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SOMMARIO 

 

La pressione alta aumenta il carico di lavoro cardiaco e causa l'ipertrofia ventricolare sinistra 

(LVH). L’ipertrofia ventricolare sinistra è un importante fattore di rischio per la morbilità e la 

mortalità cardiovascolari. L’ipertrofia ventricolare sinistra è caratterizzata principalmente da 

due diversi fenotipi: (1) un ventricolo sinistro ingrandito a causa dell’aumento dello spessore  

della parete del muscolo cardiaco e (2) un ventricolo sinistro ingrandito a causa dell’aumento 

della dilatazione della parete del muscolo cardiaco. I meccanismi molecolari e patologici con 

i quali si verificanoentrambi  i fenotipi sono  sconosciuti. Inoltre, entrambe le varianti 

fenotipiche dell’ipertrofia ventricolare sinistra sono determinate da cambiamenti quantitativi e 

qualitivi nell'espressione genica di cellule miocardiche che si traducono in alterazioni 

strutturali ed emodinamiche nel miocardio. Pertanto, la genetica gioca un ruolo importante 

nello sviluppo dell’ipertrofia ventricolare sinistra.  

In questo lavoro, abbiamo effettuato uno studio di associazione genome-wide  al fine di  

indagare sulla genetica dell’ ipertrofia ventricolare sinistra (LVH) e dell’indice di massa 

ventricolare sinistra (LVMI). Abbiamo valutato questi tratti in una popolazione di studio di 

1,212 soggetti di origine europea bianca e 2,5 milioni di polimorfismi nucleotidici (SNPs). 

I risultati di questa indagine hanno dato 19 varianti significative (P < 5x10-7), tra cui due 

varianti sul cromosoma 1 nei locus genici di C1orf106 (rs6427864, P = 1.21 x 10-7), e del 

gene MCOLN2 (rs1030932, P = 2.61x10-7), due varianti localizzate vicine al gene IGBP5 

(rs13389579, P = 1.33x10-9) e al gene SP140 (rs4972945, P = 2x10-9), uno sul cromosoma 3 

vicino ZNF717 (rs686591, P = 3.93x10-9), tre sul cromosoma 4 in VEGFG (rs4557213, P = 

9.52x10-11), in GABRB1 (rs728294, P = 1.28x10-8), e in ADH1C (rs283410, P = 2.36x10-8), 

due sul cromosoma 6 nei pressi di un pseudogene piruvato chinasi (rs93992718, P = 

1.15x10-8) e HLA-DRA (rs6911419, P = 2.69x10-7), uno sul cromosoma 7 in VSTM2A 

(rs1403237, P = 4.90x10-10), uno sul cromosoma 8 vicino KCNU1 (rs7464912 , P = 5.97x10-

8), uno sul cromosoma 9 in ABL1 (rs10556171, P = 1.67x10-7), tre sul cromosoma 11 tra 

HEPHL1 e PANX1 (rs4753538, P = 4.19x10-10), in ARHGEF12 (rs11217837, P = 5.54 x10-8), 
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in SLC35C1 (rs7130656, P = 8.71x10-8) e due sul cromosoma 12 vicino KLRA1 

(rs11053849, P = 9.43x10-8 e rs10845156, P = 1.06x10-7). 

I risultati genome-wide dell‘esame LVMI hanno mostrato varianti significative; tuttavia al 

suggestivo valore di P <1x10-5 due regioni potenzialmente suscettibili di 97.6 Kb nel gene 

SYT14 e 3.4 kb nel gene GAS1 sono stati identificati per associazione con LVMI. 

In conclusione, abbiamo identificato 19 regioni suscettibili ad ospitare varianti comuni che 

sono state associate con l’ipertrofia ventricolare sinistra e 2 regioni potenzialmente associate 

con LVMI. Ulteriori studi funzionali genetici sono necessari per caratterizzare la rilevanza 

biologica nell‘ipertrofia indotta da sovraccarico di pressione. 



 9 

ABSTRACT 

 

High blood pressure makes the heart work harder and promotes enlargement of the left 

ventricle, left ventricular hypertrophy (LVH), which is an important risk factor for 

cardiovascular disease and death.  

LVH is characterized for the most part by two different sets of observable 

characteristics (genetic phenotypes): an enlarged left ventricle (1) due to increasing wall 

thickness and (2) due to increasing wall dilation. The molecular and pathological 

mechanisms by which either phenotype occurs is unknown. We do know, however, that both 

phenotypic variations of LVH are determined by quantitative and qualitive changes in the 

genetic expression of cardiac cells that result in structural alterations in the muscular tissue 

that affect the blood flow within the heart. 

Genetics, the study of heredity and the variation of inherited characteristics, therefore 

play a prominent role in the development of LVH. A genome-wide association (GWA) study 

to investigate the genetics of LVH and left ventricular mass index (LVMI) in a cross-sectional-

study of 1,212 subjects of white European ancestry and 2.5 million nucleotide polymorphisms 

(SNPs) yielded a total of 19 genome-wide significant (P < 5x10-7) variants. The GWA 

revealed no genome-wide significant variants; however, at suggestive P value < 1x10-5    

were found  two potentially susceptible regions of 97.6 Kb in the SYT14 gene and 3.4 kb in 

the GAS1 gene for association with LVMI.  

Nineteen (19) susceptible regions harboring common variants associated with LVH 

and 2 potential regions associated with LVMI were found. Further functional genetic studies 

(relating to a variable quantity whose value depends on one or more other variables) are 

required to characterize the biological relevance of these findings to high blood pressure 

associated with enlargement of the left ventricle. 
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INTRODUCTION 

 

Blood pressure 

Blood pressure (BP) measured in millimeters of mercury (mmHg) is defined as forced 

exerted by the blood against unit area of the vessel wall. In hemodymic terms, blood 

pressure is described as: 

 

BP ≅ CO x SVR mmHg 

 

BP is generated by the left ventricle ejecting oxygenated blood through the aortic valve into 

the aorta and into the systemic vasculature, which acts as a resistance to cardiac output. 

These series of events are actually described by the following equation: 

 

CO = SV x HR liters/minute, 

 

where CO, cardiac output; SV, stroke volume;  and HR, heart rate;  

Ejection of the blood into the aorta is characterized by two pressure measures occurring at 

different instants of time, the highest pressure called systolic pressure (Psystolic) and the 

lowest pressure called diastolic pressure (Pdiastolic), as shown in Figure 1. The difference 

between these two pressures is called pulse pressure (PP), defined as 

 

    PP = Psystolic - Pdiastolic  mmHg, 
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Figure 1. Arterial blood pressure wave 
 
 
 
The mean pressure is estimated by the mean arterial pressure (MAP), defined as 

 

    MAP ≅ 1/3 x (Psystolic - 2 x Pdiastolic) mmHg 

 

As blood flows down from the aorta through the systemic vasculature, changes in the 

diameters of the arterial bed, which serve to regulate blood perfusion into the organs, are 

encountered. These changes in arterial vessel diameters are known as systemic vascular 

resistance. Thus, the factors that determine the actual mean arterial pressure are cardiac 

output (CO), systemic vascular resistance (SVR), and the central venous pressure (CVP), as 

given in the following equation: 

 

    MAP = (CO x SVR) + CVP mmHg 

 



 12 

From this equation, it is easily to see that a change in the mean arterial pressure is 

dependent on a change in any of the determinants on the right side of the equation. (Note 

that since CVP ranges from 3 - 8 mmHg, for practical MAP calculation CVP is considered 0 

mmHg). A graphical representation of the mean arterial pressure within the systemic 

circulation is illustrated in Figure 2.  
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Figure 2. MAP within the systemic circulation 
 
 
Hypertension 

Hypertension, or high blood pressure (elevated arterial blood pressure), defined as systolic 

BP ≥140 mmHg and/or diastolic BP ≥ 90 mmHg, is the most common risk factor of 

cardiovascular disease. It is the major cause of heart attacks (cardiovascular mortality), 

stroke, and end-stage renal disease. 
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 Hypertension is a quantitative disease wherein the distribution of blood pressure is 

continuous, becoming skewed at high levels. Frequently it is classified clinically by three 

mechanisms: by its severity (i.e., blood pressure elevation), by its underlying cause (i.e., 

primary or essential hypertension vs. secondary hypertension), and by its prevalence in an 

aging population.  

 

Prevalence of hypertension 

Hypertension is highly prevalent everywhere, affecting more than 600 million people and 

accounting for 6 % of adult deaths  worldwide1. In Italy, hypertension is a common medical 

disorder, with 37.7% of the population suffering from the disease2.  

 Unlike tropical and infectious diseases where prevalence and incidence are well 

documented by epidemiologic and demographic studies, in hypertension these 

epidemiological an demographic measures are inconsistent across geographical regions, 

mostly because of variations attributed to differences in economic development and social 

and cultural determinants at the local level3. Other determinants, such as lack of 

standardized measurement, variability in drug treatment, confounding effects of aging, and 

intrinsic (genetic) factors for the disease, also contribute to changes in hypertension in 

various populations.   

 

Hypertension and aging  

The structural changes of the heart are inevitable as cardiac cells age and contractile forces 

debilitate, causing apoptosis and necrosis to occur.  The mechanisms that regulate blood 

pressure work differently in the young and middle-aged (age 20–59 years) and in the old 

(age ≥ 60 years), resulting in various cardiac structural changes and the flow of blood 

(hemodynamic changes) within the heart4, 5.  

 The hemodynamics of blood pressure are not linearly correlated with increasing age.  

While elevated systolic blood pressure is a persistent risk factor for cardiovascular disease in 

subjects younger than 50 years of age, diastolic blood pressure is a stronger predictor, and 
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in subjects older than 60 years of age pulse pressure becomes a better predictor since 

diastolic blood pressure is inversely associated with cardiovascular disease in older persons.  

In the geriatric population, hypertensive subjects, especially those whose arteries fail to 

distend in response to applied pressure (due to hardening of the arteries, or arteriosclerosis), 

systolic blood pressure tends to increase (with little or no effect on diastolic blood pressure). 

 In all persons, with the exception of the obese, the pattern of blood flow in the heart, 

while maintaining normal cardiac output, changes under high blood pressure, increasing total 

peripheral resistance.  

   

Hypertension and other risk factors 

Risk factors, such as obesity, a sedentary lifestyle, the excessive consumption of alcohol, 

excessive use of salt, and low potassium intake, profoundly affect to the manner of 

development (pathogenesis) of hypertension; however, how these risk factors are involved in 

the molecular changes of the heart has yet to be determined. 

 

Molecular and cellular biology of hypertension 

The molecular and cellular biology of high blood pressure requires an understanding of 

phenotypes, polygenes, and common variants. A phenotype consists of the set of observable 

characteristics of an individual resulting from the interaction of its genotype with the 

environment. A polygene is a gene whose individual effect on a phenotype is too small to be 

observed, but which can act together with others to produce observable variation. A common 

variant is a common allele that is unchanged across human populations. Common variants 

can be classified either as a disease-causing allele (also known as causal variant) or non-

causal allele whose function is not yet determined. A causal variant is found in the coding or 

regulatory sequence of a gene or between genes, and it has an effect on protein structure 

and function. A non-causal variant is found in the non-coding region of a gene or between 

genes, and it has no effect in the pathway of the disease.   
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Like most common diseases, hypertension is a complex, polygenic disease with a number of 

causes, or sets of causes (etiologies), interacting to produce complex phenotypes. 

 In a given population, it is believed (1) that 40-50 % of variance in blood pressure is 

from genetic and environmental factors, (2) that 30-35 % is from heritable genetic factors6-8, 

and (3) that 10 % is from Mendelian forms of hypertension9-14. As for the Mendelian forms of 

hypertension, although many studies have been done that have identified mutations 

underlying various monogenetic (descended from a single pair of ancestors) forms of 

hypertension, these are rare in the general population, thus leaving 90 % of the genetic 

variants still undetermined.  

 The disordered physiological processes (pathophysiological) associated with high 

blood pressure during the systolic phase, diastolic phase, or both, are still unknown. 

The multifactorial etiology of hypertension results from multiple gene interactions working 

together or independently at many different cellular levels. Such interactions are known as 

gene-gene interactions, and because of environmental influences that are likely to induce 

modification resulting from external rather than genetic influences, these epigenetic changes 

affecting DNA transcripts are known as gene-environment interactions.  

Advanced genetic technology has advanced our understanding of the genes involved 

in regulating blood pressure. But to date what thus technology has revealed is only a part of 

the wide range of genetic architecture involved in the study of high blood pressure.  

 

Diseases caused by high blood pressure 

Of the diseases caused or greatly augmented by high blood pressure, three in particular are 

notable: 

 

� Stroke:  Hypertension is the most important modifiable risk factor of stroke and 

stroke mortality in adults. Hypertension is characterized by microaneursyms, 

lipohyalinosis, and fibroid necrosis of the penetrating arteries that supply oxygenated 

blood to various parts of the brain, including the basal ganglia, the cerebral deep 
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white matter, and the pons15. Thus, stroke (also known as brain attack) is a 

neurological deficit caused by disrupt disturbance of blood flow in the brain. Stroke is 

the leading cause of death and disability in western societies. There are two types of 

stroke, ischemic and hemorrhagic. And in hypertensive subjects, ischemic stroke 

accounts for 80% of all strokes while the remaining percent is caused by the 

hemorrhagic type16. Severe hypertension is a common feature of subarachnoid 

hemorrhage17.  

 

• End-stage renal disease: Hypertension and diabetes mellitus are the two leading 

causes of end-stage renal disease (ESRD). Hypertension is in fact both a 

consequence and a cause of ESRD18. End-stage renal disease also known as 

chronic renal function (CRF) is defined as complete or almost-complete failure of the 

kidneys to function. The main function of the kidney is to remove waste and excess 

water from the body, while maintaining stable homeostatic functions.    

 

• Chronic heart failure: Hypertension is an important cause of chronic heart failure. 

Chronic heart failure (CHF) often called heart failure (HF) is defined as a 

pathophysiological state in which the heart fails to pump blood and support 

physiological circulation. Mean survival after diagnosis of CHF without treatment is 

1.4 years in men and 2.5 years in women as reported by the Framingham study19.  

 Heart failure is a complex disease that involves many pathological 

mechanisms that lead to malfunction of cardiac muscle and impaired physiology. 

Currently, six pathological causes can lead to heart failure: 

1. Abnormality of the myocardium due to  

a. Myocardial infarction (MI), an irreversible condition that causes the death of 

cardiac muscle (necrosis of heart cells) because of lack of blood supply; 
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b. Left bundle-branch block (LBBB), a condition that causes uncoordinated 

contraction because of delay or obstruction of cardiac impulses propagating 

from the bundle of His to the left bundle branch; 

c. Cardiotoxicity, a condition that impairs electrophysiological and mechanical 

cardiac functions caused by alcoholism, adverse effects of chemotherapy, 

and drug toxicity, developing eventually into cardiomyopathy;    

d. Cardiomyopathy, a condition characterized by injury of heart muscle making 

the heart larger and weaker. This condition is manifested in three forms: 

dilated, hypertrophic, and restrictive;   

e. Hypertrophy, a condition where enlargement of cardiomyocytes (thickening 

of the myocardium) occurs to support cardiac function as to meet body 

tissue demands. Hypertrophic causes decrease the size of the heart 

chambers, including the right and left ventricles; 

2. External work overload, a condition resulting from long-standing or severe 

hypertension. As demonstrated by the Framingham Heart study, 

hypertension accounts for 65 – 85 % of heart failure cases. Heart failure can 

develop in hypertensive patients with either reduced left ventricular systolic 

function or with preserved systolic function and diastolic relaxation 

abnormalities; 

3. Valve abnormalities, a condition involving the dysfunction of one or more 

valves of the heart (i.e., the tricuspid or pulmonary valve on the right-side of 

the heart, or the mitral or aortic valve on the left-side of the heart)   

4. Arrhythmias, a condition where the heart rate is irregular due to problems in 

the heart’s electrical conduction system; 

5. Presence of pericardial abnormalities or a pericardial effusion (tamponade) 

6. Congenital deformities of the heart, a condition caused by developmental 

cardiac malformations during embryogenesis or later in life. It is of 

heterogeneous  etiology associated with mechanical and/or electrical 
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dysfunction of the myocardium20. Genes and environmental influences 

account for 10% of cases of congenital heart disease; however, 

understanding of probable genetic links is increasing. 

 Heart failure results from a combination of two of more causes of heart 

disease that occur asynchronously, simultaneously, or in sequence at different points 

in life. This makes it difficult to define the cause of heart failure to a single form of 

heart disease.  

 For example, long-standing or severe hypertension may lead to structural 

heart disease and cardiac failure through at least two pathways: (1) the development 

of left ventricular hypertrophy and/or left ventricular dilation accompanied by 

abnormal contractility (systolic) or relaxation (diastolic), and (2) myocardial infarction 

resulting in a wall motion abnormality. Either pathway is a sequence of events that 

lead to impaired cardiac function resulting in failure of the heart to pump blood to 

meet the needs of the body.     

 

Left ventricular hypertrophy  

Left ventricular hypertrophy (LVH) is a common manifestation of hypertension that is life 

threatening if left untreated. LVH manifests itself in increased left ventricular mass (LVM) and 

is a powerful predictor of morbidity and mortality. Subjects with untreated LVH are at 

increased risks for coronary heart disease, stroke, congestive heart failure, and sudden 

death. 

 LVH occurs either from a response to long pressure overload that increases the left 

ventricular (LV) wall thickness (concentric LVH, as in hypertrophic cardiomyopathy) or from a 

response to chronic volume overload that promotes LV dilation (eccentric LVH, as in dilation 

cardiomyopathy). In both responses, myocardial muscle mass increases due to enlargement 

of cardiomyocytes and changes in individual myofibrils. 

 Left ventricular concentric hypertrophy is described by an increase in the left 

ventricular wall thickness in response to long-standing pressure overload to normalize left 
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ventricle wall tension. Under this condition, the weight of the heart increases 

disproportionately, increasing the overall cardiac size. By Laplace’s law, this phenomenon 

can be described as: 

   Wall tension = (Pressure x LV radius) / (LV wall thickness), 

 

where LV, left ventricle. The left ventricular wall thickness may exceed 2 cm and the heart 

weight may exceed 500 g. 

Concentric hypertrophy tends to occur because of hypertension or aortic stenosis and it is 

associated with normal or reduced left ventricular end-diastolic volume (LVEDV). With time, 

the thickened left ventricular wall shifts to stiffness leading to dysfunctional diastolic filling.  

 LVH caused by long-standing or severe hypertension is an independent predictor of 

mortality and a well-known established precursor of heart failure, myocardial infarction, and 

stroke. Population studies indicate that each 50 g/m2 increase in left ventricular mass (LVM) 

correlates to a factor increase of 1.7 in sudden death21; However, a much recent study 

reported that every 39 g/m2  increase in LVM confers to a 40% increase in risk of 

cardiovascular events, particularly in hypertensive subjects22. 

 Progression from LVH to heart failure is associated with LVH (either eccentric,  

concentric, or a mixture of the two), ischemia, increase fibrosis and ventricular stiffness, 

necrosis, apoptosis, and systolic ventricular failure.  

 

Diagnosis of left ventricular hypertrophy  

Left ventricular hypertrophy (LVH) diagnosis can be performed by: electrocardiogram, 

echocardiogram, and cardiac magnetic resonance imaging. 

 ECG-defined LVH is a low-cost and easy diagnostic test commonly perform during 

periodic examinations; however, its sensitivity and specificity are < 50 % and >90 %, 

respectively. ECG testing captures a wide variety of voltage abnormalities, which may not be 

necessarily correlated with LVH, thus making the assessment for LVH unreliable for persons 
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who do not meet all the ECG-LVH criteria. The general ECG features for assessing presence 

of LVH include: 

� ≥ QRS amplitude (voltage criteria) 

� Prolongation of the depolarization (delayed intrinsicoid deflection) 

� Widened QRS / T angle (signal pattern criteria)  

� Leftward shift in frontal plate QRS axis (ST-T abnormality criteria) 

� Evidence of atrial enlargement (LAE) 

ECG-LVH characterized by voltage alone underestimates the risk of adverse cardiovascular 

outcomes of left ventricular hypertrophy with or without repolarization abnormalities. 

Moreover, the exact mechanism of the voltage increase is not clear.  

 Echo-defined LVH is a much more sophisticated and accurate diagnostic test; 

however, it is more costly than ECG. Echo-LVH measures the geometric and blood flow 

patterns in the heart using ultrasound technology. Specifically, it offers the opportunity to 

calculate true left ventricular volumes, to estimate LV overall size and performance, and to 

evaluate systolic and diastolic functions in time. This is an improved method for assessing 

presence of LVH with sensitivity of 70 – 90 %.   

 Approximately 20% of heart failure cases are attributed to ECG-LVH diagnoses, 

whereas 60 – 70 % to Echo-LVH.  

 MIR-LVH is an optimum method for evaluating cardiac chamber and vessel anatomy 

as well as for determining functions and structures of the cardiovascular system using high 

quality imaging techniques. This diagnostic tool is an expensive modality for assessment of 

LVH and it is not always available in clinical settings and to every patient, making its usage 

limited.  

 

Molecular mechanisms of left ventricular hypertrophy  

The molecular mechanisms involved in the pathogenesis of LVH, which include increasing 

muscular, vascular, and collagenous components of the myocardium, are not known.  
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LVH is a multifactorial process influenced by a complex interplay of genetic, environmental, 

hemodynamic, and neurohumoral factors as well as demographic factors (e.g., age, gender, 

race), comorbid diseases (e.g., obesity, diabetes mellitus, coronary artery disease), and 

coincident pharmacologic therapies23.   

 LVH is associated with structural and molecular mechanisms far distinct from 

physiological left ventricle hypertrophy and compensatory cardiac remodeling24.  

Under pressure overload conditions, both neurohumoral and mechanical stimuli activate 

various protein processes  leading to the activation of several signaling molecules (e.g., 

calcium dependent proteins, protein kinases, and intracrine growth factors 25, 26) and to the 

involvement of many transcription factors 27, 28. 

 

Monogenic versus polygenic phenotypes of LVH  

Monogenic phenotypes of left ventricular hypertrophy result from genetic mutations of 

Mendelian forms (i.e., rare mutation of single genes), including a variety of missense 

mutations encoding sarcomeric proteins (e.g., beta-myosin heavy chain, myosin-binding 

protein C, troponin T and I, titin, and alpha-actin, to name a few), mutations encoding 

nonsarcomeric proteins (e.g., PRKAG2, LAMP-2), and mutations  encoding mitochondrial 

proteins 29.    

Polygenic phenotypes of left ventricular hypertrophy results from a combination of multiple 

genes and environmental factors. However, it is very likely that each of the genes involved in 

the development of LVH provides a small contribution (i.e., genetic additive effect) to the 

overall phenotype. Such additive effects are either amplified or masqueraded when 

combined with environmental factors.  

 

Heritability of LVH 

Genetic factors account for up to 60% of variance of LV mass30-36, and the remaining 40% is 

explained by conventional factors, such as age, gender, blood pressure, and body mass 

index. 
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Family history of LVH 

Family history of cardiac hypertrophy is an important index for quantifying familial 

susceptibility to the disease, in particular for monogenic forms of LVH. For polygenic forms of 

LVH as the one induced by hypertension, family history of high blood pressure precedes 

familiarity of LVH since it carriers a 2-fold risk in first-degree relatives.  

 
 

Genetics of LVH 

An increasing number of single nucleotide polymorphisms in genes that contribute to the 

development of cardiac remodeling and variation of LV mass have been identified, such  

angiotensin converting enzyme (ACE)37-39, peroxisome proliferator-activated receptor alpha 

(PPARA)40, guanine nucleotide binding G protein beta polypeptide 3 (GNB3)41, and 

cytochrome P450 family 11 subfamily B polypeptide (CYP11B2)42. Other genetic loci that 

have been association with LVH include cardiotrophin-1 (CT-1)43, ryanodine receptor 1 

(RYR1)44, and neural cell adhesion molecule 1 (NCAM1)45. 

 

Fundamental concepts 

Genetics 

From studies in human genetic architecture, it is known that on average, any two individuals 

share more than 99.5 % of their DNA sequences. The remarkable diversity of humans is 

encoded in less than 0.5 % of DNA, approximately 15 million base pairs. It is within this 

range that variations in disease predisposition and response to environmental factors reside. 

 Moreover, DNA variations are determined by two common forms, single-nucleotide 

polymorphisms (SNPs) and copy number variations (CNVs), both of which can occur 

anywhere in the genome. In particular, SNPs may occur throughout the genome (e.g., in 

exons, introns, intergenic, or regulatory regions) at a frequency of approximately one 

nucleotide in every stretch of about 1000 base pairs. However, only 1 % of SNPs occur in 

coding regions, and therefore variations of these coding sequences could alter the gene 

product and susceptibility to a phenotypic difference or to a disease.  
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 SNPs serve both as a physical landmark within the genome and as a genetic marker 

whose transmission can be followed in a family pedigree. Also, because of their prevalence 

and nonrandom distribution throughout the genome, SNPs can be used in linkage analysis 

for identifying haplotypes associated with disease.  

 CNVs, on the other hand, are genetic variations consisting of large contiguous 

stretches of DNA, ranging from 1000 to millions of base pairs. CNVs alike SNPs, but in 

complex rearrangements of genomic material and with multiple alleles, can be present or 

missing in a given population, thereby causing genotypic and phenotypic differences among 

human populations.  

 From monogenic studies, it is known that mutations caused by single base pair 

substitutions or insertion/deletions (frameshift) can lead to dramatic changes on the 

organism. Mutations that occur in exonic regions alter all or part of the amino acid sequence, 

thus causing detrimental effects on the organism. However, there are more variations outside 

the exonic regions than within; therefore, there is a greater need for investigating these 

regions and the role that they play in the onset of a disease. Additionally, thoughtful 

investigation of such gene products as encoded proteins, transcription factors, promoter 

regions, and microRNAs, as well as associated regulatory functions, is also necessary to 

complete the genetic spectrum of the disease.  

 

Phenotype 

Studying well-defined phenotypes (or traits) of complex diseases can make the outcome of 

the study more homogenous, as it focuses on a specific pathophysiological pathway. 

Defining a phenotype, enable us to study the genetic epidemiology of complex disease as a 

discrete or quantitative trait. However, defining a well-definite phenotype for a disease is a 

challenging task, since there is phenotypic heterogeneity, that is,  for the same disease (or 

trait), different features are manifested among related individuals or within a homogenous 

population.  
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Genetic epidemiology 

Genetic epidemiology is the study of genes, environmental factors, and their joint effects 

concerning the pathogenesis of a disease within and across populations.  

Genetic epidemiology was defined by Morton NE, 1982 as “a science which deals with the 

etiology, distribution, and control of disease in groups of relatives and with inherited causes 

of disease in populations”.  

Studying genetic epidemiology of a complex disease is a challenging task, since many genes 

and environmental factors play a role and it is difficult to quantify all factors accounting for the 

disease. On the other hand, studying plausible factors that are related to the disease, 

although it only accounts for a small risk, broadens our knowledge about the course of the 

development of disease.  

 

Working together with genotypes and phenotypes in a population, it is possible to study the 

genetic epidemiology of a disease as it is illustrated in Figure 3  

Gene            Protein         PHENOTYPE
(or Trait)

GENOTYPE

 

Figure 3. Genetic epidemiology framework 
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Gene discovery approaches 

The objective of gene discovery testing is being able to predict the phenotype (or trait) based 

on genotypic and environmental information. Genetic discovery testing is an approach to (1) 

provide new knowledge regarding the etiology and molecular mechanisms in the 

pathogenesis of a disease, (2) contribute to advanced development of novel treatments (e.g., 

personalized medicine), (3) identify people at risk, and (4) implement early diagnosis and   

prevention treatment measures.  

 To pursue unconventional gene discovery for complex diseases, genome-wide 

association studies (GWAS) (examination of thousands of SNPs across the genome) or 

candidate gene studies (examination of certain number of SNPs at a genomic location of 

interest) need to be conducted in a population, consisting of a large number of individuals 

with and without the disease. Particularly, a population study can be based on a cross-

sectional or case-control study design. Having a large sample size, guarantees enough 

statistical power to detect genetic variants (particularly common variants with allele frequency 

greater than 10%) associated with the trait or disease of interest.  

 GWAS and candidate gene studies are powerful methods of identifying genetic 

variants that are associated with an increased risk of developing the disease. Such variants 

themselves may be causative or may be in linkage disequilibrium (LD) with other genetic 

variants that are located in the vicinity and of which are responsible for the increased risk.  

 

In a population, genotypes of individuals are compared (usually under and additive model) as 

illustrated in Figure 4. 
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Study

Population

Genotypes for SNP

in study population

Under an additive model:
aa = 0
Aa = 1
AA = 2

 

Figure 4. Association analysis of a SNP in a population 
  

 

Currently, there are various genetic approaches, including 

 

- Genome-wide linkage analysis 

A genome-wide linkage approach examines the whole genome in a hypothesis-free 

approach with a limited number of genetic markers (about few hundreds) in 

populations of related individuals (based on family-based study disease) to identify 

regions of the genome that contain genes possibly predisposing to the disease or a 

trait of interest. 

 GWA linkage analysis is based on the principle that loci that are close 

together, segregate together more often than loci that are further apart, as 

chromosomal recombination will occur more frequent between distance loci with a 
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probability of 0.5. The rationale of linkage is that deviation from this probability 

indicates linkage between the disease and the genetic locus.  

This technique has been successful at the identification of the genetic 

variation underlying single-gene (monogenic/Mendelian) disorders, but not very 

successful for multifactorial diseases or traits.  

The advantage of linkage studies is that they are powerful for traits explained by rare 

variants with large effects.  

 

- Candidate gene analysis 

A candidate gene analysis examines variants in a particular gene whose function is 

suspected to be involved in the pathogenesis of the disease of interest. Therefore, a 

hypothesis regarding the gene involvement in the development of the disease is 

adopted prior to analysis. Candidate gene analysis is performed in a population-

based setting for association of one or more variants in the gene with the trait and/or 

phenotype of interest. In a candidate gene analysis, one or more genes can be 

analyzed given a priori hypothesis.  

The disadvantage of this approach is that suffers from lack of replication in 

independent large-scale studies. 

 

- Genome-wide association analysis 

A genome-wide association (GWA) analysis examines dense maps of single 

nucleotide polymorphism (SNP) makers in a hypothesis-free manner, that is, without 

making any assumption of genes involved in the pathogenesis of the disease (or trait) 

of interest.  

The feasibility of performing a genome-wide association analysis have been 

due to the availability of rapid advancement in the field of array genotyping 

technology and of the completion of the reference sequence of the human genome 

project and the International HapMap project.  
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GWA examines the full genome (determined by the number of markers according to 

the genotyping technology) with the aim of detecting genetic variants in multifactorial 

diseases and related-traits by comparing genoytpes of thousands of individuals in a a 

population or across populations. 
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AIM OF THE PROJECT 

 
Genetic architecture, nucleotide, and polymorphism are terms use in genetics. Genetic 

architecture is the complex genetic structure of something, in the present case heart tissue 

manifesting enlargement of the left ventricle. Nucleotides form the basic structural unit of 

nucleic acids, such as DNA. And polymorphism refers to the presence of genetic variation 

within a population, upon which natural selection can operate. 

 The goal of this project was to determine the genetic architecture of the left ventricular 

hypertrophy (LVH) and left ventricular mass (LVM) in a cross-sectional-study of 1,212 

subjects of white European ancestry (Italian) and 2.5 million nucleotide polymorphisms 

(SNPs), performing a genome-wide association analysis on these traits. 
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MATERIAL AND METHODS 
 

Study population 

The population of this study was selected from the Campania Salute (CS) project, a network 

involving 12,000 outpatients, 23 hospital-based outpatient hypertensive clinics in different 

regional hospitals, and 60 randomly selected general practitioners allocated in the regional 

area, with the Hypertension Clinic of the Federico II University in Naples serving as the 

coordinating center. Further details of this cohort have been previously reported elsewhere46. 

Seven hundred and fifty-four (754) patients for whom echocardiography data was available 

were selected for the study. Additionally, 480 subjects with normal left ventricular (LV) mass 

and without cardiovascular disease were selected from the AVIS Blood Bank in Naples. The 

total final population of the study consisted of 1,212 subjects.  

Participants were referred by their GPs to the coordinating center for evaluation of 

hypertension. Entry examination included ECG, blood and urine biochemistry, 

echocardiography, carotid ultrasound examination, and further examinations, if needed, with 

follow-up examination performed at least once a year. Prevalence of cardiovascular disease 

was defined as a history of previous myocardial infarction, angina, or procedures of coronary 

revascularization, stroke or transitory ischemic attack, congestive heart failure, or chronic 

kidney disease (with >grade 3 and GFR<30 ml/min per 1.73m2) at the time of the first 

examination in the outpatient clinic.  

The traditional risk factors for cardiovascular disease include: (1) diabetes mellitus, 

defined as treatment with insulin or oral hypoglycemic drugs, or as elevated (>126 mg/dL or 

7.0 mmol/L) levels of fasting, non-stressed blood glucose on at least two separate occasions 

in conjunction with adhering to ongoing dietary measures to control glucose level; (2) 

smoking status; (3) family history of myocardial infarction before age 60 years; (4) systemic 

hypertension, defined as a >140 mm Hg systolic or a diastolic blood pressure ≥90 mm Hg 

and/or ongoing pharmacological treatment; (5) hypercholestolemia, defined as total 

cholesterol >200 mg/dL (or 5.17 mmol/L) and/or LDL-cholesterol > 100 mg/dL (or 2.58 
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mmol/L); (6) hypertrygliceridemia, defined as ≥150 mg/dL; chronic kidney disease, defined as 

estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2; (7) metabolic syndrome, 

defined according to the NCEP ATP III criteria, i.e., if three or more of the following five 

criteria are met: waist circumference over 40 inches (men) or 35 inches (women), blood 

pressure over 130/85 mmHg, fasting triglyceride (TG) level over 150 mg/dl, fasting high-

density lipoprotein (HDL) cholesterol level less than 40 mg/dl (men) or 50 mg/dl (women) and 

fasting blood sugar over 100 mg/dl. 

Left ventricular mass was calculated using the Devereux equation47 in accordance 

with the American Society of Echocardiography (ASE) criteria48 defined as follows:  

 

LV mass = 0.8 x (1.04 x [(IVS+LVDD+PWT)3 – (LVDD)3]) + 0.6 grams,  

 

where IVS is interventricular septal thickness in cm, LVDD is left ventricular diastolic 

diameter, and PWT is left ventricular posterior wall thickness in cm.  

The LV mass was indexed by body surface area using normal limits from the Framingham 

Heart study (FHS). Left ventricular hypertrophy was defined by left ventricular mass index 

>116 g/m2 in men and >104 g/m2 in women as suggested in the FHS21.  

 

The study's protocol was approved by the Medical Ethics Review Board of the Federico II 

University in Naples. All participants provided informed consent.  

 

Sample collection 

During the regular routing examination, a blood sample (5 ml) was drawn from each 

participant enrolled in the study and was collected into EDTA tubes. All participants 

completed an interview that contained information about demographic and phenotypic data 

as aforementioned.  
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Genotyping 

Genomic DNA from peripheral blood leukocytes was extracted using a commercially 

available kit (DNA Qiamp Midi kit (QIAGEN). This was performed at Scientific and 

Technological Park IRCCS Multimedica, Milan, Italy.  

DNA samples were then processed according to standard Illumina protocol and were 

genotyped on Illumina SNP array.  

 The Italian study was genotyped in two stages. In the first stage, 727 subjects were 

genotyped on the Illumina InfiniumTM II HumanHap300 Genotyping BeadChips v.2.0 (with 

318,237 markers). In the second stage, 698 subjects were genotyped on the Illumina 

HumanOmni1-Quad BeadChip (with 1,140,419 markers) 

 Quality control for genotypes was determined using the Illumina-provided standard 

definition cluster-file for the HumanHap300 v.2.0 and the HummanOmni1-Quad products, 

respectively. Genotype sample quality control was accomplished by monitoring sample call 

rate, sex, heterozygote and homozygote frequencies, as well as other analogous parameters 

determined by the Bead Studio software. All steps of genotyping by Illumina platform were 

performed at Scientific and Technological Park IRCCS Multimedica, Milan, Italy. 

 

Quality control (QC) filtering 

 In order to ensure robust association tests, a quality control framework was 

preformed prior of association analysis. This framework consisted of implementing filtering 

measures of call rates (by SNP and by sample), measures of SNP genotype distribution 

(Hardy Weinberg Equilibrium (HWE) test), measures of SNP allele frequencies, and 

measures of sample heterozygosities (in autosomes and sex chromosomes). 

 

� Measures of call rates (by SNP and by sample): in the Italian study, a discovery 

phase with filtering thresholds, such as 97% genotyping call rate threshold, 97% call 

rate threshold, and  >1% minor allele frequency (MAF) threshold were implemented. 
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� Measures of SNP genotype distribution (HWE test): To check for genetic deviation 

among genotypes HWE test filtering was performed.     

 The Hardy-Weinberg law states that allele frequencies in one generation can 

be used to estimate what will happen to genotype proportions in the next generations 

as long as conditions must be met:   

a. the population is large and is randomly mating, and  

b. the population has no mutations and no migration,  

the allele frequencies will not be affected in the population. Henceforth, the genotypes 

will have equal fitness, i.e., there will be no selection.  

This can be mathematically expressed by considering a biallelic autosomal 

locus with alleles A and a, with define genotype frequencies in the population 

 

P(aa) = p11;   P(aA) = p12;  P(AA) = p22 

 

p11 + p12 + p22 = 1 

 

From this genotypes, allele frequencies P(a)=p and P(A)=q are calculated by 

 

P(a) = p = p11 + 0.5 x p12 

 

P(A) = q = p22 + 0.5 x p12 

 

      p + q = 1 

 

Thus, to test that allele and genotype frequencies will not change in a population in 

successive generations, all SNPs in the control population should be tested for HWE 

tests with a given P value criterion. SNPs failing such test will be excluded from the 

analysis.  
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As comparing the HWE tests, the observed versus the expected, an inflation 

factor is calculated. This is commonly denoted as lambda (λ), which may indicate 

poor genotyping quality control and/or genetic stratification in the population.  

In the Italian study, a HWE P value threshold < 1x10-6 was used.   

 

The quality control of sample information was based on measures of sample mix-ups, 

false/cryptic relationships, and unexpected/mixed ancestry. 

 

� Measures of heterozygosity: all female samples should have similar heterozygosity 

rates on the X-chromosome SNPs to the autosomes (1-22 chromosomes); all male 

samples should have no heterozygous X-chromosome SNPs and should be typed for 

the Y-chromosome SNPs. In the Italian samples, filtering checks for high 

heterozygosity (or high homozygosity) were performed. Subjects with either high 

heterozygosity or homozygosity were excluded from the Italian study.  

 

� Measures of gender verification: all genotyped subjects were checked for gender 

verification by heterozygosity calculation of the X-chromosome SNPs; samples with 

low but non-zero X-chromosome heterozygosities, and typically with low call rate will 

be excluded from the analysis. On the other hand, samples with high call rate, and 

but low heterozygosity, their gender was corrected using the remaining X-

chromosome SNPs for female  or Y-chromosome SNPs for male gender verification, 

respectively. 

 

� Measures of share segment analysis: in order to check relationships between 

samples, detect “odd” genotype distributions, or detect sample with different origins, 

Computation of the Identity-by-State (IBS) matrix between samples in each GWA 

dataset was performed.  
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For Italian study, all analysis within this filtering check was based on IBS matrix. 

Thus, comparison of segments (or alleles) using the identically by state (IBS) method, 

by means of checking whether the alleles look identical in the population were 

conducted. IBS alleles were treated mathematically in terms of population frequency 

rather than Mendelian probability of inheritance from the defined common ancestor. 

 

� Measures of population stratification: in order to check for population admixture 

and stratification, principal components (PC) quality control was employed. This 

technique was used to detect pattern in relationships among individuals based on 

allele frequencies at small loci. The aim of using this approach was to infer a few 

underlying axes of variations (known as eigenvectors) that summarizes the allelic 

associations in the GWAS dataset. This approach was computationally efficient. 

Confounding by stratification was controlled by adjusting for genetic background and 

when testing for allelic association even at short-range.  

The difference between admixture and stratification is that admixture generates 

gametes that consist of a mosaic of segments inherited from each of the ancestral 

subpopulation, whereas stratification generates allelic associations that were 

independent of map distance. In either case, population admixture and stratification 

are often considered together because they usually occur together and because the 

two phenomena can be modeled with similar statistical methods.  

Ultimately, the goal of applying this methodology was to control for hidden 

population stratification as a confounder in genetic association studies, and to control 

for long-range association generated by admixture when undertaking fine mapping of 

a disease locus.  

 

In summary, quality control (QC) filtering resulted in the first stage: 245,033 SNPs from the 

320K array and 573 subjects, and in the second stage: 755,863 SNPs from the 1M Human-
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DUO array and 639 subjects. QC genotyped data from both chips was then merged, totaling 

857,445 SNPs and 1,212 subjects. 

 

Imputation 

In order to check for SNPs in the vicinity of the significant SNP associations, imputations to 

infer missing SNPs based on the genotypes of the typed SNPs as well as impute genotypes 

for SNPs not on the original panel were performed using build 36, release 22 HapMap CEU 

population as the reference (www.hapmap.org).  

~2.5 million SNPs were attributed (imputed) using the maximum  likelihood  method 

implemented  in MACH 1.0 software49.  Genome-wide association analyses were performed 

using genotyped and imputed data.  

 

Statistical analysis 

Genome-wide association analysis of left ventricular hypertrophy  

In the Italian study, genome-wide association analysis of left ventricular hypertrophy was 

performed using logistic regression analysis under an additive model with the ProbABEL50 

software for analyzing the genotyped and imputed SNPs. Logistic regression model was 

adjusted for sex, age, and age2.  A statistical significance threshold of P value < 5x10-7 used 

by the Wellcome Trust Case-Control study51 was employed to identify genome-wide 

associated variants. Furthermore, a suggestive P value of < 1x10-5 was used for identifying 

potential candidate variants associated with LVH. The mathematical representation of this 

model is given as follows: 

 

LVH ~ sex + age + age2 + SNP, 

 

where SNP genotypes under the additive  models were coded as AA=0; Aa=1; and aa=2.  

Note that, “a” is the coded allele and “A” is the non-coded allele.  
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Genome-wide association analysis of left ventricular mass index  

In the Italian study, genome-wide association analysis of left ventricular mass was performed 

using linear regression under an additive model using ProbABEL50 software for analyzing all 

the genotyped and imputed SNPs. Linear regression model was adjusted for sex, age, and 

age2.  A statistical significance threshold of P value < 5x10-7 used by the Wellcome Trust 

Case-Control study51 was employed to identify genome-wide associated variants. In addition, 

a suggestive P value of < 1x10-5 was used for identifying potential candidate variants 

associated with LV mass index.  

 

LVMI ~ sex + age + age2 + SNP, 

 

where SNP genotypes under the additive  models were coded as AA=0; Aa=1; and aa=2. 

Note that, “a” is the coded allele and “A” is the non-coded allele.  

 

Genomic control 

In order to correct for false-positives following GWA analyses of LVH and LVMI, a genomic 

control measure on the chi-square test statistic is computed. Thus, the chi-square test 

statistic for any candidate locus c is then corrected using the estimated inflation factor 

(lambda). For the additive model, an estimate of the inflation factor was calculated using the 

following mathematical expression: 

 

estimated lambda = median((chisq1)
2, (chisq2)

2, (chisq3)
2 , …., (chisqN)2) / 0.456, 

 

where chisq, chi-square test statistic; N, number of SNPs tested for association;   

 

The genomic controlled chi-square test statistic is defined as: 

 

(chisqGC)2 = (chisqc)
2 / estimated lambda, 
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where (chisqGC)2, genomic controlled chi-square test statistic; (chisqc)
2 , chi-square test 

statistic at locus c;
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RESULTS 

 
Study samples  

Table 1 shows the descriptive data of the Italian study. The mean age was 48 ± 13 years. 

Out of 730 men and 482 women, 238 men (32.60 %) and 167 women (34.64 %) were 

diagnosed with left ventricular hypertrophy. The mean left ventricular mass index (LVMI) was 

120.64 ± 19.23 g in men and 109.94 ± 16.87 g in women. The risk factor for hypertension 

was present in 754 subjects (62.21 %) and for smoking in 289 subjects (23.84 %). The mean 

SBP was 141.22 ± 22.24 mmHg, and mean DBP was 90.89 ± 13.39 mmHg. There not were 

significant differences of blood pressure traits among men and women. The mean BMI in 

men was 27.63 ± 3.34 kg/m2 in men and 26.84 ± 4.79 kg/m2 in women.  

 

Table 1. Clinical characteristics of Italian study (N=1,212) 

 Men Women Total 

Age, mean (SD), years 47.86 (12.29) 49.06 (13.67) 48.33 (12.86) 

Body mass index mean (SD), kg/m2 27.63 (3.34) 26.84 (4.79) 27.32 (3.98) 

Systolic BP mean (SD), mm Hg 141.22 (20.89) 141.21 (24.14) 141.22 (22.24) 

Diastolic BP mean (SD), mm Hg 91.46 (13.22) 90.03 (13.63) 90.89 (13.39) 

Hypertension, No. (%) 455 (62.32%) 299 (69.53%) 754 (62.21%) 

Present smoking, No. (%) 187 (25.61%) 102 (21.16%) 289 (23.84%) 

LVH, No. (%) 238 (32.60%) 167 (34.64%) 405 (33.42%) 

LVM index mean (SD) , g/m2 120.64 (19.23) 109.94 (16.87) 116.42 (19.06) 

LV, left ventricular hypertrophy defined by LVMI >116 g/m2 in men and >104 g/m2 in women; LVM, left 
ventricular mass; Absolute value (percentage), No. (%); SD, standard deviation; 
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GWAS results of left ventricular hypertrophy (LVH)  

The quantile-quantile (Q-Q) and Manhattan plots from the GWA results on LVH in the Italian 

study are illustrated in Figure 5 and Figure 6, respectively.  

 

 
Figure 5. Q-Q plot of GWAS of LVH. The Q-Q plot depicts the observed versus the expected test 
statistics under the null hypothesis of no association. The black dots denote single nucleotide 
polymorphisms (SNPs) in regions known to be associated. The lambda denoted is the inflation factor 
estimated from chisq test statistic obtained from the logistic regression on LVH. 

 
 
 
 
 

lambda=1.07 
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Figure 6. Manhattan plot displays results of the genome-wide association analysis on LVH. Shown 
are the –log10(P) of all single nucleotide polymorphisms (SNPs) sorted by position. SNPs above the 
blue solid line (lower one) represent suggestive findings at P value < 1x10-5 whereas SNPs above the 
red solid line (upper one) represent findings at P value < 1x10-8. 
 
 
 
From the genome-wide association (GWA) results on left ventricular hypertrophy (LVH), we 

identified 19 variants (shown in Table 2) at a significant value P < 5x10-7, a priori threshold 

used by the Wellcome Trust Case-Control51.  Within the 19 GWAS hits for LVH, two variants 

were identified on chromosome 1 in C1orf106 (rs6427864, P = 1.21x10-7), and in MCOLN2 

(rs1030932; P = 2.61x10-7); two nearby IGBP5 (rs13389579, P = 1.33x10-9) and in SP140 

(rs4972945, P = 2x10-9); one on chromosome 3 nearby ZNF717 (rs686591, P = 3.93x10-9); 

three on chromosome 4 in VEGFG (rs4557213, P = 9.52x10-11), in GABRB1 (rs728294, P = 

1.28x10-8), and in ADH1C (rs283410, P = 2.36x10-8); two on chromosome 6 nearby a 

pyruvate kinase pseudogene (rs93992718, P = 1.15x10-8) and in HLA-DRA (rs6911419, P = 

2.69x10-7); one on chromosome 7 in VSTM2A (rs1403237, P = 4.90x10-10); one on 

chromosome 8 nearby KCNU1 (rs7464912, P = 5.97x10-8); one on chromosome 9 in ABL1 

(rs10556171, P = 1.67x10-7); three on chromosome 11 between HEPHL1 and PANX1 

(rs4753538, P = 4.19x10-10), in ARHGEF12 (rs11217837, P = 5.54 x10-8), in SLC35C1 
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(rs7130656, P = 8.71x10-8); and two on chromosome 12 nearby KLRA1 (rs11053849, P = 

9.43x10-8 and rs10845156, P = 1.06x10-7).  

 

Table 2. Results of GWAS of left ventricular hypertrophy (LVH) at P value < 5x10-7 

SNP 
identifier Chr Position 

Gene 
(nearest genes) 

CA/ 
NCA MAF Beta s.e. P PG 

rs6427864 

 

1 

 

199,126,036 

 

C1orf106 

(GPR25, C1orf106) 

C/T 

 

0.225 

 

0.855 

 

0.156 

 

4.73E-08 

 

1.21E-07 

 

rs1030932 

 

1 

 

85,179,836 

 

MCOLN2 

(LPAR3, MCOLN3) 
C/T 

 

0.231 

 

0.760 

 

0.143 

 

1.07E-07 

 

2.61E-07 

 

rs13389579 2 217,338,593 (IGFBP5) A/G 0.435 -0.694 0.111 3.90E-10 1.33E-09 

rs4972945 

 

2 

 

230,857,341 

 

SP140 

(SP110, SP140L) 

C/T 

 

0.405 

 

0.778 

 

0.126 

 

6.03E-10 

 

2.00E-09 

 

rs686591 3 76,134,314 (ZNF717) A/G 0.378 -0.767 0.126 1.24E-09 3.93E-09 

rs4557213 

 

4 

 

177,926,127 

 

VEGFC 

(SPCS3, NEIL3) 
A/G 

 

0.492 

 

-0.675 

 

0.101 

 

2.36E-11 

 

9.52E-11 

 

rs728294 

 

4 

 

47,052,170 

 

GABRB1 

(GABRA4,COMMD8) 

A/G 

 

0.233 

 

-0.876 

 

0.149 

 

4.32E-09 

 

1.28E-08 

 

rs283410 

 

4 

 

100,483,422 

 

ADH1C 

(ADH1B, ADH7) 

A/G 

 

0.473 

 

0.655 

 

0.114 

 

8.30E-09 

 

2.36E-08 

 

rs9392718 6 5,776,566  A/G 0.233 0.929 0.158 3.86E-09 1.15E-08 

rs6911419 

 

6 

 

32,517,765 

 

HLA-DRA 

(BTNL2, HLA-DRB9) 

C/T 

 

0.241 

 

-0.803 

 

0.151 

 

1.10E-07 

 

2.69E-07 

 

rs1403237 7 54,602,061 VSTM2A C/T 0.358 -0.799 0.124 1.35E-10 4.90E-10 

rs7464912 8 36,981,063 (KCNU1) A/C 0.345 -0.684 0.122 2.23E-08 5.97E-08 

rs1056171 

 

9 

 

132,750,822 

 

ABL1 

(EXOSC2, QRFP) 

A/G 

 

0.128 

 

-1.278 

 

0.237 

 

6.67E-08 

 

1.67E-07 

 

rs2255649 10 79,013,818 KCNMA1 C/T 0.169 1.089 0.195 2.42E-08 6.45E-08 

rs4753538 11 93,490,696 (HEPHL1, PANX1) C/T 0.307 0.844 0.131 1.14E-10 4.19E-10 

rs11217837 

 

11 

 

119,737,976 

 

ARHGEF12 

(TMEM136, GRIK4) 

A/G 

 

0.304 

 

-0.726 

 

0.129 

 

2.06E-08 

 

5.54E-08 

 

rs7130656 

 

 

11 

 

 

45,789,085 

 

 

SLC35C1 

(DKFZp779M0652, 
CRY2) 

A/G 

 

 

0.370 

 

 

-0.664 

 

 

0.120 

 

 

3.33E-08 

 

 

8.71E-08 

 

 

rs11053849 12 10,571,483 (KLRA1) C/T 0.160 1.067 0.194 3.62E-08 9.43E-08 

rs10845156 12 10,567,665 (KLRA1) C/G 0.156 -1.080 0.197 4.09E-08 1.06E-07 

SNP, single nucleotide polymorphism; Chr, chromosome; CA, coded allele; NCA, non-coded allele; 
MAF, minor allele frequency; Beta, genetic effect, se, standard deviation of beta;  P, nominal P value; 
PG, adjusted P value for genomic control; 
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The regional association plots of the first top GWA hits for LVH are illustrated below as well 

as brief discussion concerning the associated genetic finding.  

 

 

Figure 7.  Regional association plot for 1q32.1. The vertical axis (on the left) shows the negative log(P 
value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region and the 
second vertical axis (on the right side) represents the recombination rate (centimorgams  per mega 
bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis shows the 
position in mega bases. Each dot represents a SNP. Genes in the region are shown below the 
horizontal axis. 

 

 

The chromosome 1 open reading frame 206 (C1orf106) is a common susceptible 

locus for complex diseases, such as Crohn’s disease, and ulcitis disease51. Its exact cause is 

unknown, but it has been shown recently that C1orf106 interacts with TEC tyrosine kinase52, 

a set of proteins involved in intracellular signaling mechanisms of cytokine receptors, 

lymphocyte surface antigens, heterotrimeric G-proteins coupled receptors, and integrin 

molecules. Furthermore, TEC tyrosine kinase proteins are key regulatory molecules in 

cardiac injury and protection as well as in physiological response to angiotensin II53. The role 
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of tyrosine kinases in cardiac remodeling has been well documented. A recent study has 

shown that an TEC isoform, Bmx is implicated in angiogenesis and that is a necessary 

component of compensatory cardiac hypertrophy54.   

 

 

Figure 8. Regional association plot for 1p22.3. The vertical axis (on the left) shows the negative log(P 
value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region and the 
second vertical axis (on the right side) represents the recombination rate (centimorgams  per mega 
bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis shows the 
position in mega bases. Each dot represents a SNP. Genes in the region are shown below the 
horizontal axis. 

 

 

The mucolin 2 (MCOLN2) is a member of the Mucolilins proteins, a family of ion 

channel proteins with homology to the transient receptor potential (TRP) superfamily of 

cation channels55. These proteins play various roles in the regulation of membrane and 

protein sorting. In the heart, MCONL1 is widely expressed. Although the function of MCONL2 

is not well known and it has not been associated with any human pathology, evidence shows 

that the MCONL2 channel is functional at the plasma membrane and is characterized by a 
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significant inward rectification similar to other MCONL mutant isoforms56. Moreover, 

biochemical interactions have been observed between in homo- and hetero-multimeric 

combinations57.    

 

 

Figure 9. Regional association plot for 2q35. The vertical axis (on the left) shows the negative log(P 
value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region and the 
second vertical axis (on the right side) represents the recombination rate (centimorgams  per mega 
bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis shows the 
position in mega bases. Each dot represents a SNP. Genes in the region are shown below the 
horizontal axis. 
 

 

The insulin-like growth factor binding protein 5 (IGFBP5) is a member of the IGFBP 

family of six secreted proteins that play an important role in the regulation of insulin growth 

factors (IGF1 and IGF2). IGFBPs exhibit distinct structural and biochemical properties, 

function as carrier proteins in the circulation, and regulate insulin growth factor (IGF) 

turnover, transport, and half-life of circulating IGFs58. The functional role of IGFBP5 in the 

heart is currently unclear, but IGFBPs that are similar to IGFBP5, such as IGFBP2, have 

been shown to be involved in cardiovascular defects in targeted knockdown zebra fish 
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embryos59. Likewise, IGFBP1 has been associated with mediating hypoxia-induced growth 

and developmental retardation in embryo and adult zebra fish60-62. 

 

 

Figure 10. Regional association plot for 2q37.1. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 

 
 

The SP140, a nuclear body protein, is implicated in the control of cellular 

differentiation, cell growth, and gene transcription.63, 64 The biological processes of this gene 

makes it a potential candidate for the development of LVH. SP140 is upregulated in 

response to stimuli by cytokines, such as interferons (INFs), a group of proteins involved in 

pro-inflammatory activities.  

In pathological LVH, an increase of interferons has been shown to activate 

macrophages to produce nitric oxide, which increases vascular permeability across 

hypertrophied cardiomyocytes65. Moreover, activated macrophages produced abundant 
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ACE, resulting in local increased production of angiotensin II (Ang II), the effector peptide of 

the rennin-angiotensin system (RAS) that regulates the volume and electrolyte homeostasis 

and is involved in vascular and cardiomyocyte growth66. 

 

 
 
Figure 11. Regional association plot for 4q34.3. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 

 

 

The vascular endothelial growth-factor C (VEGF-C) is homologous with other 

members of the VEGF/platelet derived growth factor (PDGF) family and is a novel regulator 

of endothelia. VEGF-C is produced as a precursor protein, which is proteolitically processed, 

and binds to ligands, VEGFR-2 and VEGFR-3, inducing tyrosine autophosphorylation67, thus 

inducing myocardial vascularization during embryogenesis and in adult mouse heart68, 69. 

VEGF-C is localized in epicardial vessels70 and expression of ligand VEGFR-3 is highly 

present throughout the ventricles68. Furthermore, VEGF-C is highly expressed in 
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cardiomyocytes following at myocardial infarction, particularly around the lesion and in all 

stages of remodeling71.  

 
 

 

Figure 12. Regional association plot for 11q21. The vertical axis (on the left) shows the negative log(P 
value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region and the 
second vertical axis (on the right side) represents the recombination rate (centimorgams  per mega 
bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis shows the 
position in mega bases. Each dot represents a SNP. Genes in the region are shown below the 
horizontal axis. 
 

 

The hephaestin-like 1 (HEPHL1) is similar to the hephaestin (HEPH), a homologue of 

the ceruloplasmin (CP) gene.  Little is known about the biological functionality of the HEPHL1 

or its relationship with cardiomyocyte hypertrophy. However, the protein encoded by the 

HEPHL1 gene shares similar properties with proteins encoded by the CP and HEPHL genes, 

which are ferroxidase enzymes involved in the heart iron and copper metabolism72, 73. 

Copper reverses hypertrophic cardiomyopathy induced by pressure overload in mice model 

through VEGF/VEGF-R1 signaling pathway74, 75; whereas, iron overload in the heart leads to 

iron deposition in the myocardium leading to cardiomyopathy76.  
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The pannexin 1 (PANX1) is homologous to the invertebrate innexins, the structural 

components of gap junctions77. Pannexins and innnexins share considerable structural 

similarities, but their sequence homology is different from connexins (Cx), the typical gap 

junction proteins. PANX1, one of three in the pannexin gene family, is ubiquitously expressed 

in the body, including in the cardiomyocytes. PANX1 biological functionality relates to 

mediation of ATP release in intracellular calcium wave initiation and propagation upon 

mechanical stress (or other stimuli, such as depolarization) and release ATP to the 

extracellular medium78. Hypertrophied cardiomyocytes are characterized by multiple genetic 

changes that modify the integration of pathways utilized for energy synthesis and intracellular 

calcium homeostasis79. Moreover, in the hypertrophied heart where ischemia-conditions are 

constantly threatening host cells, contraction and relaxation patterns are modified by 

molecular mechanisms in order to meet oxygen and metabolic demands in the heart. A 

recent study has shown that PANX1 is active during ischemic-conditions in cardiac tissue80. 
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Figure 13. Regional association plot for 4q23. The vertical axis (on the left) shows the negative log(P 
value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region and the 
second vertical axis (on the right side) represents the recombination rate (centimorgams  per mega 
bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis shows the 
position in mega bases. Each dot represents a SNP. Genes in the region are shown below the 
horizontal axis. 
 
 

The alcohol dehydrogenase 1C (class 1), gamma polypeptide (ADH1C), a cytoplasmic 

protein that encodes a class I alcohol dehydrogenase, gamma subunit. ADH1C exhibits high 

activity for ethanol oxidation and metabolizes a wide variety of substrates, including other 

aliphatic alcohols, hydroxysteroids, and lipid peroxidation products (www.genecards.org). 

Functional relevant polymorphisms are found in the genes encoding class I alcohol 

dehydrogenase (ADH) isoenzymes, ADH1C and ADH1B, affecting ethanol degradation rates 

and alcohol intake in white populations81. Expression of ADH1C is found ubiquitously in the 

whole body, including the liver, kidney, skeletal muscle, lung, heart, and digestive tract.  

 

Additional variants identified at suggestive P value < 1x10-5 are given in Supplementary 

Table 1 in the Appendix.  
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GWAS results of left ventricular mass index 

The genome-wide association results for left ventricular mass index (LVMI) illustrated by the 

Q-Q plot and Manhattan plot, given in Figure 14 and Figure 15, respectively.  

 
Figure 14.  Q-Q plot of GWAS of LV mass index. The Q-Q plot depicts the observed versus the 
expected test statistics under the null hypothesis of no association. The black dots denote single 
nucleotide polymorphisms (SNPs) in regions known to be associated. The lambda denoted is the 
inflation factor estimated from chisq test statistic obtained from the linear regression on LV mass 
index. 

 

lambda=1.03 
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Figure 15. Manhattan plot displays results of the genome-wide association analysis on LV mass 
index. Shown are the –log10(P) of all single nucleotide polymorphisms (SNPs) sorted by position. 
SNPs above the blue solid line (lower one) represent suggestive findings at P value < 1x10-5 whereas 
SNPs above the red solid line (upper one) represent findings at P value < 1x10-8. 
 
 

The GWAS results for LVMI yielded no associated variant at P value < 5x10-7. However, at 

suggestive P value < 1x10-5, we identified 23 variants that were associated with LVMI as 

shown in Table 3.  

 Interestingly for this trait, the majority of suggestive findings fell within a 97.6 Kb 

region (from 208,466,275 to 208,368,666) on chromosome 1 in SYT14 and within a 3.4 Kb 

region (from 88,225,212 to 88,221,807) on chromosome 9 in the vicinity of GAS1.  
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Table 3. Results of GWAS of left ventricular mass index (LVMI) at suggestive P value < 1x10-5 

SNP 
identifier Chr Position 

Gene 
(nearest 

gene) 
CA/ 
NCA MAF Beta s.e. P PG 

rs12739243 

 

 

1 

 

 

208,368,666 

 

 

SYT14 

(C1orf107, 
C1orf133) 

C/T 

 

 

0.170 

 

 

5.783 

 

 

1.292 

 

 

7.55E-06 

 

 

9.80E-06 

 

 

rs11119421 

 

 

1 

 

 

208,387,666 

 

 

SYT14 

(C1orf107, 
C1orf133) 

A/G 

 

 

0.219 

 

 

-5.334 

 

 

1.119 

 

 

1.89E-06 

 

 

2.54E-06 

 

 

rs11119422 

 

 

1 

 

 

208,389,448 

 

 

SYT14 

(C1orf107, 
C1orf133) 

C/T 

 

 

0.219 

 

 

-5.350 

 

 

1.121 

 

 

1.83E-06 

 

 

2.46E-06 

 

 

rs7516843 

 

 

1 

 

 

208,389,552 

 

 

SYT14 

(C1orf107, 
C1orf133) 

A/G 

 

 

0.218 

 

 

-5.355 

 

 

1.122 

 

 

1.81E-06 

 

 

2.43E-06 

 

 

rs12029138 

 

 

1 

 

 

208,391,580 

 

 

SYT14 

(C1orf107, 
C1orf133) 

A/G 

 

 

0.218 

 

 

-5.360 

 

 

1.122 

 

 

1.78E-06 

 

 

2.40E-06 

 

 

rs12130989 

 

 

1 

 

 

208,394,563 

 

 

SYT14 

(C1orf107, 
C1orf133) 

A/G 

 

 

0.107 

 

 

7.711 

 

 

1.692 

 

 

5.17E-06 

 

 

6.77E-06 

 

 

rs11119423 

 

 

1 

 

 

208,395,015 

 

 

SYT14 

(C1orf107, 
C1orf133) 

C/T 

 

 

0.217 

 

 

-5.361 

 

 

1.122 

 

 

1.75E-06 

 

 

2.36E-06 

 

 

rs4537554 

 

 

1 

 

 

208,398,208 

 

 

SYT14 

(C1orf107, 
C1orf133) 

C/T 

 

 

0.217 

 

 

-5.355 

 

 

1.121 

 

 

1.77E-06 

 

 

2.38E-06 

 

 

rs4609425 

 

 

1 

 

 

208,401,689 

 

 

SYT14 

(C1orf107, 
C1orf133) 

A/G 

 

 

0.218 

 

 

5.632 

 

 

1.141 

 

 

7.92E-07 

 

 

1.09E-06 

 

 

rs1338298 

 

1 

 

208,462,685 

 
(SYT14, 

C1orf133) 
A/G 

 

0.317 

 

-4.646 

 

1.004 

 

3.69E-06 

 

4.87E-06 

 

rs1473696 

 

1 

 

208,464,175 

 
(SYT14, 

C1orf133) 

C/T 

 

0.316 

 

4.617 

 

0.994 

 

3.43E-06 

 

4.54E-06 

 

rs677520 

 

1 

 

208,466,275 

 
SYT14, 

C1orf133 

C/T 

 

0.320 

 

-4.620 

 

0.999 

 

3.74E-06 

 

4.93E-06 

 

rs656312 1 208,486,479 (SERTAD4) C/G 0.402 -4.732 0.990 1.74E-06 2.33E-06 

rs3887276 

 

 

3 

 

 

14,861,366 

 

 

FGD5 

(C3orf20, 
NR2C2) 

C/T 

 

 

0.279 

 

 

5.142 

 

 

1.132 

 

 

5.56E-06 

 

 

7.26E-06 

 

 

rs12509827 

 

4 

 

22,959,397 

 
(GBA3, 

PPARGC1A) 

A/G 

 

0.131 

 

-8.544 

 

1.852 

 

3.98E-06 

 

5.25E-06 

 

rs2074685 7 100,648,984 
ZNHIT1 

(PLOD3, C/T 0.324 -4.846 1.022 2.11E-06 2.82E-06 
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CLDN15)  

 

 

 

 

 

 

 

 

 

 

 

rs7860714 

 

9 

 

1,856,537 

 
(DMRT2, 

SMARCA2) 

A/G 

 

0.407 

 

-7.950 

 

1.612 

 

8.17E-07 

 

1.12E-06 

 

rs11792039 9 88,221,807 (GAS1) A/C 0.182 6.138 1.349 5.36E-06 7.01E-06 

rs11141385 9 88,222,194 (GAS1) A/G 0.191 -6.439 1.336 1.43E-06 1.94E-06 

rs11141386 9 88,223,866 (GAS1) A/T 0.187 6.386 1.336 1.75E-06 2.35E-06 

rs12377012 9 88,224,793 (GAS1) A/G 0.171 -6.291 1.362 3.88E-06 5.12E-06 

rs12375764 9 88,225,190 (GAS1) A/T 0.170 6.242 1.358 4.30E-06 5.65E-06 

rs11141387 9 88,225,212 (GAS1) A/T 0.169 -6.181 1.352 4.87E-06 6.38E-06 

SNP, single nucleotide polymorphism; Chr, chromosome; CA, coded allele; NCA, non-coded allele; 
MAF, minor allele frequency; Beta, genetic effect, se, standard deviation of beta;  P, nominal P value; 
PG, adjusted P value for genomic control; 
 

 

Regional association plots for LVMI at suggestive P value for interesting loci are illustrated 

below.  
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Figure 16. Regional association plot for 1q32.2. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
 
 

The synaptotagmin 14 (SYT14) is a member of Sypnaptotagmins, a large family of 

putative membrane trafficking proteins that are involved in various biological functions, 

including regulation of Ca2+-triggered cellular events through Ca2+-regulated membrane 

trafficking82. Microarray data indicate that SYT14 is expressed ubiquitously in the body in 

various ways, including upregulation in the atrioventricular node82. There is not direct 

relationship between SYT14 and hypertrophic cardiomyocytes; however, a homologue 

member of the Syt family, SYT1 interacts with the SNARE protein in rises of cytosolic Ca2+. 

The SNARE protein has been shown to regulate cardiac potassium channels and natriuretic 

factor secretion in cardiomyocytes, particularly during conditions of severe stress, including 

myocardial ischemia, hypoxia, and metabolic inhibition83. 
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Figure 17. Regional association plot for 9q.21.33. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
 

 

The protein encoded by the growth arrest-specific 1 (GAS1) gene is involved in 

growth suppression, preventing normal and transformed cells at G0 from traversing into the S 

phase84, 85. During cardiac morphogenesis, GAS1 is highly expressed in the endocardium 

and myocardium of the developing heart86. Recent data show that in the adult mice heart, 

GAS1 is expressed higher in the left ventricle than in any other anatomical cardiac structure 

under normal conditions, leading the authors to hypothesize that GAS1 is one of the genes 

that would be a potential regulator, playing a causal role under hypertrophic cardiomyocyte 

stimulation87 
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DISCUSSION    

 

Left ventricular hypertrophy is a heterogeneous disorder in which patients can be stratified by 

pathophysiological characteristics, i.e., expressing distinct cardiac hypertrophic phenotypes. 

Some causes of cardiac hypertrophic can be identified (as in monogenic forms), and some 

can be suspected (as in the adaptive hypertrophy for the athletic heart). Although aspects of 

the pathophysiology of cardiac hypertrophic can be identified in many patients, the molecular 

mechanisms involved in pathological LVH are not yet known. Furthermore, left ventricular 

hypertrophy encloses a vast etiologic variability, reflected by genetic and phenotypic 

heterogeneity.  

 Many studies have demonstrated that 60% of LV mass variations is heritable and that 

most likely genetic factor play a major role. However, the genetics of left ventricular 

hypertrophy is poorly understood. Moreover, the fact that the prevalence of LVH varies within 

and across populations, demonstrate that the etiology of LVH is a combination of genetic 

predispositions and environmental influencing the features manifested in the phenotype of 

LVH. As for the Mendelian forms of LVH, this only account for small percentage of all LVH 

cases in a population, leaving the remaining unaccounted for causes to be identified.  

Additionally, apart from the combination or the pooling of genetic and environmental 

factors, most plausibility there is a set of multiple gene interactions working together or 

independently at many different cellular levels (i.e., gene-gene interactions), as well as a set 

of gene influenced by environmental factors that are likely to induce epigenetic changes 

affecting DNA transcriptional activity (gene-environment interactions).  A graphical 

interpretation of these interactions can be captured by the following illustration. 
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Figure 18. Illustration of linked mechanisms involving gene-gene interactions for developing for 
possible phenotype form of LVH 

 

Thus, the genetic variations of LVH are plausibly caused by polymorphic genetic 

differences, implicating complex interactions among various genes, and interactions among 

genetic and environmental factors.  Several strategies have begun to address the genetic 

basis of left ventricular hypertrophy.  

One approach has been to seek variant candidate genes and associate them with the 

risk of LVH as it has been explained in previously. A much more advanced approach is by 

means of genome-wide association studies (GWAS), a high throughput genotyping, utilizing 

single nucleotide polymorphism (SNP) arrays having hundreds of thousands of SNPs as 

DNA markers distributed across the human genome. These markers can identify the location 

of genes that influence the susceptibility to LVH by exploiting various phenotypic forms of 

LVH or related-quantitative traits that influence the LVH phenotype, such as LV mass.  

 In this work, performing GWA analysis allowed to identify loci associated with left 

ventricular hypertension and LV mass index anywhere across the genome with more 
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certainty and without many of the hurdles and limitations encountered as in other types of 

genetic studies. Although the ability to detect a locus depends on many factors (i.e., the 

model design and assumptions, the population genetic homogeneity, the sampling bias, the 

genetic structures, the strength of the effect of each locus, the linkage disequilibrium 

between the markers tested at the locus, and the environmental factors accounted in the 

study), this study aimed to examine a small part of the vast complexity that left ventricular 

hypertrophy encompasses. From the GWA analysis on left ventricular hypertrophy (LVH) and 

left ventricular mass index (LVMI) conducted in a population study of 1,212 individuals from 

white European ancestry, 19 variants associated with LVH were identified at a P value < 

5x10-7, the pre-specified genome-wide significance threshold in the Welcome Trust Case-

Control study51. These 19 variants correspond to 12 intronic and 7 intergenic markers located 

in different genetic loci, including C1orf106, MCOLN2, IGFBP5, SP140, ZNF717, VEGFG, 

GABRB1, ADH1C, HLA-DRA, VSTM2A, KCNU1, ABL1, KCNMA1, HEPHL1, PANX1, 

ARHGEF12, SLC35C1, and KLRA1 genes. Additionally, two more other potential loci of 

interest (SYT14 and GAS1) associated with LV mass index merit to be further studied.  

 

A limitation of the study is the 62% of subjects were receiving antihypertensive 

therapy at the time of the study, which may resulted in underestimation of the role of genetic 

factors of LVH and possibly reserve the hypertrophic changes on the LV mass. Nevertheless, 

we found potential findings that need to be further validated in other cohorts as well as 

proven their functionality in animal model settings.  
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Supplementary Table 1 Results of GWAS of left ventricular hypertrophy (LVH) at suggestive P value 
< 1x10-5 
 

SNP 
identifier Chr Position 

Gene 
(nearest gene) 

CA/ 
NCA MAF Beta s.e. P PG 

rs6427864 

 

 

1 

 

 

199,126,036 

 

 

C1orf106 

(GPR25,  

C1orf106) 

C/T 

 

 

0.225 

 

 

0.855 

 

 

0.156 

 

 

4.73E-08 

 

 

1.21E-07 

 

 

rs1030932 

 

 

1 

 

 

85,179,836 

 

 

MCOLN2 

(LPAR3,  

MCOLN3) 

C/T 

 

 

0.231 

 

 

0.760 

 

 

0.143 

 

 

1.07E-07 

 

 

2.61E-07 

 

 

rs12734277 1 213,029,394 (CENPF) C/T 0.326 0.664 0.130 3.06E-07 7.01E-07 

rs12409341 

 

1 

 

169,030,050 

 

(PRRX1,  

C1orf129) 

A/G 

 

0.274 

 

-0.734 

 

0.151 

 

1.21E-06 

 

2.56E-06 

 

rs281959 1 91,514,643 HFM1 C/T 0.380 0.660 0.139 2.19E-06 4.48E-06 

rs4329494 1 190,342,868 (RGS18) C/T 0.223 0.664 0.143 3.52E-06 6.99E-06 

rs1059267 

 

 

1 

 

 

92,747,850 

 

 

EVI5 

(GFI1,  

RPL5) 

A/C 

 

 

0.208 

 

 

0.662 

 

 

0.145 

 

 

5.05E-06 

 

 

9.83E-06 

 

 

rs13389579 2 217,338,593 (IGFBP5) A/G 0.435 -0.694 0.111 3.90E-10 1.33E-09 

rs4972945 

 

 

2 

 

 

230,857,341 

 

 

SP140  

(SP110,  

SP140L) 

C/T 

 

 

0.405 

 

 

0.778 

 

 

0.126 

 

 

6.03E-10 

 

 

2.00E-09 

 

 

rs3820821 

 

2 

 

27,009,352 

 

DPYSL5  

(MAPRE3) 

C/T 

 

0.245 

 

-0.754 

 

0.146 

 

2.58E-07 

 

5.98E-07 

 

rs12694040 2 206,690,791 (NDUFS1) C/T 0.328 0.661 0.131 4.20E-07 9.45E-07 

rs3769027 

 

2 

 

135,393,505 

 

CCNT2  

(YSK4) 

C/T 

 

0.363 

 

-0.613 

 

0.123 

 

6.24E-07 

 

1.37E-06 

 

rs4853363 2 78,120,485 (CYCSP6) G/T 0.433 0.476 0.098 1.32E-06 2.77E-06 

rs10180152 2 41,821,726 (LDHAL3) A/G 0.286 -0.619 0.130 2.11E-06 4.31E-06 

rs2718443 2 193,983,293  C/T 0.199 -0.742 0.159 3.12E-06 6.24E-06 

rs1371639 2 193,979,588  A/C 0.198 0.747 0.160 3.12E-06 6.24E-06 

rs686591 3 76,134,314 (ZNF717) A/G 0.378 -0.767 0.126 1.24E-09 3.93E-09 

rs676433 3 76,116,213 (ZNF717) A/T 0.288 0.748 0.146 3.15E-07 7.21E-07 

rs9864800 3 21,783,852 (ZNF385D) C/T 0.321 0.687 0.139 8.57E-07 1.85E-06 

rs7611653 3 169,406,166 (GOLIM4) G/T 0.114 -1.227 0.255 1.45E-06 3.04E-06 

rs4685016 

 

3 

 

13,783,011 

 

(FBLN2, 

 WNT7A) 

C/T 

 

0.290 

 

0.539 

 

0.118 

 

5.11E-06 

 

9.94E-06 

 

rs4557213 

 

 

4 

 

 

177,926,127 

 

 

VEGFC 

(SPCS3,  

NEIL3) 

A/G 

 

 

0.492 

 

 

-0.675 

 

 

0.101 

 

 

2.36E-11 

 

 

9.52E-11 

 

 

rs728294 

 

4 

 

47,052,170 

 
GABRB1  

(GABRA4, 

A/G 

 

0.233 

 

-0.876 

 

0.149 

 

4.32E-09 

 

1.28E-08 
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   COMMD8)       

rs283410 

 

 

4 

 

 

100,483,422 

 

 

ADH1C  

(ADH1B,  

ADH7) 

A/G 

 

 

0.473 

 

 

0.655 

 

 

0.114 

 

 

8.30E-09 

 

 

2.36E-08 

 

 

rs12509827 

 

4 

 

22,959,397 

 

(GBA3,  

PPARGC1A) 

A/G 

 

0.131 

 

-0.946 

 

0.189 

 

5.93E-07 

 

1.31E-06 

 

rs1364841 

 

 

4 

 

 

20,801,088 

 

 

KCNIP4 

(PACRGL, 
NCRNA00099) 

A/G 

 

 

0.427 

 

 

-0.591 

 

 

0.121 

 

 

1.01E-06 

 

 

2.15E-06 

 

 

rs6858366 

 

4 

 

162,053,730 

 
(RAPGEF2, 

FSTL5) 

C/G 

 

0.327 

 

-0.594 

 

0.129 

 

3.91E-06 

 

7.72E-06 

 

rs12641441 

 

 

4 

 

 

152,827,073 

 

 

PET112L 

(FAM160A1, 
FBXW7) 

A/G 

 

 

0.222 

 

 

0.649 

 

 

0.142 

 

 

4.67E-06 

 

 

9.13E-06 

 

 

rs7669761 

 

 

4 

 

 

152,828,754 

 

 

PET112L 

(FAM160A1, 
FBXW7) 

A/G 

 

 

0.222 

 

 

-0.649 

 

 

0.142 

 

 

4.68E-06 

 

 

9.14E-06 

 

 

rs7724224 

 

 

5 

 

 

38,310,069 

 

 

EGFLAM 

(GDNF,  

LIFR) 

A/G 

 

 

0.268 

 

 

-0.682 

 

 

0.141 

 

 

1.23E-06 

 

 

2.60E-06 

 

 

rs9392718 6 5,776,566  A/G 0.233 0.929 0.158 3.86E-09 1.15E-08 

rs6911419 

 

 

6 

 

 

32,517,765 

 

 

HLA-DRA 

(BTNL2,  

HLA-DRB9) 

C/T 

 

 

0.241 

 

 

-0.803 

 

 

0.151 

 

 

1.10E-07 

 

 

2.69E-07 

 

 

rs3115672 

 

 

6 

 

 

31,835,876 

 

 

MSH5 

(CLIC1,  

C6orf26) 

C/T 

 

 

0.345 

 

 

-0.627 

 

 

0.126 

 

 

6.90E-07 

 

 

1.51E-06 

 

 

rs2917891 6 74,644,390 (CD109) G/T 0.206 -0.725 0.157 3.71E-06 7.35E-06 

rs3012568 6 74,644,421 (CD109) G/T 0.205 0.725 0.158 4.16E-06 8.19E-06 

rs1403237 7 54,602,061 VSTM2A C/T 0.358 -0.799 0.124 1.35E-10 4.90E-10 

rs1228867 

 

7 

 

83,869,480 

 
(SEMA3A, 
HMG17P1) 

C/T 

 

0.144 

 

1.074 

 

0.209 

 

2.61E-07 

 

6.05E-07 

 

rs6965211 

 

 

7 

 

 

69,735,201 

 

 

AUTS2 

(STAG3L4, 
WBSCR17) 

C/T 

 

 

0.302 

 

 

0.647 

 

 

0.135 

 

 

1.58E-06 

 

 

3.29E-06 

 

 

rs2189349 

 

7 

 

11,309,599 

 

(PHF14,  

THSD7A) 

C/T 

 

0.400 

 

0.535 

 

0.116 

 

3.95E-06 

 

7.80E-06 

 

rs7464912 8 36,981,063 (KCNU1) A/C 0.345 -0.684 0.122 2.23E-08 5.97E-08 

rs12164144 8 43,820,269 (ASNSL1) C/T 0.165 -0.844 0.173 1.13E-06 2.39E-06 

rs4875308 

 

8 

 

4,048,012 

 

CSMD1 

(MYOM2) 

A/G 

 

0.272 

 

-0.651 

 

0.136 

 

1.70E-06 

 

3.53E-06 

 

rs1056171 

 

 

9 

 

 

132,750,822 

 

 

ABL1 

(EXOSC2,  

QRFP) 

A/G 

 

 

0.128 

 

 

-1.278 

 

 

0.237 

 

 

6.67E-08 

 

 

1.67E-07 
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rs2255649 10 79,013,818 KCNMA1 C/T 0.169 1.089 0.195 2.42E-08 6.45E-08 

rs7075976 

 

10 

 

49,284,283 

 

MAPK8 

(ARHGAP22) 
A/G 

 

0.328 

 

-0.602 

 

0.118 

 

3.34E-07 

 

7.63E-07 

 

rs4918120 

 

10 

 

106,372,348 

 
(CCDC147, 
SORCS3) 

C/T 

 

0.405 

 

0.560 

 

0.113 

 

7.58E-07 

 

1.65E-06 

 

rs2813452 

 

10 

 

1,557,300 

 
ADARB2 

(C10orf109) 

C/T 

 

0.422 

 

-0.528 

 

0.113 

 

2.70E-06 

 

5.44E-06 

 

rs1324245 10 85,284,722  C/T 0.190 0.813 0.177 4.46E-06 8.74E-06 

rs10160121 10 56,836,579 (PCDH15) A/G 0.226 0.687 0.151 5.05E-06 9.83E-06 

rs4753538 11 93,490,696 

(HEPHL1,  

PANX1) C/T 0.307 0.844 0.131 1.14E-10 4.19E-10 

rs11217837 

 

11 

 

119,737,976 

 

ARHGEF12 

(TMEM136,  

GRIK4) 

A/G 

 

0.304 

 

-0.726 

 

0.129 

 

2.06E-08 

 

5.54E-08 

 

rs7130656 

 

 

11 

 

 

45,789,085 

 

 

SLC35C1 

(DKFZp779M0652, 
CRY2) 

A/G 

 

 

0.370 

 

 

-0.664 

 

 

0.120 

 

 

3.33E-08 

 

 

8.71E-08 

 

 

rs1369817 11 112,433,374 NCAM1 G/T 0.325 0.622 0.125 7.01E-07 1.53E-06 

rs2574829 11 112,433,167 NCAM1 C/G 0.214 -0.943 0.197 1.66E-06 3.45E-06 

rs11053849 12 10,571,483 (KLRA1) C/T 0.160 1.067 0.194 3.62E-08 9.43E-08 

rs10845156 12 10,567,665 (KLRA1) C/G 0.156 -1.080 0.197 4.09E-08 1.06E-07 

rs10844135 

 

12 

 

9,636,873 

 

(OVOS,  

KLRB1) 

A/C 

 

0.262 

 

-0.723 

 

0.143 

 

4.47E-07 

 

1.00E-06 

 

rs11613874 12 83,236,046  A/G 0.335 -0.594 0.123 1.36E-06 2.86E-06 

rs2255074 

 

 

12 

 

 

55,316,293 

 

 

BAZ2A 

(RBMS2,  

ATP5B) 

C/T 

 

 

0.127 

 

 

-0.977 

 

 

0.205 

 

 

1.93E-06 

 

 

3.98E-06 

 

 

rs2536929 

 

12 

 

9,572,295 

 

(DDX12, 

 KLRB1) 

A/G 

 

0.382 

 

-0.723 

 

0.152 

 

1.98E-06 

 

4.07E-06 

 

rs1795819 

 

12 

 

53,288,281 

 

(PPP1R1A,  

LACRT) 

C/T 

 

0.225 

 

-0.677 

 

0.142 

 

2.00E-06 

 

4.10E-06 

 

rs10784385 

 

12 

 

62,853,955 

 

(SRGAP1,  

C12orf66) 

G/T 

 

0.309 

 

-0.597 

 

0.126 

 

2.15E-06 

 

4.40E-06 

 

rs4466908 

 

12 

 

60,074,978 

 
(PGBD3P1, 
FAM19A2) 

A/T 

 

0.144 

 

0.835 

 

0.178 

 

2.80E-06 

 

5.64E-06 

 

rs4429133 

 

12 

 

60,074,999 

 
(PGBD3P1, 
FAM19A2) 

G/T 

 

0.146 

 

0.829 

 

0.177 

 

2.83E-06 

 

5.69E-06 

 

rs10877635 

 

12 

 

60,074,852 

 
(PGBD3P1, 
FAM19A2) 

C/T 

 

0.144 

 

0.838 

 

0.179 

 

2.89E-06 

 

5.81E-06 

 

rs1716354 

 

12 

 

53,287,894 

 
(PPP1R1A, 
GLYCAM1) 

G/T 

 

0.216 

 

0.677 

 

0.145 

 

2.90E-06 

 

5.83E-06 

 

rs1716353 

 

12 

 

53,287,858 

 
(PPP1R1A, 
GLYCAM1) 

A/G 

 

0.216 

 

-0.676 

 

0.145 

 

2.99E-06 

 

6.00E-06 
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rs1691625 

 

12 

 

53,287,784 

 
(PPP1R1A, 
GLYCAM1) 

A/C 

 

0.216 

 

-0.675 

 

0.145 

 

3.07E-06 

 

6.14E-06 

 

rs11173956 

 

12 

 

60,075,591 

 
(PGBD3P1, 
FAM19A2) 

C/T 

 

0.140 

 

0.855 

 

0.183 

 

3.07E-06 

 

6.16E-06 

 

rs1691627 

 

12 

 

53,287,982 

 
(PPP1R1A, 
GLYCAM1) 

A/G 

 

0.203 

 

-0.677 

 

0.145 

 

3.09E-06 

 

6.19E-06 

 

rs7312486 

 

12 

 

60,076,227 

 
(PGBD3P1, 
FAM19A2) 

A/G 

 

0.139 

 

0.859 

 

0.184 

 

3.13E-06 

 

6.26E-06 

 

rs1623481 

 

12 

 

53,287,240 

 
(PPP1R1A, 
GLYCAM1) 

G/T 

 

0.216 

 

-0.674 

 

0.145 

 

3.14E-06 

 

6.28E-06 

 

rs1691626 

 

12 

 

53,287,969 

 
(PPP1R1A, 
GLYCAM1) 

A/G 

 

0.203 

 

-0.676 

 

0.145 

 

3.18E-06 

 

6.35E-06 

 

rs1400054 

 

12 

 

60,077,052 

 
(PGBD3P1, 
FAM19A2) 

A/G 

 

0.138 

 

0.863 

 

0.185 

 

3.23E-06 

 

6.44E-06 

 

rs1795821 

 

12 

 

53,287,173 

 
(PPP1R1A, 
GLYCAM1) 

C/T 

 

0.216 

 

-0.673 

 

0.145 

 

3.23E-06 

 

6.45E-06 

 

rs7967816 

 

12 

 

60,077,314 

 
(PGBD3P1, 
FAM19A2) 

C/T 

 

0.135 

 

-0.873 

 

0.188 

 

3.36E-06 

 

6.69E-06 

 

rs10492163 

 

12 

 

9,555,916 

 

(DDX12,  

KLRB1) 

A/G 

 

0.348 

 

-0.933 

 

0.201 

 

3.53E-06 

 

7.02E-06 

 

rs12578125 

 

12 

 

60,077,474 

 
(PGBD3P1, 
FAM19A2) 

A/G 

 

0.133 

 

0.881 

 

0.190 

 

3.58E-06 

 

7.10E-06 

 

rs4628751 

 

12 

 

60,078,623 

 
(PGBD3P1, 
FAM19A2) 

C/T 

 

0.132 

 

-0.885 

 

0.191 

 

3.68E-06 

 

7.29E-06 

 

rs11173961 

 

12 

 

60,078,910 

 
(PGBD3P1, 
FAM19A2) 

A/C 

 

0.131 

 

-0.889 

 

0.192 

 

3.77E-06 

 

7.47E-06 

 

rs1913927 

 

12 

 

60,080,008 

 
(PGBD3P1, 
FAM19A2) 

A/G 

 

0.128 

 

-0.902 

 

0.196 

 

4.12E-06 

 

8.10E-06 

 

rs10877640 

 

12 

 

60,079,394 

 
PGBD3P1, 
FAM19A2 

A/C 

 

0.134 

 

-0.886 

 

0.194 

 

4.92E-06 

 

9.58E-06 

 

SNP, single nucleotide polymorphism; Chr, chromosome; CA, coded allele; NCA, non-coded allele; 
MAF, minor allele frequency; Beta, genetic effect, se, standard deviation of beta;  P, nominal P value; 
PG, adjusted P value for genomic control; 
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Supplementary Figures of Regional association plots for LVH at P < 5x10-7 (as suggested by 

WTCC study 51) 

 
 

 
 
Supplementary Figure 1. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 2. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 3. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 4. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 5.  Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 6. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 7. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 8. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 

 
 
I 
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Supplementary Figure 9. Regional association plot. The vertical axis (on the left) shows the negative 
log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated region 
and the second vertical axis (on the right side) represents the recombination rate (centimorgams  per 
mega bases) for measuring genetic linkage among all SNPs within this region. The horizontal axis 
shows the position in mega bases. Each dot represents a SNP. Genes in the region are shown below 
the horizontal axis. 
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Supplementary Figure 10. Regional association plot. The vertical axis (on the left) shows the 
negative log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated 
region and the second vertical axis (on the right side) represents the recombination rate 
(centimorgams  per mega bases) for measuring genetic linkage among all SNPs within this region. 
The horizontal axis shows the position in mega bases. Each dot represents a SNP. Genes in the 
region are shown below the horizontal axis. 
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Supplementary Figures for Regional association plots for LVMI at P < 1x10-5  

 

 

 
 
Supplementary Figure 11. Regional association plot. The vertical axis (on the left) shows the 
negative log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated 
region and the second vertical axis (on the right side) represents the recombination rate 
(centimorgams  per mega bases) for measuring genetic linkage among all SNPs within this region. 
The horizontal axis shows the position in mega bases. Each dot represents a SNP. Genes in the 
region are shown below the horizontal axis. 
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Supplementary Figure 12. Regional association plot. The vertical axis (on the left) shows the 
negative log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated 
region and the second vertical axis (on the right side) represents the recombination rate 
(centimorgams  per mega bases) for measuring genetic linkage among all SNPs within this region. 
The horizontal axis shows the position in mega bases. Each dot represents a SNP. Genes in the 
region are shown below the horizontal axis. 
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Supplementary Figure 13. Regional association plot. The vertical axis (on the left) shows the 
negative log(P value) of the associated single nucleotide polymorphisms (SNPs) within the illustrated 
region and the second vertical axis (on the right side) represents the recombination rate 
(centimorgams  per mega bases) for measuring genetic linkage among all SNPs within this region. 
The horizontal axis shows the position in mega bases. Each dot represents a SNP. Genes in the 
region are shown below the horizontal axis. 
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Syracuse University, Syracuse, New York, USA 

1998 

Analog Circuits, Department of Electrical and Computer Engineering, Syracuse 
University, Syracuse, New York, USA 

1998 

Electromagnetic I, Department of Electrical and Computer Engineering, Syracuse 
University, Syracuse, New York, USA 

1998 

Writing Studio I, Department of Writing, Syracuse University, Syracuse, New York, 1997 
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USA 
American National & Government Politics, Department of Political Sciences, Syracuse 
University, Syracuse, New York, USA 

1997 

Introduction to Probability & Statistics, Department of Mathematics, Syracuse 
University, Syracuse, New York, USA 

1997 

Communication Systems, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

Electrical Engineering Lab III, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

System and Signal Analysis, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

Semiconductor Devices, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

Digital Circuits and Systems, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

Calculus III, Department of Mathematics, Syracuse University, Syracuse, New York, 
USA 

1997 

Electrical Engineering Lab II, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1997 

Circuit Analysis II, Department of Electrical and Computer Engineering, Syracuse 
University, Syracuse, New York, USA 

1997 

Dynamics, Department of Electrical and Computer Engineering, Syracuse University, 
Syracuse, New York, USA 

1997 

Introduction to Modern Physics, Department of Physics, Syracuse University, 
Syracuse, New York, USA 

1996 

Calculus II, Department of Mathematics, Syracuse University, Syracuse, New York, 
USA 

1996 

Active Resistive Networks, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1996 

Electrical Engineering Lab I, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1996 

General Chemistry, Department of Chemistry, Virginia Community College, 
Manassas, Virginia, USA  

1996 

General Chemistry Lab, Department of Chemistry, Syracuse University, Syracuse, 
New York, USA 

1996 

Calculus II, Department of Mathematics, Syracuse University, Syracuse, New York, 
USA 

1995 

General Physics II, Department of Physics, Syracuse University, Syracuse, New York, 
USA 

1995 

General Physics Lab II, Department of Physics, Syracuse University, Syracuse, New 
York, USA 

1995 

General Physics I, Department of Physics, Syracuse University, Syracuse, New York, 
USA 

1995 

General Physics Lab I, Department of Physics, Syracuse University, Syracuse, New 
York, USA 

1995 

Computer Programming, Department of Electrical and Computer Engineering, 
Syracuse University, Syracuse, New York, USA 

1995 

Digital Logic Design, Department of Electrical and Computer Engineering, Syracuse 
University, Syracuse, New York, USA 

1995 

Intro to Engineering and Computer Science, Department of Electrical and Computer 
Engineering, Syracuse University, Syracuse, New York, USA 

1995 

Calculus I, Department of Mathematics, Syracuse University, Syracuse, New York, 
USA 

1995 

Pre-Calculus, Department of Mathematics, Syracuse University, Syracuse, New York, 1995 
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USA 
Elementary Physics, Department of Physics, Syracuse University, Syracuse, New 
York, USA 

1995 

  
ADDITIONAL TRAINING  
7th Hypertension Summer School  - American Heart Association (AHA), Oregon, 
USA, Jul 31-Aug 4 

2010 

ERA-EDTA ReGeNet Course in Genetic Epidemiology in Chronic Kidney Disease 
Research, European Genetic Foundation (EGF), Bologna, Italy, Mar 31-Apr 1  

2009 

Genome Analysis: Genetic Analysis of Multifactorial Diseases, Wellcome Trust 
Genome Campus, Hinxton, Cambridgeshire, UK, Jul 23-29 

2008 

4th Course in Statistical Genetic Analysis of Complex Phenotypes,  European Genetics 
Foundation (EGF),  Bertinoro, Italy, Jun 21-24 

2008 

Microarray Bioinformatics Course, University of Oxford, Oxford, UK, Feb 4-8 2008 
Third Summer School in Emerging Technologies in Biomedicine, Univ. of Patras, 
Greece, Jul. 

2006 

Fifth Symposium on Medical Engineering, Univ. of Patras, Greece, Jul.  2006 
Third IEEE-EMBS International Summer School and Symposium on Medical Devices 
and Biosensors, MIT Media Laboratory, MIT, Cambridge, MA, Sept. 

2006 

  
RELEVANT PUBLICATIONS, PRESENTATIONS and POSTERS  

Rivera NV, Roncarati R, Viviani-Anselmi C, De Micco F, Mezzelani A, Condorelli G, 
Puca A, Airoldi F, Condorelli G,  and Briguori C., “Chromosomal locus 9p21.3, An 
angiographic marker for CAD Patients with Severe Coronary Artery Disease”, Poster 
presentation at American Society of Human Genetics (ASHG) Conference, 
Washington, DC 

2010 

Briguori C., Visconti G., D’andrea D., Tavano D., Focaccio A., Golia B., Giannone R., 
Castaldo D., Rivera NV, Ricciardelli B., Colombo A., “Cystatin C and Contrast-
Induced Acute Kidney Injury”, Circulation Journal. Accepted and waiting for 
publication 

2010 

Briguori C, Testa U, Riccioni R, Colombo A, Petricci E, Condorelli G, Mariani G, 
D’Andrea D, Rivera NV, Puca A, Peschle C, Condorelli G., “Correlations Between 
Progressors  of Coronary Artery Disease and Circulating Endothelial Progenitor 
Cells”, The Journal of the Federal of American Societies for Experimental Biology 
(FASEB). Published January. 

2007 

Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A, Condorelli 
G, “Contrast agents and renal cell apoptosis”, European Heart Journal. May 

2008 

  

HONORS and AWARDS  
Award Recipient of the AHA Fellowship, 7th Hypertension Summer School 2010, 
Portland State University, Oregon, USA. July 31 – August 4, 2010. 

2010 

Award Recipient of the ERA-EDTA Fellowship, European Genetic Foundation (EGF), 
Bologna, Italy. March 2009 

2009 

Award Recipient of the Wellcome Trust Fellowship, Genetic Analysis of 
Multifactorial Diseases, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, 
UK. July 2008 

2008 

Student Award Recipient at the 3rd IEEE-EMBS International Summer School and 
Symposium on Medical Devices and Biosensors (ISSS-MDBS) at MIT Media 
Laboratory, Massachusetts Institute of Technology, Cambridge, Boston, MA.  

2006 

Published by the Society of Hispanic Professional Engineering Magazine, “Women on 
Their Way. Strategic Thinking for Engineers”, SHPE Magazine, Vol. 8, No. 2, 
March/April 2006   

2006 

IREAN National Foundation Fellowship (NSF) Interdisciplinary Fellowship Recipient 2004-2006 
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Published by the Society of Hispanic Professional Engineering Magazine, “10 Latina 
Ph.D. candidates and their Cutting-Edge Research”, SHPE Magazine, Vol. 5, No. 3, 
August/September 2003 

2003 

Society of Hispanic Professional Engineers (SHPE) Scholarship Recipient 1995-2002 
New York State Regents Professional Engineers Scholarship Recipient  1998-1999 
Syracuse University - School of Engineering Academic Scholarship Recipient 1995-1999 
Syracuse University Dean’s List 1997-1998 
Amoco New York City Scholarship Recipient 1997 
Aspira & Lipton Scholarship Recipient 1995-1997 
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This is only a small piece of the puzzle.  
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