
Facoltà di Scienze Matematiche, Fisiche e Naturali

Dottorato di Ricerca in Informatica
XXIV Ciclo

Diffusive Processes on Social Graphs

Relatore: Prof. Sebastiano Vigna

Tesi di Dottorato di:
Marco Rosa

Contents

1 Introduction 1
1.1 Diffusive Processes . 2
1.2 Compression . 3
1.3 Distance distribution . 6
1.4 Robustness . 7
1.5 Arc clustering . 10

2 Layered Label Propagation for graph compression 12
2.1 Introduction . 13
2.2 Problem Definition and Related Works 14
2.3 Our Contribution . 17
2.4 Recovering Host information

from a Random Permutation . 18
2.5 Label Propagation Algorithms . 20
2.6 Layered Label Propagation . 23
2.7 Parallel Implementation . 25
2.8 Experiments . 26
2.9 Results . 30
2.10 Conclusions . 32

3 Approximating the neighbourhood function for large graphs 35
3.1 Introduction . 36
3.2 Related work . 37
3.3 HyperANF . 37

3.3.1 HyperLogLog counters . 38
3.3.2 The HyperANF algorithm . 40
3.3.3 HyperANF at hyper speed . 40
3.3.4 Correctness, errors and memory usage 44

1

3.4 Deriving useful data . 46
3.5 SPID . 52
3.6 Experiments . 54
3.7 Facebook graph . 60
3.8 Conclusions . 63

4 Robustness of Social Networks 64
4.1 Introduction . 64
4.2 Related work . 66
4.3 Removal strategies and their analysis . 67

4.3.1 Some removal strategies . 68
4.3.2 Measures of divergence . 69

4.4 Experiments . 70
4.5 Discussion . 71

5 Arc-community detection via triangular random walks 77
5.1 Introduction . 78
5.2 Triangular random walks . 79

5.2.1 Triangular walks and line graphs 82
5.3 Arc-clustering via triangular random walks 86
5.4 Related works . 87
5.5 Experiments . 88
5.6 Conclusions . 97

2

Abstract

Social networks are emerging as one of the most revolutionary innovations of the last
decades. Their impact in politics, social behaviour, economics is just at the very begin-
ning and yet a better understanding of their structure is an urgent task.

Despite the importance of social networks is so self-evident, a scientific study of these
objects have to face issues that could appear insurmountable. First of all even a defini-
tion, in a mathematical sense, of what a social network is does not exist. Secondly, even
assuming we agreed on some definition, social networks have grown at an exceptional
rate. Nowadays a typical social network have tens to hundreds millions of nodes and
billions of arcs, so any algorithm that is more than linear (or linearithmic) in the number
of arcs is out of question. Lastly, evaluating the performances of new techniques is not a
trivial task since the majority of meta-data about social networks are industrial secrets
of great economical value and are treasured as such.

In this thesis we present several results that, far from solving these problems, try to
push a little forward our understanding of the very structure of social networks. The
main theme of all the presented results is that much can be understood of the structure
of a graph when we let some diffusive process evolve on it. Diffusive processes are
inherently local and often randomized: each node of the graph chooses how to update
its state just looking at its neighbours. Randomness is usually crucial in the initialization
phase and in the update order. These kinds of processes have two major advantages:
each round is linear in the number of arcs and they do not require that the whole graph
is loaded into main memory. Thus they are perfect candidates for the analysis of huge
networks.

Chapter 1

Introduction

The main interest of our research has been in understanding the structural properties
that characterize social networks. How can we efficiently store and access huge social
networks? How well connected they are? Is there any small subset of nodes which
function as hub for the network? Are we able to outline a good clustering algorithm
for social networks? Answering these questions is very important for both academic
research and commercial applications.

Here we will give a brief outline of the problems addressed in this thesis.

• Compression We study how much social networks can be compressed while still
being able to answer queries, seeking the neighbours of a node, in few hundreds
of nanosecond. Besides the importance of compression for practical applications
there is a wealth of evidence (e.g., [46]) that social networks are not random
graphs in the usual sense. Studying the compressibility of a social network is akin
to studying the degree of “randomness” in the social network.

• Distance distribution Since the early 1950s sociologists conjectured that every-
one is on average approximately six steps away from any other person on earth, so
that a chain of “a friend of a friend” statements can be made. Studying modern
social networks we are able for the first time to answer this conjecture. However
since an exhaustive research for all-pair shortest paths is out of question proba-
bilistic techniques are the only tool available.

• Robustness In communication networks it is crucial to understand if the failure
of some node can disrupt the connectivity. In social networks we can do a similar
analysis under the hypothesis that influential nodes are the ones with the greatest

1

impact on the distance distribution. To this aim we need fast tools to evaluate
the distance distribution and a good strategy to identify these influential nodes.

• Arc Clustering The presence of overlapped communities in social networks has
recently given rise to new interest in arc clustering. The underlying idea is that if
is true that an individual belongs to many communities the relation between two
individuals is usually motivated by one specific reason (much in the same way as,
albeit infinite lines pass through a single point, only a single line passes through
two distinct points). Thus the shift from communities of nodes to communities of
arcs can be thought of as trying to find the reasons behind relations rather than
trying to find the reason behind individuals.

1.1 Diffusive Processes

In this section we will outline the main theme of this thesis: diffusive processes. To
understand the importance of this concept we have to start describing the computational
issue that arise in analysing social networks.

First of all we always think at social networks as directed graphs G = (V,E) where
V is a set of n nodes and E ⊆ V ×V is a set of m arcs. We often assume that the graphs
we are dealing with are very sparse, i.e. m = O(n · log n), thus an algorithm with a
computational complexity linear in the number of arcs is still feasible even for very large
n (but you can not hide any “nasty” multiplicative constant within the asymptotic).
Since we are dealing with sparse graphs we will represent them using adjacency lists like
this:

Node Outdegree Successors

.
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
.

This naive representation will use m + 2n integers instead of n2 booleans of a dense
adjacency matrix or 2m integer for an arc list representation. We will see later that
we can do better than this, however we can ignore for the moment technical details for
optimal compression and assume that an efficient framework for handling huge social

2

network will be able to answer in few hundreds of nanoseconds a query asking for the
neighbourhood of a node.

Summing up, social networks are graphs, that can not be loaded into main memory,
but we can recover efficiently the out-neighbours of a single node. Given these constraints
diffusive processes arise very naturally. Let us define a diffusive process in the following
way. Each node of the graph has some state that is initialised randomly. Then we can
have asynchronous or synchronous update phases. In an asynchronous update at each
step one node, chosen according to some probability function, “wakes up”, looks at the
current state of its neighbourhood, and then updates its state according to some rule.
In a synchronous update instead each node wakes up in the same moment, each of them
looks at the state of its neighbourhood, which is the state at the previous step, and then
updates once again according to some rule. The update rule is usually a deterministic
or probabilistic function which depends only on the current state of the node and of
its neighbourhood. Thus an algorithm simulating a diffusive process must not load the
whole graph into main memory, and it needs low memory requirements also for the
global state (linear in the number of nodes).

Simple as it is, the idea to apply randomized diffusive processes has proven very
effective in our applications. In the following sections we will describe for each problem
we addressed how to exploit them.

1.2 Compression

The road to understand how diffusive processes can help in compression is quite tortuous.
First of all remember that for typical social networks a good representation is given by
an adjacency list. How can we improve upon this? The very first idea is to guarantee
that successors are stored in increasing order; then we can store the gaps between two
consecutive successors instead of store explicitly all the successors in the list. Following
the example of the previous section we will obtain:

Node Outdegree Gaps

.
15 11 13, 2, 1, 1, 1, 1, 4, 1, 179, 112, 719
16 10 15, 1, 1, 5, 1, 1, 291, 1, 1, 2724
17 0
18 5 13, 1, 1, 1, 33
.

3

Figure 1.1: Adjacency matrix of the same web-graphs. On the left randomly permuted,
on the right ordered lexicographically by URL.

That means that the node 15 has 11 successors, the first one 13 is represented explicitly,
then to obtain the others we have to keep summing (13 + 2 = 15, 15 + 1 = 16, 16 + 1 =
17, . . .). The gain of this operation is that we have to store integers that are surely
smaller that the original ones. We can exploit this using prefix-free codes which assign
small codewords to small integers, like nibble codes, δ-codes and ζ-codes introduced by
Boldi and Vigna in [10]. Now, if social graphs were random graphs, we will need

m · log

(
n2

m

)
+O(m) = m · log

(n
d

)
+O(m)

bits to represent the graph (where d is the average degree). In term of bits per arc
this means we would need log(n/d) + O(1). Luckily social graphs are not random
graphs and we can exploit their structure to improve upon this theoretical lower bound.
What we need is an ordering that keeps gaps small. For web graphs ordering nodes
lexicographically by URL is sufficient to highlight the inner structure and achieve an
impressive compression ratio of less then 3-bits per arc (see Figure 1.1).

Thus if we can find an ordering that highlights a block-diagonal structure on the ad-
jacency matrix we will obtain a very good compression ratio. This task easily translates
into a clustering problem, if nodes in the same cluster are consecutive in the ordering

4

we will obtain a block-structure of the adjacency matrix and thus very small gaps. Here
is where diffusive processes come into play.

To cluster the graph we used the following diffusive process. At the beginning of each
round every node has a label representing the cluster that the node currently belongs
(at the beginning, every node has a different label). At each round, every node takes
the label that occurs more frequently in its neighbourhood, the update order being
chosen at random at the beginning of the round; the algorithm terminates as soon as
no more updates take place. Metaphorically, every node in the network chooses to join
the largest neighbouring community (i.e., the one to which the maximum number of its
neighbours belongs). As labels propagate, densely connected groups of nodes quickly
reach a consensus on a unique label. When many such dense consensus groups are
created throughout the network, they continue to expand outwards until it is possible
to do so. At the end of the propagation process, nodes having the same labels are
grouped together as one community.

It has been proved [70] that this kind of label propagation is formally equivalent to
finding the local minima of the Hamiltonian for a kinetic Potts model. This problem has
a trivial globally optimal solution when all the nodes have the same label; nonetheless,
since the label-propagation optimisation procedure produces only local changes, the
search for minima in the Hamiltonian is prone to becoming trapped at a local optimum
instead of reaching the global optimum. While normally a drawback of local search
algorithms, this characteristic is essential to clustering: the trivial optimal solution is
avoided by the dynamics of the local search algorithm, rather than through formal
exclusion.

We will see in Chapter 2 details about how this idea can be improved to obtain
better compression ratios. However we have already introduced the two fundamental
components of this thesis: randomness and locality.

• Randomness: to cite [55] “For many applications a randomized algorithm is
either the simplest algorithm available, or the fastest, or both.”. Randomized al-
gorithms are often able to solve hard problems in linear time, which is of course
crucial in a setting where even a quadratic deterministic algorithm is out of ques-
tion.

• Locality: By means of locality we almost totally circumvent problems due to the
huge size of networks we are analysing. No matter how huge the graph is we can
always efficiently load the neighbourhood of a single node, apply our local update
rule and let the system evolve toward a stable state.

5

1.3 Distance distribution

The neighbourhood function NG(t) of a graph G gives, for each t ∈ N, the number of
pairs of nodes 〈x, y〉 such that y is reachable from x in less that t hops. Normalizing by
the total number of reachable pairs we obtain the cumulative function of the distance
distribution HG(t) (the distance function is the shortest path distance).

The distance distribution contains a wealth of information about the connectivity of
the graph, but requires a breadth-first for each node to be computed exactly which is
clearly unfeasible. As usual we will see how randomization and locality can efficiently
solve this problem with precise error bounds.

The main tools we need are the HyperLogLog counters (see [30]) to count approx-
imately the number of distinct elements in a stream. Essentially, these probabilistic
counters are a sort of approximate set representations to which, however, we are only
allowed to pose questions about the (approximate) size of the set. To accomplish this we
need a very good hash function (we will see in Chapter 3 the precise requirements) from
V to 2∞, and, instead to keep adding elements to our approximate set representation,
we only keep track of M the maximum number of trailing zeros in the hash values of
elements seen so far. The estimated number of distinct elements seen so far is ∝ 2M .
To keep track of the maximum for a stream with at most k different items we have to
use only log log k bits of memory. A crucial observation is that the counter of a stream
AB is simply the maximum between the counters of A and B.

Now the basic idea is to put one of these counters on each node, initialize it with the
number of trailing zeros in the hashed value of the node itself, and then propagate it
by maximization with its neighbourhood at each step with a synchronous update. Thus
exploiting locality we never have to load the whole graph into main memory, we just
have to load two arrays of counters and the neighbourhood of a single node at a time.

We will see in Chapter 3 how to give precise errors bounds on the standard de-
viation of the resulting neighbourhood function, moreover there are a lot of technical
difficulties and optimizations that can be done. However once again we can see how an
intractable problem can be (at least approximately) solved very efficiently by means of
a probabilistic diffusive process.

One thing to be aware of is that these kinds of processes are very subtle and often
much-neglected little details can have a great impact on the final results. One example
of these phenomena is the termination condition of a process like the one we have just
described. Making experiments on real graphs shows that after few steps almost no
counter changes anymore, and the algorithm spend an incredible amount of time for a
ridiculously small number of counters. This can suggest to put as stopping criterion
a certain threshold of relative increment in the neighbourhood function. This solution

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

H
G

(t
)

t

Figure 1.2: Two k-cliques joined by a unidirectional path of ` nodes: terminating even
one step earlier than stabilisation completely miscalculates the distance cdf; the effective
diameter is `+ 1, but terminating even just one step earlier than stabilisation yields an
estimated effective diameter of 1.

can lead to an arbitrary high error in the computation of the neighbourhood function
as shown by Figure 1.2.

The solution adopted in our work is to run until stabilization exploiting systolic
computation: each node signals back to predecessors that they may need to update
in the next round only when its counter has changed. To do this we need also the
transposed version of the graph, but gains in speed and accuracy are striking.

1.4 Robustness

In Chapter 4 we will exploit our tool (that efficiently approximate the distance dis-
tribution) to understand which node-removal strategy has the greatest impact on the
network structure. More formally, consider a given total order ≺ on the nodes of G; we

7

think of ≺ as a removal strategy in the following sense: when we want to remove θm
arcs, we start removing the ≺-largest node (and its incident arcs), go on removing the
second-≺-largest node etc. and stop as soon as ≥ θm arcs have been removed. The
resulting graph will be denoted by G(≺, θ). Of course, G(≺, 0) = G whereas G(≺, 1) is
the empty graph. We are interested in applying some measure of divergence between
the distribution HG and the distribution HG(≺,θ). By looking at the divergence when θ
varies, we can judge the ability of ≺ to identify nodes that will disrupt the network.

As in the case of compression we have a different situation between web graphs and
social networks. In web graphs removing roots of web-sites has a huge impact on the
distance distribution, while in social networks we haven’t any extrinsic strategy that
achieves similar results. As always we started searching for an intrinsic strategy that
works in web graphs as good as the root-removal.

Our first attempt exploits a technique for clustering graphs using PageRank vectors
presented in [3]. This technique is a perfect example of how diffusive processes can be
exploited to achieve good approximation efficiently so we will describe it in details even
if in the end it is not the best technique to find relevant nodes. Notice also that here
we will describe the algorithm for the undirected case for sake of simplicity.

First of all we introduce a lazy variation of PageRank, which we define to be the
unique solution pr(α, s) of the equation

pr(α, s) = αs+ (1− α)pr(α, s)W (1.1)

where α is a constant in (0, 1] called the teleportation constant, s is a distribution called
the preference vector, and W is the lazy random walk transition matrixW = 1

2
(I+D−1A)

(as usual A is the adjacency matrix of the graph and D is the degree matrix). In the case
of local PageRank for a node v ∈ V we have s = χv. We maintain a pair of distributions:
an approximate PageRank vector p and its associated residual vector r. Initially, we set
p = 0 and r = χv . We then apply a series of push operations, based on equation (1.1),
which alter p and r. Each push operation takes a single vertex u, moves an α fraction
of the probability from r(u) onto p(u), and then spreads the remaining (1− α) fraction
within r, as if a single step of the lazy random walk were applied only to the vertex u.
Each push operation maintains the invariant

p+ pr(α, r) = pr(α, χv),

which ensures that p is an approximate PageRank vector for pr(α, χv) after any sequence
of push operations. We now formally define pushu, which performs this push operation
on the distributions p and r at a chosen vertex u.

8

Algorithm 1 pushu
1: Let p′ = p and r′ = r, except for the following changes:

• p′(u) = p(u) + αr(u)

• r′(u) = (1− α)r(u)/2

• For each v such that (u, v) ∈ E: r′(v) = r(v) + (1− α)r(u)/(2d(u)).

2: Return (p′, r′).

Lemma 1. Let p′ and r′ be the results of the pushu on p and r. Then

p′ + pr(α, r′) = p+ pr(α, r)

During each push, some probability is moved from r to p, where it remains, and
after sufficiently many pushes r can be made small. We can bound the number of
pushes required by the following algorithm:

Algorithm 2 ApproxPR(v, α, ε)

1: Let p = ~0 and r = χv
2: while maxu∈V

r(u)
d(u)

> ε do

3: Choose any vertex u such that r(u)
d(u)

> ε
4: Apply pushu at vertex u, updating p and r
5: end while
6: return p

Lemma 2. Let T be the total number of push operations performed by ApproxPR, and
let di be the degree of the vertex u used in the i-th push. Then

T∑
i=1

di ≤
1

εα

Proof. The amount of probability r(u) on the vertex pushed at time i is at least εdi,
therefore |r|1 decreases by at least αεdi during the i-th push. Since |r|1 = 1 initially, we
have

αε
T∑
i=1

di ≤ 1

and the result follows.

9

This is an interesting diffusive process because it is one of the few examples in which
randomness plays no role, we just exploit the structure of the network. The results are
twofold. We can compute personalized PageRank vector very fast; actually what we are
computing is the ratio between local PageRank and usual PageRank, however since the
stable distribution for PageRank in a symmetric graph is trivial we can easily deduce
the local PageRank vector. Moreover, and perhaps more importantly, we can use this
approximation to find a provably good cut (in term of conductance) for a set containing
the initial vertex v.

We will see in Chapter 4 that the best technique, even more effective then the root-
removal in web graphs, is to cluster the graph with a label propagation algorithm and
then remove nodes which have more inter-cluster connections. Once again however
social networks prove to be completely different from web graphs and exhibit a more
connected structure.

1.5 Arc clustering

Our approach to arc clustering is not based on a diffusive process. The main concept
presented in Chapter 5 is the triangular random walk. We will define a triangular
random walk X0, X1, . . . using two parameters, α, β ∈ [0, 1]: α is a damping factor
(it is used to decide whether to follow a link or to teleport); β will instead be used
to determine whether triangles or non-triangles should be privileged. In a triangular
random walk with parameters α and β, the next node (xt+1) is chosen depending on the
current node xt and on the previous node xt−1, as follows:

• with probability 1− α, we teleport: xt+1 is a randomly chosen node;

• otherwise, we choose among the successors N(xt) of the current node, but treat-
ing differently the triangular successors (the set N(xt) ∩ N(xt−1)) and the non-
triangular successors (the set N(xt) \N(xt−1))1. We first decide whether we shall
select a non-triangular successor (with probability β) or a triangular one (with
probability 1− β); then, the specific non-triangular or triangular successor is cho-
sen uniformly at random

A triangular random walk is a Markov chain of order 2 [69], because the next state
depends on the current state and on the previous one. To study the long-term behaviour
of higher order chains, it is customary to change the state space and reduce the stochastic

1If either set is empty (or if t = 1) we choose uniformly in N(xt) (or in V , if the latter is empty), as
in a standard random walk.

10

process to an equivalent one that is memoryless; this is easily solved by using the notion
of line graph. Given a graph G, its line graph L = L(G) has the arcs of G as vertices
(i.e., VL = EG), with arcs of the form (xy, yz) (where xy and yz are two arcs of G).

Now, it is easy to see that a triangular random walk with parameters α, β on the
(unweighed) graph G is equivalent to a random walk with damping factor α on the
weighted line graph L(G), where

wT (xy, yz) =

{
β

|N(y)\N(x)| if z ∈ N(y) \N(x)
1−β

|N(y)∩N(x)| if z ∈ N(y) ∩N(x).

In other words, every arc in L(G) (that is to say, every two-step walk x → y → z in
the original graph) has a different weight depending on whether it can be closed by a
triangle (i.e., if x→ z was also an arc of G) or not.

Along the same line as [29], instead of clustering directly the arcs of G (as done, for
example, by [42]), we turn to some suitably weighted version of the line graph L(G),
where we can make good use of all the paraphernalia for node-clustering of a directed
graph. In other words, we shall use an off-the-shelf node-clustering algorithm feeding it
with the weighted graph L(G). As weighting function (on the arcs of L(G)), we exploit
its arc-stationary distribution

vT (xy, yz) = vT (xy)wT (xy, yz)

where vT (xy) is the stationary distribution of the triangular random surfer on the node
xy.

So we need three steps in order to obtain our arc-clustering. First we need to compute
L(G) with the weighting function wT . Next we need to compute the stable distribution
of a weighted random walk on L(G) and, in the end, we need a clustering algorithm for
directed weighted graphs.

The clustering technique used is the one presented in [9] which is a typical diffusive
process (very similar to label propagation). Unfortunately for the first step we have not
found any ways to solve the problem efficiently and thus we can only handle networks
with few millions of nodes.

11

Chapter 2

Layered Label Propagation for
graph compression

In this chapter we will present highly scalable techniques that improve compressed data
structures for representing web graphs and social networks significantly beyond the
current state-of-art. These improvements make it possible to analyse in main mem-
ory significantly larger graphs, and shed some lights on the internal structure of social
networks.

Our starting point is the incredible compression ratio that can be achieved on web
graphs. Our first finding is that most of the existing technique heavily rely on the
(often implicit) assumption that web graphs are given sorted by URL. We call these
compression techniques non coordinate-free since their performances are not independent
from the starting order of the nodes of the graph. Since in a social network we do not
have anything like the URL ordering it comes to no surprise that these algorithms
perform poorly on them.

After a more focused study on web graphs we discover that the crucial property
that URL ordering is able to capture is that web pages are clustered on a host basis.
Thus the problem induces (although it is not equivalent to) a clustering problem on
the graph. So we devise a clustering technique which is scalable to billions of nodes,
as it just requires few linear passes over the graph involved. Thanks to this clustering
technique we have been able, for the first time, to beat the compressions ratios of the
URL ordering starting from a randomly permuted web graph.

Finally, we apply our new method to social networks hoping to achieve similar com-
pressions ratios we observe in web graphs. Unfortunately, even if we strongly improve
upon existing techniques, we are very far from the 2 ∼ 3 bits per link of web graphs. The
simplest explanation is that social networks are intrinsically less compressible because

12

of their internal structure, however no one knows how much space for improvements is
left.

2.1 Introduction

The acquaintance structure underlying a social network contains a wealth of information
about the network itself, and many data mining tasks can be accomplished from this
information alone (e.g., detecting outlier nodes, identifying interest groups, estimating
measures of centrality etc. [75, 43]). Many of these tasks translate into graph mining
problems and can be solved through suitable (sometimes, variants of standard) graph
algorithms that often assume that the graph is stored into the main memory. However,
this assumption is far from trivial when large graphs are dealt with, and this is actually
the case when social networks are considered; for instance, current estimates say that the
indexable web contains at least 23.59 billion pages1, and in 2008 Google announced to
have crawled 1 trillion unique URLs: the successor lists for such a graph would require
hundreds of terabytes of memory! The situation is somewhat similar in other social
networks; for example, as of October 20122 , Facebook has more than 700 millions users
and 65 billions friendship relations.

In this chapter we will describe a novel technique to store and access large graphs
that can be applied fruitfully not only to web graphs but also to social networks of other
kinds. The considerations above explain why this problem is lately emerging as one of
the central algorithmic issues in the field of information retrieval [35, 23]; it should also
be noted that improving the compression performance on a class of networks, apart for
its obvious practical consequences, implies (and requires) a better understanding of the
regularities and of the very structure of such networks.

It is evident that the relation between social-graph compression and data mining is
twofold: on one hand, almost no complex graph-mining task can be performed without
relying on a framework that is able to store and access efficiently the graph under con-
sideration; on the other hand, every approach that improves on our ability to compress
a class of networks suggests structural properties of those networks, thus becoming itself
a data mining challenge. As an example the impressive compression results obtained
in [17] put light on a structural property of the web, that is, the majority of links in the
web are intra-host and automatically generated.

Here and in the following, we are thinking of compressed data structures. A com-
pressed data structure for a graph must provide very fast amortised random access to

1http://www.worldwidewebsize.com/
2http://www.facebook.com/press/info.php?statistics

13

an edge (link), say in the order of few hundreds of nanoseconds, as opposed to a “com-
pression scheme”, whose only evaluation criterion is the number of bits per link. While
this definition is not formal, it excludes methods in which the successors of a node are
not accessible unless, for instance, a large part of the graph is scanned. In a sense,
compressed data structures are the empirical counterpart of succinct data structures
(introduced by Jacobson [39]), which store data using a number of bits equal to the
information-theoretical lower bound, providing access asymptotically equivalent to a
standard data structure.

The idea of using a compressed data structure to store social networks was already
successfully exploited with application to web graphs [17], showing that such graphs may
be stored using less than 3 bits/link; this impressive compression ratio is mostly obtained
by making good use of two simple properties that can be experimentally observed when
nodes are ordered lexicographically by URL [63]:

• similarity : nodes that are close to each other in the order tend to have similar sets
of neighbours;

• locality : most links are between nodes that are close to each other in the order.

The fact that most compression algorithms exploit these (or analogous) properties
explains why such algorithms are so sensible to the way nodes are ordered; the solution
of ordering nodes lexicographically by URL is usually considered good enough for all
practical purposes, and has the extra advantage that even the URL list can be com-
pressed very efficiently via prefix omission. Analogous techniques, which use additional
information besides the graph itself, are called extrinsic. One natural and important
question is whether there exist any intrinsic order of the nodes (i.e., one that does not
rely on any external data) that produces comparable, or maybe even better, compression
ratios. This is particularly urgent for general social networks, where the very notion of
URL does no longer apply and finding a natural extrinsic order is problematic [23, 15].

2.2 Problem Definition and Related Works

The general problem we consider may be stated as follows: a graph-compression algo-
rithm A takes (the adjacency matrix of) a graph as input and stores it in a compressed
data structure; the algorithm output depends on the specific numbering chosen for the
nodes. We let ρA (G, π) be the number of bits per link needed by A to store the graph
G under the given node numbering3 π : VG → |VG|. The overall objective is to find

3We use von Neumann’s notation n = { 0, 1, . . . , n− 1 }.

14

a numbering π̂ minimising ρA (G, π̂). In the following, we shall always assume that a
graph G with n nodes has VG = n, so a node numbering is actually a permutation
π : n→ n.

Of course, the problem has different solutions depending on the specific compression
algorithm A that is taken into consideration. In the following, we shall focus on the
so-called BV compression scheme [17] used within the WebGraph framework, which
incorporates the main ideas adopted in earlier systems and is a de facto standard for
handling large web-like graphs. In particular, the framework strongly relies on similarity
and locality to achieve its good compression results; for this reason, we believe that
most compressed structures that are based on the same properties will probably display
a similar behaviour.

As noted in [23], even a very mild version of the above-stated optimisation problem
turns out to be NP-hard, so we can only expect to devise heuristics that work well in
most practical cases. Such heuristics may be intrinsic or extrinsic, depending on whether
they only use the information contained in the graph itself or they also depend on some
external knowledge.

In the class of intrinsic order heuristics, [63] proposes to choose the permutation π
that would sort the rows of the adjacency matrix AG in lexicographic order. This is an
example of a more general kind of solution: fix some total ordering ≺ on the set of n-bit
vectors (e.g., the lexicographic ordering), and let π be the permutation that would sort
the rows of the adjacency matrix AG according to4 ≺.

Another possible solution in the same class, already mentioned in [63] and studied
more deeply in [15], consists in letting ≺ be a Gray ordering. Recall that [44] an n-bit
Gray ordering is a total order on the set of the 2n binary n-bit vectors such that any two
successive vectors differ in exactly one position. Although many n-bit Gray ordering
exist, a very effective one (i.e., one that is manageable in practice because it is easy to
decide which of two vectors come first in the order) is the so-called reflective n-bit Gray
ordering, which was used in [15].

Chierichetti et al. [23] propose a completely different intrinsic approach based on
shingles that adopts ideas used for document similarity derived from min-wise inde-
pendence. The compression results they get are comparable to those achieved through
Gray ordering [15]. In [23], the authors also discuss an alternative compression tech-
nique (called BL) that provides better ratios; however, while interesting as a compression
scheme, BL does not provide a compressed data structure—recovering the successors of

4Here we are disregarding the problem that π is not unique if the adjacency matrix contains dupli-
cated rows. This issue turns out to have a negligible impact on compression and will be ignored in the
following.

15

a node requires, in principle, decompressing the whole graph.
Recently, Safro and Temkin [67] presented a multiscale approach for the network

minimum logarithmic arrangement problem: their method searches for an intrinsic or-
dering that optimises directly the sum of the logarithms of the gaps (numerical difference
between two successive neighbours). Although their work is not aimed at compression,
their ordering is potentially useful for this task if combined with a compression scheme
like BV. Indeed, some preliminary tests show that these orderings are promising espe-
cially on social networks; however, their implementation does not scale well to datasets
with more that a few millions of nodes and so it is impractical for our purpose.

As far as extrinsic orderings are concerned, a central rôle is played by the URL-based
ordering in a web graph. If G is a web graph, we can assume to have a permutation
πU of its nodes that sorts them according to the lexicographic URL ordering: this
extrinsic heuristic dates back to [8] and, as explained above, turns out to give very good
compression, but it is clearly of no use in non-web social networks. Another effective
way to exploit the host information is presented in [15], where URLs from the same host
are kept adjacent (within the same host, Gray ordering is used instead).

It is worth remarking that all the intrinsic techniques mentioned above produce
different results (and, in particular, attain different compression ratios) depending on
the initial numbering of the nodes, because they work on the adjacency matrix AG.
This fact was overlooked in almost all previous literature, but it turns out to be very
relevant: applying one of these intrinsic re-ordering to a randomly numbered graph (see
Table 2.7) produces worse compression ratios than starting from a URL-ordered web
graph (see Table 2.6).

This problem arises because even if the intrinsic techniques described above do not
explicitly use any external information, the initial order of a graph is often obtained by
means of some external information, so the compression performances cannot be really
considered intrinsic. To make this point clear, we will always speak of coordinate-free
algorithms for those algorithms that achieve almost the same compression performances
starting from any initial ordering; this adjective can be applied both to compression
algorithms and to orderings+compression algorithm pairs. From an experimental view-
point, this means that, unlike in the previous literature, we run all our tests starting
from a random permutation of the original graph. We suggest this approach as a base-
line for future research, as it avoids any dependency on the way in which the graph is
presented initially.

The only coordinate-free compression algorithm we are aware of5 is that proposed

5The quite extensive survey in [16] shows that many other approaches to web-graph compression, not
quoted here, either fail to compress social networks, or are strongly dependent on the initial ordering

16

by Apostolico and Drovandi in [4];6 they exploit a breadth-first search (BFS) to obtain
an ordering of the graph and they devise a new compression scheme that takes full
advantage of it. Their algorithm has a parameter, the level, which can be tuned to
obtain different trade-offs between compression performance and time to retrieve the
adjacency list of a node: at level 8 they attain better compression performances than
those obtained by BV with Gray orderings and have a similar speed in retrieving the
adjacency list. Even in this optimal setting, though, their approach is outperformed by
the one we are going to present (see Table 2.5).

Finally, Maserrat and Pei [52] propose a completely different approach that does not
rely on a specific permutation of the graph. Their method compresses social networks by
exploiting Eulerian data structures and multi-position linearisations of directed graphs.
Notably, their technique is able to answer both successor and predecessor queries: how-
ever, while querying for adjacency of two nodes is a fast operation, the cost per link of
enumerating the successors and predecessors of a node is between one and two orders of
magnitude larger than what we allowed. In other words, by the standards defined here,
their algorithm does not qualify as a compressed data structure.

We must also remark that the comparison given in [52] of the compression ratio
w.r.t. WebGraph’s BV scheme is quite unfair: indeed, the authors argue that since their
algorithm provides both predecessors and successors, the right comparison with the BV
scheme requires roughly doubling the number of bits per link (as the BV scheme just
returns successors). However, this bound is quite näıve: consider a simple strategy
that uses the set Esym of all symmetric edges, and let Gsym = (V,Esym) and Gres =
(V,E \ Esym). To be able to answer both successor and predecessor queries one can
just store Gsym, Gres and Gres transposed. Using this simple strategy and applying
the ordering proposed in this chapter to the datasets used in [23] we obtain better
compression ratios.

2.3 Our Contribution

In this chapter we give a number of algorithmic and experimental results:

• We identify two measures of fitness for algorithms that try to recover the host
structure of the web, and report experiments on large web graphs that suggest

of the graph.
6Our experiments show in fact a very limited variation in compression (10–15%) when starting from

URL ordering or from a random permutation, except for the altavista-nd dataset, which however is
quite pathological.

17

that the success of the best coordinate-free orderings is probably due to their
capability of guessing the host structure.

• Since the existing coordinate-free orderings do not work well on social networks,
we propose a new algorithm, called Layered Label Propagation, that builds on
previous work on scalable clustering by label propagation [62, 64]; the algorithm
can reorder very large graphs (billions of nodes), and unlike previous proposals, is
free from parameters.

• We report experiments on the compression of a wide array of web graphs and social
networks using WebGraph after a reordering by Layered Label Propagation; the
experiments show that our combination of techniques provides a major increase in
compression with respect to all currently known approaches. This is particularly
surprising in view of the fact that we obtain the best results both on web graphs and
on social networks. Our largest graph contains more than 600 millions nodes—one
order of magnitude more than any published result in this area.

Almost all the datasets can be downloaded from http://law.dsi.unimi.it/ (or
from other public or free sources) and have been widely used in the previous literature to
benchmark compression algorithms. The Java code for our new algorithm is distributed
at the same URL under the GNU General Public License.

We remark that our new algorithm has also been applied with excellent results to
the Minimum Logarithmic Arrangement Problem [67] 7.

2.4 Recovering Host information

from a Random Permutation

As a warm-up towards our new algorithm, we propose an empirical analysis that aims
at determining objectively why existing approaches compress well web graphs.

The results presented in [15] suggest that what is really important in order to achieve
good compression performances on web graphs is not the URL ordering per se, but rather
an ordering that keeps nodes from the same host close to one another. For this reason,
we will be naturally interested to measure how much a given ordering π respects the
partition induced by the hosts, H .

7http://www.mcs.anl.gov/~safro/mloga.html. The authors had been provided a preliminary
version of our code to perform their tests.

18

The first measure we propose is the probability to have a host transition (HT):

HT(H , π) =

∑|VG|−1
i=1 δ (H [π−1(i)],H [π−1(i− 1)])

|VG| − 1

where δ denotes the usual Kronecker’s delta and H [x] is the equivalence class of node
x (i.e., the set of all nodes that have the same host as x): this is simply the fraction of
nodes that are followed, in the order π, by another node with a different host.

Alternatively, we can reason as follows: the ordering induces a refinement of the
original host partition, and the appropriateness of a given ordering can be measured
by comparing the original partition with the refined one. More formally, let us denote
with H|π the partition induced by the reflexive and transitive closure of the relation ρ
defined by

x ρ y ⇐⇒ |π(x)− π(y)| = 1 and H [x] = H [y].

Intuitively, the classes of H|π are made of nodes belonging to the same host and that
are separated in the order only by nodes of the same host. Notice that this is always a
refinement of the partition H .

The second measure that we have decided to employ to compare partitions is the
Variation of Information (VI) proposed in [53]. Define the entropy associated with the
partition S as:

H(S) = −
∑
S∈S

P (S) log(P (S)) where P (S) =
|S|
|VG|

and the mutual information between two partitions as:

I(S ,T) =
∑
S∈S

∑
T∈T

P (S, T) log
P (S, T)

P (S)P (T)

where P (S, T) = |S∩T |
|VG|

. The Variation of information is then defined as

V I(S ,T) = H(S) +H(T)− 2 I(S ,T);

notice that, in our setting, since H|π is always a refinement of H , we have I(H ,H|π) =
H(H) and so VI simplifies into

V I(H ,H|π) = H(H|π)−H(H).

Armed with these definitions, we can determine how much different intrinsic order-
ings are able to identify the original host structure. We computed the two measures
defined above on a number of web graphs (see Section 2.8) and using some different
orderings described in the literature; more precisely, we considered:

19

Name LLP BFS Shingle Gray Natural Random
HT VI HT VI HT VI HT VI HT VI HT VI

eu 1.58% 4.60 2.04% 4.60 20.12% 7.33 20.09% 7.55 0.05% 0.00 97.11% 13.80
in 1.83% 1.92 2.53% 2.32 15.83% 4.51 37.11% 6.76 0.32% 0.00 99.62% 11.37
indochina 1.37% 1.61 1.99% 2.63 32.05% 6.03 30.96% 5.93 0.26% 0.00 99.93% 11.71
it 3.05% 2.63 2.93% 2.83 27.04% 5.32 26.18% 5.27 0.34% 0.00 99.99% 11.45
uk 2.52% 2.88 1.29% 2.65 20.64% 5.52 19.93% 5.46 0.11% 0.00 99.98% 13.76

Table 2.1: Various measures to evaluate the ability of different orderings to recover host
information. Smaller values indicate a better recovery.

• Random: a random node order;

• Natural : for web graphs, this is the URL-based ordering; for the other non-web
social networks, it is the order in which nodes are presented, which is essentially
arbitrary (and indeed produces compression ratios not very different from random);

• Gray : the Gray order explained in [15];

• Shingle: the compression-friendly order described in [23];

• BFS : the breadth-first search traversal order, exploited in [4];

• LLP : the Layered Label Propagation algorithm described in this thesis (see Sec-
tion 2.6 for details).

The results of this experiment are shown in Table 2.1; comparing them with the
compression results of Table 2.7 (that shows the compression performances starting
from a truly random order), it is clear that recovering the host structure from random is
the key property that is needed for obtaining a real coordinate-free algorithm. However,
the only ordering proposed so far that is able to do this is breadth-first search, and its
capability to identify hosts seems actually a side effect of the very structure of the web.
We use BFS as a strong baseline against which our new results should be compared.8.

2.5 Label Propagation Algorithms

Most of the intrinsic orderings proposed so far in the literature are unable to produce
satisfactory compression ratios when applied to a randomly permuted graph, mainly

8It is unlikely that, in presence of the more complicated structure that we expect in social networks,
an algorithm as simple as a breadth-first search can identify meaningful clusters (see again the BFS
column of Table 2.7), and this leaves room for improvement.

20

because they mostly fail in reconstructing host information as we discussed in the last
section. To overcome their limitations, we can try to approach this issue as a clustering
problem. However, this attempt presents a number of difficulties that are rather peculiar.
First of all, the size of the graphs we are dealing with imposes to use algorithms that scale
linearly with the number of arcs (and there are very few of them; see [32]). Moreover,
we do not possess any prior information on the number of clusters we should expect and
their sizes are going to be highly unbalanced.

These difficulties strongly restrict the choice of the clustering algorithm. In the last
years, a new family of clustering algorithms were developed starting from the label prop-
agation algorithm presented in [62], that use the network structure alone as their guide
and require neither optimisation of a predefined objective function nor prior information
about the communities. These algorithms are inherently local, linear in the number of
edges, and require just few passes on the graph.

The main idea of label propagation algorithms is the following: the algorithms exe-
cute in rounds, and at the beginning of each round every node has a label representing
the cluster that the node currently belongs (at the beginning, every node has a dif-
ferent label). At each round, every node will update its label according to some rule,
the update order being chosen at random at the beginning of the round; the algorithm
terminates as soon as no more updates take place. Label propagation algorithms differ
from each other on the basis of the update rule.

The algorithm described in [62] (hereafter referred to as standard label propagation
or just label propagation) works on a purely local basis: every node takes the label
that occurs more frequently in its neighbourhood9. Metaphorically, every node in the
network chooses to join the largest neighbouring community (i.e., the one to which the
maximum number of its neighbours belongs). As labels propagate, densely connected
groups of nodes quickly reach a consensus on a unique label. When many such dense
consensus groups are created throughout the network, they continue to expand outwards
until it is possible to do so. At the end of the propagation process, nodes having the
same labels are grouped together as one community.

It has been proved [70] that this kind of label propagation algorithm is formally
equivalent to finding the local minima of the Hamiltonian for a kinetic Potts model.
This problem has a trivial globally optimal solution when all the nodes have the same
label; nonetheless, since the label-propagation optimisation procedure produces only
local changes, the search for maxima in the Hamiltonian is prone to becoming trapped
at a local optimum instead of reaching the global optimum. While normally a drawback

9In the case of ties, a random choice is performed, unless the current label of the node is one of the
most frequent in its neighbourhood, in which case the label is simply not changed.

21

of local search algorithms, this characteristic is essential to clustering: the trivial optimal
solution is avoided by the dynamics of the local search algorithm, rather than through
formal exclusion.

Despite its efficiency, it was observed that the algorithm just described tends to
produce one giant cluster containing the majority of nodes. The presence of this giant
component is due to the very topology of social networks; to try to overcome this problem
we have tested variants of the label propagation that introduce further constraints.
One of the most interesting is the algorithm developed in [6], where the update rule
is modified in such a way that the objective function being optimised becomes the
modularity [57] of the resulting clustering. Unfortunately, modularity is not a good
measure in very large graphs as pointed out by several authors (e.g., [33]) due to its
resolution limit that makes it hardly usable on large networks.

Another variant, called Absolute Pott Model (APM) [64], introduces a nonlocal
discount based on a resolution parameter γ. For a given node x, let λ1, . . . , λk be the
labels currently appearing on the neighbours of x, ki be the number of neighbours of x
having label λi and vi be the overall number of nodes in the graph with label λi; when x
is updated, instead of choosing the label λi maximizing ki (as we would do in standard
label propagation), by choosing it as to maximise (see Algorithm 3)

ki − γ(vi − ki).

Observe that when γ = 0 the algorithm degenerates to label propagation; the reason
behind the discount term is that when we decide to join a given community, we are
increasing its density because of the ki new edges joining x to existing members of the
community, but we are at the same time decreasing it because of vi − ki non-existing
edges. Indeed, it can be shown that the density of the sparsest community at the end
of the algorithm is never below γ/(γ + 1).

This algorithm demonstrated to be the best candidate for our needs. However it has
two major drawbacks. The first is that there are no theoretical results that can be used
to determine a priori the optimal value of γ (on the contrary, experiments show that
such an optimal value is extremely changeable and does not depend on some obvious
parameters like the network size or density). The second is that it tends to produce
clusters with sizes that follow a heavy-tailed decreasing distribution, yielding both a huge
number of clusters and clusters with a huge number of nodes (see Figure 2.1). Thus
to obtain good compression performances we have to decide both the order between
clusters and the order of the nodes that belong to the same cluster.

22

Algorithm 3 The APM algorithm. λ is a function that will provide, at the end, the
cluster labels. For the sake of readability, we omitted the resolution of ties.

Require: G a graph, γ a density parameter
1: π ← a random permutation of G’s nodes
2: for all x: λ(x)← x, v(x)← 1
3: while (some stopping criterion) do
4: for i = 0, 1, . . . , n− 1 do
5: for every label `, k` ← |λ−1(`) ∩NG(π(i))|
6: ˆ̀← argmax`[k` − γ(v(`)− k`)]
7: decrement v(λ(π(i)))
8: λ(π(i))← ˆ̀

9: increment v(λ(π(i)))
10: end for
11: end while

2.6 Layered Label Propagation

In this section we present a new algorithm based on label propagation that yields a
compression-friendly ordering.

A run of the APM algorithm (discussed in the previous section) over a given graph
and with a given value of the parameter γ produces as output a clustering, that may
be represented as a labelling (mapping each node to the label of the cluster it belongs
to). An important observation is that, intuitively, there is no notion of optimality for
the tuning of γ: every value of this parameter describes a different resolution of the
given graph. Values of γ close to 0 highlight a coarse structure with few, big and sparse
clusters, while, as γ grows, the clusters get smaller and denser, unveiling a fine-grained
structure. Ideally, we would like to find a way to compose clusterings obtained at
different resolution levels.10

This intuition leads to the definition of Layered Label Propagation (LLP); this algo-
rithm is iterative and produces a sequence of node orderings; at each iteration, the APM
algorithm is run with a suitable value of γ and the resulting labelling is then turned
into an ordering of the graph that keeps nodes with the same label close to one another;
nodes within the same cluster are left in the same order they had before.

To determine the relative order among different clusters, it is worth observing that

10Of course, such a compositional approach could be applied also to other scalable clustering tech-
niques: we have experimented with several alternatives [32], and APM is by far the most interesting
candidate.

23

Figure 2.1: An example of the distribution of cluster sizes computed by APM.

the actual label produced by the label propagation algorithm suggests a natural choice:
since every cluster will be characterised by the initial label of the leader node (the node
which flooded that portion of graph; see Algorithm 3), we can sort the clusters according
to the order that the leader nodes had.

More formally, let a sequence of non-negative real numbers γ0, γ1, γ2, . . . and an initial
ordering π0 : VG → |VG| of the nodes of G be fixed; we define a sequence of orderings
π1, π2, . . . : VG → |VG| and a sequence of labelling functions λ0, λ1, . . . : VG → |VG| as
follows: λk is obtained by running the APM algorithm on the graph G with parameter
γk; then we let πk+1 be the ordering defined by

x ≤k+1 y iff

{
πk(λk(x)) < πk(λk(y)) or

λk(x) = λk(y)
∧

πk(x) ≤ πk(y).

The rationale behind this way of composing the newly obtained clustering with the
previous ordering is explained above: elements in the same cluster (i.e., with the same
label) are ordered as before; for elements with a different label, we use the order that
the corresponding labels (i.e., leader nodes) had before.

The output of LLP actually depends on two elements: the initial ordering π0 and
the choice of the parameters γk at each iteration.

24

Regarding the choice of the γk’s, instead of trying to find at each iteration an optimal
value for the parameter we exploit the diverse resolution obtained through different
choices of the parameter, thus finding a proper order between clusters that suitably
mixes the clusterings obtained at all resolution levels. To obtain this effect, we choose
every γk uniformly at random in the set11 {0} ∪ {2−i, i = 0, . . . , K}. Since the APM
algorithm is run at every step on the same graph G, it turns out that it is easier (and
more efficient) to precompute the labelling function output by the APM algorithm for
each γ in the above set, and then to re-use such labellings.

The surprising result is that the final ordering obtained by this mutilresolution strat-
egy is better than the ordering obtained by applying the same strategy with K different
clusterings generated with the same value of γ chosen after a grid search for the optimal
value (as shown in Table 2.2), and a fortiori on the ordering induced by one single
clustering generated with the optimal γ. Moreover the final order obtained is essen-
tially independent on the initial permutation π0 of the graph (as one can see comparing
Table 2.6 with Table 2.7).

One may wonder if this iterative strategy can be applied also to improve the perfor-
mances of other intrinsic orderings. Our experiments rule out this hypothesis. Iterating
Gray, lex, or BFS orderings does not produce a significant improvement.

2.7 Parallel Implementation

Layered label propagation lends itself naturally to the task decomposition parallel-
programming paradigm, which may dramatically improve performances on modern mul-
ticore architectures: since the update order is randomised, there is no obstacle in up-
dating several nodes in parallel. Our implementation breaks the set of nodes into a very
small number of tasks (in the order of thousands). A large number of threads picks up
the first available task and solves it: as a result, we obtain a performance improvement
that is linear in the number of cores. In doing this, we are helped by WebGraph’s facil-
ities, which allows us to provide each thread with a lightweight copy of the graph that
shares the bitstream and associated information with all other threads.

11Although in theory γ could be larger than 1, such a choice would be of no practical use on large
networks, because it would only yield a complete fragmentation of the graph.

25

Name LLP Fixed LLP

Amazon 9.12 9.43 (+3%)
DBLP 6.87 7.13 (+3%)
Enron 6.45 6.90 (+6%)
Hollywood 5.17 5.55 (+7%)
LiveJournal 10.95 11.40 (+4%)
Flickr 8.9 9.27 (+4%)
indochina (hosts) 5.57 6.25 (+12%)
uk (hosts) 6.35 6.79 (+6%)

eu 3.88 4.46 (+14%)
in 2.44 2.99 (+22%)
indochina 1.68 1.92 (+14%)
it 2.05 2.59 (+26%)
uk 1.8 2.27 (+26%)

Table 2.2: Comparison between LLP with different values of γ and LLP with the best
value of γ only. Values are bits per link.

2.8 Experiments

For our experiments, we considered a number of graphs with various sizes and charac-
teristics; most of them are (directed or undirected) social graphs of some kind, but we
also considered some web graphs for comparison (because for web graphs we can rely
on the URLs as external source of information). More precisely, we used the following
datasets (see also Table 2.3 and 2.4):

• Hollywood : One of the most popular undirected social graphs, the graph of movie
actors: vertices are actors, and two actors are joined by an edge whenever they
appeared in a movie together.

• DBLP : DBLP12 is a bibliography service from which an undirected scientific collab-
oration network can be extracted: each vertex of this undirected graph represents
a scientist and two vertices are connected if they have worked together on an
article.

12http://www.informatik.uni-trier.de/~ley/db/

26

• LiveJournal : LiveJournal13 is a virtual community social site started in 1999:
nodes are users and there is an arc from x to y if x registered y among his friends
(it is not necessary to ask y permission, so the graph is directed). We considered
the same 2008 snapshot of LiveJournal used in [23] for their experiments14.

• Amazon: This dataset describes similarity among books as reported by the Ama-
zon store; more precisely the data was obtained15 in 2008 using the Amazon E-
Commerce Service APIs using SimilarityLookup queries.

• Enron: This dataset was made public by the Federal Energy Regulatory Com-
mission during its investigations: it is a partially anonymised corpus of e-mail
messages exchanged by some Enron employees (mostly part of the senior man-
agement). We turned this dataset into a directed graph, whose nodes represent
people and with an arc from x to y whenever y was the recipient of (at least) a
message sent by x.

• Flickr : Flickr16 is an online community where users can share photographs and
videos. In Flickr the notion of acquaintance is modelled through contacts ; we used
an undirected version of this network, where vertices correspond to users and there
is an edge connecting x and y whenever either vertex is recorded as a contact of
the other one.

• For comparison, we considered five web graphs of various sizes (ranging from about
800 thousand nodes to more than 650 million nodes), available at the LAW web
site http://law.dsi.unimi.it/.

• Finally, the altavista-nd graph was obtained from the Altavista dataset distributed
by Yahoo! within the Webscope program (AltaVista webpage connectivity dataset,
version 1.017). With respect to the original dataset, we pruned all dangling nodes
(“nd” stands for “no dangling”). The original graph, indeed, contains 53.74%
dangling nodes (a preposterous percentage [71]), probably because it also considers
the frontier of the crawl—the nodes that have been discovered but not visited. We
eliminated (one level of) dangling nodes to approximate the set of visited nodes,
and also because dangling nodes are of little importance in compression.18

13http://www.livejournal.com/
14The dataset was kindly provided by the authors of [23].
15http://www.archive.org/details/amazon_similarity_isbn/
16http://www.flickr.com/; we thank Yahoo! for the experimental results on the Flickr graph.
17http://research.yahoo.com/Academic_Relations
18It should be remarked by this graph, albeit widely used in the literature, is not a good dataset. As

we already noted, most likely all nodes in the frontier of the crawler (and not only visited nodes) were
added to the graph; moreover, the giant component is less than 4% of the whole graph.

27

Name Nodes Edges

Amazon 735 323 5 158 388
DBLP 326 186 1 615 400
Enron 69 244 276 143
Hollywood 1 139 905 113 891 327
LiveJournal 5 363 260 79 023 142
Flickr 526 606 47 097 454

Table 2.3: Social graph description.

Name Year Nodes Edges

eu 2005 862 664 19 235 140
in 2004 1 382 908 16 917 053
indochina 2004 7 414 866 194 109 311
indochina (hosts) 2004 19 123 233 380
it 2004 41 291 594 1 150 725 436
uk (hosts) 2005 587 205 12 825 465
uk 2007 105 896 555 3 738 733 648
altavista-nd 2002 653 912 338 4 226 882 364

Table 2.4: Web graph description.

Each graph was compressed in the BV format using WebGraph [17]19 and we mea-
sured the compression performance using the number of bits/link actually occupied by
the graph file.

We also compared LLP+BV with the compression obtained using the algorithm
proposed by Apostolico and Drovandi [4] at level 8 starting from a randomly permuted
graph; the results, shown in Table 2.5, provide evidence that LLP+BV outperforms
AD in all cases, and in a significant way on social networks and large web graphs.
This is particularly relevant, since the compression algorithm of AD is designed to take
full advantage of a specific ordering (the breadth-first search) and is the only known

19We adopted the default window size (W = 7), disabled intervalisation and put a limit of 3 to the
length of the possible reference chains (see [15] for details on the rôle of this parameter). Observe that
the latter two settings tend to deteriorate the compression results, but make decompression extremely
efficient even when random access is required.

28

Name LLP+BV AD

Amazon 9.13 12.39 (+36%)
DBLP 6.82 7.47 (+10%)
Enron 6.07 7.74 (+28%)
Hollywood 4.99 7.64 (+53%)
LiveJournal 10.91 14.97 (+37%)
Flickr 8.9 11.19 (+26%)
indochina (hosts) 5.42 6.83 (+26%)
uk (hosts) 6.19 7.85 (+27%)

eu 3.78 4.01 (+6%)
in 2.24 2.39 (+7%)
indochina 1.53 1.70 (+11%)
it 1.91 2.31 (+21%)
uk 1.72 2.32 (+36%)
altavista-nd 5.16 11.04 (+114%)

Table 2.5: Comparison between LLP+BV compression (for this particular table, the full
set of compression tecniques available in WebGraph has been used, including intervali-
sation) and the algorithm proposed by Apostolico and Drovandi (AD) at level 8. Values
are bits per link.

coordinate-free alternative we are aware of. In our comparison, contrarily to all other
tables, we used the full compression power of the BV format, as our intent is to motivate
LLP+BV as a very competitive coordinate-free compression algorithm. We have turned
off intervalisation, as our purpose is to study the effect of different permutations on
locality and similarity: this explains why the bits per link found in Table 2.5 are smaller
than elsewhere.

A comment is needed about the bad performance the Apostolico–Drovandi method
on the altavista-nd dataset. Apparently, the size of the dataset is such that scrambling
it by a random permutation causes the method to use a bad naming for the nodes, in
spite of the initial breadth-first visit. In our previous experiments, the Apostolico–
Drovandi method did not show variations of more than 20% in compression due to
random permutations, but clearly the issue needs to be investigated more thoroughly.

29

2.9 Results

Tables 2.6 and 2.7 present the number of bits per link required by our datasets under the
different orderings discussed above and produced starting from the natural order and
from a random order (the percentages shown in parenthesis give the gain w.r.t. breadth-
first search ordering). Here are some observations that the experimental results suggest:

• LLP provides always the best compression, with an average gain of 25% with
respect to BFS, and largely outperforms both simple Gray [15] and shingle or-
derings [23]. Some simple experiments not reported here shows that the same
happen for transposed graphs: for instance, uk is compressed at 1.06 bits per link.
This makes LLP+BV encoding by far the best compressed data structure available
today.

• LLP is extremely robust with respect to the initial ordering of nodes and its com-
bination with BV provides actually a coordinate-free compressed data structure.
Other orderings (in particular, Gray and shingle) are much more sensitive to the
initial numbering, especially on web graphs. We urge researchers in this field to
always generate permutations starting from a randomised copy of the graph, as
“useful” ordering information in the original dataset can percolate as an artifact
in the final results.

• As already remarked elsewhere [23], social networks seem to be harder to com-
press than web graphs: this fact would suggest that there should be some yet
unexplained topological difference between the two kinds of graphs that accounts
for the different compression ratio.

Despite the great improvement in terms of compression results our technique remains
highly scalable. All experiments are performed on a Linux server equipped with Intel
Xeon X5660 CPUs (2.80 GHz, 12 MB cache size) for overall 24 cores and 128 GB of RAM;
the server cost about 8 900 EUR in 2010. Our Java implementation of LLP sports a
linear scaling in the number of arcs with an average speed of ≈ 80 000 000 arcs/s per
iteration. The overall time cost of the algorithm depends on the number γ’s and on
the stopping criterion. With our typical setting the overall speed of the algorithm is
≈ 800 000 arcs/s.

The algorithm is also very memory efficient (it uses 3n integers plus the space re-
quired by the graph20) and it is easy to distribute, making it a good candidate for huge

20It is possible in principle to avoid keeping the graph in main memory, but the cost becomes
O(n log n).

30

networks. Indeed, most of the time is spent on sampling values of γ to produce base
clusterings,21 and this operation can be performed for each γ in a fully parallel way.
Applying LLP to a web graph with 1 billion nodes and 50 billions arcs would require
few hours in this setting.

For comparison, we also tried to compress our dataset using the alternative versions
of LLP described in Section 2.5: in particular, we considered APM (with the optimal
choice of γ) and the combination APM+Gray (that sorts each APM cluster using Gray).
Besides the number of bits per link, we also analysed two measures that quantify two
different structural properties:

• the average gap cost (i.e., the average of the base-2 logarithms of the gaps between
the successors of a node: this is an approximate measure of the number of bits
required to write the gaps using a universal variable-length code); this measure is
intended to account for locality: the average gap cost is small if the ordering tends
to keep well-connected nodes close to one another;22

• the percentage of copied arcs (i.e., the number of arcs that are not written explicitly
but rather obtained by reference from a previous successor list); this is intended to
account for similarity: this percentage is small if the ordering tends to keep nodes
with similar successor lists close to one another.

The results obtained are presented in Table 2.8. In most cases APM copies a smaller
percentage of arcs than APM+Gray, because Gray precisely aims at optimising similarity
rather than locality; this phenomenon is less pronounced on web graphs, where anyway
the overall number of copied arcs is larger; looking at the average gap cost, all clustering
methods turn out to do a better job than Gray in improving locality (data not shown
in the table). LLP usually copies less arcs than APM+Gray, but the difference is often
negligible and definitely balanced by the gain in locality.

We would like to point out that, at least when using the best compression currently
available (LLP+BV), the average gap cost is definitely more correlated with compres-
sion rates than the average distance cost, that is, the average of the logarithms of the
(absolute) difference between the source and target of each arc (see Figure 2.2). In-
deed, the correlation coefficient is 0.9681 between bits per link and average gap cost and
0.1742 between bits per link and average distance cost. In [23] the problems MLogA
and MLogGapA consist exactly in minimising the average distance and the average

21The combination of clusterings is extremely fast, as it is linear in the number of nodes, rather than
in the number of arcs, and has little impact on the overall run time.

22We remark that the average gap cost is essentially an amortised version of the standard gap measure
used in the context of data-aware compressed data structures [36].

31

gap cost, respectively: that authors claim that both problems capture the essence of a
good ordering, but our extensive experimentation suggests otherwise.

As a final remark, it is worth noticing that similarity and locality have a different
impact in social networks than in web graphs: in web graphs the percentage of copied
arcs is much larger (a clue of the presence of a better-defined structure) and in fact
it completely determines the number of bits per link, whilst in social networks the
compression ratio is entirely established by the gain of locality (measured, as usual, by
the average gap cost).

2.10 Conclusions

We have presented highly scalable techniques that improve compressed data structures
for representing web graphs and social networks significantly beyond the current state-
of-art. More importantly, we have shown that coordinate-free methods can outperform
state-of-art extrinsic techniques on a large range of networks. The clustering techniques
we have devised are scalable to billions of nodes, as they just require few linear passes
over the graphs involved. In some cases (e.g., the uk dataset) we bring down the cost
of a link to almost 1.8 bits. We remark again that our improvements are measured
w.r.t. the BFS baseline, which is itself often an improvement when compared to the
existing literature.

Finally, we leave for future work a full investigation of the compression ratio that
can be obtained when fast access is not required. For instance, uk compressed by
LLP+BV at maximum compression requires only 1.21 bits per link—better, for instance,
than the Apostolico–Drovandi method with maximum compression (1.44). Some partial
experimental data suggests that we would obtain by far the highest compression ratio
currently available.

The experiments that we report required several thousands of hours of computation:
we plan to make available the results both under the form of WebGraph property files
(which contain a wealth of statistical data) and under the form of comprehensive graph-
ical representations. This information will be most useful to researchers studying the
structure of social networks. A more thorough attempt to explain the reasons behind
the greater compressibility of web graphs is essential to try to enhance social-network
compression further.

Another interesting issue is the impact of increased of locality on cache usage. In
principle, assuming that nodes with nearby identifiers have their successors stored in
nearby memory (as it happens in WebGraph) increasing locality could also speed up all
graph traversals and algorithms based on them.

32

Figure 2.2: Bits per link against average gap (left) and distance (right) cost. 5 points
indicates web graphs while 3 points indicates social graph.

Name LLP BFS Shingle Gray Natural Random

Amazon 9.12 (-30%) 13.01 14.36 (+10%) 13.11 (+0%) 16.92 (+30%) 23.62 (+81%)
DBLP 6.87 (-24%) 8.98 11.39 (+26%) 8.50 (-6%) 11.36 (+26%) 22.07 (+145%)
Enron 6.45 (-26%) 8.68 9.80 (+12%) 9.78 (+12%) 13.43 (+54%) 14.02 (+61%)
Hollywood 5.17 (-33%) 7.64 6.68 (-13%) 6.35 (-17%) 15.20 (+98%) 16.23 (+112%)
LiveJournal 10.95 (-28%) 15.05 15.66 (+4%) 14.19 (-6%) 14.35 (-5%) 23.50 (+56%)
Flickr 8.90 (-19%) 10.92 10.22 (-7%) 10.82 (-1%) 13.87 (+27%) 14.49 (+32%)
indochina (hosts) 5.57 (-15%) 6.55 7.15 (+9%) 7.49 (+14%) 9.26 (+41%) 10.59 (+61%)
uk (hosts) 6.35 (-17%) 7.59 8.07 (+6%) 8.13 (+7%) 10.81 (+42%) 15.58 (+105%)

eu 3.88 (-21%) 4.87 6.09 (+25%) 4.98 (+2%) 5.24 (+7%) 19.89 (+308%)
in 2.44 (-26%) 3.29 4.19 (+27%) 2.90 (-12%) 2.99 (-10%) 21.15 (+542%)
indochina 1.68 (-24%) 2.21 2.91 (+31%) 2.12 (-5%) 2.19 (-1%) 21.46 (+871%)
it 2.05 (-26%) 2.76 3.61 (+30%) 2.67 (-4%) 2.83 (+2%) 26.40 (+856%)
uk 1.80 (-26%) 2.43 3.26 (+34%) 2.47 (+1%) 2.75 (+13%) 27.55 (+1033%)
altavista-nd 5.25 (-10%) 5.78 8.12 (+40%) 6.40 (+10%) 8.37 (+44%) 34.76 (+501%)

Table 2.6: Compression results starting from natural order (percentages are relative to
BFS). Values are bits per link.

33

Name LLP BFS Shingle Gray Natural Random

Amazon 9.16 (-30%) 12.96 14.43 (+11%) 14.60 (+12%) 16.92 (+30%) 23.62 (+82%)
DBLP 6.88 (-23%) 8.91 11.42 (+28%) 11.50 (+29%) 11.36 (+27%) 22.07 (+147%)
Enron 6.51 (-24%) 8.54 9.87 (+15%) 9.94 (+16%) 13.43 (+57%) 14.02 (+64%)
Hollywood 5.14 (-35%) 7.81 6.72 (-14%) 6.40 (-19%) 15.20 (+94%) 16.23 (+107%)
LiveJournal 10.90 (-28%) 15.1 15.77 (+4%) 15.73 (+4%) 14.35 (-5%) 23.50 (+55%)
Flickr 8.89 (-22%) 11.26 10.22 (-10%) 10.23 (-10%) 13.87 (+23%) 14.49 (+28%)
indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 7.49 (+12%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 8.13 (+6%) 10.81 (+41%) 15.58 (+104%)

eu 3.90 (-21%) 4.93 6.86 (+39%) 6.27 (+27%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 4.40 (+25%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 3.09 (+33%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 3.79 (+31%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 3.36 (+18%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 7.52 (+28%) 8.37 (+43%) 34.76 (+494%)

Table 2.7: Compression results starting from a random order (percentages are relative
to BFS). Values are bits per link.

Name Bits/link Copied arcs Avg. gap cost
LLP APM + Gray APM LLP APM + Gray APM LLP APM + Gray APM

Amazon 9.14 10.45 10.67 31.22 32.32 28.87 5.64 6.87 6.97
DBLP 6.87 8.38 8.48 36.55 37.66 36.42 4.04 5.73 5.80
Enron 6.48 7.15 7.97 24.07 25.45 10.86 3.92 4.58 4.76
Hollywood 5.13 5.38 6.10 44.22 42.49 38.68 4.14 4.38 4.92
LiveJournal 10.90 12.00 12.79 23.57 23.66 17.48 7.34 8.29 8.69
Flickr 8.89 9.22 9.69 13.65 11.77 8.88 5.59 5.84 6.17

eu 3.90 4.86 5.76 65.84 66.33 59.57 3.62 5.16 5.78
in 2.46 3.11 4.05 72.45 73.04 65.11 2.31 4.02 4.60
indochina 1.71 2.17 3.00 80.36 80.78 75.53 2.06 3.59 4.09
indochina (hosts) 5.54 6.04 6.16 33.51 34.69 26.94 3.46 4.02 3.90
it 2.10 2.56 3.94 77.18 79.76 69.53 2.43 4.36 5.16
uk (hosts) 6.26 6.68 6.90 33.94 37.34 30.48 4.24 4.76 4.79
uk 1.91 2.39 3.73 79.16 81.92 71.73 2.31 4.71 5.35

Table 2.8: Comparison between LLP and the ordering produced by other clustering
algorithms (APM and the combination APM+Gray) when compressing with the BV
algorithm. We consider the value of γ that minimises the number of bits/link.

34

Chapter 3

Approximating the neighbourhood
function for large graphs

A small-world network [25] is a graph where the average distance between nodes is
logarithmic in the size of the network, whereas the clustering coefficient is large (that
is, neighbourhoods tend to be denser) than in a random Erdős-Rényi graph with the
same size and average distance.1 Here, and in the following, by “distance” we mean the
length of the shortest path between two nodes. The fact that social networks (either
electronically mediated or not) exhibit the small-world property is known at least since
Milgram’s famous experiment [54] 2, and is arguably the most popular of all features of
complex networks.

In this chaper we turn to the study of the neighbourhood function. The neighbour-
hood function NG(t) of a graph G gives, for each t ∈ N, the number of pairs of nodes
〈x, y〉 such that y is reachable from x in less than t hops. The neighbourhood func-
tion provides a wealth of information about the graph [61] (e.g., it easily allows one to
compute its diameter), but it is very expensive to compute it exactly. Recently, the
ANF algorithm [61] (approximate neighbourhood function) has been proposed with the
purpose of approximating NG(t) on large graphs. We describe a breakthrough improve-

1The reader might find this definition a bit vague, and some variants are often spotted in the
literature: this is a general problem, also highlighted recently in [49].

2It should be noticed that Milgram’s experiment tried to prove two properties at the same time. First,
that the average distance between individuals is much smaller than expected; second, that individuals
are able to exploit such a feature to route messages along short paths, albeit they only possess local
information about the network they live in. This second property is, in a sense, much more interesting
than the former, but also much more difficult to describe and study, because it has to do with some
information that the nodes possess about the environment they inhabit.

35

ment over ANF in terms of speed and scalability. Our algorithm, called HyperANF, uses
the new HyperLogLog counters [30] and combines them efficiently through broadword
programming [45]; our implementation uses task decomposition to exploit multi-core
parallelism. With HyperANF, for the first time we can compute in a few hours the
neighbourhood function of graphs with billions of nodes with a small error and good
confidence using a standard workstation.

Then, we turn to the study of the distribution of distances between reachable nodes
(that can be efficiently approximated by means of HyperANF), and discover the sur-
prising fact that its index of dispersion provides a clear-cut characterisation of proper
social networks vs. web graphs. We thus propose the spid (Shortest-Paths Index of Dis-
persion) of a graph as a new, informative statistics that is able to discriminate between
the above two types of graphs. We believe this is the first proposal of a significant new
non-local structural index for complex networks whose computation is highly scalable.

3.1 Introduction

The neighbourhood function NG(t) of a graph returns for each t ∈ N the number of pairs
of nodes 〈x, y〉 such that y is reachable from x in less than t steps. It provides data
about how fast the “average ball” around each node expands. From the neighbourhood
function, several interesting features of a graph can be estimated, such as, for example,
the effective diameter, a measure of the “typical” distance between nodes.

Palmer, Gibbons and Faloutsos [61] proposed an algorithm to approximate the neigh-
bourhood function (see their paper for a review of previous attempts at approximate
evaluation); the authors distribute an associated tool, snap, which can approximate
the neighbourhood function of medium-sized graphs. The algorithm keeps track of the
number of nodes reachable from each node using Flajolet–Martin counters, a kind of
sketch that makes it possible to compute the number of distinct elements of a stream
in very little space. A key observation was that counters associated to different streams
can be quickly combined into a single counter associated to the concatenation of the
original streams.

In this chapter, we describe HyperANF—a breakthrough improvement over ANF in
terms of speed and scalability. HyperANF uses the new HyperLogLog counters [30],
and combines them efficiently by means of broadword programming [45]. Each counter
is made by a number of registers, and the number of registers depends only on the
required precision. The size of each register is doubly logarithmic in the number of nodes
of the graph, so HyperANF, for a fixed precision, scales almost linearly in memory (i.e.,
O(n log log n)). By contrast, ANF memory requirement is O(n log n).

36

Using HyperANF, for the first time we can compute in a few hours the neighbour-
hood function of graphs with more than one billion nodes with a small error and good
confidence using a standard workstation with 128 GB of RAM. Our algorithms are im-
plement in a tool distributed as free software within the WebGraph framework.3

Armed with our tool, we study several datasets, spanning from small social networks
to very large web graphs. We isolate a statistically defined feature, the index of disper-
sion of the distance distribution, and show that it is able to tell “proper” social networks
from web graphs in a natural way.

3.2 Related work

HyperANF is an evolution of ANF [61], which is implemented by the tool snap. We
will give some timing comparison with snap, but we can only do it for relatively small
networks, as the large memory footprint of snap precludes application to large graphs.

Recently, a MapReduce-based distributed implementation of ANF called HADI [41]
has been presented. HADI runs on one of the fifty largest supercomputers—the Hadoop
cluster M45. The only published data about HADI’s performance is the computation
of the neighbourhood function of a Kronecker graph with 2 billion links, which required
half an hour using 90 machines. HyperANF can compute the same function in less than
fifteen minutes on a laptop.

The rather complete survey of related literature in [41] shows that essentially no
data mining tool was able before ANF to approximate the neighbourhood function of
very large graphs reliably. A remarkable exception is Cohen’s work [24], which provides
strong theoretical guarantees but experimentally turns out to be not as scalable as the
ANF approach; it is worth noting, though, that one of the proposed applications of [24]
(On-line estimation of weights of growing sets) is structurally identical to ANF.

All other results published before ANF relied on a small number of breadth-first
visits on uniformly sampled nodes—a process that has no provable statistical accuracy
or precision. Thus, in the rest of the chapter we will compare experimental data with
snap and with the published data about HADI.

3.3 HyperANF

In this section, we present the HyperANF algorithm for computing an approximation
of the neighbourhood function of a graph; we start by recalling from [30] the notion of

3See [17]. http://webgraph.dsi.unimi.it/.

37

HyperLogLog counter upon which our algorithm relies. We then describe the algorithm,
discuss how it can be implemented to be run quickly using broadword programming and
task decomposition, and give results about its memory requirements and precision.

3.3.1 HyperLogLog counters

HyperLogLog counters, as described in [30] (which is based on [28]), are used to count
approximately the number of distinct elements in a stream. For our purposes, we need
to recall briefly their behaviour. Essentially, these probabilistic counters are a sort of
approximate set representation to which, however, we are only allowed to pose questions
about the (approximate) size of the set.4

Let D be a fixed domain and h : D → 2∞ be a hash function mapping each element
of D into an infinite binary sequence. The function is fixed with the only assumption
that “bits of hashed values are assumed to be independent and to have each probability
1
2

of occurring” [30].
For a given x ∈ 2∞, let ht(x) denote the sequence made by the leftmost t bits of h(x),

and ht(x) be the sequence of remaining bits of x; each point in the codomain of ht is
identified with its corresponding integer value in the range { 0, 1, . . . , 2t−1 }. Moreover,
given a binary sequence w, we let ρ+(w) be the number of leading zeroes in w plus one5

(e.g., ρ+(00101) = 3). Unless otherwise specified, all logarithms are in base 2.
The value E printed by Algorithm 4 is [30][Theorem 1] an asymptotically almost

unbiased estimator for the number n of distinct elements in the stream; for n → ∞,
the relative standard deviation (that is, the ratio between the standard deviation of E
and n) is at most βm/

√
m ≤ 1.06/

√
m, where βm is a suitable constant (given in [30]).

Moreover [28] even if the size of the registers (and of the hash function) used by the
algorithm is unbounded, one can limit it to log log(n/m) + ω(n) bits obtaining almost
certainly the same output (ω(n) is a function going to infinity arbitrarily slowly); overall,
the algorithm requires (1 + o(1)) ·m log log(n/m) bits of space (this is the reason why
these counters are called HyperLogLog). Here and in the followings we tacitly assume
that m ≥ 64 and that registers are made of dlog log ne bits.

4We remark that in principle O(log n) bits are necessary to estimate the number of unique elements
in a stream [2]. HyperLogLog is a practical counter that starts from the assumption that a hash function
can be used to turn a stream into an idealised multiset (see [30]).

5We remark that in the original HyperLogLog papers ρ is used to denote ρ+, but ρ is a somewhat
standard notation for the ruler function [45].

38

Algorithm 4 The Hyperloglog counter as described in [30]: it allows one to count
(approximately) the number of distinct elements in a stream. αm is a constant whose
value depends on m and is provided in [30]. Some technical details have been simplified.

0 h : D → 2∞, a hash function from the domain of items
1 M [−] the counter, an array of m = 2b registers
2 (indexed from 0) and set to −∞
3
4 function add(M : counter, x: item)
5 begin
6 i← hb(x);
7 M [i]← max

{
M [i], ρ+

(
hb(x)

)}
8 end; // function add
9
10 function size(M : counter)
11 begin

12 Z ←
(∑m−1

j=0 2−M [j]
)−1

;

13 return E = αmm
2Z

14 end; // function size
15
16 foreach item x seen in the stream begin
17 add(M ,x)
18 end;
19 print size(M)

39

3.3.2 The HyperANF algorithm

The approximate neighbourhood function algorithm described in [61] is based on the
observation that B(x, r), the ball of radius r around node x, satisfies

B(x, r) =
⋃
x→y

B(y, r − 1).

Since B(x, 0) = {x }, we can compute each B(x, r) incrementally using sequential scans
of the graph (i.e., scans in which we go in turn through the successor list of each
node). The obvious problem is that during the scan we need to access randomly the
sets B(x, r− 1) (the sets B(x, r) can be just saved on disk on a update file and reloaded
later). Here probabilistic counters come into play; to be able to use them, though, we
need to endow counters with a primitive for the union. Union can be implemented
provided that the counter associated to the stream of data AB can be computed from
the counters associated to A and B; in the case of HyperLogLog counters, this is easily
seen to correspond to maximising the two counters, register by register.

The observations above result in Algorithm 5: the algorithm keeps one HyperLogLog
counter for each node; at the t-th iteration of the main loop, the counter c[v] is in the
same state as if it would have been fed with B(v, t), and so its expected value is |B(v, t)|.
As a result, the sum of all c[v]’s is an (almost) unbiased estimator of NG(t) (for a precise
statement, see Theorem 1).

We remark that the only sound way of running HyperANF (or ANF) is to wait for
all counters to stabilise (e.g., the last iteration must leave all counters unchanged). As
we will see, any alternative termination condition may lead to arbitrarily large mistakes
on pathological graphs.6

3.3.3 HyperANF at hyper speed

Up to now, HyperANF has been described just as ANF with HyperLogLog counters.
The effect of this change is an exponential reduction in the memory footprint and, con-
sequently, in memory access time. We now describe the the algorithmic and engineering
ideas that made HyperANF much faster, actually so fast that it is possible to run it up
to stabilisation.

Union via broadword programming. Given two HyperLogLog counters that have
been set by streams A and B, the counter associated to the stream AB can be build by

6We remark that snap uses a threshold over the relative increment in the number of reachable pairs
as a termination condition, but this trick makes the tail of the function unreliable.

40

Algorithm 5 The basic HyperANF algorithm in pseudocode. The algorithm uses, for
each node i ∈ n, an initially empty HyperLogLog counter ci. The function union(−,−)
maximises two counters register by register.

0 c[−], an array of n HyperLogLog counters
1
2 function union(M : counter, N : counter)
3 foreach i < m begin
4 M [i]← max(M [i], N [i])
5 end
6 end; // function union
7
8 foreach v ∈ n begin
9 add v to c[v]
10 end;
11 t← 0;
12 do begin
13 s←

∑
v size(c[v]);

14 Print s (the neighbourhood function NG(t))
15 foreach v ∈ n begin
16 m← c[v];
17 foreach v → w begin
18 m← union(c[w],m)
19 end;
20 write 〈v,m〉 to disk
21 end;
22 Read the pairs 〈v,m〉 and update the array c[−]
23 t← t+ 1
24 until no counter changes its value.

41

maximising in parallel the registers of each counter. That is, the register i of the new
counter is given by the maximum between the i-th register of the first counter and the
i-th register of the second counter.

Each time we scan a successor list, we need to maximise a large number of registers
and store the resulting counter. The immediate way of obtaining this result requires
extracting the value of each register, maximise it with the other corresponding registers,
and writing down the result in a temporary counter. This process is extremely slow, as
registers are packed in 64-bit memory words. In the case of Flajolet–Martin counters,
the problem is easily solved by computing the logical OR of the words containing the
registers. In our case, we resort to broadword programming techniques. If the machine
word is w, we assume that at least w registers are allocated to each counter, so each set
of registers is word-aligned.

Let� and� denote right and left (zero-filled) shifting, &, | and ⊕ denote bit-by-bit
not, and, or, and xor; x denotes the bit-by-bit complement of x. We use Lk to denote
the constant whose ones are in position 0, k, 2k, . . . that is, the constant with the
lowest bit of each k-bit subword set (e.g, L8 = 0x01010101010101010101). We use Hk

to denote Lk� k − 1, that is, the constant with the highest bit of each k-bit subword
set (e.g, H8 = 0x8080808080808080).

It is known (see [45], or [72] for an elementary proof), that the following expression

x <u
k y :=

((
((x |Hk)− (y &Hk)) | x⊕ y

)
⊕ (x | y)

)
&Hk.

performs a parallel unsigned comparison k-by-k-bit-wise. At the end of the computation,
the highest bit of each block of k bits will be set iff the corresponding comparison is
true (i.e., the value of the block in x is strictly smaller than the value of the block in y).

Once we have computed x <u
k , we generate a mask that is made entirely of 1s, or of

0s, for each k-bit block, depending on whether we should select the value of x or y for
that block:

m =

(((
(x <u

k y)� k − 1 |Hk

)
− Lk

)
|Hk

)
⊕ (x <u

k y)

This formula works by moving the high bit denoting the result of the comparison to the
least significant bit (of each k-bit block). Then, we or with Hk and subtract 1 from each
block, obtaining either a mask with just the high bit set (if we were starting from 1) or
a mask with all bits sets except for the high bit (if we were starting from 0). The last
two operation fix those values so that they become 00 · · · 0 or 11 · · · 1. The result of the
maximisation process is now just x&m | y &m.

42

This discussion assumed that the set of registers of a counter is stored in a single
machine word. In a realistic setting, the registers are spread among several consecutive
words, and we use multiple precision subtractions and shifts to apply the expressions
above on a sequence of words. All other (logical) operations have just to be applied to
each word in sequence.

All in all, by using the techniques above we can improve the speed of maximisation
by a factor of w/k, which in our case is about 13 (for graphs of up to 232 nodes).
This actually results in a sixfold speed improvement of the overall application in typical
cases (e.g., web graphs and b = 8), as about 90% of the computation time is spent in
maximisation.

Parallelisation via task decomposition. Although HyperANF is written as a se-
quential algorithm, the outer loop lends itself to be executed in parallel, which can be
extremely fruitful on a modern multicore architecture; in particular, we approach this
idea using task decomposition. We divide the iteration on the whole set of nodes into a
set of small tasks (in the order of the thousands), where each task consists in iterating
on a contiguous segment of nodes. A pool of threads picks up the first available task
and solves it: as a result, we obtain a performance improvement that is linear in the
number of cores. Threads can be designed to be extremely agile, helped by WebGraph’s
facilities which allow us to provide each thread with a lightweight copy of the graph that
shares the bitstream and associated information with all other threads.

Tracking modified counters. It is an easy observation that a counter c that does not
change its value is not useful for the next step of the computation: all counters using c
during their update would not change their value when maximising with c (and we do
not even need to write c on disk). We thus keep track of modified counters and skip
altogether the maximisation step with unmodified ones. Since, as we already remarked,
90% of computation time is spent in maximisation, this approach leads to a large speedup
after the first phases of the computation, when most counters are stabilised.

For the same reason, we keep track of the harmonic partial sums of small blocks
(e.g., 64) of counters. The amount of memory required is negligible, but if no counter
in the block has been modified, we can avoid a costly computation.

Systolic computation. HyperANF can be run in systolic mode. In this case, we use
also the transposed graph: whenever a counter changes, it signals back to its predecessors
that at the next round they could change their values. Now, at each iteration nodes
that have not been signalled are entirely skipped during the computation. Systolic
computations are fundamental to get high-precision runs, as they reduce the cost of an
iteration to scanning only the arcs of the graph that are actually moving information
around. We switch to systolic computation when less than one quarter of the counters

43

change their values.

3.3.4 Correctness, errors and memory usage

Very little has been published about the statistical behaviour of ANF. The statistical
properties of approximate counters are well known, but the values of such counters for
each node are highly dependent, and adding them in a large amount can in principle lead
to an arbitrarily large variance. Thus, making precise statistical statements about the
outcome of a computation of ANF or HyperANF requires some care. The discussion
in the following sections is based on HyperANF, but its results can be applied mutatis
mutandis to ANF as well.

Consider the output N̂G(t) of algorithm 5 at a fixed iteration t. We can see it as a
random variable

N̂G(t) =
∑
i∈n

Xi,t

where7 each Xi,t is the HyperLogLog counter that counts nodes reached by node i in t
steps; what we want to prove in this section is a bound on the relative standard deviation
of N̂G(t) (such a proof, albeit not difficult, is not provided in the papers about ANF).
First observe that [30], for a fixed a number of registers m per counter, the standard
deviation of Xi,t satisfies √

Var[Xi,t]

|B(i, t)|
≤ ηm,

where ηm is the guaranteed relative standard deviation of a HyperLogLog counter.
Using the subadditivity of standard deviation (i.e., if A and B have finite variance,√

Var[A+B] ≤
√

Var[A] +
√

Var[B]), we prove the following

Theorem 1. The output N̂G(t) of Algorithm 5 at the t-th iteration is an asymptotically
almost unbiased estimator8 of NG(t), that is

E[N̂G(t)]

NG(t)
= 1 + δ1(n) + o(1) for n→∞,

where δ1 is the same as in [30][Theorem 1] (and |δ1(x)| < 5 · 10−5 as soon as m ≥ 16).

7we use von Neumann’s notation n = { 0, 1, . . . , n− 1 }, so i ∈ n means that 0 ≤ i < n.
8From now on, for the sake of readability we shall ignore the negligible bias on N̂G(t) as an estimator

for NG(t): the other estimators that will appear later on will be qualified as “(almost) unbiased”, where
“almost” refers precisely to the above mentioned negligible bias.

44

Moreover, N̂G(t) has the same relative standard deviation of the Xi’s, that is√
Var[N̂G(t)]

NG(t)
≤ ηm.

Proof. We have that E[N̂G(t)] = E
[∑

i∈nXi,t

]
. By Theorem 1 of [30], E[Xi,t] =

|B(i, t)| (1 + δ1(n) + o(1)), hence the first statement. For the second result, we have:√
Var[N̂G(t)]

NG(t)
≤
∑

i∈n

√
Var[Xi]

NG(t)
≤
ηm
∑

i∈n |B(i, t)|
NG(t)

= ηm.

Since, as we recalled in Section 3.3.1, the relative standard deviation ηm satisfies
ηm ≤ 1.06/

√
m, to get a specific value η it is sufficient to choose m ≈ 1.12/η2; this

assumption yields an overall space requirement of about

1.12

η2
n log log n bits

(here, we used the obvious upper bound |B(i, t)| ≤ n). For instance, to obtain a relative
standard deviation of 9.37% (in every iteration) on a graph of one billion nodes one
needs 74.5 GB of main memory for the registers (for a comparison, snap would require
550 GB). Note that since we write to disk the new values of the registers, this is actually
the only significant memory requirement (the graph can be kept on disk and mapped in
memory, as it is scanned almost sequentially).

Applying Chebyshev’s inequality, we obtain the following:

Corollary 1. For every ε,

Pr

[
N̂G(t)

NG(t)
∈ (1− ε, 1 + ε)

]
≥ 1− η2

m

ε2
.

In [30] it is argued that the HyperLogLog error is approximately Gaussian; the
counters, however, are not statistically independent and it is an empirically established
fact that the overall error does not appear to be normally distributed. Nonetheless, for
every fixed t, the random variable N̂G(t) seems to be unimodal (for example, the average

45

p-value of the Dip unimodality test [37] for the cnr-2000 dataset is 0.011), so we can
apply the Vysochanskĭı-Petunin inequality [74], obtaining the bound

Pr

[
N̂G(t)

NG(t)
∈ (1− ε, 1 + ε)

]
≥ 1− 4η2

m

9ε2
.

In the rest of this chapter, to state clearly our theorems we will always assume error ε
with confidence 1− δ. It is useful, as a practical reminder, to note that because of the
above inequality for each point of the neighbourhood function we can assume a relative
error of kηm with confidence 1 − 4/(9k2) (e.g., 2ηm with 90% confidence, or 3ηm with
95% confidence).

As an empirical counterpart to the previous results, we considered a relatively small
graph of about 325 000 nodes (cnr-2000, see Section 3.6 for a full description) for which
we can compute the exact neighbourhood function NG(−); we ran HyperANF 500 times
with m = 256. At least 96% of the samples (for all t) has a relative error smaller than
twice the theoretical relative standard deviation 6.62%. The percentage jumps up to
100% for three times the relative standard deviation, showing that the distribution of
the values behaves better than what the theory would guarantee.

3.4 Deriving useful data

As advocated in [61], being able to estimate the neighbourhood function on real-world
networks has several interesting applications. Unfortunately, all published results we
are aware of lack statistical satellite data (such as confidence intervals, or distribution
of the computed values) that make it possible to compare results from different research
groups. Thus, in this section we try to discuss in detail how to derive useful data from
an approximation of the neighbourhood function.

The distance cdf. We start from the apparently easy task of computing the cumulative
distribution function of distances of the graph G (in short, distance cdf), which is the
function HG(t) that gives the fraction of reachable pairs at distance at most t, that is,

HG(t) =
NG(t)

maxtNG(t)
.

In other words, given an exact computation of the neighbourhood function, the distance
cdf can be easily obtained by dividing all values by the largest one. Being able to
estimate NG(t) allows one to produce a reliable approximation of the distance cdf:

46

Theorem 2. Assume NG(t) is known for each t with error ε and confidence 1− δ, that
is

Pr

[
N̂G(t)

NG(t)
∈ (1− ε, 1 + ε)

]
≥ 1− δ.

Let ĤG(t) = N̂G(t)/maxt N̂G(t). Then ĤG(t) is an (almost) unbiased estimator for
HG(t); moreover, for a fixed sequence t0, t1, . . . , tk−1, for every ε and all 0 ≤ i < k we
have that ĤG(tk) is known with error 2ε and confidence 1− (k + 1)δ, that is,

Pr

[∧
i∈k

ĤG(ti)

HG(ti)
∈ (1− 2ε, 1 + 2ε)

]
≥ 1− (k + 1)δ.

Proof. Note that if
1− ε ≤ N̂G(t)/NG(t) ≤ 1 + ε

holds for every t, then a fortiori

1− ε ≤ max
t
N̂G(t)/max

t
NG(t) ≤ 1 + ε

(because, although the maxima might be first attained at different values of t, the same
holds for any larger values). As a consequence,

1− 2ε ≤ 1− ε
1 + ε

≤ ĤG(t)

HG(t)
≤ 1 + ε

1− ε
≤ 1 + 2ε.

The probability 1− (k + 1)δ is immediate from the union bound, as we are considering
k + 1 events at the same time.

Note two significant limitations: first of all, making precise statements (i.e., with
confidence) about all points ofHG(t) requires a very high initial precision and confidence.
Second, the theorem holds if HyperANF has been run up to stabilisation, so that the
probabilistic guarantees of HyperLogLog hold for all t.

The first limitation makes in practice impossible to get directly sensible confidence
intervals, for instance, for the average distance or higher moments of the distribution
(we will elaborate further on this point later). Thus, only statements about a small,
finite number of points can be approached directly.

The second limitation is somewhat more serious in theory, albeit in practice it can be
circumvented making suitable assumptions about the graph under examination (which
however should be clearly stated along the data). Consider the graph G made by two

47

k-cliques joined by a unidirectional path of ` nodes (see Figure 3.2). Even neglecting
the effect of approximation, G can “fool” HyperANF (or ANF) so that the distance
cdf is completely wrong (see Figure 3.1) when using any stopping criterion that is not
stabilisation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

H
G

(t
)

t

Figure 3.1: The real cdf of the graph in Figure 3.2 (+), and the one that would be
computed using any termination condition that is not stabilisation (*); here ` = 10 and
k = 260.

Figure 3.2: Two k-cliques joined by a unidirectional path of ` nodes: terminating even
one step earlier than stabilisation completely miscalculates the distance cdf (see Fig-
ure 3.1); the effective diameter is `+ 1, but terminating even just one step earlier than
stabilisation yields an estimated effective diameter of 1.

48

Indeed, the exact neighbourhood function of G is given by:

NG(t) =


2k + ` if t = 0

(t+ 1)
(
2k + `− t

2

)
− 2k + 2k2 if 1 ≤ t ≤ `

(`+ 1)
(
2k + `

2

)
− 2k + 3k2 if ` < t.

The key observation is that the very last value is significantly larger than all previous
values, as at the last step the nodes of the right clique become reachable from the
nodes of the first clique. Thus, if iteration stops before stabilisation,9 the normalisation
factor used to compute the cdf will be smaller by ≈ k2 than the actual value, causing a
completely wrong estimation of the cdf, as shown in Figure 3.1.

Although this counterexample (which can be easily adapted to be symmetric) is
definitely pathological, it suggests that a particular care should be taken when handling
graphs that present narrow “tubes” connecting large connected components: in such
scenarios, the function NG(t) exhibits relatively long plateaux (preceded and followed
by sharp bumps) that may fool the computation of the cdf.

The effective diameter. The first application of ANF was the computation of the
effective diameter. The effective diameter of G at α is the smallest t0 such that HG(t0) ≥
α; when α is omitted, it is assumed to be α = .9.10 The interpolated effective diameter is
obtained in the same way on the linear interpolation of the points of the neighbourhood
function.

Since that the function ĤG(t) is necessarily monotone in t (independently of the
approximation error), from Theorem 2 we obtain:

Corollary 2. Assume N̂G(t) is known for each t with error ε and confidence 1− δ, and
there are points s and t such that

ĤG(s)

1− 2ε
≤ α ≤ ĤG(t)

1 + 2ε
.

Then, with probability 1− 3δ the effective diameter at α lies in [s . . t].

Unfortunately, since the effective diameter depends sensitively on the distance cdf,
again termination conditions can produce arbitrarily large errors. Getting back to the
example of Figure 3.2, with a sufficiently large k, for example k = 2`2 + 5` + 2, the

9We remark that stabilisation can occur, in principle, even before the last step because of hash
collisions in HyperLogLog counters, but this will happen with a controlled probability.

10The actual diameter of G is its effective diameter at 1, albeit the latter is defined for all graphs
whereas the former makes sense only in the strongly connected case.

49

effective diameter is `+1, which would be correctly output after `+1 iterations, whereas
even stopping one step earlier (i.e., with t = `) would produce 1 as output, yielding an
arbitrarily large error. snap, indeed, fails to produce the correct result on this graph,
because it stops iterating whenever the ratio between two successive iterates of NG is
sufficiently close to 1.

Algorithm 6 Computing the effective diameter at α of a graph G; Algorithm 5 is used
to compute N̂G.

0 foreach t = 0, 1, . . . begin

1 compute N̂G(t) (error ε, confidence 1− δ)
2 if (some termination condition holds) break
3 end;

4 M ← max N̂G(t)

5 find the largest D− such that N̂G(D−)/M ≤ α(1− 2ε)

6 find the smallest D+ such that N̂G(D+)/M ≥ α(1 + 2ε)
7 output [D− . . D+] with confidence 1− 3δ
8 end;

Algorithm 6 is used to estimate the effective diameter of a graph; albeit this approach
is reasonable (and actually it is similar to that adopted by snap, although the latter
does not provide any confidence interval), unless the neighbourhood function is known
with very high precision it is almost impossible to obtain good upper bounds, because
of the typical flatness of the distance cdf after the 90th percentile. Moreover, results
computed using a termination condition different from stabilisation should always be
taken with a grain of salt because of the discussion above.

The distance density function. The situation, from a theoretical viewpoint, is some-
how even worse when we consider the density function hG(−) associated to the cdf
HG(−). Controlling the error on hG(−) is not easy:

Lemma 3. Assume that, for a given t, ĤG(t) is an estimator of HG(t) with error ε and
confidence 1− δ. Then ĥG(t) = hG(t)± 2ε with confidence 1− 2δ.

Proof. With confidence 1− 2δ,

ĥG(t) = ĤG(t)− ĤG(t− 1)

≤ (1 + ε)HG(t)− (1− ε)HG(t− 1) ≤ hG(t) + 2ε,

50

and similarly ĥG(t) ≥ hG(t)− 2ε.

Note that the bound is very weak: since our best generic lower bound is hG(t) ≥ 1/n2,
the relative error with which we known a point hG(t) is 2εn2 (which, of course, is pretty
useless).

Moments. Evaluation of the moments of hG(−) poses further problems. Actually, by
Lemma 3 we can deduce that∑

t

thG(t)− 2εDG ≤
∑
t

tĥG(t) ≤
∑
t

thG(t) + 2εDG

with confidence 1 − 2DGδ, where DG is the diameter of G, which implies that the
expected value of ĥG(−) is an (almost) unbiased estimator of the expected value of
hG(−). Nonetheless, the bounds we obtain are horrible (and actually unusable).

The situation for the variance is even worse, as we have to prove that we can use
Var[ĥG] as an estimator to Var[hG]. Note that for a fixed graph G, HG is a precise
distribution and Var[hG] is an actual number. Conversely, ĥG (and hence Var[ĥG]) is a
random variable11. By Theorem 2, we know that ĤG is an (almost) unbiased pointwise
estimator for HG, and that we can control its concentration by suitably choosing the
number m of counters. We are going to derive bounds on the approximation of Var[hG]
using the values of ĤG(t) up to D̂G (i.e., the iteration at which HyperANF stabilises):

Lemma 4. Assume that, for every 0 ≤ t ≤ D̂G, ĤG(t) is an estimator of HG(t) with
error ε and confidence 1− δ; then, Var[ĥG] is an estimator of Var[hG] with error

ε ≤ 8ε
D3
G

Var[hG]
+ 4ε2 D4

G

Var[hG]

and confidence 1− (DG + 1)δ.

Proof. Assuming error ε on the values of Ĥ in [0 . . DG] implies confidence 1−(DG+1)δ.
Since D̂G ≤ DG < ∞, and by definition ĥG(t) = 0 for t > D̂G we have (t ranges in

11More precisely, ĥG is a sequence of (stochastically dependent) random variables ĥG(0), ĥG(1), . . .

51

[0 . . DG]):

Var[ĥG] =
∑
t

t2ĥG(t)−
(∑

t

tĥG(t)
)2

≤
∑
t

t2
(
hG(t) + 2ε

)
−
(∑

t

thG(t)− 2ε
∑
t

t
)2

≤ Var[hG] + 2ε
∑
t

t2 + 4εE[hG]
∑
t

t

≤ Var[hG] + 4εD2
G

(
DG + E[hG]

)
≤ Var[hG] + 8εD3

G,

where E[hG] is the average path length. Similarly

Var[ĥG] ≥ Var[hG]− 8εD3
G − 4ε2D4

G.

Hence the statement.

The error and confidence we obtain are again unusable, but the lemma proves that
with enough precision and confidence on ĤG(−) we can get precision and confidence on
Var[hG].

The results in this section suggests that if computations involve the moments the
only realistic possibility is to resort to parametric statistics to study the behaviour of
the value of interest on a large number of samples. That is, it is better to compute a
large number of relatively low-precision approximate neighbourhood functions than a
small number of high-precision ones, as from the former the latter are easily computable
by averaging, whereas it is impossible to obtain a large number of samples of derived
values from the latter. As we will see, this approach works surprisingly well.

3.5 SPID

The main purpose of computing aggregated data such as the distance distribution is
that we can try to define indices that express some structural property of the graph we
study, an obvious example being the average distance, or the effective diameter.

One of the main goal of our recent research has been finding a simple property that
clearly distinguishes between social networks deriving from human interaction (what is
usually called a social network in the strong or proper sense: DBLP, Facebook, etc.) and
web-based graphs, which share several properties of social networks, and as the latter
arise from human activity, but present a visibly different structure.

52

Figure 3.3: Cumulative density function of 100 values of the spid computed using Hy-
perANF on cnr-2000. For comparison, we also plot random samples of size 100 and
10 000 drawn from a normal distribution.

We propose for the first time to use the index of dispersion σ2/µ (a.k.a. variance-
to-mean ratio) of the distance distribution as a measure of the “webbiness” of a social
network. We call such an index the spid (shortest-paths index of dispersion)12 of G. In
particular, networks with a spid larger than one are to be considered “web-like”, whereas
networks with a spid smaller than one are to be considered “properly social”. We recall
that a distribution is called under- or over-dispersed depending on whether its index of
dispersion is smaller or larger than 1, so a network is properly social or not depending
on whether its distance distribution is under- or over-dispersed.

The intuition behind the spid is that “properly social” networks strongly favour short
connections, whereas in the web long connection are not uncommon: this intuition will
be confirmed in Section 3.6.

As discussed in the previous section, in theory estimating the spid is an impossible
task, due to the inherent difficulty of evaluating the moments of hG(−). In practice,
however, the estimate of the spid computed directly on runs of HyperANF are quite
precise. From the actual neighbourhood function computed for cnr-2000 we deduce
that the graph spid is 2.49. We then ran 100 iteration of HyperANF with a relative
standard deviation of 9.37%, computing for each of them an estimation of the spid;
these values approximately follow a normal distribution of mean 2.489 and standard
deviation 0.9 (see Figure 3.3). We obtained analogous concentration results for the
average distance. In some pathological cases, the distribution is not Gaussian, albeit

12If we were to follow strictly the terminology used here, this would be the index of dispersion of the
distance distribution, but we guessed that the acronym IDDD would not have been as as successful.

53

it always turns out to be unimodal (in some cases, discarding few outliers), so we can
apply the Vysochanskĭı-Petunin inequality. We will report some relevant observations
on the spid of a number of graphs after describing our experiments.

3.6 Experiments

We ran our experiments on the datasets described in Table 3.2:

• the web graphs are almost all available at http://law.dsi.unimi.it/, except for
the altavista dataset that was provided by Yahoo! within the Webscope program
(AltaVista webpage connectivity dataset, version 1.0, http://research.yahoo.
com/Academic_Relations);13

• for the social networks: hollywood (http://www.imdb.com/) is a co-actorship
graph where vertices represent actors; dblp (http://www.informatik.uni-trier.
de/~ley/db/) is a scientific collaboration network where each vertex represents a
scientist and two vertices are connected if they have worked together on an ar-
ticle; in ljournal (http://www.livejournal.com/) nodes are users and there
is an arc from x to y if x registered y among his friends (it is not necessary
to ask y permission, so the graph is directed); amazon (http://www.archive.
org/details/amazon_similarity_isbn/) describes similarity among books as
reported by the Amazon store; enron is a partially anonymised corpus of e-mail
messages exchanged by some Enron employees (nodes represent people and there
is an arc from x to y whenever y was the recipient of a message sent by x); finally
in flickr (http://www.flickr.com/14) vertices correspond to Flickr users and
there is an edge connecting x and y whenever either vertex is recorded as a contact
of the other one.

13It should be remarked by this graph, albeit widely used in the literature, is not a good dataset.
The dangling nodes are 53.74%—an impossibly high value [71], and an almost sure indication that all
nodes in the frontier of the crawler (and not only visited nodes) were added to the graph, and the giant
component is less than 4% of the whole graph.

14We thank Yahoo! for the experimental results on the Flickr graph.

54

Graph snap HyperANF

amazon 9.5 m 5 s
indochina-2004 4.62 h 1.83 m
altavista - 1.2 h

HADI (90 machines) HyperANF
Kronecker
(177 K nodes, 2 B
arcs)

30 m 2.25 m

Table 3.1: A comparison of the speed of snap/HADI vs. HyperANF. The tests on snap

were performed on our hardware. Both algorithms were stopped at a relative increment
of 0.001. The timings of HADI on the M45 cluster are the best reported in [41], and both
algorithms ran three iterations. We remark that a run of HyperANF on the Kronecker
graph takes less than fifteen minutes on a laptop.

55

N
a
m
e

T
y
p
e

N
o
d
e
s

A
rc
s

sp
id

(±
σ

)
a
d

(±
σ

)
ie
d

(±
σ

)
e
d

(2
)

a
m
a
z
o
n

so
ci

a
l

(u
)

73
5

32
3

5
15

8
38

8
0
.7

6
(±

0.
06

0)
1
2.

05
(±

0.
20

6)
15
.5

0
(±

0.
4
3
3
)

[1
4
..

1
8
]

d
b
l
p

so
ci

a
l

(u
)

32
6

18
6

1
61

5
40

0
0
.3

6
(±

0.
03

4)
7
.3

4
(±

0.
11

4)
8
.9

6
(±

0.
2
1
5
)

[8
..

1
0
]

e
n
r
o
n

so
ci

a
l

(d
)

69
24

4
27

6
14

3
0
.2

1
(±

0.
02

0)
4
.2

4
(±

0.
06

5)
4
.9

4
(±

0.
1
0
3
)

[4
..

6
]

l
j
o
u
r
n
a
l

so
ci

a
l

(d
)

5
36

3
26

0
79

02
3

14
2

0
.2

1
(±

0.
02

3)
5
.9

9
(±

0.
07

8)
6
.9

2
(±

0.
1
4
3
)

[6
..

8
]

f
l
i
c
k
r

so
ci

a
l

(u
)

52
6

60
6

47
09

7
45

4
0
.1

4
(±

0.
00

9)
3
.5

0
(±

0.
04

7)
3
.9

2
(±

0.
0
4
9
)

[3
..

5
]

h
o
l
l
y
w
o
o
d

so
ci

a
l

(u
)

1
13

9
90

5
11

3
89

1
32

7
0
.1

4
(±

0.
01

2)
3
.8

7
(±

0.
04

5)
4
.4

2
(±

0.
1
0
9
)

[4
..

5
]

i
n
d
o
c
h
i
n
a
-
2
0
0
4
-
h
o
s
t
s

h
o
st

(d
)

19
12

3
23

3
38

0
0
.3

5
(±

0.
02

1)
4
.2

6
(±

0.
07

9)
5
.4

4
(±

0.
1
6
4
)

[5
..

7
]

u
k
-
2
0
0
5
-
h
o
s
t
s

h
o
st

(d
)

58
7

20
5

12
82

5
46

5
0
.3

0
(±

0.
01

8)
5
.9

3
(±

0.
08

1)
7
.0

6
(±

0.
1
5
1
)

[6
..

8
]

c
n
r
-
2
0
0
0

w
eb

(d
)

32
5

55
7

3
21

6
15

2
2
.5

0
(±

0.
08

6)
1
7.

35
(±

0.
31

3)
25
.4

5
(±

0.
3
5
7
)

[2
3
..

2
9
]

e
u
-
2
0
0
5

w
eb

(d
)

86
2

66
4

19
23

5
14

0
1
.2

5
(±

0.
20

9)
1
0.

17
(±

0.
36

3)
14
.3

1
(±

0.
9
8
8
)

[1
3
..

1
6
]

i
n
-
2
0
0
4

w
eb

(d
)

1
38

2
90

8
16

91
7

05
3

1
.3

0
(±

0.
17

3)
1
5.

40
(±

0.
37

4)
20
.7

4
(±

0.
7
9
2
)

[2
0
..

2
4
]

i
n
d
o
c
h
i
n
a
-
2
0
0
4

w
eb

(d
)

7
41

4
86

6
19

4
10

9
31

1
1
.6

4
(±

0.
13

4)
1
5.

63
(±

0.
33

8)
21
.6

8
(±

0.
6
5
8
)

[2
0
..

2
6
]

u
k
@
1
0
E
6

w
eb

(d
)

10
0

00
0

3
05

0
61

5
1
.6

4
(±

0.
11

1)
5
.9

7
(±

0.
17

2)
10
.3

6
(±

0.
2
5
1
)

[8
..

1
2
]

u
k
@
1
0
E
7

w
eb

(d
)

1
00

0
00

0
41

24
7

15
9

1
.7

6
(±

0.
04

3)
8
.9

6
(±

0.
17

2)
14
.3

1
(±

0.
3
4
1
)

[1
2
..

1
7
]

i
t
-
2
0
0
4

w
eb

(d
)

41
29

1
59

4
1

15
0

72
5

43
6

2
.1

4
(±

0.
14

9)
1
5.

02
(±

0.
30

0)
19
.6

5
(±

0.
6
9
8
)

[1
8
..

2
2
]

u
k
-
2
0
0
7
-
0
5

w
eb

(d
)

10
5

89
6

55
5

3
73

8
73

3
64

8
1
.1

0
(±

0.
23

4)
1
5.

39
(±

0.
41

8)
19
.9

3
(±

1.
0
3
0
)

[1
8
..

2
3
]

a
l
t
a
v
i
s
t
a

w
eb

(d
)

1
41

3
51

1
39

0
6

63
6

60
0

77
9

4
.2

4
(±

0.
76

4)
1
6.

69
(±

0.
77

9)
23
.0

4
(±

2.
5
1
7
)

[1
9
..

3
1
]

T
ab

le
3.

2:
O

u
r

m
ai

n
d
at

a
ta

b
le

.
“T

y
p

e”
d
es

cr
ib

es
w

h
et

h
er

th
e

gi
ve

n
gr

ap
h

is
a

w
eb

-g
ra

p
h
,

a
p
ro

p
er

so
ci

al
n
et

w
or

k
,

or
th

e
h
os

t
q
u
ot

ie
n
t

of
a

w
eb

gr
ap

h
(u

=
u
n
d
ir

ec
te

d
,

d
=

d
ir

ec
te

d
).

T
h
e

gr
ap

h
s
u
k
@
1
0
E
6

an
d

u
k
@
1
0
E
7

ar
e

ob
ta

in
ed

b
y

v
is

it
in

g
in

a
b
re

ad
th

-fi
rs

t
fa

sh
io

n
u
k
-
2
0
0
7
-
0
5

st
ar

ti
n
g

fr
om

a
ra

n
d
om

n
o
d
e.

T
h
ey

si
m

u
la

te
sm

al
le

r
cr

aw
ls

of
a

la
rg

er
n
et

w
or

k
.

W
e

sh
ow

sp
id

,
av

er
ag

e
d
is

ta
n
ce

an
d

in
te

rp
ol

at
ed

eff
ec

ti
ve

d
ia

m
et

er
a

po
st

er
io

ri
w

it
h

th
ei

r
em

p
ir

ic
al

st
an

d
ar

d
d
ev

ia
ti

on
,

an
d

in
te

rv
al

s
fo

r
th

e
eff

ec
ti

ve
d
ia

m
et

er
w

it
h

85
%

co
n
fi
d
en

ce
fo

r
a

co
m

p
ar

is
on

.

56

All experiments are performed on a Linux server equipped with Intel Xeon X5660
CPUs (2.80 GHz, 12 MB cache size) for overall 24 cores and 128 GB of RAM; the server
cost about 8 900 EUR in 2010.

A brief comparison with snap and HADI timings is shown in Table 3.1. Essentially,
on our hardware HyperANF is two orders of magnitudes faster than snap. Our run on
the Kronecker graph is one order of magnitude faster than HADI’s (or three orders of
magnitude faster, if you take into consideration the number of machines involved), but
this comparison is unfair, as in principle HADI can scale to arbitrarily large graphs,
whereas we are limited by the amount of memory available. Nonetheless, the speedup is
clearly a breakthrough in the analysis of large graphs. It would be interesting to compare
our timings for the altavista dataset with HADI’s, but none have been published.

It is this speed that makes it possible, for the first time, to compute data associated
with the distance distribution with high precision and for a large number of graphs.
We have 100 runs with relative standard deviation of 9.37% for all graphs, except for
those on the altavista dataset (13.25%). All graphs are run to stabilisation. Our
computations are necessarily much longer (usually, an order of magnitude longer in
iterations) than those used to compute the effective diameter or similar measures. This
is due to the necessity of computing with high precision second-order statistics that are
used to compute the spid.

Previous publications used few graphs, mainly because of the large computational
effort that was necessary, and no data was available about the number of runs. Moreover,
we give precise confidence intervals based on parametric statistics for data depending
on the second moment, such as the spid—something that has never done before. We
gather here our findings.

A posteriori parameters are highly concentrated. According to our experiments,
computing the effective diameter, average distance and spid on a large number of low-
precision runs generates highly concentrated distributions (see the empirical standard
deviation in Table 3.2). Thus, we suggest this approach for computing such values,
provided that termination is by stabilisation.

Effective diameter and average distance are essentially linearly correlated.
Figure 3.4 shows a scatter plot of the two values, and the line 2x/3 + 1. The correlation
between the two values has always been folklore in the study of social networks, but
we can confirm that on both social and web networks the connection can be exactly
expressed in linear terms (it would be of course interesting to prove such a correlation
formally, under suitable restrictions on the structure of the graph). This fact sug-
gests that the average distance (which is more principled from a statistic viewpoint,
and parameter-free) should be used as the reference parameter to express the closeness

57

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

av
er

ag
e

sh
o

rt
es

t
p

at
h

interpolated effective diameter

Figure 3.4: A plot showing the strong linear correlation between the average distance
and the effective diameter.

between nodes. Moreover, experimentally the standard deviation of the effective diam-
eter in a posteriori computations is usually significantly larger than that of the average
distance.

Incidentally, the average distance of the altavista dataset is 16.5—slightly more
than what reported in [41] (possibly because of termination conditions artifacts).

It is difficult to give a priori confidence intervals for the effective diameter
with a small number of runs. Unless a large number of runs is available, so that
the precision of the approximation of the neighbourhood function can be significantly
lowered, it is impossible to provide interesting upper bounds for the effective diameter.

The spid can tell social networks from web graphs. As shown in Table 3.2, even
taking the standard deviation into account spids are pretty much below 1 for social
networks and above 1 for web graphs; host graphs (not surprisingly) behave like social
networks. Note that this works both for directed and undirected graphs. Figure 3.5
shows the spid values obtained for our datasets plotted against the graph size, and also
witnesses that there is no correlation (a similar graph, not shown here, testifies that spid
is also independent from density). Figure 3.6 shows that there is some slight correlation
between the spid and the average distance: nonetheless, there is no way to tell networks
from our dataset apart using the latter value, whereas the under- or over-dispersion of
the distance distribution, as defined by the spid, never makes a mistake. Of course, we
expect to enrich this graph in time with more datasets: we are particularly interested
in gathering very large social networks to test the spid at large sizes.

58

We remark that, as a sanity check, we have also computed on several web-graph
datasets the spid of the giant component, which turned out to be very similar to the
spid of the whole graph. We see this as a clear sign that the spid is largely independent
of the artifacts of the crawling process.

Direction should not be destroyed when analysing a graph. We confirm that
symmetrising graphs destroys the combinatorial structure of the network: the average
distance drops to very low values in all cases, as well as the spid. This suggests that
there is important structural information that is being ignored. We also note that since
all web snapshot we have at hand are gathered by some kind of breadth-first visit,
they represent balls of small diameter centred at the seed: symmetrising the graph we
cannot expect to get an average distance that is larger than twice the radius of the ball.
All in all, the only advantage of symmetrising a graph is a significant reduction in the
number of iterations that are needed to complete a computation of the neighbourhood
function.15

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

sp
id

size

Figure 3.5: A plot showing the spid values (vertical) for our datasets compared with
their size (i.e., number of nodes, horizontal): red squares correspond to social networks,
blue diamonds to web graphs and black circles to host graphs.

To give a more direct idea of the level of precision of our diameter estimation, we
computed the actual diameter at α for the cnr-2000 dataset, and plotted it against the
interval estimation obtained by HyperANF

15We remark that the “diameter 7 ∼ 8” claim in [41] about the altavista dataset refers to the
effective diameter for the symmetrised version of the graph.

59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16 18

sp
id

average distance

Figure 3.6: A plot showing the spid against the average distance using the same con-
ventions of Figure 3.5.

3.7 Facebook graph

At the 20th World–Wide Web Conference, in Hyerabad, during the presentation of
HyperANF one of the main open questions was “What is the spid of Facebook?”. Lars
Backstrom happened to listen to the talk, and made himself available to run our tools
at Facebook. This was of course an extremely intriguing possibility: beside testing our
“spid hypothesis”, computing the distance distribution of the Facebook graph would
have been the largest Milgram-like [54] experiment ever been performed, several orders
of magnitued larger than previous attemps (during our experiments Facebook has ≈750
million active users).

This section reports our findings in studying the distance distribution of the largest
electronic social network ever created. That world is smaller than we thought: the
current Facebook graph has an average distance of 4.79 hops. Moreover, the spid of the
graph is just 0.21, corroborating our conjecture that proper social networks have a spid
well below one.

The obvious precursor of our experiment is Milgram’s celebrated “small world” ex-
periment [54]. There is of course a fundamental difference in the two experiments:
Milgram was measuring the average length of a greedy routing path on a social network,
which is just an upper bound on the average distance (as the people involved in the
experiment were not sending necessarily the postcard to an acquaintance on a shortest
path to the destination).

60

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e
ff

e
c
ti

v
e
 d

ia
m

e
te

r
a
t

α

α

Figure 3.7: Effective diameters at α for the cnr-2000 dataset; red bullets show the
real effective diameter, whereas green crosses show the upper and lower extreme of the
confidence interval obtained running 100 HyperANF with m = 128.

The graph we analysed is the graph of active (i.e., logged in within the last 28 days)
Facebook users at the start of each year from 2007 onwards. The “current” graph is
the graph of active users at the time when the experiments were performed (circa April
2011). The graph does not include commercial accounts that people may “like”, such
as famous people’s accounts, and there is a limit of 5000 friends on standard accounts.

We decided to extend our experiments in two direction: regional and temporal.
We thus analyse the entire Facebook graph, the US subgraph, the Swedish subgraph,
and the Italian subgraph. We also analysed a combination of the Swedish and Italian
graph to check whether combining regional but far networks would significantly change
the average distance. For each graph we compute the distance distribution from 2007
up to today by running 10 times HyperANF. We can thus claim that the values of the
neighbourhood function we compute are within 8.4% with 90% probability for all graphs
except for the entire Facebook graph, where they are within 11.9%.

We note that both on the Italian and Swedish graph we have a significantly lower
average distance, showing that the average distance is actually dependent on the size
of the graph. During the fastest growing years of Facebook our graphs show a quick
decrease in the average distance, which however appears to be stabilizing. This is
not surprising, as “shrinking diameter” phenomena are always observed when a large
network is “uncovered” (in the sense that we look at larger and larger induced subgraphs
of the original network).

61

0 2 4 6 8

0.
0

0.
4

0.
8

2007

distance

%
 p

ai
rs

*
*
*
*
*

it
se
itse
us
fb

● ● ● ●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

● ● ●

●

●

●
● ● ● ●

● ● ●

●

●

●
● ● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

2008

distance
%

 p
ai

rs

*
*
*
*
*

it
se
itse
us
fb

● ● ● ●

●

●

●

●

●
●

● ● ●

●

●

●
● ● ● ●

● ● ●
●

●

●

●
● ● ●

● ● ●
●

●

●

● ● ● ●

● ● ● ●

●

●

●
● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

2009

distance

%
 p

ai
rs

*
*
*
*
*

it
se
itse
us
fb

● ● ●
●

●

●

● ● ● ●

● ● ●

●

●

●
● ● ● ●

● ● ●
●

●

●

●
● ● ●

● ● ●
●

●

●

● ● ● ●

● ● ● ●

●

●

●
● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

2010

distance

%
 p

ai
rs

*
*
*
*
*

it
se
itse
us
fb

● ● ●

●

●

● ● ● ● ●

● ● ●

●

●

●
● ● ● ●

● ● ●
●

●

●

● ● ● ●

● ● ● ●

●

●
● ● ● ●

● ● ● ●

●

●

● ● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

2011

distance

%
 p

ai
rs

*
*
*
*
*

it
se
itse
us
fb

● ● ●

●

●

● ● ● ● ●

● ● ●

●

●

● ● ● ● ●

● ● ●

●

●

● ● ● ● ●

● ● ●
●

●

●
● ● ● ●

● ● ● ●

●

●

● ● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

current

distance

%
 p

ai
rs

*
*
*
*
*

it
se
itse
us
fb

● ● ●

●

●

● ● ● ● ●

● ● ●

●

●

● ● ● ● ●

● ● ●

●

●

●
● ● ● ●

● ● ●
●

●

●
● ● ● ●

● ● ● ●

●

●

● ● ● ●

Figure 3.8: Comparison between regional graphs from 2007 to current.

62

it se itse us fb
2007 10.43 (± 0.81) 5.89 (± 0.32) 9.20 (± 0.42) 4.31 (± 0.06) 4.44 (± 0.10)
2008 6.30 (± 0.15) 4.34 (± 0.03) 4.79 (± 0.06) 4.74 (± 0.07) 5.28 (± 0.08)
2009 4.65 (± 0.09) 4.19 (± 0.02) 4.93 (± 0.09) 4.73 (± 0.06) 5.27 (± 0.07)
2010 4.10 (± 0.04) 4.12 (± 0.04) 4.48 (± 0.10) 4.64 (± 0.05) 5.05 (± 0.07)
2011 3.89 (± 0.04) 3.94 (± 0.06) 4.14 (± 0.06) 4.44 (± 0.09) 4.81 (± 0.09)

current 3.90 (± 0.04) 3.89 (± 0.11) 4.16 (± 0.07) 4.38 (± 0.04) 4.79 (± 0.08)

Table 3.3: The average distance (± sample standard deviation)

it se itse us fb
2007 3.07 (± 0.28) 0.71 (± 0.13) 2.05 (± 0.36) 0.12 (± 0.01) 0.14 (± 0.01)
2008 0.53 (± 0.05) 0.14 (± 0.01) 0.27 (± 0.02) 0.17 (± 0.01) 0.16 (± 0.02)
2009 0.14 (± 0.03) 0.14 (± 0.01) 0.17 (± 0.02) 0.13 (± 0.01) 0.13 (± 0.01)
2010 0.09 (± 0.01) 0.15 (± 0.02) 0.15 (± 0.02) 0.11 (± 0.01) 0.10 (± 0.00)
2011 0.09 (± 0.01) 0.12 (± 0.00) 0.13 (± 0.01) 0.10 (± 0.01) 0.09 (± 0.01)

current 0.11 (± 0.01) 0.14 (± 0.04) 0.14 (± 0.01) 0.10 (± 0.01) 0.09 (± 0.01)

Table 3.4: The index of dispersion of distances, a.k.a. spid (± sample standard deviation)

3.8 Conclusions

HyperANF is a breakthrough improvement over the original ANF techniques, mainly be-
cause of the usage of the more powerful HyperLogLog counters combined with their fast
broadword combination and systolic computation. HyperANF can run to stabilisation
very large graphs, computing data with statistical guarantees.

The most interesting features of such counters is that the precision depends exclu-
sively on the number of registers; for instance, if a relative standard deviation of 6.50%
is acceptable, one can stick with 256 registers per counter. At that point, the only
dependence on the graph size is the size of each register, which however is dlog log ne,
so it is unlikely we will ever need more than 6 bits per register. In practice, this feature
makes HyperANF scale linearly with the number of nodes.

We consider, however, the introduction of the spid of a graph the main conceptual
contribution of this chapter. HyperLogLog is instrumental in making the computation
of the spid possible, as the latter requires a number of iterations that is an order of
magnitude larger than those required for an estimate of the effective diameter.

63

Chapter 4

Robustness of Social Networks

Given a social network, which of its nodes have a stronger impact in determining its
structure? More formally: which node-removal order has the greatest impact on the
network structure? In this chapter we will take advantage of the results presented in
previous chapters in order to study what we call the robustness of a graph. Mainly,
we exploit HyperANF to approximate accurately the number of reachable pairs and
the distribution of distances in a graph. But also the clustering technique presented
in Chapter 2 turns out to be the best tool we are aware of to locate nodes that are
important from a structural viewpoint.

As always, we also look for differences and similarities between social networks and
web graphs. Our experiments show for the first time that also under this respect there
is a clear-cut structural difference between social networks and web graphs. Probably
the most important conclusion is that “scale-free” models, which are currently proposed
for both web graphs and social networks, do not to capture this important difference:
for this reason, they can only make sense as long as they are adopted as baselines.

4.1 Introduction

One of the most important notions that researchers have been trying to capture is “node
centrality”: ideally, every node (often representing an individual) has some degree of
influence or importance within the social domain under consideration, and one expects
such importance to be reflected in the structure of the social network; centrality is a
quantitative measure that aims at revealing the importance of a node.

Among the types of centrality that have been considered in the literature (see [18]
for a good survey), many have to do with shortest paths between nodes; for example,

64

the betweenness centrality of a node v is the sum, over all pairs of nodes x and y,
of the fraction of shortest paths from x to y passing through v. The role played by
shortest paths is justified by one of the most well known features of complex networks,
the so-called small-world phenomenon.

Based on the above observation that the small-world property is by far the most
crucial of all the features that social networks exhibit, it is quite natural to consider
centrality measures that are based on node distance, like betweenness. On the other
hand, albeit interesting and profound, such measures are often computationally too
expensive to be actually computed on real-world graphs; for example, the best known
algorithm to compute betweenness centrality [21] takes time O(nm) and requires space
for O(n + m) integers (where n is the number of nodes and m is the number of arcs):
both bounds are infeasible for large networks, where typically n ≈ 109 and m ≈ 1011.
For this reason, in most cases other strictly local measures of centrality are usually
preferred (e.g., degree centrality).

One of the ideas that have emerged in the literature is that node centrality can be
evaluated based on how much the removal of the node “disrupts” the graph structure [1].
This idea provides also a notion of robustness of the network: if removing few nodes
has no noticeable impact, then the network structure is clearly robust in a very strong
sense. On the other hand, a node-removal strategy that quickly affects the distribution
of distances probably reflects an importance order of the nodes.

Previous literature has used mainly the diameter or some analogous measure to
establish whether the network structure changed. However, as we have seen in Chapter 3,
we are now able to produce reliable estimates of the neighbourhood function of very large
graphs; an immediate application of these approximate algorithms is the computation
of the number of reachable pairs of the graph (the number of pairs 〈x, y〉 such there is
a directed path from x to y) and its distance distribution. From this data, a number
of existing measures can be computed quickly and accurately, and new one can be
conceived.

We thus consider a certain ordering of the nodes of a graph (that is supposed to
represent their “importance” or “centrality”). We remove nodes (and of course their
incident arcs) following this order, until a certain percentage θ of the arcs have been
deleted1; finally, we compare the number of reachable pairs and distance distribution
of the new graph with the original one. The chosen ordering is considered to be a
reliable measure of centrality if the measured difference increases rapidly with θ (i.e., it

1Observe that we delete nodes but count the percentage of arcs removed, and not of nodes: this
choice is justified by the fact that otherwise node orderings that put large-degree nodes first would
certainly be considered (unfairly) more disruptive.

65

is sufficient to delete a small fraction of important nodes to change the structure of the
graph).

In this work, we applied the described approach to a number of complex networks,
considering different orderings, and obtained the following results:

• In all complex networks we considered, the removal of a limited fraction of ran-
domly chosen nodes does not change the distance distribution significantly, con-
firming previous results.

• We test strategies based on PageRank and on clustering (see Section 4.3.1 for more
information about this), and show that they (in particular, the latter) disrupt
quickly the structure of a web graph.

• Maybe surprisingly, none of the above strategies seem to have an impact when
applied to social networks other than web graphs. This is yet another example
of a profound structural difference between web graphs and social networks,2 on
the same line as those discussed in [13] and [23]. This observation, in particular,
suggests that social networks tend to be much more robust and cohesive than web
graphs, at least as far as distances are concerned, and that “scale-free” models,
which are currently proposed for both type of networks, do not to capture this
important difference.

4.2 Related work

The idea of grasping information about the structure of a network by repeatedly remov-
ing nodes out of it is not new: Albert, Jeong and Barabási [1] study experimentally the
variation of the diameter on two different models of undirected random graphs when
nodes are removed either randomly or in “connectedness order” and report different
behaviours. They also perform tests on some small real data set, and we will compare
their results with ours in Section 4.5.

More recently, node-centrality measures that look at how some graph invariant
changes when some vertices or edges are deleted (sometimes called “vitality” [22] or
“induced” measures) have been studied for example in [19] (identifying nodes that max-
imally disconnect the network) or in [20] (related to the uncertainty of data).

2We remark that several proposals have been made to find features that highlight such structural
differences in a computationwise-feasible way (e.g., assortative mixing [58]), but all instances we are
aware of have been questioned by the subsequent literature, so no clear-cut results are known as yet.

66

Donato, Leonard, Millozzi and Tsaparas [27] study how the size of the giant com-
ponent changes when nodes of high indegree or outdegree are removed from the graph.
While this is an interesting measure, it does not provide information about what hap-
pens outside the component. They develop a library for semi-external visits that make
it possible to compute in an exact way the strongly connected components on large
graphs.

Finally, Fogaras [31] considers how the harmonic diameter 3 (the harmonic mean of
the distances) changes as nodes are deleted from a small (less than one million node)
snapshot of the .ie domain, reporting a large increase (100%) when as little as 1000
nodes with high PageRank are removed. The harmonic diameter is estimated by a small
number of visits, however, which gives no statistical guarantee on the accuracy of the
results.

Our study is very different. First of all, we use graphs that are two orders of magni-
tude larger than those considered in [1] or [31]; moreover, we study the impact of node
removal on the whole spectrum of distances. Second, we apply removal procedures to
large social networks (previous literature used only web or Internet graphs), and the
striking difference in behaviour shows that “scale-free” models fail to capture essential
differences between these kind of networks and web graphs. Third, we document in a
reproducible way all our experiments, which have provable statistical accuracy.

4.3 Removal strategies and their analysis

In the previous chapter, we discussed how we can effectively approximate the distance
distribution of a given graph G; we shall use such a distribution as the graph structural
property of interest.

Consider now a given total order ≺ on the nodes of G; we think of ≺ as a removal
strategy in the following sense: when we want to remove θm arcs, we start removing
the ≺-largest node (and its incident arcs), go on removing the second-≺-largest node
etc. and stop as soon as ≥ θm arcs have been removed. The resulting graph will be
denoted by G(≺, θ). Of course, G(≺, 0) = G whereas G(≺, 1) is the empty graph. We
are interested in applying some measure of divergence4 between the distribution HG and
the distribution HG(≺,θ). By looking at the divergence when θ varies, we can judge the
ability of ≺ to identify nodes that will disrupt the network.

3Actually, the notion had been introduced before by Marchiori and Latora and named connectivity
length [51], but we find the name “harmonic diameter” much more insightful.

4We purposely use the word “divergence” between distributions, instead of “distance”, to avoid
confusion with the notion of distance in a graph.

67

4.3.1 Some removal strategies

We considered several different strategies for removing nodes from a graph. Some of
them embody actually significant knowledge about the structure of the graph, whereas
others are very simple (or even independent of the graph) and will be used as baseline.
Some of them have been used in the previous literature, and will be useful to compare
our results.

As a first observation, some strategies requires a symmetric graph (a.k.a., undi-
rected). In this case, we symmetrise the graph by adding the missing arcs5.

The second obvious observation is that some strategies might depend on available
metadata (e.g., URLs for web graphs) and might not make sense for all graphs.

Random. No strategy: we pick random nodes and remove them from the graph. It is
important to test against this “nonstrategy” as we can show that the phenomena
we observe are due to the peculiar choice of nodes involved, and not to some
generic property of the graph.

Largest-degree first. We remove nodes in decreasing (out)degree order. This strategy
is an obvious baseline, as degree centrality is the first shot at centrality in a network.

Near-Root. In web graphs, we can assume that nodes that are roots of web sites
and their (quasi-)immediate successors (e.g., pages linked by the root) are most
important in establishing the distance distribution, as people tend to link higher
levels of web sites. This strategy removes essentially first root nodes, then the
nodes that are children of a root on, and so on.

PageRank. PageRank [59] is an well-known algorithm that assigns ranks to nodes
using a Markov chain based on the structure of the graph. It has been designed
as an improvement over degree centrality, because nodes with high degree which
however are connected to nodes of low rank will have a rather low rank, too (the
definition is indeed recursive). There is a vast body of literature on the subject:
see [14, 47] and the references therein.

Label propagation. We try the clustering technique presented in Chapter 2 always
with γ fixed to zero (see Algorithm 3). Our removal strategy picks first, for each
cluster in decreasing size order, the node with the highest number of neighbours in

5It is mostly a matter of taste whether to use directed symmetric graphs or simple undirected
graphs. In our case, since we have to cope with both directed and undirected graph, we prefer to speak
of directed graphs that are symmetric, that is, for every arc x→ y there is a symmetric arc y → x.

68

other clusters: intuitively, it is a representative of a set of tightly connected nodes
(the cluster) which however has a very significant connection with the outside world
(the other clusters) and thus we expect that its removal should seriously disrupt
the distance distribution. Once we have removed all such nodes, we proceed again,
cluster by cluster, using the same criterion (thus picking the second node of each
cluster that has more connection towards other clusters), and so on.

4.3.2 Measures of divergence

Once we changed the structure of a graph by deleting some of its nodes (and arcs),
there are several ways to measure whether the structure of the graph has significantly
changed. The first, basic raw datum we consider is the fraction of pairs of nodes that
are still reachable (w.r.t. the number of pairs initially reachable). Then, to estimate
the change of the distance distribution we considered the following possibilities (here P
denotes the original distance distribution, and Q the distribution after node removal):

Relative average-distance change. This is somehow the simplest and most natural
measure: how much has the average distance changed? We use the measure

δ(P,Q) =
µQ
µP
− 1

where µ denotes the average; in other words, we measure how much the average
value changed. This measure is non-symmetric, but it is of course easy to obtain
δ(P,Q) from δ(Q,P).

Relative harmonic-diameter change. This measure is analogous to the relative av-
erage distance change, but the average on distances is harmonic and computed on
all pairs, that is:

n(n− 1)∑
x 6=y

1
d(x,y)

= n(n− 1)
/∑
t>0

1

t
(NG(t)−NG(t− 1)),

where n is the number of nodes of the graph. This measure, used in [31], combines
reachability information, as unreachable pairs contribute zero to the sum. It is
easily computable from the neighbourhood function, as shown above.

Kullback-Leibler divergence. This is a measure of information gain, in the sense
that it gives the number of additional bits that are necessary to code samples
drawn from P when using an optimal code for Q. Also this measure is non-
symmetric, but there is no way obtain the divergence from P to Q given that from
Q to P .

69

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 10 100

p
ro

b
a
b
ili

ty

length

0.00
0.01

0.05
0.10

0.15
0.20

0.30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3

{/Symbol q}

Kullback-Leibler
{/Symbol d}-average distance

L1
L2

Figure 4.1: Testing various divergence measures on a web graph (a snapshot of the .it

domain of 2004) and the near-root removal strategy. You can see how the distance
distribution changes for different values of θ and the behaviour of divergence measures.
We omitted to show the harmonic-diameter change to make the plot easier to read.

` norms. A further alternative is given by viewing distance distributions as functions
N→ [0 . . 1] and measure their distance using some `-norm, most notably `1 or `2.
Such distances are of course symmetric.

We tested, with various graphs and removal strategies, how the choice of distribution
divergence influences the interpretation of the results obtained. In Figure 4.1 we show
this for a single web graph and a single strategy, but the outcomes agree on all the graphs
and strategies tested: the interpretation is that all divergences agree, and for this reason
we shall use the (simple) measure δ applied to the average distance in the experimental
section. The advantage of δ over the other measures is that it is very easy to interpret;
for example, if δ has value, say, 0.3 it means that node removal has increased the average
distance by 30%. We also discuss δ applied to the harmonic diameter.

4.4 Experiments

For our experiments, we considered a number of networks with various sizes and char-
acteristics; most of them are either web graphs or (directed or undirected) social graphs
of some kind (note that for web graphs we can rely on the URLs as external source of
information). More precisely, we used the following datasets:

• Hollywood : One of the most popular undirected social graphs, the graph of movie
actors: vertices are actors, and two actors are joined by an edge whenever they
appeared in a movie together.

70

• LiveJournal : LiveJournal is a virtual community social site started in 1999: nodes
are users and there is an arc from x to y if x registered y among his friends (it is
not necessary to ask y permission, so the graph is directed). We considered the
same 2008 snapshot of LiveJournal used in [23] for their experiments

• Amazon: This dataset describes similarity among books as reported by the Ama-
zon store; more precisely the data was obtained in 2008 using the Amazon E-
Commerce Service APIs using SimilarityLookup queries.

• Enron: This dataset was made public by the Federal Energy Regulatory Com-
mission during its investigations: it is a partially anonymised corpus of e-mail
messages exchanged by some Enron employees (mostly part of the senior man-
agement). We turned this dataset into a directed graph, whose nodes represent
people and with an arc from x to y whenever y was the recipient of (at least) a
message sent by x.

• For comparison, we considered two web graphs of different size: a 2004 snapshot
of the .it domain (≈ 40 million nodes), and a snapshot taken in May 2007 of the
.uk domain (≈ 100 million nodes).

4.5 Discussion

Table 4.1 shows that social networks suffer spectacularly less disconnection than web
graphs when their nodes are removed using our strategies. Our most efficient removal
strategy, label propagation, can disconnect almost all pairs of a web graph by removing
30% of the arcs, whereas it disconnects only half (or less) of the pairs on social networks.
This entirely different behaviour shows that web graphs have a path structure that passes
through fundamental hubs.

Moreover, the average distance of the web graphs we consider increases by 50−80%
upon removal of 30% of the arcs, whereas in most social networks there is just a 5%
increase, the only exception being Amazon (15%).6

Note that random removal can separate a good number of reachable pairs, but the
increase in average distance is very marginal. This shows that considering both measures
is important in evaluating removal strategies.

6We remark that in some cases the measure is negative or does not decrease monotonically. This
is an artifact of the probabilistic technique used to estimate the number of pairs—small relative errors
are unavoidable.

71

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

{/Symbol d}-average distance

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R

LP

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

reachable nodes %

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R

LP

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

{/Symbol d}-harmonic diameter

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R

LP

A
m

az
on

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

{/Symbol d}-average distance

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R LP

n
e
a
r-

ro
o
t

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

reachable nodes %

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R LP

n
e
a
r-

ro
o
t

 0 5

 1
0

 1
5

 2
0

 2
5

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

{/Symbol d}-harmonic diameter

{
/S

y
m

b
o
l
q

}

ra
n
d

o
m

d
e
g

re
e

P
R LP

n
e
a
r-

ro
o
t

.
i
t

F
ig

u
re

4.
2:

T
y
p
ic

al
b

eh
av

io
u
r

of
so

ci
al

n
et

w
or

k
s

(A
m

az
on

,
u
p
p

er
)

an
d

w
eb

gr
ap

h
s

(.
i
t
,

lo
w

er
)

w
h
en

a
θ

fr
ac

ti
on

of
ar

cs
is

re
m

ov
ed

u
si

n
g

va
ri

ou
s

st
ra

te
gi

es
.

N
on

e
of

th
e

p
ro

p
os

ed
st

ra
te

gi
es

co
m

p
le

te
ly

d
is

ru
p
ts

th
e

st
ru

ct
u
re

of
so

ci
al

n
et

w
or

k
s,

b
u
t

th
e

eff
ec

t
of

th
e

la
b

el
-p

ro
p
ag

at
io

n
re

m
ov

al
st

ra
te

gy
on

w
eb

gr
ap

h
s

is
ve

ry
v
is

ib
le

.

72

G
ra

p
h

S
tr

at
eg

y
0.

01
0.

0
5

0
.1

0
.1

5
0.

2
0.

3

A
m

az
on

R
N

D
0
.0

08
(1

00
%

)
0.

0
0
2

(9
3
%

)
0.

0
3
1

(8
2
%

)
0.

0
4
1

(7
9
%

)
0.

0
5
6

(7
6
%

)
0.

0
8
2

(7
0
%

)
D

E
G

−
0.

00
5

(1
18

%
)

0.
0
0
2

(9
7
%

)
0.

0
0
6

(8
6
%

)
0.

0
0
6

(8
7
%

)
0.

0
2
8

(9
5
%

)
0.

0
9
1

(8
0
%

)
P

R
0
.0

01
(9

7%
)

0.
0
1
4

(9
9
%

)
0.

0
3
2

(9
8
%

)
0.

0
3
7

(9
4
%

)
0.

0
6
9

(9
4
%

)
0.

0
9
7

(8
0
%

)
L

P
0
.0

06
(1

04
%

)
0.

0
2
3

(1
0
4
%

)
0.

0
5
4

(8
2
%

)
0.

0
9
6

(8
7
%

)
0.

1
1
2

(8
2
%

)
0.

1
5
3

(6
4
%

)

E
n

ro
n

R
an

d
om

0
.0

13
(9

9%
)

0.
0
1
4

(9
3
%

)
0.

0
0
6

(8
3
%

)
0.

0
0
3

(8
0
%

)
0.

0
0
7

(7
6
%

)
0.

0
2
2

(8
8
%

)
D

eg
re

e
0
.0

06
(9

7%
)

0.
0
1
7

(8
6
%

)
0.

0
5
6

(7
5
%

)
0.

0
6
1

(7
2
%

)
0.

0
6
4

(6
7
%

)
0.

1
3

(5
2
%

)
P

R
0
.0

07
(9

9%
)

0.
0
3
3

(8
1
%

)
0.

0
5
5

(6
3
%

)
0.

0
6
7

(5
3
%

)
0.

0
9
3

(4
5
%

)
0.

1
3
5

(3
4
%

)
L

P
0
.0

05
(9

9%
)

0.
0
2
9

(8
0
%

)
0.

0
4

(7
2
%

)
−

0.
0
4
8

(5
9
%

)
0.

0
6
1

(5
7
%

)
0.

0
5

(5
2
%

)

H
ol

ly
w

o
o
d

R
an

d
om

−
0.

00
3

(1
01

%
)

0.
0
1
8

(1
0
4
%

)
0.

0
0
9

(9
2
%

)
0.

0
1
7

(8
7
%

)
−

0.
0
0
4

(7
4
%

)
0.

0
2
1

(7
7
%

)
D

eg
re

e
0
.0

05
(8

7%
)

0.
0
1
5

(1
0
5
%

)
0.

0
0
1

(9
8
%

)
0.

0
0
6

(9
2
%

)
0.

0
2
2

(1
1
2
%

)
0.

0
2

(9
3
%

)
P

R
0
.0

01
(1

02
%

)
0.

0
0
4

(9
4
%

)
0.

0
2
3

(1
0
0
%

)
0.

0
2
5

(1
0
0
%

)
0
.0

3
(9

4
%

)
0.

0
3
6

(9
0
%

)
L

P
0
.0

18
(9

0%
)

0.
0
3
8

(7
8
%

)
0.

0
5
2

(6
5
%

)
0.

0
6
6

(5
7
%

)
0.

0
6
1

(5
4
%

)
0.

0
5
8

(5
2
%

)

L
iv

eJ
ou

rn
al

R
an

d
om

0
.0

07
(9

7%
)

0.
0
0
6

(9
4
%

)
0.

0
0
9

(8
9
%

)
0.

0
1
4

(9
2
%

)
0
.0

2
(8

4
%

)
0.

0
3
2

(7
8
%

)
D

eg
re

e
0
.0

03
(9

5%
)

0.
0
2

(9
1
%

)
0.

0
5
3

(1
0
5
%

)
0.

0
6
5

(1
0
8
%

)
0.

0
6
4

(9
2
%

)
0.

1
0
1

(9
1
%

)
P

R
0
.0

02
(9

7%
)

0.
0
1
8

(1
0
2
%

)
0.

0
4
2

(9
9
%

)
0.

0
6
3

(1
1
2
%

)
0
.0

7
(9

6
%

)
0.

1
0
4

(9
9
%

)
L

P
0
.0

06
(1

02
%

)
0.

0
1
3

(1
0
3
%

)
0.

0
2

(9
0
%

)
0.

0
2
4

(8
9
%

)
0.

0
4
3

(9
8
%

)
0.

0
5
8

(9
3
%

)

.
i
t

R
an

d
om

−
0.

01
2

(9
4%

)
0.

0
2
5

(8
9
%

)
0.

0
1

(7
5
%

)
0.

0
1
3

(6
7
%

)
0.

0
2
1

(5
8
%

)
0.

0
3
5

(4
6
%

)
D

eg
re

e
0
.0

35
(1

01
%

)
−

0
.0

2
5

(9
4
%

)
−

0
.0

1
3

(9
5
%

)
−

0.
0
0
5

(9
3
%

)
0.

0
0
1

(9
0
%

)
0.

0
0
2

(9
0
%

)
P

R
−

0.
00

2
(1

00
%

)
0.

0
8
9

(8
7
%

)
0.

1
9
1

(6
8
%

)
0.

2
4
9

(6
2
%

)
0.

2
9
3

(5
2
%

)
0.

4
1
8

(3
5
%

)
N

ea
r-

R
o
ot

0
.0

37
(9

0%
)

0.
3
0
9

(6
1
%

)
0.

3
4
2

(4
0
%

)
0.

3
4
4

(3
8
%

)
0.

3
4
6

(3
6
%

)
0.

3
7
6

(3
5
%

)
L

P
0
.0

13
(8

6%
)

0.
2
1
9

(4
3
%

)
0.

4
1
7

(2
0
%

)
0
.5

3
(1

6
%

)
0.

6
0
1

(1
1
%

)
0.

8
3

(5
%

)

.
u
k

R
an

d
om

0
.0

02
(1

00
%

)
0.

0
2
3

(8
5
%

)
0.

0
4
4

(8
5
%

)
0.

0
8
9

(9
3
%

)
0.

0
5
4

(6
8
%

)
0.

0
3
5

(4
9
%

)
D

eg
re

e
0
.0

15
(9

8%
)

0.
0
1
3

(9
6
%

)
−

0
.0

4
3

(7
5
%

)
−

0.
0
3
1

(7
8
%

)
−

0.
0
1
9

(8
0
%

)
0.

0
0
1

(7
4
%

)
P

R
0
.0

32
(8

9%
)

0.
0
7
6

(8
0
%

)
0.

1
2
5

(6
6
%

)
0.

1
4
9

(5
9
%

)
0.

1
7
3

(5
2
%

)
0.

2
6
7

(3
9
%

)
N

ea
r-

R
o
ot

0
.0

54
(8

0%
)

0.
2
6
1

(5
4
%

)
0.

2
8
6

(4
8
%

)
0.

2
9
7

(4
5
%

)
0.

3
1
1

(4
4
%

)
0.

3
8
7

(4
1
%

)
L

P
0
.0

59
(8

7%
)

0.
2
3
5

(3
8
%

)
0.

3
0
3

(2
2
%

)
0.

3
9
4

(1
9
%

)
0.

4
4
5

(1
4
%

)
0.

5
0
5

(6
%

)

T
ab

le
4.

1:
F

or
ea

ch
gr

ap
h

an
d

a
sa

m
p
le

of
fr

ac
ti

on
s

of
re

m
ov

ed
ar

cs
w

e
sh

ow
th

e
ch

an
ge

in
av

er
ag

e
d
is

ta
n
ce

(b
y

th
e

m
ea

su
re
δ

d
efi

n
ed

in
S
ec

ti
on

4.
3.

2)
an

d
th

e
p

er
ce

n
ta

ge
of

re
ac

h
ab

le
p
ai

rs
.

P
R

st
an

d
s

fo
r

P
ag

eR
an

k
,

an
d

L
P

fo
r

la
b

el
p
ro

p
ag

at
io

n
.

73

aolpictures.aol.co.uk/ www.direct.gov.uk/en/index.htm
www.epsrc.ac.uk/ www.direct.gov.uk/
allgirltogaparty.co.uk/resources.html www.redhotchilli.co.uk/
booth.lse.ac.uk/ www.escortmatch.co.uk/
www.cornwall.ac.uk/ www.247partypeople.co.uk/login.asp
www.nwleicsdc.gov.uk/home/ www.names.co.uk/
www.axcis.co.uk/ www.kelkoo.co.uk/
www.access-programmers.co.uk/forums/. . . www.rottweiler.co.uk/forums/lofiversion/index.php
www.indiesoc.co.uk/ www.kelkoo.co.uk/b/a/sm site-map.html. . .
www.aspandjavascript.co.uk/ www.kelkoo.co.uk/b/a/kc top searches charts.html

Table 4.2: A comparison of the first ten URLs of the .uk snapshot by label-propagation
rank (left) and PageRank (right). The two rankings are completely uncorrelated
(Kendall’s τ is ≈ −0.002).

Of course, we cannot state that there is no strategy able to disrupt social networks
as much as a web graph (simply because this strategy may be different from the ones
that we considered), but the fact all strategies work very similarly in both cases (e.g.,
label propagation is by far the most disruptive strategy) suggests that the phenomenon
is intrinsic.

There is of course a candidate easy explanation: shortest paths in web graphs pass
frequently through home pages, which are linked more than other pages. But this
explanation does not take into account the fact that clustering by label propagation
is significantly more effective than the near-root removal strategy. Rather, it appears
that there are fundamental hubs (not necessarily home pages) which act as shortcuts
and through which a large number of shortest paths pass. Label propagation is able to
identify such hubs, and their removal results in an almost disconnected graph and in a
very significant increase in average distance.

These hubs are not necessarily of high outdegree: quite the opposite, rather, is
true. The behaviour of web graphs under the largest-degree strategy is illuminating: we
obtain the smallest reduction in reachable pairs and an almost unnoticeable change of
the average distance, which means that nodes of high outdegree are not actually relevant
for the global structure of the network.

Social networks are much more resistant to node removal. There is not strict clus-
tering, nor definite hubs, that can be used to eliminate or elongate shortest paths. This
is not surprising, as networks emerging from social interaction are much less engineered
(there is no notion of “site” or “page hierarchy”, for example) than web graphs.

The second important observation is that the removal strategies based on PageRank
and label propagation are always the best (with the exception of the near-root strategy
for .uk, which is better than PageRank). This suggests that label propagation is actually

74

able to identify structurally important nodes in the graph—in fact, significantly better
than any other method we tested.

Is the ranking provided by label propagation correlated to other rankings? Certainly
not to the other rankings described here, due to the different level of disruption it
produces on the network. The closest ranking with similar behaviour is PageRank, but,
for instance, Kendall’s τ between PageRank and ranking by label propagation on the
.uk dataset is ≈ −0.002 (complete uncorrelation).

It is interesting to compare our results against those in the previous literature. With
respect to [1], we test much larger networks. We can confirm that random removal
is less effective that -based removal, but clearly the variation in diameter measured
in [1] has been made on a symmetrised version of the web graph. Symmetrisation
destroys much of the structure of the network, and it is difficult to justify (you cannot
navigate links backwards). We have evaluated our experiment using the variation in
diameter instead of the variation in average distance (not shown here), but the results
are definitely inconclusive. The behaviour is wildly different even between graphs of the
same type, and shows no clear trend. This was expected, as the diameter is defined by
a maximisation property, so it is very unstable.

We also evaluated the variation in harmonic diameter (see Table 4.3), to compare
our results with those of [31]. The harmonic diameter is very interesting, as it combines
reachability and distance. The data confirm what we already stated: web graphs react
to removal of 30% of their arcs by label propagation by increasing their harmonic diam-
eter by an order of magnitude—something that does not happen with social networks.
Table 4.3 is even more striking than Table 4.1 in showing that label propagation selects
highly disruptive nodes in web graphs.

Our criterion for node elimination is a threshold on the number of arcs removed,
rather than nodes, so it is not possible to compare our results with [31] directly. However,
for .uk PageRank at θ = 0.01 removes 648 nodes, which produced in the .ie graph a
relative increment of 100%, whereas we find 14%. This is to be expected, due to the very
small size of the dataset used in [31]: experience shows that connectedness phenomena
in web graphs are very different in the “below ten million nodes” region. Nonetheless,
the growth trend is visibile in both cases. However, the experiments in [31] fail to detect
both the disruptive behaviour at θ = .3 and the striking difference in behaviour between
largest-degree and PageRank strategy.

75

G
ra

p
h

S
tr

at
eg

y
0.

01
0.

0
5

0.
1

0
.1

5
0.

2
0
.3

A
m

az
on

R
N

D
−

0
.0

1
(1

00
%

)
0
.0

3
(9

3
%

)
0.

1
3

(8
2
%

)
0
.1

3
(7

9
%

)
0.

1
3

(7
6
%

)
0
.1

4
(7

0
%

)
D

E
G

−
0
.1

5
(1

18
%

)
0

(9
7
%

)
0.

0
9

(8
6
%

)
0
.0

5
(8

7
%

)
−

0
.0

5
(9

5
%

)
0.

1
(8

0
%

)
P

R
0.

03
(9

7%
)

0
.0

2
(9

9
%

)
0.

0
2

(9
8
%

)
0
.0

6
(9

4
%

)
0.

0
6

(9
4
%

)
0
.2

3
(8

0
%

)
L

P
−

0
.0

4
(1

04
%

)
−

0.
0
4

(1
0
4
%

)
0.

2
(8

2
%

)
0
.1

5
(8

7
%

)
0.

1
9

(8
2
%

)
0
.4

7
(6

4
%

)

E
n

ro
n

R
N

D
0.

01
(9

9%
)

0
.0

4
(9

3
%

)
0.

1
1

(8
3
%

)
0
.1

2
(8

0
%

)
0.

1
6

(7
6
%

)
0
.0

5
(8

8
%

)
D

E
G

0.
03

(9
7%

)
0
.1

9
(8

6
%

)
0.

4
1

(7
5
%

)
0
.4

7
(7

2
%

)
0.

5
9

(6
7
%

)
1
.1

7
(5

2
%

)
P

R
0.

01
(9

9%
)

0
.2

7
(8

1
%

)
0.

6
7

(6
3
%

)
0
.9

9
(5

3
%

)
1.

3
8

(4
5
%

)
2
.2

7
(3

4
%

)
L

P
0.

01
(9

9%
)

0
.1

8
(8

0
%

)
0.

2
9

(7
2
%

)
0
.5

3
(5

9
%

)
0.

5
5

(5
7
%

)
0
.6

2
(5

2
%

)

H
ol

ly
w

o
o
d

R
N

D
−

0
.0

2
(1

01
%

)
−

0.
0
7

(1
0
4
%

)
−

0
(9

2
%

)
0
.0

1
(8

7
%

)
0.

1
1

(7
4
%

)
−

0.
0
2

(7
7
%

)
D

E
G

0.
15

(8
7%

)
−

0.
0
4

(1
0
5
%

)
0.

0
2

(9
8
%

)
0.

1
(9

2
%

)
−

0
.0

9
(1

1
2
%

)
0
.0

9
(9

3
%

)
P

R
−

0
.0

2
(1

02
%

)
0
.0

6
(9

4
%

)
0.

0
2

(1
0
0
%

)
0
.0

2
(1

0
0
%

)
0.

0
9

(9
4
%

)
0
.1

4
(9

0
%

)
L

P
0.

02
(9

0%
)
−

0.
1
2

(7
8
%

)
−

0
.1

1
(6

5
%

)
−

0.
1
1

(5
7
%

)
−

0
.1

2
(5

4
%

)
−

0.
1
5

(5
2
%

)

L
iv

eJ
ou

rn
al

R
N

D
0.

05
(9

7%
)
−

0.
0
1

(9
4
%

)
0.

0
5

(8
9
%

)
−

0.
0
2

(9
2
%

)
0.

0
6

(8
4
%

)
0
.1

3
(7

8
%

)
D

E
G

−
0
.0

3
(9

5%
)

0
.1

2
(9

1
%

)
0.

0
8

(1
0
5
%

)
0
.0

1
(1

0
8
%

)
−

0
.0

7
(9

2
%

)
0
.2

1
(9

1
%

)
P

R
0.

04
(9

7%
)

0
(1

0
2
%

)
0.

1
1

(9
9
%

)
0
.1

8
(1

1
2
%

)
0.

1
2

(9
6
%

)
0
.2

3
(9

9
%

)
L

P
−

0
.0

6
(1

02
%

)
0
.0

4
(1

0
3
%

)
0.

0
4

(9
0
%

)
0
.0

3
(8

9
%

)
−

0
.0

2
(9

8
%

)
0
.1

5
(9

3
%

)

.
i
t

R
N

D
0.

04
(9

4%
)

0.
1

(8
9
%

)
0.

1
7

(7
5
%

)
0
.3

2
(6

7
%

)
0.

4
5

(5
8
%

)
0
.6

9
(4

6
%

)
D

E
G

0.
03

(1
01

%
)

0
.1

2
(9

4
%

)
0.

0
5

(9
5
%

)
−

0
.1

(9
3
%

)
0.

1
3

(9
0
%

)
0
.2

1
(9

0
%

)
P

R
−

0
.0

2
(1

00
%

)
0
.2

5
(8

7
%

)
0.

7
2

(6
8
%

)
1
.0

5
(6

2
%

)
1.

5
2

(5
2
%

)
3
.1

7
(3

5
%

)
N

R
0.

18
(9

0%
)

1
.1

7
(6

1
%

)
2.

1
5

(4
0
%

)
2
.3

2
(3

8
%

)
2.

3
2

(3
6
%

)
2
.8

3
(3

5
%

)
L

P
0.

18
(8

6%
)

1
.6

8
(4

3
%

)
4.

4
4

(2
0
%

)
6
.5

8
(1

6
%

)
9.

6
8

(1
1
%

)
2
2.

3
2

(5
%

)

.
u
k

R
N

D
−

0
(1

00
%

)
0
.1

3
(8

5
%

)
0.

1
2

(8
5
%

)
0

(9
3
%

)
0.

2
8

(6
8
%

)
0
.5

8
(4

9
%

)
D

E
G

−
0
.0

2
(9

8%
)
−

0.
0
1

(9
6
%

)
0.

0
4

(7
5
%

)
0
.2

8
(7

8
%

)
0.

2
6

(8
0
%

)
0.

1
(7

4
%

)
P

R
0.

14
(8

9%
)

0
.3

3
(8

0
%

)
0.

7
9

(6
6
%

)
0
.9

8
(5

9
%

)
1.

1
6

(5
2
%

)
2
.1

9
(3

9
%

)
N

R
0.

31
(8

0%
)

1
.2

7
(5

4
%

)
1.

4
5

(4
8
%

)
1
.3

7
(4

5
%

)
1.

3
7

(4
4
%

)
1
.8

4
(4

1
%

)
L

P
0.

2
(8

7%
)

2
.0

2
(3

8
%

)
3.

7
1

(2
2
%

)
5
.1

3
(1

9
%

)
7.

3
3

(1
4
%

)
1
6.

6
1

(6
%

)

T
ab

le
4.

3:
F

or
ea

ch
gr

ap
h

an
d

a
sa

m
p
le

of
fr

ac
ti

on
s

of
re

m
ov

ed
ar

cs
w

e
sh

ow
th

e
ch

an
ge

in
h
ar

m
on

ic
d
ia

m
et

er
(b

y
th

e
m

ea
su

re
δ

d
efi

n
ed

in
S
ec

ti
on

4.
3.

2)
an

d
th

e
p

er
ce

n
ta

ge
of

re
ac

h
ab

le
p
ai

rs
.

P
R

st
an

d
s

fo
r

P
ag

eR
an

k
,

an
d

L
P

fo
r

la
b

el
p
ro

p
ag

at
io

n
.

76

Chapter 5

Arc-community detection via
triangular random walks

In this chapter we will turn our attention to a completely different problem. Let us
resume the findings presented in previous chapters about social networks. Clustering
techniques works poorly on them, they are not able to highlight a clear cluster structure,
there are not clear cut-point to separate small subsets of nodes from the graph, the
average distance is very small and the distance distribution is very concentrated around
its mean. All these characteristics are typical of random graphs.

Thus we can conjecture that social networks are simply more similar to random
graphs than web graphs. However there exists another hypothesis which is not ruled
out by our findings. Social networks spot a strongly overlapped community structure.
This hypothesis is very sound, think about a typical social network like Facebook. Each
node of the graph belongs to different clusters which reflects different areas of its life, this
assumption is so sound that Google+ has explicitly introduced the notion of “circle”.
However even in these social networks we, as user, find odd that two friends of us that we
know for different reasons, know each other. This can lead to a reasonable assumption,
that triangles are mostly inside one specific community.

In this chapter, we propose the notion of triangular random walk as a way to unveil
arc-community structure in social graphs: a triangular walk is a random process that
insists differently on arcs that close a triangle. We prove that triangular walks can be
used effectively, by translating them into a standard weighted random walk on the line
graph, and experiment our idea to show that triangular walks are in fact very effective
in determining the similarity between arcs and yield high-quality clustering.

77

5.1 Introduction

Complex networks and, especially, social networks often exhibit a finer internal struc-
ture where individuals interact in small subgroups (called communities or modules),
based on the individuals’ common interests, geographic location, political opinions etc.
Understanding how such subgroups are structured and evolve in time is essential for
applications like targeted advertising, viral marketing, friend suggestion etc. Social-
network mining traditionally understands a community as a densely connected set of
nodes that is in turn only loosely attached to the rest of the network [34]; in this view,
community detection translates into finding a partition of the nodes that optimizes some
quality function. Most of the literature on this topic focused on the discussion of the
mutual merits of various quality functions and on the comparison of algorithms that
try to optimize (in an exact or approximate way) some of those functions. It is worth
noticing that we are here thinking of the clustering problem in a situation where the
only available information is the (directed or undirected) graph underlying the social
network, possibly with some weight on its arcs denoting the strength of that bound.

The main limit of the approach discussed above is that rarely a node is part of a
single community: more often than not, communities overlap giving rise to a complex
intertwining that can hardly be reflected into a node partition. For this reason, recent
research (see, for example, [7, 60]) has turned its attention to the problem of finding
overlapping communities, where each node can be a member of more than one module.

This idea is well motivated and neat for those (frequent) situations in which member-
ship to multiple communities is an exception more than a rule, and most nodes belong
clearly to one single communities, with a number of borderline individuals for whom
membership is less straightforward. In a large number of scenarios, however, belonging
to more communities is a rule, and actually the notion of community hardly applies to
each single node. In those cases, it is often more sensible and interesting to individuate
communities of arcs rather than communities of nodes : this shift of interest (witnessed
in the most recent literature [77]) can be thought of as trying to find the reasons behind
relations rather than trying to find the reason behind individuals.

This idea is clear if one thinks of social networks such as Facebook: every Facebook
user has probably many interests and belongs to a multiplicity of communities; however,
every friendship is probably due to one main reason (working together, being parents,
having the same hobby etc.). This thought is so natural that Google+ has explicitly
introduced the notion of “circle”.

In this work, we propose to continue along this line of research trying to exploit
the following simple observation: if xy and yz are two relations that have the same

78

motivation (e.g., working together), then probably xz will also be present: in other
words, triangles tend to live inside communities. Based on this intuition, we propose the
notion of triangular random walk, a stochastic process that treats differently triangular
and non-triangular arcs; although this process is not memoryless, we can reduce it to a
standard Markov chain on the line graph (using a tool similar to [29], but in a different
way). With our approach, we obtain a weighted graph whose nodes correspond to the
arcs of the original network, and that can in turn be clustered using standard tools.
Experiments on real-world networks of different sizes and types show that triangular
walks can be extremely helpful in finding meaningful communities, outperforming other
approaches, usually with a negligible loss in computation time.

5.2 Triangular random walks

Given a (directed loopless) graph G = (VG, AG), we let nG = |VG| and mG = |AG| be
the number of nodes and arcs of G, respectively; for every node x we let NG(x) be the
set of successors of x (that is, {y | (x, y) ∈ A}) and dG(x) = |NG(x)| (the (out)degree
of x). If G is symmetric (i.e., if (x, y) ∈ AG implies (y, x) ∈ AG), we treat G as if it was
undirected; in this case, we use the term edge to refer to an unordered pair of nodes
that are connected by an arc. We sometimes write xy to denote the arc (x, y) (or the
edge {(x, y), (y, x)}, if the graph is undirected). The subscript G will be omitted when
it is clear from the context.

A random walk on a directed graph G is a stochastic process X0, X1, . . . where
X0, · · · ∈ V , and for each x, y ∈ V , P [X0 = x] = 1/n and P [Xt+1 = y | Xt = x] is
1/d(x) if y ∈ N(x), 0 otherwise1; this definition can be easily extended to weighted
graphs (making P [Xt+1 = y | Xt = x] proportional to the weight of (x, y)). Intuitively,
a random walk describes the behavior of a surfer walking on the graph, who starts from
a random node and at each step chooses uniformly at random among the successors of
the current node (jumping to a random node if the current one has no successors).

The random walk is a Markov chain and if G is undirected, connected and not
bipartite, then the random walk has a unique stationary distribution v with vx =
d(x)/2m [69]. For a general graph, however, the random walk is not ergodic, hence
the stationary distribution may not be unique; to circumvent this problem, one can
introduce [11, 47, 73] the notion of restart.

For a fixed α ∈ [0, 1], a random walk with restart with damping factor α on G is a
stochastic process X0, X1, . . . as before, but where the surfer chooses the next node as
follows: with probability α she picks a node uniformly at random among the successors

1For the sake of completeness, when d(x) = 0 we let P [Xt+1 = y | Xt = x] = 1/n for all y.

79

of the current node; with probability 1 − α, instead, she jumps to a random node in
the graph2. The latter event is called teleportation or “restart”. It can be shown [11]
that for all α < 1 the random walk with restart has a unique stationary distribution
(actually, the PageRank of G with damping factor α); when α = 1 we get back to the
standard random walk.

One suggestive way to think of this random process is the following: a random surfer
is trying to collect some knowledge and every node represents an expert that may provide
some piece of information. After the surfer has finished visiting expert x she receives a
list of other possible people that x trusts; the surfer may decide (with probability α) to
accept x’s suggestion and to visit one of them, or may rather decide to do it her way
and to teleport to a random expert instead.

It is interesting to observe that one may also actually consider the stationary distri-
bution on the arcs of G: the probability P [Xt = x,Xt+1 = y] that the random surfer
goes along the arc (x, y) is P [Xt+1 = y | Xt = x]P [Xt = x] ∝ vxw(x, y), where v is the
stationary distribution on the nodes and w(x, y) is the weight on the arc (x, y) (that is,
1/d(x) in the unweighted case); the proportionality constant serves to take teleporting
into account. We will refer to this distribution as the arc-stationary distribution.

The main idea of this chapter is that we want to introduce a bias in the behavior of
the random surfer, by allowing her some amount of short-term memory; in particular,
the choice of the next node will not depend only on the current node but also on the
previous one. The bias is finalized to privilege (or punish) triangles, i.e., suggestions of
the current node that were also suggested by the previous node. Whether we decide to
privilege triangles or to punish them depends on our interpretation of triangles: if we
think that the double suggestion reinforces the idea that the suggested node is reliable,
we will privilege triangles; if otherwise we suspect that the double suggestion is rather
a form of lobbying, we will tend to avoid triangles.

Thus, we will define a triangular random walk X0, X1, . . . on the graph using two
parameters, α, β ∈ [0, 1]: α is a damping factor and will have the same meaning as
before (it is used to decide whether to follow a link or to teleport); β will instead be
used to determine whether triangles or non-triangles should be privileged.

Two subtly different definitions of triangular random walks can be given, depending
on the specific meaning of β: we will call them mass-triangular and ratio-triangular,
respectively. In a triangular random walk with parameters α and β, the next node
(xt+1) is chosen depending on the current node xt and on the previous node xt−1, as
follows:

• with probability 1− α, we teleport: xt+1 is a randomly chosen node;

2As before, if the current node has no successors then the next node is chosen at random.

80

• otherwise, we choose among the successors N(xt) of the current node, but treat-
ing differently the triangular successors (the set N(xt) ∩ N(xt−1)) and the non-
triangular successors (the set N(xt) \N(xt−1))3; here, the two definitions differ:

– in the (mass-)triangular random walk, we first decide whether we shall select
a non-triangular successor (with probability β) or a triangular one (with
probability 1−β); then, the specific non-triangular or triangular successor is
chosen uniformly at random;

– in the ratio-triangular random walk, all triangular successors are selected with
the same probability, say p, and all non-triangular successors with probability
βp (p should be chosen so that the sum of such probabilities is 1).

The names we adopted for the two kinds of random walks should be evocative of
the meaning of β: in the mass-triangular random walk, β is the overall amount of
probability of choosing a non-triangular successor; in the ratio-triangular random walk,
it is the ratio between the probability of choosing a(ny) non-triangular successor over
the probability of choosing a(ny) triangular one.

The two kinds of processes coincide when β = 0 (in that case, they both only
choose triangular successors, except when teleporting). Moreover, ratio-triangular ran-
dom walks reduce to standard random walks with restart when β = 1 (because, in that
case, the probability of choosing triangles and non-triangles is the same), whereas there
is no choice of β that makes a mass-triangular random walk the same as a standard
random walk.

The latter observation may suggest that ratio-triangular walks should be preferred,
but the mathematical treatment of mass-triangular walks is simpler, and for this rea-
son we shall actually treat the latter as our “default” type of triangular walk (and omit
“mass” in the following). We will get back to the similarities and differences between the
two definitions in Section 5.5. Triangular walks can have a number of potential applica-
tions; for example, they may be used fruitfully in bibliometry to moderate the problem of
nepotistic citations in scientific works (in this case, triangles should be punished rather
than promoted). In this thesis, however, we wish to speculate on the possible usage of
triangular walks to single out arc-communities in social networks.

To start playing with our idea, let us consider Zachary’s famous karate club net-
work [78]: this is an undirected graph whose nodes represent the members of a karate
club and with an edge between two individuals if they happened to have seen each other

3If either set is empty (or if t = 1) we choose uniformly in N(xt) (or in V , if the latter is empty), as
in a standard random walk.

81

1

2

3

4

5 6

7

8

9

10

11

12

13 14 15 16

17

18

19

20

21

22

23

2425

26 272829

3031 32

33

34

Figure 5.1: Standard random walk on the karate club dataset; edge width is proportional
to the frequency with which that edge was run through in either direction.

outside of the club for some reason; the club ended up splitting in two (in our drawings,
the nodes are depicted differently according to the group they will end up in), and one
can hope to find information about how the members will decide to group based solely
on their friendship relations.

We first tried a standard random walk on this dataset to see how frequently each
edge was run through in either direction (Figure 5.1): no pattern is evident. But if we do
the same with a triangular walk some edge gets more emphasis, witnessing that some
bounds are stronger than others (Figure 5.2, with β = 0.2): those edges are usually
between members that will end up in the same group (with an exception concerning
node 9 that indeed seems to be more strictly bound to the group of circles than to
the group of squares). If we decrease β to 0.01, some clans become almost grotesquely
evident (Figure 5.3).

5.2.1 Triangular walks and line graphs

A triangular random walk is a Markov chain of order 2 [69], because the next state
depends on the current state and on the previous one. To study the long-term behavior
of higher order chains, it is customary to change the state space and reduce the stochastic
process to an equivalent one that is memoryless; this is easily solved by using the notion
of line graph.

Given a graph G, its line graph L = L(G) has the arcs of G as vertices (i.e., VL = AG),
with arcs of the form (xy, yz) (where xy and yz are two arcs of G). Note that even when
G is symmetric, L(G) is not; for example, if G is the undirected graph in Figure 5.4, its
corresponding line graph L(G) is represented in Figure 5.5 (for the time being, ignore

82

1

2

3

4

5 6

7

8

9

10

11

12

13 14 15 16

17

18

19

20

21

22

23

2425

26 272829

3031 32

33

34

Figure 5.2: Triangular random walk on the karate club dataset, with β = 0.2 (see also
Figure 5.1).

1

2

3

4

5 6

7

8

9

10

11

12

13 14 15 16

17

18

19

20

21

22

23

2425

26 272829

3031 32

33

34

Figure 5.3: Triangular random walk on the karate club dataset, with β = 0.01. (see also
Figure 5.1).

83

0

1

2 3

4

Figure 5.4: A small undirected graph G.

the colors on its arcs).
The idea of using line graphs to study the behavior of an arc-aware random surfer

was already proposed in [29], but they adopt a subtly different notion of line graph that
is undirected; for our purposes, instead, the directed definition is much more well-suited
(also because it adapts readily to the case when the original graph is itself directed).

Now, it is easy to see that a triangular random walk with parameters α, β on the
(unweighted) graph G is equivalent to a random walk with damping factor α on the
weighted line graph L(G), where

wT (xy, yz) =

{
β

|N(y)\N(x)| if z ∈ N(y) \N(x)
1−β

|N(y)∩N(x)| if z ∈ N(y) ∩N(x).

In other words, every arc in L(G) (that is to say, every two-step walk x → y → z in
the original graph) has a different weight depending on whether it can be closed by a
triangle (i.e., if x → z was also an arc of G) or not. If you look again at Figure 5.5,
continuous (red) arcs correspond to the first case (e.g., 10→ 03 is one such arc, because
13 is also an arc of G), whereas dashed (black) arcs correspond to the second case (e.g.,
31→ 12); note, in particular, that all arcs of the form xy → yx fall in the second class4.
Some nodes of L(G) (i.e., arcs of G) require some attention, because their outgoing arcs
are all non-triangular; those outgoing arcs are hence not weighted using the formula
above (it does not make sense since one of the denominators is zero), but they have a
constant weight instead (such arcs are drawn as dotted (blue) arrows in Figure 5.5).

For α < 1 the random walk with restart on L(G) weighted by wT has a stationary
distribution vT : note that, since the nodes of L(G) are arcs of G, vT assigns a probability

4Differently from [29], we do not reserve stuttering walks (walks of the form x → y → x) a special
treatment.

84

01

10

12 13

02

03

20

21

3031

34

43

Figure 5.5: The line graph L(G), where G is depicted in Figure 5.4. Continuous (red)
arcs correspond to choosing triangular successors; dashed (black) arcs correspond to the
choice of non-triangular successors; dotted (blue) arcs are used for the cases where either
set is empty.

85

vT (xy) with each arc xy of the original graph. Note also that, as explained in the
previous section, the stationary distribution on the nodes of L(G) induces a stationary
distribution on its arcs: vT (xy, yz) ∝ vT (xy)wT (xy, yz): this is the probability that the
random surfer runs through the path x→ y → z.

Computing the stationary distribution vT is a well-understood task (it amounts to a
weighted version of PageRank) for which efficient and computationally sound algorithms
exist [47, 76]; of course, L(G) is larger than G (it has mG nodes and

∑
x dG(x)2 arcs),

but not much larger actually because of the sparsity of G and of the way its degrees are
distributed. In particular, if G is undirected and has ≈ Ck−α nodes of degree k, then
L(G) will have ≈ C2k−2α nodes of outdegree k.

5.3 Arc-clustering via triangular random walks

As outlined in the previous sections, along the same line as [29], instead of clustering
directly the arcs of G (as done, for example, by [42]), we turn to some suitably weighted
version of the line graph L(G), where we can make good use of all the paraphernalia for
node-clustering of a directed graph. In other words, we shall use an off-the-shelf node-
clustering algorithm feeding it with the weighted graph L(G). As weighting function (on
the arcs of L(G)), we can either use the weights wT (xy, yz) that define the transition
probabilities of a triangular surfer or, alternatively, we can exploit its arc-stationary
distribution vT (xy, yz) = vT (xy)wT (xy, yz) (where, as explained above, vT (xy) is the
stationary distribution of the triangular random surfer on the node xy).

For comparison, we may consider the weights of a standard random walk wS(xy, yz) =
1/d(y) or the corresponding arc stationary distribution vS(xy, yz) = vS(xy)wS(xy, yz)
(as before, vS(xy) is the stationary distribution of the standard random surfer on the
node xy); here, the subscript “S” stands for “standard”. Another baseline is to feed the
clustering algorithm with the unweighted graph L(G) itself.

The proposed method is tailored around directed graphs and parallel opposite arcs
may end up in two different communities; the main limit of this approach is that it cannot
be directly applied to truly undirected graphs. In cases when this is really necessary,
one has to decide what to do if two opposite arcs happen to be clustered differently —
one possible solution is to place the corresponding edge in either community, or to use
a special community that corresponds to the given pair.

Computational issues Computing the line graph L(G) and its weights wT is straight-
forward and can be performed in time O(mL(G)) (i.e., linear in the output size), provided
that one has direct access to G; moreover, although their size is obviously larger than

86

nG mG = nL(G) mL(G)

free word association 10 225 71 679 955 552
DBLP 986 324 6 707 236 211 808 396
Hollywood 2 180 759 228 985 632 242 026 293 162

Table 5.1: Size of line graphs for some of the datasets we shall use in Section 5.5; observe
that Hollywood is comparatively denser than the other graphs (with an average degree
of about 105), which is why the number of arcs in L(G) is so large (the average degree
is in this case 1 057).

the original graph (see Table 5.1), line graphs turn out to be easily compressible (about
2 to 3 bits/link in their natural order, much less if suitably permuted [12]). After L(G)
has been produced, weighted PageRank can be computed very quickly (using for ex-
ample the techniques of [26]), and always converges in less than 100 iterations even for
α = 1 − 10−2 (the value used in most of our clustering experiments). The final node-
clustering phase clearly depends on the algorithm used, but our method of choice [9]
turns out to be extremely fast — actually, the line graph construction is by far the
most expensive step. In fact, the explicit construction of the line graph is the main
limit of our approach, especially for networks that are comparatively denser (such as
Hollywood); we will get back to this problem later.

5.4 Related works

Although node-clustering is traditionally much more developed and better understood
(see [68] for an up-to-date survey), recently many authors advocated the adoption of
link-clustering [77, 29, 42] as a way to overcome the problem of overlapping commu-
nities in complex networks. The advantage of this approach over the solution of soft
or hierarchical node-clustering [50, 40] is that the latter is better suited for situations
where the presence of a node in many communities is an exception rather than a rule;
on the contrary, using link-clustering allows one to give multiple membership a more
understandable meaning in the common situations when every single node is likely to
belong to more than one cluster but each node-to-node relation can be explained as co-
affiliation to some community (like in the well-known model of affiliation networks [48]).
Of course, even in the latter situation co-affiliation can be due to many reasons (co-
affiliation to many communities), but also in that situation in many cases one reason
prevails.

The usage of line graphs to model link-clustering is especially promoted by Evans and

87

Lambiotte [29] (who also take into consideration notions of weighting that deal with the
problem of over-representing high-degree nodes), but they exploit the undirected version
of line graphs instead of the directed one [38], and they do not distinguish between
triangular and non-triangular arcs.

As explained, our technique relies on some external node-clustering algorithm that
uses a weighted version of L(G), with the hope that triangular random walks highlight
clear cuts between communities as they should. To test our hypothesis, we obviously
need a clustering algorithm that can handle large weighted directed graphs; we tried
three different clustering algorithms which satisfy our requirements and are considered
the state of the art for massive complex networks: clustering via Potts’ model as pro-
posed in [65], the hierarchical Infomap algorithm presented in [66] and the Louvain
method [9]. In our tests the latter proved to be the fastest among these candidates and
produces also the best results in term of accuracy, so we will adopt it in our experiments.
Actually, however, all the tested methods improve their performance on the versions of
L(G) that were weighted according to our criterion.

5.5 Experiments

The experiments that we are going to describe have been run using public datasets
and relying heavily on the WebGraph [17] framework (in particular, the line-graph
transformation was implemented as a part of it). The remaining tools will be made
available as “Satellite Software” in the law.dsi.unimi.it website.

Triangular walks on DBLP For this set of experiments, we worked on the DBLP
graph5; DBLP is a scientific collaboration network where each vertex represents a sci-
entist and two vertices are connected if they have worked together on an article. The
current version (July 2011) of the DBLP dataset contains 986 324 authors and 2 684 847
publications, giving rise to 3 353 618 co-authorship edges. This network corresponds
to the typical situation in which every author can belong to more than one scientific
community (because typically, during their life, scientists work on many different and
often scarcely related topics), but collaborations usually correspond to a specific topic.
Based on this interpretation, we labelled each edge of DBLP with the concatenation of
all titles of the co-authored papers, and the similarity between two edges is computed as
the cosine distance between the corresponding term vectors (we normalized the words
though a Porter’s stemmer and used TF-IDF [5] for term weighting).

5http://www.informatik.uni-trier.de/~ley/db/

88

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

αβ

si
m

Figure 5.6: The average similarity in a triangular random walk of length 1 000 000 on
the DBLP graph, as a function of α and β.

We then performed some triangular random walks on the resulting graph (for dif-
ferent values of the parameters α and β) and every time the walk passed over two
consecutive arcs we computed the similarity between those arcs. The average similarity
is plotted in Figure 5.6.

As the reader can see, for all α the average similarity usually increases when β is
decreased, witnessing the (expected) phenomenon that following triangles more often
leads to better average similarity. The peak at α = β = 1 is explained as follows: in
that situation, we never teleport (because α = 1) and we never follow triangles, which
more often than not makes the surfer perform a stuttering walk (after passing on the arc
xy the surfer gets back along yx, and the two arcs correspond to the same edge and of
course have similarity 1). More in general, when α is small (i.e., when we teleport often)
or when β is too close to 0 or 1 (i.e., when we follow only triangles or only non-triangles),
the percentage of arcs visited in the random walk will be small (as one can see from
Figure 5.7).

To keep this phenomenon into account, we prefer to use a different measure, that we
call discounted average similarity : we multiply the average similarity by the percentage
of arcs discovered during the random walk, obtaining what is shown in Figure 5.8.

This picture suggests that α close to 1 (almost no teleportation) can be adopted
giving a reasonable tradeoff between coverage and similarity, provided that β is not too
close to 0 or 1. For this reason, the remaining experiments have been run only with
α = 1. The results are shown in Figure 5.9, 5.10 and 5.11: we once again computed

89

0 0.2 0.4 0.6 0.8 10
0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

αβ

%
ar

cs

Figure 5.7: The percentage of arcs that have been visited in a triangular random walk
of length 1 000 000 on the DBLP graph, as a function of α and β.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.02

0.04

0.06

0.08

αβ

si
m

 x
 %

ar
cs

Figure 5.8: The discounted average similarity in a triangular random walk of length
1 000 000 on the DBLP graph, as a function of α and β.

90

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

s
im

β

mass-triangular
ratio-triangular

standard

Figure 5.9: The average similarity in a mass-triangular and in a ratio-triangular random
walk of length 1 000 000 on the DBLP graph (with α = 1) as a function of β. For
comparison, also the results obtained with a standard random walk (horizontal line) is
shown.

the average similarity, percentage of visited arcs and discounted average similarity as β
ranges between 0 and 1, but this time we also show the behavior of a ratio-triangular
walk and of a standard random walk (the same as a ratio-triangular walk with β = 1).
Some remarks are in order:

• triangular walks obviously discover less arcs, because they tend to be trapped in
specific areas of the graph; when β = 0, both types of triangular walks remain
in the small cliques where they started from, whereas the mass-triangular version
tends to stutter when β = 1, as explained above;

• similarity is largely improved by reducing β (i.e., when triangles are privileged): a
standard walk accumulates an average similarity of about 0.488, whereas a mass-
triangular walk with β = 0.25 reaches 0.679, an improvement of about 39%;

• discounted similarity behavior is characteristic, with a maximum around β = 0.25.

Triangular walks on Hollywood Performing the same experiments with other walk
lengths and other networks give the same qualitative behavior, with an optimal dis-

91

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

%
a

rc
s

β

mass-triangular
ratio-triangular

standard

Figure 5.10: The fraction of arcs discovered in a mass-triangular and in a ratio-triangular
random walk of length 1 000 000 on the DBLP graph (with α = 1) as a function of β.
For comparison, also the results obtained with a standard random walk (horizontal line)
is shown.

92

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.2 0.4 0.6 0.8 1

s
im

 x
 %

a
rc

s

β

mass-triangular
ratio-triangular

standard

Figure 5.11: The discounted average similarity in a in a mass-triangular and in a ratio-
triangular random walk of length 1 000 000 on the DBLP graph (with α = 1) as a
function of β. For comparison, also the results obtained with a standard random walk
(horizontal line) is shown.

93

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 0.2 0.4 0.6 0.8 1

s
im

 x
 %

a
rc

s

β

mass-triangular
ratio-triangular

standard

Figure 5.12: The discounted average similarity in a in a mass-triangular and in a ratio-
triangular random walk of length 1 000 000 on the Hollywood graph (with α = 1) as a
function of β. For comparison, also the results obtained with a standard random walk
(horizontal line) is shown.

counted similarity that is typically between 0.1 and 0.3. In particular, we performed the
same experiments on the Hollywood graph obtained from the Internet Movie Database6;
this undirected graph has, in its current version (July 2011), 2 180 759 nodes (actors and
actresses) and 114 492 816 edges corresponding to having acted together in some movie.
Here the edge xy is labelled with the multiset of directors that directed the movies
co-acted by x and y, with the interpretation that a specific actor may have worked
in many different movies, but directors tend often to collaborate with the same set of
“trusted” actors. Similarity between arcs is once again computed using TF-IDF (here,
the vocabulary is made by director IDs).

The results obtained for this dataset are absolutely similar to the ones presented for
DBLP, so we limit ourselves to show, in Figure 5.12, the discounted average similarity
when α = 1 and with β ranging in [0, 1].

Clustering on DBLP For this set of experiments, we considered again the DBLP
graph G and clustered its arcs in various ways (see below). To determine the quality

6http://www.imdb.com/.

94

of the clusterings obtained, we used again the ground truth at our disposal (i.e., the
fact that we know how similar two given arcs are supposed to be) and proceeded as
follows: we randomly sampled a large number of pairs of arcs, and computed separately
the average similarity of the pairs that happened to belong to the same cluster and
the average similarity of the pairs that did not belong to the same cluster; the ratio
between these two quantities is used as a measure of quality — a good clustering should
provide a ratio larger than 1. Three sampling techniques were considered: uniform arc
sampling (the two arcs are sampled uniformly at random among all arcs); uniform node
sampling (a node of degree larger than one is sampled uniformly at random, and two of
its incident arcs are chosen again at random); degree node sampling (a node is sampled
with probability proportional to its degree, and two of its incident arcs are chosen).

We compare the results obtained by applying the Louvain method to various weighted
versions of L(G); for comparison, we also tried to cluster the arcs using the system
proposed by [29] (that uses the undirected version of the link graph) and LINK, a
link clustering technique proposed in [77]7. We also tried to cluster the arcs indirectly,
through some of the best node clustering techniques; we transform a node clustering into
an arc clustering with the following strategy: since a node clustering algorithm produces
a labeling function f : VG → N, we map each arc xy to the pair (f(x), f(y)) ∈ N2, and
use the latter as arc label. If the original graph is symmetric, we can forget about the
order of labels and assign an unique identifier to each unordered pair of labels.

In Table 5.2 you can see the results of this experiment; the Louvain method on
L(G) invariably produces less communities than all other methods, although triangular
weights tend to create more clusters. Since our community-detection algorithm aims
at capturing local communities more than global ones, our performance deteriorates on
uniformly sampled arcs (but it is still much better than all the other approaches); locally,
however, we perform better (in some cases, much better) than the other techniques.
The second best method is certainly [29]. As far as the difference between the two types
of weights, the gain in using the arc-stationary state instead of the simple triangular
weights is small, but PageRank computation is so fast that the effort is anyway worth.

Clustering of the word association network For these experiments, we considered
the Free Word Association network [56]; this is a directed graph describing the results
of an experiment of free word association performed by more than 6 000 participants
in the United States: its nodes correspond to words and arcs represent a cue-target
pair (the arc xy means that the word y was output by some of the participants based

7We also experimented with the software described in [42], but could not have it work on networks
of more than about 100 nodes.

95

no. of Arc sampling method
clusters Unif. node Deg. node Unif. arc

Louvain [9]

vT 529 17.19 15.40 2.14
wT 569 16.66 14.84 2.15
vS 231 1.01 1.25 1.42
wS 229 2.69 4.16 1.42
- 247 1.32 1.42 1.54

Evans et al. [29] - 231 5.70 5.94 1.44
LINK [77] - 630 1.04 2.61 1.41
Infomap [66] - 62680 1.80 0.74 1.10
Louvain (on G) [9] - 6414 1.67 2.98 1.45

Table 5.2: Clustering quality obtained using different techniques on the DBLP graph (in
boldface, the two triangular weights suggested in this chapter, using α = 0.99 and β =
0.2; see Section 5.3). The quality is measured as the ratio between the average similarity
of pairs of arcs in the same cluster vs. arcs in different clusters, using different arc
sampling methods. The upper group refers to the application of the Louvain algorithm
to various (weighted or unweighted) versions of L(G); the middle group consists of
algorithms that produce an arc-clustering on G; the bottom group, instead, produce a
node-clustering on G, that we interpret as an arc-clustering.

96

on the stimulus x). This graph contains 10 225 words and 71 679 associations (arcs).
In Figure 5.13 you can see how the Louvain method [9] on L(G) produces different
clusterings (here, we show the vicinity of the words “gum” and “gums”), depending on
whether it is fed with no weights or with the arc-stationary distribution of triangular
walks. Observe that correctly the latter clearly distinguishes between the associations
related to edible chewing gum (yellow), those that have to do with teeth and mouth
(blue), those that are related to chewing (purple), with other small communities (like the
one about “stickiness”). Also notice that the arcs connecting “chew” with “spit” are in
different communities (the arc going towards “chew” stays together with the “chewing”
community, whereas “spit” is more generic).

5.6 Conclusions

We introduced a new kind of random process that helps in singling out arc communities
in social networks; this can be seen as a Markov chain on the line graph whose arc-
stationary state contains a big deal of information on the communities, and can be
fruitfully used to gain a more accurate and fine-grained resolution, at least at a local
level. In our experiments, using this information ended up in producing more reasonable
and significant clusters, with a limited computational cost.

These results are preliminary but very encouraging; we also believe that the weights
proposed here can be beneficial for other types of mining tasks. Such tasks can be made
reasonably scalable by exploiting the possibility (here explored with ALP) of writing
implicit versions of mining algorithms that work on the weighted line graph without
having to build it explicitly.

97

BUBBLE

GUM

CANDY

CHEW

MOUTH

SPIT

TEETH

EXTRA

GINGIVITIS

GOO

STICKY

STICKTASTE

TREE

GUMS

OLD PINKBLEED

JAWLASTING

MENTHOL

MINT MINTS

STUCK

TOOTH

BUBBLE

GUM

CANDY

CHEW

MOUTH

SPIT

TEETH

EXTRA

GINGIVITIS

GOO

STICKY

STICKTASTE

TREE

GUMS

OLD PINKBLEED

JAWLASTING

MENTHOL

MINT MINTS

STUCK

TOOTH

Figure 5.13: Different clusterings of the word association network, in the vicinity of
the words “gum” and “gums”. Both are obtained using the Louvain method on the
line graph; on the left, the results with no weights (802 clusters); on the right, with
the arc-stationary distribution of triangular random walks, β = 0.2 and α = 0.99 (373
clusters)).

98

Bibliography

[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack toler-
ance of complex networks. Nature, 406:378–382, 2000.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. J. Comput. Syst. Sci, 58(1):137–147, 1999.

[3] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local partitioning for directed
graphs using PageRank. Internet Math., 5(1):3–22, 2008.

[4] Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Algorithms,
2(3):1031–1044, 2009.

[5] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[6] Michael J. Barber and John W. Clark. Detecting network communities by propa-
gating labels under constraints. Phys. Rev. E, 80(2):026129, Aug 2009.

[7] Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik Magdon-
Ismail, and Nathan Preston. Finding communities by clustering a graph into over-
lapping subgraphs. In IADIS AC’05, pages 97–104, 2005.

[8] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and Suresh
Venkatasubramanian. The Connectivity Server: fast access to linkage information
on the Web. Computer Networks and ISDN Systems, 30(1-7):469–477, 1998.

[9] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008:P10008, 2008.

[10] P. Boldi and S. Vigna. Codes for the world wide web. Internet mathematics,
2(4):407–429, 2005.

99

[11] Paolo Boldi, Violetta Lonati, Massimo Santini, and Sebastiano Vigna. Graph fi-
brations, graph isomorphism, and PageRank. RAIRO Inform. Théor., 40:227–253,
2006.

[12] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered la-
bel propagation: A multiresolution coordinate-free ordering for compressing social
networks. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th inter-
national conference on World Wide Web, pages 587–596. ACM, 2011.

[13] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. In Sadagopan Srinivasan,
Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Ku-
mar, editors, Proceedings of the 20th international conference on World Wide Web,
pages 625–634. ACM, 2011.

[14] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. PageRank: Functional de-
pendencies. ACM Trans. Inf. Sys., 27(4):1–23, 2009.

[15] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Permuting web graphs. In
WAW ’09: Proceedings of the 6th International Workshop on Algorithms and Mod-
els for the Web-Graph, pages 116–126, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Permuting web and social
graphs. Internet Math., 6(3):257–283, 2010.

[17] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression
techniques. In Proc. of the Thirteenth International World Wide Web Conference,
pages 595–601. ACM Press, 2004.

[18] S.P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–71, 2005.

[19] S.P. Borgatti. Identifying sets of key players in a social network. Computational &
Mathematical Organization Theory, 12(1):21–34, 2006.

[20] S.P. Borgatti, K.M. Carley, and D. Krackhardt. On the robustness of centrality
measures under conditions of imperfect data. Social Networks, 28(2):124–136, 2006.

[21] U. Brandes. A faster algorithm for betweenness centrality*. Journal of Mathemat-
ical Sociology, 25(2):163–177, 2001.

100

[22] U. Brandes and T. Erlebach. Network analysis: methodological foundations, volume
3418. Springer Verlag, 2005.

[23] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-
dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In KDD
’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 219–228, New York, NY, USA, 2009. ACM.

[24] Edith Cohen. Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci., 55:441–453, 1997.

[25] R. Cohen and S. Havlin. Complex Networks: Structure, Robustness and Function.
Cambridge Univ Pr, 2010.

[26] Gianna M. Del Corso, Antonio Gull̀ı, and Francesco Romani. Fast pagerank com-
putation via a sparse linear system. Internet Mathematics, 2:118–130, 2004.

[27] Debora Donato, Stefano Leonardi, Stefano Millozzi, and Panayiotis Tsaparas. Min-
ing the inner structure of the web graph. Journal of Physics A: Mathematical and
Theoretical, 41(22):224017, 2008.

[28] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities
(extended abstract). In Giuseppe Di Battista and Uri Zwick, editors, Algorithms -
ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-
19, 2003, Proceedings, volume 2832 of Lecture Notes in Computer Science, pages
605–617. Springer, 2003.

[29] T. S. Evans and R. Lambiotte. Line graphs, link partitions, and overlapping com-
munities. Phys. Rev. E, 80(1):016105, Jul 2009.

[30] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyper-
LogLog: the analysis of a near-optimal cardinality estimation algorithm. In Pro-
ceedings of the 13th conference on analysis of algorithm (AofA 07), pages 127–146,
2007.

[31] Dániel Fogaras. Where to start browsing the web? In Innovative Internet Com-
munity Systems, Third International Workshop, IICS 2003, volume 2877 of Lecture
Notes in Computer Science, pages 65–79. Springer, 2003.

[32] Santo Fortunato. Community detection in graphs. Physics Report, 486:75–174,
February 2010.

101

[33] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Science, 104:36–41, January 2007.

[34] Santo Fortunato and Claudio Castellano. Community structure in graphs. In
Robert A. Meyers, editor, Encyclopedia of Complexity and Systems Science, pages
1141–1163. Springer, 2009.

[35] Anna C. Gilbert and Kirill Levchenko. Compressing network graphs. In Proceedings
of the LinkKDD workshop at the 10th ACM Conference on KDD, August 2004.

[36] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compressed
data structures: Dictionaries and data-aware measures. Theoret. Comput. Sci.,
387(3):313–331, 2007.

[37] J. A. Hartigan and P. M. Hartigan. The dip test of unimodality. Ann. Statist.,
13(1):70–84, 1985.

[38] R. L. Hemminger and L. W. Beineke. Line graphs and line digraphs. In L. W.
Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, pages 271–
305. Academic Press Inc., 1978.

[39] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Sympo-
sium on Foundations of Computer Science, pages 549–554, Research Triangle Park,
North Carolina, 1989. IEEE.

[40] Chen Jianbin, Fang Deying, and Shi Tong. A graph partition-based soft clustering
algorithm. In Proceedings of the 2008 Second International Symposium on Intelli-
gent Information Technology Application - Volume 02, pages 572–577, Washington,
DC, USA, 2008. IEEE Computer Society.

[41] U Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Faloutsos, ,
and Jure Leskovec. HADI: Mining radii of large graphs. ACM Transactions on
Knowledge Discovery from Data, 2010.

[42] Youngdo Kim and Hawoong Jeong. The map equation for link community. CoRR,
abs/1105.0257, 2011.

[43] David Knoke and Song Yang. Social Network Analysis. Sage Publications, Inc,
second edition edition, 2008.

102

[44] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Gen-
erating All Tuples and Permutations (Art of Computer Programming). Addison-
Wesley Professional, 2005.

[45] Donald E. Knuth. The Art of Computer Programming. Pre-Fascicle 1A. Draft of
Section 7.1.3: Bitwise Tricks and Techniques, 2007.

[46] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social
networks. Link Mining: Models, Algorithms, and Applications, pages 337–357,
2010.

[47] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet Mathe-
matics, 1(3):355–400, 2004.

[48] Silvio Lattanzi and D. Sivakumar. Affiliation networks. In Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC ’09, pages 427–434, New
York, NY, USA, 2009. ACM.

[49] Lun Li, David L. Alderson, John Doyle, and Walter Willinger. Towards a theory
of scale-free graphs: Definition, properties, and implications. Internet Math., 2(4),
2005.

[50] Bo Long, Mark Zhang, Philip S. Yu, and Tianbing Xu. Clustering on complex
graphs. In Proceedings of the 23rd national conference on Artificial intelligence -
Volume 2, pages 659–664. AAAI Press, 2008.

[51] Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica A:
Statistical Mechanics and its Applications, 285(3-4):539 – 546, 2000.

[52] Hossein Maserrat and Jian Pei. Neighbor query friendly compression of social
networks. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 533–542. ACM, 2010.

[53] Marina Meilǎ. Comparing clusterings: an axiomatic view. In ICML ’05: Proceedings
of the 22nd international conference on Machine learning, pages 577–584, New
York, NY, USA, 2005. ACM.

[54] S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[55] R. Motwani and P. Raghavan. Randomized algorithms. In Algorithms and theory
of computation handbook, pages 12–12. Chapman & Hall/CRC, 2010.

103

[56] D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The university of south
florida word association, rhyme, and word fragment norms. http://www.usf.edu/
FreeAssociation/, 1998.

[57] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):026113, Feb 2004.

[58] Mark E. J. Newman and Juyong Park. Why social networks are different from
other types of networks. Phys. Rev. E, 68(3):036122, 2003.

[59] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, Stanford University, Stanford, CA, USA, 1998.

[60] Gergely Palla, Illes J. Farkas, Peter Pollner, Imre Derenyi, and Tamas Vicsek.
Directed network modules. New J.Phys., 9:186, 2007.

[61] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. Anf: a fast and
scalable tool for data mining in massive graphs. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 81–90, New York, NY, USA, 2002. ACM.

[62] Usha N. Raghavan, Réka Albert, and Soundar Kumara. Near linear time algo-
rithm to detect community structures in large-scale networks. Physical Review E
(Statistical, Nonlinear, and Soft Matter Physics), 76(3), 2007.

[63] Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G. Wickremesinghe.
The Link Database: Fast access to graphs of the web. In Proceedings of the Data
Compression Conference, pages 122–131, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[64] Peter Ronhovde and Zohar Nussinov. Local resolution-limit-free Potts model for
community detection. Phys. Rev. E, 81(4):046114, Apr 2010.

[65] Peter Ronhovde and Zohar Nussinov. Local resolution-limit-free potts model for
community detection. Phys. Rev. E, 81(4):046114, Apr 2010.

[66] Martin Rosvall and Carl T. Bergstrom. Multilevel compression of random walks on
networks reveals hierarchical organization in large integrated systems. PLoS ONE,
6(4):e18209, 04 2011.

104

[67] Ilya Safro and Boris Temkin. Multiscale approach for the network compression-
friendly ordering. Journal of Discrete Algorithms, 2010.

[68] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[69] E. Seneta. Non-negative matrices and Markov chains. Springer–Verlag, New York,
1981.

[70] Gergely Tibély and János Kertész. On the equivalence of the label propagation
method of community detection and a Potts model approach. Physica A Statistical
Mechanics and its Applications, 387:4982–4984, August 2008.

[71] Sebastiano Vigna. Stanford matrix considered harmful. In Andreas Frommer,
Michael W. Mahoney, and Daniel B. Szyld, editors, Web Information Retrieval
and Linear Algebra Algorithms, number 07071 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[72] Sebastiano Vigna. Broadword implementation of rank/select queries. In WEA 2008:
Proc. of the 7th International Workshop on Experimental Algorithms, number 5038
in Lecture Notes in Computer Science, pages 154–168. Springer–Verlag, 2008.

[73] Sebastiano Vigna. Spectral ranking, 2009.

[74] D. F. Vysochanskĭı and Yu. Ī. Petun̄ın. Remark: “Proof of the 3σ rule for uni-
modal distributions” [Teor. Veroyatnost. i Mat. Statist. 21 (1979), 23–35]. Teor.
Veroyatnost. i Mat. Statist., 27:26–27, 157, 1982.

[75] Stanley Wasserman, Katherine Faust, and Dawn Iacobucci. Social Network Analysis
: Methods and Applications (Structural Analysis in the Social Sciences). Cambridge
University Press, 1994.

[76] Wenpu Xing and Ali Ghorbani. Weighted pagerank algorithm. Communication
Networks and Services Research, Annual Conference on, 0:305–314, 2004.

[77] Sune Lehmann Yong-Yeol Ahn, James P. Bagrow. Link communities reveal multi-
scale complexity in networks. Nature, 466(7307):761–764, August 2010.

[78] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

105

