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The spontaneous adsorption of protein molecules on interfaces is an ubiquitous 

phenomenon in natural and man-made systems. This phenomenon plays a central role in 

many fields, such as health, food, environmental science, and biochemical or 

immunochemical analysis. The structural rearrangement caused by the direct contact with 

the sorbent phase may affect protein biological activity, including bioavailability, and ability 

to bind micro- and macromolecular ligands. Moreover, protein immunoreactivity has been 

assessed to change if protein molecules interact with a hydrophobic phase; indeed 

adjutants are hydrophobic substances that act as enhancers in antibodies production. 

Whether proteins unfold randomly or through subsequent ordered and eventually 

reversible steps remains often unknown, and information about the molecular 

determinants of the “gain of function” or the “loss of function” observed upon adsorption is 

scarce. The aim of this work is to understand the structural and functional changes that 

soy storage proteins (β-conglycinin and glycinin) and bovine β-lactoglobulin (BLG) undergo 

after adsorption on hydrophobic nanostructured surfaces, in our case oil-in–water 

nanoemulsion and 46 nm polystyrene nanoparticles. 

 

In this three year of my PhD program I deeply investigated the structure of three 

proteins (BLG, β-conglycinin and glycinin) when adsorbed on different hydrophobic 

surfaces (oil in water nanoemulsions and polystyrene nanoparticles). I also addressed the 

changes of biological activities, with a special focus on BLG.  

 

Soy proteins are one of the most attractive plant food proteins. Glycinin and β-conglycinin 

are the major soybean storage proteins and constitute the 40 and 30%, respectively, of 

total soybean proteins. Glycinin is a heteromultimer, with a molecular mass of 300-380 

kDa. It consists of the intermediary subunit, in which one acidic and one basic subunits are 

linked via disulphide bond interacting non-covalently to give a hexamer. β-conglycinin is a 

glycosylated hetero-trimer composed randomly by three different subunits: α (≈67 kDa), α’ 

(≈71 kDa) and β (≈50 kDa). The α and α’ subunits are composed by two different domains: 

the core region and the extension region. The β subunit only contains the core region.  

β-lactoglobulin (BLG) accounts for ≈ 65% of the total whey proteins in milk. BLG is a 

globular protein consisting of a single polypeptide chain composed of 162 amino acid 

residues and a molecular mass of about 18.3 kDa. It belongs to the lipocalin family, and its 

three dimensional structure is characterized by a central β-barrel composed by 8 β-strand 

and a α-helix in the C-terminal tail. This protein contains two disulphide bonds (C66–C160) 
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and (C106–C119) and one free cysteine group (C121). It is present as a monomer at pH < 3, 

while at neutral pH it exists mainly as a dimer. It can bind and transport hydrophobic 

molecules in its central hydrophobic pouch, but at now its function is not completely 

understood. 

Protein conformational changes after adsorption on interfaces were evaluated by 

using different techniques, including fluorescence and solid-state fluorescence 

spectroscopy, CD spectroscopy, along with limited proteolysis followed by recognition of 

released peptides by MS. Moreover, changes in biological behavior were evaluated by 

measuring changes in immunoreacivity that may be relevant from the standpoint of 

immune response or immunomodulation. Experiment aimed to evaluate the influences of 

interface denaturated protein on live cells was carried out. For this purpose BLG and BLG-

stabilized emulsions, both labeled with FITC, were incubated with monocytes and 

differences in protein uptake were evaluated by citofluorimetry. In order to have a 

model of BLG denaturation on the polystyrene interface, an in silico study was performed. 

The simulation was carried out using the computational suite MOE (Molecular Operating 

System). 

In my work structural changes of β-conglycinin and glycinin in solution were 

compared to those occurring when the proteins are adsorbed at the oil-water interface. 

Both proteins undergo structural modifications after adsorption on the oil droplet surface. 

From the standpoint of protein chemistry, the modifications occurring at the interface with 

the proteins investigated here have some peculiar traits, in what both these proteins 

expose their tryptophan-containing extension regions to the aqueous phase rather than to 

the droplet interior, as observed for other proteins. It is very important to note that, in β-

conglycinin, tryptophans are present in the extension domains of α and α’ subunits, and 

the present fluorescence data confirm previous results demonstrating that the polar 

extension regions in these proteins are important for their emulsifying ability. These results 

support the hypothesis that while the α and α’ core domains interact with oil phase; the 

extension regions protrude into the aqueous phase and stabilize the emulsion droplets by 

providing the necessary polar regions. Also glycinin’s tryptophans containing regions are 

exposed to the aqueous phase. However, the multiplicity of glycinin’s genetic variants 

makes it much more challenging to derive definite answers from the hydrophobicity profiles 

of this protein, and some more detailed proteomic work is needed to better understand 

which portion of the protein anchors to the interface. It is also interesting to note that heat 

treatment does not affect the structural features of either protein once they are adsorbed at 

the oil-water interface. In other words, the modifications occurring upon adsorption at the 
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interface appear to “lock” the protein structure in a conformation that is insensitive to 

further physical denaturation, at least under the temperature/time regimes employed in this 

work. As a matter of fact, it is somewhat expected that, in emulsions, the structural regions 

more sensitive to the entropic changes ensuing from alteration in the water structure (i.e., 

the protein hydrophobic core) are at least partially buried into the non-polar lipid phase, 

and thus are insensitive to temperature-dependent changes in the colligative properties of 

the solvent. The various peculiarities of these systems and their practical relevance seem 

worth further investigation. We are currently addressing the molecular details of the 

observed events, in an attempt to identify specific molecular determinants of the different 

behavior of these proteins, as well as the changes occurring during heating, and to assess 

whether the conformational changes reported here result in biologically relevant 

modifications when emulsions are consumed as food. 

Also BLG structure changes after interaction with a hydrophobic interface. The 

intrinsic fluorescence spectrum of adsorbed BLG is red-shifted compared with the free-

protein one thus indicating that the adsorbed protein assumes a new structure in which 

Trp19, usually buried inside the hydrophobic core, is exposed to water. Moreover, adsorbed 

BLG increases ≈2 folds its global quantum yield. This phenomenon could be explained 

either by the moving of Trp61 away from the Cys66-Cys160 disulphide bond, and/or by the 

moving of Trp19 from Arg124, thus removing fluorescence-quenching interactions within the 

protein structure. The only free thiol in BLG is on Cys121, which is buried in the native 

structure, but becomes readily and almost completely accessible after adsorption. The 

overall BLG surface hydrophobicity seems to increase after interaction with the 

hydrophobic surface, confirming the occurrence of major rearrangements. BLG sensitivity 

towards trypsin – and therefore the resulting peptidic pattern - is modified as a function of 

the hydrophobic support where the protein is adsorbed. In fact, in the case of NP-adsorbed 

BLG trypsin resistance is similar to the one of free BLG, whereas it dramatically decreases 

for emulsion-BLG. All these data demonstrate an extended stretch of the native structure 

after adsorption on hydrophobic surfaces with the exposure of new protein regions usually 

buried from the aqueous media.  

Changes in immunoreactivity occurred after adsorption on hydrophobic surfaces. 

BLG adsorbed on oil droplet surface is more reactive (≈35%) than the free protein by using 

the 5G6 MAB, and also it is more reactive (≈110%) when using the 1E3 MAB. BLG 

adsorbed on latex NP is likely to increase its immunoreactivity by using both MAB, that 

indicates that BLG assumes different structures as a function of the interacting 

interface(s). We could also hypothesize that the adsorption on the hydrophobic surface 
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does not increment the number or the type of exposed epitopes, but it locks the protein 

structure able to bind more efficiently the antibodies. 

Cells experiments show how the BLG internalization by monocytes follows two 

different kinetics according to protein physical state. Moreover the absorption of adsorbed 

BLG seems to be not influenced by competition of free BLG, leading us to hypothesize the 

presence of two different pathways for the protein internalization depending on their 

physicals state.   

 The in silico denaturation simulations demonstrate that the interaction orientation is 

fundamental for the type and magnitude of protein structure reorganization. Only one pose 

shows a broad structural reorganization. Other poses show small structural modification, 

but some starting points of unfolding seem to appear. Longer simulations will give us a 

more complete overview on this phenomenon. The system, all build by us, seems to be 

very stable, and the latex denaturating interface should be used with others proteins. 

In conclusion in this thesis I described in deeply the structural modification that 

three proteins, whit a huge importance for nutrition and food science, undergo after 

adsorption on different model hydrophobic interfaces. I also produced an in silico model for 

computational prediction of protein denaturation on polystyrene interface. Physiological 

implications regarding protein structural reorganization were also explored.    
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Overview on protein structure  

Since Anfinsen’s experiments in the 1960s, it has been believed and today generally 

accepted that folding and the resulting native structure of proteins are autonomously 

governed and determined by the amino acid sequence of a particular protein and its 

natural solvent environment. The function of a protein can only be interpreted from its 

structure. A linear polypeptide chain is autonomously organized into a space filling, 

compact, and well defined three dimensional structure. In a globular protein, the internal 

core is mostly formed by hydrophobic amino acid residues, held together by van der Waals 

forces, and the surface of the globule is formed by mostly charged and polar side chains. 

Proteins exist in this state of condensed matter while the specific conformation is largely 

determined by the flexibility of the polypeptide backbone and by specific, intermolecular 

interactions among the amino acid side chains. 

The native conformation could be energetically stable or thermodynamically stable. 

From a thermodynamic point of view, the free energy of a protein molecule is influenced by 

the following major energetic contributions: (1) hydrophobic effects, (2) hydrogen bonds, 

(3) electrostatic interactions, and (4) the conformational entropy due to the restricted 

motion of the main chain and the side chains. The hydrophobic effect used to be explained 

as a primarily entropic effect arising from the rearrangement of hydrogen bonds between 

solvent molecules around an apolar solute. This hydration process is energetically 

unfavorable, and therefore drives apolar solutes together, thereby decreasing their solvent 

exposed surface area. Today, the hydrophobic effect is usually viewed as a combined 

effect of hydration (an entropic effect) and of van der Waals interactions between solute 

molecules (an enthalpic effect) (Makhatadze and Privalov, 1995). It is therefore entropic at 

low temperatures and enthalpic at high temperatures, which results in a complex 

temperature dependence of its strength (Schellman, 1997).  

Nevertheless, the hydrophobic force has long been considered as the major driving 

force of protein folding (Dill, 1990) as it leads to a rapid collapse of the polypeptide chain, 

thereby largely reducing the configurational space to explore. With no doubt, hydrophobic 

interactions are also a major stabilizing force contributing to the thermodynamic stability of 

the folded state. The role of hydrogen bonds in folding and stability used to be 

underestimated based on the argument that intramolecular hydrogen bonds can be 

replaced by hydrogen bonds between the protein and the solvent. After a number of 

mutational studies, however, hydrogen bonds have now been recognized as having a 

contribution to some extent protein stability as important as the hydrophobic effect (Pace et 

al., 1996). 
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 This contribution was estimated to be 1.5-1.0 kcal/mol per buried intramolecular 

hydrogen bond (Pace et al., 1996). Electrostatic interactions such as ion pairs and salt 

bridges in proteins have been an area of active research (Kumar and Nussinov, 2002). 

Whereas hydrogen bonds and hydrophobic forces are essentially nonspecific, electrostatic 

interactions are largely specific and therefore play an important role in establishing the 

protein fold of a protein, as well as in determining protein flexibility and function.  

Computational and experimental evidence shows that salt bridges can be stabilizing 

or destabilizing. On the other hand, genome‐ wide and structural comparisons of 

thermophilic and mesophilic proteins indicate that salt bridges may significantly contribute 

to the enhanced thermal stability of proteins from thermophilic organisms (Szilagyi and 

Zavodszky, 2000; Li et al., 2005; Razvi and Scholtz, 2006). The major destabilizing 

contribution to the stability of the folded state is the conformational entropy of the 

polypeptide chain. Folding a long chain into a specific, compact structure obviously results 

in a significant entropy decrease. This is counterbalanced by the various intra-chain 

interactions described above. The resulting overall stability of the protein (the free‐energy 

difference between the folded and the unfolded state) is marginal, being on the order of 5–

10 kcal/mol. This number is a small difference between huge stabilizing and destabilizing 

contributions. We qualitatively know that the hydrophobic effect and hydrogen bonds are 

the major stabilizing contributions and the conformational entropy is the major destabilizing 

one.  

All these assumptions are true for physiological, aqueous media, but if agents able 

to disturb and modify the forces that stabilize the overall protein structure are present, 

proteins can undergoes structural changes. Among this agent, we found ionic strength, pH, 

chaotropes and agents able to perturb the entropic boost, as are hydrophobic interfaces. 

 
Interfaces 

By definition, an “interface”  (i.) is the thin region that separates two phases (two liquids, a 

solid and a liquid or two solid). The term "surface"  refers only to the region that separates 

two phases, one of which is gaseous, but the two words are regularly used 

interchangeably, given the many similarities (Myers, 1999). 

 The phases can be formed by different types of molecules or by different physical 

states of the same molecule and substances with a marked affinity for the i. may be 

present as solutes or insoluble adsorbed layer deposited on them. The type and 

concentration of molecules at the i. dictate the structure, size, free energy, electrical and 

rheological properties of the i. and are therefore fundamental in the characterization of a 
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multiphase system. 

 There are several types of i., each been of interest for specific technologies. For 

example, liquid/gas i. (Figure 1.1) are interesting in studying the stability of foams, those 

between solid and liquid are investigated to understand the mode of action of detergents, 

adhesives and lubricants. Solid/gas i. are responsible for processes regarding adsorption, 

catalysis and contamination.  

 

 

 

 

 

 

 

 

 

 

Fig 1.1 : surfactant and protein disposition on emulsion and/or foam interface 

 

Each molecule in a multiphase system has its own function. In foams, in order to 

increase the stability of the dispersion of the bubbles and prevent coalescence, it is good 

to increase the elasticity and thickness of the surface adsorbed state by promoting the 

formation of protein films. In emulsions, however, it is fundamental to minimize the 

electrostatic repulsion, in order to stabilize the adsorbed layer and prevent flocculation 

(Golding, 2004). The surface tension, defined as the property of a surface to resist to an 

external force, is so much higher in thin adsorbed layer and the thickness can be 

increased with the adsorption of additional surfactant or by migration of surfactant 

molecules from areas with a lower surface tension to the areas of reduced thickness. 

 Since the physico-chemical properties of the medium are also dictated by the nature 

of the i. it is important to understand the factors that most affect their composition. Type 

and amount of absorbed molecules are the first, but one should also check the type of the 

medium, temperature, pH, ionic strength, and all operating conditions. 

 For example, for globular proteins, increasing their concentration in the medium, 

increases the amount of adsorbed molecules, because the major interactions lead to the 

formation of aggregates faster than the single absorbable protein. Temperature also plays 

an important role: denaturated proteins promote the formation of aggregates. Conditions of 

Surfactants  

Foam Emulsion  

Proteins  
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pH near the isoelectric point and high ionic strength have the same effect of temperature 

by reducing or removing electrostatic repulsion between similar proteins. 

 Very frequently, the i. are composed by different types of molecules and for this  

reason it is necessary to consider the single speed and mode of adsorption, the chemical 

and physical properties and possible interactions. In the case of mixed systems, the i. is 

initially formed by molecules that adsorb more rapidly. With the arrival of the other the i. 

evolves until it reaches an equilibrium in which the various system components, including 

those present in the medium coexist in dynamic equilibrium. 

 

Hydrophobic effect  

To better understand the mechanism that drive adsorption of protein on interfaces and 

their structural reorganization it good to introduce the physical phenomenon called 

“hydrophobic effect”, defined as the unaffinity of non polar compounds such as 

hydrocarbons towards polar solvents, like water. In molecular terms the process leading to 

this unaffinity is complex and can be described on chemical-physical basis. 

 The non-polar molecules are unable to compete with the strong attraction 

between the molecules of polar solvent, due mainly to the presence of hydrogen bonds 

between water dipoles that are stronger than the intermolecular interactions that attract 

apolar parts each other.  The hydrogen bonds are characterized by high directionality; they 

are, in fact, stronger when the molecules involved in the bond are oriented in such a way 

as to maximize the electrostatic interactions and this occurs when the hydrogen atom and 

two electronegative atoms are aligned. 

 In a polar solute, such as water, the dissolution of charged or polar molecules 

is facilitated by the formation of hydrogen bonds between solvent and solute and the ability 

of a dipolar solvent, such as water, to orient its dipole due to the 

charge of the solute. In thermodynamic terms the presence of a charged or polar 

molecules in water results in an increase in entropy of the system with a favorable change 

of free energy, where there is a slight increase in enthalpy related to the 

modification of hydrogen bonds offset by a greater increase in entropy. 

 Hydrophobic solutes do not cause interactions with the polar solvent and their 

addiction leads to an increase in enthalpy, requires the breaking of hydrogen bonds 

energy intake from the environment. In addition, the dissolution of molecules 

hydrophobic leads to a decrease in entropy. A model that can explain the behavior of 

solutes in a nonpolar polar solvent like water has been identified in the "iceberg model".  It 

proposes that a non-polar solute lead to the creation of a "cage" of a layer of 
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ordered water around it. In this structure the water molecules can not build bridges 

hydrogen to the solute, thus forming a "fence" welded by hydrogen bonds around the 

solute (Figure 1.2).  

 

 

Fig 1.2 : "Iceberg" model for apolar solutes in water. At low temperatures (A) molecules 

water surrounding a solute in non-polar, assume an ordered structure (low entropy) for 

maximize the entropy of the system. At high temperatures (B) the water molecules 

increase the state of disorder. 

 

To minimize the loss of entropy of the system, a number of polar solvent molecules 

are then ordered (as few as possible of course). The number of ordered water molecules 

and therefore the extent of the decrease in entropy, is 

proportional to the hydrophobic surface exposed by the solute. The free energy change 

due to the presence of a solute in a polar solvent is therefore unfavorable for a 

positive value of ∆H and a decrease of ∆S. The hydrophobic effect is 

characterized by negative entropy at low temperatures and by a negative enthalpy at 

high temperatures. In general, low-temperature thermodynamic processes are 

characterized to decrease their enthalpies, whereas high temperatures have led to states 

of high entropy. In the iceberg model the increase in temperature causes an increase in 

orientation distribution of water molecules that constitute the first layer 

around the solute in order to gain entropy. This leads to breaking of bonds 

hydrogen molecules between the first layer of the same with the result of an increase in 

enthalpy.  
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The measure of hydrophobicity of a given chemical species can, at least from the 

conceptually point, can be expressed as an equilibrium distribution. A solute shows a 

certain chemical affinity for each phase: polar and nonpolar. 

This affinity is defined as µ°, where µ° = h° - TS°. The solute also has an entropy of 

transition at each stage, represented by KTlnC, where C is the measure of the 

concentration of the solute in that phase. 

The distribution of the solute between the two phases reaches equilibrium when the 

difference equals the difference of chemical affinity and concentration is obtained as a 

result that: 

 ∆∆∆∆µ°=-KT ln C2/C1 

And, simultaneously: 

∆∆∆∆µ° = ∆∆∆∆H° - T ∆∆∆∆S° 

 

 For simple systems, such as non-polar solutes in nonpolar solvents, the change in 

entropy is small and ∆H° is the main component of ∆µ°. The free energy of transfer of 

apolar molecules in a polar solvent is positive and large (∆µ °>> 0). 

 In terms of free energies, ∆µ° is maximum at a temperature close to the point of  

boiling water, indicating that the interaction is less favorable at that 

temperature. However the experimental tests have shown that the solubility of a solute 

polar in water is proportional to ∆µ°/KT and that the hydrophobic effect is greatest in  

at room temperature. The term "hydrophobic effect" refers to the insertion of a 

single non-polar solute in water, with the words "hydrophobic interaction" 

refers to the association of two parts of polar molecules in water. The distinction stated 

motivates the definition of two characteristic temperatures: Ts, where ∆µ° is maximum and 

∆S°≈0, and Th, where the enthalpy of transition is minimal and the ratio ∆µ°/KT is 

maximum. 

 The simplest view, which assumes that the cost in free energy for 

creating a "cavity" in which to insert the solute depends exclusively on the surface 

of the cavity itself, two apolar solutes are driven to associate in water to reduce 

surface area of the solute-water contact. The interaction of two non-polar solutes in water 

is described by the "potential of mean force " (p.m.f) (Figure 1.3).  

 As function of the distance there are two minims that indicate the two energy-

favorite states: the first where the two solutes are in contact, the second where the two 

solute molecules are separated by a water molecule. Intermediate stages  between these 
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two are disadvantaged. Through a discussion of hydrophobic effect in thermodynamic 

terms, although short, strong ability to perceive the structuring of water in biological 

systems through a force of entropic nature that leads to non-covalent interactions of 

molecules, or parts of them, they are able to interact directly with water. 

 The hydrophobic effect, such as hydrogen bonds and van der Waals interactions 

are weak if considered individually, but being present in large numbers in the systems they 

play a major role in the three-dimensional structure of proteins, nucleic acids, 

polysaccharides and lipid membranes, also due to the nature individual cooperative 

interactions within complex polymeric structures. 

  

Adsorption of proteins on hydrophobic interfaces 

The incompatibility of no polar compounds such as hydrocarbons, with respect to polar 

solvents such as water, was defined above as hydrophobic effect. 

The non-polar molecules are unable to compete with the strong attraction between the 

molecules of polar solvent, due mainly to the presence of hydrogen bonds between water 

dipoles that are stronger than the intermolecular interactions between the apolar parts that 

attract them. Hydrophobic solutes do not cause interactions with the polar solvent and their 

introduction leads to an increase in enthalpy, the rupture of hydrogen bonds requires the 

intake of energy from the environment. In addition, the dissolution of hydrophobic 

molecules causes a decrease in entropy (for example, associated with the organization of 

water molecules) to minimize this loss of entropy. The systems tend to "hide" apolar 

solutes, organizing the fewest number of molecules 'water around them, or in the case of 

complex molecules with an inherent flexibility, to fold into structures that are not accessible 

to solvent. As mentioned above, this phenomenon is called "hydrophobic effect" and plays 

a decisive role - along with other “weak” chemicals bonds - in the definition of the three-

dimensional structure of proteins, nucleic acids, polysaccharides and lipid membranes, 

also thanks to the cooperative nature of individual interactions within complex polymeric 

structures. The phenomenon of protein adsorption to an interface plays a major role in 

many natural and artificial systems. Is well known that proteins adsorbed to an interface 

such as oil/water emulsions, and they can be stabilized by these biomolecules. The 

conformational changes that proteins undergo during the process of adsorption mainly 

affect their function and properties. However, knowledge about these structural changes, 

such as the possible formation of polymeric states, is still very limited. But the complexity 

of systems in which non-aqueous and aqueous phases coexist together makes it difficult 

to study structural changes of the protein in question. 
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There are many other cases of systems, in addition to that concerning food systems 

where protein adsorption is a phenomenon of considerable importance. An example of the 

adsorption process essential to the life is the statherin (STATH) case. Statherin is thyrosine 

rich phosphopeptide that plays a key role in the growth of bone tissue in the human body. 

This protein is adsorbed to the surface of bone hydroxyapatite (Gilbert et al., 2000), and its 

binds to the surface and recognition are essential for the functioning of this protein. 

Chromatography and analytical techniques are examples of artificial methods that 

exploit the properties of affinity between the proteins and surfaces of certain matrices 

(Chase, 1994; Regnier, 1987). The chromatographic techniques are very successful in the 

field of protein purification and require a great knowledge of the optimal conditions of pH, 

ionic strength and temperature to control the proper absorption. In fact, during this phase, 

the structure of the protein in question (from primary to quaternary), plays an important 

role in determining whether or not the protein will binds to a given matrix (Regnier, 1987). 

The field of nanotechnology, which in recent years has seen increasing interest and 

has been the subject of an exponential growing numbers of studies, provides other 

important examples in which the process of protein adsorption plays a significant role. The 

proteins can be adsorbed on smooth surfaces such as through the technique of 

lithography (Lee et al., 2002). These properties can be exploited in proteomic studies or in 

the screening process of pharmaceutical products.  

However, the process of adsorption of a protein interface can also be an undesired 

phenomenon. There are several cases in which this event is best avoided. An example are 

the proteins adsorbed on the materials used for the production of artificial prostheses 

implanted in the human body. These materials, such as bone implants, are exposed to 

body fluids that contain protein molecules that immediately adhere to their surface 

(Andrade et al., 1986). It possible that the structural changes of adsorbed proteins can 

indirectly cause adverse reactions after implantation of foreign material to the body, such 

as inflammation and thrombosis (Balasubramanian et al., 1999, Hu et al., 2001). Another 

example of unwanted protein adsorption to human health is the well-known case of fouling 

of contact lenses (Furness et al., 1998). The daily cleaning of contact lenses with a 

detergent is required so that it prevents the accumulation of adsorbed proteins causing 

loss of product performance. 

 

Driving forces of protein adsorption on interfaces 

The '"hydrophobic effect" is generally recognized as the driving force that guides the 

process of folding in a protein (Dill, 1990). In this scenery, the residues that show a more 
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hydrophobic part in the polypeptide chain are hide in the native protein from the aqueous 

environment. The hydrophobic interactions thus assume a role of considerable importance 

in the formation of tertiary and quaternary structures of proteins. 

The interaction between apolar structures is in fact considered to be of high 

importance in the associations between proteins, although we can not ignore the 

contribution arising from electrostatic energy. Protein/protein interaction sites at the 

interface show a high density of charged residues compared with the rest of the surface 

(Tsai et al., 1997). The evaluation of the composition in amino acids present at the surface 

(Tsai et al., 1997) shows that, while the hydrophilic amino acids, and polar loads, are more 

present in the surfaces compared to the hydrophobic core of the structure, they are not as 

frequent as expected over the entire surface. The effect of hydrophilic residues engaged in 

stabilizing molecular interactions is more significant than that which they exercise in the 

protein core and is therefore important to assess the relative contribution of these effects 

(Jones & Thornton, 1996).  

The difference between protein folding and protein interaction in terms of 

hydrophobicity can be estimated by basis according these aspects (Tsai et al., 1997). The 

primary motivation of a different degree of hydrophobicity can be found in the folding 

process itself: first the polypeptide structure has a greater degree of freedom and can 

adopt a large number of potential configurations, the folding polypeptide chain can be 

found to maximize the hydrophobic interactions, whereas the association between proteins 

already folded into a stable form involves a structure with a little freedom to alter its 

conformation in order to reach a greater extent of interactions between nonpolar residues. 

The absence of strictly hydrophobic areas on the surface of the protein and the presence 

of different number of polar residues can be seen as a compromise between achieving 

high stability of an interface and its possible existence in thermodynamics terms.  

The forces that determine the adsorption phenomenon of proteins to solid interface 

(Lee et al. 2001) are of different types and include van der Waals forces, electrostatic 

interactions, solvation energy and entropy effects (Oscarsson, 1997). The extent of 

adsorption is determined by the competition between attractive and repulsive forces, as 

shown in Figure 1.3 



Chapter 1)                                                       Protein unfolding on interfaces: a structural and functional study 
 

                                                                                16 

 

 

Fig 1.3:  attractive and repulsive forces involved in protein interface adsorption. From Y. 

Iwasaki et al. 2001 

 

Among the existing forces, van der Waals forces and electrostatic ones play an 

important role, while others are often consequences of structural or conformational 

changes of the protein. However, electrostatic interactions do not seem to play a role with 

regard to the surfaces of biomaterials that are in the most of the case essentially free of 

charge. In addition, the surface of these matrices generally do not have structures that can 

be recognized by molecules with a specific tertiary structure, as the binding sites of 

antibodies and enzymes. Therefore in the absence of such forces hydrophobic interactions 

hold the major role in the stabilization of these novel structures. 

 

Protein behavior after adsorption 

The process of nonspecific adsorption of globular proteins to a solid interface induces 

changes in protein structure in relation to the nature and size of the adsorbent material and 

tot the structural stability of the protein in question. It is well known that proteins can adopt 

different three-dimensional structures under the influence of "perturbing agents". In this 

context, the external contact with a surface could stabilize or prejudicing the presence of 

certain conformers, which then influence the kinetics of absorption and desorption. In 

recent years a number of studies have been made with the aim to investigate what are the 

forces that govern the process of adsorption at a solid interface (Norde 1998, 2000). 

A common feature of globular proteins is to expose polar residues below the surface 

of the molecule, while most of the apolar amino acids are "buried" in the hydrophobic core. 

However, a fraction of the protein surface is characterized by the presence of hydrophobic 

regions (Branden and Tooze 1991; Richards 1997).  

The spontaneous adsorption of protein molecules to a solid surface can occur if the 

Gibbs energy of the system decreases. The contribution to the increase in enthalpy of the 
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system is given by electrostatic interactions and hydrogen bonds, while the change in 

entropy is derived from the change in the order of the initial structure of the adsorbed 

protein, and by the rearrangement of water molecules at the interface.  

The process of the protein unfolding results from a number of elements in the 

system. The denaturation of globular proteins occurs when the system Gibbs energy is 

equal to 20-100 kJ mol-1, which is the equivalent energy required for the destruction of 1-8 

hydrogen bonds. However, these interactions do not involve the entire protein and native 

areas partly coexist in the structure (Radford et al. 1992). During a denaturation process in 

solution the energy change is determined by the increase in enthalpy and entropy loss due 

to the reorganization of water molecules around the protein amino acid with the new 

arrangement exposed to the solvent. The protein exposes portions to the solid matrix that 

are usually hide in the native state. Consequently, the mechanism of adsorption of a 

protein to solid interface is different from those caused by protein denaturation induced by 

the addition of substances in solution or by heat denaturation. 

There are several cases to consider in the process of adsorption of a protein 

interface. First of there is the case in which the outer surface of the protein is polar as the 

matrix which adsorbs. Here are a few water molecules are retained to solvate charged 

residues of the protein to the surface. If the protein surface is quite polar and the 

adsorbent phase is polar, or vice versa, there is a dehydration of the protein-solid phase 

interface. If both protein and solid surface have distinct characteristics of hydrophobicity, 

we assist to a protein structural reorganization and to a global entropy modification 

(Boulkanz et al. 1997; Dorsey and Dill 1989, Gilpin 1993, Lu et al. 1998; Norde 1998). In 

some cases the adsorption to a hydrophobic surface can induce conformational changes 

important enough to cause an increase in hydration of the protein (Boulkanz et al. 1995; 

McNay and Fernandez 1999).  

In any case the process of adsorption to an interface of a protein depends largely 

on the chemical and electrical properties of the adsorbent matrix. Several studies on the 

proteins adsorption to a polar and charged support show that most of the forces that 

govern the process are electrostatic (Gill et al. 1994; Lesins and Ruckenstein 1989; 

Quiquampoix et al. 1995; Servagent-Noinville et al. 2000; On et al. 1998b). For this reason 

many studies have focused on the development of models with interfaces electrostatically 

neutral. In this case, the different properties of hydration of both protein and sorbent matrix 

determine the repulsive forces that inhibit the process of adsorption (Herrwerth et al. 2003; 

Jeon et al. 1991). Using hydrophobic supports, the adsorption process is determined by 

interfacial energy reduction and by the replacement of water molecules at the interface 
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with proteins (Vogler 1998). 

In addition it is useful to draw attention to the interactions between proteins in the 

system, both or either electrostatic or hydrophobic in nature, which could cause 

aggregation of proteins at the solid-liquid. In both cases these forces govern the 

orientation and the specific structure of the adsorbed protein molecule (Malmsten, 1998; 

Wahlgren et al. 1998), as shown in Figure 1.4.  

 

 

 

 

 

 

 

 

 

Fig 1.4:  example of monomolecular layer of globular proteins adsorbed on a solid 
interface. From Norde W., 2008. 
 

Almost all the adsorption process are characterized by the lack of specific knowledge in 

terms of energy and entropic contributions to the system in terms of: 

• Redistribution of charged groups (ions) when proteins are superimposed on the 

surface 

• Dispersion of forces between the protein and the adsorbent 

• Change in hydration of the solid surface of the protein 

• Structural rearrangements of the protein molecules 

 

In general, the process of adsorption of proteins from an aqueous solution to a solid 

support involves three main steps, as shown in Figure 1.5. 
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Fig 1.5 : schematic of a model denaturation process at the interface 
 

In many circumstances the forces that govern the process of adsorption have their 

origin from hydration or dehydration of a hydrophobic surface phenomena that are much 

stronger than electrostatic contributions (which vary according to conditions of pH and 

ionic strength of the system). For this reason it is expected that all proteins can adhere to 

apolar surfaces even in unfavorable electrostatic conditions. 

The behavior of a protein at the interface also depends on its structure. There is a 

classification on the globular proteins, which distinguishes them according to their stability 

during adsorption (Arai and Norde 1990, Kondo et al. 1991; Norde 1991). These authors 

introduced the concept of "soft" and "hard" protein. Proteins classified as "hard" undergo 

small structural changes after adsorption and adhere to surfaces only if attracted by 

electrostatic forces. "Soft" proteins instead undergo more changes in the structure, 

resulting in a conformational entropy change necessary for the protein to engage the polar 

surface (Figure 1.6). 

 

 

 

 

 

Fig 1.6 : protein classification from their attitude to interact with a non polar surface. Form 
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Norde W., 1998 

There are several causes of the change in the protein structure when bounds to a 

solid interface. One of these is the possibility or impossibility of forming hydrogen bonds 

with the polymer matrix. In aqueous environment the globular structure of a protein is 

strongly determined by hydrophobic interactions, this means that the protein hides his 

polar portion from the water. The hydrogen bonds between polypeptide units in the protein 

stabilize the formation of ordered structures such as α-helices and β-sheet. But when the 

protein adsorbs to the solid surface, a part of it was first exposed to the solvent and then is 

put in contact with the solid interface. As a result the intramolecular hydrophobic 

interactions decrease in intensity and they are no longer the main factor involved in the 

stabilization of the molecule. The apolar portions, which in aqueous solution are hidden 

inside the protein, could be partially exposed to the surface without coming into contact 

with water. This behavior depends from the hydrophobicity of the solid surface. 

Polar surfaces could interact via hydrogen bonds. Therefore, peptide sequences, 

which lose their spatial conformation when portions of α-helices and β-sheets are 

destroyed, they can form hydrogen bonds with the surface. However, despite these 

portions are anchored to the surface, a substantial loss of the original ordered structure 

could increase the entropy of thesystem. 

Apolar surfaces have no opportunity to interact via hydrogen bonds with the protein. 

The process of adsorption of a nonpolar matrix could stimulate the creation of hydrogen 

bonds between the polypeptide chains in the interfacial region of the protein so as to 

promote ordered structures in the protein molecule. 

Protein molecules spontaneously adsorb to a surface when the corresponding 

energy of adsorption, ∆Gads, is negative. It is been shown that the major contribution to a 

negative ∆Gads derives from the presence of hydrophobic and electrostatic interactions. 

However, the conformational changes also contribute to decrease ∆Gads thus providing a 

further boost protein adsorption (Norde and Lyklema, 1991; Norde, et al. 1995; Norde, 

1999). The first observations showed that structural changes of the protein to an interface, 

date back almost 40 years ago (MacRitchie, 1972) and were based on measurements of 

enzymatic activity of proteins adsorbed at the air/liquid. Knowledge of these structural 

changes is important and essential to understand and to control the adsorption 

phenomena, as well as to be able to develop the theory real for that phenomenon. 

One considerable importance aspect during the adsorption process is related to the 

“adaptability” of the protein when placed on a surface. The first evidences of this behavior 

have been disclosed when sophisticated tools and methodologies have allowed to 
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investigate directly the structure of adsorbed proteins. When a protein adsorbs to a surface 

loses its structure, yet retains some ordered regions with areas of α-helices and β-sheet. 

(Norde, 1998). 

The protein population present at the hydrophobic interface is characterized by a 

certain heterogeneity in relation to the state in which the protein is located. A certain 

amount is in fact present at the surface as a structured protein that retains its native state, 

while a fraction is present as an intermediate of a simple or complex denaturation 

passage. Proteins adsorb to the surface and tend to relax its structure in relation to protein 

concentration: the higher the concentration of protein the less a relaxation of the structure 

(Figure 1.7). 

 

 

 

 

 

 

 

Fig 1.7: schematics of protein behavior on a general hydrophobic surface. From Norde W., 

1998 

 

The adsorption of proteins on solid surfaces is often described as ‘irreversible’ 

since, after attachment is established, which has usually reached a final value within an 

hour, subsequent replacement of the protein solution by pure solvent, as a rule, does not 

lead to any significant desorption on a time scale of hours or even days. However, it does 

not mean that protein molecules remain attached to the surface whatever the conditions of 

the solution in which the surface is immersed. With respect to reversibility of 

adsorption/desorption of proteins, distinction should be made between reversibility toward 

dilution of the solution, changes in pH and ionic strength, addition of other types of 

surface-active substances and exchange against dissolved proteins. Although desorption 

upon dilution typically does not occur, protein molecules may be released from the surface 

by other surface active molecules added to the system through an exchange mechanism 

in which the protein molecules are replaced from the surface in favor of adsorption of other 

molecules.  

Perhaps, the most clear example of such an exchange process is the “Vroman 

effect”: the transient adsorption of proteins from blood plasma, in which, the more 
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abundant smaller proteins are displaced by the less abundant larger proteins that have 

higher affinities for the surface. The exchange process between protein molecules in the 

adsorbed state and in solution can be heteromolecular, like the Vroman effect, or 

homomolecular, as in systems where a large amount of one kind of protein is present in 

excessive amounts so that it is accommodated both in the adsorbed state and in solution.  

Then, protein adsorption is a dynamic process by which protein molecules are 

continually exchanged between the adsorbed and the dissolved states. It is well known 

that relaxation at the sorbent surface involves more or less perturbation of the original, 

native protein structure. The question arises whether the molecules returning from the 

surface into the solution regain their original structure (Norde, 2000). 

 

 

References 

 

• Andrade, J.D., Hlady, V. (1986) Protein adsorption and materials biocompatability: a tutorial review 

and suggested hypothesis Adv. Polym. Sci. 79: 1-63 

• Arai I., Norde W. (1990) The behavior of some model proteins at solid–liquid interfaces. I, adsorption 

from single protein solutions Colloids Surf A 51: 1–15 

• Balasubramanian V., Grusin N.K., Bucher R.W., Turitto V.T., Slack S.M. (1999) Residence-time 

dependent changes in fibrinogen adsorbed to polymeric biomaterials J. Biomed. Mater. Res. 44: 

253-260 

• Boulkanz L., Balcar N., Baron M-H. (1995) FTIR analysis for structural characterization of albumin 

adsorbed on the reversed-phase support RP-C6 Appl Spectrosc 49: 1737–1746 

• Boulkanz L., Vidal-Madjar C., Balcar N., Baron M-H. (1997) Adsorption mechanism of human serum 

albumin on a reversed-phase support by kinetic, chromatographic, and FTIR chromatography 

surface? J Chromatogr A 849: 135–148 

• Chase H.A. (1994) Purification of protein by adsorption chromatography in expanded beds Trends 

Biotech 12: 296-303 

• Dill K.A. (1990) Dominant forces in protein folding Biochemistry 29: 7133-7155 

• Dorsey J.D., Dill K.A. (1989) The molecular mechanism of retention in reversed-phase liquid 

chromatography Chem Rev 89: 331–346 

• Furness E.L., Ross A., Davis T.P., King G.C. (1998) A hydrophobic interaction site for lysozyme 

binding to polyethylene glycol and model contact lens polymer Biomater. 19: 1361-1369 

• Gilbert M., Shaw W.J., Long J.R., Nelson K., Drobny G.P., Giachelli C.M., Stayton P.S., (2000) 

Chimeric peptides of statherin and osteopontin that bind hydroxyapatiteand mediate cell adhesion J. 

Biol. Chem. 275: 16213-16218 

• Gill D.S., Roush D.J., Willson R.C. (1994) Adsorption heterogeneity and thermodynamic driving 

forces in anion-exchange equilibria of cytochrome b5 J Colloid Interface Sci 167: 1–7 



Chapter 1)                                                       Protein unfolding on interfaces: a structural and functional study 
 

                                                                                23 

• Gilpin R.K. (1993) Conformational changes and molecular dynamics of simple silica immobilized 

systems J Chromatogr A 656: 217–229 

• Golding M., Sein A. (2004) Surface rheology of aqueous casein-monoglyceride dispersion Food 

hydrocolloids 18: 451-461 

• Herrwerth S., Eck W., Reinhardt S., Grunze M. (2003) Factors that determine the protein resistance 

of oligoether self-assembled monolayers – internal hydrophobicity, terminal hydrophilicity, and lateral 

packing density J Am Chem Soc 125: 9359–9366 

• Hu W.J., Eaton J.W., Ugarova T.P., Tang L. (2001) Molecular basis of biomaterial mediated foreign 

body reactions Blood  98: 1231-1238 

• Jeon S.I., Lee J.H., Andrade J.D., De Gennes P.G. (1991) Protein–surface interactions in the 

presence of polyethylene oxide: I. Simplified theory J Colloid Interface Sci 142: 149–158 

• Jones S., Thornton J.M. (1996) Principles of protein-protein interactions P.N.A.S. 93: 13-20 

• Kondo A., Oku S., Higashitani K. (1991) Structural changes in protein molecules adsorbed on 

ultrafine silica particles J Colloid Interface Sci 143: 214–221 

• Kumar S., Nussinov R. (2002) Close-range electrostatic interactions in proteins Chembiochem 3: 

604-617. 

• Lee K.B., Park S.J., Mirkin C.A., Smith J.C, Mrksich M. (2002) Protein nanoarrays generated by dip-

pen nanolithography Science 295: 1702-1705 

• Lesins V., Ruckenstein E. (1989) Chromatographic probing of protein-sorbent interactions J Colloid 

Interface Sci 132: 566 

• Li W.F., Zhou X.X., Lu P. (2005) Structural features of thermozymes Biotechnol Adv 23: 271-281 

• MacRitchie F. (1972) The adsorption of proteins at the solid/liquid interface Journal of Colloid and 

Interface Science 38: 484-488 

• Makhatadze G.I., Privalov P.L. (1995) Energetics of protein structure Adv. Protein Chem. 47: 307-

425 

• Malmsten M. (1998) Formation of adsorbed protein layers J Colloid Interface Sci 207:186–199 

• McNay J.L., Fernandez E.J. (1999) How does a protein unfold on a reversed-phase liquid methods J 

Colloid Interface Sci. 188: 58–67 

• Myers D. (1999) Surface, interfaces and colloids: principles and applications, 2nd edition, John Wiley  

• Norde W. (1998) Driving forces for protein adsorption at solid surfaces. In: Malmsten M (ed) 

Biopolymers at Interfaces. Marcel Dekker, New York, pp 27–54 

• Norde W. (2008)  My voyage of discovery to proteins in flatland . . .and beyond Colloids and 

Surfaces B: Biointerfaces 61: 1–9 

• Norde W., and Lyklema S., (1991) Why protein prefers interface? J. Biomaterial Int. Sci 2:  193-202 

• Norde W., Galistéo Gonzalez F., Haynes Ch.A. (1995) Protein adsorption on polystyrene latex 

particles Polym. Adv. Techn. 6: 518-525 

• Norde W., Giacomelli C.E. (1999) Conformational changes in proteins at interfaces: from solution to 

the interface, and back Macromolecular Chemistry and Physics - Macromolecular Symposia 145: 

125-136 

• Norde W., Giacomelli C.E. (2000) BSA structural changes during homomolecular exchange between 

the adsorbed and the dissolved states J. Biotechnol. 79, 259-268 



Chapter 1)                                                       Protein unfolding on interfaces: a structural and functional study 
 

                                                                                24 

• Norde W., Zoungrana T. (1998) Activity and structural stability of adsorbed enzymes Progress in 

Biotechnology 15: 495-504  

• Norde W., Zoungrana T. (1998) Surface-induced changes in the structure and activity of enzymes 

physically immobilized at solid/liquid interfaces Biotechnol Appl Biochem. 28: 133-43. 

• Pace C.N., Shirley B.A., McNutt M., Gajiwala K. (1996) Forces contributing to the conformational 

stability of proteins FASEB J. 10: 75-83 

• Quiquampoix H., Abadie J., Baron M-H., Leprince F., Matumoto-Pintro P.T., Ratcliffe R.G., Staunton 

S. (1995) Mechanisms and consequences of protein adsorption on soil mineral surfaces. In: Horbett 

TA, Brash JL (eds) Proteins at Interfaces. II. Fundamentals and Applications. American Chemical 

Society, Washington, DC, pp 321–333 

• Radford S.E., Dobson C.M., Evans P.A. (1992) The folding of hen lysozyme involves partially 

structured intermediates and multiple pathways Nature 358: 302-307 

• Razvi A., Scholtz J.M. (2006) Lessons in stability from thermophilic proteins Protein Sci 15: 1569-

1578 

• Regnier F.E. (1987) The role of protein structure in chromatographic behavior Science 238: 319-323 

• Schellman J.A. (1997) Temperature, stability, and the hydrophobic interaction Biophys. J. 73: 2960-

2964 

• Servagent-Noinville S., Revault M., Quiquampoix H., Baron M-H. (2000) Conformational changes of 

BSA induced by adsorption on different clay surfaces: FTIR analysis J Colloid Interface Sci 221: 

273–283 

• Szilagyi A., Zavodszky P. (2000) Structural differences between mesophilic, moderately thermophilic 

and extremely thermophilic protein subunits: Results of a comprehensive survey Structure 8: 493-

504. 

• Tsai C.J., Nussinov R. (1997) Hydrophobic folding units derived from dissimilar monomer structures 

and their interactions Protein Sci. 6: 24-42 

• Vogler E.A. (1998) Structure and reactivity of water at biomaterial surfaces Adv Colloid Interface Sci 

74: 69–117 

• Wahlgren M., Welin-Klintström S., Karlsson C.A.-C. (1998) Interactions between proteins and 

surfactants at solid interfaces. In: Malmsten M (ed) Biopolymers at Interfaces. Marcel Dekker, New 

York, pp 485–512 

 

 

 

 

 

 

 

 

 



Chapter 2)                                                       Protein unfolding on interfaces: a structural and functional study 

                                                                                25 

 
 
Chapter 2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DENATURATION OF SOY PROTEINS IN SOLUTION AND 

AT THE OIL-WATER INTERFACE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2)                                                       Protein unfolding on interfaces: a structural and functional study 

                                                                                26 

Introduction 

 

ββββ-conglycinin  

β-conglycinin (7S) is a glycosilated hetero-trimer randomly formed by three different 

subunits: α (≈67 kDa), α’ (≈71 kDa) and β (≈50 kDa). The α and α’subunits are composed 

by two different domains: the core region and the extension region. The β subunit only 

contains the core region. The core region is well conserved in each subunit and is 

imputable for the thermal stability of the protein. The extension regions show a sequence 

identity of 57.3 % and they are strongly acidic (Maruyama et al, 2003). Each subunit has 

specific physico-chemical properties. At pH 7.6 and 0.5 M NaCl  the midpoint denaturation 

temperatures of the recombinant β, α’and α are 90.8° C, 81.7° C and 78.6° C (Maruyama  

et al, 1998). The surface hydrophobicity order of either recombinant subunits is α’>α>β but 

their emulsifying capacity is in the order α>α’>β (Maruyama et al, 2002), and this latter 

difference has been attributed to the presence of the extended region in the α and α’ 

subunits. β-conglycinin can also form supramolecular aggregates as a function of pH and 

ionic strength (Than et al, 1978). 

 

 

 

 

Fig 2.1:  β-conglyicinin α subunit 3D structure (from http://www.uniprot.org/uniprot/P13916) 
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Glycinin  

Glycinin is a hetero-multimer, with a molecular mass of 300-380 kDa. It consists of two 

disulphide-bonded subunits – one acid and one basic -  interacting non-covalently to give a 

hexamer that can be dissociated by treating the proteins with chaotropic agents such as 

urea or guanidinium hydrochloride, or with sodium dodecylsulphate (Shewry, 1995). There 

are different genetic variants of glycinin (named G1 to G5) that differ also for their thermal 

stability (Lakemond, De Jong, Gruppen & Voragen 2002). At pH 7.6 and I 0.5 M glycinin 

has denaturation temperatures ranging from 85° to 9 4° C. (Lakemond, De Jongh, Hessing, 

Gruppen & Voragen, 2000). 

 

 

 

Fig 2.2:  glycinin G2 subunit 3D structure (from http://www.uniprot.org/uniprot/P04405) 

 

Fluorescence spectroscopy 

Fluorescence is a physical phenomenon in which some electrons of specific molecules 

can acquire a higher energy level from adsorption of photons of appropriate energy, 

resulting in emission of the absorbed energy in the form of photon energy still high when 

the electron returns to baseline. 

 From the second law of thermodynamics, the energy emitted is always less than 

that absorbed, and therefore the wavelength of emission is greater than the wavelength of 

excitation. The amount of energy emitted by a specific fluorescent group is also correlated 

with its chemical and physical-chemical around. Structural proteins organization 
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informations can be provided by fluorescence measurements on tryptophan residues (Trp), 

whose indole ring is excitable at 295-300 nm. The fluorescence response may vary 

depending on the Trp physical surrounding. An observed increase of the wavelength of 

emission (and therefore a lower energy yield) means that the Trp moves from a non polar 

environment (for example, the inside of a protein) to a more polar one (for example, the 

aqueous solvent). The intensity of fluorescence can vary, depending on whether the 

excited electrons may or may not return to ground state or their energy be lost on other 

potential acceptors, which are called "quencher". 

 

Spectroscopic techniques for the study of protein s tructure  

Fluorescence spectroscopy is a very powerful tool for studying protein structural changes 

in complex matrices, such as food products. The fluorescence spectrum is determined by 

the chemical environment of a fluorescent component (in proteins, it is usually the 

fluorescent amino acid tryptophan), and therefore, changes in the emission spectra of 

tryptophan often occur in response to conformational transitions, subunit association, 

substrate binding, or denaturation of the proteins present in the sample. There is a shift of 

the maximum of emission to higher wavelength when tryptophan moves from a 

hydrophobic surrounding to a hydrophilic one (e.g. from the protein interior to the aqueous 

media). Also fluorescence intensity can change: some molecules can work as quenchers 

and adsorb the emitted light (Bonomi et al, 2004). 

Information about protein structural organization may be gathered also by using 

fluorescent dyes. One of the most popular probes is 1-anilinonaphthalene-8-sulfonate 

(ANS), that becomes fluorescent when interacting whit a hydrophobic region, making it 

possible to study protein structural changes in complex systems after a specific treatment 

(Iametti et al, 1993; Cairoli et al, 1994; Alizadeh-Pasdar et al, 2004; Rasmussen et al, 

2007; Caldinelli et al, 2008). 

Traditionally, fluorescence studies have been performed on clear solutions. In the 

case of solid or cloudy liquid food products (e.g. emulsions) it is possible to apply front 

face fluorescence techniques (Eisingerand et al, 1979; Castelain et al, 1994; Rampon, et 

al, 2003; Bonomi et al, 2004; Granger et al, 2005). In this technique the excitation light 

beam excites only the first layer of the samples, and the light is emitted from this same 

surface.  
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Circular dichroism spectroscopy 

Circular dichroism (CD) is a spectroscopic technique based on the absorption of circularly 

polarized light by intrinsically or extrinsically chiral chromophores placed in an ordered 

structure. This technique takes advantage of the elliptical polarization of a beam of light, 

linearly polarized in a plane, suffers after passing through an optically active molecule. 

 All amino acids except glycine, are optically active, in what they all contain an 

asymmetric carbon. The interaction between the plane of polarized light and asymmetric 

periodicals stretches of the polypeptide chain, determines a circular dichroism spectrum 

attributable to a given conformation. The light source used is usually produced by a xenon 

lamp that it has continuous emission in the spectral region ranging from 180 to 800 nm.  

 

 

Aim of the work 

At now it is well known that soy proteins readily adsorb at the interface of an oil water 

emulsion upon homogenization, but very little is yet understood on the details of the 

structural changes at the interface. The aim of this work is to study the structural changes 

of soy proteins in solution, with focus on chaotrope and heat-induced changes, and 

compare it to those at the oil-water interface. 
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Material and methods 

 

Purification of storage soy proteins fraction 

Soy protein isolate (SPI) was prepared by dispersing (1:10 ratio w/v) defatted soy flakes 

(donated by the Solae Company) in 0.1 M Tris-HCl buffer at pH 8.0.  After mixing at room 

temperature for 1 h, the soluble fraction was separated by centrifugation at 12,000 g for 30 

min at 10 ºC (Beckman Coulter, Model J2-21, Fullerton, CA, USA). The centrifuged 

dispersion was then adjusted to pH 4.8 with 2 M HCl, and refrigerated at 4° C for 2 h.  The 

protein was then precipitated by centrifugation as described above. The supernatant was 

discarded and the precipitate was washed with 0.01 M sodium acetate, pH 4.8 to a 1:8 

ratio (w/v) and centrifuged again. The slurry was resolubilized in ultrapure water 

(Barnstead International, E-pureTM D4641, Iowa, USA) and the final pH was adjusted to 

7.5 with 2 M NaOH. The fraction was dialyzed overnight at 4 ºC, freeze dried and stored at 

-20° C for further analysis.   

The isolation of fractions rich in glycinin and β-conglycinin was carried out as 

previously described with minor modifications, by suspending the defatted soy flakes (The 

Solae company) in ultrapure water (Barnstead International, E-pureTM D4641, Dubuque, 

Iowa) in 1:15 ratio (w/v) and adjusting the pH to 8.0 with 2 M NaOH.  After stirring the 

suspensions for 2 h at room temperature, the insoluble fractions were separated by 

centrifugation at 9,000 g for 30 min at 20° C (Beck man Coulter, Model J2-21, Fullerton, 

CA, USA).  Sodium bisulfite (0.98 g/L) was added to the soluble fraction adjusted to pH 6.4 

with 1 M HCl. After overnight incubation at 4° C, t he protein suspension was centrifuged at 

7,000 g for 20 min at 4º C (Beckman Coulter, Model J2-21, Fullerton, CA, USA).  A fraction 

rich in glycinin was recovered in the precipitate, resolubilized with ultrapure water, and 

adjusted to pH 7.5 with 2 M NaOH. Sodium chloride (0.25 M final concentration) was 

added to the remaining supernatant, which was adjusted to pH 5.0 with 1 M HCl and 

stirred for 1 h in an ice bath.  After centrifugation at 9,000 g for 30 min at 4° C (Beckman 

Coulter, Model J2-21, Fullerton, CA, USA), the supernatant was diluted with cold ultrapure 

water in 2:1 ratio (v/v) and adjusted to pH 4.8 with 2 M HCl.  The β-conglycinin rich fraction 

was then recovered after centrifugation at 7,000 g for 20 min at 4° C.  The precipitate was 

resolubilized with ultrapure water and adjusted to pH 7.5. Both isolated fractions (β-

conglycinin and glycinin rich fractions) were dialyzed at 4° C overnight against ultrapure 

water and freeze-dried.  The freeze dried proteins were stored at -20° C.   
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Preparation of soy protein solution 

Both protein preparations (95 % protein on a dry weight basis) were dissolved in 0.05 M 

sodium phosphate buffer the day before use and stored at 4° C. Before analysis the 

samples were equilibrated at room temperature for at least one hour. When reported, heat 

treated samples were prepared by heating protein solutions at 75° C or 95° C for 15 min in 

a water bath followed by immediate cooling in an ice bath. Urea-treated protein samples 

were prepared by dissolving the appropriate amount of protein in denaturating buffer (8 M 

urea, 0.05 M Tris-HCl, pH 7.4) to a final concentration of 1 mg/ml. After at least one hour of 

gentle mixing, protein solutions were used for the measurements. 

 

Emulsion preparation 

Emulsions were prepared as follows: 3 g of soy oil (Sigma Co., St Louis, MO) were pre-

emulsified with 27 ml of 10 mg/ml β-conglycinin or 20 mg/ml glycinin solutions prepared as 

described before, using a dispersing unit (Powergen 129, Fisher Scientific, Ottawa, ON) 

for approximately 1 min. The pre-emulsion was immediately homogenized through a 

Microfluidizer (110S model, Newton, MA) for five passes with an overall pressure of 300 

kPa. Heating of emulsions was carried out at 75° C for 15 min for the β-conglicinin-

stabilized emulsion and at 95° C for 15 min for the  glycinin-stabilized emulsion as 

described above for solutions. 

For spectroscopic analysis of proteins in the emulsion, and to minimize the 

contribution from the unadsorbed protein, the lipid fraction was separated from the 

aqueous phase by centrifugation (12.000 x g) for 20 min using an Eppendorf 

microcentrifuge. The cream was then removed, spread on a glass fiber filter (Whatman, 

Fisher Sci), washed with 0.05 M sodium phosphate buffer, and resuspended in 0.05 M 

sodium phosphate buffer to a final concentration of 10% (w/w). All samples were kept at 4° 

C until use. 

 

Fluorescence spectroscopy 

Tryptophan fluorescence emulsion spectra (λex: 280 nm; λem: 300-450) (Castelain & Genot, 

1994; Bonomi, Mora, Pagani & Iametti, 2004) were recorded in a Shimadzu RF-5301PC 

spectrofluorometer (Shimadzu Corp., Tokyo, Japan) equipped with both liquid sampler 

holder and front face cell holder. Excitation and emission slits were set at 5 nm. Excitation 

was at 280 nm to maximize tryptophan quantum yield. Protein fluorescence upon 

excitation at 280 nm is due to both tyrosine and tryptophan residues. However, the 
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emission of tyrosine in an aqueous buffer occurs at 303 nm and is quite insensitive to 

solvent polarity, whereas the emission maximum of tryptophan in water occurs near 350 

nm and is extremely dependent upon the polarity of the environment around the sidechain 

(Lakowicz, 2006). Cream obtained with either β-conglycinin or glycinin was diluted 1:10 

(v/v). All spectra are the average of at least three repeated scans.   

 

CD spectroscopy 

CD spectra were recorded on a Jasco J810 spectropolarimeter (Jasco Corp, Tokyo) and 

analyzed by means of Jasco software. Near-UV CD spectra (350-240 nm) were recorded 

on a 2 mg/ml protein solution in an 1 cm path quartz cuvette (band width: 2 nm, response: 

0.25 s, data pitch: 0.1 nm, scanning speed 20 nm/min). Far-UV CD spectra (250e190 nm) 

were recorded on a 0.2 mg/ml protein solution in a 0.1 cm path quartz cuvette (band width: 

2 nm, response: 0.5 s, data pitch: 0.1 nm, scanning speed 20 nm/min). Protein secondary 

structure estimation was carried out by using CDNN software 

(http://bioinformatik.biochemtech.uni-halle/cdnn). 

 

Protein surface hydrophobicity and -SH accessibilit y 

Protein surface hydrophobicity was determined by titration with 1-anilinonaphthalene-8-

sulfonate (ANS) (Rasmussen, Barbiroli, Bonomi, Faoro, Ferranti, Iriti, Picariello & Iametti, 

2007).  

 Data were elaborated using the Lineweaver-Burk equation as follow: 

 

1/F = 1/Fmax + Kd/[ANS]* F max 

 

Where F is maximum registered fluorescence intensity, [ANS] is the total fluorescent probe 

concentration (µM), Fmax is the maximum fluorescence intensity (at saturating probe 

concentration) and Kd is the apparent dissociation constant of a supposedly 

monomolecular protein/ANS complex. Fmax and Kd were calculated by standard linear 

regression fitting procedures. The ratio Fmax/Kd, corrected for the protein content, gives the 

protein surface hydrophobicity (PSH) index. 

 Cysteine thiol accessibility measurements were performed according to Iametti, De 

Gregori, Vecchio & Bonomi (1996). A 0.1 ml aliquot of protein solution were added to 0.9 

ml of 2 mM DTNB. After 15 minutes at room temperature, solutions were centrifuged for 10 

min at 13200 x g, and the absorbance of the supernatant was read at 412 nm. 
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Limited proteolysis and MALDI-TOF mass spectrometry  

Limited proteolysis experiments were performed as follow: to 1 ml of β-conglycinin 

emulsion, were added 0.01 ml of trypsin solution (Sigma, TCPK treated, 10 mg/ml in 0.025 

sodium acetate, pH 4.5) in order to reach a protease/substrate ratio of 1/100 w/w. 

Hydrolysis were carried out for 30 min at 37° C and  stopped by addition of 0.02 ml of 

Soybean Kunitz Tripsin Inibitor (20 mg/ml in dd water). The hydrolyzed emulsion is then 

centrifuged in order to separate the fat phase from the aqueous one, and collected 

separately. 

 In order to extract the resulting peptides from each phases after the 

hydrolysis, the following protocol was applied: to one volume of each samples 3 volumes 

of exane and 2 volumes of acetone were added in a glass vial. After vigorous mixing and 

subsequently separation of the two immiscible phases, the upper phase (the apolar one, 

containing the hexane and the extracted lipids or polystyrene) was removed. This step was 

repeated three times. The acetone from the delipidized polar phase was removed by 

vacuum stripping, and then the samples were lyophilized. 

The lyophilized samples were dissolved in dd water with 0.1 % TFA. After a cleaning 

passage, performed with C18 Zip Tip devices (Millipore) using the protocol provided by the 

manufacturer, samples were mixed either with the matrixes (α-cyano- 4-hydroxycinnamic 

acid or sinapinic acid) and loaded on the MALDI plates. MALDI-TOF mass spectrometry 

was carried out on a PerSeptive BioSystems Voyager DE-Pro spectrometer equipped with 

a N2 laser (λ 337 nm, 3-ns pulse width, 20-Hz repetition rate).  

The instrument operated with an accelerating voltage of 20 kV. External mass 

calibration was performed with low-mass peptide standards including angiotensin I, (m/z ¼ 

1296.68), bovine αs1-casein 1-23 peptide (m/z ¼ 2764.55) and bovine insulin (m/z ¼ 

5730.61). Mass spectra were acquired in the reflector mode using Delay Extraction (DE) 

technology, and analyzed by using the software provided by the manufacturer. 
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Results  

 

Protein structural changes in solution and its reve rsibility 

A first set of experiments was aimed at assessing the nature and extent of molecular 

modifications that the two proteins undergo when denatured in solution, in order to 

compare these changes with those occurring at oil/water interface. Denaturation was 

monitored through measurements of: 1) tryptophan fluorescence (providing information on 

the chemical environment of tryptophan sidechains); 2) far-UV CD spectroscopy (providing 

information on type and amount of secondary structure elements); 3) surface  

hydrophobicity (measuring the number and affinity towards suitable probes of hydrophobic 

patches on the protein surface (Cairoli et al., 1994; Iametti et al., 1993); 4) accessibility of 

cysteine thiols (that depends on their distance from the protein surface as  a function of 

denaturation). 

  

 

 

Fig 2.3:  effect of heat treatments on the emission fluorescence spectra of β-conglycinin 

and glycinin solutions (1 mg/ml). Shown are the average of at least three spectra taken on: 

untreated protein (―), urea denaturated protein (•••), protein heated at 75° C for 15 min (--

--), protein heated at 95° C for 15 min (–••–) 

 

 Figure 2.3 presents the average fluorescence spectra for β−conglycinin and glycinin 

solutions before or after denaturation using temperature or chaotropes. Heating of protein 

solutions was carried out at 75° C and 95° C for 15  min, as those temperatures have been 

shown to be above the transition temperatures for β-conglycinin and glycinin by differential 
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scanning calorimetry. As shown in Figure. 2.3, heat treatment of β-conglycinin solutions 

does not shift the maximum emission wavelength of tryptophan fluorescence (336 nm) 

after heating at both 75° C and 95° C and subsequen t cooling. On the other hand, 

treatment with 8 M urea has been shown to unfold β-conglycinin completely (Sze et al., 

2007), and the tryptophan emission maximum is red shifted about 8 nm (344 nm). A red 

shift in the fluorescence emission maximum indicates transition of the tryptophan 

sidechain to a more polar environment. Heat-treated glycinin solutions show a very small 

red shift (330 nm vs. 329 nm in the non-heated protein) after heating at 75° C for 15 min, 

that increases to 4 nm (333 nm) heating at 95° C. T he higher shift that occurs in the 95° C 

treated sample means that glycinin treated at this temperature loses a higher amount of its 

structure with an exposure of its tryptophan-containing regions to the aqueous phase, 

compared with glycinin heated at 75° C. It is impor tant to note that differential scanning 

calorimetry reports transition temperatures higher than 85° C for glycinin, depending on 

the environmental conditions. Results in Figure 2.1 clearly demonstrate that glycinin’s 

structural changes already occur at temperatures below 80° C. Upon complete unfolding of 

glycinin in 8 M urea a very large red shift is observed (18 nm). 

 Temperature-induced structural changes were also investigated by CD 

spectroscopy on solutions of the protein after heating for 15 min at 75° C and 95° C and 

subsequent cooling.  

 

 

Fig 2.4:  Effect of heat treatments on the far-UV CD spectra of β-conglycinin and glycinin 

solutions (0.2 mg/ml). Shown are the average of three spectra taken on: untreated protein 

(―), protein heated at 75° C for 15 min (----), prote in heated at 95° C for 15 min (–••–). 
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  No changes were detected in as for Trp-dependent ellipticities in the near-UV CD 

region in the case of β-conglycinin, where urea gave a >60% decrease in signal intensity 

(not shown). A marked decrease in signal intensity was observed in the same spectral 

region for glycinin, confirming the indications from the fluorescence measurements. 

Exposure at either protein at temperatures above 75° C caused modest but irreversible 

temperature-induced changes in their secondary structure, as shown in Figure 2.4. 

Analysis of changes in secondary structure elements indicated that the alpha-helix  

content decreased from 13/14% to about 11% after treatment at 95° C, together with that 

of beta-sheet regions (from 5.5 to 4.5-4.6%), with a concomitant increase in random coil 

regions (from 33.8-33.2% to 36.7-36.9%). No residual features were evident from 260 nm 

to 200 nm when 8 M urea was added to either protein. The intense urea absorbance 

prevented recording spectra at shorter wavelengths. The overall surface hydrophobicity 

index (PSH), previously used for the identification of changes in the structure of proteins, 

defines the affinity of a hydrophobic probe for the protein (Cairoli et al., 1994; Iametti et al., 

1996) was also mesured. Table 1 summarizes the data obtained from ANS hydrophobicity 

measurements on the protein solutions. The PSH of β-conglycinin solutions treated at 75° 

C is 2.3 times higher than that of the native protein, with an increase of both Fmax and Kd 

values. The increase in fluorescence intensity at saturating concentrations of the probe 

(Fmax) indicates an increment in overall surface hydrophobicity, that is to say that novel 

hydrophobic sites are generated. The concurrent increase in the apparent dissociation 

constant of the protein/probe complex (Kd) conversely indicates that the average affinity of 

surface hydrophobic sites for the probe is somewhat decreased. Also, no significant 

changes in cysteine thiol accessibility were detected for β-conglycinin heated at both 75° C 

and 95° C.  

 Therefore, it appears that β-conglycinin undergoes a supra-molecular 

rearrangement, likely involving a re-organization of its quaternary structure without 

affecting its tertiary structure. The occurrence of temperature-dependent aggregation in the 

proteins investigated here has been the subject of recent studies (Keerati-u-rai et al., in 

press), that pointed out the higher sensitivity to thermal aggregation of glycinin with 

respect to β-conglycinin. The values of PSH for glycinin solutions double after treatment at 

75° C, without a significant change in K d, suggesting the formation of novel hydrophobic 

sites on the protein’s surface, without affecting the overall affinity of these sites for ANS.  

 After heating at 95° C for 15 min, the value of PS H of glycinin solutions increases 

further (2.2 times with respect to 75° C), again wi th no significant changes in Kd. Cysteine 
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thiol accessibility changes in glycinin are apparent only after treatment at 95° C, where the 

number of thiols accessible to the specific reagent used here is twice that in the native and 

in the 75 ° C treated protein. These data indicate that although structural changes already 

occur after heating at 75° C for 15 min glycinin un folds (irreversibly) and loses most of its 

tertiary structure at temperatures higher than 95° C. 

 

 

Tab 2.1: Protein surface hydrophobicity (PSH, assessed by titration with ANS as the 

hydrophobic probe) and accessibility of cysteine thiols (determined using the specific free 

thiols colorimetric reagent DTNB) in 1 mg/ml β-conglycinin and 1 mg/ml glycinin unheated 

and heated solution (75° C or 95° C for 15 min) 

 

Protein unfolding in emulsions 

We first assessed whether the physical treatments involved in emulsion preparation had 

any effect per se on the structural features of β-conglycinin and glycinin. Protein solutions 

were passed through a Microfluidizer under the same conditions used for emulsion 

preparation, but in the absence of oil. No spectroscopically-detectable structural changes 

were detected on either glycinin or β-conglycinin after the dynamic pressure treatment. No 

changes in PSH occurred in the case of glycinin, whereas a small reduction of the number 

of hydrophobic surface patches was observed in the case of β-conglycinin, likely as a 

consequence of the aggregation phenomena detected by multi-angle static light scattering 

and reported and discussed in previous work (Keerati-u-rai & Corredig, 2009b).  

 As shown by the solid-state and solution fluorescence spectra in Figure 2.5, β-

conglycinin undergoes a structural change at the oil/water interfaces. In particular, β-

conglycinin tryptophans seem to increase their exposure to solvent water when the protein 

interacts with the oil surface. This is unexpected, as other proteins have shown to move 

SAMPLE 
Fmax 

(fluorescence 
intensity in arbitrary 

units) 

Kd 
(µµµµM) 

P.S.H. 
(fluorescence 

intensity · mg -1 · 
µµµµM-1) 

-SH 
accessibility 

(A412) 

ββββ-conglycinin UH 76.34 ± 2.6 26.53 ± 3.21 2.9 0.064 ± 0.016 

ββββ-conglycinin 75° C 277.78 ± 12.3 41.56 ± 5.22 6.7 0.077± 0.003 

ββββ-conglycinin 95° C 312.5 ± 10.85 40.75 ± 4.07 7.7 0.056±0.021 

Glycinin UH 104.17 ± 2.62 27.98 ± 2.06 3.7 0.074±0.004 

Glycinin 75° C 178.57 ± 4.51 27.06 ± 2.21 6.6 0.079±0.012 

Glycinin 95° C 476.19 ± 25.29 33.05 ± 4.96 14.4 0.162±0.011 
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their tryptophans to a more hydrophobic environment (i.e. closer to the oil interface or 

inside the non-polar phase) when interacting with oil phase, so that their emission 

spectrum is blue-shifted with respect to that of the native protein (Castelain et al., 1994). 

 

 

Fig 2.5 : Emission fluorescence spectra of 10% oil in water emulsions (resuspended 

washed cream) prepared with 10 mg/ml β-conglycinin or glycinin. The average of at least 

three spectra taken on (w/v) unheated emulsion (---) are compared with those of untreated 

1 mg/ml protein solutions (―), and of proteins in 8 M urea (1 mg/ml)(•••). 
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Fig 2.6:  Primary structure and Kyte and Doolittle hydrophobicity profiles of tryptophan 

containing subunits of β-conglycinin (α and α’ subunits). Adapted from 

http://www.uniprot.org/uniprot/P13916 and http://www.uniprot.org/uniprot/P11827. In italics 

are indicate the extensions regions; arrows show the tryptophans positions into the Kyte 

and Doolittle hydrophobicity profiles of both subunits 

 

 As shown in Figure 2.6, tryptophans in the mature form of β-conglycinin are present 

only in the in the N-terminal extension regions of the α−subunit (Trp63) 

(http://www.uniprot.org/uniprot/P13916) and of the α' subunit (Trp63, Trp100) 

(http://www.uniprot.org/uniprot/P11827). Figure 2.6 also shows the Kyte and Doolittle 

hydrophobicity profiles (Kyte et al., 1982) of α and α' subunits, indicating that in both 

proteins the tryptophan residues are present in their least hydrophobic areas. It is 

therefore possible to hypothesize that while the core region interacts with the oil phase, the 

extension regions of these subunits protrude in the aqueous medium. 

 Results from limited proteolysis experiments are shown in Figure 2.7. These 

experiments gave us other molecular details of the soy β-conglycinin adsorption behavior. 

After digestion with trypsin of the emulsion, some peptides were released into the aqueous 

phase (red highlighted) including the tryptophan containing regions in the extension 

domains, and other are retented into the fat-phase (green highlighted). Large peptides 

from the core region are released as well. These peptides come from the least 

hydrophobic regions of this domain. 
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Fig 2.7 : Primary structure and Kyte and Doolittle hydrophobicity of α, α’ and β conglycinin. 

The red-highlighted regions are peptide retained into the fat phase, whereas the green 

highlighted are peptide released into the aqueous phase  

 

 These results confirm previous hypotheses put forward by Maruyama et al. (1999) 

and based on studies on recombinant subunits of β-conglycinin. However, it is important to 

note that the extension regions of α and α' subunits are not completely unfolded at the 

oil/water interface, because the protein spectrum is only red shifted 5 nm in emulsions, 

less than the 8 nm observed upon complete denaturation with 8 M (Figure 2.3). The 

fluorescence spectra of glycinin-based cream also show that the tryptophan residues are 

exposed to the aqueous media when interacting with the oil phase. In addition, glycinin at 

the interface is not completely unfolded, showing an 8 nm red shift when adsorbed to the 

lipid surface, whereas an 18 nm red shift was observed for the completely denatured 

protein in 8 M urea. 

 To determine if heating would cause additional structural changes to the proteins 

once at the interface, fluorescence spectra were also collected for emulsions after heating.  

         α−         α−         α−         α−subunit                                     α                                    α                                    α                                    α'-subunit                                     β−                                    β−                                    β−                                    β−subunit 
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Fig 2.8 : Effect of heating on the emission fluorescence spectra of the 10% oil in water 

emulsions before heating or after heating (resuspended washed cream). The average of at 

least three spectra taken on unheated emulsions (–•–) is compared with that taken on an 1 

mg/ml untreated protein solution (―) and the same emulsions heated at 75° C for 15 min  

(for β-conglycinin) and 95° C (for glycinin) (•••). 

  

 As shown in Figure 2.8, heating a β-conglycinin emulsion at 75° C or a glycinin 

emulsion at  95° C does not affect the molecular st ructure of the proteins adsorbed onto 

the lipid droplet, as if the interactions ensuing from adsorption at the interface were strong 

enough to prevent further structural changes. 

 

 

Conclusions 

 

In this work structural changes of β-conglycinin and glycinin in solution were compared to 

those occurring when the proteins are adsorbed at the oil/water interface. Both proteins 

undergo structural modification after adsorption on the oil droplet surface. From the 

standpoint of protein chemistry, the modifications occurring at the interface with the 

proteins investigated here have some peculiar traits, in what both these proteins expose 

their tryptophan-containing extension regions to the aqueous phase rather than to the 

droplet interior, as observed for other proteins. It is very important to note that, in β-

conglycinin, tryptophans are present in the extension domains of α and α’ subunits, and 

the fluorescence data presented here confirm previous results (Maruyama et al., 2002) 
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demonstrating that the polar extension regions in these proteins are important for their 

emulsifying ability.  

 These results support the hypothesis that while the α and α' core domains interact 

with oil phase, the extension regions protrude into the aqueous phase and stabilize the 

emulsion droplets by providing the necessary polar regions. Also glycinin’s tryptophans 

containing regions are exposed to the aqueous phase. However, the multiplicity of 

glycinin’s genetic variants makes it much more challenging to derive definite answers from 

the hydrophobicity profiles of this protein, and some more detailed proteomic work is 

needed to better understand which portion of the protein anchors to the interface. 

 From the standpoint of applying this molecular information to food technology, it is 

also interesting to note that heat treatment does not affect the structural features of either 

protein once they are adsorbed at the oil/water interface. In other words, the modifications 

occurring upon adsorption at the interface appear to “lock” the protein structure in a 

conformation that is insensitive to further physical denaturation, at least under the 

temperature/time regimes employed in this work.  

 As a matter of fact, it is somewhat expected that, in emulsions, the structural 

regions more sensitive to the entropic changes ensuing from alteration in the water 

structure (i.e., the protein hydrophobic core) are at least partially buried into the non-polar 

lipid phase, and thus are insensitive to temperature-dependent changes in the colligative 

properties of the solvent. 

 The various peculiarities of these systems and their practical relevance seem worth 

further investigation. We are currently addressing the molecular details of the observed 

events, in an attempt to identify specific molecular determinants of the different behavior of 

these proteins, as well as the changes occurring during heating, and to assess whether 

the conformational changes reported here result in biologically relevant modifications when 

emulsions are consumed as food. 
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Introduction 

 

The lipocalin family 

Proteins belonging to the lipocalin family are extracellular and are united by the ability to 

bind and transport hydrophobic molecules of physiological importance. However, they 

have different biological functions and low sequence similarity (less than 25%). This family 

includes more than forty proteins, including: retinol binding protein (RBP, transports 

retinol), odorant binding protein (OBP), insecticyanin (INS, transporting chromophores), 

aphrodisin (carries pheromones), apolipoprotein D (APOD, transports sterols) and β-

lactoglobulin (BLG, carries mainly fatty acids). 

The main structure of the lipocalins, described for the first time for the RBP 

(Newcomer et al., 1984), consists of eight β-sheet (β-strand A-H) arranged in antiparallel 

position, and joined by a series of loops and connected from a portion of α-helix. The 

spatial organization of these structures creates a hydrophobic cavity in a sort of barrel (β-

barrel) conserved in all members of the lipocalin protein, characterized by the ability to 

interact with hydrophobic molecules (Brownlow et al., 1997).  

The major structural differences between proteins belonging to the lipocalin involve 

β-strands A, F, G and H (Flower et al., 1993). These considerations led us to hypothesize 

that the conserved regions in different lipocalin can play a key role in determining the 

folding of the hydrophobic core 

 

ββββ-lactoglobulin: general structural and functional o verview 

Beta-lactoglobulin (BLG) is a small protein (18,281.2 Da) present in the whey fraction of 

milk from many mammals, including cow, donkey, horse, sheep and goat, but it is absent 

in rodents and in human. In bovine milk whey it accounts for about 3 g/l, while the other 

whey proteins are much less abundant: 1 g/l of α-lactalbumin, 0.04 g/l of serum albumin 

(BSA) and 0.08 g/l of immunoglobulin (Bell & McKenzie, 1964). 

β-lactoglobulin consists of nine β-sheet, of which eight are organized in the β-barrel 

tertiary structure characteristic of the lipocalins (Brownlow et al., 1997), and it has an α-

helix located in the C-terminal tail (Figure 3.1). 
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Fig 3.1: 3D structure of β-lactoglobulin monomer (pdb entry: 1UZ2) 

 

In the bovine milk BLG is mainly present in a dimeric form (about 36000 Da) and the  

dimer is in equilibrium with the monomer and other tetramer and octamer complexes. The 

dimer is created through non covalent interactions between the α-helix located in the C-

terminus of the peptide chain, the ninth β-strand (I) and the AB loop of the two adjacent 

monomers (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 : β-lactoglobulin dimer in which are highlighted the portions of the 

molecule involved in the interaction. In the zoom on the right there is the detail of 

the interaction surface between the two monomers. Hydrophobic residues are in red, basic 

residues are in blue and green are the acids. 
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The contact of the two β-strands I is stabilized by hydrophobic interactions and by 

four hydrogen bonds; Arg148 of the two adjacent monomers form two hydrogen bonds and 

the other two are created between Ser150 and His146 of one subunit with the respective 

amino acids on other. The hydrophobic interactions involve residues Ile147 and Leu149 of 

the two antiparaller β-strands, on the each monomer. Four ionic interactions are also 

involved in the stabilization of the dimer. The first two are generated between adjacent α-

helices between Glu134 and Lys141 of each monomer present. The other portion of the 

molecule that stabilizes the dimer is the AB loop, residues Asp33 and Arg40 of two different 

monomers generate two ionic bonds (Brownlow et al. 1997; Sakurai et al, 2002; Lozinsky 

et al., 2006). At pH below 3, the ionic bonds are hindered due to the protonation of acidic 

residues and BLG is present as a monomer. 

Each monomer is composed by 162 amino acids (34% of the residues are apolar) 

and contains five cysteine residues. Four of them are engaged in two disulfide bridges 

(Cys66-Cys160 and Cys106-Cys119). These covalent bonds stabilize the structure and the 

free thiol (Cys121) in the native protein structure is hidden between the barrel and the α-

helix. There are also two tryptophan residues, which are used as structural markers in 

fluorescence studies: Trp19 and Trp61 (Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3 : 3D structure of β-lactoglobulin monomer (pdb entry: 1UZ2) Cysteine residues are 

highlighted in red, tryptophans are highlighted in blue.   
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Trp61 is located in the outermost position, near the Cys66-Cys160 disulfide bridge. 

Instead, Trp19 is located at the base of the hydrophobic calyx, inside the protein structure 

and it is inaccessible to the solvent. This tryptophan is conserved in the lipocalin family. It 

may have a structural role in protein folding and it is believed that it is responsible for more 

than 70% of the fluorescence signal (Fessas et al., 2001). 

There are several genetic variants of BLG (Godovac-Zimmermann et al., 1996), 

among them the most common forms are BLG-A and BLG-B. These differ in two amino 

acid residues, Asp64 and Val118 in BLG-A are replaced by Gly64 and Ala118 in the form B 

(Qin et al., 1999). The two genetic variants are characterized by a very similar isoelectric 

point. The pI for variant A is 5.26 while in the B variant the pI is 5.34 (McKenzie, 1971). 

The two genetic variants are also characterized by a different sensitivity to physical 

treatments, in particular to heat. 

The replacement of Val118 with Ala, characterizing the B variant, results in minimal 

structural modifications that also determine conformational changes of the hydrophobic 

cavity, as the latter amino acid is located inside the structure and more precisely in the GH 

loop. These structural changes also affect the unfolding dynamics of the protein and are 

probably responsible for the lower thermal stability of BLG-B. The other residues involved 

in the differentiation of the genetic variants (Asp64) is located in the EF loop and is exposed 

to solvent. Its replacement by glycine leads to conformational changes in BLG-B in the EF 

loop that explain the lower solubility and greater ability to polymerize and to gelatinize of 

the variant A than variant B. These structural changes also affect the disulfides exchange 

(Brownlow et al., 1997, Quin et al., 1999). 

Despite a number of studies over the years, the function of BLG is not yet fully 

defined. Many authors have suggested a role for BLG transport of fatty acids and/or 

retinol, a function perfectly compatible with the barrel structure and its ability to bind 

hydrophobic molecules (Hambling et al. 1992; Perez & Calvo, 1995; Sawyer et al., 1998). 

In this regard, BLG may play a role in the transport of hydrophobic molecules through the 

digestive system because the protein resists to the proteolytic activity of the stomach. The 

hydrophobic molecules bind in the calyx of BLG β-barrel and remain protected unless the 

EF loop is open. This structural change occurs above pH 6.2 and is known as the “Tanfort 

transition”. The molecule in the hydrophobic cavity of the barrel, interacting with the protein 

through non-covalent bonds, is in equilibrium with the free form, in these conditions the 

equilibrium is shifted toward the bound form. If the interaction between protein and ligand 

is sufficiently strong, the BLG can carry a significant amount of ligand through the 
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stomach, reaching the small intestine where at basic pH BLG is hydrolyzed with the 

consequent release of the ligand. 

Some authors have instead proposed a specific role of this protein in the digestion 

of fat globules (Pérez et al. 1991; Ragona et al., 2000), since the BLG increases the 

activity of pancreatic lipase, preventing their inactivation and promoting the removal of the 

fatty acid produced before they reach the duodenum. BLG also facilitates the transport of 

hydrophobic molecules in the gut in the case of infants. After milk digestion, the pH of the 

stomach is slightly acidic due to the immaturity of the stomach wall and the buffering 

capacity of milk (pH 5.5-6.5). However, this property is less clear in adults because the pH 

is more acid in the stomach and the ligand could be released before reaching the 

intestines. 

Given the similarity with RBP, BLG may be involved in the transport of retinol, as 

confirmed by the identification of certain receptors in the gut for BLG (Papiz et al., 1986). 

Some authors (Brownlow et al., 1997), showed the presence of receptors for retinol-BLG 

complex in the intestine of calves, thereby confirming that the BLG could be involved in the 

transport of retinol from mother to infant by facilitating their absorption. It was also 

suggested that BLG could be the extracellular counterpart an intracellular protein able to 

bind and transport fatty acids. 

The BLG isolated from bovine milk is present associated with different fatty acids 

and retinol, while in vitro is able to bind a large number of other amphiphilic and 

hydrophobic molecules, such as vitamin D, cholesterol, bilirubin (Zsila et al., 2003), 

estradiol, progesterone and protoporphyrin IX (Tian et al., 2006). The interaction of BLG 

with fatty acids, and in general, with the ligands, is hydrophobic in nature but unstable. 

Ligands interact with BLG mainly through the hydrophobic cavity of the barrel structure but 

some studies carried out using fluorescence hydrophobic probes show that there are other 

possible binding sites.  

Narayan & Berliner (1998) have identified the presence of a binding site for fatty 

acids that is created between the hollow the α-helix and the main barrel. Dong et al. (2005) 

confirm the presence of a surface hydrophobic site located towards the N-terminal region 

of the peptide chain which may interact with hydrophobic molecules. The presence of two 

binding sites confirms the ability of BLG to interact simultaneously with two different 

molecules, such as retinol and palmitic acid (Narayan & Berliner, 1998). Numerous studies 

have been devoted to defining the nature of the naturally occurring ligands on BLG and 

70% of BLG monomers after purification from bovine milk are associated with lipids (Perez 
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et al., 1989). Among them, palmitic, oleic and stearic acids are the compounds mainly 

related to the protein. The palmitic acid is a fact of course tied to the BLG molecules in 

greater quantities (Collini et al., 2003), the protein is also associated with retinol, lactose, 

that are compounds naturally present in milk. 

    

ββββ-lactoglobulin denaturation by heat treatment, salt s and chaotropes 

The heat treatment of milk, which is a process commonly used in the production of various 

dairy products, leads, in the case of proteins, some structural changes that often affect the 

quality of the finished product. The structural modifications induced by heat in whey 

proteins determine multiple effects, which can be modulated in order to improve the 

functional properties of proteins such as the foaming and emulsifying capacity (Moller & 

Jones, 1987; Konrad & Lieske, 1994).  

The structural changes of BLG after heat treatment are related in the first place to 

the dissociation of the dimer and the formation of "activated" or "modified" monomers 

(Cairoli et al. 1994; Iametti et al. 1996; Prabakaran & Damodaran, 1997). Spectroscopic 

studies have shown that, at temperatures above 65-70° C, these changes become 

irreversible with the consequent formation of aggregates stabilized by disulfide bonds and 

by hydrophobic interactions (Iametti et al., 1996, Griffin et al., 1993, Hoffmann & Val Mil, 

1997). In microcalorimetry studies, BLG showed two energy-independent domains with 

different thermal stability: the more thermostable domain appears to be that contain Trp19, 

whereas the domain with a lower transition temperature is that formed by most of the α-

helix region.  

The events connected with the formation of these associated forms of BLG have 

been described by several authors (Parris et al., 1991, Griffin et al. 1993; Roefs & De 

Kruif, 1994; Iametti et al., 1995, 1996, 1998; Relkin, 1998) and they have identified a 

series of temperature-dependent sequential stages that may be summarized as follows: 

 

Initialization phase:  B 2 ↔↔↔↔ 2B →→→→  BSH 

Propagation phase:  B + B SH
i →→→→  BSH

i+1  i ≥≥≥≥ 1 

Termination phase :                 BSH
i + BSH

j →→→→  B i+j  i, j ≥≥≥≥ 1 

 

The initiation stage is represented by a number of reversible reactions, in which the 

BLG dimer (B2) dissociates into two monomers (2B). The dissociation, favored by mild 

heating, induces a structural rearrangement, thus changes the spatial relationships 
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between in the surrounding of hydrophobic residues, but not in the chemical environment 

of Trp19 and Trp61 (Iametti et al., 1996). These reversible reactions are followed by an 

irreversible reaction in which the BLG exposes its free thiol group (Cys121) and an 

adhesive hydrophobic surface, both previously hidden at the monomer-monomer interface. 

The now reactive protein (BSH) can actually starts the associative process. At the 

propagation stage, the BLG, reactive thiol group reacts via a thiol disulfide exchange 

reaction with the Cys66-Cys160 disulfide bond on the outer surface of an unmodified BLG 

molecule. It forms an intermolecular disulfide bond and a new reactive thiol group 

becomes accessible. The stage of propagation can then be repeated several times, thus 

leading to the formation of linear aggregates. The polymerization process stops with the 

termination stage, when two reaction intermediates react with each other, forming a 

polymer without reactive thiol groups. 

In this model, the monomers are linear, but the polymer aggregates may also 

assume a spherical form (Hoffmann et al. 1997). Other studies have shown that non-

covalent interactions also play an important role in the aggregation (McSweeney et al., 

1994a; McSweeney et al. 1994b, Qi et al. 1995; Schokker et al., 1999, Bauer et al., 2000). 

In particular, some authors (Iametti et al. 1995; Galani et al., 1999) have highlighted the 

predominant role of hydrophobic interactions in defining the irreversible changes induced 

by heat treatment in areas of temperature between 75 and 90 ° C. 

Even the size of the aggregates is correlated with the temperature treatment. At 

temperatures around 65 ° C formation of small oligo mers may occours, including trimers 

and pentamers (Bauer et al., 1998). Prolonging the treatment time there is a significant 

decrease of these species, simultaneous with the appearance of large aggregates. The 

same Authors (Bauer et al., 2000) have suggested a mechanism of aggregation where 

there is formation of linear aggregates and / or branched structure. 

The tendency to form aggregates is also affected by pH, since the reactivity and 

accessibility of the thiol group depend on it. Between pH 7.0 and pH 8.2, the protein 

undergoes the Tanford transition; this leads to an increase of reactivity of the -SH, which 

determines the pH-dependent physical and chemical properties of BLG. At pH 8.0, the 

thiol group is more readily available for reactions, and there is an increase of the disulfide 

exchange rate, while at lowest values, below pH 7.0, the molecule must be heated or 

unfolded in some other way, to expose their thiol (McSweeney et al., 1994a; McSweeney 

et al. 1994b, Hoffmann and van Mil, 1997). 
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A high acidic pH values (2.0-3.0), BLG has only positive charges, so the 

aggregation mechanism is different: the exchange of disulfides hard to come by, because 

the thiol groups are very stable at low pH where they are present in the protonated form, 

and there is a repulsion of electrostatic nature between the monomers, even though the 

electrostatic effect may be shielded by the addition of salts. 

Another factor correlated with the thermal aggregation of BLG is the protein 

concentration. At physiological pH and after heat treatment (Iametti et al., 1995), soluble 

BLG aggregates are formed which are stabilized by covalent and hydrophobic interaction, 

(Iametti et al. 1996; Prabakaran & Damodaran, 1997; Relkin 1998) whose size is 

concentration-dependent (Iametti et al. 1996; Galani et al., 1997). A study conducted 

through the use of different techniques, has proposed that the unfolding of the protein is 

independent of concentration, whereas the associative phenomenon is heavily dependent 

(Iametti et al., 1995). 

Taking into account all the variables described above for the formation of 

aggregates, Verheul, Roefs and de Kruif (1998) have extended this forming mechanism 

(Roefs and de Kruif, 1994) to describe the denaturation / aggregation of BLG over a wide 

range of conditions (pH, temperature and ionic strength). According to this model, the 

aggregation induced by heat can be interpreted through a reaction scheme consists of two 

phases: denaturation, followed by the reaction of aggregation. This second stage would 

start at a critical concentration of primary particles formed in the first and would not be 

limited to exchange reactions between-SH and-SS-. 

The structuring/destructuring action of a salt depends on its ability to modify the 

hydrophobic and electrostatic interactions involved in defining the protein structure. 

Information on the characteristics of the different ions are given by the Hofmeister series, 

where the different salts are classified according to their lyotropicity. Among the anions, in 

descending order of lyotropicity, we find: sulfate, phosphate, chloride, bromide, 

thiocyanate and perchlorate. Lipophilic ions such as phosphate or sulfate (polyvalent 

anions with highly distributed charges) have a positive effect on protein stability and for 

this reason they are normally used as salts in the preparation of buffers for the proteins or 

for protein stabilization in industrial preparations. At the opposite end of the Hofmeister 

series there are ions that are monovalent and larger such as thiocyanate and 

trichloroacetate. They exhibit modest interactions with the solvent (lipotropic) and, due to 

their poor solvation, they are able to penetrate into the protein structure resulting in 

destabilizing action towards ionic pairs in the protein structure.  
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Differential scanning calorimetry (DSC) studies (McPhail & Holt, 1999) have 

identified major differences in the rate of aggregation and denaturation of BLG samples 

dissolved in buffers containing anions of different types. The primary role of the ionic 

strength or chaotropic thiocyanate as the solutions of BLG is to dissociate the dimeric form 

to give monomers characterized by a structural organization similar to that of native or 

modified protein. The degree of these changes, as evidenced by several authors, affects 

the molecular aggregative properties. 

Some authors have shown that heat treatment of BLG in the presence of potassium 

thiocyanate (KSCN) at non denaturating concentrations produces polymeric species with 

molecular properties different from those obtained by simple heating of the protein (Iametti 

et al., 2001). In these works it was determined that the effects of thiocyanate involves, in 

addition to the expected dissociation of the dimer, the structural changes dependent on 

salt concentration, that affect the subsequent formation of aggregates induced by heat 

treatment. 

By studying the effects of heating BLG in the absence or presence of various 

concentrations of KSCN, it was possible to see that the dissociation of native dimer can be 

obtained already at a salt concentration of 0.2 M: heating the protein in contact with low 

concentrations thiocyanate yields modified monomers that have a tendency to form 

polymeric species mainly stabilized by non-covalent interactions. At higher concentrations 

of thiocyanate (1 M), at pH 6.8, the protein thermal stability is reduced because salt can 

probably access its internal areas, altering the electrostatic interactions at sites normally 

hidden to the solvent. The salt procures structural changes such as an increase in 

exposure and reactivity of the thiol group of Cys121 and of disulfide groups. This effect 

resulting from heat treatments, favors the formation of covalently stabilized dimers, whose 

formation is dependent on the concentration of salt and protein. Even higher thiocyanate 

concentrations (2 M) the structure of the monomer is altered and its sensitivity to heat, 

thus making possible the formation of insoluble macroaggregates.  

 

Hydrophobic surfaces as unfolding agent  

Proteins adsorb onto almost all surfaces, whether air/water, oil/water, or solid/water. 

Proteins are surface active, which implies that they lower the interfacial free energy upon 

adsorption. For instance, protein adsorption at an air–water interface lowers surface 

tension by about 30mN*m-1, which equals 0.03 J*m-2. There is only one exception: the 

adsorbent is a solid that is hydrophilic and charged, and the protein has a charge of the 
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same sign as the solid and is a ‘‘hard’’ protein. The latter implies that the protein has a 

relatively stable globular conformation, i.e., a fairly high DN→UG. ‘‘Soft’’ proteins also 

adsorb at hydrophilic solid surfaces, even of the same charge. Adsorption may thus 

primarily involve electrostatic attraction, in which case protein conformation is not greatly 

affected. However, other solids, oil, and air provide hydrophobic surfaces, where the main 

driving force for adsorption generally is hydrophobic interaction. Since most apolar 

residues are buried in the core of a globular protein, adsorption generally involves a 

marked change in conformation. This is made evident by results of spectroscopic studies, 

which show a change in secondary and loss of tertiary structure in adsorbed protein. DSC 

applied to an adsorbed protein generally shows a denaturation peak that is smaller (or 

even negligible), and that occurs at a lower temperature as compared to the protein in 

solution (Corredig et al., 1995).  

Adsorption of enzymes generally leads to loss of enzyme activity, whether 

measured in the adsorbed state or after desorption. By and large, the activity loss is 

greater under conditions (temperature, pH, etc.) where conformational stability is minimal, 

and if the adsorbent is more hydrophobic, presumably because the driving force for 

conformational change is greater. It is sometimes observed that adsorption from a more 

dilute enzyme solution leads to more inactivation. The explanation may be that at low 

concentration adsorption is slow, allowing adsorbed molecules to expand laterally, which 

implies conformational change. If adsorption is fast, a densely packed adsorbed layer is 

rapidly formed, which would prevent lateral expansion. In agreement with this, it has been 

observed that some proteins do not greatly change conformation when merely adsorbing 

onto an air/water interface, but when the air/water surface is expanded, for instance by 

deforming an air bubble, considerable change occurs (Noskov, 2009). Beating air into a 

protein solution can therefore cause denaturation. It has further been observed for several 

enzymes that adsorption onto an oil/water interface causes complete inactivation, whereas 

only partial inactivation may occur due to adsorption onto an air/water surface. The reason 

may be that hydrophobic segments of the molecule can penetrate into an oil phase, but 

not into air. This would be because the net attractive energy between these segments and 

oil can be greater than that between segments and water, whereas the attractive energy 

between any group of a protein and air will be virtually negligible.  

This must cause a greater driving force for loss of native configuration at the 

oil/water interface. A fairly stable enzyme like lysozyme, which can regain activity after 

various unfolding treatments at low temperature, does not regain it after adsorption onto oil 
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droplets, even at its isoelectric pH. This leads to the important conclusion that more than 

one unfolded state can exist, and that some of these states permit return to the native 

state, whereas others do not. 

The polypeptide backbone is fairly polar, but several side groups are hydrophobic.  

All proteins are surface active and adsorb at O/W and A/W surfaces. Globular proteins 

often retain a fairly compact form, although conformational changes do occur (Figure 3.4). 

 

 

 

 

 

 

Fig 3.4 : Very approximate schematization of adsorption mode of various polymers from an 

aqueous solution. From Waalstra P., Phisical Chemistry of Food 

 

Non globular proteins and intrinsically disordered, such as gelatins and caseins, 

tend to adsorb in various way. β-casein average conformation on adsorption is fairly well 

known. The surface activity of a protein and an amphiphile (SDS) are compared in Figure 

3.5. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.5 : Surface pressure (Π) and surface excess (Γ; the plateau value Γ∞ is indicated 

near the curves) at the triglyceride oil–water interface as a function of the concentration in 

solution (c) for a protein (b-casein) and an amphiphile (SDS). From Waalstra, Phisical 

Chemistry of Food 
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It is seen that the protein is much more surface active. The molar bulk concentration 

needed to reach Γ∞ differs by 4 orders of magnitude. If the mass concentration is plotted, 

the curves are closer, but the difference is still by more than two orders of magnitude. The 

main cause is the larger molar mass of the protein. It implies that the free energy of 

adsorption per molecule (roughly equal to Π/Γ NAv) is very much larger than that of the 

amphiphile; for the protein it would be about 60 times kBT, and for the amphiphile of the 

order of 1 kBT. Consequently, the affinity of the protein for the surface is far greater than 

that of the amphiphile.  

On the other hand, the value of P reached is clearly larger for the amphiphile, 

provided that the surfactant concentration is high enough. The explanation must be that for 

a polymer, and hence a protein, a very dense packing of surfactant material at the 

interface cannot be reached. This is in accordance with the observation that for most 

polymers and for most amphiphiles the surface excesses expressed in unit mass are 

roughly the same: a few mg/m-2, despite the ‘‘thickness’’ of the polymer layer being clearly 

higher for a polymer (10nm) than for an amphiphile (about 2.5 nm). 

For some proteins at some conditions, multilayer adsorption can occur, as indicated 

by the dotted curve for Γ/Γ∞; a second layer is very weakly adsorbed. Apart from this 

phenomenon, high surface loads can be obtained by adsorption of protein aggregates 

(e.g., casein micelles) rather than free molecules; by formation of a gel layer at the 

interface (e.g., of gelatin at low temperature) or by covalent intermolecular cross-linking 

(e.g., formation of –S-S- bonds between β-lactoglobulin molecules). Generally, lateral 

interaction forces act between globular protein molecules in an adsorption layer, and these 

forces may strengthen markedly with time. 

 

ββββ-lactoglobulin denaturation by surface effect 

The surface properties of β-lactoglobulin solutions has been the subject of numerous 

studies, but the conclusions of different authors on the degree of protein unfolding were 

not always the same. A work of Cornec at al. (2002), shows using C14 labeled protein that 

the area per mol. of an adsorbed β-lactoglobulin during the dynamics of adsorption was 

smaller than that for spread monolayer since β-lactoglobulin was not fully unfolded during 

adsorption. Wu et al. (2008) demonstrate a rapid initial unfolding followed by much slower 

rates at longer times after a time lag, with this time lag being shorter at lower surface 

concentrations. The effects of β-lactoglobulin surface concentration, pH, and ionic strength 

on the unfolding kinetics indicated that protein-protein interactions on nanoparticle 
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surfaces are important. The variation of the surface concentration of β-lactoglobulin as well 

as the presence of TFE did not influence the secondary conformational change on the 

surface. DTT, however, was found to result in a decrease in the β-sheet fraction with a 

corresponding increase in the random coil fraction.  

Also in a work of Fang at al. (1997) a time dependent relation between time of 

adsorption and the protein structure changes were demonstred. These are also pH-

dependent, which may partly reflect the quaternary structure of the protein. Adsorption 

generally appears to alter, but not destroy, the β-structure contained in the protein, and 

certainly at pH 7, the α-helix remains intact. There is by no means a complete 

randomization of the secondary structure of the protein. On the other hand, heating causes 

more profound changes, with extensive change and loss of β-sheet but with appearance of 

structures associated with aggregation of the protein. The denaturation by heat leads to a 

much less structured molecule than does adsorption. When BLG was adsorbed on the oil–

water interface, the denaturation started with the loss of the exposed section of β-sheet 

structure, which may have a high probability for adsorbing first to the interface, after which 

a slow unfolding of the protein continued during the storage of the emulsion to give a more 

unordered structure. 

 

Oil-in-Water emulsion as adsorbent  

Over the past three decades, studies on emulsions were very numerous, but actually there 

is no a general theory that can describe in deep the formation process. Many theories 

have been proposed from time but only applied to specific cases under study. 

An emulsion is defined as a system consisting of a mixture of two immiscible 

phases: the dispersed phase, which is at globular state, and the continuous phase which is 

the dispersion medium. The emulsions are part of a more general class of systems called 

biphasic colloids. Although these terms are often used interchangeably, the emulsions are 

characterized by the fact that both phases constituents of the system are liquid.  

Examples of emulsions are present in many fields such as cosmetics, medical, 

photographic, and especially in the food. Many products are in fact stabilized by the 

presence of an emulsion which ensures a high shelf life. The best known examples are ice 

cream, creams, cakes, soups and many baked goods. 

As mentioned above, the emulsion consists of two phases, one dispersed and one 

continuous interacting each other via an interface. The emulsions also tend to take an 

opalescent and whitish appearance account of the phenomena of light scattering at the 
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interface. This phenomenon is also related to the concentration of the dispersed particles 

and their size. 

The emulsion is a highly unstable system that is not formed spontaneously. It needs 

the use of systems capable to generate energy which allows to mix, stir and then mix the 

two phases. In addition, the energy supplied to the system is essential to bring the 

molecule in contact with the surfactant phase, and if one use protein as stabilizing agents, 

sufficient energy must be provided to deform the protein structure and to facilitate 

adsorption.  

In relation to the content of the aqueous phase and non aqueous phase it is should 

be possible to talking about water in oil emulsion if the second is less or vice versa, of oil in 

water if it is the non-aqueous phase is present in higher concentration.  

A key role during the process leading to the formation of the emulsion is played by 

emulsifier substances. An emulsifier is a substance capable to act as a surfactant to 

stabilize an emulsion, i.e. by decreasing the surface tension of the liquids and then to 

facilitate the “wetting” of the interface. Emulsifiers are widely used as food additives. 

Examples of food emulsifiers are lecithin contained in egg yolk or derived from soy beans. 

A wide variety of emulsifiers are also used in pharmacy for the preparation of emulsions in 

the form of creams and lotions. 

 

Polystyrene nanoparticles as adsorbent  

Many different adsorbents are used to study protein adsorption. These adsorbents vary in 

charge, hydrophobicity and by the presence of specific groups on their surface. One of the 

most used liquid/solid matrix is polystyrene in micro or nano form. Virtually all proteins 

present in the system are adsorbed on the surface of the polystyrene nanospheres and 

virtually no free protein remains present in solution. This situation is advantageous for 

spectroscopic studies as all spectroscopic signals observed originate from adsorbed 

protein molecules and no contributions from free protein molecules need to be taken into 

account. 

The large surface area per mass of polystyrene nanospheres and therefore the high 

binding capacity allows the use of low nanosphere concentrations. As a result, light 

scattering and light absorption can be minimized, which makes the use of spectroscopic 

methods like stopped-flow fluorescence feasible.  
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Fluorescence spectroscopy 

The intrinsic fluorescence of protein molecules is very sensitive to changes in their tertiary 

structure. It informs about the local environment and dynamics of the fluorescent amino 

acid residues Trp, Tyr and Phe and of fluorescent cofactors like flavin, if present 

(Lakowicz, 1999). The position of the spectral maximum in the fluorescence spectrum, the 

fluorescence quantum yield, fluorescence polarization/anisotropy and the fluorescence 

lifetime are indicators for changes in the local environment of these fluorescent groups in 

the protein molecule. Fluorescence spectroscopy is not necessarily restricted to the 

fluorescence of intrinsic fluorophores. Specific residues on the protein can be labeled with 

a fluorescent group, and yield information about the environment of that group (Tan and 

Martic, 1990). In addition, fluorescent probes like ANS and thioflavin T inform about the 

structure of proteins, without the need for covalent interaction between the fluorescent 

probes and the protein (Karlsson, et al., 2000).  

Analogous to CD spectroscopy, fluorescence spectroscopy can be used in 

combination with a system in which suspended adsorbent particles provide an interface for 

protein adsorption (Clark, et al., 1994; Tan, et al., 1990). In contrast to CD, the 

wavelengths used are higher and the concentrations of proteins and particles used are 

lower. This drastically reduces the effect of light scattering in fluorescence spectroscopy 

compared to CD spectroscopy. In addition, fluorescence spectroscopy is a more sensitive 

technique than CD spectroscopy. Besides steady state fluorescence spectroscopy, also 

time-resolved fluorescence spectroscopy (Czeslik, 2001; Czeslik and Winter, 2001; Maste, 

et al., 1996), stopped-flow fluorescence, and fluorescence anisotropy (Maste, et al., 1996; 

Pap, et al., 1996;Tan et al., 1990) have been used to investigate conformational changes 

of adsorbed protein molecules. Fluorescence anisotropy is directly related to the rotational 

correlation time of the fluorescent group involved (Lakowicz, 1999) and can be used to 

detect whether protein molecules are adsorbed. Adsorption of a protein molecule on a 

particle that is much larger than the protein itself increases the rotational correlation time of 

the adsorbed protein and thus increases its fluorescence anisotropy. 

 

Limited proteolysis as technique to check protein u nfolding 

Detailed information on the conformation of caseins at the oil/water interface have been 

obtained using proteases by different authors (ref). By comparing the peptides produced 

during the proteolysis of the protein in solution or adsorbed at the interface, it has been 



Chapter 3)                                                       Protein unfolding on interfaces: a structural and functional study 

                                                                                62 

possible to identify the proteinase-sensitive bonds which are masked by being adsorbed to 

the oil phase.  

Proteolytic digestion and antibody binding have shown that various regions of the 

αs1-casein molecule are associated with the oil-phase in such emulsions and are 

effectively shielded from the action of water-soluble reactants. Recently it was studied (ref) 

the kinetics of the trypsin-catalyzed hydrolysis casein in solution and adsorbed to a soya 

oil-water interface and found that the phosphate-rich hydrophilic N-terminal end of the 

molecule appears to be less closely associated with the oil phase than the rest of the 

molecule. Trypsin-catalyzed hydrolysis of this protein in the emulsified system is a 

relatively ordered event initiated by cleavage of trypsin-sensitive bonds in this region. As 

with casein, the accessibility of certain of the arginine and lysine residues varied between 

the soluble and emulsified β-casein. These studies allowed definition of possible 

conformations for adsorbed casein. 

 

 

Aim of this work 

 

The aim of this work is to understand the structural changes that bovine β-lactoglobulin 

undergoes after adsorption on hydrophobic nanostructurated surfaces, in our case 46 

polystyrene nanoparticles and oil in water nanoemulsion. 
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Material and methods 

 

Chemicals 

All reagents used were in the highest degree of purity commercially available, and 

purchased from Sigma Aldrich unless other provider are indicated. Nanoparticles (average 

size: 46 nm) were provided by Kisker Bioteck  

    

ββββ-lactoglobulin purification 

To avoid the presence of species that characterize the partially denatured β-lactoglobulin 

commercial preparations we proceeded to purify the protein directly from fresh milk whey. 

The purification was performed by ion exchange chromatography of the serum obtained by 

skimming and subsequent removal of the casein fraction. 

Whole milk was skimmed by centrifugation at 5000 x g for 30 min at 4° C. Skimmed 

milk was then filtered on gauze to remove any remaining cream. The casein fraction was 

removed exploiting isoelectric precipitation by acidification to pH 4.5 with HCl 5 M. The 

precipitated casein was removed by centrifugation at 7000 x g for 5 min at 30° C. The 

serum obtained was then neutralized to pH 7.2 by addition of TRIS base powder. To 

permanently delete the remaining portion of casein, whey was centrifuged at 11000 x g for 

60 min at 20° C. 

The separation of BLG from other whey protein was obtained by ion exchange 

chromatography. An appropriate volume of serum was diluted with water in 1:1 ratio to 

reduce the ionic strength and then loaded onto a DEAE-cellulose (Whatman) packed 

column previously equilibrated in 0.05 M Tris-HCl, pH 7.2. 

BLG and many other serum proteins, including α-lactalbumin (ALA), are negatively 

charged and bind to the resin, while other proteins with different charge (lactoferrin, 

lactoperoxidase, lysozyme, etc.) are eluted in the unbound fraction. BLG was eluted from 

the resin using a step gradient of NaCl. The first step consists of 0.05 M Tris-HCl, pH 7.2, 

containing 0.1 M NaCl in which the α-LA is eluted, followed by a second step in which the 

BLG is eluted using a buffer containing 0.3 M NaCl. The purified BLG was then 

concentrated using an Amicon ultrafiltration device (Millipore) with a membrane of 10 kDa 

cut-off and subsequently lyophilized. 
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Protein concentration determination 

The protein concentration of the different samples was determined spectrophotometrically 

by measuring the absorbance at 280 nm, using a 1 cm quartz cuvette in a Perkin Elmer 

Lambda 2S spectrophotometer. The concentration in mg/mL was calculated using an 

extinction coefficient, ε280, equivalent to 0.93 mg ml-1*cm-1. 

 

Emulsion preparation 

Emulsions were prepared as follows: 0.5 g of soy oil (Sigma Co., St Louis, MO) were pre-

emulsified with 9.5 ml of β-lactoglobulin solution (5 mg/ml in 0.05 M sodium phosphate 

buffer, pH 7) using a Vortex dispersing unit for approximately 1 min. The pre-emulsion was 

immediately homogenized in ice by using an ultrasound sonicator (MSE Soniprep 150) in 5 

sonication cycles (1 minutes each) with a 14 microns amplitude intensity. 

 

Emulsion characterization  

 

Size determination 

Emulsion droplets size were measured using a Mastersizer instrument (Malvern 

Instrument ltd.) equipped with Hydro SM manual small volume sample dispersion unit.  

 

Determination of adsorption ratio  

The emulsion was centrifuged at 13200 x g for 20 minutes to separate the lipid phase 

"cream" from the aqueous phase "serum". The “serum” was than harvested using a 

siringe. The cream thus obtained was weighed, washed and resuspended in an volume of 

buffer (0.05 M sodium phosphate, pH 7.0) to reach 5% content of oil.  

The amount of protein adsorbed was determined by SDS-PAGE. To 0.05 ml of both 

“cream” and “serum” samples were added 0.05 ml of Laemmli denaturation buffer. The mix 

was boiled for 5 minutes and appropriate aliquots were then loaded on a 12% acrylamide 

gel. In order to construct a calibration curve, samples containing increasing amount of 

protein were loaded on the same gel too. After the electrophoretic run the gel was stained 

with Coomassie Blue. The protein amount present in the “cream” and “serum” phases 

were estimated by densitometry using a specific software (Image Master 1D, GE 

Healtcare)  
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Polystyrene nanoparticles/ ββββ-lactoglobulin system 

 

Adsorption isotherms 

In order to study the protein behavior on the NP interface it was necessary to determine 

the ideal protein concentration in relation to the available area. It is important that the 

experiment must not be either in conditions of excess or deficiency of the protein. A high 

amount of protein would lead to a supersaturation and consequently the spectroscopic 

signals may also be dominated by those arising from the native protein. Conversely, if the 

surface of the NP is not completely covered spectroscopic signals are too low and difficult 

to interpret. 

The study of adsorption isotherms allowed the calculation of the protein amount 

necessary for the formation of a monolayer on the NP surface. For this purpose it was 

been prepared solutions with increasing concentrations of BLG (0.01 to 0.08 mg/mL) at 

constant concentration of NP (0.025 mL of original suspension/mL) in 0.05 M sodium 

phosphate buffer, pH 7. This was followed by an incubation of 60 minutes, in mild stirring 

conditions at room temperature, to promote interactions between the protein and the NPs. 

The adsorption isotherms were determined by measuring the concentration of the protein 

in the permeate after separation of NP/protein complex from the free BLG by ultrafiltration 

(Microcon devices, cut-off 50,000 Da). Protein concentration was determined 

spectroscopically by measuring the permeate absorbance at 280 nm  

 

Determination of–SH accessibility 

Determination of free –SH accessible groups in the different protein samples was 

performed by titration with the reagent 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) (Ellman, 

1959) in order to evaluate the different accessibility in the free protein and in the protein 

present at the interface with nanoparticles. The interaction between DTNB and SH-group 

of a protein involves the formation of a yellow anionic species with a molar absorbance 

equal to 13600 M-1cm-1 at 412 nm. 

In practice time dependent absorbance assay (λ: 412 nm, time: 15 min) were recorded at 

different temperatures (25° C, 45° C, 70° C) after addition to 0.95 ml of a NP-protein 

suspension (protein concentration 0.05 mg/ml) of 0.05 ml of 0.1 M DTNB solution in a 1 ml 

quartz cuvette. Two tests were also performed with the protein without NP (same 

concentration: 0.05 mg/ml, same temperatures) and only 0.05 M sodium phosphate buffer, 

pH 7.0. 
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Evaluation of protein surface hydrophobicity: titra tion with ANS 

Many studies have pointed out that the only tryptophan fluorescence is not sufficient to 

provide all the information on structural changes affecting the hydrophobic regions of 

proteins, when they change their properties of surface hydrophobicity (Eynard et al. 1992; 

Iametti et al ., 1998).  

 Changes in surface hydrophobicity properties of proteins can be measured 

spectrofluorimetry, by using an appropriate hydrophobic markers, such as 1-anilino-8-

naphthalene sulfonate (ANS), fluorophores able to interact with hydrophobic sites on the 

proteins surface. 

 In this regard, fluorescence measurements have been conducted on protein/NP 

complexes in order to assess any change in protein surface hydrophobicity. Tests were 

performed on solutions containing increasing amounts of ANS (0 to 0.2 mM). The 

fluorescence values, expressed in arbitrary units (AU), were then analyzed as a function of 

total marker concentration to obtain the titration curves which show a typical saturation 

equilibrium. These determinations carried out by exciting the sample at 390 nm, where the 

value of maximum fluorescence intensity (measured at a wavelength of 460-480 nm 

range) indicates the concentration of marker linked to the surface hydrophobic sites of 

proteins. 

 

Fluorescence spectroscopy 

Fluorescence measurements were carried out in pre- and post- adsorption phase either 

adsorbed to the nanoparticles or on oil droplet surface. Moreover the fluorescence of the 

different phases "cream" and “serum” phases were also analyzed.  

 Following are shown the different methods of preparation of the samples subjected 

to this analysis. They were conventionally divided into three types: 

1. BLG fluorescence spectra were acquired from a sample protein concentration of 0.05 

mg/mL suspended in 0.05 M sodium phosphate buffer, pH 7.  

2. Complex BLG/NP: The fluorescence spectra were acquired from sample with protein 

concentration of 0.05 mg/mL. 

3. BLG in the emulsion: to analyze these samples front-face technique was exploited. 

The front-face fluorescence technique can conduct investigations on the structural proteins 

directly employing complex matrices, such as emulsions. The emulsions were prepared 

according to the criteria described in detail above. The analyzed samples were: whole 

emulsion, the aqueous phase "serum" and the lipid phase "cream". The cream and the 
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emulsion were diluted in a 1:2 ratio with 0.05 M sodium phosphate, pH 7, whereas the 

serum in a 2:1 ratio with the same buffer.  

The measurements were performed in Perkin-Elmer LS 50B spectrofluorimeter 

equipped with a cell holder for measuring the fluorescence of solid matrices. Spectral 

parameters were: λex: 280 nm, λem: 300-500 nm Slitex-em: 2.5 nm, Scan speed: 50 nm/min. 

 

Trypsin limited proteolysis  

Limited proteolysis experiments were performed as follows: 0.01 ml of trypsin solution 

(TCPK treated, 1mg/ml in 0.025 sodium acetate, pH 4.5) were added to 1 ml of BLG 

solutions, “cream” and “serum” samples (in 0.05 M sodium phosphate, pH 7, final protein 

concentration: 1mg/ml)  in order to reach a ratio protease/substrate of 1/100 w/w. 

Hydrolysis were carried out for 30 min at 37° C and  stopped by addition of 0.02 ml of 

Soybean Kunitz Tripsin Inibitor (2 mg/ml in dd water). 

 For hydrolysis of nanoparticles bounded BLG (final protein concentration: 0.05 

mg/ml) the same protocol was followed, adjusting the amount of protease in order to 

respect the protease/substrate ratio (1/100 w/w by addiction of 0.005 ml of a 0.1 mg/ml 

TCPK treated trypsin solution). 

 In order to extract the resulting peptides after the hydrolysis one volume of each 

sample was treated with 3 volumes of hexane and 2 volumes of acetone in a glass vial. 

After vigorous mixing and subsequently separation of the two immiscible phases, the 

upper phase (the apolar one, containing the hexane and the extracted lipids or 

polystyrene) was removed. This step was repeated three times. The acetone from the 

delipidized polar phase was removed by vacuum stripping, and then the samples were 

lyophilized.  

 

Peptides characterization by RP-HPLC  

In order to characterize the peptides released from trypsin action, RP-HPLC was also 

employed. To this purpose, lyophilize samples were dissolved in an appropriate volume of 

buffer A (dd water, 0.1% TFA) and after centrifugation (15 min, 13.200 x g) loaded into the 

HPLC system (Waters 515, equipped with Waters 717 Autosampler and Waters 996 PDA 

detector). All the HPLC runs were performed using a Waters Symmetry 300Ǻ C18 column. 

Running buffers were A (dd water, 0.1% TFA) and B (100% acetonitrile, 0.1% TFA). Flux 

was set at 0.8 ml/min with a separation gradient 0 to 100% buffer B in 125 min. Signals 

were recorded at 220 and 280 nm. 
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Peptides characterization by MALDI-TOF mass spectro scopy 

The lyophilized samples were dissolved in dd water with 0.1 % TFA. After a cleaning 

passage, performed with a C18 Zip Tip devices (Millipore) using the protocol provided by 

the manufacturer, samples were mixed with either matrixes (α-cyano- 4-hydroxycinnamic 

acid or sinapinic acid) and loaded on the MALDI plates. MALDI-TOF mass spectrometry 

was carried out on a PerSeptive BioSystems Voyager DE-Pro spectrometer equipped with 

a N2 laser (λ 337 nm, 3-ns pulse width, 20-Hz repetition rate).  

The instrument operated with an accelerating voltage of 20 kV. External mass 

calibration was performed with low-mass peptide standards including angiotensin I, (m/z ¼ 

1296.68), bovine αs1-casein 1-23 peptide (m/z ¼ 2764.55) and bovine insulin (m/z ¼ 

5730.61). Mass spectra were acquired in the reflector mode using Delay Extraction (DE) 

technology, and analyzed by using the software provided by the manufacturer. 
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Results  

 

Determination of BLG stabilized emulsion droplets s ize 

The procedure of emulsion formation (5% oil, 0.5% BLG, 5 cycles of sonication of 1 minute 

each) used from us allowed to produce emulsions with a relatively sharp size distribution, 

with an average droplet size of 0.249 µm. In Figure 3.6, is reported the graph which 

describes the particle size distribution of our sample. 

. 

 

Fig 3.6: particle size distribution of soy oil emulsions stabilized by BLG. Oil concentration 

5% w/w, BLG concentration 0.5% w/w 

   

Determination of BLG adsorption ratio on emulsion n anodroplets 

It is fundamental to estimate the protein amount adsorbed on the oil droplets every time a 

new protocol of emulsification was developed. This because the droplets size influences 

the amount of surfactant (in our case BLG) adsorbed on the droplet surface; the smaller 

emulsion droplets, the higher is the overall oil surface and consequently, the higher the 

request of protein to stabilize the biphasic system. 

 There are different ways to perform these measurements, that all requiring the prior 

separation of the two phases. Then the estimation takes place on the aqueous phase, 

using the common techniques of protein concentration determination, such as UV 

absorption at 280 nm (if only one protein is present as stabilizer) or colorimetric assays 

(BCA, Bradford or Lowry). The protein amount adsorbed on the oil droplets is then 

estimated by difference with the protein present in the “serum” phase. These methods are 

all affected by the facts that in the aqueous phase are always present substances that can 
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interfere with the measure, and there is not a direct information on the protein content in 

the “fat” phase. 

 To by-pass all these problems an SDS-PAGE quantification could be performed. 

This technique, if well performed, gives a reasonably accurate result, with a direct 

quantification of the protein cont in both fat and aqueous phases. 

 In Figure 3.7 is reported the SDS-PAGE gel of the protein quantification on the oil 

droplets of the emulsion made according the protocol reported above. 

 

 

 

 

 

  

 

 

 

Fig 3.7 : SDS-PAGE of fat (EMU) and aqueous (SERUM) phases. In the left panel is 

shown the calibration curve 

 

After image digitalization and image analysis performed using a specific program 

(Image Master 1D, GE Healthcare), results that, in our protocol of emulsification 

approximately the 65% of the overall protein is present on the oil droplet surface, whereas 

35% of the protein is still present free in the aqueous phase.  

 

Study of adsorption isotherms of BLG on polystyrene  nanoparticles 

The adsorption isotherms were calculated using increasing concentrations of BLG with 

constant volume of nanoparticles (25 µl/ml) in 0.05 M sodium phosphate, pH 7. Figure 3.8 

shows the adsorption isotherms obtained at 25 ° C. 
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Fig 3.8 : adsorption isotherms of BLG addition of polystyrene nanoparticles in sodium 

phosphate buffer 0.05 M, pH 7.0 after incubation for 1 hour. 

 

A concentration of 0.05 mg/mL of β-lactoglobulin was chosen on the basis of 

adsorption tests performed. Under these conditions all the protein appears to be adsorbed 

to the hydrophobic surface of the NP and virtually no BLG is present free in solution. 

The protein-NP association is essentially stabilized by hydrophobic interactions, as 

there are not to underestimate electrostatic forces that may play an important role in the 

orientation of protein molecules. 

 

Structural organization of BLG at the NP surface 

Intrinsic fluorescence measurements were used to analyze the structural organization of 

the protein adsorbed at the interface and to highlight any changes in the protein 

hydrophobic core. In particular, it was decided to perform fluorescence measurements on 

the native protein and the protein adsorbed to nanoparticles. In both cases the spectra 

were recorded at temperatures of 20° C, 30° C, 40° C, 50° C, 70° C, 80° C, and at 20° C 

after cooling the sample preventely heated at 80° C . These spectra were recorded 
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between 300 nm and 500 nm, exciting the sample at 280 nm, taking advantage of the 

characteristic fluorescence of tryptophan residues. There are in fact, in BLG, two 

tryptophan residues, which are used as fluorescence markers of structural organization: 

Trp19 and Trp61. The second is located in the outermost position, near the disulfide bridge 

Cys66-Cys160, which acts as a strong quencher. Trp19 is located at the base of the 

hydrophobic calyx inside the barrel, and inaccessible to the solvent. This tryptophan is 

conserved in the lipocalin family and may have a structural role in BLG folding. This 

compound is believed to be responsible for more than 70% of the fluorescence signal 

(Fessas et al., 2001). 

 Figure 3.9 shows the fluorescence spectra of the native protein and of BLG bound 

to latex nanoparticles. The spectrum of the BLG in solution shows a maximum emission at 

340 nm, typical of the native protein. This shows that Trp19 is located within the structure of 

hydrophobic protein. It also shows how the structure changes when the protein BLG is 

located at the interface of the hydrophobic NP. The shift of the peak emission to longer 

wavelengths indicates a greater exposure of the hydrophobic calyx of the protein, where 

the Trp19 residue is located. This would result in a change in the tertiary structure of 

adsorbed protein that allows increased exposure of Trp19 to the aqueous solvent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.9 : tryptophan fluorescence spectra (λex: 280 nm) of BLG free in solution (dashed 

line) and adsorbed on the NP surface (solid line) 
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We then decided to study the protein intrinsic fluorescence, both free in solution and 

stacked to the NP interface with step-wise process of heating and subsequent cooling to 

20° C. It is clear that BLG in solution changes its  structure after a heat treatment at 80° C 

(Figure 3.10). The protein shows a shift in the maximum emission peak due to increased 

exposure of the hydrophobic core to the aqueous solvent. The protein is denatured and it 

loss the tertiary structure typical of native BLG in irreversible fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.10 : tryptophan fluorescence spectra (λex: 280 nm) of thermal denaturation ramp of 

BLG in solution 

 

Conversely BLG retains its modified structure even after heat treatment at 80° C 

when bound to NPs surface. During the heating process the NP-bound protein does not 

undergo structural changes and the interaction with NP can help to maintain the newly 

acquired tertiary structure once adsorbed (Figure 3.11). 
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Fig 3.11 : tryptophan fluorescence spectra (λex: 280 nm) of a thermal denaturation ramp of 

NP-bound BLG 

 

It is clear the behavior differences in thermal stability when the protein is in solution 

and when adsorbed to nanoparticles. The protein in solution shows a clear shift of the 

emission peak maximum after heating whereas it is not present in the BLG when adsorbed 

to the nanoparticles interface. 

In summary, despite the importance of hydrophobic interactions of adsorbed BLG, 

we can not affirm that the tryptophan residues are located in close contact with the 

hydrophobic surface of polystyrene. This thesis is supported by the evidence of a "red 

shift" of the fluorescence emission maximum, indicating that one or more tryptophan 

residues are exposed to the solvent. A number of hydrophobic residues must be in close 

contact with the hydrophobic polystyrene interface to can be realized hydrophobic 

interactions. The new spatial arrangement of these hydrophobic residues in contact with 

the surface of the nanoparticles results in a specific conformation of the BLG interface and 

about the new arrangement of tryptophan residues. 

By studying the structure of the protein we can get information about the preferential 

orientation of the hydrophobic portions of the interface. At pH 7 both BLG and 

nanoparticles have negative charge (even though this king of nonsupport has a “plain 
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surface”, a few numbers of sulphate negatively charged groups still remain from the 

polymerization step), so portions of the protein that contain negatively charged will be 

exposed to the solvent and will turn away from the surface of polystyrene. The region of 

the protein involved in binding with the hydrophobic nanoparticles could be the highly 

hydrophobic part between the α-helix and β-barrel (Figure 3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.12: hypothesized BLG interaction surface with a hydrophobic surface (pdb entry: 

1UZ2) 

 

In addition, the adsorbed protein shows a 2.5 fold increase in fluorescence intensity 

compared to the free protein. The explanation of this phenomenon of protein global 

quantum yield gain can be attributed to two different hypotheses: either by the moving of 

the Trp61 from the disulfide bridge Cys66-Cys160 (Figure 3.13), or by removal of Trp19 from 

Arg124 which is located above the Trp19 indole ring, which can act as quencher (Figure 

3.14). Both these cases imply a stretching of the original structure. 
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Fig 3.13: 3D structure of BLG (pdb entry: 1UZ2) with highlighted Trp61 and the disulfide 

bridge Cys66-Cys160. The removal of the fluorescent residue from the disulfide bridge may 

explain the increase of BLG fluorescence intensity after adsorption on NP  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.14: 3D structure of BLG (pdb entry: 1UZ2) with highlighted Trp19 and Arg124. The 

removal of the fluorescent residue from the natural quencher may explain the increase of 

BLG fluorescence intensity after adsorption on NP 
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Study of  β β β β-lactoglobulin structural reorganization in emulsio n by front face 

fluorescence 

In addition to studying the BLG behavior at NP interface we wanted to try and also to 

describe the structural features of the protein present at the surface of oil in water 

nanoemulsion. For these purposes we used front face fluorescence as the investigation 

method technique. 

This technique allows direct fluorescence measurements on solid or multiphase 

matrices (Genot et al., 1992), and therefore also on liquid-liquid emulsions. In particular, 

intrinsic fluorescence measurements were performed to analyze the structural organization 

and structuring properties of BLG in nanoemulsions made with vegetable oil (soybean oil) 

compared with BLG in aqueous solution. Specifically studies were carried out on the 

different phases obtained by centrifugal separation and on the emulsion itself. Spectra 

were recorded between 300 and 500 nm, exciting the sample at 280 nm, thus taking 

advantage of the characteristic fluorescence of tryptophan residues. Figure 3.15 shows the 

fluorescence of tryptophan in the case where the BLG is in the emulsion phase and cream 

phase serum at room temperature, showing a different structure of the protein when 

adsorbed or present in solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.15 : tryptophan fluorescence spectra (λex: 280 nm) of BLG free in solution (dashed 

line) and adsorbed on the oil droplet surface (solid line) 
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Whereas the protein in the serum phase shows a peak emission comparable to that 

of the native protein, it is clear a shift of the peak of the tryptophan emission maximum 

towards longer wavelengths such as in the case of the emulsion and the cream (Figure 

3.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.16 : tryptophan fluorescence spectra (λex: 280 nm) of BLG free in solution (solid line), 

BLG on oil droplets (dotted line) and BLG in the emulsion aqueous phase (dashed line) 

 

This is a typical behavior of tryptophan, whose exposure to aqueous solvent results 

in the so-called "red shift" of the emission maximum compared to the situation in which the 

tryptophan is "buried" within the structure of the protein. Unfortunately no reliable 

information can be obtained from these spectra intensity analysis.  

This shows that the protein on this kind of hydrophobic surface, as is the case in the 

study of interaction with nanoparticles, takes a different spatial conformation favoring  

hydrophobic type interactions. 

 

Study about BLG hydrophobicity properties after ads orption on nanoparticles 

Many studies have pointed out that the only tryptophan fluorescence is not sufficient to 

provide all the information about structural changes affecting the protein hydrophobic 

regions, when they change their properties of surface hydrophobicity (Eynard et al. 1992; 
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Iametti et al., 1998). Changes of surface hydrophobicity properties of native and surface 

unfolded β-lactoglobulin can be evaluated by spectrofluorimetry, using appropriate 

hydrophobic markers, such as 1-anilino-8-naphthalene sulfonate (ANS), capable to 

become fluorescent after binding to a hydrophobic site on the proteins surface (Genot et 

al., 1992, Pagani et al., 1998). 

Tests were conducted initially in solutions with constant protein concentration (0.05 

mg/mL) containing increasing amounts of ANS. These determinations were carried out by 

exciting the sample at 390 nm, allowing constructing the titration curves shown in Figure 

3.17, where the value of maximum fluorescence intensity indicates the amount of marker 

bound to the surface hydrophobic sites of proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.17 : ANS fluorescence intensity (λex: 390; λem: 460-480 nm) of BLG free in solution 

(black circle), latex nanoparticles alone (white circles) and BLG adsorbed on NP surfaces 

(white triangles) 

 

The titration curves confirm the significant differences between the native protein 

and that adsorbed to the NP, as well as with regard to the hydrophobic surface of the 

nanoparticles in the same state (Figure 3.17). It is very clear that the surface 

hydrophobicity of BLG increases when they are adsorbed to the polystyrene nanoparticles. 

The structural reorganization of the protein present at the interface allows a greater 

exposure of the hydrophobic core, already highlighted by studying the fluorescence 
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properties of tryptophan in the same sample. We can therefore conclude that the presence 

of hydrophobic solid-liquid interface results in significant changes in the tertiary structure of 

the protein and facilitates the saturation of surface sites by the hydrophobic probe.  

 

Accessibility changes of Cys 121 after protein adsorption on nanoparticles 

Variations in the structural organization of the BLG were further investigated by measuring 

the accessibility of thiol residues. Each monomer contains five cysteine residues which 

four are engaged in two disulfide bridges (Cys66-Cys160 and Cys106-Cys119). These covalent 

bonds stabilize the structure. The only free thiol (Cys121) in the native protein structure is 

hidden between the β-barrel and the α-helix. 

This parameter is very useful to show any changes in the protein structure and to 

investigate possible post-adsorption reorganizations. The study was conducted using a 

specific reagent (DTNB, 5,5'-dithiobis-2-nitrobenzoic acid) at various temperatures: 25° C, 

45° C, 60° C and 70° C. The absorbance values at 41 2 nm, measured at different times by 

the addition of the reagent DTNB, allowed to determine the number of -SH groups readily 

available and the maximum number of accessible thiol residues when the equilibrium is 

reached. In experiments involving BLG in solution there is an increase of the absorbance 

values in relation to the temperature. At 45° C an increased free thiol exposure is observed 

because of accelerate unfolding. At 70° C the prote in expose almost completely and 

almost immediately the free thiol of Cys121. We measured the accessibility of -SH groups in 

the BLG adsorbed to latex nanoparticles, and these results make it clear that the protein 

exposes its Cys121 thiol also at room temperature after the interaction with the 

nanoparticles. It is possible that the protein undergoes a change in the structure which 

improves the exposure of Cys121 thiol to the reagent. Table 3.1 reassumes all the exp 

carried out with this technique. 

 

 

 

 

 

 

Tab 3.1: accessibility of the thiol of β-LG in solution and bonded to nanoparticles, 

measured spectrophotometrically at 412 nm with DTNB (molar absorbance equal to 13600 

M-1 cm-1). 

Sample [SH] ( µµµµM) titrable % of Cys 121 accessible  

β-LG 25°C 0.0 0 

β-LG 45°C 0.9 30 

β-LG 70°C 3.1 100 

β-LG-NP46 25°C 3.1 100 
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Cys121

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.18: 3D structure of BLG (pdb entry: 1UZ2) with in evidence the Cys121, residue that 

become accessible after interaction with the nanoparticles surface 

 

 Taken together, all these results allow us to hypothesize a possible BLG 

conformation on the latex nanopartilcles, in which mostly of the protein present interact 

with the hydrophobic  surface with the area directly at the opposite of the alpha-helix and 

the ninth beta-strand. In this position, Cys121 become accessible, both Trp moves away 

from their natural quenches and the overall hydrophobic accessible surface become 

accessible. 

  

RP-HPLC characterization of hydrolyzed BLG 

In order to have more exhaustive information about the regions interacting with the 

hydrophobic interface, we have performed limited proteolysis using trypsin as protease. 

We performed these hydrolysis on BLG free in solution and on adsorbed BLG either at the 

emulsion interface or on latex nanoparticles.  
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Fig 3.19: RP-HPCL tracers for (panel A ) peptides from tryptic hydrolysis of free BLG 

(bottom chart) and emulsion BLG (top chart) and (panel B ) peptides from tryptic hydrolysis 

of free BLG (bottom chart) and nanoparticles/BLG (top chart) 

 

 As shown in Figure 3.19A it is clear that the adsorption process makes the protein 

more susceptible to proteolysis. The peak corresponding to the native BLG (peak at ≈ 65 

min) decreases in the emulsion sample. Moreover, after adsorption, BLG shows new 

cutting sites, unaccessible when the protein is in its native form. This results in a formation 

of new peptides, observable in the upper top chart in the Figure 3.19A. This BLG behavior 

to protease was previously described by Malaki et al, 2010. 

We also performed hydrolysis on BLG adsorbed on latex NP. Also in this case 

(Figure 3.19B) the hydrolysis gave different peptide pattern, compared with the free BLG. 

The hydrolysis in this physical form results in almost complete disappears of native 

protein.  

Comparing the peptides from the two different interfaces, we can see how the 

liquid/liquid and solid/solid surface act in different way on the protein structure. 

 

Mass spectroscopy characterization of BLG hydrolyze d 

In this study we also characterized the peptide analyzed in the previous paragraph by 

MALDI-TOF mass spectroscopy. Spectra were recorded either in α-cyano- 4-

hydroxycinnamic acid or sinapinic acid in order to test all the mass range (from small 

peptides to the whole protein). Generally, spectra recorded in sinapinic acid were blank, 

meaning an absence of high mass peptides. This is true for exception of peptide from 

BLG/nanoparticles. A good number of peptide, especially from nanoparticle sample does 

B A 
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not come from “classic” tryptic cleavage. In the Tables below are reported the peptides 

identified in the various experimental conditions, and are reported in the note the possible 

variants and adducts. 

  

Tab 3.2: list of masses and sequences of the tryptic peptides generated from BLG present 

in solution, at emulsion or at nanoparticles interface 

 

Measured molecular mass (Da) 

Free BLG Emulsion Nanoparticles 

Corresponding 

sequence 
Note 

487.56   
9-13  

674.42 674.4  78-83  

701.45 701.4  70-75  

 802.5  71-77  

837.47 837.47  142-148  

903.56 903.56  76-83  

916.47 916.5  84-91  

933.54  935.18/978.7 1-8 K+ 

1065.58   98-100  

  1153.6 139-148  

1192.54   61-70  

1245.58 1245.6  125-135  

1635.77 1635.77  125-138  

1644.83   149-162  

1658.78 1658.78 1661.73 149-162  

 1916.32  1-18  

2030.34  2032.93 21-40  

2313.25  2310.38 41-60  

2647.2   102-124  

 2651.07  102-124 Var A 

2707.37   15-40  

 2722.15 2769.95 61-69-S-S-149-162 Disulphide 

3486.78   41-70  

 3359.82  41-69  

 3362.87  9-40  

 
 6573.87 

61-70-S-S-139-162-

S-S-139-162 

2 Disulphide 

  8226.55 102-162-S-S-61-70  

  8572.67 102-162-S-S-61-70 + lactose 
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Conclusions 

 

The study we performed was aimed at creating a useful model to understand some of the 

structural rearrangements of the β-lactoglobulin when adsorbed to an interface. 

Specifically, we wanted to investigate the behavior of BLG present at the solid-liquid 

(aqueous solution of nanoparticles) and liquid-liquid (vegetable oil in water nanoemulsion). 

The binding of BLG occurred to nanoparticles has been studied by using 

spectrofluorimetric techniques. Intrinsic fluorescence measurements were used to analyze 

the structural organization of the protein adsorbed at the interface and highlight any 

changes in the hydrophobic core. In particular, we studied the behavior of Trp19, which lies 

at the base of the calyx hydrophobic inside the structure and unaccessible to solvent. The 

investigations carried out at room temperature have shown that the protein structure 

changes when the BLG is located at the interface of the hydrophobic latex NP. The shift of 

the peak emission to longer wavelengths indicates in fact a higher exposure to the solvent 

of the hydrophobic region of the protein, where the Trp19 residue is located. This would 

result in a change in the tertiary structure of adsorbed protein that allows increased 

exposure of Trp19 to the aqueous solvent. By analyzing the behavior of the protein at the 

nanoparticle interface we found that adsorbed BLG retains its modified structure even after 

heat treatment at 80° C. During the heating process  the protein does not undergo 

structural changes as the interaction with the NP can therefore maintain the newly 

acquired tertiary structure once adsorbed. In addition, the adsorbed protein shows an 

increase of fluorescence intensity (2.5 times that of the free protein). The explanation of 

this phenomenon can be explained on the basis of to two different hypotheses: either the 

removal of the Trp61 from Cys66-Cys160 disulfide bridge, or by removal of Trp19 from Arg124 

which is located above the Trp19 indole ring, which can act as fluorescence "quencher" 

Either hypothesis implies a stretching of the original structure. 

The study was extended to carry out also by analyzing the surface hydrophobicity of 

BLG-NP that increases when BLG interacts with polystyrene nanoparticles. The structural 

reorganization of the protein present at the interface allows a greater exposure of 

hydrophobic regions, already highlighted by studying the fluorescence properties of 

tryptophan in the same sample. One can therefore conclude that the presence of 

hydrophobic solid-liquid interface results in significant changes in the tertiary structure of 

the protein and facilitates the saturation of protein surface sites by the hydrophobic probe. 
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Accessibility of -SH groups of the BLG also increases when the protein is adsorbed 

on NP. Taken together, the determination of accessible -SH residues shows that the 

adsorption on latex nanoparticles is able to alter the behavior of the protein. 

By studying the behavior of BLG present at the interface in emulsion, using front-

face fluorescence techniques, we show a different structural organization of the adsorbed 

protein. While the protein present in the unadsorbed phase (serum) shows an emission 

peak comparable to that of the native protein, emulsion and the cream sample display a 

shift of the tryptophan emission maximum peak towards longer wavelengths. This shows 

that the protein at hydrophobic interface, as is the case in the study of interaction with 

nanoparticles, takes a different spatial conformation favoring interactions of hydrophobic 

type. 

The results obtained from tests on protein hydrolysis in emulsion shows that 

adsorption of BLG makes it more susceptible to proteolysis. Once adsorbed at the 

interface liquid-liquid protein changes its structural conformation and is hydrolyzed much 

faster than the protein in solution. This suggests that the interaction induces 

conformational changes, allowing the protease to act much more selectively than is seen 

in the protein in solution. Moreover, also BLG hydrolysis on nanoparticles lead to different 

peptide pattern and a more efficient digestion of the protein. Unexpectedly, adsorbtions 

also appears to alter the amminoacidic specificity of the protease. 

These results show the relevance of protein digestion behavior at interface because 

pointed out the different kinetics and modality of digestion, with the production of “unusual” 

peptides. Whereas these event may have physiological, nutritional, or immunological 

relevance remains to be assessed, as the possibility that the altered behavior of the 

adsorbed proteins (and the altered activity of the protease that acts on it) may have a 

broad significance in the case of food proteins. 
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Introduction 

 

Cow’s milk contains about 30-35 g/l of proteins that are divided into serum proteins 

(approx. 20%) and casein micelles (ca. 80%). The whey contains protein derived from 

synthesis in the mammary gland such as α-lactalbumin (ALA) and β-lactoglobulin (BLG) 

and proteins such as blood serum albumin (BSA), lactoferrin (LF) and immunoglobulins. 

The casein component (CN) includes four fractions encoded by different genes on the 

same chromosome: αs1-, αs2-, β- and κ-casein. 

It is important to note that allergy to cow's milk is not due to a single component or 

to a single protein fraction, but is characterized by the multiplicity and diversity of the 

involved proteins. It often happens that a multisensibilization might be present to multiple 

proteins simultaneously and, in general, all the milk proteins are considered potential food 

allergens, including those in which it is present in trace amounts (Gjesing et al., 1986; 

Docena et al., 1996). However, the main milk allergens are casein, BLG and ALA that are 

most important proteins in quantity in the milk. In recent years, the immunoreactivity to 

caseins seems to have grown both in terms of frequency and intensity of the IgE response 

(Stoger and Wutrich, 1993; Wal, 2002) and some research has shown that caseins may 

cause milk main persistent allergy (Sicherer, 1999). On the other hand protein also present 

in smaller quantities are of importance from the point of view of allergy. Wal and other 

authors (1995) have shown that approximately 35-50% of patients with BSA 

sensibilization, are also sensitive to immunoglobulins and lactoferrin. 

The milk proteins are very heterogeneous and have little structural or functional 

characteristics in common. This heterogenicity is increased by their genetic polymorphism, 

which results in multiple variants for each protein. The variants are characterized by the 

replacement of missing amino acids or peptide fragments of different sizes, although 

altered pathway of post-translational modifications such as phosphorylation and 

glycosylation. All these modifications and other changes generated by processes of food 

preparation may affect the ability to bind with IgE and on allergenicity (Malik et al., 1988, 

Bernard et al., 2000). 

β-lactoglobulin (BLG) exists naturally as a dimer of 36 kDa and each subunit has 

162 amino acids. Together with alpha-lactalbumin (ALA), BLG is considered a major 

allergen present in the milk and the lack of a homologous protein forms in human milk has 

suggested that BLG was among the main cause of allergenicity. The BLG monomer 

contains two disulfide bridges (Cys106-Cys119 and Cys66-Cys160) and a free cysteine 
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(Cys121).  The latter, together with the bridge Cys106-Cys119 is more internal located 

than the Cys66-Cys160 bridge, that is exposed outside near the C-terminal region. This type 

of structure is responsible for the main physico-chemical properties and interactions that 

are established with casein during heat treatment. Structural and physico-chemicals 

properties of BLG were discussed in more detail in the previous chapter. The protein has a 

proved resistance to acid and enzymatic hydrolysis, and this allows it to be absorbed 

virtually intact from the intestinal mucosa. The biological function of BLG is to bind retinol 

(vitamin A) and transfer it from breast milk to the infant through specific receptors in the 

gut. In cow's milk there are eight genetic variants of BLG. Variant A and B are the most 

abundant and the most common (Vasbinder, 2002).  

It is not possible to establish a general relationship between structure and 

allergenicity of milk proteins. Some of the IgE-binding studies have shown the presence of 

sequential epitopes vary in size and even peptides of 12-14 amino acid residues (about 

1500 Da) that appear to play a significant part of the whole molecule allergenicity in some 

patients.  

There is not still a clear picture about the consequences of technological 

treatments, and in particular of thermal, on allergenicity of cow's milk protein. The results 

depend on the temperatures and heating times and the possible interaction with the food 

matrix. It is important to note that although the thermal denaturation results in 

destabilization of the native structure that does not mean that there is loss of allergenic 

potential. During treatment it may come and form aggregates that increase the risk of 

allergenicity. Some authors have compared the raw milk with pasteurized or pasteurized 

and homogenized, and observed that during the heat treatment did not have reductions in 

allergenicity (Gjesing et al., 1986, Host and Samuelsson, 1988; Werfel et al., 1997). 

On the other hand, it is generally accepted that the hydrolysis of milk proteins 

reduces considerably their allergenicity although several studies have shown that specific 

IgE to cow's milk allergic patients recognize, sometimes to a greater extent, products of 

enzymatic chopping. (Haddad et al. 1979; Spuergin et al., 1996, Maynard et al. 1997; Selo 

et al., 1999). 
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Aim of the work 

The aim of this work is to understand whether and how the β-lactoglobulin conformational 

changes derived from the interaction with hydrophobic interfaces, can modulate its 

immunoreactivity and its absorption behavior by human cells involved in the immuno 

response. 

 

 

Materials and methods 

 

Chemicals 

All reagents used were in the highest degree of purity commercially available, and 

purchased from Sigma Aldrich unless otherwise specified. Nanoparticles (average size: 46 

nm) were provided by Kisker Bioteck. 

    

ββββ-lactoglobulin purification 

To avoid the presence of the partially denatured β-lactoglobulin species that characterize 

the commercial preparations we proceeded to purify the protein directly from fresh milk 

whey. The purification was performed by ion exchange chromatography of the serum 

obtained by skimming and subsequent removal of the casein fraction. 

Whole milk was skimmed by centrifugation at 5000 x g for 30 min at 4° C. Skimmed 

milk was then filtered on gauze to remove any remaining cream. The casein fraction was 

removed exploiting isoelectric precipitation by acidification to pH 4.5 with 5 M HCl. The 

precipitated casein was removed by centrifugation at 7000 x g for 5 min at 30° C. The 

serum obtained was then neutralized to pH 7.2 by addition of TRIZIMA base powder. To 

remove all the remaining portion of casein, whey was centrifuged at 11000 x g for 60 min 

at 20° C. 

The separation of BLG from serum was obtained by ion exchange chromatography. 

An appropriate volume of serum is diluted with water in 1:1 ratio to reduce the ionic 

strength and then loaded onto a DEAE-cellulose (Whatman) packed column previously 

equilibred in 0.05 M Tris-HCl, pH 7.2. 

BLG and many other serum proteins, including α-lactalbumin (ALA), are negatively 

charged and bind to the resin, while other proteins with different charge (lactoferrin, 

lactoperoxidase, lysozyme, etc.) are eluted in the unbound fraction. BLG was eluted from 
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the resin using a step gradient of NaCl. The first step consists of 0.05 M Tris-HCl, pH 7.2, 

containing 0.1 M NaCl in which the ALA is eluted, followed by a second step in which the 

BLG is eluted using a buffer containing 0.3 M NaCl. The purified BLG was then 

concentrate using an Amicon ultrafiltration devices (Millipore) with a membrane of 10 kDa 

cut-off, and subsequently lyophilized. 

 

Protein concentration determination 

The protein concentration of the different samples was determined spectrophotometrically 

by measuring the absorbance at 280 nm, using a 1 cm quartz cuvette in an Perkin Elmer 

Lambda 2S spectrophotometer. The concentration in mg/mL was calculated using an 

extinction coefficient, ε280 of 0.93 mg ml-1 cm-1. 

 

FITC ββββ-lactoglobulin conjugation protocol 

FITC is among the most simple and commonly used reagent for protein fluorescent 

labeling. This isothiocyanate fluorescent derivate reacts with amino, sulfhydryl, imidazoyl, 

tyrosyl, or carbonyl groups on proteins. However, only the derivatives of primary and 

secondary amines generally yield stable products. Reactions are most efficient at pH 8-9 

and must be performed in an amine-free buffer such as carbonate/bicarbonate.  

In order to label BLG with FITC, a 2.5 mg/ml protein solution was prepared in 0.05 

M borate buffer, pH 8.5. To 9.5 ml of this solution, 0.5 ml of 16 mg/ml FITC dissolved in 

DMF was added. After one night of incubation in the dark at 4° C, excess of unreacted dye 

was removed by ultrafiltration using a centrifugal ultrafiltration devices (Centricon cut-off 

3000 Da). Labeled protein was stored in the dark at 4° C. 

 In order to calculate the protein concentration after the conjugation, the following 

equation was used: 

 

 

protein concentration (M) = [A280 – (A494 × 0.3)] × dilution factor 

                                         ε 

  

To calculate the amount of dye for each protein molecule the following equation was used: 

 

dye per protein molecule  =    A494 × dilution factor 

                                               68,000 × protein concentration (M) 
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Emulsion preparation 

Emulsions were prepared as follows: 0.5 g of soy oil (Sigma Co., St Louis, MO) were pre-

emulsified with 9.5 ml of β-lactoglobulin solution (5 mg/ml in 0.05 M sodium phosphate 

buffer, pH 7) using a Vortex dispersing unit for approximately 1 min. The pre-emulsion was 

immediately homogenized in ice by using an ultrasound sonicator (MSE Soniprep 150) in 5 

sonication cycles (1 minutes each) with a 14 microns amplitude intensity. 

 

Polystyrene nanoparticles/ ββββ-lactoglobulin system preparation 

For this purpose a BLG solution with a concentrations of 0.05 mg/ml was mixed with a 

constant concentration of NP (0.025 ml of original suspension/ml) in 0.05 M sodium 

phosphate buffer, pH 7. This was followed by an incubation of 60 minutes, in mild stirring 

conditions at room temperature, to promote interactions between the protein and NP. 

 

Trypsin proteolysis  

Limited proteolysis experiments were performed as follows: 0.01 ml of trypsin solution 

(TCPK treated, 1mg/ml in 0.025 sodium acetate, pH 4.5) were added to 1 ml of BLG 

solutions, “cream” and “serum” samples (in 0.05 M sodium phosphate, pH 7, final protein 

concentration: 1mg/ml)  in order to reach a ratio protease/substrate of 1/100 w/w. 

Hydrolysis were carried out for 30 min at 37° C and  stopped by addition of 0.02 ml of 

Soybean Kunitz Trypsin Inibitor (2 mg/ml in dd water). 

 For hydrolysis of nanoparticles bounded BLG (final protein concentration: 0.05 

mg/ml) the same protocol was followed, adjusting the amount of protease in order to 

respect the protease/substrate ratio (1/100 w/w by addiction of 0.005 ml of a 0.1 mg/ml 

TCPK treated trypsin solution). 

 

ELISA (enzyme-linked immunosorbent assay) 

Enzyme-linked immunosorbent assays, also called ELISA, combine the specificity of 

antibodies with the sensitivity of simple enzyme assays by using antibodies or antigens 

coupled to an enzyme (Hornbeck, 1991). They are usually carried out in 96-well microtiter 

plates. ELISA allows detection of antibody or antigen with considerable accuracy and 

sensitivity. In an ELISA both measurements of antigen and antibody concentration can be 

performed dependent on the design of the ELISA. There are two main variations on this 

method: an ELISA can be used to detect the presence of antigens that are recognized by 

an antibody or it can be used to test for antibodies that recognize an antigen. 
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An ELISA assay implies a five to six-step procedure: 

1) Antigens or antibodies are absorbed/coated directly onto the plastic wells, 2) Plates are 

blocked to prevent further non-specific binding (optional), 3) Sample to be quantified 

(antibody or antigen) is added to the plate, 4) The bound analyte is detected by the 

addition of a specific antibody recognizing the antigen or antibody, being this antibody 

either conjugated to an enzyme or biotin-labeled, 5) Dependent on the previous step, 

either a substrate for the enzyme (to produce a colored product) or enzyme-labeled 

streptavidin (which specifically binds to biotin) is added. In this latter case, a suitable 

substrate is added, 6) The reaction is blocked (typically by adding acid or bases) and the 

amount of substrate/product in each well is quantified spectrophotometrically. 

Between all the first 4 steps, wells are washed with buffer to remove unbound 

reagents and proteins. In our experimental approach, an ELISA tests were performed as 

competitive capture ELISA, by incubating specific mouse anti-BLG monoclonal antibodies 

(5G6 and 1E3, prepared in the same laboratory) with conjugates between NP and BLG. A 

5 µg/ml BLG solution was prepared in carbonate buffer (14mM Na2CO3, 35 mM NaHCO3, 

pH 9.6), and 0.1 ml of this solution were added to each well of a 96-well ELISA plate, and 

stored at 4°C overnight for the coating step. 0.2 m l of each sample were loaded in the first 

lane of an uncoated ELISA plate (incubation plate). In particular, 0.1 mg/ml of BLG 

solution, BLG stabilized emulsions and BLG-nanoparticles were prepared. Buffer was also 

loaded as a negative control. Progressive 2-fold dilutions were then performed by mixing - 

in the next well – 0.1 ml material from each well with 0.1 ml washing buffer (PBS buffer, pH 

7.4, 0.05% Tween 20). After adding 0.1 ml/well of specific mouse anti-BLG antibody (either 

5G6 or 1E3 diluted 1:1000), the (incubation) plate was incubated for 1 hour at room 

temperature. After washing 3 times (with 0.2 ml of washing buffer) the previously BLG-

coated plate, 0.1 ml samples (from each well of the incubation plate) were loaded to the 

BLG-coated plate, and incubation was carried out for one hour at room temperature. The 

plate was then washed extensively with washing buffer, and 0.1 ml of a horseradish 

peroxidase-conjugated secondary antibody (P260, DAKO A/S, Denmark), diluted 1:1000 in 

washing buffer, were added to each well, and the plate was incubated for 45 minutes at 

room temperature. After washing the plate, the enzyme substrate was prepared by mixing 

2.8% (v/v) of 3,3’,5,5’-tetramethylbenzidine stock solution (20 mM in 90%-10% v/v 

methanol/acetone) into an ELISA peroxide buffer (3.2 mM NaBO2H2O2•3H2O, 40 mM 

CH3COONa, pH 5.0). One hundred µl of the freshly prepared substrate were added to 

each well, and, after 10 minutes incubation, color development was stopped by adding 100 
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µl of 2M H3PO4 (the blue color turns into yellow). Absorbance was read by using a 

microplate reader (450 nm with a reference at 630 nm). 

 

SDS-Page and Western-blotting  

SDS-PAGE and Western-blotting were performed as follows: to 0.05 ml of each sample 

were added 0.05 ml of Laemmli denaturation buffer, boiled for 5 minutes and then loaded 

to a 12% acrylamide gel. Electrophoresis was carried out for 1.5 h at 16 mA for gel, using 

a Mini Protean 2 apparatus provided by Bio-Rad. After the electrophoretic run, gels were 

transferred for 1 h at 100 V on a nitrocellulose paper sheet (Protran, 0.45 µm, Millipore) 

using a Mini Trans Blot apparatus (Bio-Rad). 

 The nitrocellulose sheets were then incubated overnight in a blocking solution (0.5 

% BSA in PBS). After an extensive washing, sheets were incubate with the primary 

antibodies solution for 2 hours (MAB 5G6 or 1E3 diluted 1:2000 in PBS), and then with the 

secondary antibodies solution (P260 polyclonal anti-mouse HRP, Dako, diluted 1:3000 in 

PBS) for 2 hours. Membranes were then developed using a developing solution made up 

of 0.6 mg/ml 4-chloro-1-naphtole, 10% methanol, 0.6% H2O2 in PBS. 

 

Cell uptake study of BLG at emulsion interface 

Cellular uptake of BLG at emulsion interface was studied on Mono Mac 6 cells (ACC124, 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, 

Germany). Mono Mac 6 (MM6) is a monocytic cell line derived from a 64-year old man with 

monocytic leukemia (Ziegler-Heitbrock et al., 1988). The cells were grown in RPMI 1640 

medium supplemented with 10% fetal calf serum (FBS), 1% penicillin and streptomycin 

(Gibco), 1% glutamine (Gibco), 2 mM non essential amino acids, 1mM sodium pyruvate 

and 9 µg/ml bovine insulin. Cells were grown at 37°C, and 5% CO2 for three days, and 

were then used for experiments. 

 For this purpose cells were harvested, counted using a cell counter chamber and 

adjusted to a concentration of 1*106 cells/ml. Vitality was assessed by Trypan Blue assay. 

Then, 150 µl of cell were added to single wells in a 96 wells-U-bottom plate and 25 µl of 

medium (RPMI 1640) were added to each single well. Also 15 µl of each compound 

(dissolved or diluted in DPBS) were added to the respective wells, to the respective time, 

as reported in the table below. Plates were incubated at 37° C with 5% CO 2. After the last 

addition, cells were spun down for 5 min at 1200 x g, resuspended in 150 µl cold FACS-

wash buffer and spun down for 5 min at 1200 r.p.m.. This passage was repeated 2 times. 
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Cells were then resuspended in 150 µl cold FACS-fixation buffer and the plate was 

analyzed by flow cytometry immediately or wrapped in tinfoil, kept at 4° C and analyzed 

later. 

Sample tested in these experiment and their preparation were listed below: 

• Free-BLG (BLG): lyophilized BLG was dissolved in DPBS buffer to a concentration 

of 1 mg/ml. 

• FITC-BLG (F-BLG): FITC conjugated BLG was diluted with DPBS buffer from the 

stock solution (8.49 mg/ml) to a final concentration of 1 mg/ml. 

• Emulsion FITC-BLG (E-BLG): Emulsion stabilized with FITC conjugated BLG was 

diluted from the stock solution (5 mg/ml) to a final concentration of 1 mg/ml in DPBS 

buffer. 

Competition experiments were performed by addiction of free unlabeled BLG to the 

medium, in stoichiometric ratio 1:1 with FITC labeled protein or FITC-labeled-BLG 

stabilized emulsion. 
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Results 

 

Determination of immunoreactivity of BLG adsorbed o n hydrophobic interface 

Various reports demonstrate that denaturation processes can alter the immunological 

properties of a protein. Hydrolysis (Selo et al., 1999, Iametti et al., 2002), heat treatment 

(de Luis et al, 2007), glycation (Corzo Martinez et al., 2010) are all events that may modify 

the intrinsic immuno-properties of a protein.  

 In order to determine the changes of immunoreactivity and the extent of this 

phenomenon, we developed an ELISA assay using two specific monoclonal antibodies 

(5G6 and 1E3, kindly provided by Prof. Hanne Frøkiær from University of Copenhagen) , 

that is suitable for detecting changes in immunoreactivity after adsorption of BLG on two 

model hydrophobic surface. 

 

 

 

 

 

 

 

 

 

 

Fig 4.1 : ELISA inhibition curves for free BLG (●) and BLG stabilized emulsion (○). BSA 

(▲) was used as negative control. Proteins in each samples are present in the same 

concentration. 5G6 monoclonal antibodies (right panel) and 1E3 monoclonal antibodies 

were used.  

 

The Figure 4.1 shows the inhibition curves in ELISA experiments carried out with  

BLG stabilized emulsions samples. Using both antibodies, it seems that protein present at 

the water/oil interface is more reactive than the one present free in solution. The increase 

in immunoreactivity is between 30% for the monoclonal antibody 5G6 and 120% using 

antibody 1E3.  

This increase in immunoreactivity may be due to either an increase in the number of 

interfacial epitopes exposed after denaturation of the protein or to a sort of structure 
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locking that stabilize the epitopes that are already present. This last hypothesis seems to 

be more creditable for the explanation of the phenomenon, since the exposure of new 

binding sites for the antibody would vary affinity constant of the system for the antibodies, 

which would result in a different slope of the inhibition curve. This “apparent” increase in 

the protein concentration can be explained by stabilization of the structure in a single 

structure, which is no longer in equilibrium with non-reactive forms naturally present if the 

protein is free in solution. In fact, the BLG, when present in solution, is present in a 

monomer-dimer equilibrium. A work made in the professor Frøkiær lab (data not 

published) report that the dimeric form appears to be far more immunoreactive than the 

monomer. The interfacial effect could block the protein structure in a form more similar to 

the dimmer of the BLG. 

 

 

 

 

 

 

 

 

 

 

Fig 4.2 : ELISA inhibition curves for free BLG (●), BLG stabilized emulsion (○), trypsin 

hydrolyzed emulsions (■) and BLG hydrolyzed by trypsin in solution (∆). BSA (▲) was 

used as negative control. Proteins in each samples are present in the same concentration. 

5G6 monoclonal antibodies (right panel) and 1E3 monoclonal antibodies were used.  

 

It is also relevant to note that the bound protein, after hydrolytic action by trypsin 

appears to be more immunoreactive then the hydrolyzed protein in solution, that 

decreases its reactivity by 50% (Figure 4.2). This behavior is found using both antibodies. 

A possible explanation can be attributed to the presence of larger peptides after hydrolysis 

at the oil/water interface. These species keep intact their immunoreactivity. Also, another 

possible explanation may due to the increased reactivity of intact protein on the surface of 

oil droplets, which raise the responsiveness of the system. 
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Fig 4.3 : western blot analysis of native BLG (Blg), trypsin hydrolyzed BLG in solution (H-

Blg) and BLG hydrolyzed with trypsin on emulsion interface (H-Emu). Western-blotting 

membranes were developed using 5G6 monoclonal antibodies (right panel) and 1E3 

monoclonal antibodies (left panel). 

 

In order to highlight the molecular determinants that allow to maintain of the 

immunoreactivity after hydrolysis with trypsin, Western Blotting analysis was performed 

using the same monoclonal antibodies used in the ELISA assays as primary antibodies. It 

is evident that in samples hydrolyzed at the oil/water interface (Figure 4.3) high molecular 

weight (8000-6000 Da) and immunoreactive peptides are present. These peptide seem to 

be not present in the samples hydrolyzed in solution. It is also interesting to note how the 

same peptides react to both antibodies. 

Also changing the physical chemical nature of the hydrophobic material, the 

reactivity of BLG bound to latex nanoparticle remains greater than that of the protein free 

in solution (Figure 4.4). Even in this case protein seems to be more immunoreactive after 

adsorption if using 1E3 antibody compared to antibody 5G6. The hypothesis of the 

stabilization of the protein structure, with a more stable reactive epitope exposure seems 

to be further supported by these experimental data. 
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Fig 4.4: ELISA inhibition curves for free BLG (●) and BLG adsorbed on latex 

nanoparticles. BSA (▲) was used as negative control. Proteins in each samples are 

present in the same concentration. 5G6 monoclonal antibodies (right panel) and 1E3 

monoclonal antibodies were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5 : ELISA inhibition curves for free BLG (●), BLG adsorbed on latex nanoparticles (○), 

trypsin hydrolyzed BLG on latex nanoparticles (■) and BLG hydrolyzed by trypsin in 

solution (∆). BSA (▲) was used as negative control. Proteins in each samples are present 

in the same concentration. 5G6 monoclonal antibodies (right panel) and 1E3 monoclonal 

antibodies were used. 
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The immunoreactivity of the protein after hydrolysis remains unchanged, and 

unexpectedly it increased after hydrolysis even after adsorption on latex nanoparticles 

(Figure 4.5). The degree of immunoreactivity of the peptides released after hydrolysis on 

the nanoparticles can be attributed to the different molecular nature of them respect of the 

peptide released after BLG hydrolysis on oil droplets or from BLG free in solution. 

It was already demonstrated in the previous chapter that the tryptic peptides derived 

from hydrolysis of the nanoparticles are significantly different from those resulting from 

hydrolysis of oil/water interface. In addition, the peptides coming from hydrolysis of BLG on 

the surface of nanoparticles are accounted by their “not tryptic” nature, because many of 

them do not seem to have been hydrolyzed in correspondence of to lysine or arginine, but 

on other residues. This behavior may explain, at least in part, differences in 

immunoreactivity of these samples 

 

Cell uptake of BLG at emulsion interface 

In order gather information about the implications of the interfacial proteins denaturation in 

biological systems, we have carried out a few preliminary experiments on BLG uptake by 

human monocytes. More precisely, absorption tests were conducted using free BLG in 

solution or presented to the cells at the oil/water interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6 : absorption kinetics by monocytes of free BLG solution (black bars) and BLG on oil 

nanodroplets (gray bars.) Fluorescence intensity was measured  by flow citometry. 
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 Figure 4.6 shows the monocytes absorption kinetics of BLG in solution (black bars) 

and of BLG adsorbed on the surface of nano-emulsions (gray bars). Both proteins are 

present in the assay at a concentration of 0.08 mg/ml. 

 As evident in the Figure the absorption by monocytes appears to be significant only 

after 30 min of incubation, reaching a maximum of absorption after 3 hours of incubation. 

The absorption of BLG adsorbed at the oil/water interface seems to be higher at low 

incubation times. This phenomenon could be due to a nonspecific adsorption of protein on 

the cell surface. The first significant increase in fluorescence due to absorption of the 

protein by monocytes occurs after two hours. After three hours of there is no further a 

significant overall increase in fluorescence of the cells. At maximum incubation time the 

uptake of the protein free in solution by cells is greater than the protein adsorbed on the 

nano-emulsions, allowing us to hypothesize two different mechanisms of internalization of 

BLG.  Figure 4.7 shows the absorption kinetics of BLG free in solution and adsorbed on 

the surface of oil nanodrops. In this experiment, the samples were diluted in DPBS buffer 

and stored at 4° C for 24 h. The high ionic strengt h of the medium leads to changes in the 

structure of the emulsion with the appearance of coalescence phenomena and consequent 

migration phenomena at the interface of the protein solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.7 : absorption kinetics by monocytes of free BLG solution (black bars) and BLG on oil 

nanodroplets (gray bars). Both samples were kept at 4° C for 24 h in DBPS buffer prior 

addiction to the cells. Fluorescence intensity was measured by flow citometry. 
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 As shown in the Figure, the absorption kinetics of the protein in solution are 

comparable with the kinetics of the previous experiment, while uptake of the protein 

adsorbed on the surface of the emulsion is greatly increased. This phenomenon could be 

attributed to the changing of chemical and physical conditions of the emulsion after 

storage for 24 h in high ionic strength environment that is recognized to be highly 

disruptive for these systems. The maximum absorption peak is achieved already after 30 

minutes of incubation, with no more further significant increases in fluorescence longer 

times of incubation. We still need further experiments to clarify the dynamics that govern 

this phenomenon. 

 In order to clarify the aspects related to the protein uptake mechanisms by 

monocytes we carried out competition experiments. These experiment are characterized 

by the presence of stoichiometric amount of unlabeled free protein. 

 

 

 

 

 

 

 

 

 

 

Fig 4.8 : competition absorption kinetics by monocytes of free BLG in solution (Panel A) 

and adsorbed on oil nanodroples (Panel B). Black bars show absorption kinetic of samples 

with protein concentration of 0.08 mg/ml of FITC-labeled BLG. Gray bars show absorption 

kinetic of samples with protein concentration of 0.08 mg/ml of FITC-labeled BLG wit 

addiction of 0.08 mg/ml of free unlabeled BLG. Fluorescence intensity was measured by 

flow citometry. 

 

 As evident in Figure 4.8/A stoichiometric additions of unlabeled BLG to the system 

does not appear to alter significantly the absorption of the protein. Even a total 

concentrations of BLG around 0.16 mg/ml does not seem to be sufficient to saturate the 

system, and comparable concentration of fluorescent BLG can be found within the cell 

regardless of the presence of the unlabeled competitor. We do not expect in this frame a 
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higher affinity of the cell for the protein labeled with fluorescein compared to the unlabeled 

protein. 

 The same competition experiment was carried out by adding stoichiometric 

concentrations of unlabelled BLG free samples of emulsion stabilized by BLG. In Figure 

4.8/B shows the results of the test. In this case, the absorbtion of labeled BLG present on 

the oil droplets surface seems to be altered slightly at low incubation times. Significant 

differences are visible up to 30 min of incubation. Starting from 60 min of incubation, no 

significant differences are observable. 

 

   

Conclusions 

 

In conclusions this work provides information about the changes in immunoreactivity of 

BLG after adsorption on two model hydrophobic interfaces. ELISA experiments 

demonstred that BLG increases its immunoreactivity after interaction with  both liquid/liquid 

and solid/liquid interfaces. This behavior should be explained by the locking in a more 

reactive conformation, and not by the exposure of novel epitopes. Moreover, after 

hydrolysis with trypsin, the overall reactivity remains high compared with the protein 

hydrolyzed in solution. This high reactivity of the hydrolyzed samples was explained by 

Western-blot experiments, which shown the presence of high molecular mass peptides in 

the hydrolytic products of surface-bound BLG, that are absent in the protein hydrolyzed in 

solution. These high molecular mass peptides remain reactive against the monoclonal 

antibodies used in this study. 

 Another relevant aspect is how the BLG internalization kinetics by monocytes 

adsorbed on the oil nanodroplets is different compared with the free BLG. In fact, it seems 

that free BLG is absorbed more efficiently and rapidly than BLG adsorbed on an emulsion 

interface. But, if using “ripened emulsions” the behavior seems to be opposite, with a high 

absorption efficiency by monocytes of the larger particles originate after “aging” the original 

emulsion under condition of high ionic strength. 

 Competition experiments, carried out by adding free unlabeled protein to both free 

and emulsion BLG systems, shows how the high absorption efficiency of monocytes. No 

relevant differences were observed in our experiments. Whether all these evidence may 

involve the existence of independent pattern for intracellular uptake of free and bound BLG 

(Marengo et al., 2011) remains to be verified. 
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 These result pointed out the importance of protein physical state on its physiological 

outcome. We are actually performing studies aimed to discover and describe more in deep 

this important aspect, with relevant implication in both immunological and food science.   
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Introduction 
 

The physiological properties of molecules in general, and of a protein in specific, relies on 

their behavior at the molecular scale under a number of circumstances, this way in turn by 

is affected by their surface interactions in the physiological medium of interest. A central 

issue for the in vivo action of a bioactive protein (an allergen, an antibacteric peptide..) is 

their surface behavior in terms of interaction with other molecules and surface present in 

the same environment (Kasermo 2002, Ratner et al. 2004). The interaction of bio- and 

nano-materials with proteins is therefore extremely important both for their performance 

and the possible biohazards, and the atomic scale modeling of protein adsorption on 

surfaces may shed light on many issues concerning their performance in fields ranging 

from nanomedicine to drug delivery, and from implant biotechnology to environmental 

issues. 

 From a more basic viewpoint, a similar approach can be adopted to model other 

non-covalent interactions, such as molecular recognition phenomena (Raffaini et al., 2008) 

that are relevant in enantiomeric drug separations and for developing of nanosized drug 

vectors.  

Theoretical modeling of these phenomena can now be carried out with molecular 

simulations due to the availability of increasingly sophisticated algorithms and programs, 

but mostly due to increasingly larger computing capacity in terms of speed and data 

storage. Molecular simulations, together with the modeling of theoretical frames, have 

been widely used to study the behavior of polymeric systems, focusing in particular on 

their large-scale properties through coarse-grained models to calculate the molecular size, 

transport, and rheological properties. However, these models cannot fully account for the 

protein structure used for molecular recognition phenomena, where the atomistic details 

are most relevant. In recent years, some authors shown that atomistic computer 

simulations can be usefully employed to model biomaterials and their surface properties, in 

particular protein adsorption (Ganazzoli 2005, Raffaini et al., 2007).  

This approach can provide significant new insights into the behavior of interactions 

between proteins hydrophobic interfaces in a physiological environment, giving atomistic 

information about protein denaturation and surface spreading (or, possibly, ordering). In 

particular, atomistic simulations can account for the protein secondary structure (α-helices 

or β-sheets), and for the surface of different materials with dissimilar wettability. These 

conditions can be very important for predicting protein structure reorganization in a 
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“foreign” envinroment. “Soft” proteins such as albumins undergo extensive surface 

rearrangements, whereas “hard” proteins such as lysozyme are more resistant to major 

changes, at least on hydrophilic surfaces. Additionally, the surface ordering of proteins on 

graphite (Raffaini 2004) may lead to refolding to a new secondary structure (Zhdanov et al. 

2001, Castells et al. 2005), or yield a spontaneous nanopatterning (Svaldo-Lanero et al. 

2008) that can be used as a template for inducing further supra-molecular ordering. Early 

theoretical approaches to study protein adsorption on foreign surfaces were based on 

semi-macroscopic colloidal models, which proved quite satisfactory for rigid proteins on a 

charged surface (Roth et al. 1995).  

Proteins can be viewed as copolymers formed by a specific sequence of the natural 

aminoacids, and their simplest theoretical description is in terms of amphiphilic copolymers 

in a selective solvent (Dill et al. 1995, Onuchic et al. 1997, Ganazzoli 1998, Ganazzoli 

2000). This approach has provided some clues about protein folding and the kinetics of 

surface absorption (Zhdanov et al. 2001, Castells et al. 2002), but neglected all atomistic 

features, including the full protein structure. Currently, such features and the detailed 

pattern of the outer electrostatic potential cannot be ignored any longer. To overcome 

these limitations, some works were aimed at modeling protein adsorption on the surface of 

bio- and nano-materials through forcefield-based atomistic simulations. The chosen 

methodology involves energy minimization (molecular mechanics, or MM) and molecular 

dynamics (MD) simulations at a given temperature. This procedure allows for the possible 

surface spreading considering both an implicit solvent through an effective dielectric 

medium and explicit water. 

Such an approach can in principle provide a thorough picture of the adsorbtion 

process at the nanometer scale. Therefore, the surface hydration of biomaterials can first 

be investigated (Raffaini 2007, Raffaini et al., 2010), and then protein adsorption can be 

modeled using a common methodology with a general simulation protocol. Protein 

subdomains with different secondary structures and hydropathy and lysozyme were 

studied on the surfaces of biomaterials with dissimilar wettability, so that the surface-

induced conformational rearrangements and the nanostructure of the adsorbates could be 

analyzed, together with the energetic of the process.  

Bioinformatics is a branch of computational science that exploits the computer 

calculus and graphic visualization potentiality in order to study biological, chemistry and 

physics issues. Researches in life science is generating a massive amount of data, that 

they cannot managed and analyzed without the use of computers. Information technology 
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can be used to collect, to organize, to analyze and to store this kind of data. Analysis of 

genetics or proteins sequences, analysis of protein three-dimensional structures, 

simulations of molecular dynamics is some of the opportunity offered by bioinformatics. 

Molecular modeling (MD) is a general word that covers a wide selection of 

computational and graphical techniques, aimed to calculate, build, simulate and analyze 

molecular structures, as well as to calculate chemicals and physical properties. The 

knowledge of the three dimensional structure of a protein is important to plan in silico 

experiments aimed to discover the mechanics that governs its folding-unfolding behavior. 

Programs for molecular modeling are graphics interfaces used to develop models, 

to defines force fields and control the simulation engines. The calculus that governs a 

simulation based on force fields is aimed at computing and estimating the potential energy 

of a configurations of atoms. The computation of this energy, and its first and second 

derivates as function of atoms coordinates, gives essential information for minimization, for 

harmonic vibrational analysis and for dynamics simulation. Computations are made by a 

simulation engine, that is a program based on force field. Simulation engines are 

computational suites developed to manage the force field application during energy 

minimization, molecular dynamics, and other molecular mechanics simulation. 

 Force field is defined as the potential energy function and by the entire set of 

parameters required to define a potential energy surface. It is fundamental to remember 

that the force field is the only approximation not ignorable in molecular modeling. The 

quality of a force field, its applicability to the case under investigation exam and its 

capacity to compute particular properties measured during the simulation determine the 

results validity. Force fields can be classified as follow: 

• Force fields based on general rules, applicable to a broad range of elements of the 

periodic tables 

• Classic force field (first generation force field), but suitable to address biochemical 

problems  
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Aim of the study 

 

The aim of this study is to create a in silico reliable model for β-lactoglobulin structural  

changes after adsorption on a hydrophobic polystyrene surface, and to compare results 

obtained with this computational approaches with the experimental data exposed in the 

previous chapters. 

 

 

Materials and Method 

 

Experimental in silico simulation were performed in the computation facilities of Dt. Ivano 

Eberini, at the Pharmacological Science Department of the University of Milan. All the 

computational procedures were carried out by using Molecular Operating Environment 

(MOE), an interactive, windows-based chemical computing and molecular tool with a 

broad array of scientific applications. 

 

Building polystyrene surface 

Polystyrene surface was built using the polymer builder program of the “build module”. The 

repeat unit (styrene monomer) is already available and optimized in the MOE database.  

We prepared a single chain of 140 styrene monomers in syndiotactic arrangement. This 

chain was replicated 16 times in order to obtain a single layer of latex of approx. 16.0 X 

30.5 nm. This layer was replicated to produce a double layer.  

 In order to produce a perfectly plain polystyrene bilayer and to carry out a MD 

simulation with an implicit solvent model we applied a wall restraint according to the 

fundamental function form   

 

                                                     |0                              if t < 0 

p(t) =   |t 3 (6 − 8t + 3t 2 )    if t in [0, 1] 

     |t                               if t > 1 

 

 

which is used with t set to various values to achieve the restraint conditions. The function p 

is twice continuously differentiable since p (0) = 0, p (1) = 1 and p (0) = p (1) = 0. 



Chapter 5)                                                       Protein unfolding on interfaces: a structural and functional study
   

                                                                                113 

 The wall restraint enclosed all the polystyrene chains inside the box; the pool were 

restrained in an axis aligned box were d defines the half box dimensions of each axis. For 

an atom with coordinates (x,y,z) the box restrain energy E is given by: 

 

Ew= W[p(x-x 0-Dx) + p(x 0-Dx-x) + p(y-y 0-Dy) + p(z-z0-Dz) + p(z0-Dz-z)] 

 

 The MMFF94x force field was used with a generalized Born-implicit solvent model. 

After an energy minimization step down to a root-mean-square of 10-5kcal mol-1Å-1, the 

bilayer structural properties were carefully checked. 

 

BLG preparation 

The B variant of BLG crystallized by Qin et al. (1998), deposited in RCSB as 1BSQ, was 

prepared, optimized and used in BLG/polystyrene MD simulation. The crystallization water 

molecules were removed and hydrogens were added. The energy of the protein was 

minimized down to a root-mean-square of 10-5kcal mol-1A-1. 

 

BLG/polystyrene preparation 

BLG was positioned on the polystyrene double layer with a potential energy continuous 

monitoring system. We drew up the BLG structure to the polystyrene bilayer down to an 

energy minimum. This procedure was repeated for other five different spatial orientation of 

BLG, in order to test different interaction fashions. 

 

MD simulation 

Five different MD simulations were carried out according the following protocol: 100 ps     

heating from 0 to 300 K, 100 ps equilibration at 300 K, 500 ps production. The light bonds 

were constrained. The integration algorithmic was Nose-Poincare-Andersen hamiltonian 

equation of motion, which is able to generate true ensemble trajectories. The MD 

simulation with the highest RMSD was run for 5 ns. 
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Results 

 

The in silico analysis of the BLG denaturation process after adsorption on a hydrophobic 

surface - in our case polystyrene - has highlighted a number of interesting features that 

lead a more or less extensive protein destructuration which depend on several 

parameters.  

The nature and amplitude of the structural changes is a function of the orientation in 

which the protein is interacting with the hydrophobic matrix. As evident in Figure 5.1, the 

RMSD, parameter that describe the extent of the displacement of a specific residue, or, if 

extended to the whole protein molecule, the sum of the displacements of all residues, 

appears to be significant only for the position defined as “5”, where the molecule is posed 

in contact with the latex surface with the surface placed below the small alpha helix (Figure 

5.2). 

 

 

 

 

 

 

 

 

 

Fig 5.1 : RMSD values of 5 different MD of BLG adsorption on polystyrene nanoparticles 

 

 

 

 

 

 

 

 

 

 

Fig 5.2: BLG orientation on polystyrene surface in the simulation number 5  
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 In this orientation, the protein structure is extensively altered with respect to the 

native tertiary structure, and also its secondary structure undergoes extensive 

rearrangements (Figure 5.3, Table 5.1).  

 

 

 

 

 

 

 

 

 

 

Fig 5.3 : comparison of BLG structure before the start (structure on left) and after the end 

(structure on right) of the MD 

 

When other orientation were tested only some unfolding nuclei of the tertiary 

structure could be detected, but no significant changes of secondary structure were 

evident (Table 5.1). Estimating the percentage of secondary structure were performed 

using the program STAN (The Structure Analyser servers - xray.bmc.uu.se / cgi-bin / 

gerard / rama_server.pl). 

 

Pose % αααα-helix % ββββ-sheet Pose % αααα-helix % ββββ-sheet 

2_start 17.901 43.210 5_ start 15.432 42.593 

2_end 16.667 43.827 5_ end 8.025 47.531 

3_ start 16.049 42.593 6_ start 15.432 43.210 

3_ end 11.111 35.185 6_ end 12.346 43.827 

4_ start 17.901 39.506    

4_ end 14.815 40.741    

 

Tab 5.1: secondary structure percentage of BLG adsorbed on polystyrene NP before and 

after MD. Samples differ as for orientation of the interacting surface. Percentages of 

secondary structure were computed by using the program STAN (The Structure Analyser 

servers - xray.bmc.uu.se / cgi-bin / gerard / rama_server.pl) 
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Turning to the analysis of the structure of BLG after adsorption on the latex interface 

in orientation “5” (Figure 5.4) is well evident how the structure is dramatically open, 

compared with the native structure, in the area between the alpha helix and the beta-

barrel. In this area there is the Cys121 residue, which is thus fully exposed to the solvent, as 

previously demonstrated experimentally in chapter 3. In addition, this particular 

destructuration shifts both Trp away from their natural neighboring quenchers supporting 

the spectrofluorimetrical findings (and their interpretations) as presented in chapter 3. It is 

also interesting to note that the beta-barrel almost completely loses its structure with the 

concomitant exposure to the solvent of “new” hydrophobic patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4 : BLG structure on polystyrene surface in the MD of the pose number 5 

 

Not only the tertiary structure is affected after the interaction with the hydrophobic 

surface. The alpha-helix content decreased from 15.5 % to 8 %, whereas the beta sheet 

structures grew from  42.5 % to 47.5%.  On the basis of these results we can include BLG 

into the category of the “hard” protein, because it reorganizes its structure, but it still 

maintains one. 

The mechanism that naturally orientates the protein on the hydrophobic surface 

remains yet unknown, and we have not information whether BLG adheres to the styrene 

surface with random orientation. Moreover, this kind of simulation does not take into 
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account the structural changes that may happen before the protein interacts with the 

hydrophobic surface. 

Unfortunately, at the date of submission of this work the calculations of total 

energies of various systems with the protein oriented in 5 different poses are not yet 

finished. The calculation of these energies are important to evaluate which is the  

preferential adsorption position. 

 

 

Conclusions 

 

In this work we used an in silico approach to study the unfolding process ensuing from 

adsorption on a hydrophobic surface. We demonstrate that the orientation in which the 

protein is posed on the latex surface has a huge influence on the final structure after the 

MD run. In the pose number “5”, we obtained a structure compatible with the experimental 

result shown in chapter 3. We also proved that BLG do not lose completely its structure, 

but it reorganizes the native ones to a more energetically favorable one. The overall 

energy of the 5 different systems will be data available soon, and will confirm if pose “5” is 

the more energetically favorable and consequently, the more likely to be present on the 

latex interface. Future prospective will implies the study of the protein migration from the 

solution to the surface. 
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General conclusions 
 

 

In this PhD thesis I have studied in detail several aspects of the structural and biological 

implications of of proteins adsorption on hydrophobic interfaces. The spontaneous 

adsorption of protein molecules on interfaces is a ubiquitous phenomenon in natural and 

man-made systems. This phenomenon plays a central role in many fields, such as health, 

food, environmental science, and biochemical or immunochemical analysis. The structural 

rearrangement caused by the direct contact with the sorbent phase may affect protein 

biological activity, including allergenicity, bioavailability, and ability to bind micro- and 

macromolecular ligands. Whether proteins unfold randomly or through subsequent ordered 

and eventually reversible steps remains often unknown, and information about the 

molecular determinants of the “gain of function” or the “loss of function” observed upon 

adsorption is scarce.  

For this purpose I have used as proteins model molecules with high interest for the 

food science and pharmacological fields, and for their application to nanotechnology. In 

particular I studied soy proteins (β-conglycinin and glycinin) and bovine whey protein (β-

lactoglobulin). 

Regarding soy proteins, I found that β-conglycinin undergoes a structural 

rearrangment at the oil-water interfaces. In fact, the fluorescence spectra of the protein 

in β-conglycinin stabilized emulsion are red-shifted compared with the fluorescence 

spectra of the native protein. In particular, β-conglycinin tryptophans seem to increase their 

exposure to solvent water when the protein interacts with the oil surface. Tryptophans in 

the mature form of β-conglycinin are present only in the in the N-terminal extension 

regions, the least hydrophobic areas, of α and α’ subunits. After emulsion digestion with 

trypsin, some peptides were released into the aqueous phase, including the tryptophan 

containing regions in the extension domains. Large peptides from the core region are 

released as well. These peptides come from the least hydrophobic regions of this domain.    

In conclusion, it is possible to hypothesize that the core regions of the β-conglycinin 

subunits interact with the oil phase, whereas the extension regions of the α and α’subunits 

protrude in the aqueous medium. Our proteolysis data also suggest that the core domain 

is oriented with its least hydrophobic regions exposed to the water. 

BLG studies demonstrate that also this protein undergoes an extend structural 

rearrangement. In fact, the intrinsic fluorescence spectrum of adsorbed BLG is red-shifted 
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compared with the free-protein one thus indicating that the adsorbed protein assumes a 

new structure in which Trp19, usually buried inside the hydrophobic core, is exposed to 

water. Moreover, adsorbed Blg increases ≈2 folds its global quantum yield. This 

phenomenon could be explained either by the moving of Trp61 away from the Cys66-Cys160 

disulphide bond, and/or by the moving of Trp19 from Arg124, thus removing fluorescence-

quenching interactions within the protein structure. The only free thiol in BLG is on Cys121, 

which is buried in the native structure, but becomes readily and almost completely 

accessible after adsorption. The overall Blg surface hydrophobicity seems to increase after 

interaction with the hydrophobic surface, confirming the occurrence of major 

rearrangements. The adsorbed protein is resistant to proteolysis by trypsin where the free 

protein is almost completely digested in the same conditions. All these data demonstrate 

an extended stretch of the native structure after adsorption on hydrophobic surfaces with 

the exposure of new protein regions usually buried from the aqueous media. 

Immunoreactivity of BLG is markedly altered upon absorption. The amplitude of the 

observed differences is also depending on the nature of the sorbent material. 

Another relevant aspect is how the BLG internalization kinetics by monocytes 

adsorbed on the oil nanodroplets is different compared with the free BLG. In fact, it seems 

that free BLG is absorbed more efficiently and rapidly than BLG adsorbed on an emulsion 

interface. But, if using “ripened emulsions” the behavior seems to be opposite, with high 

absorption efficiency by monocytes of the larger particles originate after “aging” the original 

emulsion under condition of high ionic strength. Competition experiments, carried out by 

adding free unlabeled protein to both free and emulsion BLG systems, shows how the high 

absorption efficiency of monocytes. No relevant differences were observed in our 

experiments. Whether all these evidence may involve the existence of independent pattern 

for intracellular uptake of free and bound BLG remains to be verified. 

In silico denaturation experiments confirm our experimental results, and they given 

evidence of the importance of the protein molecule orientation for the final rearranged 

structure. 

In conclusion, this thesis describes in deep a number of aspects regarding protein 

adsorption on hydrophobic interfaces. Future prospective will be addressed to evaluate the 

in vivo consequences of this phenomenon. Moreover, the “folding” properties of these 

structures will be be studied, in order to develop man-made “chaperon-like” nanotools. 
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