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Abstract
Increased agricultural mechanization in the recent past and susceptibility of  certain soils to degradation 
generate widespread concern among experts on the overall environmental sustainability of  some of  the 
current agricultural practices in Europe. A number of  solutions could be adopted to better preserve 
soil resources, some of  which are already supported by the Common Agricultural Policy (CAP). 

Researchers demonstrated that erosion and reduction in soil organic matter are among the most acute 
degradation issues in Europe and that the release of  crop residues on the soil surface after harvesting 
can greatly reduce their incidence. The use of  a permanent soil cover (e.g. by use of  crop residues) is 
one of  the three fundamental principles of  Conservation Agriculture.

Quantifying the amount of  crop residues on the ground is important for soil and water protection, 
modelling of  erosion processes and legislation enforcement purposes. However, common monitoring 
methods  based on ground sampling  are expensive  and likely  to be  impracticable on vast  surfaces. 
Remote sensing can offer a valid alternative for monitoring.

The present research intends to contribute to the efforts towards the establishments of  methods for 
the assessment and monitoring,  through remote sensing, of  the effects of  conservation agriculture 
practices  on  the  environment,  with  focus  on  soil  resources.  In  this  respect,  the  research  specific 
objective is the evaluation of  a remote sensing based method for the quantification of  crop residue 
cover in a conservation agriculture farm in Northern Italy by use of  hyperspectral satellite imagery.

Results achieved show that not only crop residues percent cover is linearly related to certain remote 
sensing-based  indices,  therefore  making  possible  to  estimate  how  well  soil  is  preserved  from 
weathering,  but  also that  spaceborne hyperspectral  sensors such as Hyperion appear  to have great 
potentiality towards monitoring  of  other environmental  targets due to their  very high spectral  and 
spatial resolution.

The research was deeply inspired by the outcomes of  a European project (“Sustainable Agriculture and 
Soil Conservation through simplified cultivation techniques” - SoCo) aimed at improving protection of  
soil resources in the European agriculture sector through a stock taking and promotion of  soil-friendly 
agriculture  practices  and  systems,  in  particular  simplified cultivation techniques,  within  the  current 
legislative framework.
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Introduction
In Europe and elsewhere agriculture occupies huge portions of  land, playing a fundamental role in the 
human society and in shaping the environment, while ensuring that the overall demand for food is 
adequately met [Louwagie et al., 2009a]. However, unsustainable agricultural practices and other land 
uses can have an adverse impact on natural resources such as soil, water and biodiversity. Furthermore, 
the  current  trend  towards  an  ever  growing  world  population  and  increased  mechanization  can 
contribute  to  worsen such  negative  impacts  [Prosperi  et  al.,  2011].  As  a  consequence,  pressure  is 
mounting on agriculture as well as on other human activities for a more sustainable management of  
natural resources and a better preservation of  cultural landscapes [Louwagie et al., 2009b].

Despite the Common Agricultural Policy (CAP) and other pieces of  European legislation now largely 
recognize  and  address  the  environmental  challenges  of  the  modern  world,  data  indicate  that  soil 
degradation continues to be a widespread problem in agricultural soils across Europe [EEA, 2005]. 
This suggests that more needs to be done in order to tackle the problem. For this reason, the European 
Parliament launched in 2007 the “Soil Conservation and Sustainable Agriculture” project (SoCo1) aimed 
at studying and promoting soil-friendly agriculture techniques among farmers, as well as at generating 
useful proposals for future improvements to the CAP.

SoCo showed that soil erosion and decrease in organic matter are currently two of  the most significant 
degradation issues in Europe. However, the use of  Conservation Agriculture techniques, based on the 
provision  of  a  permanent  soil  cover  (crop  residues,  catch  crops),  the  abandonment  of  inversion 
ploughing and the use of  crop rotations, could greatly contribute to protection of  soils from these 
threats  [Louwagie  et  al.,  2009a;  Louwagie  et  al.,  2009b].  In  some member  countries,  conservation 
agriculture and other soil-friendly agricultural systems and practices are supported through CAP-based 
incentive mechanisms.

The release of  a sufficient amount of  crop residues on the soil surface, alone or in combination with 
the  other  conservation  agriculture  principles,  appears  particularly  important  for  soil  protection  as 
repeatedly reported by literature in terms of  multiple beneficial effects produced. The latter include 
[Nagler et al., 2003]:

• a significant decrease of  erosion by reducing runoff  volumes and the related movement of  
nutrients and pollutants into water bodies;

• an  improvement  of  soil  physical  and  chemical  parameters,  including  a  more  stable  soil 
structure, a better water infiltration through an augmented porosity and a reduced evaporation 
and soil temperatures; 

• an effective conservation of  nutrients into the soil that in turn reduce the need for fertilization 
regimes (including herbicide and pesticide application);

• an effective carbon sequestration.

Measuring the effects of  such practices on the environment is therefore important for the protection 
of  natural resources, modelling of  erosion phenomena [Monty et al., 2008; Nagler et al., 2003; Nagler
et al., 2000], as well as for legislation enforcement purposes, as illustrated below. 

One possible way for measuring the above effects is to estimate crop residues cover on the soil after 
harvest. Literature is rich on methods for mapping crop residues in the field. However, these methods 
are expensive and likely to be impracticable on vast surfaces [Bannari et al., 2006]. Remote sensing can 

1 SoCo (2007-2009) was initiated by the European Parliament and primarily executed by the Institute for Prospective 
Technological Studies (IPTS) and the Institute for Environment and Sustainability (IES) of  the Joint Research Centre 
(JRC), in close cooperation with the Directorate-General for Agriculture and Rural Development (DG AGRI) of  the 
European Commission and several other European partners. Web site: http://soco.jrc.ec.europa.eu 
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offer a valid alternative for monitoring large surfaces at once by exploiting the spectral response of  the 
observed areas in different portions of  the spectrum.

While the presence and quantification of  green vegetation from remote sensing could always benefit 
from very distinctive absorption features of  the chlorophyll in the Visible (VIS) and Near Infra Red 
(NIR) bands made available by popular sensors such as the Landsat series, it was not until recently that 
researchers  discovered  some  specific  spectral  features  of  dry  and  senescent  vegetation  (lacking 
chlorophyll) that facilitated the differentiation between crop residues and bare soil [Bannari et al., 2006; 
Nagler  et  al.,  2003].  This  was  made  possible  by  technological  advancements  that  now  allow  the 
simultaneous acquisition of  image data in hundreds of  narrow contiguous bands across broad regions 
of  the  electromagnetic  spectrum  through  airborne  or  spaceborne  sensors  (hyperspectral  remote 
sensing) in addition to more consolidated laboratory and field instruments [Bannari et al., 2006].

Against this background, inspired by the outcomes of  the SoCo project, the present Ph.D. research 
intends to  primarily  contribute to the  establishment  and validation of  possible  methods,  based on 
remote sensing techniques, for the determination of  the effects of  conservation agriculture on the 
environment.  Focus  of  the  research is  the  evaluation  of  a  remote  sensing  based  method for  the 
quantification of  the percentage cover of  crop residues on the soil surface as a proxy for soil protection 
against erosion. Determination of  the soil organic matter through chemometric2 modelling and remote 
sensing was also attempted but could not be performed due to denied access to primary soil data.

A secondary objective of  the present Ph.D. is also to demonstrate that scientific research can greatly 
benefit from the combined use of  open source and/or freely available software and data.

The originality of  such research relies in the use of  hyperspectral satellite data for the quantification of  
soil  litter, which, to my best knowledge, has never been attempted in Europe before. This,  in turn, 
could potentially contribute to the assessment of  the effectiveness of  other agricultural practices on the 
environment.

In the remainder of  this  chapter,  the conceptual  background and scientific  foundation behind the 
proposed research are explicitly illustrated, with a summary of  the main degradation processes affecting 
the European soils, a compendium of  the characteristics of  conservation agriculture, information on 
remote  sensing  principles  and  possible  methods  for  the  achievement  of  the  above  mentioned 
objectives, and a sum-up of  the current European legislation regarding agriculture and soil protection.

2 Chemometrics is defined as “a chemical sub-discipline which deals with the application of  mathematical, statistical and other methods  
employing formal logic to evaluate and to interpret (chemical, analytical) data; to optimize and to model (chemical, analytical) processes and  
experiments; to extract a maximum of  chemical (and hence analytical) information from experimental data.” [Einax et al., 1997]
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Soil and related degradation processes in Europe
Soil occupies the most superficial layer of  the earth’s crust. It is composed of  a highly variable mixture 
of  mineral  particles,  water,  air  and organic  matter,  comprising living  organisms.  Soil  is  a  complex, 
mutable, living resource and one of  the fundamental substrata for supporting life on the planet as it 
supplies plants and crops with a medium for growing and provides them with water and nutrients. 
Additionally, soil serves as a storage, filter, buffer and transformer of  substances that are introduced 
into the environment, including water and gases.  Soil  also constitutes one of  the richest biological 
habitats and gene pools on earth and provides a basis for human activities, landscape and heritage, as 
well as the supply of  raw materials [Louwagie et al., 2009b; EC, 2005].

Soil  is  formed naturally  over time as a consequence of  physical,  chemical and biological processes 
taking place on the geological and biological material. Such processes are strongly influenced by climate 
conditions, organisms, topography and human activities characterizing any given area. The richness and 
variety of  soils on the earth reflects therefore the continued interaction of  these factors with the parent 
material [EC, 2005]. 

Controversy exists between soil scientists on whether soil is a renewable resource or not [EC, 2005; 
Encyclopædia Britannica, 2011; Roose, 1996]. This largely depends on the value given to the amount of  
time and of  disturbance under which the forming processes can operate. In many cases, it is observed 
that degraded soils can indeed be restored of  their original ecological functions over a number of  
decades provided the process is not disturbed or interrupted [Encyclopædia Britannica, 2011].

Soil is therefore a fragile resource that needs to be preserved in order to perform its many functions. 
However, there is evidence that in many areas of  Europe and beyond it is increasingly threatened by a 
range of  human activities. In the European Union alone, an estimated 52 million hectares, representing 
more than 16% of  the total land area, are affected by some kind of  degradation. In the new Member 
States this figure rises to 35% [EC, 2005].

For these reasons, in 2006 the European Union institutions decided to protect soil in the same manner 
as water and air by developing a strategy to safeguard this vital resource. To this end, the European 
Commission,  supported by the Council  of  Ministers  and the European Parliament,  developed and 
issued a Thematic Strategy for Soil Protection (COM(2006)231)[EC, 2005].

Six of  the soil  degradation processes recognised by the Thematic Strategy (water,  wind and tillage 
erosion; decline of  soil organic carbon; compaction; salinisation and sodification; contamination; and 
declining soil biodiversity) are closely linked to agriculture and present various degrees of  risk across 
Europe. By 'risk’ (of  soil degradation) it is intended the occurrence of  the underlying pre-disposing 
factors in a given area but it does not necessarily indicate the actual existence of  degradative processes.

Erosion is a natural process that by means of  meteorological phenomena, such as rain, wind, ice and 
temperature (freezing and thawing), wears down and shatters rock surfaces and detaches soil particles, 
displacing  the  weathered material.  Erosion  is  therefore  responsible,  over  geological  timescales,  for 
shaping the physical landscape and is an essential component of  soil formation. With reference to soil, 
however, erosion can accelerate (becoming a degradative process) whenever the natural rate of  particles 
removal is increased by human activities to a level that overcomes the natural formation of  particles. 
Accelerated erosion can occur when certain soil parameters are modified, such as following a reduction 
or rapid change of  soil cover (e.g. clearing of  forests and conversion of  rangelands or grasslands for 
cultivation, excessive grazing, controlled burning or wildfires, tillage), a change in the length or slope of  
the land surface, or as a consequence of  a reduction of  the infiltration capacity (e.g. as a result of  
compaction  or  reduction  of  the  soil  organic  carbon  content).  Varying  the  intensity  of  land 
management can also influence the rate of  erosion, for example through deep tillage, poor maintenance 
of  terrace structures and inappropriate cultivation of  steep slopes. Experts around the world consider 
soil losses in excess of  2 t/ha/yr irreversible within a timescale of  50-100 years [EC, 2005].
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According  to  the  Pan-European  Soil  Erosion  Risk  Assessment  (PESERA),  almost  a  quarter  of  
Europe's land is estimated to be at some risk of  erosion. Risk is defined as ‘high’ or ‘very high’ on 10 
million hectares  of  Europe's  lands and ‘moderate’ on a further  27 million hectares.  The Thematic 
Strategy  for  Soil  Protection  further  specifies  that  ‘an  estimated  115  million  hectares  or  12  % of  
Europe’s total land area are subject to water erosion, and 42 million hectares are affected by wind 
erosion’ (COM(2006) 231). Eroded soils are apt to suffer from supplementary degradation such as 
reduced efficiency in filtering pollution, in capturing water to replenish underground water reserves, or 
in storing the atmospheric carbon. The latter can contribute to further decrease the already low or very 
low organic carbon content in many lands in Europe and badly affects soil structure and biodiversity 
[Prosperi et al., 2011].

Soil water erosion and decline in soil organic matter content are two of  the most widespread form of  
soil  degradation  in  Europe,  especially  around  the  Mediterranean  [Kirby  et  al.,  2004;  EC,  2006a; 
Louwagie  et  al.,  2009b].  In  agricultural  areas,  water  erosion  risk  is  usually  high  when  adverse 
topography, low soil organic matter content, low percentage of  vegetation cover, inappropriate farming 
practices, land marginalisation or abandonment, and high probability of  intense rainfall events occur. In 
the Mediterranean region, such factors are often all present. Estimates indicate here a potential soil loss 
of  20-40 t/ha after a single downpour under the current average rates, with peaks exceeding 100 t/ha 
in extreme cases [Louwagie et al., 2009b].

Water (soil) erosion can cause a number of  damages, both on-site (i.e. on the lands where erosion takes 
place) and off-site (i.e. on lands receiving the eroded material or its negative effects), as reported in the 
following Table 1. Many of  such damages are directly or indirectly linked to the removal of  soil organic 
matter (SOM), as explained below. Indeed, erosion can cause or contribute to organic matter decline 
and vice-versa.

SOM is an extremely important component of  soils, derived from the mixing of  soil fauna and flora 
with the natural  microbial  biophysical  degradation of  dead organisms.  The level  of  SOM content 
depends on two groups of  factors: natural factors (such as soil type, climate - mainly temperature and 
precipitation  -  soil  hydrology,  land  cover  and/or  vegetation  and  topography),  and  human-induced 
factors (land use, management and degradation). Climate alone explains the existence of  a North-South 
climatic gradient, with high soil organic matter levels in the colder humid Northern part of  Europe and 
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in mountainous areas and lower levels in the warmer semi-arid Southern part3 [Louwagie et al., 2009b; 
EC, 2005; EC, 2011].

The amount of  SOM affects soil's structure and in turn soil aeration and root capacity to penetrate the 
soil. SOM also improves water infiltration rates and water storage capacity, thus reducing run-off  and 
erosion. Furthermore, SOM serves as a buffer against rapid changes in soil pH and sustaining soil 
micro-organisms  contributes  to  soil  biodiversity.  Finally,  SOM maintaining  and  optimising  organic 
carbon levels (as a specific objective of  land management) is  an important contribution to climate 
change mitigation. Indeed, soil (organic matter) is at the same time an emitter of  greenhouse gases and 
also a major storer of  carbon, containing an estimated 1,500 giga tons of  organic and inorganic carbon 
[Louwagie et al., 2009b; EC, 2005; EC, 2006b]. 

Much of  these characteristics are explained by the composition of  SOM, that is very rich in organic 
carbon [EC, 2011]. Soil Organic Carbon (SOC) is a very heterogeneous mixture of  both simple and 
complex  substances  containing  carbon  (C)  that  includes  all  carbon-containing  constituents  like 
undecomposed organic vegetation residues, soil  fauna and humus.  Within the SOC, different pools 
based on composition and durability can be distinguished:

1. A labile pool: it is made of  easily decomposable organic materials, including micro-organisms 
(many of  which are involved in the actual decomposition and recycling processes), that only last 
from a few days to months in the soil. Such pool is an important source of  food and energy for 
soil organisms and a source of  plant nutrients (nitrogen and phosphorus). It also facilitates the 
stability of  large soil aggregates.

2. A slow pool: it is made of  well decomposed and stabilised organic materials (humus) that last 
many years in the soil. Humus is important for stabilising soil structure (micro- aggregates), 
improving water-holding capacity and retaining plant nutrients, e.g. cations.

3. An inert pool: it includes biologically very resistant organic materials that remain in the soil for 
thousands  of  years.  These  materials  resemble  charcoal  (in  chemical  terms)  and  can  retain 
cations, improving soil physical properties, due to their charge properties and porous nature.

Observations indicate that healthy soils contain all of  the three pools above and well serve the different 
functions of  the ecosystem. Therefore SOC is a good indicator of  soil health [EC, 2005].

These functions and ecological services can be significantly impaired by a reduced SOM (SOC) content. 
Unfortunately, SOM is indeed on the decline in the European soils [EC, 2005]. An estimated 45% of  
European soils have low SOM (0-2% organic carbon) , principally in Southern Europe but also in areas 
of  France, the UK and Germany [EC, 2006a]. A further 45% of  soils have a medium content (2-6% 
organic carbon) [EC, 2005].

3 Climate drives decomposition rates as these increase with temperatures (by a factor of  two to three for each 10 deg 
centigrade increase in temperature) and soil moisture (decomposition of  organic matter requires oxygen and this is in 
short supply in waterlogged soils) [EC, 2005]. 
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Conservation Agriculture and crop residues for soil 
protection

This  chapter  describes  the  principles  underpinning  Conservation  Agriculture  and  their  expected 
environmental effects that lay behind the choice of  this particular form of  farming for the present 
research.

An effective protection of  soil against degradation in agriculture is important to sustain production and 
to avoid the occurrence of  off-site phenomena like water pollution and mud flows. The SoCo project 
identified numerous farming systems and practices that could help reducing or eliminating a number of  
degradation factors. The following were considered: conservation agriculture, organic farming, ridge 
tillage,  contour  farming,  subsoiling,  intercropping,  maintenance  of  grasslands,  agroforestry  and 
conservation buffers [Louwagie et al., 2009a].

Conservation  Agriculture  (CA)  addresses  in  particular  the maintenance  and  improvement  of  soil 
resources  while  sustaining  production.  There  is  no  agreement  over  a  standardized  international 
definition for CA, but the underlying techniques are commonly regarded as being underpinned by the 
following three principles:

• use of  no-tillage or reduced tillage for seedbed preparation (instead of  ploughing), in order to 
preserve soil organic matter;

• use of  a permanent soil cover to protect the soil surface from weathering and contribute to the 
control of  weeds;

• use of  diversified crop rotations and associations to promote soil enriching micro-organisms 
while limiting plant pests and diseases [Prosperi et al., 2011; FAO, 2008].

More in detail,  no-tillage (NT) is a cultivation technique consisting of  a one-pass planting and, if  
needed, one fertiliser operation [Tripathi, 2009]. Soil and residues from the previous crop (mulch or 
stubbles)  are  minimally  disturbed in order  to keep soil  constantly  protected from weathering.  The 
machines used are normally equipped with coulters, row cleaners, disk openers, in-row chisels or roto-
tillers. These penetrate the mulch, opening narrow seeding slots (2-3 cm wide) or small holes, and place 
the seed and fertilisers into the slots [FAO, 2008]. Weed control is generally achieved with adapted crop 
rotations and/or herbicides [Gilliam, 2007]. The entire soil surface remains covered by mulch, or dead 
sod on more than 50% of  the total surface.

Reduced tillage without  inversion of  soil  strata  represents  all  the practices  situated between  no-
ploughing and no-tillage,  regardless of  the soil  cover management. Reduced tillage can be deep or 
superficial and is usually used for different objectives: stubble breaking, mixing of  crop residues with 
the topsoil, seedbed preparation, mechanical weed control and destruction of  soil lumps (for example, 
after ploughing) [Louwagie et al., 2009b].

Permanent soil cover can be represented by any type of  live or dead vegetation such as cover crops, 
green manure, catch crops or crop residues (mulches) and they are used to physically protect the soil 
surface from weathering. A cover crop is any crop grown to provide soil cover, regardless of  whether 
it is later incorporated deep into the soil. Cover crops are grown primarily to prevent soil erosion by 
wind and water, but also to mobilize and recycle nutrients, improve the soil structure, permit a rotation 
in  a  monoculture,  and  control  weeds  and  pests  [FAO,  2008].  "Green  manuring"  involves  the 
incorporation into the soil  of  any field or forage crop while green or soon after flowering, for the 
purpose of  soil improvement. Cover crops and green manures can be annual, biennial, or perennial 
herbaceous plants  grown in  a  pure  or  mixed  stand during  all  or  part  of  the  year.  In  addition  to 
providing ground cover and, in the case of  a legume, fixing nitrogen, they also help suppress weeds and 
reduce insect pests and diseases.  Catch crops are cover  crops planted to reduce nutrient leaching 
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following a main crop [NCAT, 2009]. Mulches, or crop residues, are a valid alternative to cover crops 
or  green  manuring  and  have  the  advantage  to  save  on  costs  for  mechanical  operations  and  seed 
purchase  [Prosperi  et  al.,  2011].  The  importance  of  retaining  crop residues  on the  soil  surface  is 
highlighted by several studies [Lal, 2003; IAEA, 2003; Nagler et al., 2003; Anderson and Magleby, 1997; 
Verhulst et al., 2011]. On-site benefits or ecosystems services provided by crop residues include the 
following:

• improved soil  physical  (e.g.,  structure,  water  infiltration rate,  water  capacity),  chemical  (e.g., 
nutrient cycling, cation exchange capacity, soil reaction), and biological qualities (e.g., Carbon 
sequestration - both as SOC and microbial biomass - , biodiversity);

• reduction of  soil erosion and in decreasing losses of  water by surface runoff  and evaporation;

• improved agronomic productivity and profitability when crop residues are used in conjunction 
with CA principles. 

Off-site benefits include:

• improvement of  quality of  water and air through reduction in erosion (water and wind), non-
point source pollution, sedimentation, and transport of  pollutants into the water bodies and 
aquatic ecosystems;

• reduction  in  frequency  and  intensity  of  floods  with  consequent  reduced  damages  to 
infrastructure (e.g., highways, bridges, waterways) and tourism;

• improvement  in productivity  of  aquaculture and agricultural  systems in  the  flood plains as 
runoff  of  water, sediments and pollutants are reduced.

In  some  countries  (notably  in  the  USA),  the  amount  of  crop  residues  left  on  soil  surface  after 
harvesting is used as a discriminating factor of  CA versus conventional farming based on ploughing 
[Daughtry et al., 2006]. Tillage is  ranked as intensive if  percent of  crop residues cover is lower than 
15%, reduced with 15–30% residue cover and conservative with more than 30% residue cover. The 
presence of  a crop residues amount greater than 15% can therefore be considered as a distinctive 
feature of  conservation agriculture based systems. However, under the current European legislative 
framework that supports the use of  residues even in conventional farming, it is doubtful that the sole 
presence of  residues may be used as a criterion to map conservation agriculture distinctively from other 
forms of  farming.

Crop rotation is a planned system of  growing different kinds of  crops in recurrent succession on the 
same land. This is done to obtain various benefits, such as to avoid the build up of  pathogens and pests 
that often occurs when a single species is continuously cropped [Miller et al., 2010], and  one of  the 
primary  motivations  for  organic  farmers  to  apply  crop  rotations  [Kroeck,  2011].  Over  time,  crop 
rotation  influences  therefore  insect,  weed,  and  disease  pressure  as  well  as  soil  nutrient  status  by 
balancing  the  fertility  demands  of  various  crops,  that  avoids  excessive  depletion  of  soil  nutrients. 
Furthermore, it  affects soil  physical condition by alternating deep-rooted and shallow-rooted plants 
[Grubinger, 1999; Miller et al., 2010].

The  above  information  highlight  that  CA  can  be  an  effective  farming  system  in  addressing  soil 
degradation and that a consistent part  of  the benefits deriving from its application,  as reported in 
literature, can be attributed to the prescribed use of  a permanent soil  cover in one of  the possible 
forms, including crop residues. Therefore, monitoring the amount of  crop residues on the soil surface 
could represent a valid proxy indicator for the assessment of  the protective effects of  CA on the soil.

7



European Legislative Framework
Agriculture is one of  the most widespread human activities in terms of  surface utilised. In Europe and 
elsewhere, it occupies vast portions of  land, playing a fundamental role in shaping the environment 
while ensuring that the overall demand for food is adequately met [Louwagie et al., 2009a]

However, unsustainable agriculture practices and other land uses can have adverse impacts on natural 
resources  such  as  soil,  water  and  biodiversity.  Furthermore,  an  ever  larger  world  population  and 
increased mechanization can contribute to worsen such impacts. Soil degradation is already considered 
a widespread problem in Europe, particularly  in agricultural areas [EEA, 2005].  As a consequence, 
pressure is growing on agriculture as well as on other activities for a more sustainable management of  
natural resources and a better preservation of  cultural landscapes [Louwagie et al., 2009b].

In recognition of  these facts and of  the profound changes occurred in the market, industry, regulatory 
and societal  conditions in recent times,  the European Institutions have responded with a series of  
initiatives  and reforms of  the  Common Agricultural  Policy  (CAP)  and other  pieces of  legislation. 
CAP's  cross-compliance  mechanism  grants  support  to  farmers  who  respect  a  minimum  set  of  
environmental  standards  as  provided  for  in  the  Good  Agriculture  and  Environmental  Condition 
(GAEC4) and Statutory Management Requirements (SMRs5) regulations. 

GAECs address the preservation of  soil resources by setting a European framework of  standards that 
include tackling of  soil erosion as well as of  soil organic matter loss and maintenance of  a good soil 
structure  (Table  1).  Compulsory  actions  include  the  use  of  minimum  soil  cover  and  proper 
management of  arable stubbles, whereas state-specific and optional rules include standards on crop 
rotations  and  appropriate  use  of  machinery.  GAEC standards  are  detailed  by  the  single  national 
authorities and in some countries include the release of  crop residues on the surface and the use of  no- 
or reduced-tillage.

SMRs include 23 pieces of  legislation extracted from several Directives in the field of  environment, 
public,  animal  and plant  health,  and  animal  welfare6.  Some of  these  may  have  an impact  on soil 
resources.

The  rural  development  mechanism  and  its  agri-environmental  schemes  offer  additional  financial 
assistance  to  farmers  who  commit  to  preserve  the  environment  beyond  the  minimum  baseline 
established by cross-compliance.

Recent research indicates that conservation agriculture, while well fitting within the current legislative 
framework, particularly on the provision of  a permanent soil  cover, the abandonment of  inversion 
ploughing and the use of  crop rotations, could greatly contribute to the maintenance and improvement 
of  soil  resources  [Louwagie  et  al.,  2009a;  Louwagie  et  al.,  2009b].  In  some  member  countries, 
conservation agriculture is also financed as an agri-environmental measure.

4 Council Regulation (EC) 73/2009, Annex III
5 Council Regulation (EC) 73/2009, Annex II
6 For more information: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:030:0016:0099:EN:PDF
Annex II.
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The monitoring of  SMRs and of  GAEC standards is central to the cross compliance as much as it is 
the monitoring of  agri-environmental measures for the rural development schemes. Standards need to 
be  verifiable  in  order  to  implement  proper  monitoring  and  enforcement  measures.  Two  basic 
monitoring approaches are commonly distinguished: direct, on-the-ground checking of  the respect of  
requirements, and the use of  indicators reflecting outputs or results [Louwagie et al., 2009b]. However, 
remote sensing can also greatly contribute to these goals provided that the action performed (and the 
environmental effect) are proved to be linked and can effectively be observed from distance.

9

Table 2: Good agriculture and Environmental Condition framework rules currently in force.
After Council Regulation (EC) 73/2009, Annex III (CAP Health Check).



Remote sensing
Remote Sensing refers to techniques that acquire data or information about objects not in contact with 
the viewing instrument (sensor) [Short, 2011]. Sensors can be portable or be mounted on a “platform”, 
like  an  aeroplane  or  a  satellite.  Sensors  are  devices  capable  of  detecting  and  recording  the 
electromagnetic radiation reflected or emitted by the objects observed. In this sense, our own eyes or 
even the common portable cameras we all use for our holiday photos are effectively remote sensors as 
they  acquire  radiation  in  the  visible  portion  of  the  electromagnetic  spectrum as  reflected  by  the 
observed objects [Levin, 1999].

The electromagnetic radiation is a form of  energy that propagates at the speed of  light as a double 
sinusoidal wave (electric+magnetic) perpendicularly to the direction of  travelling. The distance between 
two crests of  the wave is called wavelength (λ) and it is measured in metres (m) or in one of  its sub-
factors such as nanometres (nm, 10-9 metres), micrometres (µm, 10-6 metres) or centimetres (cm, 10-2 

metres)  [CCRS,  2007].  “Wavelength”  is  directly  linked  to  “frequency”  (ν)  through  the  equation: 
c=λν where:

• c represents the speed of  light (3·108 m/s);

• λ is in m;

• ν is in cycles per second (Hz).

Therefore, the shorter the wavelength, the higher the frequency.

The range of  wavelength detected and the ability to segregate different wavelengths depends on the 
inner nature of  the sensor, that is on its “spectral resolution”. Human eyes, for example, can only 
detect  the  “visible”  portion  of  electromagnetic  spectrum  (λ =  0.4-0.7  µm) and can usually  detect 
differences only between well defined hues.

Remote  Sensing  imagery  is  affected  by  various  forms of  distortion,  usually  grouped in  two basic 
categories: geometric and radiometric.

Geometric distortions can occur as a consequence of  the perspective of  the sensor optics, the motion 
of  the scanning system (if  present), the position and motion of  the platform (altitude, attitude, and 
velocity), the terrain relief  and the curvature and rotation of  the Earth [CCRS, 2007]. While some of  
these, namely the terrain relief, are random and can only be reduced, others are systematic and can be 
precisely modelled for removal. Geometric corrections attempt therefore to eliminate or reduce these 
distortions so that the geometric fidelity of  the imagery with the real world is as high as possible. 
Random distortions are usually removed via geometric registration of  the image to known ground 
coordinates. One of  the possible methods to do so is by identifying several image features (i.e. the 
corner of  a building, a crossroad, etc.) called Ground Control Points (GCPs) both on the distorted 
image and onto a georeferenced image (image-to-image correction) or map (image-to-map correction) 
and registering the respective coordinates. Computer software is then able to calculate the mathematical 
(polynomial)  relationship  between  the  corresponding  GCPs  coordinates  and,  through  it,  to 
geometrically correct (or georeference) the distorted image. Polynomial order is usually user defined. 
Order 1 indicates a simple linear shift (translation), a rotation or a scale of  the whole raw image and is 
usually good for flat areas; Order 2 (quadratic) and 3 (cubic) indicate more complex warping useful for 
undulated or mountainous areas. Georeferenciation with GCPs is suitable where the area is largely flat 
and the imagery has been acquired from nadir (near vertical) viewing. However, if  image acquisition has 
occurred at a high angle to the vertical, or very high accuracy is required, or the imaged area shows an 
undulating topography, ortho-rectification is necessary [GeoImage, 2010]. Ortho-rectification is also 
usually required if  several images or scenes need to be mosaicked seamlessly.  Ortho-rectification is 
basically a geometrical correction process that takes the vertical aspect into account and by which relief  
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apparent displacement (due to the imaging geometry) is rectified through incorporation of  a digital 
elevation  model  (DEM).  Ortho-rectification  makes  use  of  mathematical  equations  that  link  the 
distorted pixels with the true location (Rational  Polynomial Coefficients,  or RPCs, provided by the 
sensor launcher) and optionally of  Digital Elevation Models (DEMs) of  the area of  interest.

Whenever geometric correction is performed, the original pixels do not precisely overlap with the new 
ones. Therefore, in order to attribute the correct digital value to the new pixels, a resampling method 
has to be chosen between those available. With nearest neighbour, the new pixel in the corrected image 
takes the digital value from the nearest pixel in the original image; with bilinear interpolation, the new 
pixel  takes  a  weighted  average  of  four  nearest  pixels  in  the  original  image;  finally,  with  cubic 
convolution,  the  new pixels'  value  is  the  average  of  the  nearest  sixteen  pixels  [CCRS,  2007].  The 
advantage of  the first method is that it retains the original value of  pixels. However, such values can be 
duplicated,  resulting  in  a  “blocky”  image.  Bilinear  interpolation  and  cubic  convolution  have  the 
disadvantage to generate new pixel values, but offer a much sharper resulting image.

Radiometric distortions pertain to image issues due to variations in scene illumination and viewing 
geometry,  atmospheric conditions or  sensor noise and calibration (response).  These  distortions are 
specific  of  the  sensor  and platform used to acquire the  data and of  the  conditions  during  image 
acquisition [CCRS, 2007]. Similarly to the previous case, radiometric corrections intend to eliminate or 
reduce  the  influence  of  distortions  on  the  true  values  of  reflectance  of  the  observed  objects. 
Depending on the degree of  pre-processing of  the imagery distributed by the provider, radiometric 
correction may or may not be needed.

Whenever the source of  radiation is the sun, sensor is referred to as “passive”. Vice-versa, if  the source 
of  radiation is the sensor itself, the latter is referred to as “active”. 

Active sensors operate in the microwaves (low frequency) domain (0.3-40 GHz), with wavelengths of  
0.01-1  m.  At  these  wavelengths,  no interaction  (absorption,  deviation,  reflection)  of  the  radiation 
emitted by the sensor with the much smaller atmospheric gaseous particles, including water vapour, 
occurs. Therefore, active sensors can observe the earth surface even under a thick cloud cover.

Passive sensors, instead, are deeply affected by the atmosphere because the detected radiations present 
much smaller wavelengths, similar to those of  the gases traversed. In this case, radiation is completely 
masked by cloud cover, but, even with clear sky, it variously suffers from absorption and scattering 
phenomena [Levin, 1999]. Therefore, imagery acquired by passive sensors usually requires a careful 
cleaning, or atmospheric correction, of  the “at sensor” or “Top Of  the Atmosphere” (TOA) radiance 
from  the  influence  of  atmospheric  elements.  The  result  of  atmospheric  correction  is  an  image 
containing the reflectance of  the surface materials detected [Gao et al., 2007].

Atmospheric correction models are generally grouped into two basic categories (Figure 1).

The first includes empirical or relative models, that require the spectral reflectance of  reference objects 
to  be  accurately  known.  Relative  methods  use  input  information  from  the  image  itself  without 
considering  the  atmospheric  components  and  rely  on  the  assumption  that  for  one  image 
(band/channel) the relation between the radiances at TOA and at ground level follows a linear trend. 
Yet, given the variety of  earth features present in a satellite image, the trend is rarely linear. However, 
linearity can be considered precise enough to solve practical applications where there are other more 
important source of  errors. These methods are useful when there is very little information about the 
ground.
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The second category includes the physics based absolute methods, that require a description of  various 
properties of  the atmospheric profile, such as the amount of  water vapour and the distribution of  
aerosols. Direct measurements of  these properties are usually unavailable. However, techniques have 
been developed for hyperspectral image data that derive atmospheric properties from their imprint on 
the measured radiance. Inferred values are then used to constrain highly accurate atmospheric radiation 
transfer7 models to produce an estimate of  the true surface reflectance. [Kawishwar, 2007;  ITT VIS,
2011b]

A brief  overview of  the methods included in each category is presented hereafter. 

Relative methods:

• The Flat Field Correction (FCC) method assumes that there is an area in the scene that shows 
little variation with wavelength (flat = neutral reflectance). The mean spectrum of  such an area 
is then used to derive the relative reflectance spectra of  other areas in the scene. [Gao et al.,
2007]

• The Internal Average Relative Reflectance (IARR) correction method normalizes images to a 
scene average  spectrum by calculating the  average  spectra  value  of  the  image and then by 
dividing each pixel's spectra value by the average spectra value in order to produce the relative 
reflectance  spectra.  [Kayadibi,  2011].  This  is  particularly  useful  in  areas  where  no  ground 
measurements exist and little is known about the scene. However, it works best for arid areas 
with no vegetation. [ITT VIS, 2011a]

• The Empirical Line Method (or Calibration) (EL) assumes that reflectance of  target points is 
measured on the image and on the ground with a field spectrometer. The image reflectance in 
each band is then compared with the ground-measured reflectance and linear equations are 
developed to predict the true reflectance for each waveband. These equations are then applied 

ffto the remotely sensed data to produce images where both illumination and atmospheric e ects 
are removed. [Xu and Huang, 2007]

Absolute methods:

7 Radiative Transfer Theories explain how radiation and matter interact from a mathematical point of  view, like light with 
the atmosphere, generating absorption, emission and scattering processes [Drusch, 2005].
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Figure 1: Atmospheric correction techniques subdivided by category of  approach.
(Modified from: Kawishwar, 2007)



• 6S  (Second Simulation  of  Satellite  Signal  in  the  Solar  Spectrum)  is  a  model  based on  the 
radiative transfer theory that takes the main atmospheric effects into account. The use of  the 6S 
model for simulating the atmospheric scattering process assumes that a number of  atmospheric 
correction  parameters  are  chosen,  in  which  aerosol  optical  thickness  and  elevation  have  a 
greater impact on the results of  atmospheric correction [Xie et al.,2010 ].

• ATCOR (Atmospheric Correction for Flat and Rugged Terrain) indicates a number of  models 
based on a large database of  radiative transfer calculations from the MODTRAN-58 model. 
The underlying radiative transfer codes simulate the reflectance image by taking into account 
sun-sensor  geometry  at  the  time  of  imaging,  temperature  water  vapour  and  gases 
concentrations profiles, aerosol type and concentration, spectral variation of  ground reflectance 
and availability of  bands in absorption regions.

• ATREM (Atmosphere REMoval Program) was developed by the University of  Colorado for 
retrieving scaled surface reflectance from hyperspectral data that uses the 6S radiative transfer 
model. However, it is not distributed anymore.

• FLAASH (Fast Line-of-sight Atmospheric Analysis of  Spectral Hypercubes) is a MODTRAN4 
based model. One key feature of  FLAASH is that it offers the option of  correcting for light 
scattered from adjacent pixels into the field-of-view.

• ACORN is another MODTRAN4 based model to retrieve surface reflectance without ground 
measurements. A key feature of  ACORN is that it implements a full spectral fitting technique 
to model for the overlap of  absorption bands between water vapour in the atmosphere and 
liquid water in surface vegetation. ACORN also contains several artifact suppression options, 
including automated wavelength adjustment, elimination of  noisy channels and correction (or 
“polishing”) of  residual reflectance spectral errors.

• HATCH  was  developed  at  the  University  of  Colorado  and  is  available  through  a  license 
agreement. It uses the correlated k-method, which allows improved transmittance calculations 
in regions where multiple gases absorb strongly. HATCH uses a spectrum-matching technique 
to retrieve column water vapour amount. It also allows automatic spectral calibration of  the 
sensors based on a “smoothness test”.

Some  researchers  have  attempted  comparisons  between  some  of  the  above  models.  Kruse,  2004, 
evaluated the performance of  ATREM, ACORN and FLAASH models using low-altitude AVIRIS9 
data and concluded that they produce comparable atmospheric correction results. ATREM, as well as 
ACORN, provides a basic  level  of  correction though ACORN also enhances correction for liquid 
water  determination,  shows  some  control  over  the  underlying  MODTRAN  options,  and  offers 
additional  multispectral  correction  capabilities.  FLAASH provides  basic  corrections  with  enhanced 
corrections for adjacency effects and is most flexible for correction of  hyperspectral data in light of  
available MODTRAN options [Kruse, 2004].

With regard to the image acquisition mechanisms, two fundamental types of  sensor are distinguished: 
pushbroom or wiskbroom.

Pushbroom sensors collect the incoming radiation through a series of  lines of  sensors (one line for 
each band) arranged perpendicular to the flight direction of  the spacecraft (or aeroplane). Different 

8 MODTRAN (Moderate Resolution Transmittance) model calculates atmospheric transmittance and radiance for 
frequencies from 0 to 200 nm at moderate spectral resolution of  0.0001 µm. MODTRAN was developed for higher 
spectral resolutions for molecular band parametrization, spherical refractive geometry, solar and lunar source functions, 
scattering (Rayleigh, Mie, single and multiple), and default profiles (gases, aerosols, clouds, fogs, and rain) [Kneizys et al.,
1996].

9 AVIRIS - Airborne Visible / Infrared Imaging Spectrometer – a NASA airborne hyperspectral sensor.
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areas of  the surface are recorded as the spacecraft moves forward along its orbit. This means that in the 
resulting image (band), each along-track column shows values as imaged by only one detector and each 
across-track row is imaged by an entire line of  detectors at any given time. Comparatively, wiskbroom 
sensors use only one detector per image (i.e. per band). The scanning of  the across-track direction of  
the image is obtained by mechanical oscillation of  a mirror (Figure 2), whereas the advancement in the 
along-track direction, very much like the pushbroom sensors, is given by the forward movement of  the 
satellite.

 Airborne or satellite sensors can acquire images remotely for mapping and monitoring the natural and 
man-made  features  on  the  land  surface.  Appropriate  interpretation  and  analysis  of  such  imagery 
requires a deep understanding of  the processes that link the property actually measured by the sensor 
and the surface properties of  interest [Smith, 2006].
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Figure 2: Image acquisition mechanism in pushbroom and wiskbroom sensors. 
Wiskbroom sensors (left) acquire images one pixel at a time per image (band) in the indicated sequential order.  

Scanning of  pixels in a row is given by an oscillating mirror integrated with the detectors. Pushbroom sensors (right)  
compose the image row by row (one line of  detectors per image/band) in the indicated order. No mechanical scanning  

is needed. The central arrow represents the satellite's direction of  movement, that coincides with the along-track 
direction of  the image.



Materials
The computer  phase  of  the  present  research  was  entirely  developed  on  a  Windows Vista  Home 
Premium based HP Pavillon dv6700 laptop (processor Intel Core 2 Duo T9300 @ 2,50 GHz). Part of  
the image data processing was carried out on a Linux - Portable Ubuntu (version TRES) application (a 
sort of  a virtual machine) running inside Vista. Other individual software and material used is specified 
below.

Study area
The study area coincides with part  of  the Bianchini farm, that occupies five different areas in the 
provinces of  Lodi and Milan. For the present research, a selection was operated, limiting the analysis to 
the  two  portions  of  farm in  the  province  of  Lodi,  municipalities  of  San  Martino  in  Strada  and 
Lodivecchio due to their extensive surface and closeness. Such limitation was required to account for 
the characteristics of  the satellite imagery and the acquisition constraints.

The  farm was  selected  because  is  one  of  the  biggest  in  Northern  Italy  among  those  that  apply 
conservation agriculture principles. The Bianchini farm uses both no-tillage and minimum tillage on 
more than 500 hectares. Consistently with the dominating farming systems of  the region, the Bianchini 
farm's produce include durum wheat, tender wheat and corn, and in minimal part soya and other crops. 
Crop  planning is  established year  by  year  on the  basis  of  the  expected market  demands.  Corn is 
generally followed by wheat and then by a natural regrowth of  grass. No other forms of  rotation were 
observed during the study and the tabular data collected do not suggest that any such practice is in use 
at the Bianchini farm nor is any form of  seeded cover/catch crops in between the main crops.

All the parcels in the Lodivecchio and San Martino areas show a flat terrain.

Soils in the two areas are predominantly Luvisols (Figure 3), with limited portions of  Gleysols and 
Regosols. Luvisols occur mainly in temperate regions, particularly in areas with a Mediterranean-type of  
climate [ISRIC, 2011], and “are soils that have a higher clay content in the subsoil than in the topsoil as 
a result of  pedogenetic processes (especially clay migration). […] Most Luvisols are fertile soils and 
suitable  for  a  wide  range  of  agricultural  uses.  Luvisols  with  a  high silt  content  are  susceptible  to 
structure deterioration if  tilled when wet or with heavy machinery. Luvisols on steep slopes require 
erosion control measures.” [FAO, 2006].
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Climate in the study area can be defined by use of  the Köppen-Geiger map [Kottek et al., 2006] and 
corresponds to the “Warm temperate climate, fully humid, with a hot summer” class. Such class is 
coded as Cfa and defined according to the following criteria (Table 3).
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Figure 3: The Bianchini farm superimposed to the pedological and the regional technical (CTR) map of  Lombardia. 
Left: the Lodi Vecchio portion of  the Bianchini farm. Right: the San Martino in Strada portion of  farm. Source of  data:  

pedological map [Regione Lombardia, 2011]; CTR [Provincia di Lodi, 2011].



Köppen classification was inspired by observation that plants are indicators for many climatic elements. 
Köppen distinguished between plants of  the equatorial zone (A), the arid zone (B), the warm temperate 
zone (C), the snow zone (D) and the polar zone (E). As further criteria for climate classification, he 
considered the precipitation and the air temperature [Kottek et al., 2006].

In order to carry out the present Ph.D. research, the following data were collected from the Bianchini 
farm management:

• digital map (in DXF format) of  all the farm's cadastral and cultivated parcels (with positional 
attributes: cadastral parcels' and sheets' codes, topological names);

• spreadsheet  (in  XLS  format)  containing  the  type  of  crops  cultivated,  dates  of  seeding, 
harvesting and type of  treatments, subdivided per parcel (by name);

• spreadsheet  (in  paper  format)  with  information  linking  parcels'  names  to  cadastral  parcels' 
codes.

In order to convert the farm's cadastral digital map to a fully featured vector map (in SHP format), 
additional data related to the study area were retrieved (and elaborated) from other sources, namely 
from the on-line Web Mapping Services – WMS – repository of  the province of  Lodi:

• cadastral map (in WMS format) of  the whole Province of  Lodi for the retrieval of  parcels 
codes [Provincia di Lodi, 2011];

• aerial orthophotos (in WMS format) for the checking of  the actual shape of  agricultural parcels 
[Provincia di Lodi, 2011].

Furthermore, 2007 WMS aerial orthophotos (TerraItaly) from Provincia di Lodi, 2011, were used for 
the georeferenciation of  Hyperion imagery, after pre-processing for radiometric (atmospheric) defects. 
The pedological map [Regione Lombardia, 2011] and regional technical map (CTR) [Provincia di Lodi,
2011] were downloaded from the respective sources and used for reference.

Hyperion
Hyperion is a hyperspectral pushbroom sensor aboard the Earth Observing (EO-1) satellite, launched 
by the National Aerospace and Satellite Agency (NASA) of  the United States on November 21, 2000 as 
part of  a one-year technology validation/demonstration mission. 

EO-1 also hosts the Advanced Land Imager (ALI) multispectral instrument which was used to validate 
and demonstrate technology for the Landsat Data Continuity Mission (LDCM) during the original EO-
1  Mission,  successfully  completed  in  November  2001.  The  remote  sensing  research  and  scientific 
community's high interest in a continued acquisition of  image data from both the ALI and Hyperion 
sensors, however, prompted NASA to extend the EO-1 Program initial mission.

The EO-1 Extended Mission now collects and distributes ALI and Hyperion products in response to 
user generated Data Acquisition Requests (DARs). Under the Extended Mission provisions and based 
on an agreement with the United States Geological Survey (USGS), image data acquired by EO-1 are 
archived and distributed by the USGS Center for Earth Resources Observation and Science (EROS) 
and placed in the public domain.

Each registered user can therefore fill in an on-line DAR form to request acquisitions of  images from 
ALI,  Hyperion or both, free of  charge. Nadir/non nadir pointing can also be specified. The latter 
implies  that each acquired scene  has its  own orientation and degree  of  distortion,  which must  be 

17



accounted for.

Limitations in the use of  the service are in place so that only one request (one DAR) per user is allowed 
each week and no guarantee is granted that acquisitions will actually occur, depending on the number 
of  conflicting requests received at the same time and on the planned path/row pointing. Acquisitions 
can also be affected by cloud cover depending on the local meteorological conditions.

Hyperspectral sensors, compared to multispectral, normally comprise hundreds of  bands with a narrow 
bandwidth (at Full Width Half  Maximum – FWHM). 

Hyperion is capable of  resolving 242 spectral bands (from 0.4 to 2.5 µm) with a 30-meter geometric 
resolution and a 10 nm spectral resolution. “The instrument can image a 7.5 km by 100 km land area 
per image, and provide detailed spectral mapping across all the channels with high radiometric accuracy. 
The major components of  the instrument include the following: 

• System fore-optics design based on the Korea Multi-Purpose Satellite  (KOMPSAT) Electro 
Optical  Camera  (EOC)  mission.  The  telescope  provides  for  two  separate  grating  image 
spectrometers to improve signal-to-noise ratio (SNR).

• A focal plane array which provides separate Short Wavelength Infrared (SWIR) and Visible and 
Near Infrared (VNIR) detectors based on spare hardware from the LEWIS HSI program.

• A cryocooler identical to that fabricated for the LEWIS HSI mission for cooling of  the SWIR 
focal plane. 

Hyperspectral  imaging  has  wide  ranging  applications  in  mining,  geology,  forestry,  agriculture,  and 
environmental management. Detailed classification of  land assets through the Hyperion enables more 
accurate  remote  mineral  exploration,  better  predictions  of  crop  yield  and  assessments,  and  better 
containment mapping” [USGS, 2011].

Hyperion images exhibit a number of  artefacts caused by calibration and positioning imperfections in 
the detector arrays [Goodenough et al., 2003; Dadon et al., 2010], atmospheric interference [Gao et al.,
2006]  and  improper  geospatial  registration.  In  order  to  study  surface  properties  using  imaging 
spectrometer data, accurate removal of  atmospheric absorption, scattering effects and other distortions 
is required for the conversion of  radiances measured by the sensors to reflectances of  surface materials 
[Gao et al., 2006].

The atmosphere elements and the observed surface deeply absorb and scatter10 the solar radiation on 
the sun-surface-sensor ray path. Water vapour is responsible of  some major absorptions centered at 
approximately 0.94, 1.14, 1.38 and 1.88 µm, while oxygen absorbs at 0.76 µm, and carbon dioxide at 
around 2.08 µm. Of  the entire spectrum covered by Hyperion, nearly half  is affected by atmospheric 
gas absorptions, whereas the wavelength region below 1µm is also affected by molecular and aerosol 
scattering  [Gao  et  al.,  2006].  Figure  4 displays  the  atmospheric  transmission  (opacity)  windows. 
Waldhoff  et al., 2008, created a similar image along with a comparison of  Hyperion bands with those 
of  the ASTER and Landsat ETM+ sensors.

Out of  the 242 theoretically available bands acquired by the sensor, only 198 were calibrated by  USGS 
and can be actually used (bands 8-57 and 77-224). The other bands are automatically set to zero during 
the calibration processing done by USGS prior to distribution, although they remain included in the 
file.

Image data is distributed as signed integer at 16 bits (INT16). A differential scaling factor is applied to 
the calibrated radiance (W/m2-sr-µm). More in detail, a factor of  40 is applied to spectral bands 1-70, 
and a factor of  80 is applied to spectral bands 71-242 [Barry, 2001].

10 Scattering is the deviation of  a radiation from the straight direction, due to interaction with some physical elements, such 
as the atmospheric gaseous particles and dust.
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Hyperion was chosen due to its very interesting characteristics in terms of  width of  the wavelength 
detected and the high geometrical resolution achieved. Furthermore, Hyperion is the only hyperspectral 
space-borne sensor currently available on the market and one of  the few whose imagery is in the public 
domain.
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Figure 4: The atmospheric opacity diagram.
(Source: NASA, 2011)



Methods
This Ph.D. study was initially driven by the need to acquire knowledge on existing methods for the 
analysis of  the effects of  agriculture practices on the environment through remote sensing.

In this respect, a thorough analysis of  the available literature allowed to identify some methods that 
appeared useful to the scope of  the research. Given the current status of  the scientific knowledge and 
the present availability of  satellite data on the market, three major objectives were selected as feasible by 
use of  remote sensing techniques:

1. the determination of  changes in soil organic carbon (SOC) as a consequence of  the continued 
application of  conservation agriculture practices;

2. the detection of  lands under conservation agriculture as opposed to those under traditional 
mouldboard tillage;

3. the determination of  soil  cover by residues as a proxy for the estimation of  the protective 
capability of  the farming practice used.

The determination of  changes in SOC through remote sensing techniques (point 1 above) appeared 
immediately of  great interest as the decrease in SOC is one of  the major soil degradation phenomena 
in  Europe.  Furthermore,  remote  sensing  shows  potential  for  application  over  vast  territories.  A 
consistent amount of  time and efforts were therefore dedicated to the development of  this research 
that  would  make  use  of  a  mixture  of  chemometric  techniques,  soil  sampling  data  and  complex 
statistical processing. 

Unfortunately,  though,  this  research  had  to  be  interrupted  because  of  the  unavailability  of  some 
fundamental soil and spectroscopic data. Details on the scientific foundation, the logical reasoning and 
the material collected during the research are now part of  the  Annex I in the present report, in the 
hope that they could be useful to other researchers and that the above soil data will be available in the 
future.

The detection of  land under conservation agriculture through remote sensing (point 2 of  the above 
list)  would  also  be  of  relevant  interest  as  the  extent  to  which conservation  agriculture  is  applied 
worldwide is only estimated through proxy data.

Various authors report of  successful attempts in correctly determining small areas under CA mostly 
through use  of  optical  sensors  imagery,  such as Landsat.  However,  the variety of  forms in  which 
conservation  agriculture  techniques  are  applied,  which  often  tend  to  be  mixed  with  traditional 
cultivation practices, make the remote sensing techniques rarely applicable to vast areas and imply that a 
thorough field check is applied to the results. 

Like  in  the  previous  case,  the  information  and  knowledge  collected  for  the  determination of  the 
feasibility of  this research are now part of  the Annex II to the present report.

Because of  the above considerations, final decision was taken to pursue the research and evaluation of  
remote sensing methods for the determination of  soil cover by crop residues. Such topic will be treated 
in depth in the remainder of  the present document.
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GIS data processing
The geospatial data collected for the study area needed a significant amount of  pre-processing before 
they could actually be used. Indeed, the original farm's cadastral map was not it a GIS-ready format and 
appeared  to  have  only  an  indirect  link  with  the  other  farm's  tabular  data  through  the  parcels' 
names/cadastral codes table.

As  a  first  step,  therefore,  the  cadastral  map  was  converted  from  the  native  DXF  format  to  a 
geographical shapefile (SHP) format through the “Dxf2Shp converter” plugin in Quantum GIS (QGIS, 
v.1.6.0) [QGIS, 2011]. Projection information was missing in the DXF file and, as a consequence, also 
in the derived shapefile. However, by overlay with the on-line cadastral WMS map of  the Province of  
Lodi [Provincia di Lodi, 2011], it was noted that the two maps shared the same pattern. Therefore, the 
projection of  the cadastral WMS (EPSG11:3003, Gauss-Boaga zone Italy1) was attributed also to the 
farm's cadastral map.

Conversion from DXF to SHP data generated two separate shapefiles: one containing polygon vectors 
with no attributes (here representing the farm's cadastral map); and another containing point vectors 
and  related  table  of  attributes.  In  the  original  map in  DXF format  (generated  by  the  AutoCAD 
software in use at the Bianchini farm), these points would translate into labels of  the map's various 
features, ranging from parcel's cadastral codes, to sheet numbers, to topological names, etc. However, 
opposite  to  any GIS,  in AutoCAD the meaningfulness  of  such labels  purely  relies  on their  visual 
positioning in the map with respect to the underline vectorial features, rather than on a mathematical 
relational link. Therefore, in order to link the polygon features (the parcels) with their own attributes 
(parcel's cadastral number and sheet number), an appropriate SQL selection for parcel numbers was 
operated  on  the  point  features.  Then,  a  spatial  join  between  the  polygons  and the  selected  point 
features  was attempted for  registration of  the  parcels'  numbers.  Subsequently,  a  manual  on-the-fly 
overlay of  the polygons features with the cadastral WMS map allowed for removal of  the errors in the 
parcels cadastral numbers and the attribution of  the correct cadastral sheet numbers to each parcel.

Once the  map had been completed,  based on the cadastral  parcel's  numbers and on the table  of  
conversion provided by the farm managers, parcels' names corresponding to the appropriate cadastral 
sheet  and parcel  codes were  also registered as  an additional  field in  the map's  table  of  attributes. 
However, the relationship between cultivated parcels' names and cadastral parcels often appeared to be 
one-to-many, as the farm managers reshaped cadastral parcels in the past according to their operational 
needs. Some refining consisting in the merge and/or split of  some cadastral parcels had therefore to be 
performed manually. Eventually, by use of  parcels' names, the map could finally be linked to the farm's 
data related to production and treatments.

In the parcels map's attributes table, two extra columns were created and records were filled in with the 
type  of  cultivated  crops  for  each  year  of  reference  (2010,  2011).  In  this  way,  the  parcels  map's 
symbology could be customized to indicate the crops grown on each year for later use in the overlay 
with satellite images. 

Due to Hyperion's pixel size (30 m), in order to preserve purity of  border-pixels' reflectance and avoid 
any influence of  green vegetation, roadsides and other unwanted features delimiting the parcels, a new 
shapefile was generated from the parcels map by creating an inner buffer at 10 m from the border. The 
“buffered” conservation parcels were those finally used for matching with the Hyperion images.

11 EPSG (European Petroleum Survey Group) is a body, now part of  the “International Association of  Oil and Gas 
Producers”, that in recent years created and published the Geodetic Parameter Dataset, a structured dataset of  
Coordinate Reference Systems and Coordinate Transformations referenced by a specific number code. The EPSG 
coding is now supported by several GIS applications and each code uniquely identifies Datum, Ellipsoid and Coordinate 
System. EPSG:3003 corresponds to International Spheroid, Transverse Mercator Projection (Monte Mario/Italy 1). 
[OGP, 2001]
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Remote sensing data processing
The Hyperion imagery is distributed by NASA/USGS in two different levels of  finish:

• Level  1Gst:  it  consists  of  terrain  corrected  data,  provided  in  16-bit  radiance  values;
The Level  1Gst  product  also  includes  terrain  (ortho-)  correction  through use  of  a  digital 
elevation model (DEM) to correct parallax error due to topographic relief  and improve the 
overall band-to-band registration accuracy. The elevation data used for correction consist of  the 
Shuttle Radar Topography Mission (SRTM) "Finished" data set  and other elevation data as 
required.

• Level  1R:  it  consists  of  radiometrically  corrected-only  images  (watts/(sr-micron-m2)x100), 
formatted as HDF files, and metadata in binary and ASCII formats. User georeferenciation and 
ortho-correction is required.

Because of  the higher processing level, use of  the L1Gst imagery was attempted at first. However, by 
overlap with some of  the existing online WFS elements of  the Carta Tecnica Regionale (CTR10) map 
[Provincia di Lodi, 2011] of  the same area, it soon became clear that the georeferenciation of  such 
Hyperion imagery could not be accepted as satisfactory because of  a very clear shift of  the scenes of  
few hundreds of  meters in the North-East direction (Figure 5).

Therefore,  a  careful  image  repositioning (georeferenciation) was successfully  attempted through an 
image-to-ortophoto registration in QGIS using the TerraItaly 2007 WMS orthophotos from Provincia
di Lodi, 2011. However, a more in depth analysis of  the sub-scenes (bands) revealed further problems. 
In particular,  a relevant striping effect was noted on several bands, including some of  fundamental 
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Figure 5: An example of  the bad georeferenciation of  a Hyperion 1Gst scene in the area of  interest. 
In the background: true-colour L1Gst Hyperion image (RGB=31:20:10; image no. EO1H1930282011055110PZ acquired 
on 24/02/2011). In red: A1 highway next to Lodi Vecchio (on the right). Source: autostrada_ct10 WFS [Provincia di Lodi,

2011]. In light blue: Lambro river. Source rete_idografica_ct10 WFS [Provincia di Lodi, 2011]. 
Note the shift of  these very same features in the Hyperion image with respect to ground truth.



importance for the elaboration of  certain indices under the present research.

An investigation on the occurrence of  such issue was carried out and confirmation widely found in the 
available literature. By doing so, an additional problem was also detected, consisting in a misregistration 
(one-pixel shift) of  the right hand-side half  of  the SWIR sub-scenes with respect to the VNIR sub-
scenes (Figure 6).

Therefore,  it  appeared  clear  that  a  destriping  pre-processing  and  a  correction  of  the  SWIR 
misregistration was needed before any further processing could be performed.

Unfortunately, no open source or commercial software is currently available that performs destriping 
out of  the box. Therefore, such an operation needed to be programmed from scratch. A literature 
analysis was performed on the known theoretical methods to destripe satellite imagery.

Much effort is recently being dedicated by researchers around the world to solve the striping issue as it 
can severely impair the results of  any hyperspectral analysis.

Tsai  et  al.,  2005,  proposed  the  use  of  a  cubic  spline  curve-fitting12 algorithm  to  destripe  any 
Hyperion image, based on the idea that each line of  an image (band) can be described as a piecewise 
spline curve. As a first step, pixels affected by the striping noises must be identified, followed by the 
collection of  the noise-free pixels. These are used as samples to construct a cubic Hermite spline13 
curve that passes all of  the control points (samples). The original values of  the striped pixels can then 
be approximated from the spline curve. Applying this procedure to an image, line by line or column by 
column, a striping-free image can be reconstructed accordingly. Yet, the method proposed requires 
prior knowledge on the position of  the stripes, and yields best results on images affected by narrow 

12 Cubic spline fitting is a type of  interpolation that uses third order piecewise polynomial equations, a category of  
equations that change their definition depending on the value of  the independent variable and where the order, or 
degree, represents the highest exponent of  the independent variable.

13 Hermite is a spline (see above) where each polynomial possesses two control points and two control tangents.
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(a)

(b)

Figure 6: Two examples (circled) of  the step-like effects of  the one-pixel misregistration in a Hyperion SWIR bands 
(image EO1H1930282010203110PC, band 89) on the upper image border (a) and on a road (b).

Each pixel has an approximate size of  30 metres.



stripes.

Spatial moment matching (SpaMM) is a technique proposed by Datt et al., 2003, based on spatial 
autocorrelation  that  attempts  to  balance  (match)  histogram  moments,  represented  by  means  and 
variances of  the image pixel columns in each band, to those of  a reference histogram. Such histogram 
varies with the form of  balancing chosen. With “global” balancing, the statistical moments of  each 
column are modified to match those for the whole image for each band. With the “local” approach, 
reference  moments  are  estimated  locally  based  on  a  selectable  number  of  neighbouring  columns. 
Spatial moment settings should be chosen considering the type of  bands to destripe (VNIR or SWIR), 
the overall environmental conditions and the ground land cover classes (such as forests, crops, water 
and deserts) being imaged [Datt et al., 2003].

Spectral  moment  matching  (SpcMM),  a  method  introduced  by  Sun  et  al.,  2008,  uses  spectral 
autocorrelation (as opposed to spatial autocorrelation of  SpaMM) to estimate the expected mean and 
standard  deviation of  a  sub-scene (i.e.  a  band),  which  is  comprised  of  the  pixels  acquired  by  an 
identical  detector  element  (see  the  Hyperion paragraph  above).  This  method  has  been  originally 
implemented as  one  of  the  components  of  a  complete  software  package  for  hyperspectral  image 
processing maintained at the Canadian Space Centre. The software is not available to the general public. 
However, the whole method has been thoroughly documented in a scientific paper [Sun et al., 2008].

The method is based on the observation that in a hyperspectral image cube14 there are usually highly 
correlated groups of  bands; the statistics of  the sub-scenes measured by the corresponding detectors in 
a set of  highly correlated bands are usually very similar. However, SpcMM assumes that the sensor 
radiometric response function is linear and that the stripes are not correlated band to band.

SpcMM removes various types of  stripes without introducing undesired side effects into the destriped 
images due to the proper estimation of  the expected mean and standard deviation for each along-track 
column.  Moreover,  SpcMM can automatically  destripe  an entire  Hyperion image cube without  the 
manual selection of  defective bands or across-track spatial regions, or the individual selection of  band-
specific window sizes for spatial smoothing like in the case of  SpaMM. 

Carfantan and Idier, 2010, adopted a self-calibration method to perform linear response correction (no 
specific training data required), based on a Markov random field15 model for the logarithm of  pixel 
intensities. This approach, calibrated for pushbroom sensors (such as Hyperion), also assumes a linear 
response of  the detectors and its efficiency depends on the validity of  such assumption. For example, 
if  the offset of  a detector's affine (i.e. linear) response has not been correctly calibrated, destriping with 
a moment-matching-based method may give better results than with the proposed method.

For this reason and the for the completeness of  the mathematical description of  the method, spectral-
moment matching was adopted in the present research. An email contact with the first author of  the 
SpcMM method (Lixin  Sun)  was successfully  established in order  to clarify  few of  the processing 
mechanisms that, despite the detailed description in the article, appeared ambiguous.

A summary of  the principles underlying SpcMM is presented hereafter. Given any Hyperion scene (that 
is, its spectral cube, see Figure 7), the spectral moment matching method performs destriping based on 
the following steps:

1. Calculate spectral moments (mean and standard deviation) of  each along-track column in the 
cube. Extreme values are likely to be caused by stripes. 

2. To minimize the influence of  extreme values, calculate median values of  the above means and 

14  “Hyperspectral cube” is the parallelepiped formed by the stack of  the images (bands) of  a single scene, where each layer 
of  the stack is an image (or sub-scene). The “cube” has the following dimensions: number of  bands times the number 
of  along-track columns times the number of  across-track rows of  each of  the sub-scenes. For Hyperion, dimensions are 
242, 256, ~3000 (the latter may vary with the scene's length). 

15 “Markov random field” (or MRF) is a branch of  the probability theory with several applications, including image 
analysis. For a detailed explanation, please visit: www.cmap.polytechnique.fr/~rama/ehess/mrfbook.pdf
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standard deviations in the across-track dimension based on moving windows of  user specified 
size. Median is attributed to the central pixel in the window. For border pixels, the window is 
reduced.

3. For a target detector (of  the band to be destriped, or target band), calculate mean and standard 
deviation of  the medians in an across-track (target) window of  user specified size centered on 
the detector. Then do the same in the corresponding (test) windows in all the other bands. For 
each of  these bands, determine a rescaling factor by dividing target and test means. Do the 
same for the standard deviations. Repeat for all target dectors in the same band. Then rescale all 
the original medians of  means and of  standard deviations in the test bands to those of  the 
target  band  by  multiplying  for  the  rescaling  factor.  Border  pixels  behave  similarly  to  the 
previous point (windows reduced).

4. For each of  the detectors in the band to be destriped, identify a group of  highly correlated 
bands (number determined by user choice) based on Euclidean distances between the rescaled 
means in the across-track windows of  point 3 and the mean of  the target window. Repeat for 
standard deviations.

5. Collect the original means and standard deviations of  the along-track columns in the highly 
correlated bands.

6. Calculate the average values per column. These will represent the expected mean and standard 
deviation in the destriped band.

7. Calculate gain and offset based on the original and the expected means and standard deviations.

8. Destripe an entire column in the target band based on the calculated gain and offset.

Because destriping with SpcMM is performed by rows and columns, it is necessary that across-track 
and along-track dimensions are oriented parallel to the X and Y axes of  a common Cartesian system, 
respectively. That is the case of  the Hyperion L1R images, that were therefore used for this study.

When the programming phase was met, the question arose on which language could be used. Indeed, a 
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number of  programming languages are available for managing image processing. The following are the 
languages investigated based on some personal experience in their use:

• Interactive Data Language (IDL). IDL is a proprietary software of  ITT Visual Information 
Solutions. There exists an open source clone of  IDL called GNU Data Language (GDL) and it 
is almost completely compatible with the IDL scripting.

• Matlab. A proprietary software of  The MathWorks, Inc. A free clone is available under the 
name GNU OCTAVE. Like in the previous case, compatibility with Matlab is almost 100%.

Other software is available (namely, Python, Perl Data Language) that could have probably helped in 
addressing the objective, but it would have implied the undertaking of  a long and uncertain learning 
process and was therefore excluded.

GDL proved very useful throughout the processing sequence. However, on the very last step consisting 
in the conversion of  the process-resulting matrix into a proper image, GDL did not offer any usable 
command. Indeed, many IDL subroutines are still waiting to be implemented in GDL, including the 
writing of  matrices to image readable files, like GeoTiff, that support 16bits signed type of  data (as the 
original Hyperion images). The conversion of  the processed matrix into image could not be solved and 
this in turn forced the abandonment of  this language.

The choice  was  finally  made  for  GNU OCTAVE,  that  presents  a  vast  array  of  functions  and  is 
extensible with additional packages. GNU OCTAVE proved to offer all the needed commands and 
flexibility for the processing of  the original images and their transformation. GNU OCTAVE runs on 
Linux, MAC OS and Windows platforms. However, the latest updates are always released for Linux 
first.  Therefore, GNU OCTAVE was compiled and run in a Linux environment. The whole script 
programmed for a complete destriping of  Hyperion images is reported in text format in  Annex III. 
Additional steps were introduced with respect to the original SpcMM procedure to correct for the one 
pixel misregistration in the SWIR sub-scenes.

After  debugging,  the  script's  first  results  did  not  appear  to fulfil  the  SpcMM authors'  promise  to 
eliminate the striping issue. Indeed, the script's output images were affected by even more artefacts than 
the original images. A deeper investigation into the problem was therefore initiated. By looking at the 
spectral profiles of  both the original and the processed cube (Figure 8), it was noted that the latter 
suffered an increase – rather than a decrease – in the number and intensity of  peaks and sinks with 
respect to the original cube's profile. 
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This clearly indicated that the script was malfunctioning in the calculation of  the profile correction 
parameters across the board. However, the script reflected exactly the indications of  the paper. Further 
investigations revealed that a bad mathematical notation in the article related to the calculation of  the 
image offset, and therefore of  the values of  the destriped pixels, could have explained this behaviour. 
By comparison with the way the offset was calculated in the SpaMM method [Datt et al., 2003], an 
attempt was made to change the offset notation from minus to plus and the script was re-run. Finally, 
the resulting images appeared to be consistent with the SpcMM theoretical model and showed mostly 
stripe-free images in all the bands.

In order to get confirmation of  the findings, a further notice with a request of  clarification was sent to 
Mr Sun (first author of  the paper), but unfortunately it remained unanswered for.

An example of  the remarkable results obtained with the corrected destriping code is displayed inFigure
9. The spectral profile of  the destriped image versus the original image also confirmed the goodness of  
the processing Figure 10.
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After destriping was performed, the imagery had to be corrected for the atmospheric and scattering 
effects.

Only very few open source software perform atmospheric correction. “OPTICKS” (opticks.org) is one 
of  them. It is an expandable remote sensing and imagery analysis open source software platform that 
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Figure 9: Example of  the effects of  the destriping processing. Left: original L1R Hyperion image EO1H1930282010265110Pz 
(band 8, cropped) depicting the area around the Orio al Serio Airport (visible). 

Right: the same image/band after destriping with the GNU Octave code based on the corrected spectral moment matching technique.



offers two packages for atmospheric correction: the IARR and the EL. However, OPTICKS lacks any 
user documentation on how to use them and information from other sources is equally insufficient. 
This prevented the use of  OPTICKS perform atmospheric correction.

GRASS GIS [GRASS, 2011.] also offers atmospheric correction by implementing one of  the available 
versions of  the 6S code. However, the 6S correction module accepts only a number of  sensors' images 
in input that do not include Hyperion.

Given  these  limitations,  commercial  software  had  to  be  considered.  
According to  Kawishwar, 2007, FLAASH provides user with more options than ATCOR to control 
sun-sensor geometry, accommodate for adjacency effect and CO2 concentration levels. FLAASH was 
demonstrated to be effective in the atmospheric correction of  Hyperion and Ali images [Yuan and Niu,
2008;  Yuan et al., 2009]. FLAASH is also embedded in the widespread ENVI software and supports 
input of  Hyperion data (as well as other hyperspectral sensors). It was therefore picked for use in the 
present research.

For atmospheric correction, FLAASH requires the preliminary input of  a number of  parameters such 
as center location of  the input image, date and time of  flight (pass), sensor altitude, ground elevation, 
pixel's  size.  Most  of  these  were  derived  from  the  image's  metadata.  Subsequently,  other  input 
parameters are required to allow for the calculation of  the water vapour column. These include the 
specification of  the type of  atmospheric model as required by MODTRAN (Sub-artic winter, Mid-
latitude winter, U.S. Standard, Sub-artic summer, Mid-latitude summer, Tropical) and of  the aerosol 
model (no aerosol, rural, maritime, urban, tropospheric) 

Option is  given to the user for  spectral  polishing,  water retrieval,  aerosol  retrieval  and wavelength 
recalibration. In the advanced hyperspectral settings, the user has to further specify the view zenith and 
azimuth angles.

For a more in depth description of  the actual mathematics behind the FLAASH tool, the reader is 
referred to the ENVI documentation (Atmospheric Correction Module: QUAC and FLAASH User’s 
Guide, freely available online at: www.ittvis.com/portals/0/pdfs/envi/Flaash_Module.pdf).

The United Stated Geological Survey (USGS), distributor of  the Hyperion images, also offers a detailed 
tutorial16 on  how  to  perform  the  atmospheric  correction  of  Hyperion  images.
Unfortunately, this document does not indicate how to calculate the view azimuth angle as this figure is 
not given in the Hyperion metadata files. In ENVI, the view azimuth is defined as the angle between 
the  line  of  sight  and  due  North  of  the  sensor  as  viewed  from  the  ground.
An inquiry sent to the USGS help-desk did not clarify this issue. Further contacts were established with 
Marcos Montes,  researcher at  the US Naval  Research Laboratory and first  author of  an article on 
hyperspectral  remote sensing [Montes et  al.,  2004]  where such angles  were specified.  Montes very 
kindly replied, suggesting that the azimuth angle should be derived from the bearing (heading) of  the 
two long sides of  an image. The latter can be calculated from the image's corners. Headings must then 
be averaged and subtracted of  90 degrees to obtain the view azimuth.

All the parameters used for atmospheric correction of  each Hyperion scene in the present research can 
be found in the following Table 4.

16 The tutorial (EO-1 User Guide v. 2.3) is available from: 
http://edcsns17.cr.usgs.gov/eo1/documents/EO1userguidev2pt320030715UC.pdf
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As per the above tutorial,  the advanced hyperspectral settings in FLAASH were not changed from 
default.

An example of  the correction obtained by applying the FLAASH tool can be seen in Figure 11 where 
the radiance/reflectance profiles of  the original image and of  the resulting image are displayed.

Another source of  potential distortion in Hyperion images is caused by a spatial misalignment of  the 
the  detector  elements  that  reflects  into  a  shift  in  wavelength  in  the  spectral  domain  known  as 
smile/frown effect. Distortion occurs as a function of  across-track pixel (column) in the swath17 and 
can also be a result of  aberrations in the collimator and imaging optics. Shifts of  less than 1 nm have 
been observed in the SWIR wavelengths and 2.6 – 4.25 nm shifts in the VNIR wavelengths [Dadon et
al., 2010;  Aktaruzzaman, 2008]. Despite few techniques have been devised for the correction of  the 
smile effect (Trend Line Smile Correction [Dadon et al., 2010], Cross Track Illumination correction 
ITT VIS, 2011a, Linear Fitting and Interpolation [Aktaruzzaman, 2008; Goodenough et al., 2003]), the 
correction of  the smile effect remains a considerable challenge for the scientific community [Dadon et
al., 2010]. In relation to this, to the fact that SWIR bands are used and to the reduced size of  the study 
area, the smile effect correction was not attempted as an independent process. However, the above 
FLAASH module in ENVI does minimize the smile effect when recalibrating the wavelengths during 
the atmospheric correction processing [Kawishwar, 2007; ITT VIS, 2011b].

As a last step, Hyperion images were also processed to reduce the amount of  residual noise.

A Minimum-Noise-Fraction correction (forward and backward) was applied by use of  a specific ENVI 
tool.

17 Swath is the area imaged by the sensor on the surface.
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Table 4: Parameters used for the atmospheric correction of  all the Hyperion scenes with FLAASH. 
Places: LV=LodiVecchio, SM=San Martino in Strada. CC=cloud cover (in percent). 

Lat/Long coordinates as well as (View) Zenith and Azimuth angles are in decimal degrees. 
Images with cloud cover over the area of  interest were not processed and show empty fields.

Date CC Time Azimuth
EO1H1930282010221110Kj LV 09/08/10 10 09:48:51 9.42,  45.39 169.3200 103.1596
EO1H1930282010260110KF LV 17/09/10 90
EO1H1930282010314110Pp LV 10/11/10 90
EO1H1930282011055110PZ LV 24/02/11 0 09:51:36 9.42,  45.39 173.7474 103.6755
EO1H1930282011252110KZ LV 09/09/11 0 10:00:22 9.42,  45.39 173.1981 105.1087
EO1H1930282010203110PC SM 22/07/10 10 09:51:27 9.53, 45.25 174.3211 103.7350
EO1H1930282010265110Pz SM 22/09/10 0 13:06:08 9.53, 45.25 177.0277 104.0095
EO1H1930282010278110KE SM 05/10/10 70
EO1H1930282011006110Kp SM 06/01/11 90
EO1H1930282011024110Pc SM 24/01/11 0 09:52:32 9.53, 45.25 176.1846 103.9336
EO1H1930282011037110PZ SM 06/02/11 20
EO1H1930282011050110Kg SM 19/02/11 0 09:58:04 9.53, 45.25 174.9462 104.9290
EO1H1930282011081110Kb SM 22/03/11 0 09:56:46 9.53, 45.25 176.8453 103.9543
EO1H1930282011151110KZ SM 31/05/11 60
EO1H1930282011270110PZ SM 27/09/11 10 09:54:37 9.53, 45.25 179.1111 104.2253

Scene filename Place Atm. Model Center lat/longZenith
Mid-lat summer

Mid-lat winter
Mid-lat summer
Mid-lat summer
Mid-lat summer

Mid-lat winter

Mid-lat winter
Mid-lat winter

Mid-lat summer



The Minimum Noise Fraction (MNF) transform is used to segregate noise in the data, to determine the 
inherent dimensionality of  image data and to reduce the computational requirements for subsequent 
processing  [ITT  VIS,  2009].  The  MNF  transform  in  ENVI  operates  two  sequential  Principal 
Components18 transformations.  “The  first  transformation,  based  on  an  estimated  noise  covariance 
matrix, decorrelates and rescales the noise in the data. This first step results in transformed data in 
which the noise has unit variance and no band-to-band correlations. The second step is a standard 
Principal Components transformation of  the noise-whitened data. For the purposes of  further spectral 
processing,  the  inherent  dimensionality  of  the  data  is  determined  by  examination  of  the  final 
eigenvalues and the associated images. The data space can be divided into two parts: one part associated 
with  large  eigenvalues  and  coherent  eigen-images,  and  a  complementary  part  with  near-unity 
eigenvalues and noise-dominated images. By using only the coherent portions, the noise is separated 
from the data, thus improving spectral processing results.” [ITT VIS, 2009]

In the present research, forward MNF was first applied with noise statistics estimated from the image. 
A spectral subset was operated to further select and exclude Hyperion sub-scenes that resulted black 
after  atmospheric  correction  (bands  93-101  and  138-152  were  discarded).  A  total  of  174  bands 
remained for MNF processing. By visual inspection of  the 174 eigen-images calculated by MNF during 
the  forward  processing,  only  the  first  13  were  retained  for  the  subsequent  inverse  processing, 
accounting for about 60% of  the variability. Inverse MNF was then run, during which the whole set of  
174 'noise-free' bands was regenerated.

As a last step in the pre-processing of  Hyperion imagery, georeferenciation was performed. Although 
ortho-correction would have been preferable, RPCs were not available and the images were acquired 
over largely flat terrain areas. For this reason, georeferentiation was performed and GCPs acquired 
through an image-to-ortophoto registration in QGIS [QGIS, 2011] using the TerraItaly 2007 WMS 
orthophotos from Provincia di Lodi, 2011. GCPs were then applied to the original images and warping 
operation  performed  by  using  specific  GDAL  (Geospatial  Data  Abstraction  Library)  commands 
[Warmerdam,  2011]  to  every  single  band  in  batch  mode  (polynomial  order  1  (affine)  and  cubic 
convolution resampling). However, due to the different length of  the acquired scenes, georeferenciation 

18 Principal Components Analysis is a mathematical procedure that linearly transforms a set of  observations of  possibly 
correlated variables into a set of  values of  uncorrelated variables, called principal components, that contain most of  the 
information of  the original variables. [Dunteman, 1989]
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Figure 11: Spectral profiles of  an Hyperion image before and after atmospheric correction. 
Left: radiance of  the original Hyperion image EO1H1930282010265110Pz (band 8, pixel 129(X), 200(Y)). Right:  

reflectance (right) of  the same image after atmospheric correction with FLAASH. Gaps in the latter profile indicate bad bands.



had to be performed separately and from scratch on each scene. ENVI, GDAL and QGIS were run in 
a Windows Vista environment.

Crop residue indices 
Several techniques for mapping and estimating crop residues on the ground can be found in literature, 
such as visual estimation, line transect, point intercept, meter stick, spiked wheel and photographic 
techniques. However, all of  these methods assume that data are collected by surveyors by means of  
field sampling, implying relevant financial and time investments and severe limitations in the extent of  
the area covered [Bannari et al., 2006; Bannari et al., 2007a]. Vice versa, provided that expert knowledge 
and careful processing is applied, remote sensing can effectively alleviate some of  these problems by 
imaging vast surfaces at ones.

Since the late eighties, several indices have been developed for the estimate of  crop residues. The first 
indices were mostly based on Landsat TM bands. Landsat offered several advantages in terms of  the 
large areas covered, the temporal resolution and the low cost. However, discrimination of  crop residues 
from soils in Landsat imagery proved challenging due to the similarity of  their spectral responses in the 
visible (VIS) and Near Infra Red (NIR) wavelengths, especially under moist conditions [Streck et al.,
2002], and due to the broad TM bands that convolve the spectral responses of  different materials 
across the bandwidth [Serbin et al., 2009b].

With the discovery of  crop residues distinct absorption features in the Short Wave Infra Red (SWIR) 
wavelengths  and  with  the  arrival  on  the  market  of  hyperspectral  imaging,  precision  in  the 
characterisation, discrimination and estimate of  crop residues improved greatly due to the extended 
range of  wavelengths detected by the new sensors in the SWIR domain [Arsenault and Bonn, 2005] 

In parallel with the evolution of  remote sensing techniques and the increased availability of  imagery at 
higher  spectral  and spatial  resolution,  new,  more effective indices  were  and are continuously  being 
developed.

A brief  overview on the indices most commonly found in literature is presented hereafter with the aim 
to illustrate the reasons that brought to consider only a number of  indices for the present study. Serbin
et al., 2009b, grouped indices into three different categories based on their underlying principles: (i) 
normalized difference indices, (ii) spectral angle methods, and (iii) reflectance-band height indices. A 
fourth category could actually be proposed to account for the indices based on spectral unmixing, as 
illustrated below.

The Brightness Index (BI) [Major et al., 199019] was devised as the sum of  the reflectances of  the first 
four bands of  Landsat TM sensors.  However,  it  was reported that BI is  dependent on the optical 
properties of  bare soil  [Bannari  et al.,  199919]  and that its  overall  accuracy can be as low as 20% 
[Bannari et al., 2007a].

The Normalized Difference Index (NDI) [McNairn and Protz, 199319;  Arsenault and Bonn, 2005] is 
based on the same concept as the Normalized Difference Vegetation Index (NDVI) but uses the near 
infrared (TM4) and short wave infrared (TM5) bands instead of  the red and near infrared bands. It is 

calculated using any of  the following equations: NDI=
ρTM4−ρTM5
ρTM4+ρTM5

or NDI1=
ρTM4−ρTM7
ρTM4+ρTM7

where ρ indicates reflectance in the specified TM band or equivalent bands of  other sensors. Bannari et
al., 2007a, proposed an NDI2 were bands were shifted upward with respect to NDI1 to accommodate 
them for a better performance of  the Probe-1 sensor. 

19 In Bannari et al., 2007a.

32



Equally  inspired  by  the  NDVI  concept  are  the  following  three  indices:  
The  Normalized  Difference  Tillage  Index  (NDTI)  [van  Deventer  et  al.,  199720],  is  expressed  as 

NDTI=
ρTM5−ρTM7
ρTM5+ρTM7

whereas the Normalized Difference Senescent Vegetation Index (NDSVI) 

[Qi et al.,  200220],  is calculated as NDSVI=
ρTM5−ρTM3
ρTM5+ρTM3

.  Both make use of  the Landsat TM 

bands.  The Shortwave Infrared Normalized Difference  Residue  Index (SINDRI)  was proposed by 

Serbin  at  al.,  2009a,  and  it  is  based  on  the  formula: SINDRI=
ρ A6−ρ A7
ρ A6+ρ A7

where  A  indicates 

ASTER  bands.  An  hyperspectral  equivalent  (named  hyperspectral  SINDRI)  is  also  in  use:

hSINDRI=
R2210−R2260

R2210+R2260

were R are the reflectances in the indicated wavelengths.

The Soil  Adjusted Corn Residue Index (SACRI) [Biard et al.,  199521;  Arsenault and Bonn, 2005] is 
similar to NDI, but is less sensitive to the optical properties of  bare soil as it takes the soil/line concept 
into  account.  SACRI  is  also  reported  to  work  better  with  small  amounts  of  crop  residue  cover 

[Arsenault and Bonn, 200121] and it is calculated as: SACRI=
α (ρTM4−αρ−αρTM5−β)

αρTM4+ρTM5−αβ
where α 

is the slope and β is the intercept of  the soil line22 (TM4/TM5).

The Modified Soil Adjusted Corn Residue Index (MSACRI) [Bannari et al., 200021] was derived from 
SACRI by substituting ETM5 and ETM7 to TM4 and TM5 respectively and by recalculating the soil 
line slope and intercept with the same ETM bands. MSACRI is reported to give good results and to be 
independent of  the optical properties of  bare soil.

The Cellulose Absorption Index (CAI) [Daughtry et al., 199623] is based on the simple observation that 
some of  the  components  of  crop  residues  such as  cellulose,  hemicellulose  and  lignin  present  an 
absorption feature in the short infrared region (2.1 µm) which allows to differentiate residues from 
soils.  
CAI  is  calculated  as CAI=0.5(R2.0+R2.2)−R2.1 where R2.0 , R2.1 , R2.2 are  reflectance  factors  in 
bands at 2.00–2.05, 2.08–2.13, and 2.19–2.24 µm, respectively [Nagler et al., 2003].

The Lignin-Cellulose Absorption Index (LCA) [Daughtry et al., 200524] was originally devised for use 
of  the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and it is 
expressed as: LCA = 100[2(A6)-(A5+A8)] , where A indicates the relative ASTER band, A5 is in the 
range 1.60 – 1.70 µm, A6 is in the range 2.145 – 2.185 µm and A8 is the range 2.235 – 2.285 µm.

The Crop Residue Index Multiband (CRIM) [Biard and Baret, 199725] implements a linear unmixing 
model to extract the crop residue fraction from the soil-residue complex. CRIM may be applied to any 
set of  spectral bands [Arsenault and Bonn, 2005] and it is calculated as follows: 

20 In Serbin et al., 2009b.
21 In Bannari et al., 2007a.
22 The “soil line” is a linear relationship between bare soil reflectance observed in two different wavelengths [Baret et al.,

1993]. A similar linear relationship exists for crop residues [Arsenault and Bonn, 2005].
23 In Nagler et al., 2003.
24 In Serbin et al., 2009b.
25 In Arsenault and Bonn, 2005.
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where ζ is the angle between the soil line and residues line and δ is 
the angle between the line formed by uniting two points (a crop 

residue cover fraction on the soil-residue complex and the intercept point between soil and residue 
lines) and the soil line. Arsenault and Bonn, 2005, offer a graphical interpretation of  the above. 

The Spectral Mixture Analysis (SMA) method is based on the observation that each pixel in a digital 
image is formed by a mixture of  reflectances of  the underlying pure materials, such as vegetation, soil, 
water, etc. called endmembers [Arsenault and Bonn, 2005]. Pixels of  medium spatial resolution such as 
Hyperion or Landsat (30 m) are likely to contain a multitude of  endmembers. Adams et al., 198926, 
described the mixture in terms of  linear combinations of  various endmember fractions, as expressed by 
the equation:

Ri=∑
j=1

n

F j  ∗ REij+Ei where Ri is  the  relative  reflectance  of  a  pixel  in  band  i; F j is  the 

fraction of  the endmember j, with a constraint that ∑
j=1

n

F j=1 ; REij is the relative reflectance of  

the endmember j in band i; Ei is the residual error in band i of  j spectral endmembers; and n is the 
total number of  endmembers.

SMA offers a methodology to quantify the fraction of  each endmember in the overall scene provided 
the pure endmembers are identified and their reflectances are collected from the ground, from the 
image itself  or from reference libraries. However, these operations are not always easy to perform due 
to the complexity of  mixtures (number of  endmembers) or the unavailability of  pure reflectances that 
may preclude an optimal estimate of  the fractions [Song, 2005].

Bannari et al., 2007a, carried out a study on the comparison of  several of  the above indices (BI, CAI, 
NDI, SACRI, MSACRI and CRIM) for estimating crop residue cover in order to identify the best 
performing. Ground-based reflectance measurements and hyperspectral Probe-127 data were used as 
separate  remote  sensing  data  sources,  whereas  ground  truth  residue  values  were  obtained  from 
estimates based on vertical photographs. The assessment of  the indices' accuracy was performed under 
various crop residues. BI was generally found a poor predictor of  residue cover, whereas CAI, contrary 
to other studies [Nagler et al., 2003], was considered poorly performing on bare soil and sparse corn 
residue cover under 50%. NDI (in its two forms) and SACRI were found to show a poor correlation 
with residue cover covers. Both NDI and BI were also found affected by the optical properties of  bare 
soil. The research concluded that the best indices for crop residue cover estimation with ground-based 
reflectance data are the CRIM and MSACRI-1.  For hyperspectral  Probe-1 data,  the latter was also 
reckoned relatively representative of  the ground reference information and outperformed the other 
indices.

Arsenault and Bonn, 2005, compared NDI, SACRI, CRIM and SMA on two case study areas. NDI and 
SACRI calculated with both hyperspectral and TM reflectances were confirmed as not conclusive on 
the determination of  residue cover.  CRIM was also confirmed as best performing index ahead of  
SMA, whose accuracy seems to be affected by the spectral resolution of  the input reflectance data.

Similarly,  Streck et al., 2002, reported that BI and SACRI under performed in the determination of  
crop residues but so did the Landsat based indices NDI, NDTI, NDSVI according to  Serbin et al.,

26 In Arsenault and Bonn, 2005.
27 An airborne hyperspectral sensor operated by Earth Search Sciences, Inc.
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2009b.  On  the  other  hand,  CAI  and  to  a  lesser  extent  LCA,  were  found  effective  by  use  of  
hyperspectral data [Serbin et al., 2009b]. SINDRI performed better than LCA but worse than CAI 
when ASTER data were used. In addition to that, it was found to be sensitive to green vegetation and, 
to some extent, also to soil and crop residue water content [Serbin et al., 2009b].

Given  the  above  considerations,  the  scopes  and limited  resources  of  the  present  research,  all  the 
Landsat based indices were not further considered. SMA could not be used because of  the lack of  pure 
endmember spectra and CRIM was equally dropped because of  the uncertainties in the bands to be 
used [Serbin et al., 2009b]. The failure of  all the SWIR ASTER bands in April 2008 further limited the 
choice. Therefore, final decision was taken to use CAI for this study. 

According to  Monty et al.,  2008, when using CAI with Hyperion data,  the following SWIR bands 
should be selected, averaged into three sets: for R2.0 , bands centered at 1982, 1992, and 2003 nm; for
R2.1 , bands centered at 2093, 2103, and 2113 nm; while for R2.2 , bands centered at 2194, 2204, 

and 2214 nm. 

Other researchers who similarly  employed CAI with hyperspectral  data,  indicate a slightly  different 
combination of  bands.  Guerschman et al., 2009, in a study on the estimate of  fractional covers of  
photosynthetic, non-photosynthethic and bare soil in Australia, used Hyperion bands centered at 2022, 
2032 for R2.0 , bands centered at 2093,  2103, 2113 for R2.1 , and bands centered at  2184, 2194, 
2204  for R2.2 . Streck  et  al.,  2002,  used  1  nm-wide  bands  (from  a  portable  field  spectrometer) 
centered at 2000, 2100 and 2200 nm for R2.0 , R2.1 , R2.2 respectively, whereas Serbin at al., 2009a, used 
three 11 nm-wide bands (from an airborne hyperspectral sensor) centered at 2031, 2101 and 2211 nm. 
Hyperion has bands centered at 2032.35 nm (10.9013 nm FWHM), 2102.94 nm (10.8039 nm FWHM) 
and 2213.93 nm (10.5328 FWHM nm) respectively that could be used for the scope.

The selection of  bands seems to depend on the type of  detector used and possibly on the type of  
residues (land cover) observed. For the present study, band at 2003 nm in the Monty version of  CAI 
initially could not be used even after destriping because of  a very high level of  noise (Figure 12, left), 
confirming the findings of  Monty et al., 2008. However, after the application of  MNF transform, noise 
was removed (Figure 12, right) and the band was brought back into the index calculation.

CAI values were calculated with the Monty et al., 2008, the Guerschman et al., 2009, and the Serbin et
al., 2009b, methods as the  Streck et al., 2002, method does not appear to be calibrated to space or 
airborne hyperspectral sensors.

CAI values were all  calculated on the  entire  cloud-free images collected.  Then,  pixel  values in the 
Bianchini farm were averaged based on their overlay with buffered conservation parcels.
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Figure 12: Improvement of  Hyperion image quality across the pre-processing. 
Up: original Hyperion L1R image EO1H1930282010265110Pz band 185 (cropped). Lower left: the same image (now band 
159) georeferenced, atmospherically corrected and partly destriped. Residual stripes are the result of  either a lack of  sensor linear  
radiometric response or band to band correlation and could not be removed by SpcMM. Bottom right: the same image (now band 

135) after MNF transform.
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Field sampling
For the determination of  the actual amount of  crop residues in the study area, field samplings were 
carried out on three different dates, in an attempt to match as much as possible the timing with the 
acquisition of  Hyperion images and with harvesting periods.

The samplings were carried out applying the line-transect method as described in the United States 
Department  of  Agriculture  (USDA)  National  Agronomy  Manual28.  The  method  was  chosen  in 
consideration for its simplicity and proven effectiveness in estimating the percent of  the ground surface 
covered by plant residue at any time during the year [USDA, 2002].

The USDA method establishes that surveys are to be carried out by visual observation of  the residues 
in representative areas of  a field and at fixed intervals, located with the help of  a meter. For ease of  
reading, the entire USDA method is reported in the paragraph below.

Estimating crop residue cover in the field
USDA Line-Transect method

Estimates of  percent cover are used for determining the impact of  residue on sheet and rill erosion. They cannot be used  
directly for determining the impact of  residue on wind erosion. Estimates of  percent cover obtained using the line transect  
method to evaluate the impact of  residue on sheet and rill erosion are most accurate when the residue is lying flat on the  
soil surface and is evenly distributed across the field. 

The following is the recommended procedure for using the line transect method: 

1. Use a commercially available 50- or 100-foot29 long cable, tape measure, or any other line that has 100 equally  
spaced beads, knots, or other gradations (marks) at which to sight.

2. Select an area that is representative of  the field as a whole and stretch the line out across the crop rows. The line  
may be oriented perpendicular to the rows, or in a direction that is at least 45 degrees off  the row direction  
(Figure 13). The locations in the field where the line is stretched out to make measurements should be selected  
randomly from among the areas of  the field that are typical of  the entire field. End rows, field borders, and  
parts of  the field that appear different are probably not typical of  the entire field and should be avoided. 

3. Walk along the line, stopping at each mark. Position the eye directly over the mark, and look down at it. When  
sighting, do not look at the entire mark. Rather look at a single point on each mark. A point has an area  

28 Subpart 503E Crop residue, paragraph 503.43 Estimating crop residue cover. [USDA, 2002]
29 Equivalent to approximately 15 to 30 metres (respectively).
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Figure 13: Acceptable orientations for residue measurement lines.



about like the end of  a needle. On commonly used equipment, the knots, beads, or gradations have much larger  
areas than the end of  a needle. A measurement is not based on whether or not some portion of  a mark is over  
the residue. It is based on whether or not a specific point associated with the mark is over residue. If  using a  
commercially available beaded line, one way to accomplish the above is to select as the point of  reference the place  
along the line where a bead begins. 

4. Determine the percent residue cover by counting the number of  points at each mark along the line under which  
residue is seen. Count only from one side of  the line for the single, selected point count at each mark. Do not  
move the line while counting. Count only that residue that is large enough to intercept raindrops. A rule of  
thumb is to count only residue that is 3/32 inch30 in diameter or larger (Figure 14). When using a line with  
100 points, the percent residue cover is equal to the number of  points under which residue is seen. 

5. Three to five transects should be done in each field, using the procedure described in steps 1 through 4. Five  
transects are recommended. With five measurements, estimates of  percent residue cover are accurate to within  
±15 percent of  the mean. Three measurements will give estimates accurate to within ± 32 percent of  the mean.  
For example, if  the mean of  five measurements was 50 percent cover, you could be confident (at the 95%  
confidence level) that the true mean was between 42 percent and 57 percent cover. For a 30 percent cover average  
based on five measurements, you could be confident that the true value was between 25 percent and 34 percent  
cover. 

6. The documentation of  individual transects and computations made to determine average percent residue amounts  
should be done in a professional manner. Documentation should be done in a way that permits easy tracking  
from the field measurements to the final answer.

(source: USDA, 2002)

With respect to the USDA method, because of  the metric system in use in Italy and the conversion 
factor between foot and metre (1 foot = 0.3048 metres), it appeared appropriate to use a 20 metres 
plastic band for the surveys,  with observations to be done at exactly 20 cm intervals.  Therefore, a 
hundred points were sampled visually at the metre and at 20 cm, 40 cm, 60 cm and 80 cm on each 
location and the  presence  of  residues was recorded on paper  and then  transferred  onto  a  digital 
spreadsheet for processing. 

Locations of  each transect were recorded on a Garmin eTrex Legend Cx GPS device. Tracked points 
were later downloaded on PC, transformed into a point shapefile and appropriately reprojected for 
overlay on the farm's cadastral map in QGIS (Figure 15 and Figure 16).

Three to five samplings were surveyed for each field visited, depending on the size of  the parcel and on 
the visual estimate of  the homogeneity of  the residues on the surface. 

30 Equivalent to approximately 0.25 cm.
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Figure 14: Counting residue pieces along a line transect.



Not all the Bianchini farm's parcels were surveyed (with the line-transect method) on any of  the three 
dates (Table 5). However, parcels excluded from field operations were visually inspected to estimate 
residue  cover.  This  allowed to split  the  total  number  of  parcels  into two groups:  a  target  group, 
consisting of  the surveyed parcels used for retrieval of  the mathematical relationship between residue 
cover  and  satellite  imagery-derived  values;  and  test  group,  for  the  validation  of  the  mathematical 
relationship through regression. Such two groups were not of  fixed composition (i.e. parcel id), but 
varied with the date of  survey.
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Results and discussion
The complete list of  acquisitions of  Hyperion imagery has already been reported elsewhere (Table 4). 
Acquisitions occurred  five  times  between  August  2010  and  September  2011 on the  Lodi  Vecchio 
portion of  the  Bianchini  farm and ten times between July  2010 and September 2011 on the  San 
Martino in Strada parcels. However, as expected for any optical sensor, cloud cover up to 90% severely 
limited the number of  usable images, leaving out only ten cloud-free scenes overall. Furthermore, for 

best  analysis  of  crop 
residues,  the  end  of  
June beginning of  July 
period  for  wheat  and 
the  September  month 
for  maize  should  have 
occurred.  Instead, 
wheat harvest could no 
be observed directly in 
neither  of  the  two 
farm's portions and on 
neither  of  the  two 
years  of  acquisitions 
(2010-2011).  Opposite 
to  that,  corn  parcels 
enjoyed  a  number  of  
acquisitions.

A total of  61 transects 
were  carried  out  on 
both  farm's  units  at 
Lodi  Vecchio  (Figure
15) and San Martino in 
Strada  (Figure  16). 
Results  of  the  field 
surveys are summarized 
in  the  following  Table
5, where the percentage 
of  residues  cover  is 
calculated  as  the  sum 
of  the  points  were 
residues were found to 
be  present.  The 
arithmetic  mean  for 
each  parcel  was  then 
used  as  input  in  the 
investigation  of  the 
relationship with image 
pixel values in the same 
parcels.
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Figure 15: Location of  the surveys in the Lodi Vecchio area. 

Figure 16: Location of  the surveys in the San Martino area.
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Table 5: Summary table of  all the field surveys carried out in the Bianchini farm. 
SM=San Martino in Strada. LV=LodiVecchio . Figures next to the location id indicate cadastral sheet, parcel number and 

survey's transect number respectively.
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 –
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 –
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 –
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 –
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SM
5/

40
 –

 3

SM
5/

40
 –

 4

SM
5/

40
 –

 5

SM
6/

18
 –

 1

SM
6/

18
 –

 2

SM
6/

18
 –

 3

SM
6/

18
 –

 4

SM
6/

18
 –

 5

55 47 48 51 50 88 77 89 87 89 29 30 28 26 29
50 86 28

11/08/11
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Cover (%)
Mean

Crop type wheat
Date of survey
Parcel name Avia Bescape Giovacchino

Parcel no. ―
Transect no.

Cover (%)
Mean

Crop type maize
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The first  survey  (07/04/2011)  followed the  acquisition  of  an image on 22/03/2011 on the  Lodi 
Vecchio area and observed the maize sowing phase as well as the rise of  wheat on crop residues. 

The second survey (11/08/2011) should have been carried out at the end of  June/beginning of  July to 
observe those parcels where wheat was being harvested. Unfortunately, as briefly mentioned above, no 
acquisition of  imagery occurred in these nor in the following weeks and, by the date of  the survey, a 
thick green grass had already re-grown on the harvested parcels. On the remaining cropped parcels, 
maize  was  still  high  and  mostly  green.  However,  the  survey  stood  as  a  good  check  point  in  the 
agricultural operations, notably in the use of  ex-wheat parcels for subsequent production of  hay from 
(re-)growth of  spontaneous vegetation.

The third survey (20/09/2011) matched both the double image acquisition of  09/09/2011 on the Lodi 
Vecchio area and of  27/09/2011 on the San Martino area as well as the harvesting of  maize. This 
allowed for a complete overview on the entire range of  the selected farms' parcels.

The sampling suffered from some objective difficulties.  First,  the maize crop stubbles were usually 
standing  upward  on  the  ground  and  very  seldom  they  were  found  to  having  been  mechanically 

flattened.  This  limited  the  possibility  to  stretch 
the transect plastic ribbon-meter along a straight 
line (Figure 17). 

Furthermore,  residues  were  often  mixed  with 
spontaneous  herbaceous  vegetation.  Due to  the 
fact  that  the  optical  satellite  sensors  observe 
whatever  is  visible  from  above,  sub-metre 
locations along the ribbon where green vegetation 
occurred were  considered as  no-residue,  despite 
the  fact  that  residues  were  frequently  present 
under such green layer.

In  the  late  September  2011  sampling,  the 
spontaneous  herbaceous  vegetation  grown  on 
harvested  wheat  parcels  had  just  been  cut  and 
removed  for  later  use  as  hay,  leaving  a  rather 
heterogeneous, brownish and short grass mat. A 
visual inspection of  such parcels revealed a cover 
of  90% or more of  the surface,  but it  remains 
questionable whether this type of  cover is to be 
considered as made of  residues.

An example of  the relevant difference observed 
between  parcels  of  the  Bianchini  farm  under 
conservation agriculture and adjacent parcels of  
other  farms  under  conventional  agriculture  is 
offered in  Figure  18 and  Figure  19.  All  photos 
were taken on the same day after a short rainfall 
event.  In  Figure  18 (Lodi  Vecchio),  photo  A, 

surveyed corn residues cover the soil surface for 84% of  its extent and no sign of  stagnating water is 
visible, whereas in the adjacent conventional parcel (photo B), the visually estimated cover does not 
exceed 15% and precipitation water is clearly visible on the surface, indicating the soil has a reduced 
drainage capacity.
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Figure 17: An example of  the difficulties met during in the  
sampling of  residues: corn standing stubbles in the field. 

Photo taken on 20/09/2011 in Lodi Vecchio.
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A B

Figure 19: Another example of  adjacent parcels under CA and conventional farming. 
A: Cadastral parcel 6/20 of  the Bianchini farm (corn residues under conservation agriculture). 

B: adjacent parcel in another farm (corn residues under conventional farming). 
Location: San Martino in Strada. Both photos taken on 20/09/2011.

A B

Figure 18: Example of  adjacent parcels under CA and conventional farming. 
A: Cadastral parcel 13/156 of  the Bianchini farm (corn residues under conservation agriculture). 

B: adjacent parcel (13/131) in another farm (corn residues under conventional farming). 
Location: Lodi Vecchio. Both photos taken on 20/09/2011.



Equally self-explanatory was the situation observed in the San Martino area (Figure 19), where residues 
cover both under conservation agriculture and conventional agriculture reached values very close to the 
previous case.

Mathematical processing of  radiance from the Hyperion images for the Cellulose Absorption Indices 
according to the Monty, Guerschman and Serbin methods generated mean parcel values that were then 
compared with the ground based values of  residue cover (or fR as per Table 5) for investigation on the 
relationship between the two. The series of  plots below show the results of  the comparison between 
the  CAI values  (as  per  the  Monty,  Guerschman and Serbin  methods)  and  the  ground-based crop 
residue cover values.

In order to calculate the regression equation, values of  residues for bare soils (with a moderate degree 
of  weed infestation) were set to zero, whereas those of  set-aside parcels were set to null value.

From Figure 20 below, it can be observed that, for the case study examined and with the Monty-CAI 
method, CAI values are always negative but linearity is clearly present. However, when data from both 
the Lodi Vecchio and San Martino areas are considered together (Figure 20 - a),  the coefficient of  
determination R2 of  0.64 indicates a medium capability for the regression equation to predict unknown 
ground values. The coefficient greatly improves when the two areas are analysed separately. Indeed, R2 

reaches 0.96 for Lodi Vecchio (Figure 20 - b) and 0.94 for San Martino (Figure 20 - c).

It is also worth of  noting that the regression line fitted through the data does not appear to have a 
constant slope nor intercept across the three cases. Because in both areas the crop is maize and the type 
of  technique used is the same, this clearly indicates the presence of  an external factor influencing the 
relationship.

44

Figure 20: Values of  CAI-Monty vs the ground sampled cover  
of  maize residues. 

(a): both LodiVecchio and San Martino. (b): LodiVecchio. (c):  
SanMartino. Date survey: 20/09/2011. Image used for  
LodiVecchio: EO1H1930282011252110KZ (acquired 

09/09/2011). Image used for SanMartino:  
EO1H1930282011270110PZ (acquired 27/09/2011). 

A linear trend line was fitted with the data and fR equation plus  
R2 are shown above.
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The Guerschman-CAI, compared to the Monty-CAI, presents an even lower R2 (0.1) that indicates a 
very low prediction capability of  the linear relationship when residues from both the Lodi Vecchio and 
San Martino areas are considered together (Figure 21). However, a greater R2 (0.97) is reached when the 
two portions of  territory are analysed separately. A value of  R2 so close to 1 indicates an almost perfect 
prediction capability of  the relationship.

Similarly to the Monty-CAI, the slope of  the fR line fitted through the data appears to change in the 
three cases, although Guerschman-CAI values are much closer and above zero. Equally, the intercept of  
the trend line changes as well, confirming the presence of  a hidden factor affecting the regression.
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Figure 21: Values of  CAI-Guerschman vs the ground 
sampled cover of  maize residues. 

(a): both LodiVecchio and San Martino. (b): LodiVecchio.  
(c): SanMartino. Images and survey's data are the same as in  

Figure 20.
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The  Serbin-CAI case  (Figure  22)  is  similar  to  the  Guerschman-CAI  in  the R2 values  and  in  the 
separability of  residue covers the two farm-areas already when combined (Figure 22 - a).

In all three cases, it should be noted that intermediate values of  ground residues are rather limited, 
therefore there is room for an improvement in the statistical significance of  regression by widening the 
range of  parcels surveyed.

Further  investigation  into  the  factors  behind  the  variations  of  equation  of  the  trend  lines  was 
considered. The influence of  soils on CAI is to be excluded (as discussed above) in addition to the fact 
that soils in the two areas are similar. Furthermore, no difference can be noted in the type of  cultivation 
techniques nor in the density of  sowing.

Precipitations were  then taken into  consideration.  Meteorological  data  from the  ARPA Lombardia 
meteorological database [ARPA, 2011] were extracted for the three stations closest to the study area 
(Cavenago d'Adda, Lodi (ERSAF) and Sant'Angelo Lodigiano)(Figure 23). 
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Figure 22: Values of  CAI-Serbin vs the ground sampled cover of  
maize residues. 

(a): both LodiVecchio and San Martino. (b): LodiVecchio. (c):  
SanMartino. 

Images and survey's data are the same as in Figure 20.
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Data retrieved (Figure 25) revealed that a significant rainfall event occurred on September 1 through 5, 
but it was only recorded by the Lodi (ERSAF) station as the other two stations report incomplete data 
for the same dates (subject to manual editing at a later stage).  Such rainfall  is  compatible with the 
effects of  “darkening” in the Hyperion acquisition of  September 9 and with the downward shift of  the 
trend line, confirming similar literature findings (Daughtry and Hunt, 2008; Bannari et al., 2007b).

Another  rainfall  event  occurred  on  September  16  through  20,  seven  days  before  the  Hyperion 
acquisition on September 27,  but with much reduced amount of  precipitation with respect to the 
previously cited event. Furthermore, the high temperatures in that period of  the year seem to have 
dried the soil up as the San Martino CAI values appear consistent to literature data on dry soils.

Further literature research revealed that  Daughtry and Hunt, 2008, in a series of  experiments with 
laboratory reflectance data, found the R2.2/R2.0 ratio (Reflectance Ratio Water Index, RRWI) indicative 
of  soil+residues moisture and somewhat linearly related to the slope of  the residues vs CAI values, 
making it possible to adjust the residues/CAI equation based on actual moisture content. R2.2 and R2.0 

represent the same wavelenghts used to calculate CAI (10 nm-wide bands centered at 2210 nm and 
2030  nm respectively  according  to  the  authors)  and  are  based  on  the  fact  that  as  water  content 
increases, reflectance of  residues at 2030 nm is attenuated with respect to reflectance at 2210 nm.  
Further data analysis was then performed to assess whether such relationship held true for the present 
case  study.  In  addition  to  the  September  double  acquisition  and  field  sampling,  data  from  the 
March/April acquisition/sampling (wheat+maize residues) were processed to work out the regression 
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Figure 23: Location of  the ARPA weather stations closest to the study area (parcels in yellow). 
The Lodi Vecchio portion of  the Bianchini farm is on the left. San Martino, on the right. Source of  the weather station locations:  

ARPA, 2011. Orthophoto TerraItaly 2007 WMS: Provincia di Lodi, 2011.



line's slope and the RRWI value. No other image, despite being available, was matched by other field 
samplings. Therefore, there were only three points at disposal to build the relationship (Figure 24). For 
RRWI,  Hyperion bands  no.154 (band number after  MNF transform,  centered at  2213.93 nm and 
corresponding to original band no.206) and no. 136 (centered at 2032.35 nm, corresponding to original 
band no.188) were used.

As it can be observed from the figure above, RRWI (in the current formulation) does not appear as a 
valid factor to explain variations in the equations linking residues to CAI (Figures 20-22). However, this 
could be due to a number of  reasons, such as the limited number of  sampling dates, the mixture of  
crop  residues  (wheat+corn)  and  the  noise  contained  in  the  imagery  with  respect  to  laboratory 
reflectances  of  the  original  study  [Daughtry  and  Hunt,  2008],  despite  the  preprocessing  of  the 
Hyperion imagery described above. Furthermore, should the RRWI method be verified, it would only 
offer a solution to linking residue moisture content to the slope of  the fR  equation, leaving out the 
determination of  the intercept.

Independently of  rainfall events, and therefore of  soil+residue moisture content, the question now 
arises on which of  the three CAI methods is the most reliable for determining residue cover. By use of  
the  above  regression  equations  and  of  the  CAI  values  as  independent  variables,  it  is  possible  to 
calculate values of  residue cover (dependent variables) on parcels where such values were only assessed 
visually. Ideally, a cross-check with surveyed residue values not already employed for the retrieval of  the 
regression equation should have been used, but the number of  surveyed parcels is not sufficient for 
such an operation.

Excluding the equations with minimal prediction capability (e.g. Guerschmann and Serbin equations for 
the two areas together), the other four equations were used to calculate the regressed values of  residues 
as reported in Table 6 below. The “expected values” are those assumed from adjacent parcels of  the 
same type and management or esteemed after visual inspection in the field.
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Figure 24: Slope of  residue cover vs CAI as a function of  the RRWI (R2.2/R2.0 )
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Parcel 13/131 can be considered representative of  a harvested maize under conventional agriculture , 
while  parcel  13/133  indicates  a  parcel  with  standing  mature  (brown)  maize  under  conventional 
agriculture (expected approximately 90% cover). Both parcels are adjacent to the Bianchini farm but 
not part of  it.

Although the “expected values” may not be necessarily consistent with the ground-based truth (because 
not surveyed with transects, but only visually estimated), an analysis of  the above results suggests that 
the Monty regression tends to severely underestimate the correct values (RMSE=14.1), whereas the 
Guerschman-LV fR equation overestimates high values and underestimates low values (RMSE=13.4). 
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Figure 25: Pluviometry of  the three meteorological stations nearest to the study area.
Cavenago d'Adda station is the nearest to San Martino in Strada,. The other two are almost equidistant and the nearest to the  

Lodi Vecchio farm.
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In general,  it  can be observed that values above 100 should be rejected as they would represent a 
residue cover greater than the available surface. For the same reason, the Monty-LV fR equation should 
be considered with care (RMSE=18.4).

On the  other  hand,  values  calculated  with the  Serbin-LV fR equation  appear  to  well  fit  with  the 
expected data across the different parcels (RMSE=9.9). As far as the absolute values are concerned, it 
can be noted that the minimum residue cover requirement of  the conservation agriculture principles 
are always respected, with crop residue covers well  above 30%. This is clearly not the case of  the 
parcels under conventional agriculture (with a calculated cover of  less than 10%). However, the lack of  
intermediate  cover  values  does  not  allow  further  speculations  on  the  accuracy  of  the  proposed 
regression.

It is also interesting to take a look at the values calculated with the above equations for set-aside parcels 
(dominated by spontaneous herbaceous vegetation), for parcels with a harvested grass mat following 
cultivation of  wheat and for parcels with bare soil (with a variable presence of  green weeds)(Table 7).
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Table 6: Values of  residues estimated with the indicated equations and respective CAI values for the Lodi Vecchio (LV) area.
Equations are as following: Regression Monty: Figure 20-a; Monty – LV: Figure 20-b; Guerschman – LV: Figure 21-b; Serbin 

– LV: Figure 22-b.

Parcel name Granmigne Campazzino Cantorinetto Fopa Olmo Nuovo
Parcel no. 2/10 + 2/71 3/7 7/77 2/24 7/105
Crop: maize maize maize maize maize
Expected values 75 75 85 85 83
Notes Assumed 3/255 Assumed 3/255 Assumed 7/82 Assumed 3/255 Assumed 7/115
Monty 72 49 52 54 64
Monty – LV 105 83 86 88 98
Guerschman – LV 124 94 114 119 126
Serbin – LV 90 72 89 93 93

Parcel name Orti Orti Pivot Grande 13/131 13/133
Parcel no. 1/4 1/3 1/21
Crop: maize maize maize maize maize
Expected values 88 88 88 15 90
Notes Assumed 1/20+1/21 Assumed 1/20+1/21 Assumed 1/20+1/21 Visually estimated Visually estimated
Monty 35 56 68 -21 47
Monty – LV 68 89 101 12 81
Guerschman – LV 120 131 125 3 119
Serbin – LV 84 97 98 7 87



 

From the table above, it can be observed that the bare soil parcels are generally well characterized in all 
the equations, with mostly negative values, whereas the ex-wheat and set-aside parcels seem to indicate 
an extraordinary  presence  of  residues in  all  fR equations excluding Monty  (and the  untrustworthy 
Guerschman-LV). These results appear to suggest that the examined CAI-based methods are able to 
correctly separate bare-soil parcels from vegetated or cultivated ones, but they are not be particularly 
useful to segregate parcels with residues from parcels under set-aside or dominated by a mat of  grass 
(like  in  the  case  of  the  Bianchini  farms,  the  latter  are  parcels  previously  cultivated  with  wheat). 
However, values for these parcels suggest a good or excellent soil cover, whose assessment is very 
relevant for the protection of  soil resources.

The same considerations hold true for the San Martino area, where similar findings can be highlighted 
(Table 8, Table 9 and Table 10).
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Table 7: Values of  residues estimated with the indicated equations and respective CAI values for the Lodi Vecchio (LV) area.
Equations are as following: Regression Monty: Figure 20-a; Monty – LV: Figure 20-b; 

Guerschman – LV: Figure 21-b; Serbin – LV: Figure 22-b.

Table 8: Values of  residues estimated with the indicated equations and respective CAI values for the San Martino (SM) area.
Equations are as following: Regression Monty: Figure 20-a; Monty – SM: Figure 20-c; 

Guerschman – SM: Figure 21-c; Serbin – SM: Figure 22-c.

7/36 2/11 3/274 1/8 2/98

0 0 0 0 0
Notes

-50.19 -21.24 -46.95 -44.23 -42.34
-16.69 12.26 -13.45 -10.73 -8.84
-5.55 13.39 -13.2 -17.2 -25.42
-8.12 9.4 -8.62 -9.85 -15.83

Parcel name cant Bianchino gabazzino cant Leonardo sstef Partitora cant Gabazza
Parcel no.
Survey 20/09/11 Crop: bare soil (+weeds) bare soil (+weeds) bare soil (+weeds) bare soil (+weeds) bare soil (+weeds)
Expected values

Visually estimated Visually estimated Visually estimated Visually estimated Visually estimated
Monty
Monty – LV
Guerschman – LV
Serbin – LV

14/293 14/295 13/177 7/97 7/31 1/20

NA NA NA NA NA NA
Notes

31.49 17.61 1.2 13.14 37.75 38.39
64.99 51.11 34.7 46.64 71.25 71.89

118.75 105.56 84.01 92.71 127.84 147.32
86.21 73.52 55.75 65.21 86.5 94.91

Parcel name cant Bassi cant Bassi cant Valle cant Lungo Silaro cant Giovacchino Sstef Fiori di sopra
Parcel no.
Survey 20/09/11 Crop: set aside set aside set aside set aside grass (ex wheat) grass (ex wheat)
Expected values

Monty
Monty – LV
Guerschman – LV
Serbin – LV

Parcel name Traversa Traversa c del Miglio c del Miglio c del Miglio
Parcel no. 6/20 6/7 6/2 5/64 5/40
Crop: maize maize maize maize maize
Expected values 39 39 95 95 95
Notes Sampled Assumed 6/20 Visually estimated Assumed 6/2 Assumed 6/2
Monty 86 91 111 88 99
Monty – SM 75 85 125 79 101
Guerschman – SM 42 38 75 47 56
Serbin – SM 48 42 89 55 66



Serbin-CAI values (55% and 66%) for the last two parcels (5/64 and 5/40) in Table 8 above seem to 
depart considerably from the expected cover values (both 95%). However, the latter were assumed 
based on the vicinity and type of  crop of  parcel 6/2, that was instead visually assessed. Serbin-CAI 
value for parcel 6/2, indeed, shows a much better matching with the expected value. This seem to 
suggest  that  more  caution  should  be  applied  in  extending  surveyed  crop  residue  cover  values  to 
“similar” parcels,  as this can be misleading due to unexpected heterogeneity within the unsurveyed 
parcels.  Therefore,  at  the  time the mathematical  model  is  built,  all  the  parcels  should be  sampled 
carefully.

All the parcels in Table 9 above are external to the Bianchini farm, but adjacent to it and were taken as 
representatives of  fields under conventional agriculture soon after harvesting. Parcel SM6/3 is the one 
depicted in Figure 19 - B, whereas parcel SM5/38 and SM5/24 are depicted in Figure 26 and Figure 27 
respectively.

With regard to  parcel  SM6/3 it  can be  noted that  the difference  between the CAI value and the 
estimated value is quite large. However, by looking at the above Figure 19 - B, it can be observed that 
several bales of  hay were collected on that parcel that could be held responsible for having increased 
CAI values compared to those visually estimated and therefore having “mislead” satellite observation.
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Table 9: Values of  residues estimated with the indicated equations and respective CAI values for the San Martino (SM) area.
Equations are as following: Regression Monty: Figure 20-a; Monty – SM: Figure 20-c; 

Guerschman – SM: Figure 21-c; Serbin – SM: Figure 22-c.

Parcel name SM5/24 SM5/38 SM6/3 SM4/21+4/22
Parcel no.
Survey 20/09/11. Crop: bare soil (+weeds) harrowed maize maize
Expected values 0 5 10 75
Notes Visually estimated Visually estimated Visually estimated Visually estimated
Monty 42 52 48 93
Monty – SM -13 7 -2 90
Guerschman – SM -6 5 -21 64
Serbin – SM -6 6 33 77



For the ex-wheat parcels,  Serbin-CAI values seem to confirm a good or excellent crop residue soil 
cover, ranging from 38 to 73% of  the surface (Table 10).
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Figure 26: Parcel 5/38 in the San Martino area, while harrowing was under way (photo taken 20/09/2011).

Figure 27: Parcel 5/24 in the San Martino area. 
Ploughed some weeks before photo was taken (20/09/2011).

Table 10: Values of  residues estimated with the indicated equations and respective CAI values for the San Martino (SM) area.
Equations are as following: Regression Monty: Figure 20-a; Monty – SM: Figure 20-c; 

Guerschman – SM: Figure 21-c; Serbin – SM: Figure 22-c.

Parcel name Avia Bescape Bescape/Traversa Garibolde Garibolde Garibolde
Parcel no. 5/23 6/9 6/17+6/18 4/24 4/23 4/30
Crop: grass (ex wheat) grass (ex wheat) grass (ex wheat) grass (ex wheat) grass (ex wheat) grass (ex wheat)
Expected values NA NA NA NA NA NA
Notes
Monty 92 102 96 106 102 107
Monty – SM 86 106 96 115 106 118
Guerschman – SM 36 45 46 59 57 63
Serbin – SM 38 50 54 68 68 73



Conclusions
The present research demonstrated that an expert use and attentive processing of  Hyperion satellite 
imagery represents a viable solution to the problem of  determining the degree of  crop residues soil 
cover over vast areas. Compared to the field-based sampling methods, remote sensing methods appear 
to be more objective in predicting residue cover. The Cellulose Absorption Index (CAI) has confirmed 
its usefulness in this sense, in particular in the formulation proposed by Serbin at al., 2009a.

However,  sensitivity  of  the linear relationship between residues and satellite  imagery-based CAI to 
small variations in the amount of  residue content and to soil and residues water content was noted, that 
requires a careful calibration of  the method. Consequently, field samplings for the establishment of  the 
mathematical relationship should be carried out as completely and precisely as possible. Furthermore, it 
is essential to take rainfall events into consideration in order to account for the change in residues (and 
soil)  colour  when  wet,  which  deeply  influences  the  above  relationship.  The  relationship  between 
residues water content and slope of  the fR equation proposed by Daughtry and Hunt, 2008, could not 
be verified, possibly due to the limited amount of  field sampling collected in the present study.

Results will hopefully be of  great interest to researchers and modellers of  soil erosion and CO2 related 
phenomena, but also to public institutions in charge of  verifying the application of  obligations related 
to  cross-compliance  or  rural  development  measures.  Knowledge  on the  percent  of  cover  by crop 
residues could also contribute to the calculation of  the balance of  carbon (C) stored annually in the soil 
as a result of  agricultural activities, notably in the conservation agriculture domain.

The Bianchini farm applies reduced tillage extensively, with little long-term accumulation of  litter on 
the soil surface, typical, instead, of  the no-till farms. It was observed, however, that the release of  a 
thick  layer  of  residues  after  harvesting  (as  part  of  the  broader  conservation  agriculture  system) 
contributes to a better infiltration of  rainfall waters and therefore to reduce run-off, soil erosion and 
soil crusting compared to adjacent parcels under conventional agriculture. Certainly, the use of  more 
elaborated crop rotations could further contribute to an even greater level of  protection through the 
crops' green canopies, to a better use of  resources, and to a possible reduction in the use of  fertilizers 
and pest repellent chemicals.

Despite the fact that the EO-1 satellite was launched as an experimental mission and that the Hyperion 
sensor  has  already  passed  its  tenth  year  of  operation,  this  sensor  still  offers  valuable  data  for 
environmental studies. It is hoped that the release of  soil data from public sources such as the JRC – 
LUCAS could finally allow for even broader researches on soils through chemometric modelling.

The present research could also represent a valid support in the use of  other hyperspectral data in view 
of  the next round of  new sensors planned for launch in the near future with the provision of  an open-
source script for a very effective destriping of  the imagery. As for all the passive sensors, however, the 
careful timing of  acquisition is fundamental for a correct and reliable determination of  residues cover 
and to avoid that an excessive growth of  green vegetation could partly or totally mask the residues at 
later stages of  the season. Inappropriate dates of  acquisition have indeed limited the results of  the 
present research.

In comparison with sensor aboard of  planes, satellite imagery may suffer additional constraints, such as 
from heavy  interference  from  a  thicker  atmospheric  column and  cloud  cover.  However,  satellites 
observe much larger areas and at a minimal costs.

Additional research is suggested to quantify residues cover with more accuracy and to better define 
how soil and residue moisture affect the residues/CAI relationship from a mathematical standpoint, 
possibly by establishing a trustworthy residue water index. 

It was observed in literature that the use of  spectral unmixing techniques based on the quantification 
of  the amount of  pure end member spectra within each pixel of  an image could improve the results of  
the CAI. The lack of  a field spectrometer with resolution and bandwidths similar to those of  Hyperion 
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as well as the lack of  an open database of  spectral reflectance of  agriculture related materials, such as 
grasslands, green and dried crop residues, soils has prevented this possibility.

The research has also contributed to the advancements in the use and processing of  remote sensing 
imagery by showing that the use of  open source software is not only possible, but also of  great help in 
solving complex problems, like in the case of  destriping and geolocation of  the Hyperion scenes.
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Annex I

Chemometric modelling for the determination of  soil organic carbon

The  present  annex  contains  a  short  summary  of  the  information  collected  from various  sources 
concerning the establishment and validation of  chemometric  models for  the determination of  soil 
organic carbon (SOC). Part of  a wider research aimed at measuring variations of  SOC in conservation 
agriculture  farms  from  remote  sensing,  chemometric  modelling  could  not  be  performed  due  to 
insuperable  restrictions  in  the  access  to  existing  soil  spectral  and  analytical  data  (LUCAS project, 
EUROSTAT/JRC-IES), an essential prerequisite to perform the modelling.

Reflectance  spectra  of  soils  represent  a  very  rich  source  of  information  that  allows  inferring  soil 
chemical,  physical  or  biological  properties  through  chemometrics.  The  latter  is  defined  by  the 
International  Chemometrics  Society as “the science  of  relating measurements made on a chemical 
system  or  process  to  the  state  of  the  system  via  application  of  mathematical  or  statistical 
methods”[Hibbert et al., 2009]. A possibly more illuminating definition states that chemometrics is a 
collection of  “multivariate methods of  data analysis applied to data of  chemical interest” [Mark and
Workman, 2007]. Many other definitions and variants may yet be found in the literature [Hibbert et al.,
2008].

Multivariate (calibration)31 methods include, among others, the following:

• Multiple Linear Regression (MLR) [Ben-Dor et al., 1991; Kemper and Sommer, 2002]32;

• Principal Component Regression (PCR) [Chang et al., 200132];

• Partial  Least  Square  Regression  (PLSR)  [Cozzolino  and  Morón,  2006;  Reeves  et  al.,  2002; 
McCarty et al., 2002; Masserschmidt et al., 1999; Kooistra et al., 2003; Cohen et al., 2005]32;

• Artificial Neural Networks (ANN) [Fidêncio et al., 2002; Udelhoven and Schütt, 2000]32.

The goal of  calibration is to establish a mathematical model (relationship) for predicting the amount of  
a  chemical  compound  of  interest  from  a  type  of  measurement  that  is  cheaper,  faster,  or  better 
accessible (yet sufficiently accurate) than the one(s) used to build the model itself.

Multiple Linear Regression (MLR) attempts to describe the relationship between several independent 
(or predictor) variables X and a dependent (or criterion) variable Y by fitting a linear equation (of  the 
following type) to the observed data [StatSoft Inc., 2011]:

Y = a + b1*X1 + b2*X2 + ... + bp*Xp+ e

where:
a = regression constant
b1, b2, bp = (partial regression) coefficients of  the X1, X2, Xp predictors
e = residual (error)

MLR is  based on  least  squares,  i.e.  the  line  is  fit  such that  the  sum-of-squares  of  differences  of  
observed and predicted values is minimized [Meko, 2011].

31 Multivariate calibration refers to the establishment of  a method for manipulating many measured properties 
(independent or predictor variables) of  a chemical system simultaneously for quantifying one or more properties of  
interest (dependent variables). For example, the measured variables could be spectroscopy measurements and the target 
variable the concentration of  a solute [Martens and Naes, 1992].

32 As cited in Boettcher et al., 2008.
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Principal Component Regression (PCR) is a type of  regression analysis that uses Principal Components 
Analysis  (PCA)  to  estimate  the  regression  coefficients.  PCA is  a  statistical  technique  that  linearly 
transforms an original set of  highly correlated variables into a substantially smaller set of  uncorrelated 
variables (the “principal components”) that represents most of  the information in the original set of  
variables [Dunteman, 1989]. With PCR, regression is operated on the principal components, in place of  
the independent variables, so that the noise characterizing the latter is removed without reducing the 
information explained.

In common with PCR, Partial Least Squares Regression (PLSR) constructs new predictor variables, (or 
“latent”  components)  as  linear  combinations  of  the  original  highly  correlated  predictor  variables. 
However, differently from PCR, PLSR takes the response variable into account, very often leading to 
the determination of  fewer components for the same data [The MathWorks Inc., 2011]. PLSR can be 
carried out following a number of  different algorithms. 

Artificial  Neural  Networks (ANNs) are mathematical  systems made of  a  group of  interconnected 
artificial  neurons  or  “nodes”  that  emulate  the  biological  neural  mechanisms.  ANNs  are  adaptive 
systems, in the sense that they undergo a “learning phase” through which they change structure based 
on external or internal information that flows through the network. ANNs can used in a variety of  
domains to model complex relationships between inputs and outputs or to identify patterns in data 
[Gershenson, 2003; Rios, 2011].

Numerous studies can be found in literature dealing with the use of  diffuse reflectance spectroscopy in 
the visible (VIS), Near Infra Red (NIR) and Medium Infra Red (MIR) regions for the prediction of  
several  soil  properties  through multivariate  calibration  [Ben-Dor  et  al.,  2009].  Some of  these  deal 
specifically with the determination of  SOC/SOM content [Masserschmidt et al., 1999; Reeves et al., 
2002; Fidêncio et al., 2002; Cozzolino and Morón, 2006; Stevens, 2008]33.

Soil Organic Matter (SOM) influences the reflectance response of  soil. Organic Matter (OM) is usually 
measured as organic carbon (OC), which is more clearly definable and measurable with less uncertainty. 
The OC values are converted to OM using a standard conversion ratio OC:OM of  1:72, considered 
satisfactory for broad scale environmental assessments and monitoring [Boettcher et al., 2008].

Boettcher et al., 2008, successfully established a chemometric model for the determination of  SOC in 
arable land from proximal spectroscopy and then employed the model for predicting SOC in a study 
area by use of  satellite remote sensing. To calibrate the model, they applied PLSR to a training set of  N 
observations (soil samples) with K X-variables (spectral bands in the range 0.4 - 2.5 nm) and M Y-
variables (soil constituents). These training data formed the matrices X and Y with dimensions (N*K) 
and (N*M), respectively. The accuracy attained by the model reached R2=0.75 for SOM and R2=0.85 
for total carbonates.

Their  study  pursued the  following steps:  pre-processing  of  the spectroscopy data  (standardisation, 
vector-normalisation and extraction of  first order derivatives), application of  PLSR on each of  the four 
pre-processed sets of  data and the soil analytical data to calibrate four chemometric models, including 
outliers detection and removal, and validation.

Standardisation and vector-normalisation prevent that large differences in the standard deviations of  
the  variables  could cause  numerical  instability  and dependence  on the  scale  used for  the  variables 
[Höskuldsson, 2004].

Derivatives of  VIS/NIR sample spectra carry predominantly chemical information as albedo effects 

33 As cited in Boettcher et al., 2008.
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are reduced and overlapping spectral features are resolved. For example, soil OH absorption becomes 
visible as a distinct peak at 1400 nm only in the second derivative of  the soil spectrum [Boettcher et al.,
2008].

The  study  concluded  that  chemometric  models  built  with  first  order  derivatives  achieve  a  higher 
determination coefficient score in discriminating SOM and total carbonates than with other types of  
data pre-processing (standardisation and vector-normalisation). It was also ascertained, through spectral 
degradation of  the soil data, that out of  the three satellite sensors considered (Landsat TM, MERIS, 
MODIS), only MERIS could potentially be employed to successfully build chemometric model capable 
of  estimating  the  SOM.  No  other  sensor,  nor  soil  parameter  (including  total  carbonates)  can  be 
modelled due to the low spectral range detected by this sensor.

Gomez et al., 2008, carried out a similar research in a study area in Australia, building chemometric 
models by use of  SOC content data of  a number of  soil samples on the one hand and soil spectra 
taken in the field with a portable spectrometer on the other hand, along with soil spectra from the 
satellite Hyperion sensor. The authors ascertained that prediction of  SOC using the Hyperion spectra 
was possible although less accurate than those of  the field spectrometer data. This would suggest a 
potential for the use of  hyperspectral remote sensing for predictions of  soil organic carbon.

Other studies dealing with chemometric modelling for the determination of  SOC/SOM from a variety 
of  spectral  sensors are presented hereafter as a series of  (publicly  available)  abstracts from papers 
retrieved during the bibliographic search.

Stevens, A., Udelhoven, T., Denis, A., Tychon, B., Lioy, R., Hoffmann, L., van Wesemael, B., 
2010. Measuring soil  organic carbon in croplands at regional scale using airborne imaging 
spectroscopy. Geoderma 158 (2010) 32–45

Conventional sampling techniques are often too expensive and time consuming to meet the amount of  
data  required  in  soil  monitoring  or  modelling  studies.  The  emergence  of  portable  and  flexible 
spectrometers  could  provide  the  large  amount  of  spatial  data  needed.  In particular,  the  ability  of  
airborne imaging spectroscopy to cover large surfaces in a single campaign and to study the spatial 
distribution of  soil properties with a high spatial resolution represents an opportunity for improving 
the monitoring of  soil characteristics and soil threats such as the decline of  soil organic matter in the 
topsoil.  However,  airborne  imaging spectroscopy has  been generally  applied  over  small  areas  with 
homogeneous soil types and surface conditions. Here, five hyperspectral  images  acquired  with  the 
AHS-160  sensor  (430 nm–2540 nm)  were  analysed  with  the objective to map soil organic carbon 

∼(SOC) at a regional scale. The study area, covering a surface of  420 km 2 and located in Luxembourg, 
is characterized by different soil types and a high variation in SOC contents. Reflectance data were 
related to surface SOC contents of  bare croplands by means of  3 different multivariate calibration 
techniques: partial least square regression (PLSR), penalized-spline signal regression (PSR) and support 
vector  machine  regression  (SVMR).  The  performance  of  these  statistical  tools  was  tested  under 
different combinations of  calibration/validation sets (global and local calibrations stratified according 
to agro-geological zones, soil type and image number). Under global calibration, the Root Mean Square 
Error in the Predictions reached 5.3–6.2 g C kg − 1 . Under local calibrations, this error was reduced by a 
factor up to 1.9. SOC maps of  bare agricultural fields were produced using the best calibration model. 
Two map excerpts were shown, which display intra- and inter-field variability of  SOC contents possibly 
related to topography and land management.
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Aȉchi,  H.,  Fouad,  Y.,  Walter,  C.,  Viscarra  Rossel,  R.A.,  Chabaane,  Z.L.,  Sanaa,  M.,  2009. 
Regional predictions of  soil organic carbon content from spectral reflectance measurements. 
Biosystem Engineering 104 (2009) 442–446

Diffuse reflectance spectroscopy is used to overcome the limitations of  conventional methods of  soil 
analysis. The objective was to develop a regional prediction model of  soil organic carbon content based 
on laboratory measurements of  reflectance within the visible  and near-infrared spectral  ranges.  To 
achieve this, principal component analysis was used in order to determine the chemical and physical 
variability of  64 soil samples collected from different sites in Brittany (France). This analysis allowed 
samples  to  be  divided  into  both  calibration  and  validation  data  sets  with  quite  similar  analytical 
properties. A partial least squares regression algorithm was then applied to model and predict the soil 
organic carbon content on the basis of  its spectral  reflectance within the visible and near-infrared 
domain (400–950 nm). Results revealed a high level of  agreement between measured and predicted 
values with coefficients of  determination, root mean-squared errors and relative prediction deviations 
of  0.91,  0.36% and 3.4 in cross-validation and of  0.83,  0.46% and 2.35 in prediction.  The model 
proved to be valid over the range 0.90–5.20% of  organic carbon content. Good predictions of  the soil 
organic carbon content are therefore still  possible  by simply using a cheap spectrometer operating 
between 400 and 950 nm using a regional soil database which can be progressively enhanced.

Stevens, A., van Wesemael, B., Vandenschrick, G., Touré, S., Tychon, B., 2006. Detection of  
Carbon  Stock  Change  in  Agricultural  Soils  Using  Spectroscopic  Techniques.  Soil  Science 
Society of  America Journal, Vol. 70, May-June 2006

Soil organic carbon (SOC) represents one of  the major pools in the global C cycle. Therefore, even 
small  changes in  SOC stocks cause  important  CO  2 fluxes between terrestrial  ecosystems and the 
atmosphere.  However,  SOC  stocks  are  difficult  to  quantify  accurately  due  to  their  high  spatial 
variability. The aim of  this paper is to evaluate the potential of  Imaging Spectroscopy (IS) using the 
Compact  Airborne  Spectrographic  Imager  (CASI;  405–950  nm)  and  field  spectroscopy  with  an 
Analytical  Spectral  Devices  spectrometer  (ASD;  350–2500  nm)  to  measure  SOC  content  in 
heterogeneous  agricultural  soils.  We  used  both  stepwise  and  partial  least  square  (PLS)  regression 
analysis to relate spectral measurements to SOC contents. Standard Error of  Prediction (SEP) for the 
ASD ranged from 2.4 to 3.3 g C kg -1 depending on soil moisture content of  the surface layer. Imaging 
spectroscopy performed poorly, mainly due to the narrow spectral range of  the CASI. Tests using both 
the CASI and the Shortwave infrared Airborne Spectrographic Imager (SASI; 900–2500 nm) showed 
better results. The variation in soil texture and soil moisture content degrades the spectral response to 
SOC contents. Currently, SEP allows to detect a SOC stock change of  7.2–9.9 Mg C ha-1 in the upper 
30 cm of  the soil, and is therefore still somewhat high in comparison with changes in SOC stocks as a 
result of  management or land conversion (0.3–1.9 Mg C ha-1 yr-1 ). A detailed SOC maps produced by 
IS reflected the patterns in SOC contents due to the recent conversion from grassland to cropland.

Viscarra  Rossel,  R.A.,  Walvoort,  D.J.J.,  McBratney,  A.B.,  Janik,  L.J.,  Skjemstad,  J.O.,  2006. 
Visible,  near  infrared,  mid  infrared  or  combined  diffuse  reflectance  spectroscopy  for 
simultaneous assessment of  various soil properties. Geoderma 131 (2006) 59–75

Historically, our understanding of  the soil and assessment of  its quality and function has been gained 
through routine soil  chemical and physical laboratory analysis.  There is a global thrust towards the 
development of  more  time-  and cost-  efficient  methodologies  for  soil  analysis  as  there  is  a  great 
demand  for  larger  amounts  of  good  quality,  inexpensive  soil  data  to  be  used  in  environmental 
monitoring,  modelling  and precision  agriculture.  Diffuse  reflectance  spectroscopy  provides  a  good 
alternative  that  may  be  used  to  enhance  or  replace  conventional  methods  of  soil  analysis,  as  it 
overcomes some of  their  limitations.  Spectroscopy is  rapid,  timely,  less  expensive,  non-destructive, 
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straightforward  and  sometimes  more  accurate  than  conventional  analysis.  Furthermore,  a  single 
spectrum allows for simultaneous characterisation of  various soil  properties and the techniques are 
adaptable for on-the-go field use. The aims of  this paper are threefold: (i)  determine the value of  
qualitative analysis in the visible (VIS) (400–700 nm), near infrared (NIR) (700–2500 nm) and mid 
infrared (MIR) (2500–25000 nm); (ii) compare the simultaneous predictions of  a number of  different 
soil properties in each of  these regions and the combined VIS–NIR–MIR to determine whether the 
combined  information  produces  better  predictions  of  soil  properties  than  each  of  the  individual 
regions; and (iii) deduce which of  these regions may be best suited for simultaneous analysis of  various 
soil properties. In this instance we implemented partial least-squares regression (PLSR) to construct 
calibration models, which were independently validated for the prediction of  various soil properties 
from the soil  spectra. The soil  properties examined were soil  pHCa ,  pHw , lime requirement (LR), 
organic  carbon  (OC),  clay,  silt,  sand,  cation  exchange  capacity  (CEC),  exchangeable  calcium (Ca), 
exchangeable aluminium (Al), nitrate–nitrogen (NO3 –N), available phosphorus (PCol  ), exchangeable 
potassium (K) and electrical conductivity (EC). Our results demonstrated the value of  qualitative soil 
interpretations using the loading weight vectors from the PLSR decomposition. The MIR was more 
suitable than the VIS or NIR for this type of  analysis due to the higher incidence spectral bands in this 
region as well as the higher intensity and specificity of  the signal. Quantitatively, the accuracy of  PLSR 
predictions in each of  the VIS, NIR, MIR and VIS–NIR–MIR spectral regions varied considerably 
amongst properties. However, more accurate predictions were obtained using the MIR for pH, LR, OC, 
CEC,  clay,  silt  and  sand  contents,  P  and  EC.  The  NIR  produced  more  accurate  predictions  for 
exchangeable Al and K than any of  the ranges. There were only minor improvements in predictions of  
clay,  silt  and sand content  using  the combined VIS–NIR–MIR range.  This  work demonstrates  the 
potential  of  diffuse  reflectance  spectroscopy using the  VIS,  NIR and MIR for  more  efficient  soil 
analysis and the acquisition of  soil information.
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Annex II

Remote sensing methods for discriminating conservation agriculture tillage 
from conventional tillage

This part of  the research was only started but not completed. A thorough bibliographic research on 
previous studies on this matter was carried out that shows how segregation of  conservation agriculture 
from conventional farming is generally possible though remote sensing. Results of  the studies found 
are presented hereafter as a series of  (publicly available) abstracts.

Hache,  C.,  Shibusawa,  S.  ,  Sasao,  A.,  2005.  Discriminating  conventional  and  conservation 
agricultural  management  practices  with  airborne  multispectral  imagery.  Agriculture, 
Ecosystems & Environment. Volume 111, Issues 1-4, 1 December 2005, Pages 354-366 

In  its  collaborative  efforts  towards  environmental  preservation,  the  agricultural  sector  faces  the 
challenge  of  adopting  management  practices  that  reduce  carbon  emission  and  increase  its 
sequestration. Remote sensing offers the means to discriminate the spectral signatures of  conventional 
and conservation practices and develop monitoring methods so needed by policy makers. This research 
provides  valuable  insight  into  the  applicability  of  wheat  canopy  multispectral  airborne  images  to 
discriminate conventional and conservation tillage practices interacting with two nutrient sources (i.e., 
inorganic and a mixture of  inorganic–organic fertilizer). Combinations of  tillage and nutrient sources 
were considered as treatments in this research. Multispectral images were acquired at different growth 
stages.  Three  simple  analysis  methods (analysis of  variance,  supervised image classification and its 
contingency  analysis,  and  unsupervised  classification)  yielded  similar  results.  Analysis  of  variance 
indicated high capability of  the red band to discriminate tillage practices, the green band to differentiate 
nutrient sources and the near infrared to separate treatments. Tillage practices were discriminated with 
high  accuracy  throughout  the  growing  season  using  both  supervised  (70–82%  accuracy)  and 
unsupervised classification methods. Nutrient source classification accuracy was also high (77–89%), 
but imagery should be collected from partially vegetated fields (i.e., before flowering). For treatment 
discrimination using either supervised or unsupervised methods,  images should be acquired before 
flowering.  Multispectral  images  collected  early  in  the  season  demonstrated  a  high  potential  to 
discriminate conventional and conservation practices. 

Yang, C.-C., Prasher, S.O., Enright, P., Madramootoo, C., Burgess, M., Goel, P.K., Callum, I., 
2003. Application of  decision tree technology for image classification using remote sensing 
data. Agricultural Systems 76 (2003) 1101–1117

Hyperspectral  images of  plots,  cropped with silage or grain  corn and cultivated with conventional 
tillage, reduced tillage, or no till,  were classified using the classification and regression tree (C&RT) 
approach,  an  innovative  intelligent  computational  algorithm in  data  mining.  Each  tillage/cropping 
combination  was  replicated  three  times,  for  a  total  of  18  plots.  Five  hyperspectral  reflectance 
measurements per plot were taken randomly to obtain a total of  90 measurements. Images were taken 
on  June  30,  August  5,  and  August  25,  2000  to  reflect  three  stages  of  crop  development.  Each 
measurement consisted of  reflectances in 71 wave bands ranging from 400 to 950 nm. C&RT models 
were developed separately for the three observation dates, using the 71 reflectances as inputs to classify 
the image according to: (a) tillage practice, (b) residue level, (c) cropping practices, (d) tillage/cropping 
(residue) combination. C&RT models could generally distinguish tillage practices with a classification 
accuracy of  0.89 and residue levels with a classification accuracy of  0.98.
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Hadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., Le Page, M., 2009. 
Combined use of  optical  and radar satellite data for the detection of  tillage and irrigation 
operations: Case study in Central Morocco. Agricultural Water Management 96 (2009) 1120–
1127

The objective of  this study is to present a new application of  optical and radar remote sensing with 
high spatial (#10 m) and temporal (a few days) resolutions for the detection of  tillage and irrigation 
operations. The analysis was performed for irrigated wheat crops in the semi-arid Tensift/Marrakech 
plain (Central Morocco) using three FORMOSAT-2 images and two ASAR images acquired within one 
week at the beginning of  the 2005/2006 agricultural season. The approach we developed uses simple 
mapping algorithms (band thresholding and decision tree) for the characterisation of  soil surface states. 
The first images acquired by FORMOSAT and ASAR were processed to classify fields into three main 
categories: ploughed (in depth), prepared to be sown (harrowed), and not ploughed-not harrowed. This 
information was combined with a change detection analysis based on multitemporal images to identify 
harrowing  and  irrigation  operations  which  occurred  between  two  satellite  observations.  The 
performance of  the algorithm was evaluated using data related to land use and agricultural practices 
collected on 124 fields. The analysis shows that drastic changes of  surface states caused by ploughing 
or irrigation are detected without ambiguity (consistency index of  96%). This study provided evidence 
that  optical  and  radar  data  contain  complementary  information  for  the  detection  of  agricultural 
operations  at  the  beginning  of  agricultural  season.  This  information  could  be  useful  in  regional 
decision support systems to refine crop calendars and to improve prediction of  crop water needs over 
large areas.

Haché,  C.,  Shibusawa,  S.,  Sasao,  A.,  Suhama,  T.,  Sah,  B.P.,  2007.  Field-derived  spectral 
characteristics to classify conventional and conservation agricultural practices. Computers and 
Electronics in Agriculture 57 (2007) 47–61

Field-derived hyperspectral reflectance of  soil and wheat were collected during a wheat-growing season 
(February,  March and April)  using a  portable spectrophotometer  in an experimental  field  receiving 
conventional  and conservation agricultural  practices.  These  practices  included two types of  tillage, 
conventional and conservation, and two types of  nutrient sources, inorganic and a combination of  
inorganic–organic  fertilizers.  This  research  aims  at  discriminating  conventional  and  conservation 
practices and identifying the most applicable bands for discrimination. Spectral characteristics of  soil 
and wheat indicated that soil spectra were useful to discriminate tillage practices, while wheat spectra 
were useful to discriminate nutrient sources. Cluster and principal component analysis (PCA) revealed 
that the best time to collect soil and wheat spectra for tillage and nutrient sources differentiation was at 
the  beginning of  the  season.  According to  the  best time for  spectra  collection,  wavelengths more 
suitable for discriminating tillage practices were in the VIS and NIR ranges, and in the NIR range for 
nutrient sources. Furthermore, spectra and band-wise normalization were applied indistinctly to the 
data sets. It was understood that soil or wheat spectra could not be independently used to discriminate 
treatments (interactions between tillage and nutrient sources), unless the spectra are normalized and a 
method such as PCA used.

Watts, J.D., Lawrence, R.L., Miller, P.R., Montagne, C., 2009. Monitoring of  cropland practices 
for  carbon  sequestration  purposes  in  north  central  Montana  by  Landsat  remote  sensing. 
Remote Sensing of  Environment 113 (2009) 1843–1852

We used an object-oriented approach in conjunction with the Random Forest algorithm to classify 
agricultural  practices,  including  tillage  (till  or  no-till  (NT)),  crop  intensity,  and  grassland-based 
conservation reserve (CR). The object-oriented approach allowed for per-field classifications and the 
incorporation of  contextual elements in addition to spectral features. Random Forest is a classification 
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tree-based advanced classifier that avoids data over-fitting associated with many tree-based models and 
incorporates  an  unbiased  internal  classification  accuracy  assessment.  Landsat  satellite  imagery  was 
chosen for its continuous coverage,cost effectiveness, and image accessibility. Classification results for 
2007 included producer's accuracies of91% for NT and 31% for tillage when applying Random Forest 
to  image  objects  generated  from  a  May  Landsat  image.  Low  classification  accuracies  likely  were 
attributed to the misclassification of  conservation-based tillage practices as NT. Results showed that the 
binary separation of  tillage from NT management is likely not appropriate due to surface spectral and 
textural similarities between NT and conservation-type tillage practices. Crop and CR lands resulted in 
producer's accuracies of  100% and 90%, respectively. Crop and fallow producer's accuracies were 95% 
and 82% in the 2007 classification, despite post-senesced vegetation; misclassification within the fallow 
class  was attributed  to  pixel-mixing  problems in  areas  of  narrow (<100  m)  strip  management.  A 
between-date normalized difference vegetation index approach was successfully used to detect areas 
having “changed” in vegetation status between the 2007 and prior image dates; classified “changed” 
objects were then merged with “unchanged” objects to produce crop status maps. Field crop intensity 
was then determined from the multi-year analysis of  generated crop status maps. 

South, S., Qi, J., Lusch, D.P., 2004. Optimal classification methods for mapping agricultural 
tillage practices. Remote Sensing of  Environment 91 (2004) 90–97

The classification of  agricultural tillage systems has proven challenging in the past using traditional 
classification methods due to the similarity of  spectral reflectance signatures of  soils and senescent 
crop residues. In this study, five classification methods were examined to determine the most suitable 
classification  algorithm for  the  identification  of  no-till  (NT)  and  traditional  tillage  (TT)  cropping 
methods: minimum distance (MD), Mahalanobis distance, Maximum Likelihood (ML), spectral angle 
mapping (SAM), and the cosine of  the angle concept (CAC). A Landsat ETM+ image acquired over 
southern  Michigan  and  northern  Indiana  was  used  to  test  these  classification  methods.  Each 
classification method was validated with 293 ground truth sampling locations collected commensurate 
with the satellite overpass. Classification accuracy was then assessed using error matrix analysis, Kappa 
statistics,  and tests for statistical significance. The results indicate that of  the classification routines 
examined, the two spectral angle methods were superior to the others. The cosine of  the angle concept 
algorithm  outperformed  all  the  other  classification  routines  for  tillage  practice  identification  and 
mapping, yielding an overall accuracy of  97.2% (Kappa = 0.959).

Bricklemyer,  R.S.,  Lawrence,  R.L.,  Miller,  P.R.,  Battogtokh,  N.,  2006.  Predicting  tillage 
practices  and agricultural  soil  disturbancein  north  central  Montana with  Landsat  imagery. 
Agriculture, Ecosystems and Environment 114 (2006) 210–216

Management of  agricultural soils, most notably tillage, influences wind, and water erosion, which in 
turn has implications for non-point source pollution of  pesticides, fertilizer,  and sediment in agro-
ecosystems. No-till (NT) practices improve soil, water, and aquatic ecosystem quality by reducing soil 
erosion and chemical runoff. The ability of  cropland soils to sequester C from the atmosphere might 
help mitigate global warming. Classification of  Landsat ETM+ satellite images has the potential to 
identify tillage practices and soil disturbance over large areas, enabling efficient monitoring of  these 
agricultural practices. Previous studies predicting tillage management had relatively small study areas 
(located in a single county), relatively low numbers of  fields (6–51), and were temporally focused on 
non-planted fields to reduce the potential effects of  crop canopy interference and/or field patterning. 
Our objectives were to predict in the presence of  crop canopy and over a spatially large, management 
diverse study area (1) tillage systems (NT versus tilled) and (2) soil disturbance. A farm survey of  the 
study  area,  north  central  Montana,  was  used  to  as  a  means  to  obtain  extensive  field-level  farm 
management data. We compared logistic regression (LR), traditional classification tree analysis (CTA), 
and boosted classification tree analysis (BCTA) for identifying NT fields. Logistic regression had an 
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overall  accuracy  of  94%,  BCTA 89%, and CTA 87%,  but  tillage  was  not  well  distinguished.  Soil 
disturbance was estimated using linear regression (LM), regression tree analysis (RTA), and stochastic 
gradient boosting (SGB), an RTA variant. Classification of  soil disturbance was best achieved using 
RTA (predicted mean soil disturbance not significantly different than known soil disturbance, p-value = 
0.08). Classification of  Landsat ETM+ imagery showed promise for predicting tillage and agricultural 
soil disturbance over large, heterogeneous areas.
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Annex III

GNU Octave code for destriping Hyperion scenes

# This is a GNU Octave script to destripe Hyperion imagery with radiometric corrections applied 
# only. The mathematical method follows Sun L., Neville R., Staenz K., White, H.P., 2008. 
# “Automatic destriping of Hyperion imagery based on spectral moment 
# matching.” Canadian Journal of Remote Sensing, vol.34, Suppl.1, pp.S68-S81, 2008
# GNU Octave coding Paolo Prosperi, May 18 – Sept 16 2011, as part of my Ph.D. thesis.
# This script requires the tiffread.m module (not embedded within Octave, can be taken from 
# http://www.embl.de/~nedelec/misc/index.html) to overcome some limitations of the standard 
# imread command that rescales any image to "byte" type (i.e. 8bits = values range 0-255).
# This script also requires the imwrite2tif.m module (not embedded within Octave, can be 
# downloaded from mathworks) to overcome the limits in data type supported by the 
# standard imwrite command (unit16 only).

# All additional modules need to be copied into the /usr/share/octave/packages/3.0/image-1.0.8/ 
# directory in order to be usable.

# This script requires additionally the armars.m script to be present in the same directory.
# Non executable comments begin with an ash symbol (#).

# Coded with GEDIT and Octave 3.0.5 running within a Portable Ubuntu Tres (Ubuntu 9.10 
# Karmic Koala) on a Windows Vista Home based HP Pavillon dv6000 notebook.

# To run this script, first split Hyperion .L1R file into 242 GeoTiff band files.
# Open an empty file with GEDIT, then copy and paste the 
# text hereafter and save the file with a name (for example: destriping.m). GEDIT recognizes it is a 
# GNU Octave code and will highlight the commands.
# (Remember to modify the path and imagename to be processed (first lines of code, herebelow)).
# Then do the same with the armars.m code hereafter and place in the same directory as the 
# previous script.
# In Octave, type: cd your-directory-of-m-files and press enter.
# Then type in destriping.m (if you called the file like this) and press enter.
# Give response to the parameters required.
# The script can be quite slow and on a normal notebook, it takes a few hours to destripe a single 
# scene. It can be interrupted with CTRL+C. 
# If re-run with the same parameters will resume processing of the remaining bands.

# This code is licensed as 

(Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License).

# Please, acknowledge source as: Paolo Prosperi, 2011. GNU OCTAVE code for destriping 
# Hyperion scenes based on spectral moment matching  Written in partial fulfilment of a Ph.D. 
# thesis in Agricultural ecology on “Evaluation of a remote sensing based method for the 
# assessment of agricultural crop residues on the soil surface”. State University of Milan.

# For any questions: paolo-prosperi@tiscali.it Mind, though, I'm not a programmer!
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clear

dirr=input('Enter the path to the directory containing the scene to be processed (witihin “” and \
ending with /): ');
hyp=input('Enter the scene file name to be processed (witihin “”): ');

str = dir([dirr,"/*.tif"]); # Creates a structure array containing the list of all the band filenames.
nub = size(str)(1); # Retrieves the number of bands.

cd(dirr) # Changes the working directory.

img1=imread([dirr,str(1).name]) ; # Reads the first band-image, just to retrieve the dimensions 
        # (number of rows and columns in the next two lines).

rows=size(img1)(1)-1 ;  # Calculates the number of rows in the image.
cols=size(img1)(2) ;  # Calculates the number of columns in the image.

 co=exist([hyp,'_arm.mat'],"file");
 switch co  # Checks whether the matrices of means and std have already been created 

      # (in a previous run of the script).
  case 0
  cd /home/pubuntu/GDL/Scripts
  armars  # If not, it runs the armars.m script (in a separate file).
  cd(dirr)
 otherwise
  arm=load([dirr,hyp,'_arm.mat']).arm;
  ars=load([dirr,hyp,'_ars.mat']).ars;
  blist=load([dirr,hyp,'_blist.mat']).blist;
 endswitch

N=input('Enter N, the average width of the Hyperion stripes (as number of pixels): ');
M=input('Enter M, the length of the row segments (3 to 6 times N): ');
P=input('Enter P, the maximum number of highly correlated bands: ');
H=input('Enter the max. no. of columns of the most similar bands (0=all, 1=j-ieth): ');

ind=[1];  # Creates a simpe band-index ordered vector for use in Steps 3 and 4.
 for no=2:nub
  ind=[ind;no];
 endfor

 # STEP 2.  Calculates the medians of means/stdevs.

amm=zeros(nub,cols) ; 
# Creates an empty array (a matrix) to contain the medians of the above means, 
# calculated hereafter 
# (dimensions: rows= same as any Hyperion image, columns=number of bands). 
# 'amm'=array of medians of means (see article). 
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# MATRIX OF MEDIANS OF MEANS.

ams=zeros(nub,cols) ; 
# Creates an empty array (a matrix) to contain the medians of the standard deviations,
# calculated hereafter 
# (dimensions: rows= same as any Hyperion image, columns=number of bands). '
# ams'=array of median of standard deviations (see article).
# MATRIX OF MEDIANS OF STANDARD DEVIATIONS.

len=2*N+1 ; # The median window's size.

# The following loops go through the matrix of means to calculate the row medians of 
# both the matrix of  means and the matrix of standard deviations.
# Each pixel will be assigned its own value based on the median (moving) window.
for ir=1:nub  # The beginning of the loop through the bands. 'ir' = index of rows.
 for ic=1:cols # The beginning of the loop through the columns. 'ic' = index of columns.
  
# The following series of 'if's check the position of the pixel compared to the border 
# and the window's size.

  # Case 1: the pixel's column is lower than N. All pizels from column zero to 2N+1 
  # are taken for the median.
  if ic <= N+1
    wbeg=1 ;
    wend=ic+N ;

  # Case 2: the difference between the number of columns and the pixel's column is 
  # lower than N.  The last 2N+1 column pixels are taken.
  elseif ic >= (cols-N)
    wbeg=ic-N+1 ;   # The '+1' in this assignment prevents the window's size to be len+1.  
    wend=cols ;

  # Case 3: all the remaining pixels. With respect to any given pixel, N pixels before 
  # and N after are taken for the median.
  else 
    wbeg=ic-N ; 
    wend=ic+N ;
  endif
    amm(ir,ic)=median(arm(ir,wbeg:wend))  ; # 'amm'= array of medians of means.
    ams(ir,ic)=median(ars(ir,wbeg:wend))  ; # 'ams'= array of medians of standard deviations.

 endfor
endfor # Now the two new matrices of medians are filled in.

 # STEP 3. ========================= Calculates the rescaling factors.

tot=2*M+1 ; # The real length of the target row.

##### OVERALL LOOP1 #####
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 # The following loops go through the matrix of medians (means & stdevs) to 
 # calculate the gain- and offset- rescaling factors.
 # Each pixel will be assigned its own value based on the mean moving window.

for i=1:nub

# LOOP1. Calculation of the destriping factors for each band of a single Hyperion scene.
# Loops through the rows (i.e. the bands) of the Hyperion image cube. 
# From now on, 'i' is the band to be destriped.

# Array of the Euclidean distances between target and test row segments for means 
# (see article). "adm"=Array of distances for means.
adm=zeros(nubo,2) ;
ads=zeros(nubo,2) ;  # And for stdves.

awin=zeros(2,cols) ; # This matrix is to contain the M windows' beginning and 
# end columns for each column in the mean or stdevs matrices.
# The value for 'beginning' (wbegf) is on row 1, for 'end' (wendf) is on row 2.

asmul=zeros(nub,cols) ; # Creates empty arrays to store the rescaling factor for 
    # means (smulj) calculated below.

assil=zeros(nub,cols) ; # Creates empty arrays to store the rescaling factor for 
  # stdevs (ssilj) calculated below.

armm=zeros(nub,cols) ; # Array of rescaled medians of means.
arms=zeros(nub,cols) ; # Array of rescaled medians of stdevs.

destriped=int16(zeros(cols,rows)) ; # Creates an empty array for storing the destriped image.
# Rows and cols are swapped to overcome a problem of Octave when writing hdf5 images.

b=ind(ind != i); # Creates a vector of l=i-1 bands to be processed 
  # (i.e. all excluding the one to destripe).

iz=blist(i); # Retrieves the image-band being destriped. 
      # Only 'blist' contains the real band numbers.

disp(['Processing band no. ', num2str(iz)]) # Displays the band being processed.
        fflush(stdout);

imname=[hyp,'_b',num2str(iz),'_destriped.h5'];

if (exist([hyp,'_b',num2str(iz),'_destriped.h5'],"file") == 0) 
# Checks whether the destriped image has already been created (in a previous run).

 for j=1:cols # LOOP2. The beginning of the loop through the columns.
  # The following series of 'if's' checks the position of the pixel compared to 
  # the window's size.

  # Case 1: the pixel's column is lower than M. 
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  # All pixels from column one to 2M+1 are taken for the calculation.
  if j <= M+1
    wbegf=1 ; # The starting column of the window. 
     # "wbegf"= window beginning (point for rescaling) factor.
    wendf=j+M; # The closing column of the window.

  # Case 2: the difference between the number of columns and 
  # the pixel's column is lower than M. The last 2M+1 column pixels are taken.
  elseif j >= (cols-M+1)
    wbegf=j-M+1 ;
    wendf=cols ;

  # Case 3: all the remaining pixels. With respect to any given pixel, 
  # M pixels before and M after are taken for the calculation.
  else 
    wbegf=j-M ;
    wendf=j+M ;
  endif
  
  awin(1,j)=wbegf;
  awin(2,j)=wendf;

  mmuij=mean(amm(i,wbegf:wendf)) ; 
# 'mmuij'=mean mu of element i, j of the amm matrix (= medians of means).
  msiij=mean(ams(i,wbegf:wendf)) ; 
# 'msiij'=mean sigma of element i, j of the ams matrix (= medians of stdevs).
  

              nubo=nub-1;
  for ix=1:nubo 
# beginning LOOP3. Calculation of the rescaling factors for all bands except the one to 
# destripe (i.e. nubo bands).
    l = b(ix) ;
   
    mmulj=mean(amm(l,wbegf:wendf)) ; 
# 'mmulj'= mean mu of element l, j of the amm matrix (= medians of means). See article.
    msilj=mean(ams(l,wbegf:wendf)) ; 
# 'msilj'= mean sigma of element l, j of the ams matrix (= medians of stdevs). See article.

   if mmulj != 0 && msilj != 0 # Avoids dividing by zero.
    smulj=mmuij/mmulj ; 
# 'smulj'= scaling factor (s) for pixel l,j of the matrix of medians of means (mu).
    ssilj=msiij/msilj ; 
# 'ssilj'= scaling factor (s) for pixel l,j of the matrix of medians of standard deviations 
# (sigma).
   else
    smulj=0 ;
    ssilj=0 ;
   endif

   asmul(l,j)=smulj ; # Stores the smulj factor in the appropriate matrix for use in Step 5.
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   assil(l,j)=ssilj ; # Stores the ssilj factor in the appropriate matrix for use in Step 5.

  endfor 
# end LOOP3. Rescaling factors are now calculated for all rows 'l' (other than row 'i') and 
# for column 'j'.
 endfor # end LOOP2. Rescaling factors are now calculated also for all columns.

 asmul(i,:)=1 ; 
# Stores the smulj factor for pixels on row i in the appropriate matrix for use in Step 5.
 assil(i,:)=1 ; 
# Stores the ssilj factor for pixels on row i in the appropriate matrix for use in Step 5.

 # STEP 4. ====Identifies the P bands most similar to the one to be destriped. 

 armm=amm .* asmul  ; # Rescales the amm matrix (excluding row i) with the smulj factor.
 arms=ams .* assil  ; # Rescales the ams matrix (excluding row i) with the ssilj factor.

 for j=1:cols #############
# beginning LOOP4 through all the columns. 
# Calcultaes the Eu. distances. It'll last 'til the end. 
  for ix=1:nubo # beginning LOOP5 through all the bands (excluding band i).
    l = b(ix) ;
   # Extraction of the 'Euclidean distances' (see article) for the test segments corresponding
   # to target segment centered on pixel 'i,j'.
   # i.e. Euclidean distance = square root of the sum of the quadratic difference 
   # of test segment pixels with target segment pixels.

      adm(ix,1)=l; 
# The array of distances for means. Column 1 contains the actual band being processed.

      ads(ix,1)=l;
   adm(ix,2)=sqrt(sumsq(armm(i,awin(1,j):awin(2,j)) .- armm(l,awin(1,j):awin(2,j)))) ; 
# Column 2 contains the Euclidean distance.
   ads(ix,2)=sqrt(sumsq(arms(i,awin(1,j):awin(2,j)) .- arms(l,awin(1,j):awin(2,j)))) ;

    
  endfor  # Ends LOOP5. Euclidean distance is now calculated for all the "l" test
   # row segments corresponding to the j-ieth column.

   [orderedm,adms]=sort(adm(:,2)) ;  # Sorts all the test row segments in increasing order 
# based on the Eu. distance from the target row (i).

   [ordereds,adss]=sort(ads(:,2)) ; # adms/adss contain the sorted position (in the original list) 
      # of the rescaled bands based on the Eu. distance.

         # 'adms' = adm sorted.
     if H == 0 # Considers all the columns in the selected, most-similar bands.

 # STEP 5. ============== Creates the C' matrices (most similar band subsets).
    tos=awin(2,j)-awin(1,j)+1;

    selm=zeros(P,tos) ; # Creates an array to contain the selected band pixels from 
# the means matrix (see article). 
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        # 'selm' = selected bands for means.
    sels=zeros(P,tos) ; # Creates an array to contain the selected band pixels from 

# the stdev matrix (see article).
# 'sels' = selected bands for stdevs.

    for ip=1:P # beginning LOOP6. Retrieves and rescales the 'nearest' P bands.
     brm=adm(adms(ip),1) ; # Finds the position of the 'nearest' P bands values inside adm
     brs=ads(adss(ip),1) ; # and inside ads.

     # Rescales the original means corresponding to the selected P bands. 
     selm(ip,1:tos)=arm(brm,awin(1,j):awin(2,j)) .* asmul(brm,awin(1,j):awin(2,j)) ;
     
     # Rescales the original stdevs corresponding to the selected P bands.
     sels(ip,1:tos)=ars(brs,awin(1,j):awin(2,j)) .* assil(brs,awin(1,j):awin(2,j)) ;
    endfor # end LOOP6. Now all the C' j pixels (for pixel i,j) are rescaled.

 # STEP 6. ========================= The C^ matrices are created.
    # This calculates the means and stdevs of the columns of the selected bands (left-right).
     mselm=zeros(1,tos);
     sselm=zeros(1,tos);
     msels=zeros(1,tos);
     ssels=zeros(1,tos);
     for zx=1:tos
     mselm(1,zx)=mean(selm(:,zx))   ; # The mean of the selm array columns.
     sselm(1,zx)=std(selm(:,zx))    ; # The stdev of the selm array columns.

     msels(1,zx)=mean(sels(:,zx))   ; # The mean of the sels array columns.
     ssels(1,zx)=std(sels(:,zx))    ; # The stdev of the sels array columns.
     endfor

     for ip=1:P # beginning LOOP7. This substitutes the means or stdevs of the rows
# of the selected bands (top-bottom), if needed.

      for zx=1:tos
       if selm(ip,zx) > mselm(1,zx)+2*sselm(1,zx)  || selm(ip,zx) < mselm(1,zx)-2*sselm(1,zx) 
       # The case of the original element being more than two stdvs away from 

          # the initial mean (matrix of means).
selm(ip,zx)=mselm(1,zx) ; 

       endif

       if sels(ip,zx) > msels(1,zx)+2*ssels(1,zx) || sels(ip,zx) < msels(1,zx)-2*ssels(1,zx)
       # The case of the original element being more than two stdevs away from 
       # the initial mean (matrix of stdvs).

sels(ip,zx)=msels(1,zx) ;
       endif
      endfor
     endfor # end LOOP7. Now all the elements of the C^ matrices (for pixel i,j) are there. 

     mij=mean(mean(selm)) ; # The mean of the selm pixels' (column) means = the 
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           # expected value for pixel i,j in the matrix of means.
     sij=mean(mean(sels)) ; # The mean of the sels pixels' means = the 

        #expected value for pixel i,j in the matrix of std.

     else # The H loop. Considers only the j-ieth columns in the selected, most-similar bands.

 # STEP 5bis. ============ Creates the C' matrices (most similar band subsets).

    selm=zeros(P,1) ; 
    sels=zeros(P,1) ; 

    for ip=1:P # beginning LOOP6. Retrieves and rescales the 'nearest' P bands.
     brm=adm(adms(ip),1) ; 

# Finds the position of the 'nearest' P bands values inside adm

     brs=ads(adss(ip),1) ; # and inside ads.

     # Rescales the original means corresponding to the selected P bands. 
     selm(ip,1)=arm(brm,j) * asmul(brm,j) ;
     
     # Rescales the original stdevs corresponding to the selected P bands.
     sels(ip,1)=ars(brs,j) * assil(brs,j) ;
    endfor # end LOOP6. Now all the C' j pixels (for pixel i,j) are rescaled.

 # STEP 6bis. =============== The C^ matrices are created.
 # This calculates the means and stdevs of the columns of the 
 # selected bands (left-right).

mselm=mean(selm(:,1))   ; # The mean of the selm array columns.
sselm=std(selm(:,1))    ; # The stdev of the selm array columns.

msels=mean(sels(:,1))   ; # The mean of the sels array columns.
ssels=std(sels(:,1))    ; # The stdev of the sels array columns.

for is=1:P # beginning LOOP7. This substitutes the means or stdevs
#  of the rows of the selected bands (top-bottom), if needed.

 if selm(is,1) > mselm+2*sselm  || selm(is,1) < mselm-2*sselm 
  # The case of the original element being more than two stdvs away
#  from the initial mean (matrix of means).
  selm(is,1)=mselm ; 
 endif

 if sels(is,1) > msels+2*ssels || sels(is,1) < msels-2*ssels
  # The case of the original element being more than two stdevs 

# away from the initial mean (matrix of stdvs).
  sels(is,1)=msels ;
 endif
endfor # end LOOP7. Now all the elements of the C^ matrices 

# (for pixel i,j) are there. 
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mij=mean(selm(:,1)) ;  # The average (mean) of the selm pixels = the 
# expected value for pixel i,j in the matrix of means.

sij=mean(sels(:,1)) ; # The average (mean) of the sels pixels = the 
#expected value for pixel i,j in the matrix of std.

     endif # Ends the H case.

 # STEP 7. ========================= Calculates gains and offsets
     if ars(i,j) == 0 
      gij = 1 ; # Avoids script blockage in case the image is completely 

# black (i.e. all pixels=0).
     else
      gij=sij/ars(i,j) ; # The gain for element i,j in the matrix of along-track columns/bands.
     endif

     oij=mij - gij*arm(i,j) ; # The offset for element i,j in the matrix 
# of along-track columns/bands.

disp(["arm(",num2str(iz),",",num2str(j),")= ",num2str(arm(i,j))])
disp(["expected= ",num2str(mij)])
disp(["gain= ",num2str(gij)])

disp(["ars(",num2str(iz),",",num2str(j),")= ",num2str(ars(i,j))])
disp(["expected= ",num2str(sij)])
disp(["offset= ",num2str(oij),"\n"])
fflush(stdout);

 # STEP 8. ========================= Destripes band-image 'i'.
 # Transforms the original along-track pixels in the new ones.
 name2=str(i).name;
 imgorig=tiffread(name2).data;

 if iz >= 70 # This bit of code corrects the 1 pixel shift in SWNIR bands.
  erows=rows+1;
  imgcor=zeros(rows,cols);
  imgcor(:,1:128)=imgorig(1:rows,1:128);
  imgcor(:,129:cols)=imgorig(2:erows,129:cols);
 else
  imgcor=imgorig(1:rows,:);
 endif

  if j == 1
   x1=3;
   x2=2;
  elseif j == cols
   x1=j-1;
   x2=j-2;

73



  else 
   x1=j+1;
   x2=j-1;
  endif

  if arm(i,j) == 0
   destriped(j,:)=0.5*(imgcor(:,x1)+imgcor(:,x2));  
# This would avoid a black column in case the original is black.
  else
   destriped(j,:)=imgcor(:,j)*gij + oij;
  endif

  
  endfor #end LOOP4. Now all the gains and offsets are there and a whole 

 # image-band has been destriped.

 
imname=[hyp,'_b',num2str(iz),'_destriped.h5'];
save("-hdf5",imname,"destriped")

   endif # Ends the loop run when band was not already destriped.
 endfor # end LOOP1. Now all the bands of a single Hyperion scene have been destriped.

# The following is the code that has to be copied and pasted in the armars.m file. The file has to 
# reside in the same directory as the preceding one.

# armars.m script
#Creates the mean and std matrices for an input array of Hyperion bands.

arm=zeros(numb,cols) ; # Creates an empty array (a matrix) to contain the means calculated 
    # hereafter (dimensions: rows=number of bands, 

          # columns=same as any Hyperion image). 'arm'=array of means (see 
    # article). MATRIX OF MEANS.

ars=zeros(numb,cols) ; # Creates an empty array (a matrix) to contain the standard deviations 
  # calculated hereafter (dimensions: rows=number of bands, 
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              # image, columns=same as any Hyperion image). 'ars'=array of standard 
  # deviations (see article). MATRIX OF STANDARD DEVIATIONS.

clear img1 ; # Resets the first image to avoid reading it twice (would cause error).
cd(dirr)  # Changes the working directory.

 # ======STEP 1: calculates means and stdevs of each band-image column (along-track) pixels.
blist=[]; # Initiates the list of bands to be processed.

for bl=1:numb  # The beginning of the loop through all the bands of a single Hyperion scene. 
# 'bl'= bands loop.

 name=str(bl).name; # Determines the band corresponding to the current loop index-number.
 s=size(name)(2) ; # Extracts the correct band number from image filenames (bands in 'str' are not 

       # listed in numerical order).
 if s==29
  imgb=substr(name,25,1);
 elseif s==30
  imgb=substr(name,25,2);
 else
  imgb=substr(name,25,3);
 endif
disp(['Reading band image ', imgb]);
fflush(stdout);

 imgused=tiffread(name).data ; # Reads the image and stores it into memory (as a structure). Then, 
    # it extracts the actual image as an array.

 if imgb >= 70 # This bit of code corrects the 1 pixel shift in SWNIR bands.
  erows=rows+1;
  imgcor=zeros(rows,cols);
  imgcor(:,1:128)=imgused(1:rows,1:128);
  imgcor(:,129:cols)=imgused(2:erows,129:cols);
 else
  imgcor=imgused(1:rows,:);
 endif

warning('tiffread is not perfect but will continue execution')
 blist=[blist;str2num(imgb)]; # Finalizes the list of bands to be processed.

 for ic=1:cols  # The beginning of the loop through each band-image. 'ic'= index column.
  arm(bl,ic)=mean(imgcor(:,ic)); # The mean of each image-column (i.e. the mean of the along-track 

      # vector of pixels) stored in the arm array.
  ars(bl,ic)=std(imgcor(:,ic));  # The standard deviation of each image-column (i.e. the stdev of the 

 # along-track vector of pixels) stored in the ars array.
 endfor
endfor # Now the matrix of means and the matrix of stdevs are there.

save([hyp,'_arm.mat'],'arm'); # Saves the arm/ars/blist matrices for use in the main script.
save([hyp,'_ars.mat'],'ars');
save([hyp,'_blist.mat'],'blist');
return
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