perturbative distribution where qT ∼< 3 GeV (qT ∼> 3 GeV). For instance, the NP correction
is about −10% at qT ∼ 2 GeV, about +8% at qT ∼ 5 GeV, and it is smaller than +4% where
qT ∼> 10 GeV. As expected, the effect of the NP form factor is to make the distribution harder, thus
improving the agreement with the experimental data at very small values of qT . On the basis of
the results in Ref. [29], we also expect that such NP effect is qualitatively similar to that produced
by the inclusion of higher-order logarithmic contributions. This expectation is consistent with the
fact that the quantitative impact of the NP form factor is within the perturbative uncertainty
of the NLL+LO result (see Figs. 8 and 9). A detailed comparison of Tevatron data with a full
NNLL+NLO calculation, including non-perturbative effects, is left to future work.

We have repeated our NLL+LO study by considering the normalized qT distribution, 1
σ

dσ
dqT

, at
the Tevatron Run II. The main features of the results are definitely very similar to those at Run I.
The NLL+LO results at small and intermediate values of qT are briefly summarized in Fig. 12. We
show the NLL+LO distribution at central values of the scales with (solid) and without (dashed)
the inclusion of the NP form factor (we use the same values of gNP as in Fig. 11). Since the
perturbative uncertainty is dominated by the effect of varying the resummation scale Q, we fix
µR = µF = mZ and we also show the NLL+LO results with Q = mZ (dotdashed) and Q = mZ/4
(dotted). We observe that the D0 data are consistent with the NLL+LO predictions. We also
observe that the experimental errors are smaller than the uncertainty of the NLL+LO results,
thus demanding more accurate perturbative predictions.

4 Summary

We have considered the qT cross section of DY e+e− pairs from the decay of Z bosons produced
in pp̄ collisions at Tevatron energies.

We have presented fixed-order QCD predictions up to NLO, including an estimate of the
corresponding perturbative uncertainty. In the region of large and intermediate values of qT , the
CDF and D0 data at Tevatron Run I show an overall agreement with the NLO results. Some
deviations from the NLO predictions are observed in the Run II D0 data at moderate values of
qT . In the region of small values of qT , the comparison between the LO and NLO results shows
the onset of instabilities of the order-by-order perturbative expansion. As qT decreases toward
very small values, the fixed-order central values definitely disagree with the Tevatron data.

As is well known, in the small-qT region, there are large logarithmic contributions that spoil
the reliability of the fixed-order perturbative expansion and that need be resummed to all orders.
We have presented a first application of the resummation formalism of Refs. [29] to Z boson
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Figure 12: The NLL+LO qT spectrum at the Tevatron Run II, for different values of the resum-
mation scale Q. The effect of including a NP smearing as in Eq. (15) is also shown.

production. The formalism combines small-qT resummation at a given logarithmic accuracy with
the fixed-order calculations. It implements a unitarity constraint that guarantees that the integral
over qT of the differential cross section coincides with the total cross section at the corresponding
fixed-order accuracy. The formalism includes the explicit dependence on the factorization and
renormalization scales, analogously to the customary scale dependence in fixed-order calculations.
It also introduces an auxiliary resummation scale, whose dependence can be exploited to estimate
the effect of uncalculated higher-order logarithmic contributions. Owing to these features, the
resummation formalism extends the applicability of QCD perturbation theory to the small-qT

region, with a controllable perturbative accuracy at small and intermediate values of qT .

We have presented the results of the resummed calculation at NLL+LO accuracy, and we have
performed a detailed study of the scale dependence to estimate the corresponding perturbative
uncertainty. In the region of intermediate values of qT , the NLL+LO and NLO results are fully
consistent and have a comparable perturbative uncertainty. In the small-qT region, the Tevatron
data are consistent with the NLL+LO predictions, which are not supplemented with additional
non-perturbative contributions. The perturbative uncertainty of the NLL+LO results, which is
dominated by missing higher-order logarithmic contributions, is relatively large in comparison
with the precision of the experimental data. This uncertainty is likely to be comparable with
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the effect of non-perturbative contributions. On the basis of the results on qT spectrum of the
Standard Model Higgs boson [30, 29, 31], we expect a reduction of the perturbative uncertainty
once the complete NNLL+NLO calculation for the DY process is available.
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