
 

 

 
 

 

Ph.D. in Agricultural Ecology 

XXIV Cycle 
 

 

 

Definition and implementation of plant 

disease simulation models in interaction with 

crop models, aiming at forecasting the impact 

of climate change scenarios on crop 

production  
 

Ph.D. Thesis 
 

Simone Bregaglio 
N° R08068 

 

Supervisor 

Prof. Marco Acutis  

Co-supervisors 

Dott. Marcello Donatelli 

Dott. Roberto Confalonieri 

 

Academic Year 

2011-2012 

Coordinator 

Prof. Graziano Zocchi  

   

SCUOLA DI DOTTORATO  

TERRA, AMBIENTE E BIODIVERSITÀ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

A mio padre, l’uomo più buono, 
sensibile e coraggioso che conosca 

 

A mia madre, che amo infinitamente 



 

 

Simone BREGAGLIO 

 

Definition and implementation of plant 

disease simulation models in interaction with 

crop models, aiming at forecasting the impact 

of climate change scenarios on crop 

production 

 

Ph. D. Thesis  

Department of Plant Production – University of Milan 

Via Celoria 2, 20133 Milan – Italy 

simone.bregaglio@unimi.it 

 

Titolo in Italiano: “Definizione e implementazione di modelli di 

simulazione di malattie delle piante in interazione con modelli di 

simulazione colturale, mirati a prevedere l’impatto di scenari di 

cambiamento climatico sulle produzioni agrarie”  

 

Tesi di Dottorato in Ecologia Agraria 

 

XXIV Ciclo, Anno Accademico 2011-2012 

 

 

 



 

Ringraziamenti 

 

Penso che se dovessi ringraziare il Dr. Marcello Donatelli per tutte le 
innumerevoli e fondamentali lezioni formative e per le occasioni che mi ha 
concesso, da quando mi ha dato la possibilità di cominciare a svolgere 
questa professione agli aiuti e incoraggiamenti degli ultimi giorni prima 
della consegna di questo lavoro, non basterebbero le 252 pagine di questa 
Tesi. Qundi mi limito a esprimergli la mia gratitudine per le lezioni extra 
lavorative che mi ha impartito in questi tre anni (e mezzo), da quando ci 
conosciamo. Forse la cosa più importante che mi ha insegnato e 
dimonstrato è che la correttezza e il serio impegno portano alla fiducia e al 
rispetto reciproci, i quali a loro volta portano all’amicizia sincera, senza 
dimenticare di non mischiare mai i rapporti lavorativi con quelli umani ☺. 

Ringrazio il Dr. Roberto Confalonieri perché, oltre ad avermi trasmesso lo 
spirito con cui affrontare ogni giornata lavorativa e la maggior parte dei 
concetti che conosco riguardo alla modellizzazione dei sistemi colturali, da 
diversi anni mi concede l’onore di lavorare fianco a fianco, il che significa 
lottare, ridere, arrabbiarsi, sforzarsi, confidarsi, prendere decisioni ecc. cioè 
condividere non soltanto lo stesso mestiere ma la maggior parte della mia 
vita. Ci sono cose che non possono essere espresse con le parole, come il 
nostro rapporto che si è creato vivendo miriadi di situazioni di ogni tipo, 
senza mai sentirsi ad un punto morto e perdere la voglia di rilanciare, 
insieme.  

Ringrazio il Prof. Marco Acutis perché, seppur non seguendo 
direttamente il mio lavoro, mi ha sempre comunicato fiducia, 
apprezzamento e rispetto, oltre a darmi consigli e spunti per migliorare 
diversi aspetti della mia ricerca. 

Mi reputo una persona molto fortunata per aver incontrato queste 
persone, e spero di poter ripagare professionalmente e umanamente il 
debito di gratitudine che mi lega a loro. 

Ringrazio il “neonato” gruppo di ricerca CASSANDRA, per sopportarmi 
ogni giorno. 

 





 

 

Bregaglio, S., 2012. Definition and implementation of plant disease 

simulation models in interaction with crop models, aiming at forecasting 

the impact of climate change scenarios on crop production. Ph.D. Thesis, 

University of Milan, Italy. 

English and Italian summaries. 

 

 

Reference to the contents of Chapters 2, 3, 4, 7, 8 and 9 should be made by 

citing the original publications. 

 



 

ABSTRACT  

The impacts of a changing climate on the social and economic 
development of humanity have been increasingly studied in the last 
decades. According to the Intergovernmental Panel on Climate Change 
(IPCC), the lack of implementation of effective and adequate measures for 
contrasting green house gases emissions will lead to increasingly severe 
and partially irreversible impacts on the environment, and consequently on 
the society. The estimate of possible impacts on food production, starting 
from agriculture, is essential to develop strategies to alleviate the 
consequences of climate change. In this context, the evaluation of the 
future dynamics of plant diseases plays a key role because they determine 
actual production levels for many crops in many areas, therefore deeply 
influencing food availability and security. In order to perform such analyses, 
process-based simulation modelling offers the capability to capture the 
high non-linearity characterizing the responses of biophysical processes to 
boundary conditions. However, such models have been marginally used to 
estimate scenarios of plant diseases impact on crop production, because of 
the limited availability of modelling approaches and tools. This work 
constitutes an attempt to respond to the need of developing a software 
framework for the simulation of a generic fungal plant airborne disease 
which can be easiliy coupled with a crop simulator in order to improve the 
estimation of the levels of crop productions under climate change 
scenarios.  
The first section of the work deals with the evaluation of models for the 
estimation of meteorological data and for the simulation of leaf wetness, 
driving variable of the infection process of fungal plant pathogens. These 
assessments were justified by the need of feeding the disease models with 
high quality data, and by the scarce availability of hourly data in large area 
databases.  

The second section presents the implementation and the calibration of 
the generic fungal plant epidemic framework, and its test via an extensive 
use of sensitivity analysis techniques.  

The third section deals with the application of the developed modelling 
solutions, coupled with crop simulators, for the forecasting of the impact of 
climate change on crop production in Latin America.  

In the last section, new criteria and metrics for biophysical model 
evaluation and analysis are presented, aimed at considering the models 



 

 

performance under heterogeneous climatic conditions such as those 
explored in climate change and large area application studies. 

 

Keywords: Plant diseases, climate change, epidemic forecasting model, 

model evaluation. 
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1.1. Climate change and plant diseases 

According to the United Nations Framework Convention on Climate Change 
(UNFCCC), climate change can be defined as “a change of climate which is 
attributed directly or indirectly to human activities that alter the 
composition of the global atmosphere and which is in addition to natural 
climate variability observed over comparable time periods” (UNFCCC, 
2006). These changes have already produced considerable impacts on 
various aspects related to human life: health, food security, social and 
economic development, hydrological resources and infrastructures. 
According to the Intergovernmental Panel on Climate Change (IPCC), if in 
the coming years humans will not adopt adequate and effective measures 
for contrasting climate change, its effects will be even more pronounced 
and severe (e.g., Bernard et al., 2001; Roessig et al., 2004; Tol, 2009). 
Climatologists agree in forecasting higher temperature regimes for the 
future climatic scenarios, coupled with modification in precipitation 
patterns and a rising frequency of extreme weather events (IPCC, 2007a,b). 
Agriculture is thus one of the sector of human activities that will be mostly 
subjected to climate change effects, since climatic variables are among the 
main forces driving crop growth and development (e.g., Rosenzweig et al., 
2002; Tubiello, 2005, Lhomme et al., 2009). In this context, the evaluation 
of the impacts of a changing climate on plant diseases plays a key role 
because they determine actual production levels for many crops and in 
many areas. Oerke et al. (1994) and Oerke and Dehne (2004) stated that 
the damages caused by disease and insect pests are responsible for 
approximatively 40% of the losses for the eight most important food and 
cash crops. 
Plant pathogens could react in a very heterogenous way to climate change. 
Many reviews focusing on the possible effects of biotic stresses on future 
crops productivity (e.g., Goudriaan and Zadocks, 1995; Garrett et al., 2006; 
Ghini et al., 2008) indicate that climate change could deeply modify the 
known patterns of plant diseases by means of altered spread of some 
species and introduction of new pathogens and vectors, leading to modified 
dynamics of current plant disease epidemics and shifts in their geographical 
distribution. In particular, most of the Authors agree on the fact that 
changes in temperature conduciveness and moisture availability are two of 
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the main factors that could alter disease infection and severity not only in 
the short-term but even for a longer perspective in terms of evolutionary 
potential (Coakley et al., 1999; Garrett et al., 2006). Furthermore, climate 
change could modify the growing patterns and the development rates in 
the cycles of plant pathogens, other than influence the physiology and the 
degree of resistance of host plants (Chakraborty and Datta, 2003). This 
could lead to a potential enhancement of the number of the infection 
events and consequently the need of an increase in the application of 
fungicide treatments, with deep consequences for the environmental 
sustainability of cropping systems. Among the studies on the effects caused 
by climate change on pathosystems, Travers et al. (2010) observed lower 
expression of the genes associated with disease resistance in big bluestem 
in response to simulated precipitation change; Chakraborty and Datta 
(2003) have noticed an higher fecundity of Colletotrichum gloeosporioides 
under increased CO2 regimes; Bergot et al. (2004) predicted an expansion 
of Phytophthora cinnamomi in Europe basing on General Circulation 
Models. Other studies point out that because plant disease pressure often 
increases following a compound interest model, a slight increase in the 
length of the growing season may have a very large impact on inoculum 
load. 

1.2. Modelling plant diseases in climate change studies 

The high non-linearity characterizing the responses of biophysical processes 
to boundary conditions makes their simulation via process-based models 
the only valid mean to explore conditions not experienced yet, in order to 
provide estimates of future dynamics related to crop-diseases interactions 
and pathogens expansion in new areas under different climate scenarios. 
Several studies focusing on climate change impacts on crop productivity 
based either on experimental trials or on simulation models have been 
carried out in the last decades. There is a clear imbalance in the available 
literature between the investigation of the effects of climate change on 
crop growth and development (e.g., Rosenzweig and Parry, 1994; Tubiello 
et al., 2000; IPCC, 2001; Wolf and Van Oijen, 2003; Fischer et al., 2005, 
Challinor et al., 2010) and the assessment of scenarios of future spatial and 
temporal distribution of plant diseases (Chakraborty et al., 1999; Ghini et 
al., 2008). This situation is largely explained by the scarce availability of 
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process-based models for disease simulation, whereas crop growth models 
are much more widespread among the international modellers community. 
This has led, in practice, to consider acceptable a constanct impact of biotic 
stresses on crop production across the years, thus including the yield 
reductions due to plant diseases in the values of the parameters describing 
morphological and physiological crop traits. The consequences of this 
assumption are the degradation of the process-based logic behind the 
model, and the development of site-specific sets of crop parameters, thus 
depriving the model of its capability to be applied under conditions 
different (in space or time) compared to those used during the calibration 
process. These consequences may strongly decrease cropping systems 
models suitability for large-areas simulation or for evaluating the impact of 
climate change scenarios (Donatelli and Confalonieri, 2011). Furthermore, 
data on geographic distribution of diseases are still surprisingly difficult to 
collect, leading to a high degree of uncertainty in current and future 
geographical diseases patterns in the available studies. 
Mathematical modelling of crop diseases moved its first steps with the 
work of Van der Plank (1960, 1963), who developed the first models of 
temporal development of epidemics, laying the basis for plant disease 
modelling (Campbell and Madden, 1990; McCartney, 1997). Further 
developments of this branch of pathology led to models able to estimate 
disease severity and yield losses as influenced by different factors such as 
weather, varietal resistance, and crop management practices (Luo et al., 
1997; van Maanen and Xu, 2003). In the last decades, books and reviews on 
the broad range of approaches and models for simulating plant diseases 
and related crop yield losses have been proposed (e.g., Nutter, 1997, 
Savary et al., 2006; Madden et al., 2007; Sparks et al., 2008; Contreras-
Medina et al., 2009). Common traits of such models are that (i) they were 
developed mostly for fungal pathogens and (ii) are often aimed at on-farm 
management (e.g., Spotts and Cervantes, 1991; Broome et al., 1995; Rossi 
et al., 1997). 

The development of generic disease forecasting models, either suitable 
for simulating epidemics caused by different pathogens in different time 
frames or reusable within diverse software platforms is becoming a crucial 
issue agronomists and plant pathologist are facing with (Magarey and 
Sutton, 2007). This is proved by the flourishing in the last years of 
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frameworks such as the Internet System for the Weather-Based Mapping of 
Plant Pathogens NAPPFAST (Magarey et al., 2007), implementing the 
potential infection model for foliar fungal pathogens developed by Magarey 
et al. (2005), or the Diseases framework developed within the FP6 APES 
(Agricultural Production and Externalities Simulator; Donatelli et al., 2010a), 
and tools as the generic biological model for the control of foliar plant 
diseases developed by Jeger et al. (2009), as well as the model for 
population dynamics of plant-parasite interactions developed by Gubbins et 
al. (2000), and the adaptation of the Kermack and McKendrick (1927) 
human epidemic model to spatial spread of plant disease made by Segarra 
et al. (2001). In order to manage the high complexity of the simulated 
biophysical processes, ranging from the relationships between 
meteorological variables and epidemic development to the physiological 
interactions between plants and pathogens, this modelling tendency should 
be supplied by the state-of-the-art of software engineering technology. 

1.3. Sharing knowledge via software components 

The term model has overloaded meanings: from a physical duplicate of a 
part of the real word to its abstraction, the latter often represented via 
mathematical equations which are meant to capture the traits of its 
behaviour with respect to a specific objective of analysis. The term model is 
also overloaded with respect to its specific structure: models range from 
very complex formalizations to a single equation, very often a model being 
a composition of many sub-models. Biophysical models in agriculture are 
not exceptions: what is commonly referred to as a cropping system 
simulation model is a set of interlinked mathematical representations of 
approaches which are abstractions of a single biological or physical process. 
They are called models, instead of the possibly more appropriate term 
modelling solutions, mostly because of the way they appear to the final 
user, who might even use them as black boxes driven by a graphical user 
interface. Also, when they originated at the end of the 80’, their 
implementation was monolithic, making often not obvious their 
discretization in several sub-models (Donatelli et al., 2011). 

In the last decade, several Authors claimed the need for modularity and 
replaceability in biophysical models (e.g., Jones et al., 2001; David et al., 
2002; Donatelli et al., 2004a, 2006a,b), aiming at improving the efficiency 
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of use of resources and at fostering a higher quality of modelling units 
(Donatelli and Rizzoli, 2008). In order to fulfill this aims, the adoption of 
component-oriented programming is becoming not only an option, but 
even the unavoidable prerequisite for the development of agricultural and 
ecological models (Reynolds and Acock, 1997; Papajorgji et al., 2004; 
Donatelli et al., 2010b). The advantages deriving by this choice are 
unquestionable, and can be summarized by features as ease of 
maintenance of the code, granularity of the approaches implemented, 
reusability of the tools and cross platform capabilities (Meyer, 1997). In 
particular, model reusability is often a challenging task because of different 
architectural structures and binaries incompatibilities, thus often still 
forcing modellers to the conversion of the code from one programming 
language to another (Liu et al., 2002). According to the modular approach 
adopted in the software industry and which is at the base of component-
oriented programming, the main concept is the encapsulation of the 
solution of a modelling problem in a discrete, replaceable, and 
interchangeable software unit, called component. A software component 
can be thus defined as a unit of composition with contractually specified 
interfaces and explicit context dependencies only (Szypersky et al., 2002), 
that can be deployed independently and is subject to composition by third 
parties. The isolation of modelling problems belonging to specific domains 
allows the development of submodels by specialists in the specific sectors, 
rather than having generalist modellers working on all details of complex 
integrated modelling systems. For these reasons, component-oriented 
designs represent the natural choice for building scalable and robust 
applications, and to maximize the ease of maintenance in a variety of 
domains. This concept has been applied to biophysical systems, leading to 
the development of several modelling frameworks (e.g., Simile, MODCOM, 
IMA, TIME, OpenMI, SME, OMS, as listed in Argent and Rizzoli, 2004), that 
use components both linking them directly, or via a simulation engine, if 
they expose their interface requesting a numerical integration service. One 
possible disadvantage of targeting model component design to match a 
specific interface requested by a modelling framework is the decrease of 
reusability. This could explain the scarce adoption of modelling frameworks 
by groups other than those that developed them (Rizzoli et al., 2008). Part 
of the solution for increasing component reusability is the adoption of a 
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design targeting the interchangeability of model components across 
modelling platforms, allowing their implementation in a specific modelling 
framework via an application of the design pattern Adapter (Gamma et al., 
1995), acting as bridge between the framework and the component 
interface. In order to achieve this aim, the guidelines to be followed are: 

•  the component must target the solution of a sufficiently widespread 
modelling problem; 

•  the published interface of the component must be well documented 
and it must be consistent; 

•  the configuration of the component should not require excessive pre-
existing knowledge and help should be provided in the definition of 
model parameters; 

•  the model implemented in the component should be extensible 
autonomously by third parties, 

•  the dependencies on other components should be limited and 
explicit; 

•  the behaviour of the component should be robust, and degrade 
gracefully, raising appropriate exceptions; 

•  the component behaviour should be traceable and such a trace should 
be scalable (browseable at different debug levels); 

•  the component software implementation should be made using 
widely accepted and used technologies. 

1.4. Objectives and organisation of the research 

One of the key issues when developing and evaluating a plant epidemic 
model is represented by the quality of the data used as input and by their 
time resolution, which should respect the temporal scale of the biophysical 
processes simulated. Several processes involved with the different phases 
of a plant disease (i.e., infection, incubation, latency, outbreak of the 
symptoms and sporulation) can occur in a very short time, even few hours. 
An epidemic model aimed at the correct representation of these processes 
should adopt the same temporal resolution. However, the availability of 
hourly data is dependent on the presence of meteorological station with an 
advanced instrumentation, capable to measure hourly values of air 
temperature, air relative humidity, precipitation and wind speed. Although 
technically this is no longer a limit, in the vast majority of cases the 
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additional storage and work required to perform a quality control is not 
counterbalanced by a strong demand by users. In fact, most 
crop/agrometeorological models used still require daily values, thus not 
making the availability of hourly values a priority. The limit above are even 
more pronounced when working on large areas and/or in climate change 
studies, where the data are often organized into grid cells, and are mainly 
the results of interpolation and downscaling procedures. One of the 
possible solutions to overcome this problem is the estimation of hourly 
variables starting from daily data, usually present in the available 
databases, via estimation and generation methods. For this reason, the first 
section of this thesis presents three studies focused on the evaluation and 
comparison of modelling tools for the generation of crucial variables driving 
plant disease models: air relative humidity, air temperature and leaf 
wetness duration. 

The second section presents the framework for the simulation of a 
generic airborne fungal plant epidemic constituted by four software 
components implementing (i) a deterministic compartmental susceptible-
infected-removed (SIR) model for host–pathogen dynamics simulating the 
response of a generic fungal pathogen to hourly meteorological variables; 
(ii) an approach for the estimation of initial conditions for the development 
of an epidemic, via the quantification of initial inoculum, (iii) different 
models for the consideration of the impacts of agricultural management 
practices on the epidemic development and (iv) models for the 
formalization of the interactions between the epidemic and crop growth 
and development, aimed at quantifying the disease impact on plants. This 
section includes also two sensitivity analysis assessments on different parts 
of the modelling solutions implemented by considering different host-
pathogen couples. 

The third section presents an application of the modelling solutions for 
plant-disease interaction in climate change scenarios, coupled with two 
crop simulators in order to forecast the future patterns of disease pressure 
on crops productivity in Latin America. The study was run also with the aim 
of addressing the problems which are encountered when moving from the 
use of very detailed data-sets to operational conditions.  

In the last section, two studies on the development of new metrics for 
advanced evaluations of the performance of biophysical models are 
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presented. The use of model compositions, integrating in an modelling 
solution a large number of modelling approaches, and their application in a 
variety of environmental conditions, requires a more articulated analysis of 
model performance than the ones usually performed based on single 
metrics, mostly related to model accuracy. 

The general scheme of the organization of the 3-year research carried 
out during this doctorate is presented in Figure 1, and it will be reported in 
the first page of each Chapter. 

 

1° year

2° section: implementation and 
calibration of a generic fungal plant
epidemic framework, to be coupled
with crop models.

3° section: application of the developed
modelling solutions for the forecasting
of the impact of climate change on 
crop production in case studies.

4° section: 
improvement
and 
development
of new 
criteria and 
metrics for 
biophysical
models
evaluation. 

1° section: evaluation of models for the 
estimation of meteorological data and 
for the simulation of leaf wetness, 
driving variable of the infection process
of fungal plant pathogens

2° year

3° year

 
Figure 1. Scheme of the organization of the research carried out during this thesis 

 

1.5. Synopsis 

Chapter 2 presents a software component, AirTemperature, providing a 
collection of deterministic and stochastic approaches to generate 
atmospheric temperature data at daily and hourly time steps. Its software 
design allows for extension of the models implemented without re-
compiling the component. AirTemperature can be considered a way to 
share knowledge, making it available in an operational tool. This is done via 
an architecture which decouples data from models, providing a 
semantically rich interface for framework-independent implementations, 
thus facilitating its reuse in custom applications, and the independent 
extensibility by third parties. 

Chapter 3 presents a comparative evaluation of thirteen modelling 
solutions for the estimation of hourly values of air relative humidity. In this 
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work, a synthethic indicator for model evaluation was developed, taking 
into account diverse aspects of simulation performances. This procedure 
allows a transparent traceability of the errors done in the generation 
process, making clear the steps of the modelling chain that need to be 
improved. The results of this work underline that (i) the presence of daily 
values of air relative humidity deeply improve the reliability of the 
estimation of hourly fluctuations of air relative humidity, and that (ii), when 
daily data are not available, the magnitude of the errors produced by the 
modelling solutions tested showed large differences, providing means to 
select the most suitable under specific contexts. 

Chapter 4 presents a multi metric evaluation of six models for the 
simulation of leaf wetness duration, one of the main driving variables of 
epidemic models. The estimation of this variable is mandatory when 
working on large databases in which data are interpolated in grids starting 
from weather stations measurements. In this work, the behavior and 
reliability of six models is assessed by running them with inputs at different 
time resolutions aimed at large-area applications. The models were 
evaluated for their capability to estimate leaf wetness and for their impact 
on the simulation of the infection process for three pathogens via the use 
of a potential infection model. This study indicated that some of the 
empirical models tested are able to perform better than the physically 
based ones, given the availability of data considered. The classification and 
regression tree (CART) model showed the greatest robustness in most of 
the conditions explored.  

Chapther 5 presents a sensitivity analysis assessment aimed at 
understanding the capability of a simple generic infection model (i) to 
differentiate its response in response to different parameterizations and (ii) 
to be sensitive to the variability of the data provided as inputs. Four 
pathogens were chosen, trying to maximize the variability in temperature 
and moisture requirements, and the model was run under diverse climatic 
conditions. The sensitivity of the model deeply changed according to the 
pathogen tested, and the relevance of its parameters in explaining model 
outputs was strongly related to the environmental conditions tested. The 
indications provided by this study strengthen the suitability of this model 
for pest risk assessment studies under both current conditions and climate 
change scenarios. 
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Chapter 6 presents the generic fungal epidemic framework, including 
four independent software components aimed at simulating a generic 
polycyclic fungal epidemic. These components can be easily extended by 
third parties and reusable within diverse modelling platforms. They provide 
options for simulating (i) the initial conditions for the development of an 
epidemic, (ii) the progress of the disease over time as driven by 
meteorological variables taking into account the effect of host resistance, 
(iii) the yield losses due to the interactions between plant and pathogen 
population via coupling with a crop growth model and (iv) the impact of 
agro management practices on disease progress. In the same chapter, the 
disease development component, i.e., the core of the framework, is 
analyzed via an extensive spatially distributed sensitivity analysis for two 
pathosystems, in order to gain an in-depth knowledge on model behaviour. 
Results indicate that the model is on one hand sensitive to diverse 
parameters according to the pathogen simulated whereas, on the other 
hand, the overall relevance of the model parameters is respected in both 
pathosystems tested. 

Chapter 7 presents an assessment of the impacts of climate change on 
agricultural productivity in Latin America. Results indicate relevant impacts 
on crops production in the coming decades, underlying the need for a 
rigorous evaluation of response strategies and their costs, in order to 
devise effective policies facilitating successful adaptation by farmers. The 
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment 
Report (AR4), published in 2007, stated that most of the impact models 
used in the assessment of climate change impacts have fell behind in the 
development and validation of key processes necessary to improve 
projections of crop yields in coming decades. The gaps include the 
representation of interannual climate variability and extreme events and 
the impacts of pests and diseases. Results indicates that, without 
adaptation, wheat, soybean and maize yields will be significantly affected 
by climate change, regardless of the emission scenario or GCM considered, 
whereas for rice the projections are less severe. The simulations carried out 
indicate that the implementation of adaptation strategies positively 
concurred to limit climate change damage to crop production. The impact 
of rust disease on soybean is projected not to increase with warming, with 
the exception of Colombia. This can be explained by the severity of the 
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increase in temperature regimes in a warm environment, in turns leading to 
more favorable conditions for the pathogen. For wheat, the projected yield 
decrease due to diseases in 2020 and 2050 was significant. Frost damages 
were expected to affect wheat yields less seriously in Chile, where 
shortened cycles will reduce the crop exposure to pathogens, thus reducing 
also the pressure of wheat leaf rust on the crop. For maize, the simulations 
carried out indicate that the implementation of adaptation strategies 
positively concurred to limit climate change damage to crop production, 
even in the countries where the grey leaf spot resulted the most limiting 
factor. For rice in temperate areas, the blast disease pressure on the crop 
decreases, because of thermal and pluviometric conditions less favorable 
for the pathogen Pyricularia grisea. The implementation of adaptation 
strategies targeting crop features mainly related with crop cycle length led 
to indirect benefits in terms of pathogens pressure. This could suggest 
possible reduction of agrochemicals in the future in important rice 
producing countries, like Brazil, and to the uselessness of investing efforts 
in developing blast-resistant varieties. 

Chapter 8 proposes an approach for the quantification of model 
robustness based on the variability of errors to variability of explored 
conditions ratio. Model errors are quantified using the modelling efficiency 
and a normalized agrometeorological indicator based on cumulated rainfall 
and reference evapotranspiration is used to characterize the conditions of 
application. The indicator is tested for models estimating meteorological 
variables and crop state variables. The values assumed by the robustness 
tend to be worse when the number of simulated processes increase and, 
within the same typology of model, with the degree of 
overparameterization. The independence of the information provided by 
the robustness indicator from pure agreement metrics strongly support its 
inclusion in integrated systems for models evaluation. 

Chapter 9 proposes an indicator of model plasticity, defined as the 
aptitude of a model to change the sensitivity to its parameters while 
changing the conditions of application. The concordance among the 
different sensitivity analysis results was related to the variability of a 
normalized agrometeorological indicator used to characterize the explored 
conditions. The plasticity indicator was tested using three different crop 
models (WARM, CropSyst, and WOFOST; rice was simulated), 10 European 
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locations, and 10 years for each location. Results indicated WOFOST as the 
most plastic, both within location, year, and by using all the combinations 

location × year, whereas WARM showed to be the less plastic across the 
conditions explored. Previous studies carried out on the same models in 
Northern Italy seem to suggest a direct relationship between model 
complexity and plasticity, whereas model accuracy seems to be unrelated 
to these features. This underlines that different choices should be 
performed for different modelling studies, characterized by different aims 
and conditions of application. 

Chapter 10 presents the general conclusions of this work, with regard to 
the development achieved and the realization of specific objectives, 
together with the drawing of future perspectives. 

 

Note 

Chapter 2 is published in SRX Computer science, and it is available at 
http://www.hindawi.com/archive/2010/812789/ref/. Chapter 3 is 
published in Theoretical and Applied Climatology. Chapter 4 is published in 
Agricultural and Forest Meteorology. Chapter 5 has been submitted to 
Ecological Modelling. Chapter 6 has been submitted to Environmental 
Modelling and Software. Chapter 7 is close to be published as an official 
World Bank report. Chapter 8 and 9 are published in Ecological Modelling. 
The reference lists from these individual papers have been amalgamated 
into one list at the end of this thesis. I would like to acknowledge the 
editorial boards of Theoretical and Applied Climatology, Agricultural and 
Forest Meteorology and Ecological Modelling, and the World Bank for their 
permission to include the papers and the report in this thesis. 
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2.1. Abstract 

The development of a set of reusable libraries to support custom 
applications has become a goal in biophysical modelling projects. This is 
true for weather modelling as well. AirTemperature is a software 
component providing a collection of deterministic and stochastic 
approaches to generate atmospheric temperature data on daily and hourly 
time steps. Data generated on a daily time step consists of maximum and 
minimum air temperature and dew point temperature. Hourly estimations 
include air and dew point temperatures. The software design allows for 
extension of the models implemented without re-compiling the 
component.  The component, inclusive of hypertext help documentation 
files, is released as compiled .NET2 version, allowing application 
development in either programming environment. A sample client and a 
sample extension project using AirTemperature are provided as source 
code. A sample Web service and a Web application are also developed as 
examples of possible use of the component. 

 

Abbreviations:  AirTemperature, air temperature (software component); 

Tmax, maximum air temperature; Tmin, minimum air temperature 
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2.2. Introduction 

A large number of existing agricultural and ecological models have been 
implemented as software that cannot be well maintained or reused, except 
by their authors, and therefore cannot be easily transported to other 
platforms (e.g., Reynolds and Acock, 1997; Papajorgji et al., 2004). In order 
to possibly include legacy data sources into newly developed systems, 
object-oriented development has emerged steadily as a paradigm that 
focuses on granularity, productivity and low maintenance (Timothy, 1997). 
Several papers have been recently published in agro-ecological journals 
(Carlini et al., 2006; Donatelli et al. 2006a, b; Confalonieri et al., 2009a; 
Donatelli et al., 2009a, b; Holzworth et al., 2009) targeting at reusable 
dynamic link libraries either within the Microsoft .NET framework 
(http://www.microsoft.com/NET) or using the SUN Java platform 
(http://java.sun.com). Such solutions reflect a style of programming 
referred to as component-oriented programming that has become the 
leading methodology in developing systems in a variety of domains, 
including agro-ecological modelling (Papajorgji et al., 2004). Although 
different definitions of component do exist in the literature (Bernstein et 
al., 1999; Booch et al., 1999; Szypersky et al., 2002), a component is 
basically a discrete software unit which makes available specific 
functionalities, and it can be presented as a black box that provides access 
to its services through a defined interface. The component development 
paradigm is to make the construction of a software as plugging together 
independent components. In the context of the agricultural and 
environmental modelling community, alternative frameworks are available 
to support modular model development through provision of libraries of 
biophysical modelling modules, as well as reusable tools for data 
manipulation, analysis and visualization (Argent et al., 2006). Various 
object- and component-oriented solutions have approached the issue of 
agricultural and environmental modelling, such as maize irrigation 
scheduling (Bergez et al., 2001), multiple spatial scales ecosystems 
(Woodbury et al., 2002), greenhouse control systems (Aaslyng et al., 2003), 
households, landscape, and livestock integrated systems (Matthews, 2006). 
In the same perspective, we have approached the weather generation 
issue. Long records of weather data are in fact needed for evaluating 
agricultural management scenarios in natural resource models (e.g., Shenk 
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and Franklin, 2001; Mavi, 2004). Weather inputs required by natural 
resource models include air temperature, precipitation, solar radiation, 
wind speed, and dew point temperature. Synthetic weather sequences are 
needed if long-term measured data are not available, measured data 
contain missing records, collection of actual data is cost or time prohibitive, 
or when necessary to simulate impacts of future climate scenarios. 
Weather simulation models (or weather generators) are commonly used to 
generate synthetic weather records for use in the study of crop growth and 
development, water availability, soil erosion, climate change, and other 
domains (e.g., WST, http://www.wcc.nrcs.usda.gov/climate/wst_fact.html). 
Several weather generators are available in the form of ready-to-use, user-
oriented tools, implementing specific solutions to the basic problem of 
generating one or more weather elements. Such an approach is however 
ineffective for developers of custom applications, who have to re-
implement the set of equations within modelling applications of various 
complexity. Moreover, because of either the empiricism or the alternative 
inputs required by different generation approaches, it may be desirable to 
compare different methods in case-specific applications in order to provide 
reliable weather data for case-specific applications. Reusability in weather 
generation can be efficiently achieved by capturing the domain knowledge 
currently available (i.e., weather models already developed and tested) and 
making it available in software components. This is the reason why 
component-oriented tools have been recently developed to fit this need, 
that is, ET for calculating evapotranspiration and related variables 
(Donatelli et al, 2006a), GSRad for estimating synthetic values of solar 
radiation (Donatelli et al, 2006b), Rain (Carlini et al., 2006) for generating 
precipitation data, and Wind (Donatelli et al., 2009b) for generating wind 
speed data. The components mentioned provide a set of alternate models 
to estimate variables specific for the domain targeted, and are 
implemented using a software architecture which promotes reusability 
(Donatelli and Rizzoli, 2008). The present study focuses on the modelling of 
air temperature that, to the best of the authors’ knowledge, have not yet 
encapsulated into component-based solutions. Air temperature values are 
essential to plant growth and the development of organisms. One problem 
in simulating air temperature is that measured daily maximum and 
minimum air temperature are often slightly skewed and not normally 
distributed in each month. So, generating air temperature from the normal 
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distribution may result in physically improbable values (especially extreme 
hot temperatures). Although the assumption of normality is often 
contradicted (Harmel et al., 2002), the normal distribution (variously 
interpreted and corrected) is the reference distribution of all the 
approaches currently used to generate air temperature data. Weather 
generators (including Cligen, Nicks and Gander, 1994; WGEN, Richardson 
and Wright, 1984; USCLIMATE, Johnson et al., 1996; LARS-WG, Semenov et 
al., 1998; ClimGen, Stöckle et al., 2001; and CLIMAK, Danuso, 2002) are 
commonly used to generate daily maximum and minimum air 
temperatures in agro-ecological projects. Generation of maximum and 
minimum air temperatures is also useful for modelling applications that 
require estimates of hourly temperature throughout a day. A best guess is 
made by assuming that minimum air temperatures normally occur close to 
sunup and maximum air temperatures a few hours after solar noon (e.g., 
Stöckle, 2002). Moreover, relationships between air relative humidity and 
air temperature can be rearranged as an association of the dew point 
temperature with the two daily extremes (e.g., Linacre, 1992). 
Disaggregation from daily to hourly records and estimation of dew point air 
temperatures are both largely based on empirical relationships. This paper 
illustrates how well-known air temperature generation approaches have 
been implemented into a software component (namely, AirTemperature). 
The procedures implemented in the component, the scientific background, 
some principles of usage, and source code are extensively documented in 
hypertext help files. The paper describes the implementation features that 
guided the development of AirTemperature, followed by a discussion on 
the main component features. 

2.3. Background 

The modelling background implemented in AirTemperature, fully 
documented in the online help file, is not reproduced hereafter. The main 
features are only briefly summarized. All these models are published in 
peer-reviewed journals; details about their development and the 
applications in case studies are reported in the referenced papers. 

2.3.1. Daily generation of air temperature 

The generation of daily maximum (Tmax, °C) and minimum (Tmin, °C) air 
temperatures is considered to be a continuous stochastic process, possibly 
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conditioned by the precipitation status of the day. Three methods are 
implemented for generating daily values of Tmax and Tmin. The multi-stage 
generation system is conditioned on the precipitation status with both 
approaches from Richardson (1981) and (Danuso, 2002). Residuals for Tmax 
and Tmin are computed first, then daily values are generated - 
independently (Richardson-type) or with dependence of Tmax on Tmin 
(Danuso-type). A third stage, that adds an annual trend calculated from the 
Fourier series, is included in Danuso-type generation. The Richardson-type 
approach accounts for air temperature- solar radiation correlation. A third 
approach (Remund and Page, 2002) generates Tmax and Tmin independently 
in two stages (daily mean air temperature generation first, Tmax and Tmin 
next), making use of an auto-regressive process from mean air 
temperatures and solar radiation parameters. 

2.3.2. Hourly generation of air temperature 

Daily values of Tmax and Tmin are used to generate hourly air temperature 
values, according to alternative methods. Sinusoidal functions are largely 
used to represent the daily pattern of air temperature. Six approaches, by 
Campbell (1985), Goudriaan and Van Laar (1994), Ephrath et al. (1996), 
Porter et al. (2000), Stöckle (2002), and Gracia et al. (2003) are used to 
generate hourly values from daily maximum and minimum temperatures. A 
further approach, proposed by Dumortier (2002), derives hourly air 
temperatures from the daily solar radiation profile. Mean daily values of 
dew point air temperature are estimated via empirical relationships with 
Tmax and Tmin and other variables (Linacre, 1977; Iribarne and Godson, 1981; 
Linacre, 1992; Kimball et al., 1997; Allen et al., 1998; Hubbard et al., 2003). 
A diurnal pattern (hourly time step) of dew point air temperature is also 
modeled via two alternative methods (Ephrath et al., 1996; Meteotest, 
2003). 

2.4. Software features 

2.4.1. Input and outputs 

The outputs produced by AirTemperature and the inputs (variables and 
parameters) required by the models implemented are listed in Table 1. 
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Table 1. List of all the inputs and outputs of the models implemented into 

AirTemperature component. Outputs are arranged by an identification number (ID) 

assigned to input variables and parameters used to calculate each output 

Variables / parameters Unit 
Output 
ID 

Output 
variables 

Td(hr), hourly dew-point air temperature °C 1 

Td, daily dew-point air temperature °C 2 

Tmax, daily maximum air temperature °C 3 

Tmin, daily minimum air temperature °C 4 
k

TT , yearly trend of daily maximum (T=Tmax) and minimum 

(T=Tmin) air temperatures on dry (k=0) or wet (k=1) days 
°C 5 

( ) ( )jkk
d

,0χ , daily standardized residual of maximum (j=1) 

and minimum 
(j=2) air temperatures on dry (k=0) or wet (k=1) days 

- 6 

Thr, hourly air temperature °C 7 

 

Input 
variables 

RHmax, daily maximum relative humidity % 2 

RHmin, daily minimum relative humidity % 2 

dT, day to day difference of mean air temperatures °C 3, 4 
dTsd, standard deviation of day to day difference of 
mean air temperatures °C 3, 4 

G , monthly average of daily global solar radiation on a 

given surface 
MJ m

-2
 

d
-1

 3, 4, 6 

Gx(d), daily global solar radiation at ground level 
MJ m

-2
 

d
-1

 3, 4, 6 

z, site elevation above sea level m 2 

Tm(c), mean air temperature of the coolest month °C 2 

Tm(d), mean air temperature of the warmest month °C 2 
Gh(hr), hourly global solar radiation on a horizontal 
surface 

MJ m
-2

 
d

-1
 7 

d, day number into year - 3, 4, 5 

Si, precipitation occurrence of current day - 
3, 4, 5, 
6 

DL(d), day length h 7 

sr(d), time of sunrise h 1, 7 

Tmax, daily maximum air temperature °C 2, 7 

Tmin, daily minimum air temperature °C 2, 7 
kk

TT
,0

, monthly average of daily maximum (T=Tmax) and 

minimum (T=Tmin) air temperature on dry (k=0) or wet °C 3, 4, 6 
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(k=1) days 
kk

T
,0σ , monthly standard deviation of daily maximum 

(T=Tmax) and minimum (T=Tmin) air temperature on dry 
(k=0) or wet (k=1) days °C 3, 4, 6 

    

Input 
parameters 

k
TA , annual mean maximum (T=Tmax) and minimum 

(T=Tmin) air temperature on dry (k=0) or wet (k=1) days 
°C 3, 4, 5 

k
TB , semi-amplitude of the first harmonic for yearly 

trends of  maximum (T=Tmax) and minimum (T=Tmin) air 
temperature on dry(k=0) or wet (k=1) days 

- 3, 4, 5 

k
TC , phase shift of the first harmonic for yearly trends 

of maximum (T=Tmax) and minimum (T=Tmin) air 
temperature on dry (k=0) or wet (k=1) days 

- 3, 4, 5 

k
TD , semi-amplitude of the second harmonic for yearly 

trends of maximum (T=Tmax) and minimum (T=Tmin) air 
temperature on  dry (k=0) or wet (k=1) days 

- 3, 4, 5 

k
TE , phase shift of the second harmonic for yearly 

trends of maximum (T=Tmax) and minimum (T=Tmin) air 
temperature on dry (k=0) or wet (k=1) days 

- 3, 4, 5 

RRnn, monthly autocorrelation coefficient for minimum 
air temperature residuals, with time lag of 1 day 

- 3, 4 

RRnx, monthly correlation coefficient between minimum 
and maximum air temperature residuals 

- 3, 4 

TSR , monthly standard deviation of the residuals from 

the trends of maximum (T=Tmax) and minimum (T=Tmin) 
both on dry and wet days 

°C 3, 4 

R1n, standardized residual of minimum air temperature 
of the previous day 

- 3, 4 

Tmax(d-1), maximum air temperature of the previous day °C 3, 4, 7 

Tmin(d-1), minimum air temperature of the previous day °C 3, 4, 7 

N, number of days in a month - 3, 4 

N(d), number of dry days in a month - 3, 4 

N(w), number of wet days in a month - 3, 4 

bT, scaling factor - 3, 4 

k0, dry/wet days separation option - 3, 4, 6 

A
k

0
,k

, 3x3 matrix function of the lag-0 serial- and cross-
correlation coefficients of the residuals on dry (k=0) or 
wet (k=1) days 

- 3, 4, 6 

B
k

0
,k

, 3x3 matrix function of the lag-1 serial- and cross-
correlation coefficients of the residuals on dry (k=0) or 
wet (k=1) days 

- 3, 4, 6 
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( ) ( )jkk
d

,
1

0
−χ , standardized residual of maximum (j=1), 

minimum (j=2) air temperatures and global solar 
radiation (j=3) on dry (k=0) or wet (k=1) days for the 
previous day 

- 3, 4 

K0, daily dew point air temperature correction factor °C 2 

a, b, c, d, empirical parameters of model Hubbard for 
daily dew point air temperature 

-, -, -, 
°C 

2 

A, B, C, D, E, F, G, empirical parameters of model Kimball 
et al. for daily dew point air temperature 

-, -, -, -
, -, -, 
°C 

2 

EF, evaporative demand - 2 

A1, B1, C1, D1, E1, empirical parameters of model 
Linacre 1 for daily dew point air temperature 

m
-1

, -, 
-, -, °C 

2 

A2, B2, C2, D2, empirical parameters of model Linacre 2 
for daily dew point air temperature 

-, °C
-1

, 
-,  

2 

hrdv, hour of the day for maximum air temperature to 
occur 

H 7 

Tmin(d+1), minimum air temperature of the next day °C 7 

sr(d+1), time of sunrise of the next day h 7 

ss(d+1), time of sunset of the next day h 7 

T(ss(d-1)), air temperature at sunset of the previous day °C 7 

aslp, slope coefficient - 7 

LSH, hour of maximum solar height h 7 

p, delay of the maximum air temperature h 7 

Tk, air temperature increment °C 7 

TC, nocturnal time coefficient h 7 

k, shift factor - 7 

AP, BP, CP, empirical parameters of model Porter et al. 
for hourly air temperature 

h, h, - 7 

AS, BS, CS, DS, ES, empirical parameters of model Stöckle 
for hourly air temperature 

-, -, -, -
, - 

7 

Td(d+1), dew-point air temperature of the next day °C 1 

Td(max), maximum dew-point air temperature °C 1 

2.4.2. Design 

The software design promotes reusability by limiting dependencies and 
providing a semantically rich, public interface. By allowing extensibility of 
approaches in a straightforward way, it also allows third parties to add new 
equations and the comparison of alternate air temperature models. This 
design (Donatelli and Rizzoli, 2008) combines architectural traits that 
maximize transparency, extensibility, scalability, traceability, and data 
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quality control. The same design has been already used in the development 
of several components for agro-meteorology, agro-management, crop and 
soil water/nitrogen/chemicals simulation, model evaluation, and soil 
pedotransfer functions (http://www.apesimulator.org/help.aspx). The UML 
(Unified Modelling Language) component model of AirTemperature (Fig. 1) 
shows the discrete units and their dependencies. 

 

 
Figure 1. Generic component model used for AirTemperature. The Preconditions 

component allows the implementation of the design-by-contract approach and provides 

the base classes to build and make accessible the component ontology. The separation 

of data-types (domain classes) and interfaces from models (strategies) in two discrete 

units allows the implementation in clients of the design pattern Bridge, which facilitates 

replacement of model components 

2.4.3. Architecture 

AirTemperature architecture allows extending data-types, and adding 
new modelling solutions without the need of recompilation of the core 
component. The component implements Strategies, which are alternative 
implementation of air temperature models. Each model is computed via 
one of such discrete units, which encapsulates the algorithm, the test of 
pre- and post-conditions, and parameters declaration (if any). The 
component implements Composite Strategies (built using two or more 
strategies) and Context Strategies, that is, model units which implement 
logic to select among the strategies associated, e.g., based on the inputs 
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available. Extension is made possible by the definition of the common 
interface IAirTDataStrategy, which must be implemented by all 
strategies. The UML class diagram (Fig. 2) shows the classes and interfaces 
which allow extending the component via the Composite and Strategy 
design patterns. 

 

 
Figure 2. Class diagram illustrating the specific implementation of the design patterns 

Composite and Strategy 

 
The design-by-contract approach (Meyer, 1997) is used, requiring pre- 

and post-conditions (e.g., maximum daily air temperature > minimum daily 
air temperature) to be respected. Any application using AirTemperature 
can hence test inputs for a possible violation of pre-conditions, and it can 
check post-conditions (http://agsys.cra-cin.it/tools/preconditions/help). 
The MCE (Model Component Explorer, http://agsys.cra-cin.it/tools, page 
“Applications”, then “MCE”) is an application to discover parameters, 
inputs and outputs of each model, and to browse the component ontology 
by inspecting data-types (called Domain Classes) and the component 
interfaces. AirTemperature is one of the core components of the weather 
generator CLIMA (Donatelli et al., 2009a). 
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2.4.4. Distribution 

AirTemperature is distributed via a Software Development Kit that 
includes the source code of Visual Studio .NET projects demonstrating how 
to extend and re-use the component. Also, hypertext files are made 
available, documenting the models implemented  (http://agsys.cra-
cin.it/tools/airtemperature/help/) and the code of the software 
component  (http://agsys.cra-cin.it/tools/airtemperature/codedoc/). The 
project source code of sample web services (http://agsys.cra-
cin.it/webservices/airtemperature/) and web application (http://agsys.cra-
cin.it/webapplications/airtemperature/) are also provided. The component 
requires the framework Microsoft .NET 2.0 (or newer) installed. 

2.5. Remarks 

It is widely accepted that research in agro-ecology must be supported by 
the state-of-the-art modelling. Model development and operational use 
require, however, the capability of quickly accessing knowledge in different 
domains, selecting and comparing alternate modelling options, and making 
use of such knowledge via computer based tools. The modelling system of 
AirTemperature can be considered a way to share knowledge, making it 
available in an operational tool. To date, although the use of software 
model frameworks has improved the maintainability of complex simulation 
systems, effective reuse of discrete units in the domain of biophysical 
models is still mostly a goal rather than an achievement. The architecture 
of AirTemperature decouples data from weather models, providing a 
semantically rich interface in framework-independent implementation, 
thus facilitating reuse and independent extensibility by third parties. 
 

Acknowledgements 

Laura Carlini is acknowledged for her contribution to the initial 
implementation.This publication has been funded under the SEAMLESS 
integrated project, EU 6th Framework Programme for Research, 
Technological Development and Demonstration, Priority 1.1.6.3. Global 
Change and Ecosystems (European Commission, DG Research, contract no. 
010036-2). 

 

 



SECTION 1 CHAPTER 3                                                                                        R 

40 

 

 

Data

Framework

Case study

M
e
tr

ic
s

 
 

 

 

AN INTEGRATED EVALUATION OF THIRTEEN 

MODELLING SOLUTIONS FOR THE GENERATION 

OF HOURLY VALUES OF AIR RELATIVE HUMIDITY 

 

 

 

 

Simone Bregaglio, Marcello Donatelli, Roberto Confalonieri, Marco Acutis, 
Simone Orlandini 

 

 

 

Published in: Theoretical and Applied Climatology (2010) 102, pp. 429-438.



                         Comparison of hourly air relative humidity modelling solutions 

41 

 

3.1. Abstract 

The availability of hourly air relative humidity (HARH) data is a key 
requirement for the estimation of epidemic dynamics of plant fungal 
pathogens, in particular for the simulation of both the germination of the 
spores and the infection process. Most of the existing epidemic forecasting 
models require these data as input directly or indirectly, in the latter case 
for the estimation of leaf wetness duration. In many cases, HARH must be 
generated because it is not available in historical series, and when there is 
the need to simulate epidemics either on a wide scale or with different 
climate scenarios. Thirteen modelling solutions (MS) for the generation of 
this variable were evaluated, with different inputs requirement and 
alternative approaches, on a large dataset including several sites and years. 
A composite index was developed using fuzzy logic to compare and to 
evaluate the performances of the models. The indicator consists of four 
modules: Accuracy, Correlation, Pattern, and Robustness. 

Results showed that, when available, daily maximum and minimum air 
relative humidity data substantially improved the estimation of HARH. 
When such data are not available, the choice of the MS is crucial. given the 
difference in predicting skills obtained during the analysis, which allowed a 
clear detection of the best performing MS. This study represents the first 
step of the creation of a robust modelling chain coupling the MS for the 
generation of HARH and disease forecasting models, aiming at an 
improvement and an enhancement of their use through the systematic 
validation of each step of the simulation. 
 
Keywords: Weather modelling, composite indicators, model evaluation, 
model comparison. 
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3.2. Introduction 

The availability of weather data is one of the most serious factors 
limiting research in many applied sciences (Donatelli et al. 2004). In 
particular, the availability of hourly air relative humidity (HARH) data is 
crucial in the forecasting of plant epidemics, because of the role of this 
variable in driving the development and the propagation of various fungal 
pathogens (Sutton et al. 1984, Friesland and Schrödter 1988, Huber and 
Gillespie 1992; Laurence et al. 2002). HARH also plays a major role as input 
for almost all leaf wetness models (e.g., Kim et al. 2002; Wichink Kruit et al. 
2004; Magarey et al. 2006; Sentelhas et al. 2006). Most of the existing 
epidemic forecasting models need as input HARH either explicitly (e.g., 
NegFry - Hansen et al. 1995; SimPhit - Gutsche and Kluge 1996; ProPhy - 
Nugtern 1997; Plant-Plus - Hadders 1997) or indirectly, for the estimation 
of leaf wetness duration (e.g., Magarey et al. 2005, Applescab - Arneson 
2005). Whether air relative humidity, daily and even hourly, has become 
increasingly available in modern weather stations, such data are often 
neither available both in historical series of large database (e.g., MARS 
Database, Micale and Genovese 2004), nor in scenarios of climate change. 
For these reasons, aiming at using epidemic forecasting models on a wider 
scale or under different weather scenarios, the only available solution is 
the generation of HARH with meteorological models, starting from 
variables commonly measured. Weather generators (e.g., WGEN - 
Richardson and Wright 1984; Cligen - Nicks and Gander 1994; USCLIMATE - 
Johnson et al. 1996; ClimGen - Stöckle et al. 2001; CLIMAK - Danuso 2002) 
are collection of models to either estimate or generate meteorological 
variables; however, most do not implement models to estimate HARH. The 
CLIMA weather generator (Donatelli et al. 2009a) allows the user to select 
specific modelling options to generate meteorological variables including 
HARH, providing the capability to create alternate modelling solutions 
(MS); that is, discrete simulation engines where different models are 
selected and integrated in order to carry out simulations for a specific goal 
(Confalonieri 2009a). Whether different MS can be built, they must be 
tested against reference data and compared in specific contexts to select 
the most reliable ones. 

According to Bellocchi et al. (2009), the accuracy of a model is 
determined on one hand by the appropriateness of the algorithms 
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describing the processes of the real system, while on the other hand by the 
quality of both its input data and the data used to evaluate its outputs. 
Inaccuracies are common in both inputs and measured outputs. Being 
HARH an input to which epidemic forecasting models are very sensitive to, 
it is crucial to test the different generation methods available with 
measured data in different climatic conditions prior to operational use of 
relevant models. 

Several statistical indices are available for quantifying how well models 
fit measurements. Many authors (e.g., Smith et al. 1997; Yang et al. 2000) 
advocate there is no single  statistic that can be used to draw conclusions in 
model evaluation and, therefore, several metrics need to be used to give a 
comprehensive check (Donatelli et al. 2004; Bellocchi et al. 2009; 
Confalonieri et al. 2009b). When testing the performances of different 
models on a wide data-set, the evaluation of model performance cannot be 
limited to quantifying the agreement between model estimates and actual 
data. In fact, it is important to evaluate a) the correlation between 
estimated and measured values, b) the presence of anomalous behaviour 
in the residuals (Cook and Weisberg 1982; Draper and Smith 1998), and c) 
the ability of the models to maintain the same degree of accuracy among 
diverse conditions and years, in order to evaluate their reliability (in this 
paper, the last feature is called robustness). 

The objectives of this work are: (i) to test 13 MS for the generation of 
HARH on a wide data-set (ii) to present a composite index for their 
evaluation. 

3.3. Materials and methods 

3.3.1. The models 

The 13 MS tested are summarized in Table 1.  
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Table 1. Summary of the 13 modelling solutions (MS) tested. See text for details 

 
All of them make use of sub-models implemented in the software 

components AirTemperature (http://agsys.cra-
cin.it/tools/airtemperature/help; Donatelli et al. 2009b; for the generation 
of hourly air temperature) and EvapoTranspiration (http://agsys.cra-
cin.it/tools/evapotranspiration/help; Donatelli et al. 2006; for the 
generation of dew point temperature and HARH), both included in CLIMA 
weather generator (http://agsys.cra-cin.it/tools/clima/help; Donatelli et al. 
2009a). A detailed description of the MS for the generation of HARH 
follows. Variables of all the equations are described in Table 2. 

MS Equations used Notes 

1 [1], [2], [3] Hourly dew point temperature equal to generated daily 
dew point temperature. 

2 [1], [2], [3], [4], [5] Hourly dew point temperature generated. 
3 [1], [2], [6] Hourly dew point temperature equal to daily minimum 

air temperature. 
4 [1], [2], [7] Hourly dew point temperature equal to generated daily 

dew temperature. 
5 [1], [2], [8] Hourly dew point temperature equal to generated daily 

dew temperature. 
6 [1], [2], [9], [10], 

[11] 
Hourly dew point temperature generated. 

7 [1], [12] No generation of hourly dew point temperature. 
8_0, 8_1, 
8_2, 8_3, 
8_4, 8_5 

[1],[12],[13],[14], 
[15], [16], [17], [18] 

No generation of hourly dew point temperature. 
Six calibration of Tdp_hrmax tested (from 0 to 5, step 1). 
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Table 2. Abbreviations used in the equations, in order of appearance 

Abbreviaton Meaning Unit 

Tmax Daily maximum air temperature °C 

Tmin Daily minimum air temperature °C 

h Hour of the day Unitless 

TimeVar Hottest hour of the day Unitless 

RHair_hr Hourly air relative humidity % 

ea Actual air vapor pressure KPa 

es  Saturation air vapor pressure KPa 

Tdp_day Daily dew point temperature °C 

Tdp_hr   Hourly dew point temperature °C 

Tdp_Δ   Hourly fluctuations in dew point  
temperature within a day 

°C 

Kr Costant related to the average  
amount of  monthly radiation 

Unitless 

Tavg Daily average air temperature °C 

Tdp_hrmax Hourly maximum dew point temperature °C 

Tavmax Monthly average maximum air temperature °C 

Tavmin Monthly average minimum air temperature °C 

Rdays  Monthly days of rainfall Unitless 

RHmax Daily maximum air relative humidity % 

RHmin Daily minimum air relative humidity % 

AF Correction factor for dew point temperature  °C 

emax Vapor pressure at daily maximum air temperature KPa 

emin  Vapor pressure at daily minimum air temperature KPa 

edew Vapor pressure at daily dew point temperature KPa 

 
The generation of hourly values of air temperature is performed in all 

the MS tested using the method proposed by Campbell (1985) (Eq. 1), also 
used in other programs (e.g., SWAT 2000), which assumes that 
temperature variation is driven by solar irradiance, providing a smooth 
transition from minimum to maximum air daily temperature: 

( )( )TimeVarh
TTTT

T hrair −⋅⋅






 −+






 += 2618.0cos
22

minmaxminmax
_  [1] 

The MS from 1 to 6 include: (i) the generation of hourly values of air and 
dew point temperature, (ii) the generation of hourly values of actual 
vapour pressure according to Allen et al. (1998) and (iii) of hourly values of 
saturation vapour pressure using the method proposed by ASAE (1998). At 
the last step (iv), HARH is calculated according to the following equation: 
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100_ ⋅=
s

a
hrair e

e
RH              [2] 

The differences in MS 1 to 6 are represented by the model used for the 
generation of hourly values of dew point temperature. Dew point 
temperature is an important geophysical variable that indicates the 
temperature to which a given parcel of air must be cooled, at constant 
barometric pressure, for water vapour to condense into water. In some 
generation methods, the same value of daily dew point temperature is 
used for every hour in a day. This is done because several authors claimed 
that dew point temperature remains relatively constant during the day 
(Dyer and Brown 1977; Running et al. 1987; Glassy and Running 1994). 

MS 1 utilizes a daily value of dew point temperature for every hour in a 
day, calculated with the linear relationship (Eq. 3) proposed by Bekele et al. 
(2007). 

2021.09153.0 min_ +⋅= TT daydp              [3] 

MS 2 uses hourly values of dew point temperature, starting from daily 
values calculated using equation 3, with two additional assumptions: (i) 
dew point temperature varies linearly between consecutive days, and (ii) 
mean daily dew point temperature occurs at around sunrise (Bekele et al. 
2007). The two following equations are then used: 

( ) ( ) ( )[ ] ∆+
+−⋅+= _1____ 24 dpddaydpddaydpddaydphrdp TTT

hr
TT              [4] 

( ) 






 ⋅−⋅+⋅=∆ 4

3
1sin5.0_

ππ
r

dp K
hrT              [5] 

For average monthly radiation higher than 100 W m-2 (equal to an 
average of 8.64 MJ m-2 d-1), Kr = 6; else, Kr = 12. We used Kr = 6 for our 
analyses since average monthly radiations for all the months considered 
(from March to October) were higher than the 100 W m-2 threshold in our 
study areas. 

MS 3 utilizes the value of daily air minimum temperature as a proxy for 
the corresponding 24 hourly dew point temperature values. This method is 
used in the analysis because managerial and operational level decision-
makers tend to use minimum air temperature as a surrogate for dew point 
temperature (Hubbard et al. 2003). 
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Also MS 4 and MS 5 make use of a single value of daily dew point 
temperature for each hour in a day, but calculate it according to Hubbard 
et al. (2003) (Eq. 6) and Linacre (1992) (Eq. 7), respectively. 

( ) 0019.10072.09679.00360.0 minmaxmin_ +−⋅+⋅+⋅−= TTTTT avgdaydp             [6] 

dTcTbTaT daydp +⋅+⋅+⋅= min
2

maxmax_              [7] 

In Eq. 7, a (0.38), b (-0.018), c (1.4) and d (-5) are parameters. 
MS 6 utilizes the method proposed by Ephrat et al. (1996), deriving 

hourly values of dew point temperature using Eq. 8. 

( )
max___ ,min hrdphrairhrdp TTT =              [8] 

The author of this method describes the parameter Tdp_hrmax as site 
specific. A simple regressive model was fit to calibrate the parameter using 
values from weather data collected on five sites from Sicily and Spain. The 
regressors chosen were: monthly average of air minimum temperature, 
monthly range of average air temperature, and monthly average of rainy 
days. Two different regressions were fit, one for the months of March, April 
and October (Eq. 9), and one for the months of May, June, July, August and 
September (Eq. 10). Splitting in two periods has allowed to get a better fit 
than using one regression for both. Although the relationships are valid 
likely for the environments considered, the methodology has allowed 
exploring the potential for calibrating the parameter without the 
availability of measured data. The results of these multiple regression 
analysis are shown in Table 3. 
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Table 3.  Summary of the multiple regression analysis performed for the calibration 

of maximum hourly dew point temperature in the months of April, March. October (3, 5) 

and May, June, July, August and September (4, 6) 

Metric 

 

April, March, October May, June ,July, 

August, September 

R-Squared 0.96 0.92 
Adjusted R-Squared 0.94 0.91 
Standard Error 0.86 0.88 
Number of observations 12 21 

 

( )[ ] daysavavavhrdp RTTTT ⋅+−⋅+⋅+−= 225.0406.0948.0695.4 minmaxminmax_              [9] 

daysavhrdp RTT ⋅+⋅+= 17.083.0510.1 minmax_      [10] 

MS 7 uses as inputs daily maximum air temperature, daily minimum air 
temperature, daily maximum air relative humidity and daily minimum air 
relative humidity. HARH is calculated with equation 11, proposed by 
Waichler et al. (2003). 

( )maxmin
minmax

min_
max RHRH

TT

TT
RHRH hrair

hr −
−
−

+=      [11] 

MS from 8_0 to 8_5 (differing for the value assigned to the parameter 
AF, ranging from 0 to 5, step 1; see also Table 2) (Allen et al. 1998) need as 
input daily maximum air temperature and daily minimum air temperature 
and calculate HARH through the generation of daily dew point temperature 
with the equation: 

AFTT daydp −= min_      [12] 

Then the following equations are used for the calculation of vapour 
pressure at daily minimum air temperature (Eq. 13), daily maximum air 
temperature (Eq. 14), and daily dew point temperature (Eq. 15): 










+
⋅

⋅= 3.237

27.17

max
max

max

6108.0 T

T

ee      [13] 










+
⋅

⋅= 3.237

27.17
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min

min

6108.0 T

T

ee      [14] 















+
⋅

⋅= 3.237

27.17

_

_

6108.0 daydp

daydp

T

T

dew ee      [15] 

Finally, maximum and minimum daily air relative humidity values are 
calculated using equations 16 and 17. 
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100
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e

e
RH dew

     [17] 

At the last step, equation 11 is used for the generation of HARH. 

3.3.2. Study sites and years 

The generation of HARH was performed on the sites and years listed in 
Table 4 in the period from March 1st to October 31st. Daily records with 
missing data were excluded from the analysis. 

Table 4. Sites and years used for the simulations 

Site Latitude  Longitude Available year(s) 

Almonte (SPA) 37° 15’  -6° 30’ 2007 
Arezzo (IT) 43° 28’ 11° 51’ 2007 
Campogalliano (IT) 44° 41’ 10° 50’ 2007, 2008 
Caronia Buzza (IT) 38° 02’ 14° 28’ 2003-2007 
Isla Cristina (SPA) 37° 11’ -7° 19’ 2007 
Firenze (IT) 43° 46’ 11° 16’ 2007 
Grosseto (IT) 42° 45’ 11° 07’ 2007 
Javea (SPA) 38° 47’ 0° 09' 2007 
Lagos (POR) 37° 06’ -8° 40’ 2005 
La Palma (SPA) 37° 41’ 0° 56’ 2007 
Lentini (IT) 37° 17’ 14° 59’ 2004-2007 
Lucca (IT) 43° 50’ 10° 30’ 2007 
Mineo (IT) 37° 15’ 14° 41’ 2003-2007 
Mirandola (IT) 44° 53’ 11° 03’ 2005 
Misilmeri (IT) 38° 01’ 13° 27’ 2003-2007 
Paternò (IT) 37° 34’ 14° 53’ 2003-2007 
Pistoia (IT) 43° 57’ 10° 53’ 2007 
Ribera (IT) 37° 30’ 13° 15’ 2003-2007 
Riposto (IT) 37° 43’ 15° 12’ 2005-2007 
San Felice sul Panaro (IT) 44° 50’ 11° 08’ 2007 

Varese (IT) 45° 48’ 8° 49’ 2003, 2004 
Zola Predosa (IT) 44° 29’ 11° 13’ 2005, 2006 

 

3.3.3. Model evaluation 

A fuzzy logic-based modular indicator (IRH) was developed for the 
evaluation of the 13 MS. The indicator is based and extends the structure 
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of the one proposed by Bellocchi et al. (2002). Aggregation of metrics is 
based on an expert weighting expression of the balance of importance of 
the individual metrics, used for the aggregation into modules. IRH is 
composed by 4 modules: Accuracy, Correlation, Pattern (Donatelli et al. 
2004), and Robustness (Confalonieri and Bregaglio 2009). The modules 
chosen refer to different aspects of model evaluation and in particular: (i) 
the ability of the model to fit actual data (module “Accuracy”), (ii) the 
correlation between estimated and measured values (module 
“Correlation”), (iii) the presence of anomalous behaviour in the residuals 
(module “Pattern”), and (iv) the ability of the model to maintain a similar 
magnitude of the error among diverse conditions and years, in order to 
evaluate its reliability (module “Robustness”). The metrics used were 
(Table 5): root mean square error (RMSE), modelling efficiency (EF), the 
correlation coefficient of the estimates versus measurements (R), the 
pattern index of residuals versus hour of the day (PIhour), the pattern index 
of residuals versus day of the year (PIdoy), the pattern index of residuals 
versus hourly air temperature (PItemp), and the robustness index (IR); all PI 
were computed considering three groups. 
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Table 5. Multiple-metrics assessment method: modules and basic metrics 

Module Metric Range of values and purpose 

Accuracy 
(deviation 
between 
estimates and 
observations) 

 

EF, modelling 
efficiency 

1 to negative infinity. Best performance given 
when EF = 1  

RMSE, root mean 
square error 

0 to positive infinity. The closer values are to 
1, the better the model 

Correlation R, Pearson’s 
correlation 
coefficient of the 
estimates versus 
measurements 

-1 (full negative correlation) to 1 (full positive 
correlation). The closer values are to 1, the 
better the model 

Pattern PIh, p. i. hour 

PIdoy, p.i. day of 
the year PItemp, 
p.i. hourly air 
temperature 

0 to positive infinity. The closer values are to 
0, the better the model 

Robustness IR, robustness 
index 

0 to positive infinity. The closer values are to 
0, the better the model 

E: estimated value 
O: observed value 
D: difference between estimated and observed values (model residual) 

M : mean of observed values 
l, m :  two groups being compared,  
ql, qm : number of residuals in the groups 
il, im : each value of residuals in the groups 
σ : standard deviation 

IV : variability index, 
RainET

RainET
IV

+
−=

0

0  

ET0: is the reference evapotranspiration calculated according to DRETFAO56 
(Priestley and Taylor, 1972) (mm)  

Rain: is the cumulated rainfall in the same period (from March to October, mm) 
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For each data set, the above metrics were computed and then 
aggregated into the four modules. This allowed to derive a dimensionless 
value between 0 and 1 (0 = best model response, 1 = worst model 
response) for each module. In the process of defining the value of each 
module, the Sugeno method of fuzzy inference was adopted (Sugeno 
1985). For each metric, two functions describing membership to the fuzzy 
subsets Favorable (F) and Unfavorable (U) were defined. As values in the 
fuzzy range are simultaneously F and U, two complementary S-shaped 
quadratic functions (Liao 2002) are used as transition probabilities in the 
range F to U (and vice versa). The full procedure is detailed in the paper 
from Bellocchi et al. (2002). A three-stage design inferring system of fuzzy-
based rules is applied (Fig. 1): first, metrics are aggregated into their 
modules and then, using the same procedure, the modules Accuracy, 
Correlation and Pattern are aggregated in a second-level integrated 
measure, called Agreement module (again, ranging from 0 to 1). Then, the 
module Robustness is aggregated to the module Agreement into the third-
level integrated measure (IRH; again, ranging from 0 to 1). This further level 
of aggregation is needed because the metric belonging to Robustness 
module calculates a single value for each MS, while the other modules 

calculate a value for each combination MS × year × location. 
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Figure 1. Structure of the assessment method. IRH: composite evaluation index for 

relative humidity models; EF: modelling efficiency; RMSE: root mean squared error; R: 

Pearson’s correlation coefficient; PIh, PIdoy, and PItemp: pattern indices vs. hour, day of the 

year, and hourly air temperature, respectively; IR, robustness index 

 
The logic of the expert reasoning follows (Table 6): if all input variables 

are F, the value of the module is 0; if all indices are U, the value of the 
module is 1, while for all the other combinations of input variables, the 
module assume intermediate values (from 0 to 1). The combinations of 
favourable and unfavourable metrics in a module and of favourable and 
unfavourable modules in IRH are set up according to a decision rule. Each 
decision rule is derived from the initial rules, i.e., the relative importance 
assigned to each metric, or module (e.g., Silvestri et al. 2006). 
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Table 6. Summary of decision rules within the modules Accuracy, Correlation, 

Robustness, and Pattern; F: favourable threshold; U: unfavourable threshold 

Aggregation Module Expert 

weight 

Metrics 

2-metric Accuracy  Modelling 
Efficiency 
(EF) 

Root mean square error (RMSE) 

  0.00 F F 
  0.50 F U 
  0.50 U F 
  1.00 U U 

No 
aggregation  

Correlation  Correlation coefficient (R) 

(single 
metrics) 

 0.00 F 

 1.00 U 

Robustness  Robustness index (IR) 

 0.00 F 

 1.00 U 

3-metric Pattern  Pattern 
index day of 
the year 
(PIdoy) 

Pattern index 
hour  
of the day 
(PIhour) 

Pattern 
index 
hourly air  
temperature 
 (PItemp) 

  0.00 F F F 
  0.33 F F U 
  0.33 F U F 
  0.33 U F F 
  0.66 F U U 
  0.66 U F F 
  0.66 U U F 
  1.00 U U U 

 
The composition of the Accuracy module is based essentially on Yang et 

al. (2000). These authors found that a sound conclusion on model accuracy 
may be drawn using an index of the amount of residuals (e.g., RMSE) (Fox 
1981) and a measure of modelling efficiency (EF) (Loague and Green 1991), 
The index RMSE may vary from 0 to positive infinity; the smaller the value, 
the better the model performance. The limit to the fuzzy subset F for this 
index was set equal to 12 (RRMSE ≤ 12 is F) while the limit to the subset U 
was established equal to 20 (RRMSE ≥ 20 is U). The index EF allows the 
immediate identification of inefficient models. It is upper-bounded by 1 
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and can assume negative values (lower-bounded at negative infinity). 
Negative values of EF indicate that the average of all measured values is a 
better predictor than the model used. When estimating HARH, the limit for 
the subset U, EF = 0.1, and the limit for the subset F, EF = 0.4 were chosen 
(EF ≤ 0.1 is U and EF ≥ 0.4 is F). 

The value of the Correlation module depends on a single basic index, 
that is, the correlation coefficient R (Addiscott and Whitmore 1987), 

derived from the Pearson's simple linear correlation coefficient. The use of 

this index is questioned (e.g., Willmott 1982) because its value is not 
related to the accuracy of estimate. However, the index R is a universal 
measure with multiple interpretations. For instance, Cahan (1987) looks at 
R as a measure of identity between standardized values. Moreover, the 
value of R may help recognize the fluctuation of the estimates among n 
measurements (Kobayashi and Salam 2000). For these reasons, the index R 

is generally still regarded as a useful measure of model performance. The 
membership limits attributed here to the correlation coefficient are 0.5 and 
0.8 (R ≤ 0 .5 is U, R ≥ 0.8 is F). Given that there is only one index in the 
module, the computation of correlation is simplified to two decision rules: 
If R is F then 0, and if R is U then 1. 

The quantification of patterns in the residuals of model estimates versus 
other variables can be useful in both model evaluation and parameter 
calibration (Donatelli et al. 2004). For this reason, the module Pattern 
accounts for three relevant independent variables in HARH models, which 
are day of the year, hour of the day and hourly air temperature. For the 
computation of pattern indices (PI), the range of such independent 
variables is divided into three sub-ranges, thus producing three groups of 
residuals. Pattern indices are based on the pair wise differences between 
average residuals of each group, and are targeted at pointing out macro-
patterns in the residuals. The PI values have the same units as the variable 
under study (in this case, %). The presence of patterns usually means that 
the residuals contain structure that is not accounted for in the model. 
When applied to different types of residual plots, PI may provide 
meaningful information on the adequacy of different aspects of the model, 
such as lack of inputs, poor parameterization, etc.; therefore, they should 

integrate difference- and correlation-based indices when evaluating model 
performance (Bellocchi et al. 2002). The limits attributed to PI reflect the 
authors’ experience. Values of PI are considered F when < 7 % and U when 
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> 15%. The same weight was attributed to pattern index versus day of the 
year (PIdoy), pattern index versus hour of the day (PIhour) and pattern index 
versus hourly air temperature (PIT). 

A single metric is used in the Robustness module, IR (Confalonieri and 
Bregaglio 2009). The limit to the fuzzy subset U for this index was set equal 
to 2 (IR ≥ 2 is U) while the limit for the subset F was fixed at 0.5 (IR ≤ 0.5 is 
F). 

The relative incidence of each index on IRH can be deduced by combining 
the weights of the indices into their own module with the ones of the 
modules into the indicator (Fig. 1). For the evaluation of the performances 
of the MS, the software SOE was used (http://agsys.cra-
cin.it/tools/soe/help). 

3.4. Results and Discussion 

Composite indicators allow a transparent top-down analysis of results, 
providing (i) a unique summary value for models comparison, and (ii) 
values at lower levels of aggregation to understand model behaviour with 
respect to specific metrics. 

The values related to IRH, to the second  level of aggregation (modules 
Agreement and Robustness) and to the first (modules  Accuracy, 
Correlation, Pattern), and the relevant simple metrics, are shown in Table 
7, 8 and 9. The average values of IRH, that represents the third level of 
aggregation and the final result of this analysis, showed that MS 7 obtained 
the best value (IRH = 0.025). This result was largely expected because this is 
the only MS that uses as inputs daily values of maximum and minimum air 
relative humidity, which may prove limiting in some contexts. When these 
inputs are not available, this study has pointed out that MS 5 provides the 
more reliable results (IRH = 0.340) than other MS. MS 2 and MS 1 were 
ranked third and fourth by IRH, and they are very similar in the values of the 
metrics computed. In fact, they utilize the same algorithm (Eq. 3) for the 
calculation of daily dew point temperature. MS 2 contains a further option 
for estimating hourly values of dew point temperature, allowing a slight 
improvement. MS 6 ranks fifth for IRH, but the results obtained by this MS 
should be considered exploratory, because the equation used for the 
computation of hourly maximum dew point temperature was calibrated 
only on a small data set. MS 3 obtained unsatisfactory results (11th value 
of IRH).  
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Table 7. Average values of each simple metric computed 

Modelling 

solution 

Module 

Accuracy Correlation Pattern Robustness 

RMSE EF R Pidoy Pihour Pitemp IR 

1 16.524 0.201 0.705 7.244 9.755 7.211 0.979 

2 16.253 0.204 0.719 7.247 9.736 7.128 1 

3 19.013 0.02 0.663 8.298 11.405 17.354 1.67 

4 17.929 0.14 0.706 7.202 9.618 7.951 1.233 

5 16.767 0.319 0.725 5.654 5.94 7.384 0.805 

6 18.134 0.139 0.698 7.121 6.566 6.783 1.637 

7 11.253 0.705 0.858 3.722 3.271 6.776 0.398 

8_0 19.748 -0.067 0.693 7.585 11.795 8.606 1.683 

8_1 17.56 0.064 0.689 8.335 12.034 7.255 1.355 

8_2 16.611 -0.071 0.686 9.229 12.403 6.553 1.203 

8_3 16.795 -0.063 0.684 10.342 12.697 6.343 1.458 

8_4 17.914 -0.366 0.681 11.537 12.952 6.446 2.217 

8_5 19.697 -0.863 0.678 12.75 13.187 6.813 3.446 

 

Table 8. Average values of Accuracy, Correlation and Pattern modules 

Modelling  

solution 

Module 

Accuracy Correlation Pattern 

1 0.541 0.269 0.192 

2 0.500 0.226 0.196 

3 0.682 0.456 0.435 

4 0.642 0.268 0.199 

5 0.477 0.196 0.088 

6 0.631 0.335 0.118 

7 0.017 0.041 0.046 

8_0 0.798 0.321 0.268 

8_1 0.683 0.330 0.272 

8_2 0.646 0.340 0.280 

8_3 0.730 0.351 0.300 

8_4 0.837 0.362 0.333 

8_5 0.923 0.375 0.351 
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Table 9. Average values of Agreement and Robustness module and of IRH indicator 

Modelling 

solution 

Module 

Agreement Robustness IRH 

1 0.408 0.204 0.409 

2 0.382 0.223 0.384 

3 0.566 0.903 0.568 

4 0.523 0.478 0.461 

5 0.340 0.083 0.340 

6 0.440 0.883 0.440 

7 0.025 0.000 0.025 

8_0 0.557 0.911 0.560 

8_1 0.498 0.630 0.502 

8_2 0.473 0.439 0.476 

8_3 0.508 0.739 0.512 

8_4 0.579 1.000 0.584 

8_5 0.642 1.000 0.645 

 
This is relevant because it points out that using minimum daily air 

temperature as a surrogate of hourly dew point temperature led to large 
errors in different aspects of the generation. MS from 8_0 to 8_5 obtained 
poor IRH values for all the calibrations tested. 

The results obtained by the 13 MS in the Robustness module reflect 
those obtained for the second level of aggregation (Agreement module), 
with better value obtained again by MS 7 and worst value by MS 8_4 and 
MS 8_5. This means that there is a positive correlation between the 
capability of the MS tested of being precise and the tendency to maintain 
constant the magnitude of the errors among different conditions and 
years. With regards to the Accuracy, Correlation and Pattern modules, 
results (Table 8) show that MS 7 obtained the best values for all the data 
sets, hence resulting as the best one according to a wide range of 
evaluation criteria. 

All the other MS performed worse, but with high variability. In 
particular, MS 5 obtained the second best average values in the modules 
Accuracy (0.477), Correlation (0.196), and Pattern (0.088). These result 
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indicate that, when daily values of maximum and minimum air relative 
humidity are not available, this MS can be considered as the most reliable. 

All of the other MS obtained values higher than or equal to 0.5 in the 
module Accuracy,, with the worst value calculated for MS 8_5 (0.923). 

Considering simple metrics (Table 7), MS 7 obtained the best values of 
RMSE (11.253), while all the other MS obtained higher and quite similar 
values for this index (ranging from 16.253 to 19.748). MS 7 obtained the 
best values also for EF, with an average value of 0.705. MS 8_0, 8_3, 8_4, 
and 8_5 performed worse than the average of measured values, with EF 
values always negative, thus proving to be unable to predict HARH with 
acceptable accuracy. The results obtained for the R metric by the 13 MS 
were quite homogenous: MS 7 obtained again the best average value 
(0.858), while the worst value was obtained by MS 3 (0.663). This means 
that all the MS tested showed a good correlation between the observed 
and measured data. As in the other metrics, MS 7 obtained the best results 
for PIdoy (3.722), followed by MS 5 (5.654). A similar situation was obtained 
for PIhour, where the only difference was that MS 6 obtained the third best 
value (6.556). The values obtained by the 13 MS in PItemp were quite similar 
(from 6.343 to 7.951), exclusive of no. 3 which performed decidedly worse 
(17.357). 

3.5. Conclusions 

Before using estimated variables as input for impact models, it is 
mandatory to perform an evaluation of the methods used for their 
generation. This procedure allows a transparent traceability of the errors 
done in the generation process, making clear the steps of the modelling 
chain that need to be improved. The comparison among the 13 MS 
evaluated via the composite indicator IRH has allowed gaining an insight on 
models estimating capabilities and weaknesses. This kind of analysis can 
also be useful to guide the researchers in the choice of the model that 
obtained the best result in a particular area of interest. For example, in 
some situations it is preferable to have a model that is capable to maintain 
constant its performances even if it is less accurate as a whole than other 
ones. Analyses like the one performed here also provide indication on 
which model is preferable according to actual data availability.The results 
of the IRH indicator showed that, when present, daily maximum and 
minimum air relative humidity markedly improve the generation of HARH. 
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When such input values are not available, this analysis underlines that the 
errors made by the MS tested increase considerably, and that the choice of 
the particular MS is crucial. In fact, the analysis showed large differences in 
the magnitude of errors produced by the MS tested, providing means to 
select the most suitable in the context of interest. The structure of the 
indicator developed addresses model evaluation via multiple metrics. 
Hence, it can be re-used for evaluation of performance of different type of 
models simply by selecting relevant covariates for the Pattern Indices 
metrics.The next step will be the validation of the more precise MS through 
the use of generated and observed HARH values as input for epidemic 
forecasting models versus real data, aiming at using these tools on a wide 
scale and in different climate scenarios. 
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4.1. Abstract 

Leaf wetness (LW) is one of the most important input variables of 
disease simulation models because of its fundamental role in the 
development of the infection process of many fungal pathogens. The low 
reliability of LW sensors and/or their rare use in standard weather stations 
has led to an increasing demand for reliable models that are able to 
estimate LW from other meteorological variables. When working on large 
databases in which data are interpolated in grids starting from weather 
stations, LW estimation is often penalized by the lack of hourly inputs (e.g., 
air relative humidity and air temperature), leading researchers to generate 
such variables from the daily values of the available weather data. 

Although it is possible to find several papers about models for the 
estimation of LW, the behavior and reliability of these models were never 
assessed by running them with inputs at different time resolutions aiming 
at large-area applications. Furthermore, only a limited number of papers 
have assessed the suitability of different LW models when used to provide 
inputs to simulate the development of the infection process of fungal 
pathogens. In this paper, six LW models were compared using data 
collected at 12 sites across the U.S. and Italy between 2002 and 2008 using 
an integrated, multi metric and fuzzy-based expert system developed ad 

hoc. The models were evaluated for their capability to estimate LW and for 
their impact on the simulation of the infection process for three pathogens 
through the use of a potential infection model. This study indicated that 
some empirical LW models performed better than physically based LW 
models. The classification and regression tree (CART) model performed 
better than the other models in most of the conditions tested. Finally, the 
estimate of LW using hourly inputs from daily data led to a decline of the 
LW models performances, which should still be considered acceptable. 
However, this estimate may require further work in data collection and 
model evaluation for applications at finer spatial resolutions aimed at 
decision support systems.  
 
Keywords: Fuzzy logic, composite metrics, disease potential infection, 
hourly values, weather variables 
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4.2. Introduction 

Among the inputs required by fungal disease simulation models, leaf 
wetness (LW; as yes/no state) is widely recognized as a crucial input 
(Pedro, 1980; Huber and Gillespie, 1992; Gleason et al., 1994; Kim et al., 
2002). In particular, the time free water remains on the surface of plant 
tissues, named leaf wetness duration (LWD; hours day-1), is one of the most 
important driving variables for the forecasting of plant disease epidemics 
because of its considerable impact on processes, such as the start of the 
fungal pathogens active life cycle, their penetration into the leaves, primary 
infection occurrence and secondary infection occurrence. Carrying out 
reliable measurements of LWD is often challenging because of the physical 
complexity of the processes involved, i.e., its relationship with the 
structural and optical properties of the tissue surface and with 
micrometeorological aspects (Sentelhas et al., 2004). No standard for its 
measurement has yet been accepted (Dalla Marta et al., 2005). The sensors 
also require crop-specific calibrations (Giesler et al., 1996) and frequent 
maintenance, and the sensors need to be positioned on each individual 
farm (Dalla Marta et al., 2005). For these reasons, the simulation of LWD is 
widely suggested as a viable alternative to direct measurements (Pedro and 
Gillespie, 1982; Huber and Gillespie, 1992; and Wittich, 1997), especially 
for large area applications. The existing approaches for the generation of 
LW can be classified into two categories as follows: fully empirical (e.g., 
Gleason et al., 1994; Rao et al., 1998; Wichink Kruit et al., 2004) and 
process-based (e.g., Pedro and Gillespie, 1982; Luo and Goudriaan, 2000; 
Magarey et al., 2006; Sentelhas et al., 2006). Empirical models simulate LW 
using simple relationships between LW and a number of variables (e.g., air 
relative humidity, dew point temperature, rain occurrence and/or wind 
speed) derived in specific agrometeorological conditions. The process-
based models consider physical principles of dew condensation, dew 
evaporation and/or rain evaporation through an energy balance approach. 
These models have demonstrated a good potential for applications even 
though the considerable effort required for model parameterization may 
be considered a limiting factor for operational use (Sentelhas et al., 2008). 
Although there are many reports about LW model development, there are 
only a few papers illustrating the comparison of the models under 
conditions exploring different sites, years and crops (Wichink Kruit et al., 
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2004; Sentelhas et al., 2008; Wichink Kruit et al., 2008). Also, LW models 
require hourly inputs that are not always available or reliable, especially in 
large area applications. When the goal of the analysis is to estimate the 
disease impact under scenarios of climate change, the downscaling from 
global circulation models does not include either the data needed to 
estimate LW or LW itself. In these cases, estimation of hourly values of 
weather variables is mandatory for using LW models. However, no 
assessment of LW models is available contrasting generated inputs and 
measured inputs. Furthermore, evaluation of the use of LW estimated from 
inputs at different time resolutions on impact models has yet to be 
performed. 

Therefore, the objective of this paper was to evaluate models for the 
estimation of LW in large-area scenario analysis. Within this framework, 
the following specific objectives were carried out: i) comparison of six LW 
models; and ii) assessment of the impact of LW estimated data as input on 
an impact model.  

4.3. Materials and Methods 

4.3.1. Study sites and data sources 

Data were collected at 12 sites across the U.S. and Italy between 2002 
and 2008 using two different sensors (237 Leaf Wetness Sensor from 
Campbell Scientific, Inc., Utah, U.S.; and BF001 from Silimet s.r.l., Italy) and 
under different typologies of groundcover (Table 1). 
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Table 1. Sites and years used for the simulations 

Site Latitude N Longitude E Available  

years 

Sensor* Ground-

cover 

Brooking(US) 32° 03’ -124°17’ 2003-2007 1 Grass 

Caronia-Buzza (IT) 38° 02’ 14° 28’ 2002-2007 2 Grass 

Lentini (IT) 37° 17’ 14° 59’ 2004-2007 2 Grass 

Linden (US) 38°01’ -121° 05’ 2007 1 Cherry 

Lockeford (US) 38° 10’ -121° 12’ 2002-2007 1 Vineyard 

Medford (US) 42° 19’ -122° 52’ 2003-2008 1 Vineyard 

MiddleTown (US) 38° 45’ -122° 36’ 2002-2006 1  Vineyard 

Mineo (IT) 37° 15’ 14° 41’ 2003-2007 2 Grass 

Misilmeri (IT) 38° 01’ 13° 27’ 2003-2007 2 Grass 

RedHills (US) 38° 55’ -122° 44’ 2004-2008 1  Vineyard 

Vorden (US) 38°19’ 121° 32’ 2007 1 Alfalfa 

Worden (US) 42° 00’ -121° 47’ 2003-2008 1 Grass 

* 1: 237 Leaf Wetness Sensor, Campbell Scientific, Inc., Utah, US; 2: BF001, Silimet s.r.l., 
Italy 

 
The use of several sites and reference crops increased the heterogeneity 

of the data (e.g., errors or differences due to sensors) and increased the 
possible incoherence in parameterizations. However, our goal was to test 
LW models across a broad range of conditions for operational use in large-
area applications or future climate scenarios. Consequently, the 
heterogeneity of the dataset used was a severe test for the LW models. The 
weather conditions at each site during the monitoring periods (summarized 
in Table 2 and partially presented according to Sentelhas et al., 2008) 
allowed consideration of the sites to be decidedly heterogeneous in the 
values of mean air temperature, air relative humidity (RH) and rainfall.  
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Table 2. Average climatic conditions of the sites used in this study for the period 

01/03-31/10 

Site 

Mean air 
temperature 
(°C) 

Mean air 
relative 
humidity (%) 

Total  
Rainfall 
(mm) 

Rainy days 
(days) 

Mean wind 
speed 
(m s

-1
) 

Brooking 13.7 81.2 805.9 77.8 1.3 

Caronia Buzza 20.6 66.7 392.6 58.2 2.2 

Lentini 21.7 57.9 226.0 41.5 1.1 

Lockeford 18.9 60.5 153.4 25.7 1.4 

Medford 15.9 61.2 173.5 51.3 0.9 

MiddleTown 16.9 58.2 383.9 33.0 1.4 

Mineo 20.8 61.1 296.9 53.3 1.2 

Misilmeri 20.7 63.4 368.5 54.7 2.6 

RedHills 18.0 50.3 276.5 35.0 1.7 

Vorden 18.4 75.1 61.3 15.0 2.2 

Worden 12.0 66.7 236.3 57.8 1.7 

 
The LW sensor and groundcover for the Sicilian sites (Caronia Buzza, 

Lentini, Mineo and Misilmeri) were different from the other sites, which led 
to systematically biased LW data at these locations compared to the other 
locations, that is, many hours were measured as wet while the RH was 
lower than 60%. Such data were used in the analysis for the following 
reasons: i) there was no absolute evidence to exclude the data from all of 
these stations, and ii) the results obtained by the LW models tested 
excluding these data from the evaluation procedure did not substantially 
change (data not presented). 

4.3.2. The leaf wetness models 

The six models evaluated, which are all implemented as alternate 
modelling solutions in the LeafWetness software component (freely 
downloadable with algorithms, code documentation and sample projects 
to illustrate its use at http://agsys.cra-cin.it/tools/leafwetness/help/), 
differed in the level of detail used to represent the phenomena ranging 
from process-based approaches to fully empirical models. 

The surface wetness energy balance (SWEB; Magarey et al., 2006) model 
is a physical model based on the energy balance. The implementation of 
SWEB in the LeafWetness component presents five modules as follows: i) 
WindSpeed, which calculates wind speed at the air/canopy interface; ii) 
NetRadiation, which calculates the fraction of net radiation intercepted by 
the canopy; iii) WaterBudget, which considers the fraction of rain 
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intercepted by the canopy, condensation of water as dew and their 
contribution to LW; iv) CanopyEvaporation, which simulates the latent heat 
flux density from the canopy (i.e., the negative term of the energy 
balance); and v) WaterBalance, which calculates the actual wet area of the 
canopy. 

The leaf wetness reference (LWR) model (Sentelhas et al., 2006) 
implements a Penman-Monteith based approach for the calculation of LW. 
It assumes that the vertical thermal profile is linear from the height of the 
sensor to the air/canopy interface and that this air layer can be accounted 
for by the introduction of a resistance term into the model. LWR derives 
rain interception from the measured rainfall amount and maximal amount 
of water as rain reservoir (set to 0.6 mm). LWD is then estimated by 
adopting a two-step procedure similar to that recommended by FAO for 
estimating crop evapotranspiration (Allen et al., 1998) as follows: 

WWW rc =              [1] 

where Wc (hours) is the crop LWD (hours), Wr (hours) is the reference 
LWD estimated using the Penman–Monteith approach for a sensor at a 30-
cm height over turf grass and W is the wetness coefficient (dimensionless) 
equal to the Wc to Wr ratio. 

The dew parameterization (DP) model (Garratt and Segal, 1988) is based 
on earlier work by Monteith (1957) and estimates LW by considering the 
fluxes of water vapour from air to surface and from soil to canopy (dewfall 
and distillation, respectively) as driven by wind speed, absolute 
temperature, atmospheric stability, relative humidity, soil characteristics, 
and cloudiness. 

The classification and regression tree (CART) (stepwise linear 
discriminant; Kim et al., 2002) model uses an empirical approach for the 
simulation of LW requiring hourly dew point depression (DPD), hourly wind 
speed (WS) and RH as input. CART classifies hours as dry or wet through 
the identification of four categories of conditions as follows: hours are 
considered dry if either DPD ≥ 3.7°C (category 1) or RH < 87.8% and WS ≥ 
2.5 m s-1 (category 4). The hours in categories 2 and 3 are classified as 
either dry or wet by a subsequent stepwise linear discriminant analysis. The 
model derives WS at the air/canopy interface from values measured by 
standard weather stations. 

The extended threshold (ExT; Witchink Kruit et al., 2004) approach 
considers hours in which RH is higher than 87% as wet hours. For values of 
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RH between 70% and 87%, an hour is considered wet if RH is at least 3% 
higher than the RH of the hour before and dry if RH is at least 2% lower 
than the RH of the hour before. The hours in which RH is lower than 70% 
are considered dry. If these conditions are not satisfied, the hour is 
considered the same as the previous one. Note that our implementation of 
ExT simplified the model using an hourly time step instead of the 30-min 
time step proposed by Witchink Kruit et al. (2004). This solution did not 
affect the model coherence, and it extended its usability. 

An additional model was added following the idea that RH is a suitable 
index for predicting LW occurrence (Sentelhas et al., 2008). The fixed 
threshold (FT) model was, therefore, derived by performing a logistic 
regression among all of the available values of LW and RH, which allowed 
for defining an RH threshold; above such threshold the hour was 
considered wet. The meteorological inputs required by the six LW models 
tested are listed in Table 3. 
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Table 3. Hourly meteorological inputs required by leaf wetness models used in the 

study and references of the methods used to generate them 

Input Unit CART SWEB DP ExT LWR FT References 

Air 
temperature

*
  

°C × ×     Campbell,  
1985 

Air dew point 
temperature  

°C ×      Murray, 
1967 

Wind speed
*
  m s

-1
 × ×   ×  Mitchell  

et al., 2000 
Net radiation MJ m

-2
 h

-1
  × ×  ×  Allen et al., 

1998 
Slope of vapor 
pressure curve  

KPa °C
-1

  × ×  ×  Allen et al., 
1998 

Latent heat of 
vaporization  

MJ Kg
-1

  × ×    Harrison, 
1963 

Rain
*
  mm  ×   ×  Meteotest, 

2003 
Atmospheric 
density  

Kg m
-3

  × ×    ASAE, 1998 

Air relative 
humidity

*
  

% × ×  ×  × Waichler 
and 
Wigmosta,
2003 

Saturation 
vapor pressure  

KPa  × ×  ×  ASAE, 1998 

Specific heat of 
air 

J g
-1

 C
-1

  × ×    Not 
generated 
(0.286) 

Aerodynamic 
resistance  

s m
-1

   ×  ×  Allen et al., 
1998 

Actual vapor 
pressure  

KPa   ×  ×  Allen et al., 
1998 

Psychrometric 
constant  

KPa °C
-1

   ×  ×  Allen et al., 
1998 

Soil heat flux  MJ m
-2

 h
-1

   ×    Allen et al., 
1998 

*
= measured values of these variables were available and they were used in the 

measured run (see the text for details) 

 
For the process-based models (SWEB, DP and LWR), the default values 

of parameters were used as indicated by the authors of the models. The 
default values were needed because no precise information was available 
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about the crops on which the sensors were placed. Moreover, the aim of 
this work was to evaluate the use of LW models for large area applications. 
Thus, the choice of not performing specific calibrations was consistent with 
the aim of this study. 

4.3.3. The potential infection model 

The six LW models were coupled with the simple generic potential 
infection model for foliar fungal pathogens developed by Magarey et al. 
(2005) to evaluate the impact of LW generation on the simulation of the 
infection process. The fungal potential infection model is a generic 
pathogen simulator in which different pathogens are represented by a set 
of parameters. It calculates the temperature response via the function 
developed by Yan and Hunt (1999) using an hourly time step. This model 
simplifies the one proposed by Yin et al. (1995) because it does not require 
a fully empirical shape parameter. The model is as follows: 
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where f(t) (0-1; dimensionless) is the temperature response function; T 
(°C) is the mean air temperature during the wetness period; and Tmin, Tmax 
and Topt (°C) are the minimal, maximal and optimal temperatures for 
infection, respectively. The effect of LW is taken into account by the 
following equation: 
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             [3] 

where W(t) (0-1; dimensionless) is the wetness response function, Wmin 
(hours) is the minimal LWD for infection,  f(t) (0-1; dimensionless) is the 
temperature response function (Eq. 2) and Wmax (hours) is the optimal 
value of the LWD requirement. When the model is run with hourly data, it 
is necessary to know how many dry hours may interrupt a wet period 
without terminating the infection process. The additivity of two interrupted 
wet periods is determined by the critical dry period interruption value 
(D50), as indicated in the following equations: 
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            [4] 

where Wsum is the sum of the surface wetting and W1 and W2 are wet 
periods separated by a dry period (D; hours). The D50 parameter (hours) is 
defined as the duration of a dry period that will result in a 50% reduction in 
disease compared with a continuous wetness period. The flow diagram of 
the model is presented in Fig. 1. 

 
 

 
Figure 1. Flow diagram of Magarey et al. (2005) for a simple generic infection model 

for foliar fungal plant pathogens. Th is hourly air temperature. The other symbols are 

explained in the text 

 
For this study, three foliar fungal pathogens were chosen for the 

evaluation of the LW models starting from measured and generated 
weather data. The three pathogens used were Phytophthora infestans 
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(causal agent of late blight of potato), Venturia inaequalis (causal agent of 
apple scab) and Puccinia striiformis (causal agent of stripe rust of wheat). 
To emphasize the effect of LW simulation on the number of potential 
infections, the selection of the fungal foliar pathogens specifically tried to 
explore a great variability in response to temperature and/or wetness 
needs. The wetness requirements of pathogens at different temperatures 
used in this study are shown in Fig. 2. The parameters used in this study 
have been previously described by Magarey et al. (2005) and are listed in 
Table 4. 

 

 
Figure 2. Wetness duration requirements at different temperatures of the pathogens 

chosen for this study. Curves are plotted in the range of temperatures Tmin < T < Tmax for 

each pathogen 

 

Table 4. Parameters used for the fungal pathogen used in this study (source: 

Magarey et al., 2005). See the text for details 

Pathogen 

Tmin 

(°C) 

Topt 

(°C) 

Tmax 

(°C) 

Wmin 

(hours) 

Wmax 

(hours) 

D50 

(hours) 

Phytophthora infestans 2.6 25 30 5 16 1 

Venturia inaequalis 1 20 35 6 40 24 

Puccinia striiformis 2.6 8.5 18 5 8 2 

 

4.3.4. Generation of meteorological inputs 

For each dataset, daily and hourly measured values of air temperature, 
RH, WS and precipitation were collected. The daily global solar radiation 
was estimated using the Bristow-Campbell model (Bristow and Campbell, 
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1984). For the generation of hourly meteorological inputs from daily inputs, 
the following software model components were used: AirTemperature 
(http://agsys.cra-cin.it/tools/AirTemperature/help/), Evapotranspiration 
(http://agsys.cra-cin.it/tools/EvapoTranspiration/help/; Donatelli et al., 
2005), Rain (http://agsys.cra-cin.it/tools/Rain/help/; Carlini et al., 2006), 
Wind (http://agsys.cra-cin.it/tools/Wind/help/; Donatelli et al., 2009b) and 
SolarRadiation (http://agsys.cra-cin.it/tools/SolarRadiation/help/; Donatelli 
et al., 2006). The models used for hourly generation are listed in Table 3. 

4.3.5. Simulation experiment design 

For each dataset and pathogen considered, the six LW models coupled 
to the potential infection model were run twice. The first run used 
measured hourly inputs (measured run; MR), and the second run used 
hourly inputs generated from daily data (generated run; GR). At the same 
time, hourly measured data for the air temperature and LW were used as 
input for the same potential infection model (reference run; RR). The 
complete workflow of the simulation experiment is presented in Fig. 3. 

 

 
Figure. 3 Workflow of the simulation processes of this study. LW is leaf wetness, 

SWEB, CART, ExT, DP, LWR, FT are the leaf wetness models used in the study 

4.3.6. Model output evaluation 

The comprehensive assessment of the LW simulation models 
encompassed the following parameters: i) performance of the models in 
predicting LW in terms of accuracy and bias; ii) models’ capability of 
reproducing potential infection events obtained with measured LW data; 
and iii) correlation between the number of potential infections coming 
from measured weather variables and estimated weather variables. This 
evaluation made use of composite indicators, which are measures that are 
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able to summarize the performance of models by the integration of several 
metrics into modules that are hierarchically composed. Although the 
differences among their values cannot be tested for statistical significance, 
composite indicators are extremely useful in providing integrated, easily 
understandable and comparable measures of model performance 
(Bellocchi et al., 2010).  

Two fuzzy-based modular indicators (Ilw and Iinf) were built ad hoc for 
evaluating the performances of the six LW models via the following 
aspects: i) reproducing hourly values of LW and ii) providing inputs for the 
potential infection model (LWD). The structure of these indicators reflects 
and extends those proposed by Bellocchi et al. (2002), Donatelli et al. 
(2004), Confalonieri et al. (2009), Confalonieri et al. (2010) and Bregaglio et 
al. (2010). 

Ilw was composed of the Accuracylw and Biaslw modules, whereas Iinf was 
derived from the aggregation of the following four modules: Accuracyinf, 
Biasinf, Agreementinf and Correlation. Each module was composed of one or 
more simple metrics, as shown in Table 5.  

 
Table 5. Multiple-metrics assessment method: modules and basic metrics. F is 

Favourable threshold, U is Unfavourable thresholds (see the text for details) 

Module Metric(s) Equation Range of values  

and purpose 

Threshold 

    F U 

Accuracylw 
Accuracyinf 

Pod, 
Probability 
of detection 

ba

a
Pod +

=  
0 to 1. Best 
Performance 
when Pod = 1  

0.9 0.5 

Pne, 
probability 
of null event dc

c
Pne +

=  
0 to 1. Best 
performance 
when Pne = 1 

0.9 0.5 

Biaslw 

Biasinf 
Bias, balance 
of the 
models  ba

ca
Bias +

+=  
0 to positive 
infintive. Best 
performance 
when Bias = 1 

1±0.2 1±0
.7 

Correlation r, Pearson’s 
correlation 
coefficient  
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lw=leaf wetness; inf= potential infection events; a= Hits; b= Misses; c= False Alarms; d = Correct 

Negatives (see Table 4); Ei= estimated value;Rif,i: reference value; E = mean of estimated 

values;
ifR : mean of reference values;i= each of estimated/reference pairs; n= number of 

estimated/reference pairs 

 
For each metric, two functions describing membership to the favorable 

(F) and unfavorable (U) fuzzy subsets were defined. As values in the fuzzy 
range were simultaneously F and U, two complementary S-shaped 
quadratic functions (Liao, 2002) were used as transition probabilities in the 
range F to U (and vice versa). This methodology has been fully described by 
Bellocchi et al. (2002). 

The ability of the models to predict potential infection occurrence and 
LW data was evaluated using a dichotomous categorical verification (Wilks, 
1995). In particular, the impact of LW models on the simulation of potential 
infection was evaluated by considering the days in which successful 
potential infections occurred (cohorts of spores that successfully 
completed their cycle according to the potential infection model; classified 
as 1) and the days in which no potential infections were simulated 
(classified as 0) during the period from March 1st to October 31st. A 2×2 
contingency table (with four different categories) was obtained (Table 6) 
for potential infection and LW occurrence.  

 
Table 6. Contingency table used in the leaf wetness models evaluation. Event is a wet 

hour in case of leaf wetness simulation or a day in which potential infection occurs in 

case of potential infections simulation 

 Event measured No Event measured 

Event generated  Hits (a) Misses (b) 

No Event generated False Alarms (c) Correct Negatives (d) 

 
The total number of potential infections per day in the same period of 

time was calculated to evaluate the impact of LW simulation on the 
infection process. All of the metrics used in this study are listed in Table 5. 
The composition of the accuracy modules (Accuracylw and Accuracyinf for 
the simulation of LW and potential infections, respectively) accounted for 
two main features of model performance, consisting of the correct 
simulation of: i) an occurred event - probability of detection, Pod, and ii) a 
null event - probability of null event, Pne. 
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The bias modules (Biaslw and Biasinf for the simulation of LW and 
potential infections, respectively) were composed of a single metric as 
follows: Bias. These modules showed the tendency of the model to either 
underestimate or overestimate the simulated phenomenon. If Bias is 
greater than one, then the simulated events are more than the reference 
events. If Bias is less than one, then the simulated events are less than the 
reference events. 

The correlation module was composed of a single basic metric, which is 
the Pearson's simple linear correlation coefficient r. The value of r indicates 
the fluctuation of the estimates among n measurements (Kobayashi and 
Salam, 2000) and is a useful measure of model performance. This metric 
was calculated using the numbers of potential infections obtained by the 
RR as reference values and the other numbers (from GR and MR) as 
estimated values. 

For each dataset, the metrics explained above were computed and then 
aggregated into their modules according to the set of decision rules 
presented in Table 7.  

 
Table 7. Summary of decision rules within the modules Accuracy, Bias and Impact; F: 

favourable threshold; U: unfavourable threshold. Subscripts lw and inf stands for leaf 

wetness, and potential infection events, respectively 

Aggregation Modules Expert weight Metrics 

2-metric Accuracylw 

Accuracyinf 
 Probability of 

detection (Pod) 
Probability of  
null event (Pne) 

  0.00 F F 
  0.50 F U 
  0.50 U F 
  1.00 U U 

No 
aggregation  

Biaslw 

Biasinf 
 Balance of the 

model (Bias) 
 

(single 
metric) 

 0.00 F  

  1.00 U  

 Correlation  r  

  0.00 F  
  1.00 U  

 
From these rules, a dimensionless value between zero and one was 

derived (0 = best model response; 1 = worst model response) for each 
module. For the definition of the value of each module, the Sugeno method 
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of fuzzy inference was adopted (Sugeno, 1985). For the definition of the Ilw 
composite indicator, a two-stage design inferring system was built (Fig. 4a) 
as follows: i) Pod and Pne metrics were aggregated into their modules 
(Accuracylw), and the Bias metric was fuzzified into its module (Biaslw); and 
ii) Biaslw and Accuracylw modules were then aggregated into the second 
level integrated Ilw metric. A three-stage design inferring system of fuzzy-
based rules was applied for potential infection simulation (Fig. 4b) as 
follows: i) Pod and Pne metrics were aggregated into their modules, thus, 
achieving the Accuracyinf module level, and the Bias metric and r were 
fuzzified into their modules (Biasinf and Correlation, respectively); ii) the 
Biasinf module and Accuracyinf module were then aggregated into the 
Agreementinf module; and iii) the Agreementinf and Correlation modules 
were then aggregated into the third-level integrated measure, which is the 
final indicator (Iinf). 

 

 
Figure 4. Structure of the assessment method for leaf wetness simulation (a) and for 

potential infections simulation (b). Ilw: composite evaluation index for leaf wetness 

models; Iinf: composite evaluation index for potential infections simulation Pod: 

probability of detection; Pne: probability of null event; Bias: bias; r: Pearson’s correlation 

coefficient; LW: leaf wetness 
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4.4. Results and Discussion 

Composite indicators allow a clear top-down analysis of results 
providing a unique summary value for model comparison and values at 
lower levels of aggregation to understand model behavior with respect to 
simple metrics. The average values of the Iinf and Ilw composite indicators 
are presented in Tables 8a, 8b, 9a and 9b, respectively.  

 
Table 8a. Performance statistic values used within multiple-metrics assessment 

method for the potential infections evaluation for the three pathogens tested 

(measured run). Grayed areas show the best result per metric for generated and 

measured runs. See the text for details 

Pathogen Indicator Measured run (MR) 

  physical models empirical models 

  SWEB LWR DP CART ExT FT 

P.i. 

Iinf 0.306 0.577 0.823 0.203 0.249 0.248 

Agreementinf 0.412 0.511 0.587 0.334 0.377 0.361 

Correlation 0.314 0.558 0.888 0.142 0.204 0.177 
Accuracyinf 0.404 0.448 0.500 0.296 0.324 0.322 

Biasinf 0.665 0.665 0.807 0.43 0.807 0.449 
r 0.598 0.457 0.26 0.684 0.637 0.673 
Pod 0.451 0.264 0.120 0.605 0.592 0.564 
Pne 0.927 0.945 0.956 0.905 0.883 0.925 
Bias 1.383 0.474 0.415 1.185 0.415 0.92 

V. i. 

Iinf 0.426 0.607 0.763 0.287 0.343 0.314 
Agreementinf 0.411 0.514 0.585 0.334 0.380 0.362 

Correlation 0.391 0.647 0.929 0.200 0.264 0.231 
Accuracyinf 0.405 0.482 0.499 0.296 0.321 0.333 
Biasinf 0.433 0.614 0.807 0.43 0.533 0.449 
r 0.553 0.396 0.148 0.649 0.608 0.64 
Pod 0.441 0.225 0.074 0.592 0.569 0.535 

Pne 0.933 0.955 0.963 0.915 0.896 0.936 
Bias 0.901 0.662 0.415 1.185 1.453 0.92 

P. s. 

Iinf 0.298 0.419 0.604 0.134 0.187 0.145 

Agreementinf 0.282 0.353 0.493 0.23 0.341 0.425 

Correlation 0.203 0.396 0.674 0.05 0.096 0.073 

Accuracyinf 0.387 0.472 0.499 0.233 0.266 0.251 

Biasinf 0.365 0.472 0.550 0.207 0.297 0.192 

r 0.666 0.515 0.384 0.744 0.710 0.731 

Pod 0.478 0.335 0.261 0.666 0.651 0.645 

Pne 0.940 0.922 0.921 0.912 0.89 0.926 

Bias 0.760 0.771 0.712 1.078 1.196 0.982 
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Table 8b. Performance statistic values used within multiple-metrics assessment 

method for the potential infections evaluation for the three pathogens tested 

(measured run). Grayed areas show the best result per metric for generated and 

measured runs. See the text for details 

Pathogen Indicator Generated run (GR) 

  physical models empirical models 

  SWEB LWR DP CART ExT FT 

P.i. 

Iinf 0.617 0.849 0.893 0.599 0.699 0.593 
Agreementinf 0.414 0.548 0.580 0.373 0.419 0.379 
Correlation 0.697 0.919 0.943 0.646 0.718 0.658 
Accuracyinf 0.491 0.482 0.483 0.517 0.517 0.510 
Biasinf 0.655 0.655 0.655 0.472 0.721 0.454 

r 0.358 0.217 0.150 0.394 0.361 0.383 
Pod 0.306 0.225 0.249 0.288 0.283 0.284 
Pne 0.870 0.955 0.845 0.894 0.878 0.903 
Bias 2.089 2.089 0.538 0.909 1.654 0.783 

V. i. 

Iinf 0.621 0.759 0.784 0.563 0.615 0.553 
Agreementinf 0.415 0.538 0.569 0.366 0.404 0.376 
Correlation 0.772 0.966 0.981 0.706 0.768 0.68 

Accuracyinf 0.497 0.551 0.526 0.515 0.524 0.523 
Biasinf 0.423 0.643 0.721 0.474 0.574 0.462 
r 0.323 0.136 0.069 0.343 0.317 0.351 
Pod 0.299 0.213 0.151 0.274 0.264 0.238 
Pne 0.866 0.831 0.863 0.888 0.876 0.898 

Bias 1.360 2.097 1.654 0.906 1.076 0.777 

P. s. 

Iinf 0.479 0.672 0.696 0.511 0.546 0.516 
Agreementinf 0.418 0.555 0.554 0.483 0.484 0.473 
Correlation 0.537 0.762 0.810 0.532 0.597 0.538 
Accuracyinf 0.466 0.509 0.520 0.487 0.491 0.474 
Biasinf 0.302 0.666 0.644 0.487 0.464 0.444 
r 0.437 0.357 0.332 0.450 0.437 0.445 

Pod 0.362 0.291 0.299 0.293 0.327 0.311 
Pne 0.902 0.884 0.870 0.914 0.903 0.918 
Bias 0.839 0.871 1.018 0.670 0.763 0.673 
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Table 9a. Performance statistic values used within multiple-metrics assessment 

method for the leaf wetness models evaluation (measured run). Grayed areas show the 

best result per metric for generated and measured runs. See the text for details 

Pathogen Indicator Measured run (MR) 

 physical models empirical models 

 SWEB LWR DP CART ExT FT 

Ilw 0.336 0.571 0.594 0.316 0.277 0.247 
Accuracylw 0.361 0.575 0.668 0.253 0.142 0.174 
Biaslw 0.284 0.568 0.507 0.356 0.401 0.299 
POD 0.617 0.597 0.543 0.672 0.81 0.739 
PNE 0.799 0.606 0.564 0.892 0.845 0.911 
BIAS 1.175 1.919 1.812 1.086 1.318 0.997 

 
Table 9b. Performance statistic values used within multiple-metrics assessment 

method for the leaf wetness models evaluation (generated run). Grayed areas show the 

best result per metric for generated and measured runs. See the text for details 

Pathogen Indicator Measured run (MR) 

 physical models empirical models 

 SWEB LWR DP CART ExT FT 

Ilw 0.361 0.471 0.585 0.386 0.392 0.359 

Accuracylw 0.429 0.516 0.572 0.459 0.442 0.469 

Biaslw 0.291 0.424 0.571 0.298 0.340 0.232 

POD 0.462 0.460 0.517 0.416 0.456 0.402 

PNE 0.845 0.745 0.669 0.851 0.824 0.848 

BIAS 1.038 1.561 2.278 0.921 1.161 0.960 

 
Each Table contains the summary value, values of the intermediate 

modules and values of the simple metrics related to the six LW models 
tested. The values obtained by all of the LW models in the two composite 
indicators from GR were noticeably different from the values obtained 
from MR, which results from different sources of errors related to the 
generation of hourly values from daily values (e.g., air temperature and 
RH). However, it is interesting to note that there was a noticeable 
coherence between the rankings of the LW models (indicator Ilw) in the GR 
and MR runs. The results of the modelling solutions including the impact 
model (indicator Iinf) were similar but with some differences in the ranking. 
These results can be interpreted as an added value given by the use of the 
impact model in the evaluation of the LW models. Even if the evaluation 
results might be different when changing the impact model, it provides a 
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first step in ranking LW models with respect to their operational use in the 
absence of a standard procedure to evaluate LW models via an impact 
model.  

The performances of the LW models were different for the three 
pathogens, which can be explained by the variability of their thermal and 
wetness requirements (Fig. 1). In particular, all of the models showed 
better performances in reproducing potential infection occurrences of 
Puccinia striiformis using measured LW. In contrast, the worst results were 
obtained for Venturia inaequalis. The values of Iinf showed that the CART 
model obtained the best value for all of the pathogens tested for MR 
(average Iinf = 0.208). For GR, however, the CART model was classified 
second in all of the experiments (average Iinf = 0.557). The CART model may 
be considered the most reliable when using input from either estimated 
daily data or hourly values. Iinf values for the FT model were similar to those 
discussed for CART, with FT classifying second in all of the MR experiments 
(average Iinf = 0.236) and first in the GR experiments (average Iinf = 0.554). 
Similar considerations can be made for the ExT model, which was ranked 
third and fourth according to the MR (average Iinf = 0.260) and GR (average 
Iinf = 0.620) results, respectively. Both the ExT and CART models do not 
require calibration, and FT was fitted on the data used in the analysis: this 
may explain why they performed better than the process-based models 
(represented by SWEB, DP and LWR). When simulating LW on different 
crops and in a wide range of conditions, such as in the dataset used, 
accurate parameterization was not possible. Among the process-based 
models, SWEB was the most accurate in simulating potential infection 
occurrence, and SWEB ranked fourth (average Iinf = 0.344) and third (Iinf = 
0.572) according to the MR and GR results, respectively (SWEB ranked even 
better than the ExT model under GR conditions). Worse values (higher) of 
Iinf were obtained by the LWR and DP models for either the MR 
experiments (average Iinf was 0.534 and 0.730, respectively) or GR 
experiments (average Iinf was 0.760 and 0.791, respectively). 

The Ilw results obtained by the LW models, as detailed above, were quite 
different from the Iinf results. In particular, the CART model was ranked 
second for MR (average Ilw = 0.316) and third for GR (average Ilw = 0.386), 
and it was preceded by ExT (average Ilw = 0.277) for MR. The CART model 
was preceded by SWEB (Ilw = 0.361) and ExT (Ilw = 0.392) for GR. According 



Section 1 Chapter 4                                                                                                   4 

82 

 

to the values obtained for Iinf, the DP and LWR models classified next-to-
last and last, respectively, in the values of Ilw. 

Considering the specific modules and simple metrics, the ranking of the 
LW models in the Agreementinf and Correlation module values from MR 
and GR were consistent with the values obtained for Iinf, with the exception 
that model performances in the Agreementinf module were more 
heterogeneous than in the Correlation module. These results suggested 
that the ability of reproducing the days in which potential infections occur 
was shared by almost all of the LW models tested. Furthermore, the 
simulation of the number of potential infections per day was critical, and it 
was strongly influenced by the LW model chosen. 

The average values of the accuracy modules (Accuracyinf and Accuracylw) 
and bias modules (Biasinf and Biaslw) for MR underlined the highest 
reliability of the empirical models. When generated hourly inputs were 
used (GR), the differences in the performances of the LW models in these 
modules appeared decidedly less relevant. Finally, the values of Pod were 
better for the estimation of LW when compared to the simulation of 
potential infection occurrence. The opposite situation occurred for Pne. 

Figure 5 presents the comparison between the monthly potential 
infection events of Venturia inaequalis simulated by CART (Fig. 5a) and 
SWEB (Fig. 5b) for GR and MR.  
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Figure 5. Scatter plot, for two LW models, of the number of potential infection events 

of Venturia inaequalis per month (all years and all sites used in this analysis) obtained 

using LW estimated from hourly (black circles) and daily (white diamonds) 
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meteorological variables vs. potential infection events estimated using measured 

weather variables and LW. Linear regression lines and 1:1 lines are also shown  

Moreover, Fig. 5 shows the corresponding values obtained by the same 
models for RR. The two models were selected for their good performances 
(Tables 8 and 9) and because they were considered examples of fully 
empirical and process-based models. The charts present the specific 
matching of monthly events; the data should ideally fall on the 1:1 line. 
Both GR and MR values underestimated those simulated for RR, with the 
CART model explaining more of the RR value variability compared to the 
SWEB approach.  

 

4.5. Conclusions 

A reliable simulation of LW is an essential prerequisite for predicting the 
diffusion of plant pathogens and their impact on crop production under 
alternate climate change scenarios. The specific, multi metric methodology 
proposed allowed an articulated evaluation and comparison of models to 
estimate LW. The integrated assessment method developed in this study 
allowed a transparent traceability of the uncertainties and estimation 
errors that can characterize the generation process. This analysis showed 
that the magnitude of errors in the diverse steps of the modelling chain 
varied according to the LW model chosen and pathogen considered. 
Beyond the model evaluation presented in this paper for use in large-area 
applications, this study also suggests the need for evaluation and 
calibration of a LW model prior to its operational use in specific contexts to 
reduce the error of estimates. In fact, an optimization of the LW models 
parameters using reference data coming from a specific context could lead 
to a diverse ranking of the same LW models according to their 
performance, although without causing major changes. Furthermore, the 
proposed procedure takes into account the biological impact of LW 
simulation through the coupling of the models tested to a potential 
infection model. This analysis was important in considering that LW models 
are used in most applications as input for disease models. It allowed to 
discover that the rankings obtained by the LW models tested slightly vary 
when they are evaluated as coupled with the impact model chosen. This 
result can be due to the fact that the interactions between the 
temperature response function and the duration of the length of dry and 
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wet periods could mask the ability of the LW models to reproduce the two 
discrete states of the output (LW; as yes/no state). 

The generation of hourly meteorological variables from daily values 
generally led to a worsening of the estimation of both LW and potential 
infection events. Despite this limitation, large area studies where models 
are used to predict the impacts of climatic scenarios usually have to rely on 
daily input data. A site-specific calibration of models to generate hourly 
variables may improve the quality of LW estimates.  

The modelling chain proposed can be used for scenario analysis and 
relative comparisons. As is, the proposed modelling chain is not suitable for 
in season support in decision-aided systems. The CART model achieved the 
best results for most of the metrics considered, especially for the potential 
infection assessment. Therefore, we conclude that although this model is 
not the most accurate in LW prediction, it guarantees the best 
performances when used to provide data for a potential infection model, 
such as the model used in this analysis. This result may be due to the ability 
of CART to reproduce the duration of alternate dry and wet periods, 
allowing a better reproduction of the wetness requirements of plant fungal 
pathogens.  
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5.1. Abstract 

Pest risk assessment studies are aimed at evaluating if weather 
conditions are suitable for the potential entry and establishment of an 
organism in a new environment. For fungal plant pathogens, the crucial 
aspect that has to be explored is the fulfillment of the infection process, 
that constitutes the first phase of the development of an epidemic as 
mainly driven by temperature and leaf wetness duration. This is valid in 
current weather conditions and even more in climate change scenarios, 
since the modified pattern of temperature and moisture regimes could 
completely alter the known distribution and severity of plant disease 
epidemics. Biophysical process-based models could effectively be used in 
such studies, since they are a tool for exploring conditions not experienced 
yet. One of the prerequisite of their adoption in operational contexts is a 
sensitivity analysis assessment aimed at understanding their ability (i) in 
differentiating the responses according to different parameterizations and 
(ii) to be sensitive to the variability of the data provided as input. In this 
study, a generic potential fungal infection model was analyzed in this way. 
Four pathogens were chosen, trying to maximize the variability in 
temperature and moisture requirements, and the model was run under 
diverse climatic conditions. The sensitivity of the model deeply changed 
according to the pathogen tested, and the relevance of its parameters in 
explaining model output was strongly linked to the environmental 
conditions tested. Therefore, these results suggest that this model is 
particularly suitable for pest risk assessment studies 
 

Keywords: Potential infection, sensitivity analysis, leaf wetness, climate 

change. 
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5.2. Introduction 

The damages potentially caused by the spatial changes in the diffusion 
of pests and diseases could concern several aspects: economy, ecology, 
and public health impacts (Andersen et al., 2004). In pest risk assessment 
studies, where the main goal is the evaluation of the potential entry and 
establishment of a fungal pathogen in a new environment, the crucial 
aspect that has to be explored is if the weather conditions are conducive 
for the fulfillment of the infection process, since it is the first phase of the 
establishment of an epidemic (Magarey et al., 2005). For this reason, the 
formalization of the infection process plays a key role in disease forecasting 
systems (Madden et al., 1988), via the inclusion of the main driving 
variables for foliar fungal plant pathogens into the infection sub-
component, which are (i) air temperature and (ii) the duration of surface 
leaf wetness or high humidity periods. Many reviews focused on the 
possible effects of biotic stresses on crops in the future (e.g., Goudriaan 
and Zadocks, 1995; Garrett et al., 2006; Ghini et al., 2008) indicate that 
climate change could deeply modify the known patterns of plant diseases 
by means of altered spread of some species and introduction of new 
pathogens and vectors, leading to modified dynamics of current plant 
disease epidemics and shifts in their geographical distribution. In particular, 
most Authors agree with the fact that changes in temperature 
conduciveness and moisture availability are two of the main factors that 
could alter disease infection and severity not only in the short-term but 
even for a longer perspective in terms of evolutionary potential (Coakley et 
al., 1999; Garrett et al., 2006). In this context, process based models are 
the only valid tools able to explore conditions not experienced yet, as the 
ones driven by climate change, such as the estimation of crop-diseases 
interactions and expansion in new areas. In fact these biophysical 
processes show non-linear response to boundary conditions, hence results 
can be obtained only via  the use of simulation models.  

Nowadays, one of the crucial issues in plant disease modelling is that 
either agronomists or researchers in plant pathology ask for the 
development of generic disease forecasting models, within a reusable and 
compatible modelling framework suitable for simulating different plant 
diseases, as underlined by Magarey and Sutton (2007). The most important 
problem related to the development of such models is that they are 
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created from either laboratory or field observations of resulting disease 
intensity at multiple combinations of temperature and leaf wetness. 
However, for many pathogens, especially those from overseas, such data 
sets may not exist. The main goal of sensitivity analysis (SA) is to determine 
how different sources of variations in parameters values affect the models 
outputs (Cariboni et al., 2007;  Dresch et al., 2010), thus allowing users and 
developers to understand the degree of dependency of the model on the 
information given as input (Radiarta and Saitoh, 2009). One of the common 
outcome of SA studies is the determination of the parameters that have to 
be accurately measured, estimated or optimized, since they resulted to be 
the most relevant in affecting model outputs (e.g., Blower and 
Dowlatabady, 1994; Saltelli et al., 2005). The aim of this paper is an 
investigation about the suitability of a process-based generic fungal 
infection model to be effectively used in pest risk assessment studies. This 
evaluation was carried out via a sensitivity analysis exercise, aiming at 
evaluating the model response to (i) environmental input heterogeneity 
and (ii) under different parameterizations.  

5.3. Materials and methods 

5.3.1. The potential infection model 

The generic potential infection model developed by Magarey et al. 
(2005) was used in the study. It takes into account both the impact of air 
temperature and leaf wetness duration by means of two diverse functions. 
It implements the hourly air temperature response function developed by 
Yan and Hunt (1999): 

 

,inf min,inf max,inf ,inf( )/( )

max,inf min,inf

max,inf ,inf ,inf min,inf

( )
opt optT T T T

opt opt

T T T T
f t

T T T T

− −
  − −

=     − −                

[1] 

where f(t) (0-1; dimensionless) is the temperature response function; T 
(°C) is the mean air temperature during the wetness period; Tmin,inf, Tmax,inf 
and Topt,inf (°C) are the minimal, maximal and optimal temperatures for 
infection, respectively. The leaf wetness impact on infection development 
is taken into account by the following equations: 
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where W(t) (0-1; dimensionless) is the wetness response function, 
WDmin (hours) is the minimal leaf wetness duration for infection,  f(t) (0-1; 
dimensionless) is the temperature response function (Eq. 1) and WDmax 
(hours) is the optimal value of leaf wetness duration requirement. The 
impact of a dry period on infection fulfillment is determined by the critical 
dry period interruption value (D50), as indicated in the following equations: 







 <+
=

elsewhereWorW

DDWW

Wsum

21

21 50
             [3] 

where Wsum is the sum of the surface wetting and W1 and W2 are wet 
periods separated by a dry period (D; hours). The implementation of the 
model as used in this study is fully described in Bregaglio et al. (2011). 

5.3.2. Pathogens tested 

The model was parameterized for four pathogens characterized by 
marked heterogeneous temperature and moisture requirements, in order 
to analyse the model ability to differentiate its response to diverse 
parameters values. 

 The selected fungi were: (i) Puccinia striiformis, causal agent of stripe 
rust on wheat, that is a temperate pathogen characterized by low moisture 
requirements but very sensitive to dry periods; (ii) Venturia inaequalis, 
causal agent of apple scab, that is a temperate pathogen too, but 
insensitive to dry periods; (iii) Bipolaris oryzae, causal agent of brown spot 
on rice, that is a tropical pathogen characterized by medium requirements 
in terms of leaf wetness duration and moderate sensitivity to a dry-
interruption event and (iv) Cercospora carotae, causal agent of leaf blight 
of carrot, which is a tropical pathogen showing a great wet hours 
requirement but insensitive to dry period. The statistical settings of the 
parameters distributions of the parameters for the SA study for the four 
pathogens are reported in Table 1, together with the reference sources. 
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Table 1. Parameters of the generic potential infection model, statistical settings and 

sources of information for the pathogens analyzed in the study. For discrete distribution, 

the values tested are reported 

Pathogen Tmin,inf  (°C) Tmax,inf  (°C) Topt,inf (°C) 

WDmin  

(hours) 

WDmax  

(hours) 

D50 

 (hours) Source 

Puccinia 

recondita 
1.8 

(1.23) 
20.5  
(2.08) 

9.17  
(1.61) 

3, 4 15, 16 1, 2 1, 2, 3, 4, 
 5, 6 

Venturia 

inaequalis 

1.75  
(0.5) 

32  
(4.62) 

22.5  
(3.53) 

4, 5 40, 41 24, 25 1, 7, 8, 9,  
10, 11, 
12 

Bipolaris  

oryzae 

8  
(0.4) 

35  
(1.75) 

28.12  
(2.39) 

8, 9 24, 25 4, 5 1, 13, 14, 
 15, 16 

Cercospora 

carotae 

11  
(0.55) 

32  
(1.6) 

24  
(1.2) 

24,25 95, 96 12, 13 1, 17, 18,  
19 

1= Magarey et al., 2005; 2= Dennis, 1987; 3= Hogg et al., 1969; 4= Lemaire et al., 2002; 5= de 
Vallavieille-Pope et al, 2002; 6= Park, 2007; 7= Stensvand et al., 1997; 8= Schwabe, 1980 ; 9= 
Spotts and Cervantes, 1991; 10= Mills and Laplante, 1945; 11= Becker and Burr, 1994; 12= 
Villalta et al., 2000; 13= Percich et al., 1997; 14= Ou, 1985; 15= Ibiam and Arinze, 2007;16= 
Nyvall and Percich, 1999; 17= Carisse and Kushalappa, 1990; 18= Hooker, 1944; 19= 
Strandberg, 1968 

 

5.3.3. Methodology for the sensitivity analysis  

The SA method chosen for testing the model was the variance-based 
global sensitivity analysis method of Sobol’ (Sobol’, 1993) as improved by 
Saltelli (2002), considered a reference even if the most expensive in 
computational terms. It decomposes the output variance into terms of 
increasing dimension (i.e., partial variances), representing the contribution 
of single parameters, and of pair, triplets, … of parameters to the overall 
uncertainty of the model output. This method adopts Monte Carlo 
sampling in order to simultaneously explore the parameters hyperspace. It 
provides statistical estimators of partial variances in order to quantify the 
relevance of parameters and of groups of parameters via multi-dimensional 
integrals. For each parameter, a total sensitivity index (St) quantifying the 
overall effect of a parameter (i.e., including all the possible interactions) is 
also available. The output considered in this study was the number of 
successful potential infection events in an year. 
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5.3.4. Environmental conditions tested  

The choice of the sites in which simulations were performed was driven 
by the need of exploring very heterogeneous meteorological conditions, 
ranging from very warm to very cold environments (Table 2).  

 
Table 2. Sites and years used for the sensitivity analyses 

Country Site Years Latitude Longitude 

Albania Shkodra 1996-2000 42° 04’ N 19° 31’ E 

England Stornoway 1996-2000 58° 12’ N 06° 23’ W 

France Toulose 1996-2000 43° 36’ N 01° 26’ E 

Israel Tel Aviv 1996-2000 32° 03’ N 34° 46’ E 

Italy Reggio Emilia 1996-2000 44° 42’ N 10° 31’ E 

Germany Karlsruhe 1996-2000 49° 01’ N 08° 24’ E 

Russia Vladivostok 1996-2000 43° 07’ N 131° 55’ E 

Spain Zaragoza 1996-2000 41° 39’ N 00° 52’ W 

 
Daily maximum and minimum air temperature and rain were extracted 

from the European Climate Assessment & Dataset (ECA&D). For the 
estimation of hourly air temperature, the Campbell approach (1985) was 
adopted, whereas for the estimation of hourly air relative humidity the 
method proposed by Linacre (1992) was chosen since it gained the best 
results in previous studies (Bregaglio et al., 2010). Leaf wetness was 
estimated with the model developed by Kim et al (2002), the one providing 
the best performances according to Bregaglio et al. (2011). 

5.4. Results and discussion 

The average values of St by considering all the sites and the years tested 
for the four pathogens are graphically presented as box-plots in Figure 1, in 
order to give a summary of the overall impact of the diverse meteorological 
conditions on the relevance of the parameters, whereas the average values 
of St divided per location are presented in Table 3.  
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Figure 1. Box-plots of Sobol’ Total Order Indices for the four parameterizations of the 

potential infection model tested resulting from all the locations and years in which 

sensitivity analyses were carried out 
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Table 3. Average Sobol’ total order effects obtained for the four pathogens tested in 

the years from 1996 to 2000 divided per site. Bold indicates the highest value within 

location 

Pathogen Parameter 

Site 

Karlsruhe Reggio E. Shkodra 

Storno

way Tel Aviv Tolosa 

Vladivo

stok 

Zara 

goza 

Puccinia Tmax,inf 0.174 0.479 0.562 0.000 0.977 0.600 0.831 0.530 

recondita Tmin,inf 0.484 0.337 0.178 0.887 0.000 0.164 0.118 0.157 

 Topt,inf 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmin 0.177 0.186 0.262 0.126 0.059 0.237 0.061 0.311 

  D50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Venturia Tmax,inf 0.817 0.820 0.831 0.829 0.883 0.832 0.829 0.831 

inaequalis Tmin,inf 0.018 0.014 0.006 0.006 0.000 0.004 0.006 0.004 

 Topt,inf 0.619 0.614 0.612 0.625 0.394 0.622 0.621 0.620 

 WDmax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmin 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  D50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bipolaris Tmax,inf 0.211 0.190 0.185 0.260 0.380 0.258 0.428 0.135 

oryzae Tmin,inf 0.273 0.105 0.143 0.721 0.008 0.240 0.161 0.096 

 Topt,inf 0.211 0.190 0.185 0.260 0.380 0.258 0.428 0.135 

 WDmax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmin 0.513 0.688 0.658 0.008 0.595 0.486 0.406 0.753 

  D50 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 

Cercospora Tmax,inf 0.000 0.000 0.000 0.000 0.182 0.000 0.000 0.000 

carotae Tmin,inf 1.017 0.974 1.026 1.071 0.826 1.018 1.049 1.028 

 Topt,inf 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 WDmin 0.412 0.111 0.066 0.000 0.046 0.053 0.011 0.072 

 D50 0.003 0.001 0.000 0.000 0.002 0.002 0.001 0.000 

 
The model sensitivity resulted deeply affected by the diverse 

parameterizations. For Puccinia recondita (low moisture and temperature 
requests), the most relevant parameters resulted the minimum and 
maximum cardinal temperatures (Tmin,inf  and Tmax,inf), both characterized by 
a high variability across the conditions tested, whereas variations in 
optimum temperature for infection (Topt,inf) did not affect the number of 
potential infection events. The importance of Tmin,inf  and Tmax,inf  strongly 
varied across the sites, ranging from 0 in Stornoway to 0.977 in Tel Aviv for 
the former and from 0 in Tel Aviv to 0.887 in Stornoway for the latter. This 
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emphasizes the ability of the model to respond to environments 
characterized by diverse temperature regimes by shifting the relevance of 
the parameters according to warmer and colder conditions. The third most 
important parameter resulted WDmin but with a low variability of St. The 
most relevant parameter for Venturia inaequalis (low temperature 
requirements, insensitive to dry periods) resulted Tmax,inf  with a very low 
variability across the locations tested, followed by Topt,inf. This could be 
partially explained by (i) the very large range of air temperature in which 
the pathogen could develop, thus being air temperature limiting only in 
very warm conditions and (ii) by the statistical settings derived from 
literature, in specific by the high standard deviation for both parameters 
(4.62 for Tmax,inf  and 3.53 for Topt,inf). As for Puccinia recondita, variations in 
the parameters related to leaf wetness did not affect the model outputs. 
For Bipolaris oryzae parameterization (high temperature and moderate 
moisture requests), WDmin resulted the most important parameter, 
showing a high variability, from 0.008 in Stornoway, characterised by a very 
humid environment, to 0.753 in Zaragoza, in which weather conditions are 
decidedly more arid. For this pathogen, also the three cardinal 
temperatures resulted important in explaining the variability of the 
potential infection events simulated. For Cercospora carotae (high 
temperature and moisture requirements) the most important parameter 
resulted to be Tmin,inf  with moderate variability, whereas the 2nd was WDmin 
with the lowest St value in Stornoway (0), and the highest value in 
Karlsruhe (0.412). Throughout the parameterization tested, WDmax 

parameter resulted always not relevant, whereas D50 showed to have a 
slight importance in explaining output variability only for Bipolaris oryzae 
and Cercospora carotae. A further analysis of the results is provided in 
Figure 2, in which the St normalized values of the parameter with the 
highest relevance for each pathogen are plotted in contour maps against 
the yearly average air temperature (Tavg,year) and air relative humidity 
(RHavg,year). This graphical representation allowed to identify the pattern of 
variation of the most relevant parameters across the meteorological 
conditions tested.  
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Figure 2. Contour maps showing the pattern of variability of the parameters with the 

highest value of the normalized Sobol’ Total Order Index for the four pathogen tested 

(a= Tmax,inf for Puccinia recondita; b=  Tmax,inf for Venturia inaequalis; c= WDmin for 

Bipolaris oryzae; d= Tmin,inf for Cercospora carotae) as a function of yearly average air 

relative humidity (y-axis) and air temperature (x-axis) 

 
For Puccinia recondita (Figure 2a), the St values of Tmax,inf reach the 

maximum with very low and very high Tavg,year, whereas variations in 
RHavg,year appeared to be not relevant. This behaviour could be explained by 
the fact that extreme temperature regimes emphasize the importance of 
this parameter. For Venturia inaequalis (Figure 2b) the pattern is quite the 
same as for Puccinia recondita but the increase in Tmax,inf  is either uniform 
as Tavg,year increases and the normalized value of St are always higher 
(bottom scale value is 0.89). The highest values of St are reached with 
RHavg,year   around 80%. For Bipolaris oryzae (Figure 2c), there is a clear 
pattern in WDmin indicating an increase in St values for decreasing RHavg,year. 
This could be explained by the limiting moisture conditions for the 
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development of the infection process of the pathogen. The relevance of 
this parameter seemed also to be affected by the increase in Tavg,year. For 
Cercospora carotae (Figure 2d), the relevance of Tmin,inf  resulted affected 
both by RHavg,year  and by Tavg,year, thus enhancing its relevance whilst the 
former increases and the latter decreases. 

5.5. Conclusions 

The need for developing effective generic biophysical process-based 
models that could be applied both in actual and future climate scenarios 
impact assessment is imperative. The SA carried out in this study highlights 
the ability of the potential infection model developed by Magarey et al. 
(2005) either (i) to deeply differentiate its sensitivity according to diverse 
parameterizations or (ii) to respond to the variability of the input data 
(hourly air temperature and leaf wetness) thus capturing the peculiarity of 
diverse meteorological conditions. The indications provided by this study 
are really encouraging and strengthen the suitability of this model to be 
used in pest risk assessment studies under both current conditions and 
climate change scenarios. 
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6.1. Abstract 

The implementation of plant epidemic models into crop yield 
forecasting systems is becoming a crucial issue either for obtaining more 
realistic forecasts about actual production levels or for assessing the future 
impact of plant diseases in changing climate scenarios. In order to manage 
the increasing complexity of the biophysical processes simulated, e.g., the 
impact of plant diseases on leaf photosynthetic area and the interactions 
between pathogens and plant physiological processes, there is the need of 
developing modelling tools with the state of the art of software 
engineering technology. This paper presents four independent software 
libraries aimed at simulating a generic polycyclic fungal epidemic that can 
be easily extended by third parties and reusable under diverse modelling 
platforms. These components provide options for simulating (i) the initial 
conditions for the development of an epidemic, (ii) the progress of the 
disease over time as driven by meteorological variables taking into account 
the effect of host resistance, (iii) the yield losses due to the interactions 
between plant and pathogen population via coupling with a crop growth 
model and (iv) the impact of agro management practices on disease 
progress. The core component of this framework was analyzed via an 
extensive spatially distributed sensitivity analysis exercise with two 
pathosystems in order to gain an in-depth knowledge about model 
functioning and to obtain information about possible reduction or 
simplifications. The results of such analysis indicate that the model is on 
one hand sensitive to diverse parameters according to the pathogen 
simulated while on the other there is coherence about the relevance of 
parameters belonging to the same process (e.g., spore dispersal and catch) 
in the two pathosystem tested.  

 

Keywords: Climate change, crop yield forecasting, scenario analysis, 
plant epidemic 
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6.2. Introduction 

The development of generic disease forecasting models, either suitable 
for simulating epidemics caused by different pathogens or reusable within 
diverse software platforms is becoming a crucial issue agronomists or 
researchers in plant pathology are facing with (Magarey and Sutton, 2007). 
This is proved by the flourishing in the last years of frameworks such as the 
Internet System for the Weather-Based Mapping of Plant Pathogens 
NAPPFAST (Magarey et al., 2007), implementing the potential infection 
model for foliar fungal pathogens developed by Magarey et al. (2005), and 
tools as the generic biological model for the control of foliar plant diseases 
developed by Jeger et al. (2009), the population dynamics of plant-parasite 
interactions model developed by Gubbins et al. (2000) and the adaptation 
of the Kermack and McKendrick (1927) human epidemic model to spatial 
spread of plant disease made by Segarra et al. (2001). In order to manage 
the extreme complexity of the biophysical processes simulated, ranging 
from the relationships between meteorological variables and epidemic 
development to the physiological interactions between plants and 
pathogens, this modelling tendency should be supported by the state-of-
the-art of software engineering technology. As a consequence, the 
adoption of component-oriented programming is becoming not only an 
option, but even the unavoidable prerequisite for the development of plant 
disease models and more in general of agricultural and ecological models 
(Reynolds and Acock, 1997; Papajorgji et al., 2004; Donatelli et al., 2010b). 
The advantages deriving by this choice are unquestionable, and can be 
summarized by features as ease of maintenance of the code, granularity of 
the approaches implemented, reusability of the tools and cross platform 
capabilities (Meyer, 1997). In particular, model reusability is often a 
challenging task because of different architectural structures and binaries 
incompatibilities, thus often forcing modellers to the conversion of the 
code from one programming language to another (Liu et al., 2002). 

Mathematical modelling of crop diseases moves its first steps with the 
work of Van der Plank (1960; 1963), which developed the first models of 
the temporal development of epidemics and have since formed the basis 
for plant disease modelling (Campbell and Madden, 1990; McCartney, 
1997). Further developments of this branch of pathology led to the 
development of models to estimate disease severity and yield losses 
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affected by different factors such as weather, varietal resistance, and crop 
management practices (Van Maanen and Xu, 2003, Luo et al., 1997). In the 
last decades, many books and reviews focused on the broad range of 
approaches and models used for simulating plant diseases and crop yield 
losses were written (e.g., Nutter, 1997, Savary et al., 2006; Madden et al., 
2007; Sparks et al., 2008; Contreras-Medina et al., 2009). Common traits of 
such models are that (i) they were developed mostly for fungal pathogens 
and (ii) are often aimed at on-farm management (e.g., Spotts and 
Cervantes, 1991; Broome et al., 1995; Rossi et al., 1997).  Cropping systems 
simulation models are operationally used since the 1990s to forecast crop 
yields at different scales, through the estimation of the effects of weather 
conditions on crops’ growth and development (Thornton et al., 1997; 
Challinor, 2004; De Wit, 2008). Most of the existing crop yield forecasting 
systems (CYFS) (e.g., the Crop Growth Monitoring Systems of the European 
Commission; the Famine Early Warning System of the United States Agency 
for International Development, www.fews.net; the General Large-Area 
Model for annual crops, Challinor et al., 2004) have been developed by 
coupling crop models with databases containing weather and soil data, 
without considering the impact of plant diseases on the year-to-year yield 
fluctuations, despite of their key role in determining actual production 
levels for many crops and in many areas. This is mainly due to the fact that 
even if weather-based forecasting systems have been developed for a 
number of plant diseases (Campbell and Madden, 1990), the coupling of 
disease forecasting models to crop growth models is not yet operational, 
although several approaches are available in literature (e.g., Boote et al., 
1983; Bastiaans, 1991; Nemecek et al., 1996; Luo et al., 1997). For these 
reasons, it is crucial to deal with the implementation of models for the 
simulation of the dynamics of plant diseases and of the plant-pathogen 
interactions into CYFS, aiming at quantifying biotic yield losses.  

Even having available a modelling solution coupling crop and disease 
models, model evaluation against reference data remains an 
insurmountable constraint when considering model use over large areas. 
Other techniques need to be applied to build confidence in model use. The 
main goal of sensitivity analysis (SA) is to determine how different sources 
of variations in parameters values affect the models outputs (Cariboni et 
al., 2007;  Dresch et al., 2010), thus allowing users and developers to 
understand the degree of dependency of the model on the information 
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given as input (Radiarta and Saitoh, 2009). Another emerging application of 
SA techniques is their introduction into the iterative process of model 
building in order to redefine step-by-step the model structure via the 
evaluation of the opportunity of reducing and simplifying the algorithms 
implemented, thus preventing the risk of over-parameterization (Tarantola 
and Saltelli, 2003; Refsgaard et al., 2005; Jakeman et al., 2006). Due to its 
crucial role, many Authors affirm that excluding SA assessment from model 
building procedure is therefore directly intellectually dishonest (Rabitz, 
1989; Ratto et al., 2001; Saltelli, 2002a; Haydon and Deletic, 2007). These 
issues were formalized in the position paper by Jakeman (2006) which 
defined the steps to be followed while developing an environmental 
model, including SA assessments conceptually before the validation of the 
model against real data.  

The objectives of this paper are therefore (i) to present four software 
components implementing a generic framework for large area simulation 
of plant fungal airborne disease epidemics and for the estimation of their 
impacts on plant growth and yield, via the consideration of the most 
important aspects related to the plant pathogens interaction; (ii) a spatially 
distributed, variance based SA exercise for evaluating model behaviour and 
supporting its development, made on a modelling solution in which two 
crop models are coupled to the software component for epidemic 
development simulation. 

6.3. Software architecture 

The Diseases components are four software libraries providing a generic 
frame to simulate disease development. They are: (i) DiseaseProgress, (ii) 
InoculumPressure, (iii) ImpactsOnPlants, and (iv) AgromanagementImpact. 
The structure of the components reflects the guidelines drawn by Donatelli 
and Rizzoli (2008). A component can be defined as an independent 
software unit making available specific functionalities and providing access 
to its services via a defined interface (Donatelli et al., 2010b). The 
components are stateless, they are released with a consistent 
documentation, and can be extended by third parties without requiring re-
compilation. The Unified Modelling Language (UML) diagram of the 
Diseases components is presented in Figure 1.  
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Figure 1. Unified Modelling Language component diagram of the JRC.MARS.Diseases 

framework 

 
The components architecture adopts the Strategy design pattern in 

order to allow the plugging-in of alternative model formulations to 
generate the same outputs, since various models can be used for the same 
purpose. Great attention was paid in respecting the granularity of the 
modelling approaches implemented, thus aiming at enhancing their 
reusability for specific applications. The Composite Design Pattern is also 
used, in which simple strategies are composed into higher-level strategies 
to represent part-whole hierarchies, thus letting clients treat individual 
objects and compositions of objects uniformly (Gamma et al., 1995) 
because of the same interface exposed. Context strategies are 
implemented in the component, which contain logic to select among the 
simple or composite strategies associated. The inputs, outputs and the 
parameters are implemented by means of data structures called Domain 
Classes (Del Furia et al., 1995). Each attribute of such classes has, beside its 
value, a set of attributes such as minimum, maximum and default value, 
unit, description, and refers to a publicly available ontology via the 
attribute URL. The API (Application Programming Interface) of the 
components implements the pattern Create-Set-Call (Cwalina and Abrams, 
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2006), where firstly objects are created via a default constructor, then 
some attributes are set, and finally the model is called. The interface used 
for models is the same for all the strategies belonging to a component, 
implementing the Façade pattern to hide the complexity of each modelling 
solution preserving the articulated structure of its building components. 
This leads to have a unique signature for internal and extended models. 
The Design-by-contract approach implemented in the components 
establishes a clear contract between client and server, also allowing the 
development of a better targeted library of unit tests, and to set the 
domain of applicability of the models, contributing to the transparency of 
the modelling solutions. The technology used for the development of the 
components is based on the object oriented programming (OOP) paradigm 
via the MS .NET 3.5 framework. 

6.4. Models description 

The inputs (i.e., variables and parameters), the outputs, and the 
algorithms implemented in the four components with their relative 
reference sources are presented in the Appendices section to this paper. A 
complete documentation of the algorithms implemented in the 
components and of the code are available at http://agsys.cra-
cin.it/tools/diseases/help/ and http://agsys.cra-
cin.it/tools/diseases/codedoc/, respectively. The flow diagram of the 
Diseases components is shown in Figure 2, in order to underline their 
usability as stand alone in specific applications or linked together in a 
unique modelling solution. 
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Figure 2. Flow diagram of the JRC.MARS.Diseases modelling framework 

6.4.1. Disease progress 

The DiseaseProgress component implements a deterministic 
compartmental susceptible-infected-removed (SIR) model for host–
pathogen dynamics simulating the response of a generic fungal pathogen 
to hourly meteorological variables, considering the following components 
of the epidemic process: infection, incubation, latency, infectiousness, 
sporulation, and spore dispersal. This component is the evolution of the 
first realization (Salinari et al., 2008; Salinari et al., 2009) within the 
SEAMLESS projet. Each of them is simulated as function of meteorological 
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variables and biological significant parameters, specific for each host-
pathogen couple. Once the fungal spores have been deposited on the host 
tissue, which has not been affected yet and which is vulnerable (HTvul), the 
model considers that infection occurs only if meteorological conditions are 
conducive. Infection efficiency mainly depends on temperature and on the 
availability of water in terms of relative humidity or leaf wetness, according 
to the pathogen considered. The component implements the potential 
infection model developed by Magarey et al. (2005) for both the moisture 
sources. Once the infection process has successfully taken place, a new 
cohort of host tissue affected (HTaff) is created by the model. Each cohort of 
HTaff is classified in different states on the basis of the following disease 
stages: incubation, latency, infectiousness, and lesion senescence. The 
corresponding states of the host tissue will be, therefore: i) healthy (HTheal), 
with no infections ii) latent (HTlat), with latent infections not yet visible, iii) 
visible (HTvis), with visible but no sporulating lesions, iv) infectious (HTinf), 
with sporulating lesions, v) old (HTold), with old and no longer sporulating 
lesions. States from ii) to v) represent the total proportion of HTaff. More in 
details, HTheal becomes HTlat when infection occurs. Infected HTlat evolves 
to HTvis once the incubation period is over. The subsequent two states 
(HTinf and HTold) occur when the latent and infectious periods are finished, 
respectively. Length of incubation, latent, and infectious periods are 
estimated as a function of hourly air temperature via the approach 
proposed by Blaise and Gessler (1992), in which the hourly response of 
each period varies according to the function developed by Yan and Hunt 
(1999). The portions of HTheal which become infected and therefore evolve 
to HTlat are estimated based on portion of HTvul and infection rate. The 
infection rate relative to each cohort depends on (i) sporulation, which is 
estimated as a function of temperature and/or vapor pressure deficit 
according to Analytis (1977) or air relative humidity and (ii) dispersal of 
spores transported and deposited on HTvul, simulated as a function of 
either rainfall or wind speed, as described by Aylor (1982), Waggoner 
(1973), and Waggoner and Horsfall (1969). Once the spores are deposited 
on the surface of HTvul, new infections can take place. For taking into 
account the impact of host resistance on the epidemic development, two 
approaches are implemented in the component, developed by White et al. 
(2004) and Savary et al. (2009). The former relates spore mortality to 
resistance of the specific cultivar, which is organized into discrete 
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categories, from highly susceptible to highly resistant. The latter 
implements a partial resistance simulation, thus including the opportunity 
of linking cultivar resistance to QTLs and genes, as suggested by Ballini et 
al. (2008), by considering relative resistance to latency period, infectious 
period, infection efficiency and spores production. 

6.4.2. Inoculum pressure 

As reported by Van Maanen and Xu (2003), without initial inoculum 
there is no epidemic. Its quantification is therefore crucial for the design of 
the forecasting scheme, since its source, density and type deeply influence 
the epidemic development. The InoculumPressure component implements 
an approach theoretically similar to the one developed by Audsley et al. 
(2005), in which inoculum is quantified via a combined stochastic and 
deterministic approach.  

Being the components aimed at scenario analysis, the determination of 
initial inoculum quantity is obtained by considering the suitability of a site 
to a specific pathogen, obtained by multiple runs of the potential infection 
model developed by Magarey et al. (2005), e.g., on diverse grid cells of a 
database on an historical series. This allows deriving the parameters of the 
distribution of initial inoculum population in a specific site. Then, initial 
inoculum is random sampled from the inoculum distribution population. 
The inoculum distribution is characterized by a mean obtained from the 
multiplication of inoculum pressure and rotation suitability and a variance 
derived from inoculum variance level. Finally, the cultivar susceptibility to 
primary infection is considered in computing the daily value of inoculum 
produced by the pathogen in function of the crop phenology, as indicated 
by Magarey and Sutton (2007). In this case, primary infection susceptibility 
(ranging 0-1; with 1 total susceptibility) could be expressed either as a 
proportion in function of development stage code, or activated in 
correspondence to specific phenological stages, according to the simulated 
pathosystem. As for the other processes, new approaches can be easily 
added to the component for determining primary infection host 
susceptibility. 

6.4.3. Impacts on plants 

Many authors claim that assessing yield losses is not only an aspect but 
even the raison d’etre of plant pathology (e.g., Nyvall, 1983; Fargette et al., 
1988; Savary and Cooke, 2006). There are many available approaches for 
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modelling crop losses, as reviewed by James and Teng (1979), Campbell 
and Madden (1990) and Madden and Nutter (1995), e.g., (i) single and 
multiple point models, in which disease intensity values at different time, 
together with other host characteristics are used in order to assess crop 
losses, (ii) integral models in which yield loss is related to the area under 
disease progress curve for accounting the time varying effect of disease 
severity on yield during the epidemic development; (iii) process based 
models, trying to reproduce the impact of a pathogen on a specific 
physiological process, or (iv) yield loss models that dynamically simulate 
healthy area duration and absorption. The component ImpactsOnPlants 
implements several approaches aiming at providing a broad range of 
options according to the user aims and specific applications. Being the 
component primarily aimed at scenario analysis via the linking with a 
dynamic crop growth model, it implements an approach originally 
developed by Waggoner and Berger (1987) for reducing leaf area index 
value within the same time step in function of HTdis. This approach is 
suitable either for radiation use efficiency based crop growth models (e.g., 
CERES, Jones et al., 1984; CropSyst, Stockle et al., 2003; WARM, 
Confalonieri et al., 2006; STICS, Brisson et al., 2003) or for CO2 assimilation 

based ones (e.g., SUCROS, Spitters et al., 1989; WOFOST, Van Keulen and 
Wolf, 1982; ORYZA, Kropff et al., 1994). In addition, functions for simulating 
the reduction of radiation use efficiency and gross assimilation and for the 
enhancing of leaves senescence and maintenance respiration in function of 
HTdis are implemented into the component, thus allowing the user to 
choose among different options.  

6.4.4. Agro-management impacts on pathogen population 

The goal of many agricultural modelling studies is to quantify the impact 
of agricultural management on production and system externalities. The 
impact of sprays application on the epidemic development and of the 
fungicide decay over time is therefore considered within the 
AgromanagementImpact component. This component has a dependency 
on the CRA.AgroManagement component (Donatelli et al., 2006c) that 
formalizes the decision making process via models called rules, and it 
formalizes the drivers of the implementation of the impact on the 
biophysical system via set of parameters encapsulated in data-types called 
impacts. A set of rules can be defined in function of the states of the 
system as outputs of the DiseaseProgress or ImpactsOnPlants components, 
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e.g., the number of successful infection events in a day or the maximal 
percentage of yield loss accepted by the farmer. Following this logic, the 
impact of the commonly adopted agro-management practices (e.g., timing 
and number of treatments) can be compared to management scenarios 
driven by the models (rule-impact couples) implemented in the 
components. A treatment event is characterized by one or more fungicide, 
thus leading a chemical mixture, in which each active principle is 
characterized by an optimal dose, a protectant and an eradicant effect. The 
former reduces germination of spores landing on a leaf and thus reducing 
infection frequency but is ineffective against established infections 
(Manners 1993), while the latter slows down the rate of development of an 
infection, so that the development of symptoms is reduced or prevented 
(Bailey, 2000). For considering the decay of treatment efficiency, the 
component implements a generic approach originally developed for 
chlorothalonil on tomato foliage by Patterson and Nokes (2000),  in which 
daily air temperature and rainfall causes a decline of the treatment 
efficiency via a degradation of the active principle according to its 
sensitiveness to those meteorological variables, as indicated by Bruhn and 
Fry (1982). 

6.5. Sensitivity analysis 

6.5.1. Study areas and weather data 

For Europe, the standard 50 km × 50 km grid adopted by the European 
Commission for the crop monitoring and yield forecasting activities was 
used (Micale and Genovese, 2004). Wheat leaf brown rust (Puccinia 

recondita) simulations were run in the cells belonging to the wheat crop 
mask, according to the sowing dates stored in the MARS database 
(European Commission, Joint Research Centre; Micale and Genovese, 
2004). For each cell, maximum and minimum air daily temperature, 
maximum and minimum air relative humidity, global solar radiation, and 
average wind speed were directly extracted from the MARS database. 
Hourly air temperature, hourly wind speed, and hourly air relative humidity 
were estimated according to Campbell (1985), Mitchell et al. (2000) and 
Bregaglio et al. (2010), respectively, with the latter based on Linacre 
(1992), Allen et al (1998) and ASAE (1998). Hourly leaf wetness was 
estimated from air temperature, dew point temperature, wind speed and 
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relative humidity hourly values, using the approach proposed by Kim et al. 
(2002). 

Rice blast (Pyricularia oryzae) simulations were performed in China, by 
adopting the database developed for the prototype system for rice 
monitoring and yield forecasts developed by the European Commission - 
Joint Research Centre (Confalonieri et al., 2008). In this case, daily 
maximum and minimum air temperature, global solar radiation and 
average wind speed were derived from the ECMWF (European Centre for 
Medium-Range Weather Forecast; http://www.ecmwf.int/) database. Data 
resolution is one degree latitude × one degree longitude. The archive is 
created using the ERA 40 data set. Four agroclimatic zones were identified 
according to the number of rice cycles in the same year, to the crop cycle 
length, and to the sowing period: central (mainly two cycles), south-eastern 
(late sowings), north-eastern and north-western (early sowings). Rice 
cropped cells were identified through the analysis of satellite images. For 
both China and Europe, since crop growth was simulated under potential 
conditions (without water and nutrients limitations), soil properties were 
not accounted for, and the elementary simulation unit was considered to 
coincide with the grid cell. 

6.5.2. Sensitivity analysis methods 

The high computational requirements due to the need of running 
spatially distributed SA, to the high number of model parameters, and to 
the hourly time step suggested to carry out the SA in two phases (e.g., 
Confalonieri, 2010). A parsimonious screening method (Morris, 1991) was 
used to identify the parameters with a negligible relevance on model 
output and the variance-based global SA method of Sobol’ (Sobol’, 1993) 
was used to analyze the relevance of the remaining ones. This two-step 
procedure allowed to get reliable results and to limit the computational 
time (the Sobol’ method is considered a reference in SA but is the most 
demanding in terms of model runs). 

The Morris method calculates elementary effects due to each input 
factor (parameters in this study) by calculating an array of incremental 
ratios (∆output/∆parameter) in different points of the parameters hyperspace. 
Average (μ) and standard deviation (σ) of the incremental ratios 
distribution are then calculated, with μ representing the overall influence 
(total effect) of the parameter and σ identifying (when it assumes high 
values) nonlinearities in model response or interactions with other 
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parameters. In this study, the evolution of the Morris method proposed by 
Campolongo et al. (2007) was used, allowing to get the absolute values of μ 
(μ*). 

The method of Sobol’ is based on the partitioning of the total output 
variance into terms of increasing dimension. These terms are called partial 
variances and quantify the role of single parameters (first order effect, no 
interactions among parameters is considered), and of the combined effect 
of pairs, triplets, ... of parameters in explaining the model output variance. 
In this study, we used the evolution of the Sobol’ method deriving from the 
studies of Homma and Saltelli (1996) and Saltelli (2002), which introduced 
the concept of total sensitivity index (quantifying the overall effect of an 
input factor) and reduced the computational cost of the method. 

6.5.3. Simulation of plant-pathogen interaction and sensitivity study 

The DiseaseProgress component, that is the core of the Diseases 
modelling framework was coupled with two crop simulators: WARM 
(Confalonieri et al., 2009b,c) for rice and WOFOST (Van Keulen and Wolf, 
1986) for wheat. WARM is used by the European Commission – Joint 
Research Centre for rice yield forecasts in Europe, China and India, whereas 
WOFOST is used for forecasting the yields of various herbaceous species in 
Europe and Northern Africa. 

WARM simulates daily net photosynthesis by multiplying the absorbed 
photosynthetically active radiation (derived from global solar radiation and 
green leaf area index using the Lambert-Beer law) by the actual radiation 
use efficiency, the latter accounting for thermal limitation, saturation of 
the enzymatic chains, senescence processes, atmospheric CO2 
concentration. Assimilates are daily partitioned to the different plant 
organs by using a set of parabolic and beta functions, and daily increase in 
green leaf area index is derived by multiplying the biomass partitioned to 
leaves by a development-dependant specific leaf area. The partitioning 
pattern can be modified in case of spikelet sterility induced by cold shocks 
during the period between panicle initiation and heading. Leaves 
senescence is daily calculated by subtracting the dead leaf area to the total 
one. A micrometeorological model is used to simulate the floodwater 
effect on the vertical thermal profile, thus allowing WARM to reliably 
reproduce the processes involved with crop growth and development, 
leaves aging, and spikelet sterility. 
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WOFOST implements the photosynthesis approach to crop growth (Van 
Keulen et al., 1982), reproducing with a fine level of detail the processes 
related to gross CO2 assimilation, maintenance and growth respiration, 
biomass partitioning and leaf area dynamics. Canopy is divided in three 
horizontal layers for the whole cycle length. Gross photosynthesis is 
derived on a daily basis with Gaussian integrations on the instantaneous 
CO2 assimilation rates computed at three moments of the day and for 
three canopy layers. Maintenance and growth respirations are estimated 
by considering the different biochemical composition of leaves, stems, 
storage organs and roots. For the former, this implies that the various 
organs have different respiration to weight ratios. For the latter, the model 
reproduces the different energetic requirements for transforming generic 
photosynthates in constituents of the different organs. Processes related to 
growth respiration are associated with the partitioning dynamics, which are 
based on development-dependant coefficients. Leaf area is considered 
growing exponentially as a function of temperature in the post-emergence 
phase, whereas it is calculated from the daily partitioned leaves biomass 
and a development-dependant specific leaf area later on. Leaves death is 
estimated as a function of senescence and self-shading. 

The parameters of the DiseaseProgress component and statistical 
settings used for SA are shown in Tables 1 (rice leaf blast, Pyricularia grisea) 
and 2 (wheat leaf brown rust, Puccinia recondita). 
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Table 2. Pyricularia grisea. Parameters, statistical settings, and source of information 
Parameter Unit Distribution 

a
 Source 

b
 

Max. air temperature for infection (Tmaxinf) °C normal [32.33; 2.42; 0.01] 1, 2, 3, 4, 5, 6 
Min. air temperature for infection (Tmininf) °C normal [13.75; 4.50; 0.01] 2, 4, 5, 6 

Opt. air temperature for infection (Toptinf) °C 
normal [24.95; 2.34; 0.01] 1, 2, 4, 7, 8, 9, 

11 
Min. wetness duration for infection (WDmin) days discrete uniform [4; 9] 1, 5, 6, 12, 13 
Max. wetness duration for infection (WDmax) days discrete uniform [24; 40] 6, 13 
Max. air temperature for incubation (Tmaxinc) °C normal [35.00; 1.75; 0.01  14 
Min. air temperature for incubation (Tmininc) °C normal [7.25; 3.18; 0.01] 3, 14 
Opt. air temperature for incubation (Toptinc) °C normal [26.83; 0.76; 0.01] 3, 13, 14 
Min. incubation duration (MID) days normal [3.75; 1.06; 0.01] 1, 13 
Max. air temperature for latency (Tmaxlat) °C normal [33.00; 1.65;0.01]c 15 
Min. air temperature for latency (Tminlat) °C normal [10.00; 0.50; 0.01]  15 
Opt. air temperature for latency (Toptlat) °C normal [26.75; 0.35; 0.01] 4, 10 
Min. latency duration (MLD) days normal [10.00; 7.78; 0.01]  15 
Max. air temperature for infectiousness (Tmaxness) °C normal [36.00; 1.82; 0.01] 4, 16, 17 
Min. air temperature for infectiousness (Tminness) °C normal [9.25; 2.50; 0.01] 4, 16, 17, 18 

Opt. air temperature for infectiousness (Toptness) °C 
normal [26.36; 1.57; 0.01] 3, 10, 11, 16, 18, 

19 
Max. infectiousness duration (MSD) days normal [32.05;25.63;0.01] 4, 20, 21 
Max. air temperature for sporulation (Tmaxspor) °C normal [36.00; 1.82; 0.01] 4, 16, 17 
Min. air temperature for sporulation (Tminspor) °C normal [9.25; 2.50; 0.01] 4, 16, 17, 18 

Opt. air temperature for sporulation (Toptspor) °C 
normal [26.36; 1.57; 0.01] 3, 10, 11, 16, 18, 

19 
Min. rel. humidity for sporulation (RHminspor) % normal [87.30; 6.61; 0.01] 3, 4, 16 
Rain for 50% detachment (Rain50) mmday1 normal [0.62; 0.03; 0.01] c 4 
Maximum catch rain (Rainmax) mmday1 normal [2.50; 0.12; 0.01] c 23 
Minimum wind for detachment (Wmin) m s-1 normal [1.80; 0.09; 0.01] c 4 
Wind for 50% detachment (W50) m s-1 normal [3.50; 0.17; 0.01] c 22 
Spores at max. wind for detachment (Wmaxspor) % normal [0.80; 0.04; 0.01] c 23 
Maximum wind for detachment (Wmax) m s-1 normal [6.00; 0.30; 0.01] c 23 
Wetness duration D50 (WD50) days discrete uniform [3; 5] 23 

a. Figures in brackets are: mean, standard deviation, truncation for normal distributions;  
minimum and maximum values for discrete uniform distributions. 
b. 1: Choi et al. (1987) 9: Kim et al. (1990) 17: Chinte (1965) 
    2: Sharma and Kapoor (2003) 10: UC IPM Guidelines 18: Kato (1974) 

    3: Biloni (2001) 11: Castejon-Munoz (2008) 
19: Padmakar-Tripathi et al. 
(1998) 

    4: Suzuki (1975) 12:Greer and Webster(2001) 20: Picco and Rodolfi (2002) 
    5: Kim et al. (1988) 13: Wastie (1980) 21: Pinnschmidt et al. (1993) 
    6: Cinara et al. (2008) 14:Mossand Trevathan(1987) 22: Calvero et al. (1996) 
    7: Sang-Won (1994) 15: Ding et al. (2002) 23: Model default 
    8: Huang et al. (1980) 16: Awoderu et al. (1991)  

        c. A single value was available; for the sensitivity analysis, the standard deviation was set to 5% of the mean 
value (Tarantola, personal communication). 
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Table 3. Puccinia recondita. Parameters, statistical settings, and source of information 
Parameter Unit Distribution 

a
 Source 

b
 

Max. air temperature for infection (Tmaxinf) °C normal [28.71; 3.86;0.01] 1, 2, 3, 4, 5, 6, 7 
Min. air temperature for infection (Tmininf) °C normal [2.94; 1.01; 0.01] 1, 2, 3, 4, 5, 7, 8 
Opt. air temperature for infection (Toptinf) °C normal [20.42; 3.68;0.01] 1, 3, 4, 5, 6, 7 
Min. wetness duration for infection (WDmin) days discrete uniform [3; 5] 1, 2, 5, 7 
Max. wetness duration for infection (WDmax) days discrete uniform [14; 16 1, 2 
Max. air temperature for incubation (Tmaxinc) °C normal [33.60; 1.98;0.01] 9, 10 
Min. air temperature for incubation (Tmininc) °C normal [11.40; 4.95;0.01] 2, 3, 9, 11 
Opt. air temperature for incubation (Toptinc) °C normal [23.36; 3.12;0.01] 2, 3, 9, 10, 11 
Min. incubation duration (MID) days normal [7.86; 1.50; 0.01] 2, 3, 9, 11, 12 
Max. air temperature for latency (Tmaxlat) °C normal [33.60; 1.98;0.01] 9, 10 
Min. air temperature for latency (Tminlat) °C normal [11.40; 4.95;0.01] 2, 3, 9, 11 
Opt. air temperature for latency (Toptlat) °C normal [23.36; 3.12;0.01] 2, 3, 9, 10, 11 
Min. latency duration (MLD) days normal [7.86; 1.50; 0.01] 2, 3, 9, 11, 12 
Max. air temperature for infectiousness (Tmaxness) °C normal [33.50; 1.91;0.01] 2, 4, 5, 13 
Min. air temperature for infectiousness (Tminness) °C normal [13.33; 5.77;0.01] 2, 4, 14 
Opt. air temperature for infectiousness (Toptness) °C normal [25.25;0.35; 0.01] 4, 14 
Max. infectiousness duration (MSD) days normal [65.5; 0.70; 0.01] 11, 15 
Max. air temperature for sporulation (Tmaxspor) °C normal [33.5; 1.91; 0.01] 2, 4, 5, 13 
Min. air temperature for sporulation (Tminspor) °C normal [13.33; 5.77;0.01] 2, 4, 14 
Opt. air temperature for sporulation (Toptspor) °C normal [25.25; 0.35;0.01] 4, 14 
Min. rel. humidity for sporulation (RHminspor) % normal [90.00; 4.50;0.01]  16 
Rain for 50% detachment (Rain50) mm day1 normal [3.70; 0.18; 0.01]  17 
Maximum catch rain (Rainmax) mm day1 normal [3.70; 0.18; 0.01]  17 
Minimum wind for detachment (Wmin) m s-1 normal [1.15; 0.21; 0.01] 17, 18 
Wind for 50% detachment (W50) m s-1 normal [5.00; 0.25; 0.01]  20 
Spores at max. wind for detachment (Wmaxspor) % normal [0.80; 0.04; 0.01]  20 
Maximum wind for detachment (Wmax) m s-1 normal [6.00; 0.30; 0.01]  20 
Wetness duration D50 (WD50) days discrete uniform [1; 2] 1, 19 

a.Figures in brackets are: mean, standard deviation, truncation for normal distributions; minimum and  
maximum values for discrete uniform distributions. 
b. 1: Magarey et al. (2005) 9: Eversmayer and Kramer (2000) 17: Sache (2000) 
    2: Wójtowicz (2007) 10: Roelsf et al. (1992) 18: Geagea et al. (1997) 

    3: Clifford and Harris (1981) 11: Tomerlin et al. (1983) 
19: Stuckey and 
Zadocks (1989) 

    4: Singh et al. (2002) 12: Kovalenko et al. (2004) 20: Model default 
    5: NAPPFAST Pest record (2003) 13: Rapilly (1979)  
    6: Wiese and Ravenscroft (1979) 14: Dick and Johnson (1983)  
    7: Vallavieille Pope et al. (1995) 15: Mehta and Zadocks (1970)  
    8: Angus et al. (1981) 16: ADAS (Agricultural Development and Advisory Service) 

        c. A single value was available; for the sensitivity analysis, the standard deviation was set 
to      5% of the mean value (Tarantola, personal communication). 
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The disease impact on crop is addressed by calculating the percentage 
of HTaff, and by estimating (i) the effect on radiation use efficiency for 
WARM and (ii) the effects on maximum CO2 assimilation, maintenance 
respiration, and senescence for WOFOST. 

In this study, only the relevance of the parameters involved with the 
disease progress was analyzed. The outputs considered are the percentage 
of HTaff and the storage organs biomass simulated by both the models at 
physiological maturity. 

6.5.4. Results 

The analysis of μ of Morris values for the two tested pathosystems 
(Figure 3) shows that the DiseaseProgress component is sensitive to 
changes in a relatively small number of parameters.  

In particular, according to the distributions derived from literature 
review, changes in the parameters related to wind and rain dispersion of 
the spores (Rain for 50% detachment, Rain50; Maximum catch rain, 
Rainmax; Minimum wind for detachment, Wmin;  Wind for 50% detachment, 
W50;  Spores at max. wind for detachment, Wmaxspor; Maximum wind for 
detachment, Wmax) have little or no relevance in explaining the variability 
of HTdis. The rankings of the most important parameters in the two case 
studies are instead very different. In fact, the simulation of Pyricularia 

oryzae in China allowed to identify 6 out of 28 parameters with an high 
impact on HTdis. The Sobol’ method was applied on these parameters 
(Tmininf, minimum air temperature for infection; WDmin, minimum wetness 
duration; MLD, minimum duration of latency period, RHminspor, minimum 
air relative humidity for sporulation; Toptspor, optimum air temperature for 
sporulation; MSD, maximum duration of infectiousness period), in order to 
gain an in-depth knowledge about their relevance.  
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Figure 3. Morris μ values for the parameters of the DiseaseProgress component for 

Pyricularia oryzae in China (black line) and for Puccinia recondita in Europe (white line).  
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The main contributors map (Figure 4a) shows that Tmininf is the most 
important parameter in the North and in the Centre of China. Moving to 
the South, MLD becomes the most important one. This is due to the 
warmer temperature regimes of this area, that do not constitute a 
constraint for the infection phase of the epidemic (as in the Northern part 
of China), even if the pathogen is tropical with an high mean of the 
distribution of Tmininf (13.75 °C). In the South of China the progress of the 
simulated disease was more rapid (data not shown) and this is the reason 
why MLD resulted to be the main contributor parameter in this area. In 
fact, a shorter duration of the latent period speeds up the sporulation 
occurrence and thus the comparison of secondary infections and 
consequently of new HTaff. Throughout China, there are some grids in 
which WDmin resulted the main contributor parameter. Since it is related to 
the fulfilling of the infection process (as Tmininf), this strengthen the 
evidence that according to the model, this phase of the epidemic is the 
more relevant for Pyricularia oryzae in Chinese area.  

The analysis of μ of Morris SA assessment for Puccinia recondita in 
Europe indicates that the parameters to which the model is sensitive are 
quite different with respect to the other pathosystem. In fact, even if 
Tmininf and WDmin maintain their relevance (3rd and 4th in terms of 
importance, respectively), the most important parameters in Europe 
resulted the minimum air temperature for incubation (Tmininc) and the 
optimum air temperature for incubation (Toptinc). This is mainly due to the 
fact that the distribution adopted for Tmininc has a mean value strongly 
higher than Tmininf (11.4 versus 2.94) and so the temperature constraint to 
leaf rust development in Europe is mainly related to this phase of the 
epidemic process. As for China, moving from the Northern part to the 
South, according to warmer meteorological conditions, the sensitivity of 
the model changed, and Toptinf becomes the main contributor parameter.  
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a) 

 
b) 

 
Figure 4. Sobol’ Total Order Index. Pyricularia oryzae on rice in China (a) and Puccinia 

recondita (b) on winter wheat in Europe. Main contributors maps showing the 

parameter that explain the largest variability of the output 
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6.6. Conclusion and remarks 

The implementation of epidemic models and biotic yield losses 
assessment tools into CYFS is a real claim for a representation of 
agricultural systems closer to the real world, especially when moving to 
climate scenarios in which the interactions between plants and pathogens 
are not experienced yet, thus leading to an high degree of uncertainty 
about the future impact of plant diseases. The framework-independent 
software architecture of the Diseases components, other than facilitating 
their reusability and extension by third parties according to specific aims 
and applications, provide a robust answer to this issue, because (i) they 
constitute a generic frame capable to simulate diverse fungal airborne 
pathogens by changing parameterization and (ii) they can be easily linked 
to a crop growth model. This study, other than presenting the architecture 
and the algorithms implemented in the components, highlights these two 
features via a SA exercise that allowed to discover that, according to the 
pathogen selected, the model is sensitive to changes in the values of 
diverse parameters, whereas there are parameters belonging to processes 
(spore dispersal and catch) that in the current implementation does not 
prominently affect model output. The introduction of SA techniques for 
supporting model building and development phase constitutes a good 
practice in agro ecological modelling and it is essential for providing an 
exhaustive documentation of model behaviour to the users.  
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6.7. Appendices 

6.7.1. Appendix 1. Abbreviations used in the equations in alphabetic 

order 
Abbreviation Meaning Units 

a, b empirical coefficients - 
ACO2act, ACO2pot actual and potential ACO2 kg ha

-1
 

ACO2coeff parameters quantifying the impact on ACO2 - 
C% fraction of active principle in the fungicide % 
Cmax maximal percentage of spores caught by rain % 
CR spores caught by rain % 
Cw spores caught by wind % 
D fungicide actual dose % 
D50 critical dry period interruption value hours 
Degrain fungicide degradation due to precipitation % 
DegT fungicide degradation due to air temperature % 
Degtot total fungicide degradation % 
Disvar site specific disease variability - 
DispR,W total percentage of spores dispersed by rain or wind % 
Dispres site specific disease pressure level - 
DLAI dead leaf area index m

2
 m

-2
 

Dopt fungicide optimal dose kg ha
-1

 
DR spore detached due to rain % 
Dtot fungicide amount kg ha

-1
 

DW spores detached due to wind % 
E chemical mixture eradicant effect % 
f(DVS) function of development stage code of simulated 

crop (different options available) 
- 

f(t) temperature response function - 
fACO2 limiting factor on CO2 assimilation - 
fman maintenance respiration enhancing factor - 
fRUE radiation use efficiency limiting factor (RUE) - 
fsev leaves senescence enhancing factor - 
f1, f2, fn fungicides present in the chemical mixture - 
GLAI green leaf area index m

2
 m

-2
 

HTaff host tissue affected by the disease % 
HTdis diseased host tissue % 
HTinf infectious host tissue % 
HTlat latent host tissue % 
HTmax maximum host tissue affected by the disease % 
HTold dead host tissue % 
HTvul vulnerable host tissue % 
Inch, Incd hourly and daily incubation rate % 
Incmin minimal duration of the incubation period days 
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Inf% daily infection efficiency - 
Infevents daily number of infection events - 
Infsmax maximum duration of the infectiousness period days 
Infsh, Infsd hourly and daily infectiousness rate days 
Inoinit initial inoculum infection efficiency - 
Inosample random sample from the initial inoculum normal 

distribution 
- 

L yield losses kg ha
-1

 
LAI leaf area index m

2
 m

-2
 

LAIact, 
LAIdis, LAIpot 

actual, diseased and potential leaf area index m
2
 m

-2
 

Lath, Latd hourly and daily latency rate % 
Latmin minimal duration of the latency period days 
μino mean of the initial inoculum normal distribution - 
Manact, Manpot actual and potential maintenance respiration kg ha

-1
 

Mancoeff parameters quantifying the impact on maintenance 
respiration 

- 

P chemical mixture protectant effect % 
R daily rainfall mm day

-1
 

R50 precipitation for detaching of the 50% of the spores mm 
Rcoeff cultivar resistance category - 
RH(t) hourly air relative humidity response function - 
RHd1, RHd2 moisture conducive periods separated by a dry 

period D 
hours 

RHdmax, RHdmin maximum and minimum period above minimum 
relative humidity for infection 

hours 

RHdsum sum of the moisture conducive period hours 
RHh hourly air relative humidity hours 
RHmin minimum air relative humidity for sporulation % 
Rinf infection resistant coefficient - 
Rinfs infectiousness resistance coefficient - 
Rlat latency resistant coefficient - 
Rotsuit rotation suitability for disease development - 
Rspor sporulation resistance coefficient - 
RUEcoeff parameters quantifying the impact on RUE - 
RUEact,RUEpot actual and potential RUE g MJ

-1
 

S cultivar susceptibility to primary infection - 
σino Standard deviation of the initial inoculum normal 

distribution 
- 

Senact, Senpot actual and potential leaves death due to senescence kg ha
-1

 
Sencoeff parameters quantifying the impact on leaves 

senescence 
- 

Sporh, Spord hourly and daily sporulation efficiency - 
SporVPD hourly sporulation efficiency due to vapor pressure 

deficit 
- 
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T, Tavg hourly and daily average air temperature °C 
Tmax, Tmin, Topt maximum, minimum and optimum temperature for 

the different epidemic phases 
°C 

Tth threshold temperature for fungicide degradation °C 
VPDmax,VPDmin Maximum and minimum vapor pressure deficit for 

sporulation 
kPa 

W mean daily wind speed m s
-1

 
W50 wind speed for detaching of the 50% of the spores m s

-1
 

W(t) wetness response function - 
WD1, WD2 wet periods separated by a dry period D hours 
WDmax, WDmin maximum and minimum leaf wetness duration for 

infection 
hours 

WDsum sum of the surface wetting hours 
Wmax, Wmin maximum and minimum wind speed for spore 

detachment 
m s

-1
 

yact actual yield kg ha
-1

 
ypot potential yield kg ha

-1
 

 

6.7.2. Appendix 2. DiseaseProgress equations 

Process Equations Source 

Temp. 
response 
(common to 
different 
processes) 
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Reed et al. (1976);  
Wadia and Butler 
(1994) 

Latency 

( )tf

Lat
Lath

24min ⋅
=

                  

24

24

0
∑

== h
h

d

Lat

Lat    
Lat

LatLat dd

1
1 += −

 

Analytis (1977);  
Blaise and Gessler 
(1992) 

Infectiousness 

( )tfInfsInfsh ⋅⋅= 24max

          
24

24

0
∑

== h
h

d

Infs

Infs
Infs

InfsInfs dd

1
1 += −

 

Blaise and Gessler 
(1992),  
Reed et al. (1976);  
Wadia and Butler 
(1994) 

Dispersal rain  
LAIR

LAI

R

DR +
=

50

R
C

RC
⋅








= max

1

9.0

RRR CDDisp ⋅=  

Dispersal wind 
WW

WWWW
c ⋅








⋅








−
++

−
= 50

50

1
1

50

1

maxmax

9.0=WC

Aylor(1982); 
Waggoner and Horsfall 
(1969);  
Waggoner (1973) 



Section 2 Chapter 6                                                                                                   6 

124 

 

New host 
tissue affected  

( )windrainaff DispDispSporInfHTHT ,max%inf ⋅⋅⋅=

This study 
Host tissue 
vulnerable 

( )

( ) ( )

( )















>+++

<+++







 +++−

>












⋅






 +++−

=

HT

HTHTHTHT
HT

HTHTHTHT

HT

HTHTHTHT

LAI

GLAI

DLAI
LAI

GLAI

HT

HTHTHTHT

LAI

GLAI

HT

oldvislat

oldvislatoldvislat

oldvislat

vul

max

inf

max

inf

max

inf

max

inf

0

0

 

Resistance 
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6.7.3. Appendix 3. Inoculum Pressure equations 

Process Equations Source 

Inoculum 
quantification 

suitpresino RotDis ⋅=µ  

varDisino =σ  
 

Audsley et al. (2005);  
New approach developed 

Susceptibility )(DVSfS =  Magarey et al. (2007) 

 

6.7.4. Appendix 4. Agromanagement impacts equations 

Process Equation Source 
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6.7.5. Appendix 5. Impacts on Plants equations 

Process Equations Source 

Yield loss (critical point models) disHTbaL ⋅+=  

Lyy potact −=  

Madden and Nutter 
(1995) 

Susceptibility disHTbaL ln⋅+=  Madden and Nutter 
(1995) 

Yield loss (critical point models) 
Light absorption damage 
Impacts on RUE 

5.0
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dispotdis HTLAILAI ⋅=  

dispotact LAILAILAI −=  

Waggoner (1978); 
Bergamin Filho et al. 
(1997) 

 

Linear: 

discoeffRUE HTRUEf ⋅−= 1
non linear: 

coeffRUE
disRUE HTf −=1  

RUEpotact fRUERUE ⋅=

 
Bastiaans (1991) 

Impacts on CO2 assimilation 

Linear: 

discoeffACO HTACOf ⋅−= 21
2

 
 

Non linear: 
coeffACO

disACO HTf 2

2
1−=

 

Bastiaans (1993) 
 

Impacts on maintenance 
respiration 

Linear: 

discoeffman HTManf ⋅+=1  
Non linear: 

coeffMan
disman HTf +=1  

Impacts on senescence 
Linear: 

discoeffsen HTSenf ⋅+=1  

Non linear:  

coeffSen
dissen HTf +=1

 



SECTION 3 CHAPTER 7                                                                         f 

126 

 

 

Data

Framework

Case study

M
e
tr

ic
s

 
 

 

 

ASSESSING THE IMPACTS OF CLIMATE CHANGE 

ON AGRICULTURAL PRODUCTIVITY AND TRADE 

IN LATIN AMERICA (2020 – 2050) 

 

 

 

 
Roberto Confalonieri, Marcello Donatelli, Simone Bregaglio, Francesco 
Nicola Tubiello, Dominique Van de Mensbrugghe, Ayat Soliman, John Nash, 
Erick Fernandes 
 

 

 

Report World Bank, Service Contract Number 7157218.Regional 
Agroclimatic Study to Assess Climate Change Impacts on Land Use: 
Agroecological Zone Model Development 



                          Impacts of climate change on Latin America crop productivity 

127 

 

7.1. Executive Summary 

The impacts of climate change on agriculture are projected to be 
significant in coming decades, so that response strategies and their costs 
need to be evaluated now, in regional detail, in order to devise effective 
policies facilitating successful adaptation by farmers.  Models are routinely 
used to make such assessments, preferably by coupling biophysical 
models—to understand the likely impacts of agro-climatic factors on crop 
productivity— with economic models, to derive and evaluate a range of 
possible response paths as a function of monetary costs and benefits. 

In evaluating how crop models were being used around the world for 
climate change applications, the International Panel of Climate Change 
(IPCC) Fourth Assessment Report (AR4) published in 2007, noted that most 
of the models had fallen behind in development and validation of key 
processes necessary to improve projections of crop yields in coming 
decades. The gaps include representation of interannual climate variability 
and extreme events and the impacts of pest and disease. Assessments of 
the effects of elevated CO2 concentration under typical field management 
conditions need to also be improved. Importantly, the same IPCC report 
concluded that existing crop modelling platforms, including those coupling 
of biophysics and economics, should be made more transparent and 
accessible to end users, so that their assumptions and applications could be 
tested more extensively and so that their utilization base could be enriched 
with contributions of researchers and practitioners from around the world. 

This report details the components of a new modelling platform for crop 
impact studies, the AZS-ENVISAGE model, capable of evaluating the 
dynamic interactions of agro-climatic and field management factors 
impacting on crop growth and development, and capable of  interacting 
with a general equilibrium model in order to include the constraints of 
realistic socio-economic factors on actual production levels, trade and 
welfare outcomes. 

Although several such platforms exist, the current work represents 
progress on a number of current bottlenecks, following recommendations 
made in IPCC AR4: 
1. The basic datasets and biophysical models are fully transparent, both in 

terms of their validation and availability of components, including 
remote accessibility to interested users. These key features imply that 
stakeholders around the world can access the platform, evaluate it, test 
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it, and wherever possible, improve it by adding or refining datasets, 
oreven by modifying or substituting component code, as appropriate 
for specific areas of study or particular problems.  

2. The platform is extensible to any region of the world, and is independent 
of spatial scale, so that the latter can be also modified by users as the 
availability of more refined dataset for specific regions arise.  

3. The model allows for explicit, albeit simplified, adaptation of agro-
management, including a crop suitability assessment module, in order 
to test and evaluate adaptation strategies aimed at limiting risk under 
climate change scenarios.  

4. The linkages between biophysical and economic models are explicit, and 
allow in principle for two-way interactions, with the ability to evaluate 
economically specific agro-management solutions identified by the crop 
models, so that the latter could further test specific solutions and then 
feedback the information for new updated modelling runs.  

This report details (a) model components, (b) the application of the 
modelling platform to evaluating the impacts of climate change on key 
crops in the Latin America and Caribbean region (LCR), and (c) the 
economic implications of the projected agronomic impacts in 2020 and 
2050. Section 1 presents a literature review of climate change impacts in 
Latin America, and then details the characteristics of the modelling 
platform proposed for further analysis, including the advantages and 
limitations compared to existing tools. Section 2 describes the basic 
datasets used as inputs for the simulations, including climate (current and 
future climate change scenarios), soils, agro-management, current and 
projected and socio-economic variables. Sections 3 and 4 present and 
discuss simulation results of both biophysical and coupled simulations, with 
and without adaptation responses. Two SRES emission scenarios, A1b and 
B1, are chosen to represent respectively a “high” (business as usual) and 
low (near CO2 stabilization at 550 ppm) scenario, detailing realistic 
boundaries to the envelope of likely impacts. In addition, two time 
horizons, 2020 and 2050, are chosen to investigate risk to production 
under, respectively, a short-term (little time for adaptation) and medium 
term outlooks. 

Results of this study confirm and extend previous findings, indicating 
that the impacts of climate change on agriculture in LCR are expected to be 
significant, with severe risk to crop production in most countries, and the 
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potential to alter regional production and welfare distribution compared to 
present. 

For Wheat, without adaptation, wheat yields were significantly affected 
by climate change, regardless of the emission scenario or Global Climate 
Model (GCM) considered. Percentage yield decreases were more 
pronounced in Mexico, in the Caribbean region, and in the North-eastern 
parts of the continent (Colombia and Brazil). Projected water-limited 
productions for 2020 and 2050 were always lower than in the baseline, 
with Southern and Western countries less affected. Yield reductions were 
due to the shortening of the crop cycle due to higher thermal time 
accumulation, leading to fewer days available to fill grains. The projected 
yield decrease due to diseases in 2020 and 2050 was significant. Frost 
damages were expected to affect wheat yields less seriously in Chile, where 
shortened cycles will also reduce the crop exposure to pathogens, thus 
reducing also the pressure of wheat leaf rust on the crop. With few 
exceptions (e.g., Chile), insufficient water availability affected wheat 
productivity more than other factors, thus suggesting the development of 
varieties with characteristics able to assure higher resistance to water 
shortages, e.g., more capability to deepen the soil portion explored by 
roots. 

With adaptation strategies, projected impacts were decidedly less 
pronounced for all the production levels and scenarios considered. Impact 
on water limited yields was still significant however, with water availability 
playing a key role in limiting wheat productivity: the use of genotypes with 
longer cycles compensated for the climate change effect in reducing the 
grain filling period, but increased transpiration demands. Except for Chile, 
disease pressure decreased everywhere, although no adaptation strategies 
specific for leaf rust were applied. The highest indirect benefits of 
adaptation on disease-limited productions were simulated for Brazil, 
Uruguay, and for Central America and Caribbean countries. Insufficient 
water availability played a major role in Brazil and Chile, whereas disease 
pressure affected productions especially in Argentina. 

For Soybean, without adaptation yields were affected by climate change 
in 2020 and increasingly in 2050, although with different magnitudes 
throughout Latin America. Yield losses were larger in Brazil and in the 
Northern part of the continent (>-30% with respect to baseline), whereas in 
Argentina, Uruguay, Bolivia and Colombia yield decreases were less 
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pronounced. By considering projected water-limited production level, yield 
losses were reduced in Argentina and Uruguay, whereas in Brazil, Central 
America and Caribbean regions they suffered reductions. This could be 
explained by the greater impact of climate change in Brazil, where the 
reduction of crop cycle length is more pronounced than in other parts of 
Latin America, markedly shortening the soybean grain-filling period. The 
impact of rust disease did not increase with warming, with the exception of 
Colombia, in which it increased for all combinations GCM emission 
scenario. This can be explained by the severity of the increase in 
temperature regimes in a warm environment such as the Colombian one, in 
turn leading to more favorable conditions for the pathogens. 

With Adaptation strategies reduced the magnitude of impacts across all 
scenarios and time windows considered. For example, considering the 
potential production level, there were situations with positive impacts of 
climate change with adaptation (Ecuador and Uruguay). The most affected 
country was Brazil, with a maximum percentage of yield losses still close to 
-25% (Hadley-A1B).  In certain countries, percentage yield decreases were 
similar regardless of water management status (i.e., Brazil, Colombia, 
Uruguay, Central America and Caribbean); in others, the climate change 
impact was larger under water limited conditions (Ecuador). In Argentina, 
the use of varieties with longer cycle effectively compensated the climate 
change negative effects tending to shorten crop cycles. 

For Maize, without adaptation climate change negatively affected the 
yields of maize throughout Latin America, regardless to the emission 
scenario or GCM is used. This was mainly due to the reduction in the grain 
filling period under the higher thermal time accumulation rates, not 
compensated for by the increase in daily biomass accumulation rates and 
by the carbon dioxide fertilization effect (lower in C4 species like maize 
compared to C3 species like soybean). The countries most affected were 
Brazil, Ecuador, Mexico and Caribbean countries, where maize is one of the 
main crops Generally, the Hadley GCM led to the highest losses except for 
Brazil and Ecuador (and for the latter, only for the B1 scenario). Abiotic 
factors did not significantly affected maize productions, with the only 
exceptions are represented by a slight yield decrease in Mexico, Central 
America, and Caribbean. Considering the heterogeneity of the responses in 
the area, country-level adaptations strategies will be critical to mitigate 
productivity declines. 



                          Impacts of climate change on Latin America crop productivity 

131 

 

With adaptation, especially in the 2020 time frame, significantly reduced 
climate change impacts on grain maize yields in most of LCR, although yield 
decrease was still significant in major maize producing countries, like 
Mexico. Higher percentage decreases were simulated for the Hadley GCM 
compared to the NCAR, with the A1B emission scenario usually leading to 
the most severe declines. Adaptation strategies positively contributed to 
limit climate change damage to maize production, even in the countries 
where grey leaf spot disease was the most limiting factor. 

For Rice, the simulations show that, on average, productivity increases. 
The fact that rice is a wetland/irrigated crop contributes significantly to the 
production outlook even in the face of climate change. 

The economic impacts of implementing the climate-induced agricultural 
productivity shocks projected by the AZS Climate Change-Crop Impact 
models are generally negative—consistent with the yield shocks. At the 
aggregate level, in other words, the impacts on GDP, the magnitude of the 
shock will reflect the overall level of the crop-specific shock, the relative 
importance of the crop in total production, and general equilibrium 
feedback effects—both domestically and global. For example, a loss in 
export revenues typically leads to a real depreciation as exports of other 
goods must rise to compensate for the ex ante change in the trade 
balance—assumed to be fixed across scenarios. 

The aggregate impact on LAC GDP could be as high as 1.7 percent in 
2050 under the A1B emission scenario and using the results of the Hadley 
GCM. Though the climate signal is strong, even taking into account the 
strong climate signal, this seems a fairly large decline in regional GDP, 
considering that the four affected crops would only represent about 1.3 
percent of total LAC GDP in 2050 under the baseline scenario. From this it 
can be inferred that the GE and multiplier effects are significant. In general, 
negative impacts tend to accelerate between 2020 and 2050, they are 
larger for the Hadley model than the NCAR model, and they tend to be 
higher for the A1B emission scenario than the B1 emission scenario. The 
impacts on global output are negligible. 

The countries that are the most impacted across all scenarios and GCMs 
are Argentina and Brazil, which are also two of the largest agricultural 
producers. Uruguay would be the only country that would see positive 
gains in most of the scenarios—though under the A1B scenario using the 
Hadley model, even Uruguay would lose and by a relatively significant 2.3 
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percent. Amongst the least impacted are Chile, Ecuador and Peru. Chile’s 
agricultural sector as a share of the total economy is small in the base year 
and declines over time—particularly for the four affected crops. Ecuador 
and Peru have relatively low production shares in the affected crops. It is 
useful to re-iterate that the other sectors of the economy are not impacted 
by climate change in this scenario—thus crops such as tropical fruits, coffee 
and sugar are not affected directly. 

As a significant agricultural producer, changes in LAC’s ability to produce 
will have impacts on global agricultural prices. The most impacted crop is oil 
seeds where prices would rise between 11 and 17 percent in 2050—relative 
to a no climate-change scenario depending on emission scenario and GCM 
with HAD A1B producing the highest relative rise. Other grains (essentially 
maize) would see the next largest impact—at around 5 percent with little 
variation across scenarios and GCMs. Wheat prices would rise only by 
about 2 percent, again with little variation. Rice is an exception. As on 
average, productivity would increase for rice, prices would drop (slightly)—
as much as 0.7 percent in the more optimistic climate scenario (NCAR B1). 
These price changes would clearly be exacerbated if the other regions in 
the world exhibited similar productivity shocks. 

The within country distribution between agricultural and the rest of the 
economy would tend to worsen in all countries and regions in LAC. In 
Argentina, agricultural value added could drop by 7 percent in 2020 in the 
best case and by 32 percent in 2050 in the worst case. The loss in 
agricultural value added is significantly lower in Brazil than in Argentina in 
2050, even as the 2020 impacts are similar. There are some 
countries/regions that may see a rise in agricultural value added, obviously 
Uruguay, but the rest of South America as well (under all scenarios). The 
farmers in the rest of the world would benefit—albeit in this partial 
framework. 

As significant net exporters, climate change induced damage would 
generate a large drop in agricultural exports from the LAC region albeit 
relative to a situation where the rest of the world is unaffected by climate 
change (estimating crop damage functions for other regions was beyond 
the scope of and resources available to this study). In aggregate, 
agricultural exports would decline between 25 and 33 percent in 2050 
compared to the no-damage baseline. Argentina would suffer the largest 
loss in percentage terms—varying between 46 and 67 percent in 2050. The 
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export decline in Brazil, though significant, would be much lower than in 
the case of Argentina. For most of the other countries regions, the impacts 
on exports are mildly positive and even potentially significantly positive for 
Mexico. Agricultural exports from Uruguay could potentially be volatile with 
a decline of nearly 50 percent in 2050 in the worst scenario, to a sharp rise 
of 60 percent in 2050 in the more optimistic scenario. 

 

7.2. Introduction 

The Latin American and Caribbean region (LAC) is a big region with 
heterogeneous climate, ecosystems, population and cultures. The IPCC AR4 
(2007) notes that climate change in LAC will affect a number of ecosystems 
and sectors over the coming decades, with specific impacts on agro-
ecosystems including: Decreasing plant and animal species diversity; 
changes in ecosystems composition, biome boundaries and area 
distribution shifts; reduction in the quantity and quality of irrigation water; 
increasing aridity and desertification; and increasing incidence and impacts 
of crop pests and disease. 

Agriculture is likely to suffer the largest and most direct impact of 
climate change among economic sectors in LAC (de la Torre et al., 2009). 
Total economic damage estimated for 2100 ranges from $35 billion 
(Mendelsohn and Williams, 2004) to over $100 billion by 2100 (0.56% of 
GDP). These projected losses could be substantial already by 2050 under 
pronounced warming scenarios (de la Torre et al., 2009). For cropping 
systems, Cline (2007), based on an average of four different climate 
models, projected significant yield losses in Latin America, aggregating 
declines as follows: -19% for higher-income food exporting countries; -
13.5% for higher-income food importing countries; and -17% in middle- and 
low-income countries. The recent IPCC AR4 report indicated for LAC 
significant crop yield losses, including -30% and -15% for rainfed maize in 
Central America and Brazil, respectively. 

Based on the projected yield impacts, Seo and Mendelsohn (2008) 
estimated average potential revenue losses to farming households from 
climate change in 2100 of 12% for a mild climate change scenario to 50% 
for a more severe scenario, after adaptive reaction by farmers. Mendelsohn 
et al. (2008) predicted changes in land value as a proxy for the decline in 
land productivity.  In a country like Mexico, expected to suffer severe 
effects of climate change, the predicted decrease in values was greater 
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than the value of the land itself for 30-85% of all farms, depending on the 
model and severity of warming. 

In addition to the impacts of climate change through changes in mean 
climatic variables, projected increases in the frequency and severity of 
extreme events pose serious threats to agricultural production systems. 
Rosenzweig et al. (2002) found significant additional impacts of climate 
change on US maize production, once effects of excessive soil moisture 
were included in simulations. Raddatz (2009) computed that climatic 
disasters reduce per capita GDP by 0.6% on average, and that drought and 
extreme temperatures are major drivers of such impacts (windstorms and 
hurricanes having significant effects in Central America and the Caribbean 
region). These data suggest that agriculture is a major channel through 
which the effects of climate change are transmitted to the economy at 
large (de la Torre et al., 2009b).  If the trends of the past four decades 
continue, disasters could result in a permanent GDP reduction of 2% over a 
decade. 

In a study that utilized the inputs of local stakeholders and local experts 
in diverse agroecological zones in Latin America to develop regional climate 
change action plans based on the identification and prioritization of 
improved adaptation strategies to anticipated climate changes (Lee et al. 
2009), a key finding included the need for local communities to have access 
to information and decision support systems such as early warning systems 
(for climate forecasts, extreme weather events, pests and disease 
outbreaks), climate risk maps, and geographic information systems. 

In the face of projected changes in climate and impacts on land use 
systems, the long-term sustainability of agro-ecosystems and associated 
livelihoods is therefore unattainable without the development of 
adaptation strategies. These strategies will need to incorporate not only 
changes to existing cropping systems but also point to the identification of 
alternative production systems and environmental services, and a 
reorganization of production landscapes for enhanced environmental, 
social, and economic resilience. In particular, the following questions 
relevant to decision-makers in coming decades will revolve around 
monitoring, planning and implementation issues: 

• What are the specific changes in climate expected over time, and 
what will be their regional distribution? 
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• Which adaptation land and water management practices can best 
minimize expected impacts, and how can resources be mobilized 
regionally to implement them? 

• What are the expected effects of the anticipated sectoral impacts at 
the macro-economic level, on trade, employment and poverty and 
inequality within a certain country and across countries in the 
region? 

To develop effective adaptation strategies, robust and quantitative 
assessment tools that are able to estimate climate change risks and 
vulnerabilities for land use systems, especially within a portfolio of 
development projects, are a necessary step towards providing answers to 
the questions above. Once developed, the tools can then be used to 
identify and assess opportunities, risks, and vulnerabilities and to prioritize 
and coordinate a range of adaptation actions. The tools and outputs 
provide a platform for data sharing and regional action in Latin America. 
This report summarizes results of a methodological approach for 
developing and testing appropriate agro-climatic tools that can be used to 
guide policy and decision makers in Latin America and the Caribbean on the 
four issues highlighted above. 

7.2.1. Goal and Objectives of this study 

The goal of the study is to enhance regional knowledge and capacity for 
understanding, simulating, and assessing the impact of climate change on 
agro-ecological zones and component land uses. 

The Objectives of the study include: 

1. The development of a climate change-crop productivity impact 
modelling platform (Agro-Ecozone Simulator (AZS)) that is open-
access and transparent with respect to model components and 
data. 

2. The testing of the modelling platform to derive crop impact estimates 
for 2020 and 2050. 

3. The coupling of the crop impact estimates to the World Bank's 
Environmental Impacts and Sustainability Applied General 
Equilibrium model (ENVISAGE) to help guide adaptation responses 
and related policy options through a quantification of costs and 
benefits related to the projected crop impacts 
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The formulation of a user-friendly and accessible AZS modelling platform 

provides for data and model sharing among all interested member 
countries in Latin America and the Caribbean—and can be extended to 
other regions of the world. AZS facilitates analysis of impacts and 
adaptation responses, including: 

• Selected agricultural production systems with defined input and 
management relationships, and crop-specific environmental 
requirements and adaptability characteristics; 

• Geo-referenced climate, soil, and terrain data, combined into a land 
resources database;  

• Procedures for calculating the potential agronomically attainable 
yield and for matching crop environmental and management 
requirements with the respective environmental characteristics 
contained in the land resources database, by grid cell; 

• Procedures for computing water limited, biotic factors limited, 
abiotic factors limited, and actual crop yields, by grid cell; 

• Assessment of crop suitability and land productivity of cropping 
systems.  

• Analysis of socioeconomic factors of land resource use for 
sustainable agricultural development 

The output of this effort is a robust AZS model platform, capable of 
collecting necessary agro-climatology datasets and providing equations for 
data manipulation by the user, including generic crop suitability and water 
balance calculations and mapping. The modelling platform facilitates the 
evaluation of changes in cropping patterns and growing seasons as a 
function of projected changes in temperature, precipitation and 
evaporative demands, including investigations of adaptation potentials by 
means of available or improved varieties. 

Specifically, this study chose two time windows into the future, 2020 and 
2050 respectively, to investigate immediate and medium-term impacts on 
LA agriculture. At the same time, two possible “storylines” of plausible 
socio-economic development were chosen among the four IPCC SRES 
families (IPCC, 2000): 
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1. So-called “business as usual” development (A1b), associated with 
significant GHG emissions through the 21st century; and  

2. A more concerted effort to achieve development while reducing 
regional impacts (B1), leading to GHG emissions that decrease 
through time and a near stabilization of atmospheric CO2 to about 
550 ppm.  

Comparing impacts of climate change between the two scenarios 
provides insight into the benefits of serious mitigation efforts, compared to 
business as usual1 (Tubiello and Fischer, 2007). Finally, two different 
climatic realizations of these two scenarios were used by means of GCM 
outputs, representing changes in mean weather variables between future 
and current climate regimes and relevant to the crop model. 

While all technical components of model inputs and modules will be 
discussed in following sections, Fig. 1 below provides a conceptual 
framework of the various components involved in this work. 

 

                                                      
1
 It is noted that although stabilization at 550 ppm represents a serious challenge (current CO2 

concentration is 392 ppm) current mitigation targets set in Copenhagen and Cancun for post-2012 
climate agreements indicate stabilization at 450ppm as necessary to keep global warming to below 
2C, seen as the threshold of “dangerous anthropogenic interference” with the climate system. No 
stabilization scenarios at this level were available in IPCC AR4. 
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Figure 1. Schematic representation of the flow of information (green=inputs; 

red=outputs) linking biophysical and economic simulations through agro-climatic input 

factors, climate scenario generation, and yield assessment 

7.3. The Agro-Ecozone Simulator (AZS-BioMA) and Applications 

At the core of this effort are two modelling platforms: 
1.  AZS-BioMA, providing the biophysical representation of crop 

development and growth, as a function of agro-climatology and 
management; and 

2. ENVISAGE, the World Bank’s own general equilibrium economic 
model, providing a representation of economic costs and value of 
production, as a function of socio-economic inputs and scenarios. 

The crop models compute, at each point over a 25 km grid for Latin 
America, the development, growth and productivity of selected crops 
(wheat, maize, soybean, rice) as a function of daily weather variables, 
including min and max temperature, precipitation and solar radiation. Each 
of the grid level-results can be easily aggregated at any scale of interest. For 
this study, and in order to provide meaningful inputs into ENVISAGE, yield 
simulation results were aggregated at national level. Two climate regimes 
are considered: the baseline climate, representing the average observed 
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weather over the last thirty years; and climate change climate, representing 
projected future weather conditions that would be realized under a 
number of assumptions. 

7.3.1. Inputs 

7.3.1.1. Climate Data and Generation 

The climate database was developed by pursuing the following steps: 

• Identification of a suitable and reliable historical climate database 
covering the study area; 

• Selection of IPCC AR4 emission scenarios (A1B and B1) as input for 
two GCMs (Hadley and NCAR); 

• Generation of the baseline and of the climate change scenarios 
(using GCMs outputs) via a weather generator. 

The historical climate data are those produced by the European Centre 
for Medium-Range Weather Forecasts (ECMWF), an intergovernmental 
organization supported by thirty-two countries. Among the main activities 
carried out by ECMWF, the re-analysis of multi-decadal series of past 
observations plays a major role. 

Data used within this project come from the ECMWF ERA-Interim, which 
is a global reanalysis of the data-rich period since 1989 
(http://www.ecmwf.int/research/era/do/get/era-interim). The ERA-Interim 
reanalysis starts in January 1989 and provides meteorological data until 
present. The ERA-Interim data are, for our purposes, re-sampled to 0.25 
degree grid cells (25 km at the horizon) in order to be consistent with other 
real time data like outputs of the ECMWF global circulation model. 

Variables available in the ECMWF ERA-Interim database are average 
surface air temperature, maximum and minimum surface air temperature, 
precipitation, evapotranspiration (over water, bare soil, and based on the 
Penman-Monteith method), global solar radiation, snow depth, average 
wind speed, and water vapour pressure. Other variables, including hourly 
values, are derived using the CLIMA libraries (Donatelli et al., 2005 and 
2009; Bregaglio et al., 2011). 

Two IPCC AR4 scenarios (A1B and B1; IPCC, 2000) were selected as input 
for two different GCMs: Hadley3 (Gordon et al., 2000) and NCAR (Collins et 
al., 2004). The GCM are realizations of the emission scenario chosen. The 
choice of the Hadley3, maintained and run by the European Meteorological 
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Office, was because it is a de facto standard, whereas the NCAR model was 
chosen because of the extensive evaluations in the Americas. The time span 
of the analysis are centered on 2020 and 2050. 

The A1B scenario considers rapid economic growth, a global population 
peak in 2050 with a rapid introduction of new and more efficient 
technologies (i.e., the A1 business as usual storyline) combined with a 
balanced input between fossil and non-fossil energy sources to support the 
technological changes envisaged (resulting in the A1B scenario). The B1 
scenario is based on the same storyline as in the A1, but foresees rapid 
changes in the economic structure that reduces material and carbon 
intensity, introducing clean and resource-efficient technologies. 

Without being the most extreme, the two emission scenarios selected 
represent most of the range of projected increase of temperate in the 
coming decades. It must also be pointed out that for a given emission 
scenario, the realizations done by the more than 10 GCM available show a 
variability on estimates with noticeably overlaps with the one of other 
emission scenarios. Further, even considering the average of estimates, 
emission scenarios differ at the end of the century, much less at 2050, and 
very little at 2020, the latter two being the time span of interest for this 
study. This is shown in Figure 2 below. 
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Figure 2. Projected mean surface temperature change as a function of IPCC SRES 

scenario, indicating mean projected values (solid colors) from a range of GCM 

simulations. Corresponding to each family of GHG emission scenario (grey bars) 

 
The uncertainty in GCM predictions and the time span of the analysis 

make us consider that the choice of the emission scenarios for the analysis, 
once it explores the range from IPCC scenarios as in this project, cannot be 
considered critical. 

In order to generate spatially distributed weather data to be used for 
feeding biophysical models, the Climak weather generator (Danuso, 2002) 
was used. Climak was chosen has its performance resulted equivalent to 
other weather generators as ClimGen and WGEN in a previous study, and 
because its implementation as a tool in the BioMA framework represented 
an advantage. According to Climak, the occurrence of rain events is 
estimated stochastically by using a first order Markov chain with month-
specific parameterization. Precipitation amount is generated by sampling 
values from a 2-parameter (month-specific) gamma distribution. Maximum 
and minimum air daily temperatures are estimated separately, using 
different parameters for rainy and dry days. Sinusoidal trends are 
calculated using a second-order Fourier series for average daily minimum 
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and maximum temperatures for the dry and rainy days. Once temperature 
trends are calculated, random residuals (sampled from bivariate normal 
distributions) are calculated on a monthly basis and added to the trends. 
Daily global solar radiation is derived from the ratio between daily and 
maximum (astronomical) radiation, with the ratio derived from the daily 
thermal excursion using a beta probability density function. Daily reference 
evapotranspiration is obtained as a linear function of daily solar radiation 
and is then adjusted by additive residuals, sampled from a normal 
distribution with mean equal to 0 and standard deviation calculated with a 
linear function of photoperiod. 

A first phase involved the use of the weather generator to estimate 
parameters describing the features of the climate for each cell, e.g., 
monthly and annual trends, level of continentality, thermal excursion, 
rainfall distribution, etc. Once these parameters were estimated, they were 
used to generate the baseline climate (without applying any GCM-derived 
information to the parameters) and the climate scenarios (applying results 
from GCM to specific parameters). 

• The baseline – a series of climate data with the same feature of the 
historical ones was re-generated to allow the most unbiased 
comparisons between the results of biophysical models based on 
baseline and climate change scenarios (in both cases derived from a 
generation process). 

• Regional Climate Models (RCM) were not applied, as intermediate step 
between the GCM outputs and the parameters of the weather 
generator, because we could not assess, in the time frame of the 
project, if an homogenous set of models was available to cover the 
Central and Latin America. A heterogeneous set of RCMs, even 
assuming their ready availability, would have likely introduced a bias 
in the comparison of different countries.  

• The years generated were 10, instead of a larger number such as 50, 
due to the time and resource constraints imposed by the project. 

Figure 3 presents summer average daily thermal anomalies (°C; 
difference between climate change scenario and baseline data) for Hadley-
A1B for the two time frame considered. 
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Figure 3. Summer (December, January, February) temperature anomalies obtained by 

generating A1B scenarios (2020 on the left, 2050 on the right) with the Hadley GCM 

 
7.3.1.2. Soils 

The soil data set (Hoogenboom et al., 2009) is derived from the updated 
version of the “World Inventory of Soil Emission Potentials” (WISE version 
1.1, Batjes, 2002). 

WISE 1.1 database was created to provide a basic set of uniform soil 
data for a wide range of global and regional environmental studies (e.g., 
agro-ecological zoning and assessments of crop production). The profiles 
collected in the database derive from five main sources: (i) ISIS 4.0, the Soil 
Information System (Van Waveren and Bos, 1988) of the ISRIC 
(International Soil Reference and Information Centre); (ii) SDB, the FAO Soil 
Database System (FAO, 1989); (iii) a digital soil data set compiled by the 
Natural Resources Conservation Service (NRCS) of the United States of 
America (Soil Survey Staff, 1996); (iv) international data gathering activity 
coordinated by WISE project staff, in which national soil survey 
organizations were asked to supply descriptions and analysis of profiles 
representative of the units of the Soil Map of the World (FAO-Unesco, 
1974); (v) suitable profiles obtained from a survey and stored in the ISRIC 
library. 

It must be pointed out that the simulations limited to soil water (not 
considering nitrogen) are sensitive to basic soil parameters derived from 
texture, and soil depth, as they determine the hydraulic characteristics. In 
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other terms, while a more detailed database that would better represent 
actual soil depths and % of presence in a given cell could improve the 
representativeness of simulations for that cell, the differences in the output 
would not differ markedly except for extremely shallow soils. 

Figure 4 provides examples of soil properties stored in the soil data set. 
 

 

Figure 4. Drainage rate (whole profile) and saturated hydraulic conductivity (top soil) 

7.3.1.3. Crops, Masks and Calendars 

The crops considered within the study are maize, wheat, soybean and 
rice. According to 2008 FAO statistics (http://faostat.fao.org), the crop 
produced with the most tonnage in Latin America is sugarcane (Mt in Table 
1), even if it is second to soybean in terms of economic relevance. The 2nd 
crop in terms of production is soybean. Rice and maize are the 3rd and 4th 
ranked crops in terms of economic production (thousand $ in Table 1), 
whereas in terms of production their ranks are inverted. Wheat comes in at 
8th and 6th for economic production and tonnage, respectively. 
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Table 1. Tonnage and economic productivity for the four crops analyzed during the 

project 

 Crop production (Bt) Economic production (M$) 

Country Maize Rice Soybean Wheat Maize Rice Soybean Wheat 

Argentina 22017 1246 46238 8508 2042 258 9859 1234 

Bolivia 1002 338 1260 200 60 68 246 29 

Brazil 58933 12061 59242 6027 1925 2523 12361 877 

Chile    1238    163 

Colombia  2792    577   

Costa Rica  248    52   

Ecuador 804 1442   26 299   

Guyana  507    105   

Guyana (Fr)  9    2   

Honduras 536 49   21 10   

Nicaragua 424 322   45 67   

Panama  301    63   

Paraguay 2472 150 6312 799 158 31 1309 104 

Peru  2776    585   

Suriname  183    34   

Trinidad and 
Tobago 

 2       

Uruguay  1330 880 1288  278 180 187 

Venezuela 2996 1361   187 189   

TOTAL 89184 25117 113932 18060 4464 5143 23954 2595 

Rank within LCR 3 4 2 6 4 3 1 8 

 
Crop masks for maize, wheat, soybean and rice (Figure 5) were derived 

from the SAGE Center for Sustainability and the Global Environment – 
Nelson Institute of Environmental Studies, University of Wisconsin-Madison 
(SAGE, http://www.sage.wisc.edu/index.html). 
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Figure 5. Crop masks used within the project 

 
Crop calendars for LCR were downloaded from the SAGE Center for 

Sustainability and the Global Environment databse 
(http://www.sage.wisc.edu/download/sacks/crop_calendar.html). 

 

7.3.2. Modelling Platform 

7.3.2.1 Crop Development and Growth 

The modelling platform designed for this study to assess the impact of 
climate change on agricultural productivity includes uses a range of 
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approaches to model crop development and growth. For example, the 
approaches currently being implemented are: 

1. CropML-CropSyst (Stöckle et al., 1992, 2003) is a cropping system 
model including generic crop simulator which allows for simulating 
both determined and perennial species. This component 
implements the plant related part of the original CropSyst model, 
version 3.X  

2. CropML-WARM (Water Accounting Rice Model, (Confalonieri et al., 
2009b,c) is a daily time step model for the simulation of growth and 
development of paddy rice crops. The model accounts for all the 
main processes which characterize this peculiar system.  

3. CropML-WOFOST (Van Keulen and Wolf, 1986; Boogaard et al., 1998) 
is a member of the family of crop growth models developed in 
Wageningen by the school of C.T. de Wit. It follows the hierarchical 
distinction between potential and limited production and shares 
similar crop growth submodels, with light interception and CO2 
assimilation as growth driving processes and crop phenological 
development as growth controlling process. 

The modelling platform represents a paradigm shift with respect to 
current modelling approaches for three reasons: 

1. The concept of multiple options for simulation is made available and 
can be further extended, adding modelling approaches as, for 
instance, the ones implemented in DSSAT models; and  

2. Because of the fine resolution used to implement models, users can 
implement variants of modelling approaches. In particular, given 
the goal of simulating crop growth under extreme weather 
conditions, a curvilinear response to hourly temperature of 
phenology (plant development phases) and growth, with a decline 
beyond optimal temperature, is implemented (hourly temperatures 
are derived with good accuracy from daily maximum and minimum 
temperature data). For example, this approach estimates sub-
optimal rates at high temperatures, reproducing biologically-known 
patterns of response to temperature, and leading to estimates of 
development and growth that are diversified with respect to the 
known accumulation of growing degree days and the plateau 
response to temperature.  
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3. The software architecture allows users to easily simulate various 
production levels (e.g., potential, water limited, nitrogen-limited 
limited, and disease limited productivity) thereby allowing deeper 
analysis and insight of the production system simulated. 

BioMA, through its full implementation of these three models, is the 
platform currently used at the EU-JRC to investigate the impacts of climate 
change on crops in the EU-27, as well as in key production regions of the 
world, including Russia and the CIS, Latin America, China, India, and a few 
countries in sub-Saharan Africa. 

CropSyst (Stöckle et al., 1992, 2003) is a cropping system model 
including generic crop simulator that allows for simulating both annual and 
perennial species. This component implements the plant related part of the 
original CropSyst model, version 3.02.23. WARM (Water Accounting Rice 
Model, (Confalonieri et al., 2009c) is a model explicitly developed for the 
simulation of growth and development of paddy rice crops. WOFOST is a 
member of the family of crop growth models developed in Wageningen 
(Van Keulen and Wolf, 1986), which has been used historically at the JRC for 
crop forecasting. 

All three models, which are established platforms of crop models 
alongside others, such as EPIC or DSSAT (e.g., Tubiello and Ewert, 2002), 
follow the hierarchical distinction between potential and limited 
production; crop growth is computed via light interception and CO2 
assimilation; growth driving processes depend and are driven by crop 
phenological development stages, mainly via degree day accumulation. 

During the project, CropSyst was used for maize, wheat and soybean, 
whereas WARM was used for rice. The two models were selected because 
of their accuracy and robustness (Confalonieri et al., 2010). 

7.3.2.2. Soil Water 

SoilW is a software component implementing a wide range of alternative 
methods to simulate water dynamics into the soil profile, covering all those 
already in use in major crop modelling platforms worldwide. The 
component allows for the simulation of the following processes: 

1) Water redistribution among soil layers; 
2) Effective plant transpiration (several options available); 
3) Soil evaporation (several options available); 
4) Drained water if pipe drains are present (under development). 
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5) Effects of soil tillage and subsequent settling of hydrological 
properties of the soil (field capacity, wilting point, retention functions, 
conductivity functions, bulk density). 

For each of these processes, several approaches are implemented, 
allowing SoilW to reproduce the behavior of all the most diffused cropping 
systems models. As an example, for water redistribution, three approaches 
are implemented. The first is based on a numerical solution of the Richards’ 
equation (Richards, 1931), based on the physical concept that water flux 
between two points is driven by the pressure gradient between the points 
themselves, and it is function of the hydraulic conductivity. In this 
approach, water retention curves and hydraulic conductivity as a function 
of soil water content and/or water pressure are needed. This approach is 
used in several well-known models, like CropSyst, SWAP (Van Dam et al., 
1997) and MACRO (Jarvis, 1994). The second approach, i.e., cascading (also 
known as ‘tipping bucket’), is the less demanding in terms of data needs, 
and assumes that water can move only downward through the soil profile, 
filling up the layers until field capacity is reached, with the fraction of water 
exceeding this threshold moving to the deeper layer (Jones and Ritchie, 
1990). This approach is adopted in most of the DSSAT models. The third 
approach is a modification of the cascading one, in which water movements 
are reduced by soil hydraulic conductivity, thus allowing water contents to 
be higher than field capacity. This approach is adopted in various simulation 
models (e.g., SWAT, Neitsch et al., 2002; WARM, Confalonieri et al., 2009b). 

Rainfall and irrigation water actually infiltrating the soil (after possible 
runoff and plant/mulch interception) is simulated with a library of models 
implemented in the SoilRE component. Also in this case, a variety of 
approaches are available for sub-process, involved in runoff volume, water 
interception by vegetation and mulch, actually infiltrating water. As an 
example, for runoff, approaches implementing the curve number and the 
kinematic wave methods are available. 

Management events (see section 2.2.5 ‘Crop Management’) involved 
with soil dynamics like, e.g., irrigation, are processed by the SoilRE 
component. 

During the project, the cascading approach for simulating soil water 
redistribution was used, given the constraint of lack of detail in the data 
available, which had to be homogeneous for the whole area considered. 
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7.3.2.3. Diseases and abiotic factors affecting productions 

In almost the totality of the climate change impact studies, cropping 
systems modelers have been used to consider only temperature, radiation, 
rainfall, atmospheric CO2 concentration and – in some cases – irrigation as 
forces driving crops productivity. Biotic (e.g., diseases) and abiotic (e.g., 
ozone concentration, frost events) factors were traditionally considered as 
having a constant impact on the crops under a changing climate. This 
assumption is false, since weather variables have a crucial effect, e.g., in 
modulating plant-pathogens interactions, in turns leading climate to alter 
the magnitude of the gaps in crops productivity due to diseases. This 
consideration is valid also for damages caused by abiotic factors (e.g., 
frost), in most of the cases driven by extreme weather events, in some 
cases forecasted to increase by global climate models. 

In this project, we considered the impact of diseases (Disease 
component) and abiotic damages induced by extreme temperatures 
(Abiotic Damage) on crops productions. 

Disease is a component simulating the progress of the epidemics of 
fungal pathogens by explicitly considering the processes of infection, 
incubation, latency, infectiousness, sporulation, and spore dispersal, all 
driven by weather conditions and by interactions with the host plant. The 
impact on the host is simulated mainly via lesions to the photosynthetic 
tissues. Host resistance (different varieties can greatly differ in terms of 
susceptibility to a specific disease) is accounted for in the component, and 
it is based on a generic classification of resistance levels. Figure 6 shows the 
distribution – within Latin America – of the pathogens simulated during the 
project (the most relevant ones for each of the considered crops). 

Damages due to extreme temperature events, e.g., frost, cold-shock 
induced sterility, were simulated using the Abiotic Damage component, 
implementing a approaches for a variety of abiotic damages affecting crops, 
over and above those in use in most other crop modelling platforms in use 
worldwide. The models currently implemented belong to six categories: 
lodging, frost, cold-induced spikelet sterility, heat-induced spikelet sterility, 
ozone and salinity. 
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Figure 6. Geographical distribution of: a) maize Gray leaf spots (Cercospora zeae-

maydis), b) wheat leaf rust (Puccinia recondita), c) soybean rust (Phakopsora pachyrizi), 

d) rice blast disease (Pyricularia oryzae) 

7.3.2.4. Crop Management 

Dates of irrigation events and the amount of water needed by the crop 
under current or future climate conditions were simulated via rule-based 
models. This is based on the state of the system, mimicking farmers’ 
behavior with respect to management decisions related to resources 
availability and on the physical characteristics of the system. A proper set of 
rules were implemented in the AgroManagement component. 

Irrigation was used for maize and soybean, whereas wheat was 
simulated under rainfed conditions. Water limited production was not 
simulated for rice, since the crop is grown in the study region under paddy 
conditions. 

Irrigation events were simulated for both maize and soybean (i) when 
soil water content fell below 50% of the plant available water, (ii) by 
limiting the total amount of irrigation water in a season to a maximum of 
300 mm, and (iii) by setting the maximum amount of water to 40 mm for 
each event. This parameterization of irrigation rule allowed reproducing 
standard typology of irrigation practices, leading to a medium satisfaction 
of crop water requirements during a season. 

7.3.2.5. Crop Suitability 

Assessing crop suitability is an important component of assessment 
studies, including changes to crops geographic distribution under climate 
change in coming decades. On the one hand, it is well known that crops will 
respond to specific changes in temperature and precipitation at the 
locations where they are currently grown; on the other, it is also expected 
that not all crops and cultivars will remain suitable within their current 
geographical ranges, with tendencies to migrate towards higher latitudes 
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and a push out of production in areas already at the margin of production. 
Yet most crop modelling platforms available today present fixed grid 
simulations of crops, i.e., they do not allow for dynamical movements of 
ideal crop ranges, and thus tend to underestimate likely adaptation 
responses by farmers. These will doubtlessly attempt to switch where 
possible to cultivars and crops better adapted to changing conditions. By 
the same token, those model platforms that have excelled in computing 
suitability have much less crop modelling detail than available under the 
proposed platform. 

The Suitability component included in AZS-BioMA implements a variety 
of approaches for suitability estimation based on single-cell (e.g., threshold 
based approaches) or multi-cell (i.e., based on multiple regressions) 
computations. Among the approaches implemented, some are retrieved 
from the literature, and based on soil and/or weather inputs, e.g., FAO 
EcoCrop (http://ecocrop.fao.org), Less Favorable Areas (Eliasson et al., 
2010). Others, developed during the project, derive a suitability index from 
simulated variables, like yields, completion of crop cycle, yield gaps due to 
biotic and abiotic factors affecting productions. 

Our implementation of all the methods allow the user to select the 
methods themselves (i) in their original configuration, and (ii) with options 
allowing to exclude categories of variables or parameters from the 
computation. Another criterion implemented during the project (District 
criterion) is based on the assumption that crop choices by farmers tend to 
aggregate in production districts. This approach cannot be used alone and 
the Suitability component gives the user the possibility of coupling it to all 
the other methods implemented. 

The user can run the AZS-BioMA suitability component by deciding 
exactly which method to use or by leaving the component itself to selecting 
the most appropriate method, in light of the actual data availability or the 
particular exercise that needs to be run. 

7.3.3. The simulation platform 

The use of biophysical models has broadened to multi-objective analysis 
in the area of agriculture, ecology and environment. For one, stakeholders 
increasingly require greater level of integration in system analysis. 
Additionally, there is an increasing number of biophysical processes to be 
considered, requiring model extension, comparison, and multi-team work 
to address the impact at large scales of context specific problems. 
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The analysis of climate change impact on agriculture, its possible 
adaptation and the mitigation service that adapted system may perform, 
represent a moving target under the fast dynamics of markets in the global 
economy. Simulation tools must be flexible and capable of incorporating 
existing knowledge to rapidly address stakeholder needs. 

The development of modelling tools in the context above goes beyond 
the pure domain-specific knowledge of the problem being addressed, 
requiring state of the art infrastructure to match the challenge. A software 
architecture based on modular components facilitates such processes. 

Although the goal of building modular simulations systems has been long 
accepted, the emphasis so far has been on building modelling framework-
centered software solutions. This has likely been an obstacle to the 
diffusion of such frameworks beyond the groups developing them. 
Reusability of components has also been very modest, if any. Instead, a 
software solution based on the component-oriented paradigm has its focus 
on reusable components, and does not target a unique software framework 
and framework-specific components. 

In the following section we illustrate the innovations introduced with the 
simulation platform, whereas the concrete products of this project (limited 
in time and resources) show the level of advance of its realization. The goal 
of this realization can be anticipated and summarized as providing an 
effective tool for use now, but having the capability of adding new layers of 
data, and of extending solutions to modelling problems, also in time 
periods compatible for an effective response to customers. 

7.3.3.1. Component-oriented development 

In systems analysis, it is common to deal with the complexity of an entire 
system by considering it to consist of interrelated sub-systems. This leads to 
think of models as made of sub-models. Such a (conceptual) model can be 
implemented as a computer model composed of a number of connected 
component models. A software component can be defined as “a unit of 

composition with contractually specified interfaces and explicit context 

dependencies only. A software component can be deployed independently 

and is subject by composition by third parties”. 
Thinking of models in modular terms is a needed shift of paradigm with 

respect to monolithic, unchangeable models; a modular conceptualization 
of models allows: 

• An easier transfer of research results to operational tools 



Section 3 Chapter 7                                                                                                   7 

154 

 

• The comparison of different approaches 

• A greater transparency 

• More rapid application development 

• Re-use of models of known quality 

• Independent extensibility by third parties 

• Avoiding duplication 
An implementation based on component models has at least three 

major advantages: 

• New models can be constructed by connecting existing component 
models of known and guaranteed quality together with new 
component models 

• The predictive capabilities of two different component models can 
be compared, as opposed to compare whole simulation systems as 
the only option 

• Common and frequently used functionalities, such as visualization 
and statistical ex-post analysis tools, can be implemented as generic 
tools and developed once for all and easily shared by model 
developers 

The component-centered approach of this platform from one side 
provides advanced features both to components and to the whole system 
(Donatelli and Rizzoli, 2008), from the other it allows an easier extension by 
third parties which do not develop for the platform, instead, they develop 
independent components with high quality features which can be reused 
by third parties, one of which is the platform presented. In other terms, 
they do not have to “subscribe” to this platform; rather, they can have this 
platform as one of their customers. Further, they can use either the 
platform and its tools, or just single components of the platform, which are 
also independently reusable. 

7.3.3.2. AZS-BioMA features 

The Agro-ecological Zones Simulator is a realization based on the BioMA 
(Biophysical Model Applications) platform. BioMA is an extensible platform 
for running biophysical models on generic spatial units. It is based on 
discrete conceptual units codified in software components (both for 



                          Impacts of climate change on Latin America crop productivity 

155 

 

simulation engines and user’s interface). The guidelines followed during its 
development aim at maximizing: 

• Expansion and adaptation with new modelling solutions 

• Ease of customization in new environments 

• Ease of deployment (at national and local research and academic 
facilities) 

Simulations are carried out via modelling solutions, which are discrete 
simulation engines where different models are selected and integrated in 
order to carry out simulations for a specific goal. Each modelling solution 
makes use of extensible components. BioMA can be extended 
autonomously by third parties by adding new modelling solutions, making 
use of components already used by the application or using new ones. 

The current version of BioMA includes heterogeneous modelling 
solutions: 

• WARM-BlastDisease-Sterility 

• CropSyst-Water Limited 

• WOFOST-Water Limited 

• Agricultural Production and Externalities Simulator - APES 

• PotentialDiseaseInfection 

• Diseases (linked to crops) 

• ClimIndices 
BioMA is developed at JRC (project leader: M.Donatelli) in close 

cooperation with the University of Milan and the Italian Agricultural 
Research Council. Additional collaboration is being established with the 
INRA, France. 

7.3.3.3. AZS use at different scales 

This is a key feature of the platform that allows building configurations 
which access data-layer at different spatial resolution. The current setting 
use a grid 25 x 25 km, but, say 1 x 1 km DB can be used allowing detailed 
analysis for instance of a region in a country. The added value is that the 
same tools and methodology can be used, creating possibly figures from a 
region or a country based on less abstract both production systems and 
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technical adaptation strategies. This sets a concrete and consistent basis 
also for effective and transparent communication between regional offices 
and runners of large area analysis (see also last paragraph). 

7.3.3.4. Model extension 

New modelling solutions can be added to the system. The process is 
straightforward although it requires assistance from IT personnel. One a 
model box is made available for BioMA (hence for AZS), it can use all the 
tools in the platform. As an example, a possible modelling solution could be 
about grape vine phenology and quality (preliminarily developed for 
Europe). The following diagram shows the macro-components of the 
BioMA deployment for Europe. 

 

 
Figure 7. Macro-components of the BioMA deployment for Europe 

7.3.3.5. Data access as input to analysis external to the AZS platform 

Data will be accessible read-only via dedicated web services (cross 
platform) to authorized users. This allows building applications or utilities 
that will be able to query data and use them in local applications. A target 
use of biophysical simulation output is the link to agro-economic models. 
The linking and the workflow to develop adaptation strategies is shown in 
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the following figure. The workflow may include either agricultural sector 
models (as in the current project) or farm models. If the economic model is 
a farm model, this allows accounting for technological and resource driven 
constraints, allowing a detail analysis of production systems that are more 
context specific. The dashed line connector suggests possible iterations 
between a bio-economic farm model and biophysical models to further 
improve the definition of adaptation scenarios. 

In this project, scenarios are not set to interact with economic models, 
and the adaptation strategies, as described in section 1.1, represent basic 
technical options. The study of further options could be driven by 
agricultural sector models needed to investigate, for instance, a specific 
crop, or specific constraints in resources. 

 

 
Figure 8. Possible use of environmental outputs for selecting specific production 

systems 

In more general terms, the outputs of biophysical analysis (which 
includes also static indicators based on climate) could be used to build 
integrated indices to estimate, for instance, land use changes based on bio-
physical indicators, hence using the outputs as proxies for semi-qualitative 
estimates of climate change impact. The figure highlights also a possible 
use of outputs of environmental interest for selecting among possible 
alternate production systems. 
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7.3.3.6. Calibration and model evaluation 

Calibration and model evaluation must be considered separately for 
current weather conditions and for conditions of climate change, as in the 
following paragraphs. 

Process-based, deterministic models like the ones use for simulation in 
this project, are evaluated against referenced data. This activity, often 
referred as model “validation”, for crop/cropping system models is done by 
simulating the same conditions where the reference data were collected 
(weather, soil, agricultural management) and comparing simulation results 
to data collected from the real system (e.g., biomass produced, yield, soil 
water content).  Prior to actually performing model evaluation the model is 
calibrated, a process that consists in adjusting the value of some model 
parameters in order to minimize the difference between simulated and 
reference data. This is a very delicate process when performed with process 
based models, where parameters have a bio-physical meaning; in no case 
the result of calibration may lead to parameter values which are out of the 
range known for the process they refer to. Once model parameters are 
calibrated, model evaluation is run as described above against an 
independent dataset. 

In all cases, model evaluation is run against articulated dataset, in which 
not only the context is described in detail to allow simulating it, but also the 
measurements on the state of system regard both different variables and 
time series. In fact, yield, which is very often the variable of major interest, 
is the final result of the simulation of several processes. As such, (dataset 
always being limited in number because very costly), a calibration based 
only on yield has often multiple solutions, often resulting in unpredictable 
model performance under changing bio-physical contexts. Model outputs 
such as crop progression through different development stages (phenology) 
is typically driven by a much smaller number of factors than yield. 

Models are simplified representations of the real system, and they must 
include the essential processes (as sources of variability of responses) with 
respect to the goal of the analysis planned.  Some processes can be 
omitted, in this case adding to the assumptions made for the simulation 
exercise. Although acceptable, this has implication also on the data which 
can be used for model calibration and evaluation: for instance, if a model 
not simulating water limitation is used, reference data based on systems 
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where water limitation occurs cannot properly be used either for 
calibration or evaluation. 

The implications on which dataset can be used for evaluating a 
crop/cropping system model are important. In fact, whether models tend 
to simulate crop development and growth as limited by few factors, actual 
agricultural production systems, especially in developing countries, show a 
wide range of production constraints that may impact on production non-
linearly.   Unfortunately, yield statistics are presented as values, rather than 
ranges; should ranges be available, the upper limit could be used for 
calibration and model evaluation, allowing deletion from reference data of 
cases that cannot be represented by models, because they include 
processes, or technical mismanagement, which increase the yield gap. 
Furthermore, the technological gap of production system can be different 
across regions and countries; when combined to environmental factors; it 
may lead to a different resiliency with respect to adverse weather. The 
impact is again on the usability of yield statistics to calibrate and/or 
evaluate process based models, because it introduces a further bias as 
result of the year-by-year variability. 

The models used in this project are well known and peer reviewed, 
which implies that they have been evaluated across a broad range of 
environmental conditions. The analyses carried out in this project thus are 
based on such evaluation, and rely on data from the scientific literature for 
model calibration. It must be pointed out that this study uses crop 
production as a level of abstraction for production system, hence aiming at 
representing yield changes (at various production levels) in response to 
scenarios via a 25 x 25 km grid. Even if yields are considered at the various 
production levels mentioned above, yield estimates are potential, and can 
have different realizations in specific production system if analyzed within 
more specific context constraints. This suggests that this type of analysis, 
using the very same tools which allow for different spatial resolutions, 
could benefit from a more detailed calibration in specific countries or 
regions. Yet this level of detail in the analysis was beyond this project goals 
and resources; future applications involving local knowledge and expertise 
will be necessary to refine simulation results. 

A different aspect of model evaluation to be considered relates to model 
use in scenarios of climate change. This refers to unexplored conditions 
where there is no data, site specific, which may represent the performance 
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of production system. Being relationships among biophysical processes in 
the real system non-linear, system performance cannot be estimated using 
trends and statistical models. Likewise, it cannot be used by relying on 
empirical parameters whose empiricism is at the same level of the one of 
the estimate. The relationships used in process-based models also have 
some empiricism, but that empiricism will be one or more levels below the 
level of the prediction, as shown in Figure 9. 

 

 

Figure 9. Level of prediction and level of empiricism in process-based models (redrawn 

from Acock and Acock, 1991) 

The goals in defining new models are using relationships known from 
physics or chemistry, and parameters that have either a biological or a 
physical meaning.  A process-based model can, in principle, be used to 
extrapolate to conditions outside the ones used to develop it. By contrast, a 
fully empirical model, as any statistical model, can be considered usable 
only for the context that originated the data used to build it. 
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Given that no evaluation against data can be done for scenarios of 
climate change impacting on crop development and growth, to accept their 
use in such condition a system analysis must be done confirming model 
adequacy under the new conditions. This has been done for the models 
used in this project, leading to changes in curves of response to 
temperature. The original models had a plateau of response to daily 
maximum air temperature, perfectly adequate in conditions such as the 
one of temperate climates, in which temperature rarely reaches levels 
above the optimum. Hence making the plateau approximation is 
acceptable. It is however known that rates of development and growth 
start decreasing above optimum temperature.  For instance, a plateau 
model will estimate an overall increase of temperature-driven rates in the 
linear part of the response, and same response in the plateau region, when 
temperature increases as in climate change scenarios. By contrast, a 
curvilinear model will estimate a decrease of rates of development and 
growth at higher temperatures. The latter is the case in scenarios of climate 
change where the steep raise of temperature does not allow for accepting 
the hypothesis of good adaptation of crops to environmental conditions, as 
built in decades of agriculture under variable weather, but under no steep 
trend toward higher temperature. This is why the models used include 
curvilinear responses to temperature, which do not show any difference of 
estimates, compared to the original ones, under current weather, but start 
estimating differences at higher temperatures. 

Another aspect that impacts on the adequacy of model structure, if the 
assumption of crop adaptation cannot be accepted, is the response to 
extreme meteorological events. We can consider extreme events for a crop 
the values of environmental variables which are beyond the capability of 
providing a physiological response by the crop, and which may lead either 
to a permanent damage or to death of the crop. Referring to air 
temperature as discussed above, a crop will respond with a given rate to 
temperature, but if temperature reaches levels beyond maximum 
temperature for growth, or below minim temperature for growth, 
permanent damages occur. These aspects were generally ignored in 
commonly used modelling solutions, and are now implemented 
representing one of the production levels simulated. 

To summarize, the development and implementation of the identified 
temperature responses, and the models of impact of extreme events, 
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allows the use of models originally developed for temperate climates, 
under the assumption of good crop adaptation, in scenarios of climate 
change. 

7.4. Climate Change-Crop Impact Simulation Results and Discussion 

Simulations of crop development, growth and yield were carried out 
using the AZS-BioMA models for the following production levels: 

• Potential Yield (no stress); 

• Water limited Yield2 (rainfed or under limited irrigation regimes); 

• Disease-affected Yield (soybean rust and maize grey leaf spots); 

• Abiotic damaged Yield (e.g., thermal shocks); 

• Actual Yield (All limitations simulated together, including their non-
linear interactions). 

For each scenario considered, data are presented in the form of 
percentage differences with respect to results under the baseline climate. 

Eight climate change scenarios were considered from combinations of 
time horizon, SRES pathway and GCM, as discussed in previous sections. In 
addition, two sets of simulations were run for each of these eight 
combinations: without and with adaptation, making a total of sixteen 
scenarios considered. Adaptation strategies were based on: 

• Genotypes with different crop cycle lengths (± 5% of growing 
degree days to reach each phenological stage, targeting average 10-
day variations of crop cycles); 

• Sowing dates (± 20 days); 

• Irrigation via automatic application rules (with context-specific 
constraints, i.e., no more than 300 mm/season of irrigation; no 
more than 3 irrigation events). 

Important to note that simulations were not performed on grid cells 
where crops are not shown to be present in the assembled crop 
distribution masks. 

                                                      
2
 As per local practices, rainfed soybean in Colombia; moderately irrigated maize in Ecuador. 
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7.4.1. Climate Change Simulations 

This section analyzes simulation results in terms of percentage yield 
decrease due to climate change without and with adaptation strategies for 
the 2020 and 2050 time frames. 

Figures included in this section present the simulation results 
(percentage variation compared to the baseline) for water (a) and disease 
(b) limited yields. Results refer to the climate change scenario Hadley-A1B. 
Full simulation results are given in Appendix 1. 

7.4.1.1 Production levels simulated and adaptation strategies 

The general definition of adaptation tested via simulation in this project 
is given by changes in agricultural management that farmers may 
implement to alleviate negative impacts of the weather scenarios 
evaluated. Adaptation by farmers will occur, to some extent, regardless of 
any action to support or steer it from government or local authorities. 
Consequently, although simulating impact assessment for "unchanged 
systems" is a prerequisite to get insight of system behavior with the target 
of developing adaptation strategies, its results should not be consider as 
one of the possible "future scenarios for agriculture".   

Adaptation tests are run considering three factors: 

• Genotype: the duration of the crop cycle evaluated is medium for the 
analysis of the baseline, whereas early and late maturity genotypes 
are also evaluated in the simulation of weather scenarios.  

• Planting time is explored by testing the anticipation of planting dates.  

• Water supply is implemented using the same rule-based model used 
for the baseline simulation, parameterized in order to provide a 
medium level of water availability as detailed in the technical 
annexes. 

Water supply was always active in simulations for irrigated/potentially 
irrigated crops (maize and soybean in this study), while all combinations 
related to genotype and planting time were explored. 

Crops were simulated in cells where their relative occupancy resulted 1% 
or greater of the agricultural area. The modelling capabilities of the 
platform allow simulating, for each crop, adaptation strategies, weather 
scenarios, and different abstractions of production systems identified as 
production levels: 
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• Potential production (P: crop growth solar radiation and 
temperature driven); 

• Water limited (WL: all factors of P and water limitation); 

• Abiotic stresses limited (AL: P and effects due to temperature 
stresses of extreme events for crops); 

• Disease limited (DL: P and impact from one crop-specific disease); 

• Multiple-factors limited (MFL: P, WL, AL, and DL limited). 
 
The simulation of potential production, as defined above, is useful to 

test responses not constrained by either resources - as quantities, or 
technology (or both). Consequently, estimating a multiple factors limited 
production allows estimating the technological gap (e.g., we do not use a 
pivot system to irrigate weekly, hence no more than 4 irrigations per 
season via sprinkler) and resource limited production (e.g., no more than 
300 mm /season of water available). Noticeably, the levels potential 
production and abiotic stress limited production can be counteracted as 
adaptation measures either via planting different genotypes and changing 
timing of sowing (same crop - we test both in this project), or changing 
crops (we provide only scenarios of land suitability for crops in this project). 

When water limited production was simulated, a rule-based agro-
management model to supply water to crops was used i.e., adaptation with 
respect to water use is included (adaptation not constrained by water 
availability beyond the setting of rules, and not constrained by technology). 
The picture provided by WL simulations estimates a possible technical 
adaptation, whereas context specific constraints (e.g., no more than 300 
mm/season of irrigation; no more than 3 irrigations) can either be 
considered ex-post evaluating the adaptation scenarios provided, or may 
lead to another run of simulations. 

The simulation of diseases limited production does not include agro-
management to alleviate the impact of a possible increased pressure by 
plant pathogens due to climate change. These simulations can be of direct 
use if no chemical can be used in a given context; otherwise simulation 
results would overestimate the impact of climate change neglecting 
possible adaptation (see opening paragraph). In the latter case, economists 
could use the quantitative estimates of diseases-limited production could 
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be used in a semi-qualitative fashion. 
From the above, the assumption made using scenarios of water-limited 
production is that diseases, if affecting the crop, will be either chemically or 
genetically controlled. 

As concluding note related to the choices of production systems and 
adaptation in this project, basic food commodities-based production 
systems abstracted at the level of “crops”, and basic adaptation strategies, 
are evaluated. However, it must be pointed out that the simulation of 
impacts of extreme events and of the system crop-disease is completely 
innovative. Also, the platform is suitable for more detailed analysis as scale 
and/or context specificity. 

7.4.1.2. Assumptions of data and modelling solutions 

Several assumptions were made while using data and selecting specific 
modelling solutions, and by designing the simulation experiments 
presented herein. Such assumptions set the limit of use of the results of 
this analysis. They should be carefully evaluated, to avoid introducing 
conceptual errors in the final results of this analysis. The latter are the 
result of an integrated modelling chain, of which the crop biophysical 
simulations are an input. Such assumptions are discussed below. 

Weather data 

Weather data refer to the ERA-Interim interpolation and run as 
described in the relevant paragraph. The time series representing each 25 x 
25 km grid cell refers to a flat land at the predominant elevation above sea 
lea level. This makes the time series more representative of real systems, 
which are also more uniform, in flat land areas, whereas the 
representativeness in more critical for areas where slopes and aspect (i.e., 
the orientation of the slope) change within cell. In these cases a more 
detailed analysis using digital elevation models and a smaller spatial scale 
would articulate more system performance. However, given the target of 
the study, which focuses on the entire Central and Latin America, the 
approximation can be considered acceptable. 

Furthermore, GCMs provide estimates primarily of mean temperature, 
rainfall, and solar radiation. Given model requirements as inputs, the patter 
of variability of other variables (e.g., wind, air relative humidity) must also 
be used, and was kept unchanged in data layers of scenarios of climate 
change in these simulations. In addition, GCM outputs typically lack 
detailed and quantified indications of realistic changes in frequency of 
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extreme events. For this reason, climate variability, i.e., the shape of 
higher-order moments was kept at present values. The specific 
distributions, based on thresholds, such as the number of temperature or 
water-related stress events, were modified in our time series. Yet one could 
imagine developing climatic “sub-scenarios,” where the variability of 
specific climate variables could be changed in a sensitivity approach—using 
the features of the weather generator in the platform. 

Model calibration 

Model calibration, was based on literature resources, which generally 
make available reference data for large areas. As for weather data, an 
analysis at finer spatial scale is needed using local expertise would yield 
more articulate results per target areas. 

Soils 

As assumed for weather data, soils were distributed on a flat surface, 
i.e., terrain. This may alter significantly the soil water balance in areas with 
steep terrain. Also, in areas where soils are differentiated, ranging from 
high to low water holding capacity, simulation results will represent only a 
limited portion of actual results, although they capture the predominant 
features of the system. 

Production systems 

Production systems were abstracted at the level of “crop”, ignoring 
possible structures typologies of cropping systems. If cropping systems 
were analyzed instead, crop performance in a given cell would result from 
its performance in different rotations and under different inputs of 
resources. Also as a consequence of weather data resolution, model 
calibration, and soils, simulation results were an abstraction of production 
systems for the area, and should be compared to actual, point data, with 
caution. However, the goal of the analysis aims at estimating basic impact 
dynamics and adaptation strategies for the large areas considered. 

Adaptation strategies 

The adaptation strategies considered basic technical options, likely 
available to farmers today. This implies that alleviation to the impact of 
climate change was estimated on the basis of the same abstraction of 
production system evaluated in the baseline simulations (i.e., referred to 
current conditions). 

There was no consideration of agent-based feedback to the building of 
adaptation strategies—neither from agricultural sector models nor from 
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farm models—capable of identifying further option for production systems 
(e.g., new crops), and setting constraints due to technology, resource 
limitations, or both. Also, given the time span of the analysis, no innovation 
(e.g., new genotypes) was tested. This hypothesis can be considered mostly 
adequate for 2020, but is probably quite conservative for 2050, when even 
the adapted systems tested would not be very effective at all sites in 
alleviating the consequences of climate change. In the latter case, complete 
changes in the typology of production systems should be tested, rather 
than simple changes in agro-management and resource use evaluated in 
this study. 

 
7.4.1.3 Biophysical Results 

Wheat 

Without adaptation, wheat yields were significantly affected by climate 
change, regardless of the emission scenario or GCM considered (Tables 10, 
14, Appendix 1). Percentage yield decreases were more pronounced in 
Mexico, in the Caribbean region, and in the Northeastern parts of the 
continent (Colombia and Brazil). Projected water-limited productions for 
2020 and 2050 were always lower than in the baseline, with Southern and 
Western countries less affected. Yield reductions were due to the 
shortening of the crop cycle due to higher thermal time accumulation, 
leading to lesser days available to fill grains. The projected yield decrease 
due to diseases in 2020 and 2050 was significant. Frost damages were 
expected to affect wheat yields less seriously in Chile, where shortened 
cycles will reduce the crop exposure to pathogens, thus reducing also the 
pressure of wheat leaf rust on the crop. With few exceptions (e.g., Chile), 
insufficient water availability affected wheat productivity more than other 
factors, thus suggesting the development of varieties with characteristics 
able to assure higher resistance to water shortages, e.g., more capability to 
deepen the soil portion explored by roots, more favorable leaf angle 
distribution. 

Compared to the simulations carried out without the implementation of 
adaptation strategies, projected impacts were decidedly less pronounced 
for all the production levels and scenarios considered (Tables 18, 22, 
Appendix 1). Impact on water limited yields was still significant however, 
with water availability playing a key role in limiting wheat productivity: the 
use of genotypes with longer cycles compensated for the climate change 



Section 3 Chapter 7                                                                                                   7 

168 

 

effect in reducing the grain filling period, but increased transpiration 
demands. Except for Chile, disease pressure decreased everywhere, 
although no adaptation strategies specific for leaf rust were applied. The 
highest indirect benefits of adaptation on disease-limited productions were 
simulated for Brazil, Uruguay, and for Central America and Caribbean 
countries. Insufficient water availability played a major role in Brazil and 
Chile, whereas disease pressure affected productions especially in 
Argentina. 

 

 
Figure 10. Wheat Productivity Shocks (Hadley A1B) to 2020 
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Figure 11. Wheat Productivity Shocks (Hadley A1B) to 2050 
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Soybean 

Without adaptation strategies, soybean yields were affected by climate 
change in 2020 and increasingly in 2050, although with different 
magnitudes throughout Latin America (Tables 12, 16 Appendix 1). Yield 
losses were larger in Brazil and in the Northern part of the continent (>-30% 
with respect to baseline), whereas in Argentina, Uruguay, Bolivia and 
Colombia yield decreases were less pronounced. By considering projected 
water-limited production level, yield losses were reduced in Argentina and 
Uruguay, whereas in Brazil, Central America and Caribbean regions they 
suffered reductions. This could be explained by the greater impact of 
climate change in Brazil (see D2 for further details), where the reduction of 
crop cycle length is more pronounced than in other parts of Latin America, 
markedly shortening the soybean grain-filling period. The impact of rust 
disease did not increase with warming, with the exception of Colombia, in 

which it increased for all combinations GCM × emission scenario. This can 
be explained by the severity of the increase in temperature regimes in a 
warm environment such as the Colombian one, in turns leading to more 
favorable conditions for the pathogen. 

Adaptation strategies (Tables 20, 24) reduced the magnitude of impacts 
across all scenarios and time windows considered. For example, considering 
the potential production level, there were situations with positive impacts 
of climate change with adaptation (Ecuador and Uruguay). The most 
affected country was Brazil, with a maximum percentage of yield losses still 
close to -25% (Hadley-A1B). In certain countries, percentage yield decreases 
were similar regardless of water management status (i.e., Brazil, Colombia, 
Uruguay, Central America and Caribbean); in others, the climate change 
impact was larger under water-limited conditions (Ecuador). In Argentina, 
the use of varieties with longer cycle effectively compensated the climate 
change negative effects tending to shorten crop cycles. 
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Figure 12. Soybean productivity shocks (Hadley A1B) to 2020 
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Figure 13. Soybean productivity shocks (Hadley A1B) to 2050 

 

Maize 

Climate change negatively affected the yields of maize throughout Latin 
America, regardless to the emission scenario or GCM is used (Tables 11, 15, 
Appendix 1). This was mainly due to the reduction in the grain filling period 
under the higher thermal time accumulation rates, not compensated for by 
the increase in daily biomass accumulation rates and by the carbon dioxide 
fertilization effect (lower in C4 species like maize). The countries most 
affected were Brazil, Ecuador, Mexico and Caribbean countries, where 
maize is one of the main crops Generally, the Hadley GCM led to the 
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highest losses except for Brazil and Ecuador (for the latter, only for the B1 
scenario). Abiotic factors did not significantly affected maize productions, 
with the only exceptions are represented by a slight yield decrease in 
Mexico, Central America, and Caribbean. Considering the heterogeneity of 
the responses in the area, it is evident the need for adaptations strategies 
developed at country level. 

For the 2020 time frame, and to a much lower extent in 2050, 
adaptation strategies significantly reduced climate change impacts on grain 
maize yields in most of the regions of interest (Tables 19, 23, Appendix 1), 
although yield decrease was still relevant in major maize producing 
countries, like Mexico. 

Higher percentage decreases were simulated for the Hadley GCM 
compared to the NCAR one, with A1B emission scenario usually leading to 
the most severe situations. Adaptation strategies positively concurred to 
limit climate change damage to maize production, even in the countries 
where the grey leaf spot resulted the most limiting factor. 
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Figure 14. Maize Productivity Shocks (Hadley A1B) to 2020 
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Figure 15. Maize Productivity Shocks (Hadley A1B) to 2050 
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Rice 

Except for Brazil, Mexico, and Caribbean, 2020 and 2050 projections are 
encouraging, with percentage variations positive in most of the cases 
(Tables 13, 17, Appendix 1). This is due to the high thermal requirements of 
rice (a macrothermal of tropical origin). Under the current climate (i.e., the 
baseline), productions are slightly penalized by limitations to 
photosynthesis due to sub-optimal temperatures. Under warmer 
conditions, the negative effect due to the shorter grain filling period due to 
the higher thermal time accumulation rates is counterbalanced by higher 
biomass accumulation rates because of the most favorable conditions for 
photosynthesis. The net result of these two opposite effects is a generalize 
increase in productivity, except in countries already experiencing warm 
climates (where thermal conditions for photosynthesis are already close to 
optimal levels and the reduced grain filling period leads to a decrease in 
final yields). In temperate areas (especially in Uruguay) climate change 
leads to a decrease in the incidence of pre-flowering cold shocks inducing 
sterility. Except for Brazil and Caribbean, the blast disease pressure on the 
crop decreases, because of thermal and pluviometric conditions less 
favorable for the pathogen Pyricularia grisea. 

Adaptation strategies – based on the use of different genotypes and of 
different sowing dates – were applied only for the countries where a 
decrease in production levels was observed (Tables 21, 25, Appendix 1): 
Brazil, Ecuador, Mexico and Caribbean. The rational behind the adaptation 
was mainly related to the use of genotypes with a longer cycle to 
compensate the climate change effect in shortening the grain filling period. 
Sowing dates were also changed. Results indicate that future conditions will 
be decidedly favorable for rice. The use of long-cycle genotypes allowed to 
get long grain filling periods and high daily biomass accumulation rate, 
because of negligible thermal limitation to photosynthesis and of the 
carbon dioxide fertilization effect, higher for the C3 species than for the C4 
ones (e.g., maize). As discussed for wheat, the implementation of 
adaptation strategies targeting crop features mainly related with crop cycle 
length led to indirect benefits in terms of pathogens pressure (Fig. 12.b). 
This could suggest possible reduction of agrochemicals in the future in 
important rice producing countries, like Brazil, and to the uselessness of 
investing efforts in developing blast-resistant varieties. 
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Figure 16. Rice Productivity Impacts (Hadley A1B) to 2020 
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Figure 17. Rice Productivity Impacts (Hadley A1B) to 2050 

7.4.1.4 Agro-management Adaptation 

At sub-national scales, specific simulations and analyses were 
carried out to resolve irrigation solutions under climate change regimes 
necessary to limit, at each simulated grid, the otherwise negative impacts 
under the no adaptation scenarios. 
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Maize 

 

 
Figure 18. Maize Productivity Impacts (Hadley A1B) 2020-2050 
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Soybean 

 

 

Figure 19. Soybean Productivity Impacts (Hadley A1B) 2020-2050 

 

7.5. Conclusions 

This report detailed the components of a new modelling platform for 
crop impact studies, the AZS-ENVISAGE model, capable of evaluating the 
dynamic interactions of agro-climatic and field management factors 
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impacting on crop growth and development, while interacting with a 
detailed general equilibrium model in order to include the constraints of 
realistic socio-economic factors on actual production levels, trade and 
welfare outcomes. 

Although several such platforms exist, the current work represents 
progress on a number of current bottlenecks, following recommendations 
made in IPCC AR4. First, its basic datasets and biophysical models are fully 
transparent, both in terms of their validation and availability of 
components, including remote accessibility to interested users. These key 
features imply that stakeholders around the world can access the platform, 
evaluate it, test it, and wherever possible, improve it by adding or refining 
datasets, or even by modifying or substituting component code, as 
appropriate for specific areas of study or particular problems. Second, the 
platform is extensible to any region of the world, and is independent of 
spatial scale, so that the latter can be also modified by users as the 
availability of more refined dataset for specific regions arise. Third, it allows 
for explicit, albeit simplified, adaptation of agro-management, including a 
crop suitability assessment module, in order to test and evaluate 
adaptation strategies aimed at limiting risk under climate change scenarios. 
Finally, the linkages between biophysical and economic models are explicit, 
and allow in principle for two-way interactions, with the ability to evaluate 
economically specific agro-management solutions identified by the crop 
models, so that the latter could further test specific solutions and then feed 
back the information for new updated modelling runs. 

This report documented in details model components, and then focused 
on the application of the modelling platform to evaluating the impacts of 
climate change on key crops in Latin America. 

Results of this study confirmed and extended previous findings, 
indicating that the impacts of climate change on agriculture in Latin 
America are expected to be significant, with severe risk to crop production 
in most countries, and the potential to alter regional production and 
welfare distribution compared to present. Next steps will include 
evaluation of the platform regionally, via interactions with stakeholders and 
extension of regional dataset addressing specific problems, and the 
extension of the platform to allowed more dynamic interactions between 
biophysical and economic computations. 
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8.1. Abstract 

The evaluation of biophysical models is usually carried out by estimating 
the agreement between measured and simulated data and, more rarely, by 
using indices for other aspects, like model complexity and 
overparameterization. In spite of the importance of model robustness, 
especially for large area applications, no proposals for its quantification are 
available. In this paper, we would like to open a discussion on this issue, 
proposing a first approach for a quantification of robustness based on the 
variability of model error to variability of explored conditions ratio. We 
used modelling efficiency (EF) for quantifying error in model predictions 
and a normalized agrometeorological index (SAM) based on cumulated 
rainfall and reference evapotranspiration to characterize the conditions of 
application. Population standard deviations of EF and SAM were used to 
quantify their variability. The indicator was tested for models estimating 
meteorological variables and crop state variables. The values provided by 
the robustness indicator (IR) were discussed according to the models’ 
features and to the typology and number of processes simulated. IR 
increased with the number of processes simulated and, within the same 
typology of model, with the degree of overparameterization. No correlation 
were found between IR and two of the most used indices of model error 
(RRMSE, EF). This supports its inclusion in integrated systems for model 
evaluation. 

 

Keywords: Model evaluation, air relative humidity, modelling efficiency, 
WARM, CropSyst. 
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8.2. Introduction 

Simulation models are increasingly used in large area agro-
environmental applications to support decision making. In this context, 
real-time monitoring of crop conditions, estimating the environmental 
impact of cropping systems, and evaluating the effects of alternate 
management and climate change scenarios are some of the crucial 
challenges modellers are facing with (Bannayan and Crout, 1999). For these 
kinds of application, like for all the others where simulation models are 
used, it is necessary to clearly identify the objectives and conditions of 
application (e.g., scale, availability of data) in order to derive a criterion to 
evaluate the models according to their suitability. This will allow to identify 
the best model among those available to simulate the biophysical processes 
of interest in the specific conditions which characterize each specific 
modelling study. 

Model evaluation - as an autonomous discipline - is one of the issues 
which mostly catalyzed the attention of the modellers community in the 
last years (e.g., Mayer and Butler, 1993; Rykiel Jr., 1996; Bellocchi et al., 
2009). Many indices for quantifying the agreement between measured and 
simulated data were proposed (e.g., Loague and Green, 1991), together 
with indices for assessing model complexity (e.g., Akaike, 1974) and 
relevance (Confalonieri et al., 2009c). The need of defining evaluation 
criteria accounting for different aspects of models behaviour led to the use 
of fuzzy-based procedures for aggregating different indices (Bellocchi et al., 
2002) in order to allow multi-metric model evaluations (e.g., Confalonieri et 
al., 2009c). 

Robustness is one of the model features users are more interested in, 
especially in case of large area applications, when users have to trust the 
model in conditions far from those in which the model itself was calibrated 
and tested. Although no expressions for its quantification have been 
proposed, it can be defined as a measure of models reliability under 
different sets of experimental conditions. Lack of robustness can be 
explained (i) by incoherence in some of the mathematical relationships 
used to formalize the knowledge, (ii) by gaps in the knowledge itself, or (iii) 
by the inclusion of the effects of a specific location, season, or management 
practice in the model’s parameters, which instead should only describe the 
features of the biophysical system modelled, regardless to the conditions of 
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application. Bellocchi et al. (2009) suggested that a sound test of model 
robustness is obtained when a validation is carried out by comparing the 
seasonal evolution of different simulated variables with observations 
collected in a large number of experiments under a broad range of 
conditions, covering different locations and management practices. 
Although these criteria appear suitable for testing models robustness and 
instinctively reasonable, they do not provide any quantification for this 
important aspect, thus avoiding the use of this concept in integrated multi-
metric systems for model evaluation. Confalonieri et al. (2009a) proposed a 
quantification of model robustness based on the comparison of model 
performances during calibration and validation, suggesting that a model is 
robust if its performances at the end of the calibration process are not 
significantly better than those shown on an independent validation dataset. 
The same authors observed that this method has the limit of being 
drastically influenced by the selection of the data used for calibration and 
validation, therefore suggesting multiple calibration tests against 
independent datasets (i.e., every possible combinations of calibration and 
validation datasets). This method appears hard to perform, even in case 
tools for automatic calibration are available. 

The objectives of this study were (i) to propose an indicator for 
quantifying model robustness, (ii) to test it on two typologies of models, 
and (iii) to discuss it in terms of relationships with other aspects of model 
evaluation. 

8.3. Materials and methods 

8.3.1. A new indicator of model robustness (IR) 

The indicator of model robustness (IR) is calculated using Eq. 1: 

SAMEFRI σσ=                                                                                                                                                                                                                                                                                                                                                                                           [1] 

where σEF (Eq. 2) is the standard deviation of the modelling efficiencies 

(EF; Nash and Sutcliffe, 1970; -∞ ÷ +1; optimum = 1; if positive indicates 
that the model is a better predictor than the average of observations) 
calculated for different datasets: 

( ) ( )∑∑
==

−−=
n

i
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21                                                                                                                                                                                                                                                                [2] 
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where Di is the difference between Si and Mi, with Si and Mi being the ith 
simulated and the ith measured values, respectively; n is the number of 

couples Si-Mi; M  is the mean of measured values. 
σSAM is the standard deviation of the values of a Synthetic 

AgroMeteorological indicator (SAM; -1 ÷ +1; Eq. 3) calculated for the same 
datasets used to calculate σEF. 

( ) ( )00 ETRainETRainSAM +−=                                                                                                                                                                                                                                                  [3] 

where ET0 (mm) is the reference evapotranspiration calculated for the 
period March 1st – October 31st and Rain (mm) is the cumulated rainfall in 
the same period. In case of other typologies of biophysical models, SAM 
must be substituted with another indicator describing the variability among 
datasets. In order to calculate both EF and SAM standard deviations, the 
available datasets are assumed to coincide with their population, therefore 
the sum of the squared deviations is divided by the number of datasets. 

IR assumes values between 0 and +∞, with opomum = 0. 

8.3.2. Models and datasets used 

IR was tested using published data from papers in which two categories 

of models were tested (Table 1): meteorological and crop growth and 

development.  

The papers were selected according to the following criteria: (i) 

availability of data from different sites/years/variables; (ii) presence of EF 

values. Abraha and Savage (2008) tested six models for the estimation of 

daily global solar radiation from air temperature using data collected in 

seven sites spread through four continents. Bregaglio et al. (2009) 

evaluated 13 modelling solutions for the estimation of hourly air relative 

humidity using data collected in 22 European sites. Confalonieri et al. 

(2009a) compared three crop models for the simulation of rice 

aboveground biomass (AGB) in Northern Italy. Among these crop models, 

WARM was also evaluated against rice AGB and leaf area index (LAI) data 

collected in China by Confalonieri et al. (2009b), whereas CropSyst was 

used by Bechini et al. (2006) for simulating wheat growth. 
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Table 1. Data used for this study. Details on models used can be found in the text 

Site name Latitude Longitude Years
Davis, USA 38° 32' N 121° 47' W 1985-2005
Cortez, USA 37° 14' N 108° 41' W 1992-2005
Griffith, Australia 34° 17' S 146° 3' E 1986-2005
Padova, Italy 44° 58' N 12° 11' E 1990-2003
Pretoria, South Africa 25° 45' S 28° 11' E 1993-2003
Rothamsted, UK 51° 48' N 0° 24' E 1980-2000
Wageningen, The Netherlands 51° 58' N 5° 38' E 1985-2005
Almonte, Spain 37° 2' N 6° 31' W 2007
Arezzo, Italy 43° 3' N 11° 5' E 2007
Campogalliano, Italy 44° 4' N 10° 5' E 2007, 2008
Caronia Buzza, Italy 38° 0' N 14° 3' E 2003-2007

Isla Cristina, Spain 37° 1' N 7° 3' W 2007
Firenze, Italy 43° 5' N 11° 6' E 2007
Grosseto, Italy 42° 5' N 11° 1' E 2007
Javea, Spain 38° 5' N 0° 1' E 2007
Lagos, Portugal 37° 0' N 8° 4' W 2005
La Palma, Spain 37° 4' N 0° 6' W 2007
Lentini, Italy 37° 2' N 15° 0' E 2004-2007
Lucca, Italy 43° 5' N 10° 3' E 2007
Mineo, Italy 37° 2' N 14° 4' E 2003-2007
Mirandola, Italy 44° 5' N 11° 0' E 2005
Misilmeri, Italy 38° 0' N 13° 3' E 2003-2007
Paternò, Italy 37° 4' N 14° 5' E 2003-2007
Pistoia, Italy 43° 6' N 10° 6' E 2007
Ribera, Italy 37° 3' N 13° 2' E 2003-2007
Riposto, Italy 37° 4' N 15° 1' E 2005-2007
San Felice sul Panaro, Italy 44° 5' N 11° 1' E 2007
Varese, Italy 45° 5' N 8° 5' E 2003, 2004
Zola Pedrosa, Italy 44° 3' N 11° 1' E 2005, 2006
Castello d'Agogna, Italy 45° 14' N 8° 41' E 1994-1996
Gudo Visconti, Italy 45° 22' N 9° 0' E 1990
Mortara, Italy 45° 15' N 8° 45' E 1996
Opera, Italy 45° 22' N 9° 12' E 2002, 2004
Velezzo Lomellina. Italy 45° 9' N 8° 44' E 1999
Vercelli, Italy 45° 19' N 8° 25' E 1989, 1990
Vignate, Italy 45° 29' N 9° 22' E 2002
Changping, China 40° 02' N 116° 10' E 2001, 2002
Gaozhai, China 34° 02' N 114° 51' E 2001
Jiangpu, China 32° 24' N 118° 46' E 2001, 2002
Tuanlin, China 30° 52' N 112° 11' E 1999, 2000
Sant'Angelo Lodigiano, Italy 45° 15' N 9° 22' E 1986-1990, 2001
Lodi, Italy 45° 19' N 9° 28' E 1996

* 1: meteorological; 2: crop growth and development
** BC: Bristow and Campbell (1984); CD: Donatelli and Campbell (1998); DB: Donatelli and Bellocchi (2001); Hgvs: Hargreaves
      et al. (1985); Hunt et al. (1998); Mahmood and Hubbard (2002);  RH 1, 2: Bekele et al. (2007); RH 3, 4: Hubbard et al. (2003); 
      RH 5: Linacre (1992); RH 6: Ephrat et al. (1996); RH 7: Waichler et al. (2003): RH 8_X: Allen et al. (1998)

*** Rad: global solar radiation (MJ m-2 d-1); HARH: hourly air relative humidity (%); AGB: aboveground biomass (t ha-1);

     LAI: leaf area index (m2 m-2); PNC: plant N content (%): UPTK: N uptake (kg ha-1); N-NO3
-, N-NH4

+: 10 cm soil content (kg ha-1)

Models 
used**

Variables 
simulated***

AGB, LAI 
(rice)

RH 1, RH 
2, RH 3, 
RH 4, RH 
5, RH 6, 
RH 7, RH 
8_0, RH 
8_1, RH 
8_2, RH 
8_3, RH 
8_4, RH 
8_5

HARH

References
Datasets

1

2

AGB, PNC, 
UPTK 

Rad
Abraha and 
Savage, 2008

Bregaglio et 
al., 2009

BC, CD, 
DB, Hgvs, 
HKS, MH

Type of 
model*

Bechini et al., 
2006

CropSyst

Confalonieri 
et al., 2009b

Confalonieri 
et al., 2009a, b

WARM, 
CropSyst, 
WOFOST

WARM

AGB (rice)

AGB, LAI 
(rice)
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8.4. Results and Discussion 

Table 2 shows the values of IR calculated for the different models 
belonging to the two typologies analyzed, together with the population 
standard deviations of EF and SAM – used for its computation – and the 
average values of RRMSE and EF. 

 
Table 2. Average and population standard deviation of relative root mean square 

error (RRMSE, %), modelling efficiency (EF), population standard deviation of the 

synthetic agrometeorological indicator (SAM), and Indicator of model robustness (IR) for 

the models under study. Greyed areas show the best result per metric 
Type of 
model*

Variables simulated** Model used µRRMSE (%) µEF σ EF σ SAM I R

Rad BC 23.16 0.8186 0.0488 0.2151
CD 22.88 0.8200 0.0501 0.2208
DB 23.34 0.8114 0.0520 0.2292
Hgvs 23.74 0.8071 0.0592 0.2610
HKS 23.33 0.8143 0.0602 0.2654
MH 25.84 0.7743 0.0414 0.1823

HARH RH 1 25.69 0.2329 0.2069 0.9975
RH 2 25.15 0.2440 0.2113 1.0189
RH 3 28.77 0.0747 0.3527 1.7007
RH 4 27.21 0.1845 0.2605 1.2562
RH 5 27.03 0.3171 0.1700 0.8196

RH 6 27.66 0.1631 0.3458 1.6674
RH 7 17.56 0.7004 0.0841 0.4056
RH 8_0 29.55 -0.0082 0.3554 1.7138
RH 8_1 26.89 0.1057 0.2862 1.3802
RH 8_2 25.98 0.1015 0.2541 1.2250
RH 8_3 26.87 -0.0419 0.3080 1.4853
RH 8_4 29.29 -0.3510 0.4683 2.2580
RH 8_5 32.85 -0.8486 0.7278 3.5092

AGB (rice) CropSyst 24.04 0.9012 0.0645 0.3370

WARM  § 23.78 0.9316 0.0312 0.1632
WOFOST 25.34 0.9333 0.0712 0.3719

AGB (rice; China) WARM  § 22.98 0.8990 0.0820 0.2220 §§ 0.3693

LAI (rice; China) WARM 39.21 0.6075 0.2236 0.1978 §§ 1.1304

AGB (wheat) CropSyst 22.00 0.7170 0.1556 0.1200 1.2964
PNC (wheat) CropSyst 18.67 -0.2500 2.6368 0.1027 25.6701
UPTK (wheat) CropSyst 17.22 0.5078 0.3542 0.1027 3.4483

* 1: meteorological; 2: crop growth and development

** Rad: global solar radiation (MJ m-2 d-1); HARH: hourly air relative humidity (%); AGB: aboveground biomass (t ha-1);

     LAI: leaf area index (m2 m-2); PNC: plant N content (%): UPTK: N uptake (kg ha-1)
§ different values for all the metrics were calculated for the Chinese dataset, to allow the comparison among I R  values calculated 
   for the three models used by Confalonieri et al. (2009a) under North Italian conditions
§§ not all the datasets from the same source (reference) contained all the variables. This explains the different values of σSAM

1

2

0.2074

0.2269

0.1914

 
 

Among the models for the estimation of daily global solar radiation from 
air temperature data, MH (Mahmood and Hubbard, 2002) appears to be 
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the most robust, although it presents the worst values for RRMSE and EF. 
This leads to conclude that, in the explored conditions, MH – ‘the worst’ – 
has a more stable behaviour than the other models across different sites 
and years, therefore providing the highest warrantees to avoid bad 
surprises when used under unexplored conditions (e.g., large area 
applications). RH 7 (Waichler and Wigmosta, 2003), the modelling solution 
providing the best agreement with measured data (best values for both 
RRMSE and EF), is also decidedly the most robust one. This can be 
explained by the fact that RH 7 is the only modelling solution using as 
inputs daily values of maximum and minimum air relative humidity. Among 
the models for crop growth and development compared by Confalonieri et 
al. (2009a), WARM demonstrated to be the most robust, although it is not 
the most accurate according to all the agreement metrics (best value for 
RRMSE, second for EF). It is interesting to notice that WOFOST (van Keulen 
and Wolf, 1986), the most complex model according to the Akaike 
Information Criterion (Confalonieri et al., 2009c), is the less robust. This 
could be explained considering that a model with a high number of 
parameters presents (i) a high number of degrees of freedom during the 
calibration process but also (ii) a high risk of including effects of specific 
sites and/or years in the values of parameters which should instead 
describe only the morphological and physiological features of the species 
(or varieties) simulated. If factors other than plant features are included in 
parameters values, the model could result unsuitable under conditions 
different from those used for its calibration. According to the simulations 
carried out in China, where LAI and AGB measured data were available, 
WARM showed a higher degree of robustness and better values for RRMSE 
and EF for the estimation of AGB. This reflects the lower accuracy of crop 
models in reproducing leaf area expansion, especially after the close 
canopy stage, already underlined by other authors (e.g., Bouman and van 
Laar, 2006). The lower robustness of CropSyst for the simulation of winter 
wheat AGB compared to rice AGB could be explained by the fact that, for 
the former, simulations were carried out under different levels of nitrogen 
fertilization, whereas only growth under potential conditions was simulated 
for rice. Therefore, wheat AGB values were probably affected by errors due 
to the need of simulating the nitrogen cycle in the plant-soil system. 

In general, observing the average values for IR for each typology of 
model, it is possible to notice that robustness seems to decrease with 
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increasing model complexity, with the best IR average value (1.0953) 
obtained by the meteorological models (against a value of 4.0983 for crop 
growth and development models). This is in agreement with the positive 
relationship between the length of the chain of simulated processes and 
the value of IR already discussed for N-limiting growing conditions. 

Figure 1 shows the relationships between IR and the indices of 
agreement RRMSE and EF. The very low value for R2 of the two regressions 
demonstrates that there are not redundancies between the information 
provided by IR and by the indices used for quantifying model accuracy. This 
should be considered decidedly important, since the concept of model 
robustness, in the proposed formalization, appears to be relatively 
independent from the model accuracy quantified during classical studies on 
model evaluation. 
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Figure 1. Relationships and regression lines between model robustness indicator (IR) 

and the indices of agreement relative root mean square error (RRMSE, %) and modelling 

efficiency (EF) 
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8.5 Conclusions 

The aim of this paper is far from proposing a final solution to the 
problem of quantifying model robustness. We simply would like to open a 
discussion on this important modelling issue. Quantifying the robustness of 
biophysical models under a wide range of conditions is crucial for whatever 
reasonable model evaluation. In fact, it allows to compare different 
modelling approaches according to their capability to avoid incoherent 
behaviours when used to extrapolate information about a system 
previously unexplored and, more generally, for a practical use of the 
biophysical models themselves. 

The index we propose for characterizing a dataset from an 
agrometeorological point of view is just an attempt of deriving a simple 
normalized index based on rainfall and reference evapotranspiration, since 
the latter can be considered a synthetic representation of the culmination 
of numerous meteorological and agrometeorological processes. Of course, 
the concept of our robustness indicator is the ratio between the variability 
of model error and that of the conditions explored. In order to extend the 
use of the same robustness indicator to other typologies of model, a 
different index for characterizing the conditions of application must be 
used. 

The independence of the information provided by the proposed 
indicator from the one related to the agreement between measured and 
simulated data under parameterization conditions strongly support the 
inclusion of IR in integrated systems for models evaluation. 
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9.1. Abstract 

Different methodologies for evaluating aspects of model performance 
going beyond the pure agreement between measured and simulated data 
have been recently proposed. These indicators and criteria for the 
evaluation of, e.g., complexity and robustness can be used in conjunction 
with well-known metrics for the evaluation of model accuracy – such as 
root mean square error and modelling efficiency – to get a deeper 
knowledge about models structure and behaviour. The aim of this paper is 
to propose an indicator of model plasticity, defined as the aptitude of a 
model to change the sensitivity to its parameters while changing the 
conditions of application. Sensitivity was here analysed using the Sobol’ 
method for sensitivity analysis (SA). Concordance among parameters 
relevance (total order effect) estimated under different conditions allowed 
to quantify changes in the way models react to different environments. The 
concordance among the different SA results was related to the variability of 
a normalized agrometeorological indicator used to characterize the 
explored conditions. The plasticity indicator was tested using three 
different crop models (WARM, CropSyst, WOFOST; rice was simulated), 10 
European locations, and 10 years for each location, for a total of 5,939,200 
simulations and 300 SA experiments. Results indicated WOFOST as the 
most plastic, both within location, year, and by using all the combinations 

location × year, whereas WARM showed to be the less plastic across the 
conditions explored. Previous studies carried out on the same models in 
northern Italy seem to suggest a direct relationship between model 
complexity and plasticity, whereas model accuracy seems to be unrelated 
to these features. This consideration underlines that, in case of availability 
of different models with a similar degree of accuracy, different choices 
should be performed for different modelling studies, characterized by 
different aims and conditions of application. 

 
Keywords: WARM, CropSyst, WOFOST, Model evaluation, Robustness. 
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9.2. Introduction 

The evaluation of simulation models is recently moving from the simple 
assessment of the agreement between measured and simulated data 
towards the integrated evaluation of model features related to their 
theoretical formalization and behaviour. Especially when different 
approaches are compared, model evaluations are increasingly based on 
multi-metric techniques, where indicators specific for the assessment of 
different model features are applied and aggregated (Table 1).  

 
Table 1. Criteria for model evaluation, description and sample indices 

Evaluation 

criteria 

Description Sample indices  References 

Accuracy The ability of the model 
to fit reference 
measured data 

Root mean square error (RMSE) Fox, 1981 

Modelling efficiency (EF) Loague and Green, 1991 

Mean absolute error (MAE) Schaeffer, 1980 

 Coefficient of determination (R2) 
 

Steel and Torrie, 1960 

Complexity The parsimony of the 
model in representing 
the biophysical system 

Akaike's information criterion (AIC) Akaike, 1974 

 Bayesian information criterion (BIC) 
 

Schwarz, 1978 

Plasticity The tendency of the 
model to change its 
behavior when applied 
to different conditions 

 

Model plasticity (L) This study 

Robustness The reliability of the 
model under different 
sets of conditions 

Robustness indicator (IR) Confalonieri et al., 2010 

 
Aertsen et al. (2010) compared different approaches for predicting site 

quality in mountain forest by identifying three criteria: ecological 
interpretability, user-friendliness, and predictive performance, the latter in 
turns composed by three metrics: adjusted coefficient of determination, 
root mean square error (RMSE; Fox, 1981) and Akaike information criterion 
(AIC; Akaike, 1974). Confalonieri et al. (2009a) compared three models for 
rice simulation by assessing both their capability to reproduce observations 
and their complexity. The former was quantified with the correlation 
coefficient, modelling efficiency (EF; Nash and Sutcliffe, 1970), and 
probability of equal means by the paired Student t-test (P(t)), whereas the 
latter was evaluated using AIC and the ratio between relevant and total 
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parameters identified via sensitivity analysis. Bregaglio et al. (2010) 
evaluated thirteen modelling solutions for the generation of hourly air 
relative humidity by comparing their robustness (IR; Robustness Indicator; 
Confalonieri et al., 2010), accuracy (EF; RMSE), the correlation between 
measured and simulated data (r) and the presence of patterns in residuals 
(Donatelli et al., 2004b). Basuki et al. (2009) compared different allometric 
equations for aboveground biomass estimation in tropical forests by 
evaluating their accuracy – using R2 and P(t) – and applicability, the latter 
using AIC. Confalonieri (2010) evaluated two crop simulators with regards 
to their balance, defined as the degree of homogeneity among parameters 
relevance. 

The need for metrics going beyond the pure agreement between 
observations and simulated data led to the development and use of 
indicators and criteria for specific aspects of model structure. An evidence 
of their usefulness is provided by the frequent absence of correlation 
among them. Confalonieri et al. (2010a) analyzed the relationship between 
robustness and accuracy for different categories of agroecological models, 
founding no correlation between IR and two of the most used metrics for 
quantifying model accuracy: relative RMSE (R2 < 0.001) and EF (R2 = 0.065). 
In particular, they found that the Mahmood and Hubbard (2002) model for 
the estimation of global solar radiation was the most robust – although the 
less accurate – among the six alternative approaches compared by Abraha 
and Savage (2008). 

Sensitivity analysis (SA) is aimed at identifying the parameters with the 
highest relevance on model outputs and it is often performed to select 
those on which to concentrate the efforts during the calibration. More in 
general, SA can be considered a powerful tool for the understanding of 
mathematical models (Tarantola and Saltelli, 2003; Jakeman et al., 2006), 
allowing users and developers to get information both on the behaviour of 
the models themselves and on the real systems models represent. 

The aims of this paper are (i) to propose an indicator of model plasticity, 
intended as the model aptitude to change the sensitivity to its parameters 
under diverse conditions; (ii) to test the new indicator using different crop 
models, locations and years; (iii) to analyze results in terms of relationships 
with other evaluation metrics. 
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9.3. Materials and methods 

9.3.1. Quantifying model plasticity 

We defined model plasticity as the model tendency to change its 
behaviour – analyzed via SA techniques – when applied to different 
conditions. In practice, changes in model behaviour were quantified 
through the lack of concordance among the parameters relevance 
calculated under different locations and years. The indicator of model 
plasticity (L) is calculated according to Eq. (1): 

1−⋅= SAMeTDCCL σ
                                                                                                                                                                                                                                                                                                                                                                       [1] 

where TDCC is the top-down concordance coefficient (Iman and 
Conover, 1987; 0 to +1) and σSAM is the standard deviation of the 
normalized agrometeorological indicator (SAM) proposed by Confalonieri 
et al. (2010a; -1 to +1; Eq. (2)). 

0

0

ETRain

ETRain
SAM

+
−=

                                                                                                                                                                                                                                                                                                                                                         [2] 
Rain (mm) and ET0 (mm) are, respectively, the cumulated rainfall and 

reference evapotranspiration calculated for the period of interest (March 1 
– October 31 in this study). 

An exponential dependence is used in Eq. (1) since it guarantees a higher 
discriminating capability (compared, e.g., to a linear one) for plasticity 
values close to zero (zero is the optimal value for the indicator). Moreover, 
simulation experiments carried out while defining Eq. (1) demonstrated 
that σSAM presents a distribution characterized by a marked asymmetry. 
An exponential relationship between σSAM and TDCC – the latter following 
a χ2 distribution (Helton et al., 2005) – proved to be able to satisfactorily 
reduce the asymmetries in the distribution of L. 

TDCC was considered particularly suitable for comparing parameters 
rankings obtained from SA carried out under different conditions because 
of its capability of emphasizing agreement among rankings assigned to 
relevant parameters and of deemphasizing the disagreement among those 
assigned to less important parameters (Helton et al., 2005). 

L ranges from 0 to about 1.51, with highest plasticity at 0. 

9.3.2. Models and sensitivity analysis experiments 

Three crop simulators have been chosen for testing the new indicator. 
They are WARM (Confalonieri et al., 2009b,c), CropSyst (Stöckle et al., 
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2003), and WOFOST (Van Keulen and Wolf, 1986). These models were 
selected because of the different approaches they use for simulating crop 
growth and because they have been successfully used in a variety of 
conditions: WARM and WOFOST are the models used by the European 
Commission within the MARS Crop Yield Forecasting System 
(http://mars.jrc.it/), whereas CropSyst has been used in many studies 
worldwide for evaluating the impact of management and climatic scenarios 
for a variety of crops (e.g., Donatelli et al., 1997; Tubiello et al., 2000; 
Monzon et al., 2006). WARM calculates daily biomass accumulation as a 
function of intercepted radiation, modulating radiation use efficiency (RUE) 
according to temperature, senescence, saturation of the enzymatic chains 
and atmospheric CO2 concentration. Aboveground biomass (AGB) is 
partitioned to the different plant organs according to development-
dependent coefficients. Leaf area index (LAI) is derived by multiplying 
leaves biomass by a specific leaf area that decreases till mid-tillering using a 
quadratic function and is assumed as constant from mid-tillering to 
physiological maturity. A micro-meteorological module is used to account 
for floodwater effect on vertical thermal profile, in turns allowing to 
provide temperature at the meristematic apex for development and 
spikelet sterility, and mid-canopy temperature for thermal limitation to 
photosynthesis. CropSyst is based on the Tanner and Sinclair (1983) 
relationship between AGB, potential transpiration, vapour pressure deficit 
(VPD) and a VPD-corrected transpiration use efficiency (TUEVPD). The 
instability of the Tanner and Sinclair equation for low values of VPD leads to 
the adoption of a temperature-limited RUE approach when these 
conditions occur. CropSyst simulates leaf area development as a function of 
AGB, a constant specific leaf area and an empirical coefficient, without the 
simulation of dynamic AGB partitioning to the different plant organs. 
WOFOST is the most sophisticated in reproducing the biophysical processes 
involved with crop growth, calculating gross photosynthesis, growth (during 
photosynthates partitioning to plant organs) and maintenance respirations. 
Partitioning of assimilates is thus driven by growth respiration, 
development-specific partitioning factors, efficiencies of assimilates 
conversion into the different organs. Leaf area expansion is calculated as a 
function of temperature for leaf area index (LAI) lower than one, and 
derived from specific leaf area and development stage elsewhere. WOFOST 
implements a three-layer canopy representation, with a spherical leaf angle 
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distribution and LAI split among the layers using a Gaussian integration. 
Leaves death is simulated by the three models as driven by senescence, 
with WOFOST reproducing this process also as a function of leaves self-
shading. WOFOST is the model with the highest number of parameters to 
be specified/calibrated to define the morphological and physiological 
features of a variety (from about 40 to more than 100, according to the 
information available for parameters that change their values according to 
development stage or temperature). WARM and CropSyst are more 
parsimonious, with 10 and 12 parameters, respectively, directly involved 
with the simulation of biomass accumulation and leaf area expansion. The 
models are fully described in the seminal literature. In this study, the 
simulated crop was rice (Indica-type, medium-precocity variety). Models 
parameters and the related acronyms are shown in Appendix A. 

Weather and management data used for the simulation were extracted 
from the MARS database (Micale and Genovese, 2004) of the European 
Commission, with a spatial resolution of 25 km × 25 km. For each of the 10 
countries shown in Table 2, the cell of the MARS grid with the widest rice-
cropped surface was selected. For all the cells (locations hereafter), 
coordinates, rice acreages and adopted sowing dates are presented in 
Table 2. For each location, 10 years were considered, from 2000 to 2009. 

 
Table 2. Locations, rice acreages and sowing dates used for this study. Latitude and 

longitude refer to cell centroids 

Country Latitude 

(degrees) 

Longitude 

(degrees) 

Rice area 

(ha) 

Sowing date 

Bulgaria 42.13 N 24.46 E 3268 20 May 
France 43.71 N 4.63 E 13637 29 April 
Greece 40.57 N 22.59 E 10558 8 May 
Hungary 47.14 N 20.80 E 4301 20 May 
Italy 45.42 N 8.52 E 45704 29 April 
Macedonia 41.93 N 22.58 E 2873 8 May 
Portugal 38.89 N 8.63 W 6333 8 May 
Spain 37.04 N 6.11 W 26332 20 May 
Turkey 40.93 N 26.29 E 7585 20 May 
Ukraine 45.47 N 29.29 E 197 20 May 

 
SA was performed by using the variance-based global SA method of 

Sobol’ (Sobol’, 1993), considered a reference in SA studies. This method 
allows the simultaneous exploration of the parameter hyperspace via 
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Monte Carlo or quasi Monte Carlo sampling. According to Sobol’, the 
variance of the model output is decomposed into terms of increasing 
dimension, called partial variances, that represent the contribution of each 
single input (but even pairs, triplets, etc.) to the overall uncertainty of the 
model output. The relevance of parameters or parameter interactions is 
quantified as percentage contribution to the total variance, computed 
using a distribution of model responses (Tang et al., 2007). For independent 
parameters, the Sobol’ variance decomposition can be written as: 

( ) ∑ ∑∑
< <<

++++=
ji

k
kji

ijkij
i

i VVVVyV ...12...
                                                                                                                                                                                                             [3] 

where Vi is the amount of variance of the model output y due to the ith 
parameter, Vij is the amount of y variance explained by the interaction of 
the ith and jth parameters, Vijk is the proportion of y variance due to the 
interaction of the ith, jth and kth parameters, k is the number of 
parameters, defining the k-dimensional hyperspace. This variance 
decomposition is used to derive sensitivity indices of different order as 

V

V
S i

i =
, V

V
S ij

ij =
, etc., with the total order effect for a parameter, Sti, 

equal to the sum of Si, Sij, … up to the kth order of analysis. The highest the 
value of Sti, the highest the overall influence of the parameter i (also in 
interaction with others) on the model output in the conditions explored. In 
this study, the value of St for each parameter was calculated according to 
Homma and Saltelli (1996) and Saltelli (2002), to reduce the computational 
cost of the analysis. 

For WOFOST and CropSyst, the parameters on which the SAs were 
performed, their distributions and the sources of information used to 
derive the distributions are those used by Confalonieri (2010), whereas the 
same information for WARM was retrieved by Confalonieri et al. (2010b). 
Only the models parameters related to crop growth (i.e., biomass 
accumulation, assimilates partitioning, leaf area expansion) were 
considered in this study. The output variable evaluated was aboveground 
biomass at physiological maturity. 

The number of simulations for each SA experiment was calculated as 

( ) α222 ⋅+n , where n is the number of parameters and α is the lowest 

integer able to generate a number of simulations higher than n1000  
(Saltelli, 2002). The total number of simulations performed in this study 
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was 5,939,200 (three models, 10 years and 10 locations), with α equal to 
nine. 

The significance of the differences in the mean values (calculated within 
location and within year) of TDCC and L achieved by the three models was 
tested using repeated-measures ANOVA, where the subject was either the 
location or the year, and the measure repeated on each subject the value 
of TDCC and L. Results of the Mauchly sphericity test (Mauchly, 1940) 
allowed to perform repeated-measure ANOVA on the values of TDCC and L. 

9.4. Results 

9.4.1. Sensitivity analysis results 

Results of the SA experiments are shown in Figs. 1 and 2. Box-plots in 
Fig. 1 are useful to get a graphical representation of the magnitude of the 

effect of the different conditions of application (locations × years) on 
parameters relevance. High values of total order effect (St) mean that the 
parameter has a high influence on the model output considered. Fig. 2 
visualizes the distances among all simulations using the multi-dimensional 
scaling (MDS), where Euclidean distance is used to calculate the proximities 
among the St values (Richter et al., 2010). MDS in two dimensions (DIM_1 
and DIM_2 in the charts) is useful to represent the distance among St 
values calculated for the parameters in different conditions of application. 

Figure 1.a shows the low variability in the relevance of the WARM 
parameters across locations and years. Among the parameters involved 
with daily biomass accumulation, maximum radiation use efficiency 
(RUEmax) and optimum temperature for growth (Topt) were those with the 
highest values of St, and also those with the greater St variability while 
changing conditions of application. Small changes, and small absolute 
values, were observed in the relevance of most of the parameters directly 
related to leaf area expansion, i.e., extinction coefficient for solar radiation 
(k), partitioning to leaves at emergence (RipL0), and specific leaf area at 
tillering (SLAtill). The variability in the parameters relevance was mainly due 
to the year effect in Spain, and to anomalies recorded for Spain in 2005 and 
Macedonia in 2002 (Fig. 2.a). These two locations differed from the others 
also for the general model behaviour: the points in Fig. 2.a referring to 
Macedonia and Spain are located respectively at the top-left and on the 
right with respect to those related to the other locations. 
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CropSyst presented a degree of variability in the parameters relevance 
similar to that discussed for WARM, although the influence of biomass-
transpiration coefficient (BTR) on model output is strongly affected by the 
conditions of application (Fig. 1.b). As already discussed for WARM, the 
parameters involved with biomass accumulation, i.e., BTR, radiation use 
efficiency (RUE), and optimum temperature for growth (Topt) played a 
major role in influencing the model outputs, whereas those involved with 
leaf area expansion achieved lower and more stable St values. For both the 
models, thermal limitation to photosynthesis was mainly influenced by 
Topt, whereas base (Tbase) and, for WARM, maximum temperature (Tmax) 
had always a negligible impact on models behaviour. The variability among 
St values calculated for CropSyst was strongly influenced by the model 
behaviour in Spain (located on the right in Fig. 2.b) and Bulgaria (with most 
of the values on the left), and by the anomalies obtained in 2003 for Italy 
and France, and in 2000 for France. 

WOFOST was the model which presented the greatest heterogeneity in 
parameters relevance while changing locations and years (Fig. 1.c). In some 
cases, e.g., maximum leaf CO2 assimilation rate at emergence (AMAXTB0), 
efficiencies of conversion into leaves (CVL) and storage organs (CVO), 
biomass partitioning to leaves at development stage code (DVS) equal to 
0.5 (FLTB05), this was due to an overall variability among the conditions 
explored. In other cases, e.g., light use efficiency at 10°C (EFFTB10), 
partitioning to roots at flowering (FRTB1), specific leaf area at DVS equal to 
0.35 (SLATB035), base temperature for leaves aging (TBASE), the variability 
is mainly due to anomalies (circles and stars in the figure, indicating values 
far more than 1.5 and 3 times the interquartile distance). Compared to 
WARM and CropSyst, WOFOST presented a noticeably higher number of 
anomalies, with almost all the parameters presenting different outlying 
values. The high heterogeneity in model behaviour was especially due to its 
different behaviour in Ukraine (Fig. 2.c), whose points are grouped at 
higher values on the X-axis, with a great variability along the other 
dimension. On the same chart, it is possible to notice that Spain values 
were generally located below most of the others, i.e., at lower values on 
the Y-axis. The most relevant anomalies were obtained for Greece (2004, 
2007, 2008), Macedonia (2001, 2001, 2004), Hungary (2007, 2008), Turkey 
(2007), Italy (2003), and Spain (2006). 
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For all the models, the location effect weighted much more than the 
year one, with the latter practically not detectable in Fig. 2. 
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Figure 1. Box-plots of Sobol’ total order effects (St) for WARM (a), CropSyst (b) and 

WOFOST (c) parameters resulting from all the locations and years for which sensitivity 

analyses were performed. Circles and stars indicate outlying values, respectively far 

more than 1.5 and 3 times the interquartile distance 
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Figure 2. Proximity of Sobol’ total order effects for WARM (a), CropSyst (b) and 

WOFOST (c) represented in a common space using multi-dimensional scaling, displaying 

the effect of different locations and years on sensitivity analyses results. Figures close to 

the points indicate years from 2000 (‘0’) to 2009 (‘9’). DIM_1 and DIM_2 represent the 

first and second dimension, respectively 

9.4.2. Models plasticity 

Table 3 shows the values of σSAM, TDCC and L calculated within location 
(using all the years), within year (using all the locations), and those 

calculated using all data (10 locations × 10 years).  
 
Table 3. Standard deviation of the normalized agrometeorological indicator (SAM) 

calculated for the different years within each location, for the different locations within 

year, and for all the data. Corresponding values of top-down concordance coefficient 

(TDCC) and plasticity (L) calculated for the three models are presented. Means with 

different letters are significantly different for p<0.05 according to Bonferroni test 

Conditions 

explored 

σSAM TDCC L 

WARM CropSyst WOFOST WARM CropSyst WOFOST 

W
it

h
in

 

lo
ca

ti
o

n
 

Bulgaria 0.153 0.999 0.860 0.898 0.428 0.369 0.385 

France 0.106 0.999 0.932 0.948 0.408 0.381 0.387 

Greece 0.073 0.999 0.985 0.814 0.395 0.390 0.322 

Hungary 0.154 0.999 0.938 0.932 0.429 0.403 0.400 

Italy 0.311 0.991 0.974 0.911 0.498 0.489 0.458 

Macedonia 0.175 0.998 0.941 0.845 0.437 0.412 0.370 
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Portugal 0.127 0.998 0.929 0.956 0.417 0.388 0.399 

Spain 0.091 0.966 0.970 0.845 0.389 0.391 0.340 

Turkey 0.118 0.998 0.983 0.917 0.413 0.407 0.380 

Ukraine 0.151 0.975 0.931 0.769 0.417 0.398 0.329 

Mean 0.146 0.992a 0.944b 0.883c 0.423a 0.403b 0.377c 

St. dev. 0.066 (p<0.001)   (p<0.001)   

W
it

h
in

 y
ea

r 
2000 0.191 0.991 0.869 0.868 0.441 0.387 0.387 

2001 0.241 0.990 0.861 0.794 0.463 0.403 0.372 

2002 0.261 0.996 0.863 0.801 0.476 0.412 0.383 

2003 0.183 0.977 0.859 0.855 0.432 0.380 0.378 

2004 0.176 0.981 0.879 0.760 0.430 0.386 0.334 

2005 0.269 0.947 0.897 0.848 0.456 0.432 0.408 

2006 0.226 0.989 0.961 0.814 0.456 0.443 0.376 

2007 0.186 0.998 0.915 0.846 0.442 0.405 0.375 

2008 0.157 0.996 0.942 0.833 0.428 0.405 0.359 

2009 0.192 0.996 0.963 0.891 0.444 0.429 0.397 

Mean 0.208 0.986a 0.901b 0.831c 0.447a 0.40
8b 

0.377c 

St. dev. 0.038 (p<0.001)   (p<0.001)   

All locations and 
years 

0.208 0.985 0.891 0.820 0.446 0.403 0.371 

 

Within location, Italy experienced the highest variability among the 
weather conditions explored, whereas the main differences among 
locations within the same year were recorded for 2001, 2002, 2005 and 
2006. Mean values for the three models are significantly different 
(p<0.001), for both TDCC and L, thus depicting clear behavioral differences 
among the models themselves in the way they react to weather conditions 
in terms of parameters relevance. WARM confirmed the lowest plasticity, 
with a very high concordance (TDCC) among the parameters rankings 
calculated under different conditions. Within location, WOFOST achieved 
the best value of L in seven out of 10 cases, whereas CropSyst obtained the 
best value of L in the other three sites (Bulgaria, France and Portugal). 
Within year, WOFOST was always the model with the highest plasticity, 
thus allowing to consider it as the one with the highest site-specific 
behaviour. The values of L calculated on all the datasets confirm the highest 
plasticity of WOFOST (L = 0.371), followed by CropSyst (L = 0.403).  

9.5. Discussion 

In general, the low plasticity calculated for WARM explains the similarity 
between the SA results obtained in this study and those obtained for the 
same model by Confalonieri et al. (2010b), with RUEmax and Topt gaining 
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the highest relevance measures. The only difference is the absence – in the 
present study – of the parameter initial leaf area index, not present 
anymore as editable parameter in the WARM version used in this study 
(2.0.0; January 26, 2009). The high WOFOST tendency of changing the 
parameters relevance observed in this study is probably able to explain part 
of the differences between the parameters rankings obtained in this study 
and those discussed by Ceglar at al. (2011). The two studies present only 
three parameters in common among the 10 top-ranked: CVO, SPAN, and 
SLATB, the first involved with the conversion of assimilates into storage 
organs biomass, the others in green leaf area dynamics. However, the study 
from Ceglar et al. (2011) was about maize grown in Slovenia, therefore the 
main part of the difference is probably to be attributable to the different 
crop simulated. 

Considering the two models based on the concept of net 
photosynthesis, i.e., CropSyst and WARM, it is possible to notice that most 
of the variability in their outputs is explained by their sensitivity to the 
parameters directly related to biomass accumulation (given a certain 
amount of radiation intercepted), i.e., BTR, RUE and Topt for CropSyst; 
RUEmax and Topt for WARM. These parameters are directly related to the 
transformation of radiation (and of water potentially transpired for 
CropSyst) and with thermal limitation to the transformation itself. Both the 
models are decidedly less sensitive to the parameters related to green leaf 
area evolution and radiation interception, like specific leaf area, leaf area 
duration and extinction coefficient for solar radiation. A possible 
explanation is that parameters directly involved in net photosynthesis play 
a key role during the whole crop cycle, whereas interception is limiting only 
before the closed-canopy stage and when senescence processes decrease 
the amount of green leaf area. The lower importance of RUE in CropSyst 
compared to that of RUEmax in WARM (the parameters have the same 
biophysical meaning in the two models) is due to the fact that CropSyst 
uses the RUE-based approach for biomass accumulation only in days with 
low values of VPD, otherwise using a TUEVPD-based one. This explains also 
the lower importance of Topt in CropSyst, since the temperature limitation 
is directly applied in CropSyst only within the RUE-based approach. 

Confalonieri et al. (2010a) discussed the relationships among the same 
three models in terms of accuracy, robustness and complexity, using rice 
experiments carried out in different Italian sites from 1989 to 2004. They 
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found that WARM was the model with the best values of relative RMSE, 
whereas the best values for EF was achieved by WOFOST. Moreover, 
WARM was the simplest according to AIC and the most robust, whereas 
WOFOST resulted as the most complex model, but with the poorest 
robustness. These results – although derived from a limited dataset – 
seems to support considerations from other Authors, e.g., Jakeman and 
Hornberger (1993), Monteith (1996), Passioura (1996), suggesting that an 
increase in model complexity – in turns leading to an increase in data 
requirements – could be, to a certain extent, even counterproductive, 
especially for operational purposes. This because of the increase in the 
amount of information needed to parameterize the models and to the 
increase in the degrees of freedom during the calibration: the higher the 
number of parameters, the higher the number of uncertain factors that 
could be introduced in the model to fit site/season-specific observations. 

Although three models are not enough to draw conclusions about the 
relationships among metrics referring to different aspects of models 
behaviour, it is interesting to notice that the simplest model, WARM, 
resulted as the most robust and the less plastic, whereas the most complex 
achieved the best value for plasticity and the worst for robustness. This 
leads to hypothesize relationships between model complexity and metrics 
related to the predictability of its behaviour, i.e., robustness and plasticity. 
The higher adherence of SUCROS-type crop models (van Keulen et al., 
1982) – such as WOFOST – to the real system reflects both its complexity 
and its capability to change behaviour in response to diverse environmental 
conditions, i.e., it seems to reflect the phenotypic plasticity typical of crops. 
In any case, the limitation of the conditions explored by Confalonieri et al. 
(2010a) leads to consider the existence of this kind of relationship as just a 
possibility to be verified through extensive, dedicated, multi-model 
evaluation studies. 

9.6. Conclusions 

Simulation models are increasingly used to support decision making 
under a variety of management, socio-economic and pedo-climatic 
scenarios. The different aims and conditions of application underline the 
need of selecting the most suitable model among those available for the 
specific typology of simulation study. A reasonable choice can be carried 
out only by deriving an evaluation criterion from the specific aims and 
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context, i.e., spatial scale, availability of measured data for model 
calibration, quality of driving variables, etc. The criterion should be 
quantitative and able to account for the aspects of model behaviour 
considered as the most relevant for the specific case, thus allowing to rank 
the available models and to select the most suitable ones. 

In this paper, we proposed and tested an indicator of model plasticity, 
intended as the capability of simulation models to change the way they 
react to a changing environment, by consequently changing the relevance 
of their parameters. This can be considered a simple way to get an idea of 
how the processes referring to the parameters change their relative 
importance in influencing the output under different conditions. The 
usefulness of such an indicator is clear when a model is used to analyze the 
system it represents, e.g., to understand which are the crop features 
(represented by model parameters) most affecting productivity, under a 
specific pedological, climatic, management scenario. In this case, in fact, 
model plasticity can be used to evaluate the plasticity of the underlying 
system. In the case of agroenvironmental models, this assumes a great 
importance, because of the pronounced phenotypic plasticity intrinsic in 
the modelled entities. 

The three models used in this study, i.e., WARM, CropSyst and WOFOST, 
were already evaluated in previous works and their accuracy, complexity 
and robustness quantified under the conditions experienced by rice in 
northern Italy. The fact that different metrics awarded a different model as 
the best among those compared supports the need for developing and 
using criteria for evaluating the model features considered most relevant in 
different application contexts. This would allow to screen the available 
approaches and to identify the most suitable ones for specific purposes, 
also in case of multi-model studies targeting uncertainty estimation. 
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9.7. Appendix A. Parameters names and acronyms for the models WARM, 

CropSyst and WOFOST 

Parameter Acronym Parameter Acronym 

WARM WOFOST 

Max. radiation use efficiency RUEmax Leaf area index at emergence LAIEM 
Ext. coeff. for solar radiation k Relative leaf area growth rate RGRLAI 
Base temperature for growth Tbase Specific leaf area at DVS

a
 = 0.35 SLATB035 

Opt. temperature for growth Topt Specific leaf area at DVS = 0.45 SLATB045 
Ceil. temperature for growth Tmax Specific leaf area at DVS = 0.45 SLATB065 
Initial specific leaf area SLAini Life span of leaves growing at 35ºC SPAN 
Specific leaf area at tillering SLAtill Base temperature for leaf ageing TBASE 
Partition coeff. leaves (early) RipL0 Ext. coeff. for diffuse light (DVS = 0.0) KDIFTB0 
Leaf duration LeafLife Ext. coeff. for diffuse light (DVS = 1.0) KDIFTB1 
Maximum panicle height Hmax Light use efficiency at Tavg

b
 = 10°C EFFTB10 

  Light use efficiency at Tavg
b
 = 40°C EFFTB40 

  Max. leaf CO2 assimilation (DVS =0.0) AMAXTB0 
  Max. leaf CO2 assimilation (DVS =2.0) AMAXTB2 
  AMAX reduction factor at Tavg = 14°C TMPFTB14 
  AMAX reduction factor at Tavg = 23°C TMPFTB23 
  Efficiency of conversion into leaves CVL 

CropSyst Efficiency of conversion into panicles CVO 

Biomass-transpiration coeff. BTR Efficiency of conversion into roots CVR 
Radiation use efficiency RUE Efficiency of conversion into stems CVS 
Opt.temperature for growth Topt Relative increase in respiration rate 

per 10 ºC of Tavg increase 
Q10 

Maximum water uptake MAXwupt Relative maintenance respiration rate 
for leaves 

RML 

Initial leaf area index LAIini Relative maintenance respiration rate 
for storage organs  

RMO 

Maximum leaf area index LAImax Relative maintenance respiration rate 
for roots 

RMR 

Specific leaf area SLA Relative maintenance respiration rate 
for stems 

RMS 

Stem-leaf partition SLP Fraction biomass to roots (DVS = 0.0) FRTB0 
Leaf duration LeafDur Fraction biomass to roots (DVS = 1.0) FRTB1 
Ext. coeff. for global radiation k Fraction of aboveground dry matter 

to leaves (DVS = 0.0) 
FLTB00 

Crop coefficient Kc Fraction of aboveground dry matter 
to leaves (DVS = 0.5) 

FLTB50 

Base temperature for growth Tbase Fraction of aboveground dry matter 
to panicles (DVS = 0.82)  

FOTB082 

  Fraction of aboveground dry matter 
to panicles (DVS = 1.0) 

FOTB100 

  Specific stem area (DVS = 0.3) SSATB030 
  Specific stem area (DVS = 1.2) SSATB120 
  Specific stem area (DVS = 1.5) SSATB150 
a
 Development stage code (0.0): emergence; 1.0: flowering; 2.0: physiological maturity). 

b
 Average air daily temperature (°C). 



CHAPTER 10                                                                                       g                                            

g 

211 

 

 

 

 

 

 

GENERAL DISCUSSION AND PERSPECTIVES 

 

 

 

 

 



Chapter 10                                                                                                                   . 

212 

 

 

10.1. The development achieved 

The original plan of this doctorate was to target specifically the 
development of a library of model tools to simulate the impact of airborne 
diseases on crops. A reference model and software architecture was 
identified as suitable to develop a modelling framework for airborne 
diseases; it provided from the very beginning of this doctorate the 
infrastructure to organize modelling knowledge and make it operational. 
However, it became soon evident that formalizing and implementing 
disease models to be coupled to crop models had to be integrated by 
several other actions, in order to develop model tools that could be used 
operationally. 

Firstly, the problem of the input data represents a crucial issue, because 
the quality of the data used to feed the plant disease models strongly 
influences the goodness of their response, and consequently their 
reliability. Furthermore, in order to use the appropriate time resolution for 
the biophysical processes involved, there is the need to handle hourly data. 
Such data are almost always unavailable when working on large areas 
and/or in climate change studies, thus needing their estimation starting 
from daily values. Also, it is somehow surprising the uncertainty resulting 
from literature review on pathogen response to temperature and to 
humidity, making the definition of parameters sets very difficult. One other 
problem which is still pending is that the vast majority of data available for 
diseases epidemics and impacts are not integrated by the needed 
information to model the whole system disease-crop-soil. Being the impact 
of diseases also subject to the state of the host, using incomplete datasets 
for simulating the system with the target of model either evaluation or 
calibration confounds the origin of disagreement between simulated data 
and the reference data used. This aspect has led to a plethora of highly 
specific, with respect to site, host, and management conditions, diseases 
models. Such models can be used effectively for in season estimates of 
epidemics progression, but are completely useless for scenario analysis 
such the ones required by a changing climate. The problem of input data 
can consequently be summarized as a detrimental lack of integration in 
research between plant pathologists/modellers and agronomists/crop 
modellers. 
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Secondly, the aspects of model evaluation, which are not only related to 
disease models, but more in general to the bio-physical modelling. 
Comparing whole modelling solutions as finalized products for system 
simulation has a clear role given a specific context, unchangeable modelling 
resources at a specific time, and assuming that the reference data to test 
the modelling solutions are adequate to limit the possible effect of misuse 
of calibration, degrading process based models to fully empirical models. 
However, it provides a very weak link to the evaluation of specific 
modelling approaches which are produced by research. This suggests 
evaluating modelling solution at fine granularity, as discussed in one of the 
papers presented in this thesis (i.e., Chapter 3). Once that is achieved, 
several metrics can assist in model evaluation. The usefulness of 
considering a broad range of metrics in model evaluation, although not 
providing statistical significance, allows getting an articulated insight on 
model performance. The multivariate nature of the issue is explicitly stated, 
the rules are easy to read, and the numerical scores easy to tune to match 
expert opinions. Consequently, part of the work of this thesis has targeted 
the aspect of multiple metrics and metric composition for model 
evaluation. 

The current state of development of the framework to model airborne 
diseases certainly has not reached its final stage. However, it provides the 
analysis of the problem with the explicit target of modelling disease-crop 
interaction in scenario analysis, and makes available a substantial set of 
model tools and utilities which make possible targeting analysis at the level 
of abstraction presented in the case studies of this thesis. 

I also trust that this work has provided one output which is considered of 
major interest from modelling, which is highlighting what is needed in the 
domain specific knowledge, thus providing food for research. 

10.2. Specific objectives 

The specific objectives of this doctorate were:  
1.  The implementation and evaluation of models for the estimation of 

meteorological data to be used as input for plant disease models, 
with particular attention to leaf wetness; 

2.  The development of a framework for the simulation of a generic 
fungal plant airborne disease, implementing an epidemic simulation 
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model for fungal plant pathogens to be coupled with a crop growth 
simulation model; 

3.  The application of the modelling solutions developed in case studies 
for climate change impact studies; 

4.  The development of advanced evaluation criteria for the evaluation 
of complex biophysical modelling solutions. 

The main concept at the base of the realization of the whole work is that, in 
order to manage the extreme complexity of the biophysical processes 
simulated, ranging from the relationships between meteorological variables 
and epidemic development to the physiological interactions between plants 
and pathogens, the adoption of the state-of-the-art of software 
engineering technology is not an option, but the unavoidable prerequisite. 
Furthermore, although the need for a finer granularity of model units, at 
least to avoid duplication, is a declared goal of the modelling community 
since many years, technological bottlenecks have precluded model reuse. 
This is the reason why the agro-meteorological models developed during 
this doctorate were implemented following the component-oriented 
design, which encapsulate the solutions of specific modelling problems into 
reusable, discrete, replaceable and interchangeable software units (i.e., the 
components).  

According to this concept, after the identification of hourly air 
temperature, hourly air relative humidity and leaf wetness duration as the 
main meteorological driving variables of the development of a fungal plant 
airborne epidemic, I co-developed and programmed two software 
components (i.e., AirTemperature, presented in Chapter 2 and 
LeafWetness, presented in Chapter 4) for the estimation of such variables. 
The multi-model approach implemented in these components favored the 
comparison among the diverse models implemented, either as single 
algorithms or as linked in modelling solutions (e.g., Chapter 3 and Chapter 
4), aiming at identifying the best modelling solutions in the specific 
conditions of analysis. The fulfillment of the first objective resulted crucial 
for the progress of the work because the availability of libraries of 
approaches for the simulation of meteorological variables allowed checking 
the goodness of the diverse estimation methods before using them to feed 
the plant disease models, thus limiting the uncertainty and the errors 
related to the quality of input data.  



                                                                        General discussion and perspectives 

215 

 

The second general objective was achieved by developing four software 
components (presented in Chapter 5) that can be linked in a unique 
modelling solution for the simulation of a plant airborne fungal disease. 
This realization is in agreement with the demand of agronomists or 
researchers in plant pathology, that ask for the development of generic 
disease forecasting models, within a reusable and compatible modelling 
framework suitable for simulating different plant diseases. In fact these 
components can be used to simulate the progress of the epidemics caused 
by several pathogenic fungi on several crops by changing specific model 
parameters, with a clear biological meaning. The same approach can be 
used to simulate the effects of agriculture management options on disease 
progress. These components mainly implement collection of models 
already published in literature and, rather than having the claim to 
represent the final solution to plant disease modelling issue, represent a 
solid base to compare, extend or replace the approaches implemented 
according to the specific aims or decisions of the user. 

The operative application of the modelling tools developed during this 
doctorate in the case study presented in Chapter 6 allowed highlighting 
that the consideration of biotic yield losses due to plant diseases in climate 
change studies could deeply modify the forecasts made by considering only 
the potential production level. The simulations carried out on the whole 
Latin America subcontinent proved the effectiveness of the software 
components developed to be linked with crop growth models in a unique 
modelling solution able to simulate both the development of the epidemic 
and the impact of such epidemic on crop production in large area studies. 

The development of new metrics for model evaluation, specifically 
aimed at assessing model performance in small scale applications, was 
justified by the need of considering other aspects than the pure agreement 
between reference and simulated data in such studies. In fact, when users 
have to trust the model in conditions far from those in which the model 
itself was calibrated and tested, features as the model robustness (Chapter 
8), intended as the capability of a model to maintain the same degree of 
error in diverse conditions of application, becomes fundamental. 
Furthermore, the use of sensitivity analysis techniques to develop an index 
for quantifying model plasticity (Chapter 9) allows gaining an in-depth 
knowledge of the model capability to adapt its response across diverse 
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environmental conditions, like the ones experienced in large area 
application studies. 

10.3. Future perspectives 

The work carried out during this doctorate opens and facilitates new 
developments. 

Firstly, the software architecture adopted in the development of the 
components promotes the implementation both of alternate approaches 
for the simulation of the same process and of models for biophysical 
processes not yet considered. The software components can be thus 
considered means to share knowledge with multiple uses as discussed in 
the chapters of this thesis.  

New developments can be grouped in two types of activity: 1) Increasing 
the robustness of the simulation of pathogens already parameterized, and 
adding new sets of parameters, and 2) Adding new simulation capabilities 
and/or uses of the framework. 

10.3.1. Consolidating the framework 

The robustness of the modelling solutions developed could be enhanced 
via a better definition of model parameters values (e.g., via specific 
experimental trials or via calibration procedures), and by a more precise 
characterization of the degree of genetic resistance in diverse host 
cultivars. 

As for many other modelling needs, a possibly shared database of 
reference data and parameter set could be developed for an increasingly 
effective testing and calibration of models, with respect to the impact on 
plants. 

10.3.2. Extending framework use 

A possible application of the modelling solution for the simulation of a 
generic plant disease epidemic can be done to estimate the impact of agro-
management practices for pathogen control on state variables which are of 
interest for environmental analysis. This could also be done in climate 
scenario analysis adding another dimension in impact assessment and 
adaptation studies. Even if the original development of the components is 
targeted to be applied on herbaceous crops, they should be extended and 
adapted for the simulation of fungal pathogens of tree crops. In principle, 
the framework accommodates already for implementing this capability via 
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sets of parameters, but the application coupling diseases to fruit trees 
needs to be evaluated to validate the abstraction at the base of the 
diseases framework architecture.  

Although knowledge to be abstracted to models could be a limiting 
factor, the simulation of pathogen complexes could be a further extension. 
Pathogen complexes are of course a closer representation to the real 
system and their representation is of great interest in estimating crop 
pathogen pressure in future scenarios of climate and agro-management. 

Another aspect that could be developed is related to knowledge sharing 
also with respect to teaching purposes. In the same way a crop simulation 
model can be used to learn about the generalities of crop response to 
agricultural management, an ad hoc software could be used to teach and 
learn about interactions of crop and pathogens in response to weather and 
agro-management via simulation. 

10.4. Concluding remarks 

Although the importance of modelling diseases in crop production was 
set decades ago, the focus has always been on the development of tools to 
assist tactical decision making by farmers. As for other aspects of the 
estimate of behavior of crop performance and agricultural management, 
robust, but highly empirical models have been developed. Such models, 
crop specific, cannot be used in conditions different from the ones in which 
they were developed, hence precluding exploring new environments and 
new climatic conditions. The increasing demand for estimates of crop 
production, which neither can exclude the role of plant diseases, nor can 
assume it as a constant for an environment, requires process based models 
in which the level of empiricism does not preclude extrapolating to new 
conditions. 

The work of this thesis is in that direction and can be considered as a 
shift of paradigm in addressing the problem of developing model tools for 
crop-diseases interaction. Targeting modeling of the abstraction of core 
processes to develop a framework for airborne diseases simulation, 
although very ambitious, aims at developing model tools more tightly link 
to physiological research of plant pathogen. The work has allowed 
highlighting knowledge gaps, and may suggest research actions to allow 
developing quantitative methods more strongly linked to the biological 
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system, possibly providing researchers new stimuli in defining their 
projects. 

The framework developed, even if with clear further goals for 
development, has allowed running analysis under scenarios of climate 
change which could not be run otherwise. It has been a demanding work 
and it requires strong commitment for its further development. However, it 
could be one of the many step to move beyond both statistical models and 
a misuse of process based model via calibration which leads only to data 
fitting, instead of forecasting models. 
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RIASSUNTO 

Gli effetti dei cambiamenti climatici sullo sviluppo sociale ed economico 
dell’umanità vengono ormai studiati da diverse decadi. Secondo 
l’organismo internazionale “Intergovernmental Panel on Climate Change” 
(IPCC), la mancata implementazione di misure efficaci ed adeguate per 
limitare l’emissione di gas serra porterà ad impatti consistenti e 
parzialmente irreversibili sull’ambiente, e di conseguenza sulla società. In 
questo contesto, la valutazione ex-ante delle dinamiche future delle 
malattie delle piante gioca un ruolo fondamentale, poiché esse 
contribuiscono a determinare i livelli effettivi di produzione di molte 
colture agrarie in molti areali, influenzando in tal modo la disponibilità di 
cibo e la sicurezza alimentare. La stima dei possibili impatti sulla 
produzione alimentare, a partire dall’agricoltura, risulta essere essenziale al 
fine di sviluppare strategie per alleviare le conseguenze del cambiamento 
climatico. Per effettuare tali analisi, la modellistica di simulazione basata su 
processi offre la capacità di catturare l’elevata non linearità delle risposte 
dei processi biofisici alle condizioni di contorno. Nonostante ciò, essa è 
stata utilizzata solo marginalmente per stimare scenari d’impatto di 
malattie delle piante sulle produzioni colturali, a causa della limitata 
disponibilità di approcci e di strumenti modellistici. Questo lavoro 
rappresenta un tentativo di rispondere all’esigenza di disporre di una 
piattaforma software per la simulazione di una generica fitopatia fungina 
che possa essere accoppiata a un modello di simulazione colturale al fine di 
migliorare la stima dei livelli delle produzioni agrarie in scenari di 
cambiamento climatico.  

La prima sezione del lavoro tratta della valutazione di modelli per la 
stima di dati meteorologici e per la simulazione della bagnatura fogliare, 
variabile guida del processo di infezione dei patogeni fogliari. Questa analisi 
è giustificata dall’esigenza di fornire dati di qualità in ingresso ai modelli 
delle malattie delle piante e dalla scarsa disponibilità di dati orari in 
database a larga scala.  

La seconda sezione presenta l’implementazione e la calibrazione della 
piattaforma generica di simulazione e la sua analisi effettuata mediante uso 
estensivo di tecniche di analisi di sensibilità.  
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La terza sezione tratta dell’applicazione della soluzione di modellazione 
sviluppata, accoppiata a un simulatore colturale, al fine di stimare l’impatto 
del cambiamento climatico in America Latina.  

Nell’ultima sezione, vengono presentati nuovi criteri e metriche per la 
valutazione dei modelli biofisici, specifici per testarne il comportamento in 
condizioni climatiche eterogenee quali quelle esplorate negli studi di 
cambiamento climatico. 

Parole chiave: 

Malattie delle piante, cambiamento climatico, modelli di previsione di 
fitoepidemie, valutazione dei modelli di simulazione. 
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