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Abstract

This thesis reviews and sheds new light on compressible Earth models and theories for

the modelling of megathrust earthquakes and rotational instabilities caused byglacial

isostatic adjustments and mantle convection. The basic theory is outlined in the first

chapter, where we discuss the response of a self-gravitating Earth to external forces and

loads seated at its surface or interior and we focus on elastic static perturbations and the

transition between the elastic and fluid behaviours of the Earth that occurs on thousand

and million years time scales.

In the first part of this thesis, we derive the analytical solution of the momentum and

Poisson equations for a spherically symmetric viscoelastic Earth model that accounts for

compressibility both at the initial state of hydrostatic equilibrium and during the pertur-

bations. This constitutes a step ahead with respect to all previous analyticalsolutions,

which actually neglect compressibility in some aspects, and allows to gain deep insight

into the relaxation spectrum of compressible viscoelastic Earth models.

In the second part, we discuss long-wavelength gravity anomalies causedby the

2004 Sumatra earthquake and detected by the Gravity Recovery And Climate Experi-

ment (GRACE) space mission. We extend the classic theory in order to interpret gravity

anomalies in terms of volume changes within the solid Earth, advection of the initial

density field and ocean water redistribution caused by perturbations of theocean floor

and surface topographies. This physics is then exploited in order to develop a novel

procedure for the inversion of the principal seismic source parameters (hypocentre and

moment tensor) of large earthquakes relying solely on space gravity data.This proce-

dure, which complements traditional seismology and which we shall name Gravitational

Centroid Moment Tensor (GCMT) analysis, is applied for the first time to the 2011 To-

hoku earthquake.

v



vi Abstract

In the third part of the thesis, we discuss issues related to long time scale instabil-

ities of the Earth’s rotation. The slow motion of the rotation axis with respect to the

mantle, called True Polar Wander (TPW), has continuously been debated after the pi-

oneering works i the sixties by Munk, MacDonald and Gold. We thus discuss TPW

due to variations of surface loading from ice ages on hundreds of thousand year time

scales, its sensitivity to the elastic or viscoelastic rheologies of the lithosphereand the

stabilizing role of mantle density heterogeneities. Also, we face the problem ofTPW

driven by mantle convection on the million years time scale. Most studies have assumed

that on this long time scale the planet readjusts without delay and that the Earth’s rota-

tion axis and the maximum inertia direction of mantle convection coincide. We herein

overcome this approximation and we provide a novel treatment of the Earth’srotation,

which clearly explains the interaction between mantle convection and rotationalbulge

readjustments, and the physical laws for the characteristic times controlling thepolar

motion in the directions of the intermediate and minimum principal axes of the mantle

convection inertia tensor. We thus clarify a fundamental issue related to mantlemass

heterogeneities and TPW dynamics.



Chapter 1

Self–gravitating compressible
Maxwell Earth models

1



2 1. Maxwell Earth models

The following mathematical model describes the response of a self–gravitating Earth

to external forces and loads seated at its surface or interior. We focuson elastic static

perturbations and the transition between the elastic and fluid behaviours of the Earth

that occurs on thousand and million year timescales. We assume that the undeformed

Earth is in non-rotating hydrostatic equilibrium and spherically symmetric. Rotation will

be discussed as an external force: the centrifugal force in the rotatingreference frame

of Earth. We also assume that the rheological laws are linear and that the strain are

infinitesimal.

1.1 Momentum and Poisson equations

For long time scale processes the inertial forces vanish and the conservation of linear

momentum requires that the body forceF per unit volume acting on the infinitesimal

element of the continuum body are balanced by the stress acting on the surface of the

element. At any instant of timet, we thus have for the Cauchy stress tensorσ acting on

the infinitesimal element

∇ · σ + F = 0 (1.1)

The body forceF accounts for gravitation due to the Earth, internal and surface

loads, and external bodies responsible for tidal forces. It also accounts for all kinds of

other contributions like centrifugal and seismic forces. We decompose the body forceF

into a non-conservative forceM (i.e., seismic forces) and a conservative force that we

express in terms of the gradient of the potentialφ

F = M−
(

ρ+ ρL
)

∇φ (1.2)

whereρ andρL are the densities of the Earth and loads, and the potentialφ consists of

the gravitational, tidal, and centrifugal potentials

φ = φG + φT + φC (1.3)
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The gravitational potentialφG is due to the density of the Earthρ and loadsρL, while

the tidal potential is due to the density of external bodiesρT . They satisfy the following

Poisson equations

∇2φG = 4πG
(

ρ+ ρL
)

(1.4)

∇2φT = 4πGρT (1.5)

whereG is the universal gravitational constant. Note that the densityρT does not enter

the momentum equation (1.1) via eq. (1.2) because, by definition, external bodies do

not load the Earth, i.e., the balance of forces acting on external bodies does not involve

surface forces from the Earth. The centrifugal potentialφC due to the Earth’s rotation is

defined by

φC =
1

2

[

(ω · r)2 − ω2 r2
]

(1.6)

whereω andr are the angular velocity of the Earth and the position vector, andω = |ω|
andr = |r| are the rotation rate and the radial distance from the Earth centre.

The potentialφ thus solve the Poisson equation

∇2φ = 4πG
(

ρ+ ρL + ρT
)

− 2ω2 (1.7)

where the latter term in the right-hand side (RHS) results from the Laplacian of the

centrifugal potential.

Within the Lagrangian approach, we describe the deformed Earth in terms ofdis-

placements of the particles of the continuum body

r = x+ u(x, t) (1.8)

wheret is the time, andx andr denote the initial and current positions of the particle
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subjected to the displacementu. Following the work of Wolf (1991), we then introduce

the decomposition of scalar, vector and tensor fields into initial fields, (i.e., thefields at

the initial time) and local and material incremental fields

f(r, t) = f0(r) + f∆(r, t) (1.9)

f(r, t) = f0(x) + f δ(x, t) (1.10)

wheref stands for the generic field. The initial fieldf0 (denoted with the subscript

0) describes the initial state of the undeformed Earth. The local incremental field f∆

(denoted with the superscript∆) is the increment of the field at pointr with respect to

the initial field at the same positionr. The material incremental fieldf δ (denoted with

the superscriptδ) is the increment of the field at pointr with respect to the initial field

at pointx, which is the initial position of the particle that is currently located atr, eq.

(1.8).

Local and material incremental fields only differ for the so called advective incre-

mental field, which is the difference between the initial field evaluated at the current

and initial positions of the particle. Particularly, within the assumption of infinitesimal

deformations, this difference is a first–order term that cannot be neglected

f δ = f∆ + u ·∇f0 (1.11)

This relation holds both in Lagrangian and Eulerian formulations, i.e., when theincre-

mental fields are functions of the initial and current positions of the particle,because

differences for incremental fields are of the second order and may be ignored.

Because the undeformed Earth is in non-rotating hydrostatic equilibrium, the initial

potentialφ0 is the gravitational potential due to the initial densityρ0, i.e., the density of

the undeformed Earth, and satisfies the Poisson equation

∇2φ0 = 4πGρ0 (1.12)
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Also, the initial Cauchy stress tensorσ0 is the initial hydrostatic stress

σ0 = −p0 1 (1.13)

where1 andp0 are the identity matrix and the initial hydrostatic pressure, entering with

the minus sign according to the convention that stress are positive when theyact in the

same direction as the outward normal to the surface. From the momentum equation at

the initial time, we thus find the condition of non-rotating hydrostatic equilibrium

−∇p0 − ρ0∇φ0 = 0 (1.14)

In the following, we describe perturbations of the Cauchy stress tensorσ in terms of

material increment

σ(r, t) = −p0(x)1+ σδ(x, t) (1.15)

for which the constitutive equations of elastic and viscoelastic materials are expressed

as functions of strain and strain rate. Differently, the natural choice forperturbations of

the potentialφ and the densityρ are the local increments

φ(r, t) = φ0(r) + φ∆(r, t) (1.16)

ρ(r, t) = ρ0(r) + ρ∆(r, t) (1.17)

for which, after substitution of eqs (1.2) and (1.15)–(1.17) into eqs (1.1)and (1.7), the

momentum and Poisson equations keep the following simpler forms

∇ · σδ +∇ (u ·∇p0)− ρ0∇φ∆ − ρ∆∇φ0 − ρL∇φ0 +M = 0 (1.18)



6 1. Maxwell Earth models

∇2φ = 4πG
(

ρ∆ + ρL + ρT
)

− 2ω2 (1.19)

The first term in eq. (1.18) describes the contribution from the material incremental

stress and the second term the advection of the initial hydrostatic stress which results

from eq. (1.14) and

−∇p0(x)− ρ0(r)∇φ0(r) = ∇ (u(x, t) ·∇p0(x, t)) (1.20)

Furthermore, the third term describes gravity perturbations (i.e., self–gravitation) and

tidal and centrifugal forces, the fourth term buoyancy forces due to density changes (i.e.,

compressibility), and the fifth and sixth terms account for the weight of loadsand non-

conservative forces.

For self–gravitating Earth models, the local incremental potentialφ∆ must be ob-

tained self–consistently with the local incremental densityρ∆. This couples the mo-

mentum and Poisson equations, eqs (1.18)–(1.19), via the continuity equation of mass

written as

ρ∆ = −∇ · (ρ0 u) = −ρ0∆− u ·∇ρ0 (1.21)

Here, the first term of the RHS describes the density perturbation due to thevolume

variation∆ of the particle

∆ = ∇ · u (1.22)

and the second term the advection of the initial density field. In this respect, the first

term of the RHS of eq. (1.21) is the material incremental densityρδ

ρδ = −ρ0∆ (1.23)
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1.1.1 The linear Maxwell solid

The equations above need to be supplemented by the constitutive equation describing

how material incremental stress and strain (or strain rate) are related to each other.

Within the first–order perturbation theory, the strain tensorǫ is defined by

ǫ =
1

2
[∇⊗ u+ u⊗∇] (1.24)

where⊗ stands for the algebraic product. This representation bases on the dyadic for-

mulation, which we discuss in Appendix A.2. This allows the definition of stress and

strain without choosing a specif coordinate system, and to obtain general expressions for

the gradient and curl of vectors and the divergence of tensors that hold in any coordinate

system. This makes easier the study of the momentum equation.

In the following, we will assume linear and isotropic constitutive equations andwe

focus on the viscoelastic rheology. We also assume that perturbations areisentropic and

isochemical because viscoelastic relaxation processes of the Earth occur on time scales

much smaller than those of heat diffusion and changes in the chemical composition of

the rock. Particularly, we consider the viscoelastic Maxwell rheology defined by the

following constitutive equation

σδ = κ∆1+ 2 q ⋆ ∂tǫD (1.25)

where∂t and⋆ stand for the partial derivative with respect to timet and the time convo-

lution

(q ⋆ ∂tǫD) (t) =

∫ t

0
q(t− t′) ∂t′ǫD(t

′) dt′ (1.26)

andκ, q andǫD are the adiabatic bulk modulus, the shear relaxation function and the

deviatoric strain tensor

ǫD = ǫ− ∆

3
1 (1.27)
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For the Maxwell solid, the shear relaxation function takes the following form

q(t) =

{

µ exp
(

− t
τ

)

t ≥ 0

0 t < 0
(1.28)

whereτ is the Maxwell time defined by the ratio of the viscosityν over the shear mod-

ulusµ

τ =
ν

µ
(1.29)

By means of the Maxwell rheology, we describe the transition from the elasticto the

Newtonian fluid behaviours of the Earth that occurs on the timescale given by the Maxwell

time τ . Despite the constitutive equations of both elastic and Newtonian fluid bodies

relating stress at a given time to only strain and strain rate at that time, the Maxwell rhe-

ology relates the viscoelastic stress at a given time to the whole strain rate history before

that time, as pointed out by the time convolution between the shear relaxation function

and the deviatoric strain rate in eq. (1.25).

Note that, instead, the Maxwell solid does not account for bulk relaxation and the

adiabatic bulk modulusκ is defined from the partial derivative of the density state func-

tion ρ with respect to pressurep, at fixed entropys and chemical compositionc,

∂ρ

∂p

∣

∣

∣

∣

s,c

=
ρ

κ
(1.30)

In this respect, the adiabatic bulk modulus relates the material incremental density ρδ

and pressurepδ, and the first term in the RHS of eq. (1.25) describes the isotropic stress

due to the material incremental pressure

pδ = −κ∆ (1.31)

By definition, there are no volume changes∆within incompressible materials. How-

ever, incompressible materials must be able to react to isotropic stresses. From eq.
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(1.31), we thus require that the bulk modulusκ is infinitely large in order that the in-

cremental pressurepδ remains finite in the limit of∆ going to zero and ofκ going to

infinity (Love, 1911, section 154)

pδ = lim
∆→0κ→∞

(−κ∆) (1.32)

In this respect, the bulk modulus is sometimes called modulus of incompressibility. On

the contrary, compressible materials are characterized by a finite bulk modulus.

1.1.2 The Correspondence Principle

The Laplace transform of a functionf(t) is formally defined by

L[f ] =
∫ ∞

0
f(t)e−stdt, (1.33)

with L, t ands beint the Laplace transform operator, time and Laplace variable (which

has dimension of inverse time). Introducingf̃(s) = L[f ] for brevity, it is straightforward

to show that the Laplace transform of the time derivative of the functionf(t) yields

L[∂tf ] = s f̃(s)− f(0) (1.34)

and that the Laplace transform of the time convolution of two functionsf(t) andh(t)

yields the product of the Laplace transformsf̃(s) andh̃(s)

L[f ⋆ h] = f̃(s) h̃(s) (1.35)

with ⋆ denoting the time convolution operator.

In the following we will consider external forcings and loading that act onthe Earth

starting immediately after the initial time, att = 0+, and we restrict our attention on

right-handed functions that differs from zero only fort > 0
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f+(t) = f(t)H(t− 0+) (1.36)

HereH(t) is the Heaviside function. It is a discontinuous function, whose value is zero

for negative arguments and one for positive arguments, and its derivative yields the Dirac

delta functionδ(t)

∂tH(t) = δ(t) (1.37)

The Laplace transform of the right-handed functionf+(t) is the same of the original

functionf(t)

f̃+(s) = f̃(s) (1.38)

while its Laplace transform yields

L[∂tf+(t)] = s f̃(s) (1.39)

because the second term of the RHS of eq. (1.34) disappears due to the step-like discon-

tinuity of f+(t) att = 0+. From now on, we intend time-dependent functions describing

forcings and perturbations as right-handed functions, even though thesubscript+ will

be omitted in order not to overwhelm the text.

By making use of eq. (1.39), the Laplace transform of the constitutive equation for

the Maxwell solid, eq. (1.25), yields

σ̃δ(s) = κ ∆̃(s)1+ 2 µ̂(s) ǫ̃D(s) (1.40)

with µ̂(s) being the following function of the Laplace variables

µ̂(s) =
µ s

s+ 1
τ

(1.41)
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Note that eq. (1.40) has the same form of the Hooke’s law for linear elastic solids

σδ = κ∆1+ 2µ ǫD (1.42)

whereµ̂(s) and the Laplace transforms of the fields are replaced by the shear modulus

µ and the same fields in the time domain. So we can derive equations for viscoelastic

bodies in the Laplace domain with formulas for elastic bodies. Particularly, after Laplace

transformation, the momentum and Poisson equations for the the viscoelastic body are

formally equivalent to those for the elastic solid. We thus solve the equivalent elastic

problem in the Laplace domain and, only at the last stage, we will perform theinverse

Laplace transform of the solution to obtain the viscoelastic solution in the time domain.

In this respect, we will also refer to the viscoelastic solution in the Laplace domain as

the associated elastic solution.

The so-called Correspondence Principle (Peltier, 1975; Wu and Peltier,1982) states

that the time dependent viscoelastic solution of the momentum and Poisson equations

can by found in a unique way after the inverse Laplace transformation of the associ-

ated elastic solution. In the light of this analogy between the elastic and viscoelastic

problems, afterwards we will omit the tilde to denote Laplace transforms and wedo not

distinguish between the shear modulusµ and the function̂µ(s), eq. (1.41). In this re-

spect, the following results can be seen both as the solution of the elastic static problem

and the associated elastic solution.

1.2 Spherical harmonic expansion

In the following we will consider spherically symmetric Earth models composed ofsev-

eral concentric layers as the core, the lower and upper mantle and the lithosphere. Within

each layer the material parameters, consisting of the initial densityρ0, the bulk modulus

κ, the shear modulusµ and the viscosityν, are continuous functions of the only radial

distance from the Earth centrer. At the internal boundaries separating two layers of the

Earth, these parameters may have step-like discontinuities due to the specific chemical

compositions and phases of the rock of each layer.

The most widely used spherically symmetric Earth model is the Preliminary Refer-
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ence Earth Model (PREM, Dziewonski and Anderson, 1981) that specifies the material

parameters of the main layers of the Earth in terms of polynomials of the radial distance

from the Earth centrer. It thus accounts for the continuous variations of the material

parameters and discontinuities at the interfaces between the layers. As it concerns the

rheology, we will consider models with a fluid core, a viscoelastic mantle, with viscos-

ity of about1021 Pa s, and an elastic or viscoelastic (but more viscous than the mantle)

lithosphere of about100 km.

The spherical symmetry of the Earth model is herein exploited to further simplifythe

incremental momentum and Poisson equations and discuss fundamental aspects of the

style of deformation. We thus consider the spherical reference frame and we denote with

r, θ andϕ the radial distance from the Earth centre, the colatitude and the longitude, and

with er, eθ andeϕ the respective unit vectors (see Appendix A.1).

In view of the spherical symmetry, the initial density, potential and pressureonly

depend on the radial distance from the Earth centrer and their gradients have no angular

components

∇ρ0 = ∂rρ0 er (1.43)

−∇p0 = ρ0∇φ0 = ρ0 g er (1.44)

whereg is the initial gravity acceleration

g(r) =
4πG

r2

∫ r

0
ρ0(x)x

2 dx (1.45)

The incremental momentum and Poisson equations (1.18)–(1.19) thus become

∇ · σδ +∇ (ρ0 gu · er)− ρ0∇φ∆ − ρ∆ g er − ρL g er +M = 0 (1.46)

∇2φ = −4πG (ρ0∆+ ∂rρ0 u · er) + 4πG
(

ρL + ρT
)

− 2ω2 (1.47)
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We also introduce the spherical harmonic expansions of the potentialφ and the de-

composition of the displacementu into spheroidal,uS , and toroidal,uT , displacements

φ∆(r, θ, ϕ) =
∞
∑

ℓ=0

Φℓm(r)Yℓm(θ, ϕ) (1.48)

u = uS + uT (1.49)

with

uS(r, θ, ϕ) =
∞
∑

ℓ=0

[Uℓm(r)Rℓm(θ, ϕ) + Vℓm(r)Sℓm(θ, ϕ)] (1.50)

uT (r, θ, ϕ) =
∞
∑

ℓ=0

Wℓm(r)Tℓm(θ, ϕ) (1.51)

Here,Yℓm are the spherical harmonics of harmonic degreeℓ = 0, · · · ,∞ and order

m = −ℓ, · · · , ℓ, andRℓm, Sℓm andTℓm are the spherical harmonic vectors defined by

Rℓm = Yℓm er (1.52)

Sℓm = r∇Yℓm = ∂θYℓm eθ +
∂ϕYℓm
sin θ

eϕ (1.53)

Tℓm = ∇× (r Yℓm) =
∂ϕYℓm
sin θ

eθ − ∂θYℓm eϕ (1.54)

with r = r er being the position vector. Also, the scalarsΦℓm, Uℓm, Vℓm andWℓm are

the respective spherical harmonic coefficients and we will simply refer to them as the

potential, the radial and tangential spheroidal displacements, and the toroidal displace-

ment.

Further details about spherical harmonics and spherical harmonics vectors are dis-

cussed in Ben–Menahem and Singh (1981). Here we only explicit the definition of
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spherical harmonics

Yℓm(θ, ϕ) = Pℓm(cos θ) eimϕ (1.55)

wherePℓm are the associated Legendre polynomials. The latter, form ≥ 0, are given by

Pℓm(x) =
1

2ℓ ℓ!

(

1− x2
)m/2 d

ℓ+m
(

x2 − 1
)ℓ

dx
(1.56)

and, form < 0,

Pℓm(x) = (−1)m
(ℓ+m)!

(ℓ−m)!
Pℓ−m(x) (1.57)

We also recall that the spherical harmonics are eigenfunctions of the Laplacian operator

∇2Yℓm =
ℓ(ℓ+ 1)

r2
Yℓm (1.58)

1.2.1 Volume changes and surface forces

After substitution of eqs (1.49)–(1.51) into (1.22), we obtain the sphericalharmonic

expansions of the volume change∆

∆ = ∇ · u =
∑

ℓm

χℓm Yℓm (1.59)

where the scalarχℓm is given by

χℓm = ∂rUℓm +
2

r
Uℓm − ℓ (ℓ+ 1)

r
Vℓm (1.60)

It is noteworthy that the toroidal displacement does not contribute to volume changes,

i.e., ∇ · uT = 0. Furthermore, because the toroidal displacement has no component
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alonger, it does not contribute to the advection of the initial density field of the Earth

models, which can be only radial for eq. (1.43). This means that the local incremental

density is only due to spheroidal deformations

ρ∆ = −ρ0∇ · uS − ∂rρ0 uS · er (1.61)

and that toroidal deformations do not directly contribute to the local incremental po-

tentialφ∆. Actually, as we will show in a while, toroidal deformations are completely

decoupled from spheroidal deformations and perturbations of the potential. They can be

studied separately.

Let us now consider the spherical harmonic expansion of the material incremental

stressσδ · er acting on a surface element with outward normaler. From the definition

of the strain tensor, eq. (1.24), and the Hooke’s law, eq. (1.42) or, equivalently, the

consitutive equation for the Maxwell solid in the Laplace domain, eq. (1.40),after some

straightforward algebra we obtain

σδ · er = λ∆ er + µ [∇ (u · er)− (∇er) · u+ (er ·∇)u] (1.62)

whereλ is the second Lamé parameters that is expressed in terms of the shear modulus

µ (also known as first Lamé parameter) and the bulk modulusκ

λ = κ− 2

3
µ (1.63)

Then, by substituting the spherical harmonic expansions for displacementsand volume

changes, eqs (1.49)–(1.51) and (1.59), we obtain

σ · er =
∑

ℓm

(RℓmRℓm + Sℓm Sℓm + TℓmTℓm) (1.64)

where the spherical harmonic coefficientsRℓm, Sℓm andTℓm are given by

Rℓm = λχℓm + 2µ∂rUℓm (1.65)
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Sℓm = µ

(

∂rVℓm +
Uℓm − Vℓm

r

)

(1.66)

Tℓm = µ

(

∂rWℓm − Wℓm

r

)

(1.67)

We will simply refer toRℓm andSℓm as the radial and tangential spheroidal stresses, and

to Tℓm as the toroidal stress.

1.2.2 Spheroidal and toroidal deformations

The divergence of the material incremental Cauchy stress tensor, assuming the elastic

or the viscoelastic rheology, eqs (1.40) and (1.42), and using the definition of the strain

tensor, eq. (1.24), can be arranged as follow

∇ · σδ = λ∇∆+∆∇λ+ µ
(

∇2u+∇∆
)

+∇µ · (∇⊗ u+ u⊗∇) (1.68)

which simplifies into

∇ ·σδ = λ∇∆+∂rλ∆ er+µ
(

∇2u+∇∆
)

+∂rµ [2 ∂ru+ er × (∇× u)] (1.69)

owing to the spherical symmetry of the Earth model, i.e.,∇µ = ∂rµ er and∇λ =

∂rµ er.

By making use of eq. (1.69) and expanding in spherical harmonics eq. (1.46)–(1.47),

we obtain the spherical harmonic coefficients of the radial and tangential spheroidal

components of the momentum equation,

−ρ0 ∂rΦℓm − ρ0 ∂r (g Uℓm) + ρ0 g χℓm + ∂r (λχℓm + 2µ∂rUℓm)
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+
1

r2
µ [4 r ∂rUℓm − 4Uℓm + ℓ(ℓ+ 1)(3Vℓm − Uℓm − r ∂rVℓm)]

−ρLℓm g +mR
ℓm = 0 (1.70)

−ρ0Φℓm − ρ0 g Uℓm + λχℓm + r ∂r

[

µ

(

∂rVℓm +
1

r
Uℓm − 1

r
Vℓm

)]

1

r
µ [5Uℓm + 3 r ∂rVℓm − Vℓm − 2 ℓ(ℓ+ 1)Vℓm] +mS

ℓm = 0 (1.71)

the toroidal component,

∂r

[

µ

(

∂rWℓm − Wℓm

r

)]

+µ

(

3

r
∂rWℓm − 1 + ℓ(ℓ+ 1)

r2
Wℓm

)

+mT
ℓm = 0 (1.72)

and the Poisson equation

∇2
rΦℓm = −4πG (ρ0 χℓm + Uℓm ∂rρ0) + 4πG

(

ρLℓm + ρTℓm
)

(1.73)

HereρLℓm, ρTℓm, mR
ℓm, mS

ℓm andmT
ℓm are the spherical harmonic coefficients of the den-

sities of loads and external bodies, and of the non-conservative forces

ρL =
∑

ℓm

ρLℓm Yℓm (1.74)

ρT =
∑

ℓm

ρTℓm Yℓm (1.75)
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M =
∑

ℓm

(

mR
ℓmRℓm +mS

ℓm Sℓm +mT
ℓmTℓm

)

(1.76)

and∇2
r is the radial part of the Laplacian operator∇2

∇2
r = ∂2r +

2

r
∂r −

ℓ(ℓ+ 1)

r2
(1.77)

Furthermore, the spheroidal tangential and toroidal components of the momentum equa-

tion have been multiplied byr in order to simplify the following treatment.

Eqs (1.70)–(1.73) only hold for harmonic degreeℓ greater than0. The case of

degree–0 perturbations need a specific treatment that we do not discuss as it has lit-

tle relevance in the geophysical processes considered in this thesis. Notethat the term

−2ω2 entering the Poisson equation (1.47) does not enter eq. (1.73) becauseit only

contribute to the degree–0 spherical harmonic coefficient.

The radial and tangential spheroidal components of the momentum equation,eqs

(1.70)–(1.71), and the Poisson equation, eq. (1.73), are decoupled from the toroidal com-

ponent of the momentum equation, eq. (1.72). In this respect, spheroidaland toroidal de-

formations can be studied separately. Furthermore, it is also noteworthy that spheroidal

perturbations are triggered by all kind of forcing that we are considering (loads and tidal,

centrifugal and seismic forces), while toroidal deformations are triggered only by seis-

mic forces. This reflects the fact that loading and tidal and centrifugal forcings are axi-

ally symmetric. Because we will study earthquakes only as it concerns gravity changes

(see Chapter 3 and 4), which are not affected by toroidal deformations, we will omit to

further discuss toroidal deformations in this thesis.

The radial and tangential spheroidal components of the momentum equation and the

Poisson equation constitute a system of three differential equation of the second order

in the unknownsUℓm, Vℓm andΦℓm. This differential system must be solved for each

harmonic degree, but forℓ = 0, and order from the centre to the surface of the Earth

where proper boundary conditions uniquely determine the solution. Analytical solutions

of these differential equations will be considered in Chapter 2, with some restriction

on the material parameter of the Earth model. Here, in order to define properbound-

ary conditions and compute numerical solutions of the viscoelastic problem for general
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spherically symmetric Earth models, we cast these differential equations into the form

of six differential equations of the first–order that are suitable for numerical integration

in the radial variabler by means of algorithms like the Runge-Kutta method. We thus

introduce the spheroidal6–vector solutionyℓm

yℓm = (Uℓm, Vℓm, Rℓm, Sℓm, Φℓm, Qℓm)T (1.78)

where the first and second components are the radial and tangential displacements, the

third and fourth components the radial and tangential stresses, the fifth component the

potential and the sixth component the so called ’potential stress’. The latter isdefined

by

Qℓm = ∂rΦℓm +
ℓ+ 1

r
Φℓm + 4πGρ0 Uℓm (1.79)

and its meaning will be clarified in section 1.3, when we discuss the boundary conditions

at the internal interfaces and the surface of the Earth.

From the radial and tangential spheroidal components of the momentum equation,

eqs (1.70)–(1.71), the Poisson equation, eq. (1.73), and the definition of radial, tangential

and potential stresses, eqs (1.65)–(1.66) and (1.79), after some straightforward algebra

we obtain the following linear differential system for the spheroidal vectorsolution

dyℓm(r)

dr
= Aℓ(r)yℓm(r)− f ℓm(r) (1.80)

whereAℓ is the6× 6–matrix depending on the material parameters of the Earth model,

on the radial distance from the Earth centrer and on the harmonic degreeℓ

Aℓ(r) =
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−2λ
r β

ℓ(ℓ+1)λ
r β

1
β 0 0 0

−1
r

1
r 0

1
µ 0 0

4
r

(

3κµ
r β −ρ0 g

)

ℓ(ℓ+1)
r

(

ρ0 g − 6κµ
r β

)

−4µ
r β

ℓ(ℓ+1)
r −ρ0 (ℓ+1)

r ρ0

1
r

(

ρ0 g − 6µκ
r β

)

2µ
r2

[

ℓ(ℓ+1)

(

1+
λ
β

)

−1

]

− λ
r β −3

r
ρ0
r 0

−4πGρ0 0 0 0 − ℓ+1
r 1

−4πGρ0 (ℓ+1)
r

4πGρ0 ℓ(ℓ+1)
r 0 0 0

ℓ−1
r

























(1.81)

with

β = λ+ 2µ (1.82)

The dishomogeneous termf of the differential system (1.80) accounts for terms related

to massive bodies other than the Earth and seismic forces, and is given by

f ℓm =
4π r2

(2 ℓ+ 1)

(

ρLℓm fL
ℓ + ρTℓm fT

ℓ

)

+mℓm (1.83)

with

fL
ℓ =

(

0, 0, −(2 ℓ+ 1) g

4π r2
, 0, 0, −(2 ℓ+ 1)G

r2

)T

(1.84)

fT
ℓ =

(

0, 0, 0, 0, 0, −(2 ℓ+ 1)G

r2

)T

(1.85)

mℓm =
(

0, 0, mR
ℓm, m

F
ℓm, 0, 0

)T
(1.86)
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1.3 Boundary conditions

In order to obtain the solution of the associated elastic problem, the above equations

must be solved within each viscoelastic layer of the Earth model and supplemented by

proper boundary conditions at the bottom and top interfaces. Each layeris bounded by

another viscoelastic layer or by the fluid outer core and the Earth’s surface. For each

kind of interface we thus need to specify proper boundary conditions.

In the following, we denote the number of layer of the Earth model withN and the

radial distance from the Earth centre of the top interface of thej-th layer withrj . We

order the layers in such a way thatrj−1 < rj for j = 2, · · ·N . Particularly,rj are

interfaces within the viscoelastic mantle forj = 2, · · · , N − 1, while r1 andrN are the

core and Earth radii, also denoted byrC anda, respectively.

1.3.1 The Earth surface

We begin by considering the Earth surface boundary conditions. We distinguish between

massive bodies outside the Earth and loads seated at the Earth surface orits interior.

By definition, the density of external bodiesρT is zero within a sphere of radiusaT
containing the Earth

ρC(r < aT ) = 0 (1.87)

with aT greater than the Earth radius,aT > a, and the load densityρL is zero outside

the Earth

ρL(r > a) = 0 (1.88)

Furthermore, we write the load densityρL as the sum of the density of internal loadsρI

and the surface density of loads seated at the Earth surfaceσL

ρL = ρI + σL δ(r − a) (1.89)
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whereδ is the Dirac delta function.

For internal loading and tidal, centrifugal and seismic forcings, the Earth surface is

stress free. For the case of surface loading, instead, the tangential stressSℓm is still zero

while the radial stressRℓm must compensate the weight of the surface density

Rℓm(a−) = −g(a)σLℓm (1.90)

whereσLℓm are the spherical harmonic coefficients of the surface densityσL.

An additional condition can be found for the potential stressQℓm. By applying the

Gauss theorem at the incremental Poisson equation (1.19) within a volume embedded in

an infinitesimal pill-box at the Earth surface, we obtain

∂rφ
∆(a−) = ∂rφ

∆(a+)− 4πGρ0(a)u(a) · er − 4πGσL (1.91)

where we have assumed that the initial densityρ0 is zero outside the Earth (i.e., we

neglect the atmosphere)

ρ0(r > a) = 0 (1.92)

Eq. (1.91) expresses the radial derivative of the potential within the Earth, a−, in

terms of the radial derivative of the potential outside the Earth,a+, and contributions

from perturbations of the Earth’s surface topography and surface loading. After spherical

harmonic expansion, eq. (1.91) can be arranged as follows

Qℓm(a−) = ∂rΦ
∆
ℓm(a+) +

ℓ+ 1

a
Φℓm(a)− 4πGσFℓm (1.93)

where we have used the fact that the potential is continuous across any interface

Φℓm(a+) = Φℓm(a−) (1.94)
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The first term in the RHS of eq. (1.93) can be further specified by considering the depen-

dence of the potential on the radial distance from the Earth centre. First, we distinguish

between gravitational, tidal and centrifugal potentials as in eq. (1.3). Fromeqs (1.87)–

(1.88), the Poisson equations (1.4)–(1.5) for the gravitational and tidal potentials become

Laplace equations outside the Earth and within the sphere of radiusaT containing it, re-

spectively. After spherical harmonic expansion, we thus obtain

∇2
rΦ

G
ℓm = 0 (r > a) (1.95)

∇2
rΦ

T
ℓm = 0 (r < aT ) (1.96)

whereΦG
ℓm andΦT

ℓm are the spherical harmonic coefficients of the gravitational and tidal

potentials,φG andφT , respectively. By imposing the regularity conditions at the infinity

(in the limit for r → ∞) and the centre of the Earth (r = 0), the solutions of the above

Laplacian equations read

ΦG
ℓm(r) = ΦG

ℓm(a)
(r

a

)−ℓ−1
(r > a) (1.97)

ΦT
ℓm(r) = ΦT

ℓm(a)
(r

a

)ℓ
(r < aT ) (1.98)

HereΦG
ℓm(a) adΦT

ℓm(a) must be intended as constants of integration. The gravitational

potential at the Earth surfaceΦG
ℓm(a) will be obtained solving the viscoelastic problem,

while the tidal potentialΦT
ℓm(a) is prescribed by the external bodies for which we are

solving the problem

ΦT
ℓm(a) = −4πGa

2 ℓ+ 1

∫ ∞

aT

ρTℓm(r)
(a

r

)ℓ−1
dr (1.99)

Furthermore, after expansion in spherical harmonics of eq. (1.6), we obtain for the

centrifugal potentialφC
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φC(r, θ, φ) = ΦC
00(r)Y00(θ, φ) +

2
∑

m=−2

ΦC
2m(r)Y2m(θ, φ) (1.100)

where the spherical harmonic coefficientsΦC
00 ancΦC

2m are given by

ΦC
00(r) = −ω

2 r2

3
(1.101)

ΦC
2m(r) =

ω2 r2

3
Ȳ2m(θC , ϕC) (m = −2, · · · , 2) (1.102)

while the others are zero,ΦC
ℓm = 0 for ℓ = 1, 3, · · · ,∞. Here,θC , ϕC are the colatitude

and longitude of the angular velocityω. Note that the degree–2 spherical harmonics

coefficientsΦT
2m andΦC

2m share the same dependence onr, i.e.,r2. In this respect, the

following treatment will be done assuming

ΦC
ℓm(r) = ΦC

ℓm(a)
(r

a

)ℓ
(1.103)

that is correct because we do not consider degree–0 perturbations andΦC
ℓm(a) = 0 for

ℓ = 1, 3, · · · ,∞.

By using these results, eq. (1.93) becomes

Qℓm(a−) =
2 ℓ+ 1

a

(

ΦT
ℓm(a) + ΦC

ℓm(a)
)

− 4πGσL (1.104)

where the terms related to the gravitational potentialΦG
ℓm in the RHS have cancelled

each other using eq. (1.97)

∂rΦ
G
ℓm(a+) = −ℓ+ 1

a
ΦG
ℓm(a) (1.105)

and the radial derivatives of the tidal and centrifugal potentials have been obtained from

eqs (1.98) and (1.103)
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∂rΦ
T
ℓm(a+) =

ℓ

a
ΦT
ℓm(a) (1.106)

∂rΦ
C
ℓm(a+) =

ℓ

a
ΦC
ℓm(a) (1.107)

In summary, for the forcings that we are considering, the tangential stressSℓm is zero

at the Earth surface while the radial,Rℓm, and potential,Qℓm, stresses are constrained

by eqs (1.90) and (1.104). We collect these findings in the following compact form

P1 y(a
−) = b (1.108)

whereP1 is the projector for the third, fourth and sixth components of the spheroidal

vector solution, andb is the3–vector

b =
4π a2

2 ℓ+ 1
σLℓm bL +

(

ΦT
ℓm(a) + ΦC

ℓm(a)
)

bT (1.109)

with

bL =







− (2 ℓ+1) g(a)
4π a2

0

− (2 ℓ+1)G
a2






(1.110)

bT =







0

0
2 ℓ+1
a






(1.111)

1.3.2 Chemical boundaries

Between two viscoelastic layers, we assume chemical boundaries where nomaterial

crosses the interfaces. Internal interfaces where material does cross, undergoing a phase
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change, are instead called phase-change boundaries. Chemical boundaries are adequate

for viscoelastic deformation on timescale comparable or smaller than those of age ages,

hundreds of thousand years, although some works indicate that the lower-upper mantle

interfaces is likely to be partly a chemical and partly a phase-change boundary. However,

this possibility is controversial and much of the works about perturbations induced by

ice ages neglects it. Phase-change boundary are surely adequate formantle convection

studies if we want obtain the whole mantle circulation. In Chapter 6, we will consider

mantle convection as concerns its impact on the rotational stability of Earth. In that

case, however, we will use a simple model where compressibility is neglected and the

density is constant through the whole mantle. This is a simplified way to obtain the

whole mantle circulation without the need of including phase-change boundaries. In this

thesis, we thus decided to rely on the chemical boundaries, without furtherdiscussion of

phase-change boundaries.

At chemical boundaries, there is no cavitation and no slip between two adjacent lay-

ers, and the stress components are continuous. By definition, also the potential perturba-

tion is continuous while its radial derivative is discontinuous at interfaces with density

contrast. This results applying the Gauss theorem at the incremental Poisson equation

(1.19) within a volume embedded in an infinitesimal pill-box at an internal interface

∂rφ
∆(r+j )− ∂rφ

∆(r−j ) = −4πG∆ρj u(rj) · er (1.112)

where∆ρj is the density contrast between the two layers (that is positive if the inner

layer is denser than the outer layer)

∆ρj = ρ0(r
+
j )− ρ0(r

−
j ) (1.113)

Eq. (1.112) shows that topography perturbations of the internal interfaces affect the local

incremental potential in terms of the surface density given by product of the radial dis-

placement and the density contrast. This product describes the local incremental density

localized at the internal interfaces. After spherical harmonic expansion, eq. (1.112) can

thus be arranged in the continuity condition for the potential stress
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Qℓm(r+j ) = Qℓm(r−j ) (1.114)

In the light of the above remarks, all the components of the spheroidal vector solution

are continuous at chemical boundaries

yℓm(r+j ) = yℓm(r−j ) (1.115)

1.3.3 Core-mantle boundary

The conditions at the core-mantle boundary (CMB) have been disputed among geo-

physicists since the work of Longman (1962, 1963). This controversy focuses on the

treatment of the continuity conditions for the radial deformation at the CMB forthe case

in which the fluid core deviates from the neutral state of equilibirum, i.e., when the core

stratification is non-adiabatic and chemically heterogeneous. Indeed, as we are going to

show, for such stratifications the solution of the momentum and Poisson equations leads

to the conclusion that radial and geoid displacements coincide. This also impliesthat

no isostatic compensation of the mantle bumping into the core would be possible and

this is not the case of reality. This problem was named the Longman (1962) paradox.

Differently, the Longman (1962) paradox does not subsist if the core isin a neutral state

of equilibrium, and the CMB conditions are derived in a straightforward way.

In order to discriminate between the neutral state of equilibrium from departures due

to non-adiabatic and chemically heterogeneous stratifications, we considerthe density

state functionρ as function of the pressurep, entropys and chemical compositionc,

and denote with the superscript0 the respective profiles at the initial state of hydrostatic

equilibirum of the Earth model, which only depend on the radial distance fromthe Earth

centrer. By differentiating the density state function with respect to the radial distance

from the Earth centre, we obtain the following identity for the initial density gradient

∂rρ0 = −ρ
2
0 g

κ
+ γ (1.116)
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where we used the definition of the bulk modulusκ and the condition of hydrostatic

equilibrium, eqs (1.30) and (1.44), andγ is the compositional coefficient given by

γ =
∂ρ

∂s

∣

∣

∣

∣

p0,c0

∂rs0 +
∂ρ

∂c

∣

∣

∣

∣

p0,s0

∂rc0 (1.117)

Eq. (1.116) is named the generalized Williamson–Adams equation (Wolf and Kauf-

mann, 2000; Cambiotti and Sabadini, 2010). The first term in the RHS showshow com-

pressibility, via the bulk modulusκ, characterizes the initial density profile of the Earth.

A finite bulk modulus yields a negative density gradient∂rρ0 and the initial density in-

creases with depth accordingly to compression of the Earth due to its own weight (i.e.,

self–compression). The second term, the compositional coefficientγ, takes into account

the departure from the self–compression due to non-adiabatic and chemically heteroge-

neous stratifications, i.e., when the gradient of the initial entropy,∂rs0, and chemical

composition,∂rc0, differ from zero. Their contribution does not amount to more than

10− 20 per cent of the actual density gradient of the Earth (Birch, 1952, 1964; Wolf and

Kaufmann, 2000) and it occurs likely in the outermost layers of the Earth, like the transi-

tion zone and the lithosphere. The core and the lower mantle, instead, deviatemarginally

from the adiabatic and chemically homogeneous stratification.

Afterwards, we will call compressional stratifications or we will say that a layer of

the Earth is in a neutral state of equilibrium if the stratification is adiabatic and chem-

ically homogeneous (γ = 0). Instead, we will refer to non-adiabatic and chemically

heterogeneous stratifications (γ 6= 0) as compositional stratifications.

We deal with the fluid core as an inviscid body, in which there are no deviatoric

stress. The material incremental stress is given by the material incremental hydrostatic

stress

σδ(x, t) = −pδ 1 = κ∆1 (1.118)

and the radial and tangential stresses become

Rℓm = κχℓm (1.119)
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Sℓm = 0 (1.120)

The CMB is a chemical boundary where no material cross. The only difference with re-

spect to the case of solid–solid interfaces, for which all the components ofthe spheroidal

vector solution must be continuous at the interface, consists in the fact thatthe CMB is

a free–slip boundary where the solid mantle can slip over the inviscid core without tan-

gential stress, eq. (1.120). We thus write the spheroidal vector solution at the bottom of

the solid mantle as

y(r+C ) =























Uℓm(r−C )

0

Rℓm(r−C )

0

Φℓm(r−C )

Qℓm(r−C )























+ C2























0

1

0

0

0

0























(1.121)

where the tangential stress is set to zero and we consider the tangential displacement as

a constant of integration that we denote withC2.

The inviscid core can be dealt with either as an elastic body with the shear modulus

µ set to zero (Longman, 1963) or as a viscoelastic body in the Laplace domain, with the

Laplace variables set to zero (Wu and Peltier, 1982), sinceµ̂(0) = 0 from eq. (1.41).

We thus obtain the radial and tangential components of the momentum equation for the

inviscid body from eqs (1.70)- (1.71) settingµ = 0

∂rRℓm

ρ0
− ∂r(g Uℓm) + g χℓm − ∂rΦℓm = 0 (1.122)

Rℓm

ρ0
− g Uℓm − Φℓm = 0 (1.123)

Here, we omit the terms related to forcings because we are assuming that theyyield zero

within the core.

Following the treatment of Longman (1962), we divide both equations by the initial
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densityρ0 and arrange them by subtracting the radial derivative of the second equation

to the first equation

κ

ρ20

(

∂rρ0 +
ρ20 g

κ

)

χℓm = 0 (1.124)

Here the quantity within the bracket in the LHS only depends on the material parameter

of the Earth model and, after comparison with eq. (1.117), correspons tothe composi-

tional coefficientγ. Furthermore, by making use of eqs (1.123)–(1.124) for eliminating

the radial displacement and volume changes into the Poisson equation (1.73), the latter

becomes a second order differential equation in the only potentialΦℓm

∇2
rΦℓm = 4πG∂rρ0

Φℓm

g
(1.125)

The latter differential equation admits only one regular solution at the Earth centre that

depends on the harmonic degreeℓ and the densityρ0 via the ratio between the initial

density gradient and gravity,∂rρ0/g. By denoting the regular solution withψℓm, such

that

lim
r→0

r−ℓ ψℓ(r) = 1 (1.126)

we write the potentialΦℓm as

Φℓm(r) = C1 ψℓ(r) (1.127)

whereC1 is a constant of integration.

Solutions of the radial and tangential components of the momentum equation, eqs

(1.122)–(1.123), are perturbed states of hydrostatic equilibrium, whereperturbed equipo-

tential, isobaric and equal density surfaces coincide (Chinnery, 1975). For compressional

stratifications, eq. (1.124) is identically satisfied for any volume changeχℓm because the

compositional coefficient is zero,γ = 0. This means that eqs (1.122)–(1.123) are not

linearly independent. We thus restrict our attention only on the tangential component,
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eq. (1.123), from which we constrain the radial stress (or the volume change from eq.

(1.119)) in terms of the gap between radial displacements and geoid perturbations

Rℓm = ρ0 g

[

Uℓm −
(

−Φℓm

g

)]

= ρ0 g C3 (1.128)

that we consider as a constant of integration,C3. This allows us to obtain the radial

displacement and the potential stress in terms of the constants of integrationC1 andC3

Uℓm = −C1
ψℓ

g
+ C3 (1.129)

Qℓm = C1 qℓ + 4πGρ0C3 (1.130)

whereqℓ is defined by

qℓ = ∂rψℓ +
ℓ+ 1

r
ψℓ −

4πG

g
ψℓ (1.131)

By making use of eqs (1.127)–(1.130) into the CMB conditions, eq. (1.121), we thus

express the spheroidal vector solution at the bottom of the solid mantle as

yℓm(r+C ) = IC C (1.132)

whereIC is the core-mantle boundary (CMB) matrix

IC =























−ψℓ(rC)/g(rC) 0 1

0 1 0

0 0 g(rC) ρ0(r
−
C )

0 0 0

ψℓ(rC) 0 0

qℓ(rC) 0 4πGρ0(r
−
C )























(1.133)
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andC is the vector of constants of integration

C = (C1, C2, C3) (1.134)

As we will see in section 1.4, these constants of integration must be determined using

the boundary condition at the Earth surface for the stress components ofthe spheroidal

vector solution. Once obtained, the perturbed state of the solid mantle is completely

determined. Differently, the perturbed state of the core is determined only for some as-

pects. Indeed, the constants of integrations only determine the potential withinthe core,

and the radial displacement and the radial stress at the CMB. Other information about the

core, instead, remain undetermined within the present assumptions. Particularly, below

the CMB, we do not know volume changes, displacements and radial stress.

For compositional stratifications (γ 6= 0) the above boundary conditions must be

reconsidered. In this case, eq. (1.124) constrains volume variationχ to be zero

χℓm = 0 (1.135)

From eq. (1.119), this also constrain the radial stress to zero and, fromeq. (1.122), radial

displacements and geoid perturbations must coincide

Uℓm = −Φℓm

g
(1.136)

This condition means that all particles located at a given equipotential surface at the

initial state of hydrostatic equilibrium (which define a material interface) must displace

over the same perturbed equipotential surface (Chinnery, 1975). Thisconstrains to zero

the constant of integrationC3 entering the radial stress, eq. (1.128), and one should con-

clude that isostatic compensation at the CMB is thus impossible for an inviscid core with

compositional stratification. This problem was named Longman (1962) paradox and de-

bated in the seventies by many authors, among which Smylie and Mansinha (1971),

Pekeris and Accad (1972), and Chinnery (1975).

By considering perturbations of the inviscid core in the frequencyω-domain, Pekeris
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and Accad (1972) obtained the static solution as the limit case of the dynamic problem

for ω → 0. They pointed out that static volume variations are indeed zero for com-

positional stratifications, with the exception for an infinitesimally thin layer just below

the CMB where volume variations may occur. Thus, eq. (1.136) does not hold in this

thin boundary layer and isostatic compensation of the above solid mantle is obtained

by a non-zero gap between radial displacements and geoid perturbations. In light of

this, CMB conditions for compressional and compositional stratifications areformally

equivalent, although isostatic compensation is achieved in very different ways: for com-

pressional stratifications, perturbations involve the whole core, while, for compositional

stratifications, they are confined in a thin boundary layer just below CMB.

Smylie and Mansinha (1971) and Chinnery (1975) obtained CMB conditionsfor

compositional stratifications by assuming that radial displacement can be discontinuous

at CMB. This discontinuity, however, should not be intended literally. Indeed, in view

of eq. (1.136), these authors considered geoid perturbations within the inviscid core as

radial displacements and, thus, the discontinuity actually corresponds to a non-zero gap

between radial displacement and geoid perturbations, in agreement with thefinding of

Pekeris and Accad (1972). In this respect, we also note that the arguments of Denis

et al. (1998) (see their section 5.3) against CMB conditions of Smylie and Mansinha

(1971) and Chinnery (1975) were incorrect. Particularly, we refer towhen Deniset

al. (1998) said that the analogy of the mantle bumping into the core like a boat on a

lake is misleading since (i) the boat problem is a local problem, while the static-core

problem is a global one, and (ii) water level around the boat can rise by afinite amount,

while the fluid core cannot since it is closed by an elastic or viscoelastic membrane, the

above solid mantle. Indeed, it is not physically sound thinking that the boat problem

cannot be solved as a global problem, where forces acting on and within the lake are

also balanced, and, for the simple geometrical reason that Longman (1962) paradox

concerns only perturbations of harmonic degrees greater than0, which do not affect the

total volume of the core.

1.4 Elastic and viscoelastic solutions

The general solution of the differential system (1.80) reads
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yℓm(r) = Πℓ(r, r0)y0 −
∫ r

r0

Πℓ(r, r
′)f ℓm(r′) dr′ (1.137)

wherey0 is the Cauchy datum at the radiusr0

yℓm(r0) = y0 (1.138)

andΠℓ is the so called propagator matrix. The latter is the6 × 6-matrix that solve the

following homogeneous differential system

dΠℓ(r, r
′)

dr
= Aℓ(r)Πℓ(r, r

′) (1.139)

with the Cauchy datum at the radiusr′ given by the identity matrix1

Πℓ(r
′, r′) = 1 (1.140)

In this respect, each column of the propagator matrix is one of the six linearly indepen-

dent solution of the homogeneous differential system

dyℓm

dr
= Aℓ yℓm (1.141)

When the integration of eq. (1.139) in a viscoelastic layer of the Earth model arrives

to an internal chemical boundary, we impose the continuity of the propagatorand we

continue the integration in the new layer accordingly to eq. (1.115)

Πℓ(r
+
j , r

′) = Πℓ(r
−
j , r

′) (1.142)

In this way the spheroidal vector solutionyℓm, eq. (1.137), already satisfies the condi-

tions for the chemical boundaries between the viscoelastic layers of the Earth model.

We impose CMB conditions in the general solution (1.137) by choosing the bottom
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of the mantle as the radius from which the integration starts,r0 = r+C , and equating the

Cauchy datumy0 with the RHS of eq. (1.132)

yℓm(r+C ) = y0 = IC C (1.143)

This yields

yℓm(r) = Πℓ(r, rC)ICC−w(r) (1.144)

where, for brevity, we have defined

w(r) =

∫ r

r+C

Πℓ(r, r
′)f ℓm(r′) dr′ (1.145)

The three constants of integrationC entering the CMB conditions can be estimated

by imposing the boundary conditions at the Earth surface (1.108). From eq. (1.144) and

by recalling that the spheroidal vector solution in the LHS of eq. (1.108) refers to the

solution just below the Earth surface, we write

P1yℓm(a−) = P1

(

Πℓ(a, rC)ICC−w(a−)
)

= b (1.146)

Note thatw is evaluated ata−, i.e., the integration from the bottom of the mantle entering

eq. (1.145) ends just below the Earth surface,a−. This means that surface loadings do

not actually contribute to the integral and this is correct because their effect is already

accounted for by the Earth surface boundary condition via the termb, eq. (1.109). In

other words, the spheroidal vector solution always must be intended as evaluated below

the Earth surfacea because it refers to perturbations of the Earth, and only the density

of internal loads and seismic forces contribute to the vectorw. We avoid mistakes in

the following physical treatment by omitting those terms entering the dishomogeneous

termf ℓm that are zero within the Earth, i.e., the surface densityσLℓm and the density of

external bodiesρTℓm
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f ℓm =
4π r2

2 ℓ+ 1
ρIℓm fL +mℓm (1.147)

Then, using eq. (1.146) for obtaining the constants of integrationC

C = (P1Πℓ(a, rC) IC)
−1 (P1w(a) + b) (1.148)

eq. (1.144) becomes

yℓm(r) = Πℓ(r, rC)IC (P1Πℓ(a, rC) IC)
−1 (P1w(a) + b)−w(r) (1.149)

This is the solution of the associated elastic problem that uniquely determine the spheroidal

deformations and the perturbations of the potential within the Earth, as well asthe radial

and tangential spheroidal stresses and the potential stress, in response to internal and

surface loading, and tidal, centrifugal and seismic forcings.

1.4.1 Load and tidal Love numbers

In the perspective of applications of the present theory to the modelling of geodetic

observations, we will consider the solution, denoted withK, for the radial and tangential

spheroidal displacements and local incremental potential at the Earth surface

K =







Uℓm(a)

Vℓm(a)

Φℓm(a)






(1.150)

From eq. (1.149) we obtain

K = P2 yℓm(a) = Bℓ(a) (P1w(a) + b)−P2w(a) (1.151)
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whereP2 is the projector for the first, second and fifth components of the spheroidal

vector solution and, for brevity, we have defined

Bℓ(r) = P1Πℓ(r, rC)IC (P1Πℓ(a, rC) IC)
−1 (1.152)

Seismic forces need a specific treatment of the non-conservative forceM entering

the dishomogeneous termf ℓm, eq. (1.83), via the vectormℓm. We first deal only with

loadings and external potentials and we set the seismic forcing to zero in the dishomo-

geneous termf ℓm, postponing to section 1.7 the discussion of the theory for seismic

forces.

We then introduce the so called Love numbersk. They are adimensional Green

functions that linearly relate the perturbationsK to internal and surface loads, and tidal

and centrifugal potentials

KL =
4π

(2 ℓ+ 1)
NL

∫ a

rC

kL(r)
(

δ(r − a)σLℓm + ρIℓm(r)
)

r2 dr

+NT kT
(

ΦT
ℓm(a) + ΦC

ℓm(a)
)

(1.153)

whereNL andNT are the dimensional diagonal matrices

NL =
G

a
Diag[1/g(a), 1/g(a), 1] (1.154)

NT = Diag[1/g(a), 1/g(a), 1] (1.155)

Here,kL andkT are load and tidal Love numbers, respectively, that we obtain for com-

parison between eqs (1.151) and (1.153)

kL(r) = N−1
L (Bℓ(a)P1 −P2)Πℓ(a, r)f

L (1.156)
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kT = N−1
T Bℓ(a) b

T (1.157)

Note that the Love number depends on the material stratification of the Earth models and

the harmonic degreeℓ via the propagator matrixΠℓ, but not on the orderm. Note also

that perturbations due to tidal and centrifgual forces share the same Green functions, the

tidal Love numbers,kT , and that the load Love numberkL depend on the radial distance

from the Earth centrer where the load is seated. Particularly, from eq. (1.156) evaluated

at the Earth surfacea, the load Love number for surface loading simplifies into

kL(a) = N−1
L Bℓ(a) bL (1.158)

The components of the load and tidal Love numbers consist of the so called radial,

tangential and gravitational Love numbers, that we denote withh, l andk, respectively.

They are defined by

kL(r) =







hL(r)

lL(r)

(r/a)ℓ + kL(r)






(1.159)

kT =







hT

lT

1 + kT






(1.160)

Due to the term(r/a)ℓ and the unit in the third components, the gravitational Love

numberskL andkT only describe the gravitational potential that is due to density per-

turbations of the Earth, without including the direct contributions from load densities

and external potentials.

Eq. (1.153) can be seen as the solution of the static elastic problem or the associ-

ated elastic solution, i.e, the solution of the viscoelastic problem in the Laplace domain

accordingly to the Correspondence Principle. In the first case, the fields are in the time
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domain and the propagator matrix depend on the shear modulusµ. Then eq. (1.153)

can readily be used for modelling elastic perturbations at the Earth surface, for which

the Love numberk are named elastic LovekE , denoted with the subscriptE. In the

second case, we must intend formulas as in the Laplace domain, where fieldsare the

Laplace transform of fields and the propagator matrixΠℓ depends on the function̂µ(s)

of the Laplace variables defined by eq. (1.41), rather than the shear modulusµ. We

then define the viscoelastic Love numberk in the time domain in terms of their Laplace

transforms̃k(s) that we obtain from eqs (1.156)–(1.157)

k̃
L
(r, s) = L

[

kL(r, t)
]

= NL (BℓP1 −P2)Πℓ(a, r)f
L
∣

∣

µ=µ̂(s)
(1.161)

k̃
T
(s) = L

[

kT (t)
]

= NT Bℓ b
T
∣

∣

µ=µ̂(s)
(1.162)

where we have indicated the dependence on the Laplace variables via the functionµ̂(s)

that substitutes the shear modulusµ. This affects the propagator matrixΠℓ and also the

matrixBℓ, eq. (1.152). Note that the limit of eqs (1.161)–(1.162) for|s| → ∞ converges

to the elastic Love numberskL
E andkT

E

lim
|s|→∞

k̃
L
(r, s) = kL

E(r) (1.163)

lim
|s|→∞

k̃
T
(s) = kT

E (1.164)

because the limit of̂µ(s) for |s| → ∞ converges to the shear modulusµ

lim
|s|→∞

µ̃(s) = µ (1.165)

With these definitions, the associated elastic solution in the Laplace domain becomes
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K̃(s) =
4π

(2 ℓ+ 1)
NL

∫ a

rC

k̃
L
(r, s)

(

δ(r − a) σ̃Lℓm(s) + ρ̃Iℓm(r, s)
)

r2 dr

+NT k̃
T
(s)
(

Φ̃T
ℓm(a, s) + Φ̃C

ℓm(a, s)
)

(1.166)

and, after inverse Laplace transform of the product of two functions,eq. (1.35), we

obtain the viscoelastic perturbationsK in the time domain as the time convolution of the

viscoelastic Love numberk and the time histories of the forcing terms

K(t) =
4π

2 ℓ+ 1
NL

∫ a

rC

kL(r, t) ⋆
(

δ(r − a)σL(r, t) + ρI(r, t)
)

dr

+NT kT (t) ⋆
(

ΦT
ℓm(a, t) + ΦC

ℓm(a, t)
)

(1.167)

Here, the viscoelastic Love numbers must be obtained by inverse Laplace transformation

of eqs (1.161)–(1.162). The inverse Laplace transform is formally defined by complex

integration along the Bromwich path

k(t) = L−1
[

k̃(s)
]

=
1

2π i

∫ c+i∞

c−i∞
k̃(s) es t ds (1.168)

The real constantc is chosen such that singularities of the integrandk̃(s) es t are either

all on the left or all on the right side of the vertical line running fromc− i∞ to c+ i∞.

Closing the contour with a half-circleCR of radiusR (either on the left of the line or

on the right, depending on where the singularities are situated) leads to the following

complex contour integration

k(t) = − 1

2π i
lim

R→∞

∫

CR

k̃(s) es t ds+
1

2π i

∮

Γ
k̃(s) es t ds (1.169)

whereΓ is an arbitrarily closed contour which contains all the singularities. By consid-

ering eqs (1.164)–(1.164) and that the inverse Laplace transform of the unit1 yields the
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Dirac deltaδ(t), we can further specify the first term of the RHS of eq. (1.169), that we

write as follows

k(t) = kE δ(t) +
1

2π i

∮

Γ
k̃(s) es t ds (1.170)

This representation of the viscoelastic Love number separates the instantanteous elastic

response of the viscoelastic Earth model to the imposition of loading and external poten-

tials from the following response due to viscoelastic relaxation of the deviatoric stress.

We mantain this distinction by defining the viscous Love numberkV

kV (t) =
1

2π i

∮

Γ
k̃(s) es t ds (1.171)

and writing the Love numbersk as

k(t) = kV (t) + kE δ(t) (1.172)

1.5 The relaxation spectrum

The singularities of the integrand̃k(s) es t enclosed in the complex closed contourΓ

may arise into different ways. The first source of singularities is when thedifferential

system (1.139) is non–uniformly Lipschitzian. Indeed, this reflects into singularities of

the propagator matrixΠℓ. The inspection of the function̂µ(s) and the elements of the

matrixAℓ, defined in eqs (1.41) and (1.81), leads to the conclusion that the differential

system is not-uniformly Lipschitzian fors = 0, s = −τ−1 ands = −ς−1, whereς is the

so called compressional transient time (Cambiottiet al., 2009; Cambiotti and Sabadini,

2010) defined by

ς = τ

(

1 +
4µ

3κ

)

(1.173)

We denote the set of non–uniformly Lipschitzian zones asN
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N = {0} ∪ Nτ ∪Nς (1.174)

with

Nτ =

{

s ∈ R

∣

∣

∣

∣

s = − 1

τ(r)
∀ r ∈ [rC , a]

}

(1.175)

Nς =

{

s ∈ R

∣

∣

∣

∣

s = − 1

ς(r)
∀ r ∈ [rC , a]

}

(1.176)

This singularity at the origin of the Laplace domain occurs becauseµ̂(s = 0) = 0 and

the momentum equation becomes the equation for the inviscid body. This demandsa

specific treatment, like that discussed in section 1.3.3 for the inviscid core. Cambiotti

and Sabadini (2010) shown that the origin of the Laplace domain is not a singularity if

the stratification of the mantle is compressional (γ = 0), while it is the cluster point of a

infinite denumerable set of roots if the stratification is compositional(γ 6= 0). We will

return later on this issue in eq. (1.185) and Chapter 2.

The second source of singularities comes from the determination of the constants of

integrationC using the boundary conditions at the Earth surface, eq. (1.148). Indeed,

the inverse of the3× 3-matrix

[P1Πℓ(a, r) IC ]µ=µ̂(s) (1.177)

may be singular for some value of the Laplace variables. In this respect, we recast the

matrixBℓ as follows

Bℓ|µ=µ̂(s) =

(P1Πℓ(a, rC) IC) (P1Πℓ(a, rC) IC)
†
∣

∣

∣

µ=µ̂(s)

∆(s)
(1.178)

where† stands for the matrix of complementary minors, and∆ is the so called secular

determinant
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∆(s) = det (P1Πℓ(a, r) IC)|µ=µ̂(s) (1.179)

The singularities thus occur for the solutions of the so called secular equation

∆(s) = 0 (1.180)

that is the conditions when the secular determinant entering the denominator ofeq.

(1.178) is zero. Tanakaet al. (2006) proved that these solutions must be on the real

axis of the Laplace domain, i.e.,ℑs = 0. We denote the set of these singularities asS

S = {s ∈ R| ∆(s) = 0} (1.181)

Experience and analytical proofs have lead to the conclusion that the solution of the

secular equation (1.180) are finite or, at the most, infinite denumerable (theymay have

cluster points belonging to the non–uniformly Lipschitzian zoneN ). Also, they are

first-order roots and, in this respect, the Love numbers in the Laplace domain have first-

order poles at these roots. This is the simplest type of singularity that we dealt with by

means of the residue theorem (Sabadini and Vermeersen, 2004). Particularly, each root

contributes to the complex integration along the closed contourΓ entering eq. (1.171)

for

∮

Γj

k(s) ds = kj e
sj t (1.182)

wheresj andΓj denote thej-th first-order poles and the closed path containing only this

root, andkj is the residue

kj = lim
s→sj

(s− sj)k(s) (1.183)

This show that each rootsj is associated with a response of the viscoelastic Earth
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model due to the imposition of loading and external potentials. These responses are

called normal modes and have characteristic relaxation timestj given by the inverse of

the rootsj . They describe the transition from the elastic to fluid behaviours due to vis-

coelastic relaxation of deviatoric stress. The rootssj depends generally on the material

parameters of all the layers of the viscoelastic Earth model and on the harmonic degreeℓ

(and thus must be determined for each harmonic degree). It turns out that the rootssj are

always negative but for density inversion at the internal interfaces between the layers of

the model, i.e., when the density of the layers is lower than that of the neighboring layer

above (Plag and Jüttner, 1995; Vermeersen and Mitrovica 2000; Cambiottiand Sabadini,

2010), and for unstable compositional stratifications, i.e., for positive compositional co-

efficientsγ > 0 (see Chapter 2; Cambiottiet al. 2009; Cambiotti and Sabadini 2010).

Unstable stratifications trigger normal modes with positive rootssj that, according to

eq. (1.182), are responsible for the divergence of the displacements and the potential at

large timescales, called Rayleigh-Taylor instabilities. If that is the case, unstable con-

vective motions will be triggered in the Earth model and the theory as developed in this

thesis breaks down on timescales comparable with the characteristic relaxationtime of

Rayleigh-Taylor instabilities,tj = 1/sj .

For simple layered incompressible models, the total number of normal modes is

finite and can be determined by means of the following rules:

• At each boundary between two viscoelastic layers, one buoyancy mode istrig-

gered if the densities on both sides of the boundary are different. Buoyancy modes

between two mantle layers are usually labelled Mi, with i = 1, 2, · · · . At the same

boundary, two additional relaxation modes are triggered if the Maxwell times of

both sides of the boundary are different. These paired modes are calledtransient

viscoelastic modes as they have relatively short relaxation times and therefore

usually labelled Ti+ and Ti−, with i = 1, 2, · · · .

• If one side of the boundary is elastic and the other is viscoelastic, as the interface

between the elastic lithosphere and the viscoelastic mantle, only the two transient

viscoelastic modes are triggered, labelled M0 and L0 in this case. No buoyancy

mode is instead triggered at such a boundary (even if there is a density contrast).

• If the lithosphere is viscoelastic or we consider the viscoelastic upper mantle as the
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outermost layer, the viscoelastic Earth’s surface contributes with a buoyancy mode

that is also labelled M0, confusingly with one of the two transient viscoelastic

modes that are triggered at the interface between the elastic lithosphere andthe

viscoelastic mantle.

• The core-mantle boundary contributes with one buoyancy mode, labelled C0.

Compressible layered models and the self-compressed compressible sphere share the

same normal modes of layered incompressible models, and additional relaxations modes

associated to compressibility (Han and Wahr, 1995; Cambiotti et al. 2009; Cambiotti and

Sabadini, 2010):

• Each viscoelastic compressible layer triggers two modes. These paired modesare

called transient compressible modes as they have relatively short relaxation times

and usually labelled Zi+ and Zi−, with i = 1, 2, · · · . Within the same layer, also

an infinite denumerable set of modes is triggered. They are called dilatational

modes, labelled Dj , with j = 1, · · · ,∞, and their characteristic times converge to

the compressional transient timeς in the limit for j → ∞

lim
j→∞

sDj
= −ς−1 (1.184)

These are all normal modes for compressible Earth models with compressional strat-

ifications (γ = 0), i.e. when the initial density stratification is due to the only self-

compression of the Earth. Instead, compositional stratifications (γ 6= 0) trigger another

infinite denumerable set of buoyancy modes with very long characteristic times. They

are called compositional modes, labelled Cj , with j = 1, · · · ,∞. These modes can be

both stable,sCj
< 0, and unstable,sCj

> 0, and their polessCj
monotonically converge

to the origin of the Laplace domain forj → ∞

lim
j→∞

sCj
= 0 (1.185)
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The stable case will be carefully discussed in Chapter 2. In the unstable case, instead,

the compositional modes describe Rayleigh-Taylor instabilities that occur on timescales

of the order of the shortest characteristic timetC1 = 1/sC1 , with j = 1.

The presence of dilatational and compositional modes arises theoretical and com-

putational problems in obtaining all the contributions from normal modes, eq. (1.182),

to the viscous Love numbers, eq. (1.171). However, for all intents and purposes, it is

sufficient to detect the first few of these modes in order that the Green functions con-

verge to the exact ones. In fact, forj → ∞, the residueskDj
andkCj

of dilatational and

compressional modes go to zero sufficiently fast so that their summation converges once

the first few of them has been taken into account (see Chapter 2; Cambiottiet al., 2009;

Cambiotti and Sabadini, 2010).

1.5.1 Modal and non-modal contributions

The Love number̃k(s) has two different types of not analyticity. The first comes from

a denumerable set of polessj ∈ S. The second comes from the continuous setN
of the Maxwell and compressional transient timesτ and ς. Accordingly to Fang and

Hager (1995), we will refers to these contributions as the “modal” and “non–modal”

contributions, respectively. The modal contribution can be explicited in the viscoelastic

Love number by making use of the residue theorem as in eq. (1.182)

k(t) =
∑

sj∈S0

kj e
sj t +

1

2π i

∮

Γ
kN (s) ds+ kE δ(t) (1.186)

Here,k̃N (s) stands for the non-modal contribution that we cannot further explicit and

must be obtained by complex integration along the closed contourΓ.

The non modal contribution is inherently associated with the continuous variations

of the Maxwell and compressional transient times. Indeed, as discussedin Spadaet

al. (1992a), Han and Whar (1995), Vermeersen and Sabadini (1997a)and Cambiottiet

al. (2009), these singularities do not contribute to the perturbations in the time domain

if they are isolated points in the Laplaces-domain. This is the case for layered Earth

models, where the elastic parameter and the viscosity are constant within eachlayer,

because the Maxwell and compressional transient times do not vary within each layer.

Eq. (1.171) thus becomes
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kV (t) =
∑

sj∈S0

kj e
sj t (1.187)

On the contrary, we have verified that a not null contribution comes from the setN
when it is continuous (Cambiotti and Sabadini, 2010; Cambiottiet al. 2010) and, thus,

we must necessarily evaluate the complex contour integration along the contour Γ in eq.

(1.186).

1.6 The complex contour integration

For applications of the present theory for modelling perturbations in the time domain,

we do not need to investigate any time the relaxation spectrum. We just need to know

where the singularities are located in order to choose the closed contourΓ that con-

tains them, and then perform the complex contour integration entering eq. (1.171). This

straightforward approach was implemented by Tanakaet al. (2006) for modelling post-

seismic perturbations due to the December 2004 Sumatran earthquake. In thefollowing

we describe some aspects necessary for obtaining stable numerical codes able to com-

pute the viscoelastic response in a wide range of time scales, from the instantaneous

elastic response to the billion year time scales.

Fig. 1.1 shows the contourΓ (dashed line) that we use in eq. (1.171) and the contour

of Tanakaet al. (2006) (solid line). The difference consists in the fact that our contouris

situated on the half space with positive real part of the Laplace variables, ℜs > 0, only

for the semi–circle of radiusR

R = max
{

5 sC1, 10
−5 kyr−1

}

(1.188)

wheresC1 is the largest positive pole of the first compositional mode due to unstable

compositional stratifications. The factor5 and the lower bound10−5 kyr−1 in eq. (1.188)

have been chosen in order to avoid numerical unstability in the radial Gill-Runge-Kutta

integration of the differential system (1.139) near the polesC1 and the origin of the

Laplace domain,s = 0. This choice reduces the numerical unstability in the numerical

evaluation of eq. (1.171) due to the termeℜs t, which diverges in the limitt → ∞ if
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Figure 1.1: The closed contour Γ and that used in Tanaka et al. (2006) (dashed and solid lines, respectively).

ℜs > 0. The polesC1 is obtained by means of a root-finding algorithm, which can be

applied safety in the positive half of the real axis becuse the non–uniformlyLipschitzian

zoneN is situated in the negative half, by definition, eq. (1.174).

The valueZ defining the lowestℜs < 0 of the contourΓ is chosen as

Z = −11

10

1

τ(r∗)
(1.189)

wherer∗ is the radius at which the Maxwell relaxation timeτ assumes its smallest

value. This is due to the fact that the singularities can be composed only of isolated

polessj ∈ S if ℜs < −τ(r∗), and our experience has shown that there are not poles

such thatsj < −τ(r∗).
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We choose1 kyr−1 for the greatest and lowestℑs of the contourΓ. Increasing the

time t numerical instabilities may happen due to the sign oscillations ofeℑs t near the

imaginary axis, for smallℜs. Indeed, elsewhere the termeℜs t goes rapidly to zero

increasingt, sinceℜs < 0, and this damps the oscillations ofeiℑs t. To avoid the

numerical unstability near the the imaginary axis, particularly for thoses with ℜs ≥ 0,

we proceed as follows. We adopt an adaptive Cavalieri-Simpson method to evaluate

the contour integral entering eq. (1.171) and, at each stage, we increase artfully the

sampling of the integrand̃k(s) by using the same second order interpolating polynomial

on which the Cavalieri-Simpson method is based. This way the number of steps at

which k̃(s) is effectively evaluated depends only on the smoothness or stiffness ofk̃(s)

along the contourΓ, rather than on the conditiontℑs << 2π proposed by Tanakaet

al. (2006). The time scale at which the numerical unstability due to the oscillation of

eℑs t occurs is increased of about1–2 orders of magnitude, under the same number of

effective evaluations of̃k(s).

1.7 Fault discontinuities

Earthquakes yield a discontinuity in the displacement across the fault plane,where the

rock fractures. By denoting withdS = dS n an infinitesimal surface element of the fault

plane of areadS and unit normal vectorn, we thus impose the following condition for

displacements due to earthquakes

δu = δuv = lim
ǫ→0

[u(r0 + ǫn)− u(r0 − ǫn)] (1.190)

wherer0 is the position of the infinitesimal surface element, andδu = δuv is the dis-

placement discontinuity of lengthδu and directionv. Discontinuities which are parallel

to the fault plane (v · n = 0) are called tangential (or shear) displacement dislocations.

Discontinuities which are normal to the fault plane (v · n = 1) are called tensile dis-

placement dislocations. Between the two type of dislocations, we will focus only on the

former as it is responsible for the main contribution to co- and post-seismic perturba-

tions.

Smylie and Mansinha (1971), Mansinhaet al. (1979) and Ben–Menahem and Singh



50 1. Maxwell Earth models

(1981) shown that the effect of displacement dislocations is equivalentto including an

extra body forceM in the momentum equation. For shear displacement dislocations, the

equivalent body force is the double couple

M =M (n⊗ v + v ⊗ n) ·∇0δ(r − r0) (1.191)

whereM is the moment of each couple given by

M = µ(r0) δu dS (1.192)

and the gradient operator∇0 operates on the coordinates of the seismic source point

r0 = (r0, θ0, ϕ0). In order to understand the definition of the equivalent body forceM,

eq. (1.191), we rewrite it as the sum of two single couplesMn,v andMv,n

M = Mn,v +Mv,n (1.193)

The single coupleMn,v (and similarlyMv,n) is given by two opposite point-like forces

of magnitudeF and directionv located at pointsr0 ± ǫ/2n

Mn,v = F v δ(r − (r0 + ǫ/2n))− F v δ(r − (r0 − ǫ/2n)) (1.194)

and, in the limit forF going to infinity andǫ going to zero, it yields

Mn,v =M nv ·∇0δ(r − r0) (1.195)

Here, we have assumed that the product betweenF andǫ remains finite and it coincides

with the seismic momentM given by eq. (1.192)

M = lim
F→∞,ǫ→0

F ǫ (1.196)
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In order to obtain the forcingmℓm, eq. (1.86), entering the differential system (1.80)

via the dishomogeneous termf ℓm, eq. (1.83), we must expand in spherical harmonics

the expression for double couple, eq. (1.191). First we recast eq. (1.191) as follows

M =M n · [v ·∇0 ⊗ (δ(r − r0)1)] +M v · [n ·∇0 ⊗ (δ(r − r0)1)] (1.197)

where we have utilized∇0δ(r− r0)⊗ 1 = ∇0 ⊗ (δ(r − r0)1). The above expression

for the double couple is convenient as the spherical harmonic expansionof the three-

dimensional Dirac deltaδ(r − r0) multiplied by the unit diadyc1 yields

δ(r − r0)1 =
δ(r − r0)

r2

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

Ωℓm

[

Rℓm(θ, ϕ) R̄ℓm(θ0, ϕ0)

+
1

ℓ(ℓ+ 1)

(

Sℓm(θ, ϕ) S̄ℓm(θ0, ϕ0) +Tℓm(θ, ϕ) T̄ℓm(θ0, ϕ0)
)

]

(1.198)

where the bar stands for the complex conjugate.

The Green functions for the displacement and the gravitational potential perturbation

due to the seismic forcing are obtained by considering the infinitesimal fault planedS

located along the polar axis, i.e., taking the limit of eq. (1.197) for the colatitudeθ0

and longitudeϕ0 of the seismic source going to zero. In view of this, we shall use the

following limits

lim
θ0,ϕ0→0

eθ(θ0, ϕ0) = x1 (1.199)

lim
θ0,ϕ0→0

eϕ(θ0, ϕ0) = x2 (1.200)

lim
θ0,ϕ0→0

er(θ0, ϕ0) = x3 (1.201)
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wherexj are the Cartesian unit vectors of the geographical reference (x1 points to the

equator and the Greenwich meridian, whilex3 points to the north pole, i.e., coincides

with the present-day rotation axis), and

lim
θ0,ϕ0→0

Ȳℓm(θ0, ϕ0) = δm0 (1.202)

lim
θ0,ϕ0→0

∂Ȳℓm(θ0, ϕ0)

∂θ0
=

1

2

[

ℓ(ℓ+ 1) δm1 − δm(−1)

]

(1.203)

lim
θ0,ϕ0→0

1

sin θ0

∂Ȳℓm(θ0, ϕ0)

∂ϕ0
=
i

2

[

ℓ(ℓ+ 1) δm1 + δm(−1)

]

(1.204)

lim
θ0,ϕ0→0

∂

∂θ0

(

∂Ȳℓm(θ0, ϕ0)

∂ϕ0

)

= − i

4

[

(ℓ+ 2)!

(ℓ− 2)!
δm2 − δm(−2)

]

(1.205)

Then, by making use of eq. (1.198) into eq. (1.197) and by considering the limit of

the latter forθ0 andϕ0 going to zero in order to locate the double couple along the polar

axis, we obtain

M =M

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

[

mR
ℓm(r)Rℓm(θ, ϕ) +mS

ℓm(r)Sℓm(θ, ϕ) +mT
ℓm(r)Tℓm(θ, ϕ)

]

(1.206)

where

mR
ℓm(r) =

1

Ωℓm
lim

θ0,ϕ0→0

{

n ·
[

v ·∇0

(

δ(r − r0)

r2
R̄ℓm(θ0, ϕ0)

)]

+v ·
[

n ·∇0

(

δ(r − r0)

r2
R̄ℓm(θ0, ϕ0)

)]}

(1.207)
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mS
ℓm(r) =

1

ℓ(ℓ+ 1)Ωℓm
lim

θ0,ϕ0→0

{

n ·
[

v ·∇0

(

δ(r − r0)

r2
S̄ℓm(θ0, ϕ0)

)]

+v ·
[

n ·∇0

(

δ(r − r0)

r2
S̄ℓm(θ0, ϕ0)

)]}

(1.208)

mT
ℓm(r) =

1

ℓ(ℓ+ 1)Ωℓm
lim

θ0,ϕ0→0

{

n ·
[

v ·∇0

(

δ(r − r0)

r2
T̄ℓm(θ0, ϕ0)

)]

+v ·
[

n ·∇0

(

δ(r − r0)

r2
T̄ℓm(θ0, ϕ0)

)]}

(1.209)

with

Ωℓm =
2 ℓ+ 1

4π

(ℓ+m)!

(ℓ−m)!
(1.210)

As discussed in section 1.2, in the following we will do not discuss further thetoroidal

component of the seismic force. By writing the unit directionv of the slip and the unit

normaln to the infinitesimal fault plane in terms of dip,α, and slip,γ, angles

v = cos γ x1 + sin γ cosαx2 + sin γ sin δ x3 (1.211)

n = − sinαx2 + cosαx3 (1.212)

after some straightforward algebra, eqs (1.207)–(1.208) can be castas follows

mX
ℓm(r) =

δ(r − r0)

r2 r0
m

(0)X
ℓm (r) +

drδ(r − r0)

r2
m

(1)X
ℓm (r) (1.213)

Here,X denotes the spheroidal radial,X = R, and tangential,X = S, components of
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the seismic force, andm(x)X
ℓm , for x = 0, 1 andX = R,S, is given by

m
(0)R
ℓ0 = −2 ℓ+ 1

4π
sin 2δ sin γ (1.214)

m
(0)R
ℓ1 =

2 ℓ+ 1

8π
(cos δ cos γ − i cos 2α sin γ) (1.215)

m
(0)R
ℓ2 = 0 (1.216)

m
(1)R
ℓ0 = −2 ℓ+ 1

4π
sin 2α cos γ (1.217)

m
(1)R
ℓ1 = 0 (1.218)

m
(1)R
ℓ2 = 0 (1.219)

m
(0)S
ℓ0 =

2 ℓ+ 1

8π
sin 2δ sin γ (1.220)

m
(0)S
ℓ1 =

2 ℓ+ 1

8π ℓ (ℓ+ 1)
(− cos δ cos γ + i cos 2δ sin γ) (1.221)

m
(0)S
ℓ2 =

2 ℓ+ 1

16π ℓ (ℓ+ 1)
(2 i sin δ cos γ + sin 2δ sin γ) (1.222)

m
(1)S
ℓ0 = 0 (1.223)

m
(1)S
ℓ1 =

2 ℓ+ 1

8π ℓ (ℓ+ 1)
(− cos δ cos γ + i cos 2δ sin γ) (1.224)

m
(1)S
ℓ2 = 0 (1.225)

with i being the imaginary unit. The scalarsm(0)X
ℓm andm(1)X

ℓm of order |m| > 2 are
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zero and their expression form = −1,−2 are obtained by the above expressions by

considering that

mX
ℓ−m = (−1)m

(ℓ−m)!

(ℓ+m)!
m̄X

ℓm (1.226)

In view of these results, the vectormℓm, eq. (1.86), which describes the seismic

force and enters the differential system (1.80) via the dishomogeneous term f ℓm, eq.

(1.83), takes the following form

mℓm(r) =
M

r2

(

δ(r − r0)

r0
m

(0)
ℓm +

∂δ(r − r0)

∂r
m

(1)
ℓm

)

(1.227)

where the vectorsm(x)
ℓm , for x = 0, 1, are given by

m
(x)
ℓm =

(

0, 0,m
(x)R
ℓm ,m

(x)S
ℓm , 0, 0

)T
(1.228)

The differential system (1.80) for the seismic problem thus becomes

yℓm

r
= Aℓm yℓm − M

r2

(

δ(r − r0)

r0
m

(0)
ℓm +

∂δ(r − r0)

∂r
m

(1)
ℓm

)

(1.229)

that is solve by

yℓm(r) = Πℓ(r, rC) IC C−w(r) (1.230)

Here,w is defined by eq. (1.145) and, for the seismic force, yields

w(r) =
M

r20
H(r − r0)Πℓ(r, r0)

[

m
(0)
ℓm

r0
+

2m
(1)
ℓm

r0
+Aℓ(r0)m

(1)
ℓm

]

(1.231)
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It is important to note the second term within the brackets of the RHS of eq. (1.231).

This term results from the fact that the expression formℓm obtained above, eq. (1.227),

which is similar to that obtained by Smylie and Mansinha (1971) and Mansinhaet al.

(1979) (but for some convection about spherical harmonics), also depends on the radial

variabler rather than on the only radius of the seismic sourcer0. If this dependence is

omitted, the theory for the seismic source of Smylie and Mansinha (1971) and Mansinha

et al. (1979) yields

wℓm(r) =
M

r20
H(r − r0)Πℓ(r, r0)

[

m
(0)
ℓm

r0
+Aℓ(r0)m

(1)
ℓm

]

(1.232)

and it would differ from that discussed in Takeuchi and Saito [1972]. References to

Smylie and Mansinha [1971] and Mansinhaet al. [1979] should not neglect this subtle

dependence and use eq. (1.231) rather than eq. (1.232).

Both spheroidal radial,Rℓm, and tangetial,Sℓm, components of stress must be zero

at the Earth surface, as well as the potential stressQℓm. Then, the Earth surface boundary

conditions are those for a free surface

P1 yℓm(a) = 0 (1.233)

After elimination of the constants of integrationC imposing the free Earth surface

boundary conditions (1.233) from eq. (1.230), the solutionK for the radial and tan-

gential spheroidal displacements and local incremental potential at the Earth surface

becomes

K = (BℓP1 −P2) w(a) (1.234)

We do not further specify the seismic perturbations in terms of seismic Love number

(Sun and Okubo, 1993) because they have little use in the scientific literature.
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Abstract

The problem of compressibility in the modelling of viscoelastic perturbations of plane-

tary bodies is still a topic under discussion, on the common agreement that compress-

ibility should be considered in Glacial Isostatic Adjustments (GIA) studies. Themain

aspects of this discussion are: the identification of instabilities to be physically related

to convective instability (Plag and Jüttner, 1995), the discussion of this behaviour by

means of instability modes in the spectral Laplace domain (Vermeersenet al., 1996b;

Hanyket al., 1999; Klemannet al., 2003) and the discussion of its relevance for realistic

Earth-like structures (Vermeersen and Mitrovica, 2000). The result ofthis intellectual

process was: the instabilities exist, but they are not relevant for the Earthdue to the fact

that the characteristic times for these instabilities are much larger than the age ofthe

planet, when a realistic Earth structure like PREM (Dziewonski and Anderson, 1981) is

considered.

The basic problem when considering material compressibility in GIA is the often

neglected compressibility in the definition of the initial state of the viscoelastic Earth

model. This means that a perturbation theory is applied to a non-consistently specified

initial state and results in an ill-posed problem, evident in denumerable infinite numbers

of modes in the spectral representation of the solution (Plag and Jüttner, 1995; Cambiotti

and Sabadini, 2010). This focus motivates a review of the Longman (1963) paradox,

which treats the boundary condition of a compressible fluid core. A similar problem,

indeed, occurs in the case of viscoelastic perturbations due to surface loading, where

the fluid limit, which is comprised in Maxwell viscoelasticity due to relaxation of de-

viatoric stress at large timescales, and the final isostatic equilibrium justify an overview

of the mantle at large timescales as an inviscid body (Wu and Peltier, 1982). Asalready

mentioned in Chapter 1, section 1.3, the isostatic compensation of mantle bumping into

a fluid core, which deviates from the neutral state of equilibrium, is achievedonly by

mass redistribution within a thin layer just below the core-mantle boundary (Pekeris and

Accad, 1972), whereas elsewhere radial displacement and geoid mustcoincide. At this

point the question is whether we should expect a similar behaviour for the viscoelastic

mantle loaded at its surface.

In order to clarify this issue, herein we investigate the effects of the initial stratifi-

caton of the mantle on viscoelastic perturbations at large time scales and, then,on the
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final isostatic equilibrium with surface loading. Attempts to establish a consistenttheory

(Wolf and Kaufmann:, 2000; Martinecet al., 2001; Wolf and Li, 2002) have so far failed

also due to the fact that the elastic structure, compressibility and density haveto be pre-

scribed for theoretical aspects that neglect compressibility in some features. Recently,

we derived the analytical solution in the Laplace domain of an Earth model composed of

an inviscid core and a viscoelastic mantle characterized by a specific Darwin-law density

profile. This allows us to distinguish between compressional (adiabatic and chemically

homogeneous) and compositional (non-adiabatic and chemically heterogeneous) strati-

fications and to revisit the problem of compressible viscoelasticity where, starting from

a neutral initial state, we investigated deviations parameterized similar to the Brunt–

Väiäsala frequency in dynamics. Compositional stratifications were shown toresult in a

new class of spectral modes that we named compositional modes and also describe the

instabilities discussed in the previous works.

Whereas the consequences of compositional stratifications were discussed in Cam-

biotti and Sabadini (2010) for perturbations at the Earth surface, herein we also focus

on perturbations within the viscoelastic mantle in order to give a full descriptionof the

perturbed state of the Earth. We thus obtain the analytical solution for the compressible

viscoelastic problem, present the analytical representation of the compressional modes,

discuss their influence for describing the isostatic equilibrium and concludewith the

physical meaning and consequences of compositional stratifications.
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Cambiotti and Sabadini (2010) found the analytical solution of viscoelastic perturba-

tions in the Laplace domain for a specific self-gravitating compressible Maxwell Earth

model, called “self-compressed compressible sphere”. This model is composed of an in-

compressible inviscid core and a compressible Maxwell mantle with constant shear mod-

ulus,µ, bulk modulus,κ, and viscosity,ν. In order to account for the self-compression of

the mantle at the initial state of hydrostatic equilibrium, the initial density profile within

the mantle varies with the radial distance from the Earth centrer according to

ρ0(r) =

{

3α
2 rC

0 ≤ r ≤ rC
α
r rC < r ≤ a

(2.1)

whererC , a andα are the core radius, the Earth radius and a constant related to the total

Earth massME by

ME = 2π α a2 (2.2)

This choice of the initial density profile fixes the initial gravity accelerationg within the

mantle to

g = 2πGα (2.3)

with G being the universal gravitational constant.

Depending on the bulk modulusκ, the self-compressed compressible sphere de-

scribes compressional or compositional stratifications of the mantle. Indeed, from the

generalized Williamson-Adams equation (1.116) with the compositional coefficient set

to zero,γ = 0, we obtain that compressional stratifications are characterized by a con-

stant bulk modulus to which we will refer as compressional bulk modulusκ0

κ0 = g α = 2πGα2 (2.4)

Departures from this value result in compositional stratifications. Particularly, the com-
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positional coefficientγ yields

γ = −ǫ α
r2

(2.5)

with

ǫ =
κ− κ0
κ

(2.6)

As it results from the analysis of the relaxation spectrum of the self-compressed

compressible sphere, that we will discuss later in section 2.2, the compositional stratifi-

cation is stable ifκ > κ0 and unstable ifκ < κ0. This also results from the comparison

between the generalized Williamson-Adams equation (1.116) and the expression for the

square of the Brunt-Väiäsala frequencyω

ω2 = − g

ρ0

(

∂rρ0 +
g ρ20
κ

)

= −g γ
ρ0

(2.7)

The Brunt-Väiäsala frequencyω characterizes the motion of a particle in the ideal fluid

that adiabatically moves away from its equilibrium position. The particle will oscillate

around its equilibrium position with frequencyω if ω2 > 0, while it will continue to

move away from its equilibrium position ifω2 < 0. Differently, the particle remains

in the new position due to the perturbation ifω = 0. Although the present theoretical

framework is based on the assumption of quasi-static deformations (we neglected the

inertial forces in the momentum equation), the analysis of the sign ofω2 allows to es-

tablish if the viscoelastic model is stable or instable (Plag and Jüttner, 1995; Vermeersen

and Mitrovica, 2000). In view of eq. (2.7), the stability only depends on thesign of the

compositional coefficientγ. The model is stable ifγ ≤ 0 and instable ifγ > 0. For

instance layered compressible models present the instable Rayleigh–Taylormodes (Plag

and Jüttner, 1995) and, indeed, their compositional coefficient becomespositive because

the radial derivative of the density is zero in this case. An alternative wayto describe

layered compressible models consists in the assumption that they are incompressible at

the initial state of hydrostatic equilibrium, i.e, they have an infinitely large bulk modulus
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at the initial state,κ → ∞, and a finite bulk modulus during the perturbations. This

would imply thatγ = 0 from (2.7), but it is not a self-consistent with compressibility

during deformation and so we reject this interpretation, which also contrastswith the

presence of Rayleigh–Taylor instabilities.

In view of the way in which we have defined the self-compressed compressible

sphere, we have the possibility of studying the effects of the compressional and com-

positional stratifications on the relaxation process of Maxwell Earth models.Previous

analytical solutions were obtained assuming material or local incompressibility and for

the case of the “homogeneous compressible sphere” (Gilbert and Backus, 1968). Only

the latter model actually accounts for compressibility during perturbations, but all the

material parameters, included the initial density, are constant from the centre to the sur-

face of the Earth. Its analytical solution has been widely used, first, in seismology and,

after, in viscoelastic modelling (Vermeersenet al., 1996). Nevertheless, it neglects the

self-compression at the initial state of hydrostatic equilibrium since it has a constant den-

sity profile: in this respect, the homogeneous compressible sphere is always unstable.

Instead, our self-compressed compressible sphere (Cambiotti and Sabadini, 2010) takes

into account compressibility both during the perturbations and at the initial state, having

a depth dependent density profile, eq. (2.1). In addition to this qualitative improvement

with respect to the homogeneous compressible sphere, our model also reproduces the

density contrast at the core-mantle boundary, although it neglects other density contrasts

within the mantle due to the simple Darwin-law used to describe the compressibility at

the initial state. This also results into a better reproduction of the actual initial gravity

acceleration predicted by PREM, which is indeed almost constant within the mantle as

in eq. (2.3). We show this in fig. 2.1 where we compare the initial gravity acceleration

predicted by PREM and the self-compressed and homogeneous compressible spheres.

2.1 The analytical solution

In order to solve the spheroidal radial and tangential components of the momentum

equation and the Poisson equation, eqs (1.70)-(1.71) and (1.73), for compressible Earth

models with constant elastic parametersκ andµ, it is convenient to divide these equa-

tions by the initial densityρ0 and recast them in the following form
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Figure 2.1: Initial gravity acceleration g of PREM (black solid line), the self-compressed compressible sphere
(our new model, grey line) and the homogeneous compressible sphere (Gilbert and Backus 1968, black
dashed line).

β

ρ0
∂rχℓm − ∂r(g U) + g χℓm − ∂rΦℓm +

µ

ρ0

ℓ(ℓ+ 1)

r
Hℓm = 0 (2.8)

β

ρ0
χℓm − g Uℓm − Φℓm +

µ

ρ0
∂r(r Hℓm) = 0 (2.9)

where, for brevity, we introduced the quantityHℓm defined by

Hℓm = ∂rVℓm +
Vℓm − Uℓm

r
(2.10)

Note that we have omitted the forcing terms because we are interested in the analytical

solution for the propagator matrixΠℓ that solve the homogeneous differential system

(1.139). The propagator matrix, indeed, is the only term that we need in order to obtain

the Love numbers, i.e., the Green functions of the response of the Earth model to general

loading and external forces.
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The following step consists in obtaining two differential equations that involveonly

the radial and tangential displacements. This is possible owing to the specific initial

density and gravity of the self-compressed compressible sphere, eqs (2.1)-(2.3). The

first differential equation is obtained by subtracting to eq. (2.8) the derivative of eq.

(2.9) with respect to the radial variabler

(

β

α
− g

)

χℓm +
µ

α

[

r2∂2rHℓm + 3 r ∂rHℓm + (1− ℓ(ℓ+ 1)) Hℓm

]

= 0 (2.11)

The second differential equation is obtained by applying the operator∂r + 2/r to the

radial component (2.8) of the momentum equation and subtracting to it the tangential

component (2.9) multiplied byℓ(ℓ+ 1)/r2

−∇2
rΦℓm +∇2

(

β

α
χℓm − g Uℓm

)

+

(

g − β

α

)

1

r
∂r
(

r2χℓm

)

+
µ

α

ℓ(ℓ+ 1)

r
Hℓm = 0 (2.12)

Here, we also substitute the Laplacian of the potential by means of the Poissonequation

(1.73) together with eqs (2.1) and (2.3)

∇2
rΦℓm = −2 g α

r

(

χℓm − 1

r
Uℓm

)

(2.13)

This yields

2 g α

r

(

χℓm − 1

r
Uℓm

)

+∇2

(

β

α
χℓm − g Uℓm

)

+

(

g − β

α

)

1

r
∂r
(

r2χℓm

)

+
µ

α

ℓ(ℓ+ 1)

r
Hℓm = 0 (2.14)

Let us now suppose that the six linearly independent solutions of eqs (2.11) and

(2.14) may have the following form
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Uℓm = u rz (2.15)

Vℓm = v rz (2.16)

with u, v andz as constants, and substitute these trial solutions. From eqs (2.11) and

(2.14), we thus obtain

µ

α
rz−1 {u [Z − z (ζ + 1)− 2 ζ]− v [Z z − ℓ(ℓ+ 1) (1 + ζ)]} = 0 (2.17)

µ

α
rz−2

{

u

[

g α

µ
(Z + 2)(z + 1) + (Z − 2)(z + 1) ζ − ℓ(ℓ+ 1)(ζ + 1)

]

−v ℓ(ℓ+ 1)

[

g α

µ
(Z + 2) + Z ζ − (ζ + 1)(z + 1)

]}

= 0 (2.18)

Here,Z is the second order polynomial inz

Z = z2 + z − ℓ(ℓ+ 1) (2.19)

andζ is given by

ζ =
β − g α

µ
(2.20)

Since it has been possible to collect the dependence on the radial variabler in eqs

(2.17)-(2.18), the latter can be seen as equations for the constantsu, v andz. Solving

eq. (2.17) forv, we obtain
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v = u
Z − z (ζ + 1)− 2 ζ

Z z − ℓ(ℓ+ 1) (1 + ζ)
(2.21)

and, using this in eq. (2.18), after some straightforward algebra, it yieldsthe following

polynomial inZ of order three

a0 + a1 Z + a2 Z
2 + Z3 = 0 (2.22)

with a0, a1 and a2 being constant coefficients, which depend solely on the material

parameters and the harmonic degreeℓ

a2 = 4
g α

β
− 2 (2.23)

a1 = ℓ(ℓ+ 1)

(

g α

β
(ζ + 3)− 4

)

(2.24)

a0 = 2 ℓ(ℓ+ 1)
g α

β
(ζ − 1) (2.25)

In order to satisfy eq. (2.22),Z has to be one of the three rootsZj , with j = 1, 2, 3,

of the order three polynomial of the LHS. We do not report here the lengthy expressions

for Zj . However, we note that they only depend on the harmonic degreeℓ and on the

material parameters of the self-compressed compressible sphere viag α/β andζ. Then,

by considering thatZ is a second order polynomial in the constantz, the latter can

assumes only two valueszj andzj+3 for each rootZj

zj = −1

2

(

1 +
√

1 + 4 (ℓ(ℓ+ 1) + Zj)

)

(2.26)

zj+3 = −1

2

(

1−
√

1 + 4 (ℓ(ℓ+ 1) + Zj)

)

(2.27)

We thus have obtained six constantszj that, once substituted into eqs (2.15)-(2.16)
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and (2.21), yield six linearly independent solutions of the two differential equations

(2.17)-(2.18)

Uℓm =

6
∑

j=1

uj r
zj (2.28)

Vℓm =
6
∑

j=1

uj vjr
zj (2.29)

whereuj are the constants of integration and, according to eq. (2.21),vj are given by

vj =
Zj − zj (ζ + 1)− 2 ζ

Zj zj − ℓ(ℓ+ 1) (1 + ζ)
(2.30)

SinceZj has been defined only forj = 1, 2, 3, we impose thatZ4, Z5 andZ6 coincide

with Z1, Z2 andZ3, respectively.

The solution for the gravitational potentialΦℓm is obtained by substituting eqs (2.28)-

(2.29) into the Poisson equation (2.13). This yields the following disohomogeneous

differential equation of the second order inΦℓm

∇2Φℓm = −2
6
∑

j=1

uj r
zj−2 g [(zj + 1)− ℓ(ℓ+ 1) vj ] (2.31)

It is solved by the particular solution

Φℓm =
6
∑

j=1

uj pj r
zj (2.32)

with

pj = 2 g
ℓ(ℓ+ 1)(1− ζ)− Z2

j

Zj (Zj zj − ℓ(ℓ+ 1) (ζ + 1))
(2.33)

and by the two solutions of the homogenenous differential equation (i.e., the Laplace

equation)
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Φℓm = c rℓ + c∗ r−(ℓ+1) (2.34)

with c andc∗ being constants of integration. The latter, however, must not be considered.

Indeed they solve neither the radial nor the tangential components of the momentum

equation (2.8)-(2.9), once setUℓm andVℓm to zero. This is due to the fact that we have

already used the Poisson equation (2.13) to obtain eq. (2.14) from eq. (2.12).

Within the solid mantle of the self-compressed compressible model, on the basis of

eqs (2.28), (2.29), (2.32), the spheroidal vector solutiony defined in eq. (1.78) yields

yℓm(r) = Yℓ(r)C (2.35)

whereYℓ andC are the so called fundamental matrix for the self-compressed compress-

ible and the vector of constants of integration

Yℓ =
(

y
(1)
ℓm,y

(2)
ℓm,y

(3)
ℓm,y

(4)
ℓm,y

(5),y
(6)
ℓm

)

(2.36)

C = (u1, u2, u3, u4, u5, u6)
T (2.37)

with y(j) being the six linearly independent solutions

y
(j)
ℓm(r) =























rzj

vj r
zj

[β zj + 2λ− ℓ(ℓ+ 1) vj λ] r
zj−1

µ [1 + (zj − 1)vj ] r
zj−1

pj r
zj

[2 g + (zj + ℓ+ 1) pj ] r
zj−1























(2.38)

Note that the fundamental matrixYℓ describe the dependence on the radial distance

from the Earth centrer of the propagator matrixΠℓ, which solves the homogeneous

differential system (1.139). Particularly, we have
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Πℓ(r, r
′) = Yℓ(r)Y

−1
ℓ (r′) (2.39)

This result can be used to solve more sophisticated models composed of different layers

within the mantle, each with different (but constant) shear and bulk moduli, and viscosi-

ties. Nevertheless, the density profile must be the same given by (2.1). It issufficient

to use the fundamental matrixYℓ to obtain the propagator matrixΠℓ in each layer and,

then, impose chemical boundary conditions at the internal interfaces for propagating the

solution from the inner to the outer layers. In this way, the self-compressedcompress-

ible sphere also takes into account the contrasts of the rheological parameters at the main

Earth interfaces, but not the density contrasts.

2.2 The relaxation spectrum

Let us now consider the self-compressed compressible spheres with compressional strat-

ification, that we denote withCC0, where the compositional coefficient is zero,γ = 0.

The viscoelastic mantle is characterized by shear modulusµ = 1.45× 1011 Pa and vis-

cosityν = 1021× Pa s. The core radius is3480 km and the Earth radius is6371 km.

In order to respect the total Earth massME = 5.97× 1024 kg, the density profile given

by eqs (2.1) is characterized byα = 2.34 × 1010 kg/m2 and, from eq. (2.4), the com-

pressional bulk modulus isκ0 = 2.23× 1011 Pa, which is comparable with the range of

PREM bulk modulus in the transition zone, from1.53× 1011 Pa to2.56× 1011 Pa. The

resulting core density is10096.3 kg/m3, which differs by8 per cent from the volume-

averaged PREM core density and its density profile within the mantle differs from that

of PREM by9, 6 and21 per cent at the Moho discontinuity, the670 km discontinuity

and the core-mantle boundary, respectively. Nevertheless, the model density differs from

PREM by41 per cent at the Earth surface, due to the compositional decrease of the Earth

density within the crust.

In Fig. 2.2 we compare the relaxation spectra (up to the harmonic degreeℓ = 100)

of the self-compressed compressible sphere with compressional stratification,CC0, and

of a two layered compressible model, that we denote withMC, consisting of homoge-

neous core and mantle, where the material parameters are constant and obtained from the
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Figure 2.2: Pole values sj of the relaxation modes of the models CC0 (dot points) and MC (cruciform points).
The inverse Maxwell and compressional transient times of both models are τ−1 = 4.58 kyr−1 and ς−1 =
2.49 kyr−1
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modelCC0 by means of volume averages, with mantle density of4623 kg/m3. Note that

these two models share theM0 andC0 buoyancy modes, the pair of compressional tran-

sient modes,Z0+ andZ0−, and the dilatational modes (also abbreviated asD–modes).

The pair of compressional transient modes,Z0+ andZ0−, have been identified and dis-

cussed for the first time in Cambiottiet al. (2009) in the case of layered compressible

models. Nevertheless, only the layered modelMC has the Rayleigh–Taylor modes (also

abbreviated asRT–modes) that are, indeed, absent in the relaxation spectrum of the

self-compressed modelCC0.

The transient relaxation spectra of the modelsCC0 andMC, characterized by the

D-modes and the pair of the modesZ0+ andZ0−, differ mainly at low harmonic degree,

while the differences decrease at high harmonic degrees. Instead, theC0 buoyancy

mode presents important differences at all harmonic degrees and theM0 buoyancy mode

agrees only at the first 10 harmonic degrees. Such a circumstance is dueonly to the

different density profiles of the two models, since the elastic parameters andthe viscosity

are the same. We thus safely argue that the differences in the pole values are caused by

the different density contrasts of the two models at the core-mantle interfaceand Earth

surface, respectively, which affect mainly the buoyancy modesC0 andM0.

Let us now consider two representative self-compressed compressiblespheres with

stable and instable compositional stratifications, where the bulk modulusκ differs from

the compressional bulk modulusκ0. In view of the fact that combined contribution

of compositional and non-adiabatic stratifications does not amount to more than 10 −
20% of that of the compressional stratification (Birch, 1952; Birch, 1964; Wolf and

Kaufmann, 2000), we assume bulk modulus of2.62 × 1011 Pa and1.94 × 1011 Pa to

describe stable and instable compositional stratifications, respectively. They correspond

to values of−0.15 and0.15 for the parameterǫ, eq. (2.6), and, in this respect, we denote

these two models withCC−0.15 andCC0.15.

Fig. 2.3 compares the relaxation spectra of the self-compressed compressible spheres

with compressional and compositional stratifications. Note that the compositional mod-

elsCC−0.15 andCC0.15 share the same relaxation modes of the compressional model

CC0, but they have further relaxation modes that are infinite denumerable, with the ori-

gin of the Laplace domain as cluster point. The latter relaxation modes are stablefor

ǫ = −0.15 and instable forǫ = 0.15, in agreement with the analysis of the gravita-

tional stability based on the sign of the Brunt–Väiäsala frequencyω2, eq. (2.7). They
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Figure 2.3: Pole values sj of the relaxation modes of the models CC0 (dot points), CC−0.15 (diamond points)
and CC0.15 (cruciform points). The inverse Maxwell relaxation time of all three models is τ−1 = 4.58 kyr−1

while the inverse compressional relaxation times are ς−1 = 2.49 kyr−1, 2.67 kyr−1 and 2.33 kyr−1, respec-
tively.
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thus describe relaxation processes involved by the compositional stratification and, for

this reason, we called them compositional modes (also abbreviated asC–modes). With

respect to the common relaxation modes of the three models, we note that they differ

mainly in the transient region where the characteristic relaxation times of the D-modes

and the pair of transient compressional modesZ0+ andZ0− of the modelsCC−0.15 and

CC0.15 are greater and lower than those of the the modelCC0, respectively. This reflects

the different compressional transient timesς, eq. (1.173), that decrease for increasing

bulk modulus,0.43 kyr, 0.40 kyr and0.37 kyr for ǫ = −0.15, 0 and0.15.

2.2.1 The compositional modes

The denumerable set of C-modes originates from the oscillating behaviour of the secular

determinant∆ℓ(s) near the origin. It occurs on the positive or negative real axis of

the Laplace domain, depending on the sign of the compositional coefficientγ. Such

a behaviour is like that of the secular determinant of layered compressible models to

which the Rayleigh–Taylor modes are associated, with the exception that the RT-modes

are always instable because layered compressible Earth models have always an instable

compositional stratification.

Let us now derive an approximated analytical expression for the pole values of the

C-modes. After substitution of the analytical expression for the propagator matrixΠℓ of

the self-compressed compressible sphere, eq. (2.39) into the expression for the secular

determinant∆, eq. (1.179), and after expansion in Taylor series of the functionµ̂(s), eq.

(1.41), we obtain that the dominant terms of the secular determinant∆ is proportional

to

∆ℓ(s) ∝
(

a

rC

)i
(

κ0 ℓ(ℓ+1) ǫ
µ̂(s)

) 1
4

− 1 (2.40)

By equating to zero the RHS of eq. (2.40), we thus obtain the following approximated

analytical expression for the roots of the secular equation (1.180), which are the poles

sCm of the compositional modes
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sCm = −ℓ(ℓ+ 1)
κ0 ǫ

ν

(

log
(

rC
a

)

πm

)4

+O(m−6) (2.41)

form = 1, · · · ,∞. It confirms that the compositional modes are an infinite denumerable

set of relaxation modes and that the origin of the Laplace domain,s = 0, is the cluster

point of the polessCm form→ ∞ since they converge to zero asm−4. Besides this, the

dependence of eq. (2.41) on the parameterǫ gives us the possibility to show analytically

that a little deviation from the completely compressional stratification is sufficientto

activate the compositional modes. Particularly, they are stable ifǫ > 0 and instable

if ǫ < 0. This suggests both that the Rayleigh–Taylor modes are actually a particular

case of the compositional modes and that the compositional modes describe buoyancy

relaxation processes arising from deviations of the stratification from the neutral state of

equilibrium. This interpretation is furthermore supported by the characteristicrelaxation

times of the compositional and Rayleigh–Taylor modes. As shown in Fig. 2 and Fig.

3 their upper limits are of similar order of magnitude, that is greater than10 − 102

kyr. This short time scales, however, are due to the use of simplified models.Indeed,

more realistic Earth models based on PREM predict much larger characteristicrelaxation

times of order1− 100Myr (Plag and Jüttner, 1995; Vermeersen and Mitrovica, 2000).

These findings contrast with the interpretation of Han and Wahr (1995) that a con-

tinuous density profile yields a continuous spectrum of buoyancy modes. This interpre-

tation was based on the investigation of the relaxation spectrum of layered compressible

models, where each density contrast contributes with a buoyancy mode Mi. For very

fine layered models, where little density contrasts are introduced in order to reproduce

better the continuous variations of the PREM density, the number of buoyancy modes

Mi is large. This was interpreted by Han and Wahr (1995) as an evidence that continuous

variations of the initial density imply a continuous set of buoyancy modes in the region

of small Laplace variables. In view of the relaxation spectrum of the self-compressed

compressible sphere, however, we can already say that this is not the case. Indeed, de-

spite the continuous variations of the initial density described by the Darwin-law profile,

eq. (2.1), it is remarkable that no additional buoyancy modes other than theM0 andC0

modes are present in the compressional modelCC0 and that only a discrete, although

infinite denumerable, set of compositional modes are triggered by compositional strati-
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fications.

Even if Han and Wahr (1995) supported the normal mode approach, we note that

their conclusion about the presence of a continuous spectrum in the buoyancy region

has weakened the normal mode approach, discouraging further investigations of the re-

laxation spectrum for not layered Earth models, where the continuous variations of the

material parameters within the layers of the Earth are taken into account. On thecon-

trary, our results indicate that such an analysis can be done and interesting physical

knowledge of the viscoelastic relaxation processes at large timescales canbe obtained as

we will show in sections 2.3 and 2.4.

2.3 Viscoelastic perturbations due to surface loading

In order to investigate the role of the definition of the initial state of the viscoelastic

Earth model, characterized by compressional or compositional stratifications, in Glacial

Isostatic Adjustment (GIA) we only focus on Love numbersk for loads seated at the

Earth surface (we will omit the superscriptL). Differently from Chapter 1, here we also

consider perturbations within the mantle for which the Love numbers for surface loading

in the Laplaces-domain read

k̃ℓm(r, s) =







h̃(r, s)

l̃(r, s)

k̃(r, s)






= N−1

L Bℓ(r)b
L
∣

∣

µ=µ̂(s)
(2.42)

with the tilde standing for the Laplace transform and the dimensional matrixNL given

by eq. (1.154). Here,̃h, l̃, andk̃, are the radial, tangential and gravitational viscoelastic

Love numbers in the Laplace domain and their dependence on the radial distance from

the Earth centrer refers to where we calculate the perturbations. In this respect, note

that the matrixBℓ also depend onr.

In view of the study of relaxation spectrum of the self-compressed compressible

sphere, the viscoelastic Love numbers can be recast by a spectrum of relaxation modes
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k̃(r, s) =







h̃(r, s)

l̃(r, s)

k̃(r, s)






= kE(r) +

∑

j∈S

kj(r)

s− sj
(2.43)

wherekE = (hE , lE , kE) consists of the elastic Love numbers,kj = (hj , lj , kj) con-

tains the residues of thej–th relaxation mode andsj is the corresponding pole. Here,S
denotes the whole set of relaxation modes, which is denumerable but infinite (Cambiotti

and Sabadini, 2010). The setS of relaxation modes is split into two types:

S = F ∪ C (2.44)

The setF of fundamental modes appears both for compressional and compositional

stratifications: theM0 andC0 buoyancy modes (associated with the Earth surface and

CMB), the pair of transient compressible modes,Z− andZ+, and the infinite and denu-

merable set of dilatational modes,Dm, withm = 1, · · · ,∞. The setC of compositional

modes,Cm, withm = 1, · · · ,∞ is again denumerable and infinite but is triggered only

in the case of compositional stratifications.

The fundamental modes describe the transition from the elastic to the Newtonian-

fluid behaviour, while the compositional modes control the long time-scale perturbations

towards the isostatic equilibrium described by the inviscid fluid. Accordingly,we split

the perturbationsK due to a point-like surface load of unit mass with Heaviside time

history into contributions describing the elastic response, the transition to the Newtonian

fluid and the final transition towards the isostatic equilibrium







U(r, t)

V (r, t)

Φ(r, t)






=

kE(r)−
∑

j∈F

kj(r)

sj

(

1− esj t
)

−
∑

m∈C

kCm(r)

sCm

(

1− esCm t
)

(2.45)

whereU , V andΦ are the degree-ℓ non-dimensional radial and tangential displace-
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ments (normalized bya/ME), and gravitational potential perturbation (normalized by

a g/ME). In view of the fact that the polessj of the fundamental modes are nega-

tive and that their characteristic relaxation times,|1/sj |, are shorter than those of the

compositional modes,|1/sCm|, we can write the final transition towards the isostatic

equilibrium as

K(r, t) = kS(r) +KC(r, t) (2.46)

wherekS is the secular perturbation due to the elastic response and the relaxation of the

fundamental modes

kS(r) =







hS(r)

lS(r)

kS(r)






= kE(r)−

∑

j∈F

kj(r)

sj
(2.47)

and whereKC is the perturbation due to the only compositional modes

KC(r, t) =







UC(r, t)

VC(r, t)

ΦC(r, t)






= −

∞
∑

m=1

kCm(r)

sCm

(

1− esCm t
)

(2.48)

Because compressional stratifications have no compositional modes, the viscoelastic

Love number̃k(s) is an analytic function in a neighbourhood of the origin of the Laplace

domain,s = 0. Thus,k̃(s = 0) exists and is finite. From eqs. (2.43) and (2.47), we

obtain the following identity

kS(r) = k̃(r, s = 0) (2.49)

This implies that the summation over the strengthskj/sj of the fundamental modes

entering eq. (2.47) converges to a finite value. Furthermore, the secularperturbations

describe the isostatic equilibrium to surface loading (Wu and Peltier, 1982).In this

respect, the secular radial displacement and gravitational-potential perturbation satisfy



80 2. The self–compressed compressible sphere

the isostatic conditions at the Earth surfacea

lim
t→∞

U(a, t) = hS(a) = −2 ℓ+ 1

2
(2.50)

lim
t→∞

Φ(a, t) = kS(a) = −1 (2.51)

Perturbations below the Earth surface, as well as the tangential displacement at the Earth

surface are instead unconstrained due to the indeterminateness of static perturbations of

the inviscid body discussed by Longman (1962, 1963). They must be obtained solving

the whole viscoelastic problem and using eq. (2.47).

2.3.1 The long-period tangential flux of material

Due to the fact that the origin of the Laplace domain is the cluster point of compositional

modes, for compositional stratifications, the viscoelastic Love numberk̃ is not analytic

at s = 0 and, so, not well defined. In order to interpret the final transition towards the

isostatic equilibrium, we have to consider the perturbation due to compositional modes.

For unstable stratifications, the polessCm of the compositional modes are positive and

eq. (2.48) describes Rayleigh–Taylor unstabilities (Plag and Jüttner, 1995) resulting in

divergent displacement and divergent gravitational potential in the limit oft → ∞. In

contrast, for stable stratifications, the polessCm are negative and eq. (2.48) describes a

slow relaxation process. From numerical evaluation of the strengthskCm/sCm of the

first few compositional modes (at most tom = 20 for the harmonic degreeℓ = 2),

Cambiotti and Sabadini (2010) concluded that tangential strengths,lCm(a)/sCm , at the

Earth surface,a, converge to a non zero valueL in the limit form→ ∞

lim
m→∞

lCm(a)

sCm

= L (2.52)

Using the representation of eq. (2.48), and eqs. (70) and (72) of Cambiotti and Sabadini

(2010), the tangential displacementVC due to stable compositional modes at large time

scale can be approximated by
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VC(a, t) = −
∑

m∈C

lCm

sj

(

1− esCm t
)

≈ L
(

ℓ(ℓ+ 1)
ǫ κ0
ν

t
)1/4 log

(

b
a

)

Γ[3/4]

π

(2.53)

with Γ being the gamma function. This tangential displacement of the material away

from the load, named ‘long period tangential flux of material’, diverges ast1/4 in the

limit of t → ∞. The mathematical proof of eq. (2.52) and a physical interpretation of

this peculiar flux will be discussed in the following section, where we will investigate

the final transition to the isostatic equilibrium within the solid mantle (not only at the

Earth surface), taking into account the whole infinite denumerable setC of compositional

modes.

2.4 The isostatic equilibrium

In order to investigate the final transition towards the isostatic equilibrium for astable

compositional stratification, eq. (2.46), we must compute the summation over composi-

tional modes entering eq. (2.48) without a too low cut-off. Due to numerical complexi-

ties, we are interested in an analytical form for the strengthskCm(r)/sCm of composi-

tional modes, in addition to the analytical expression for their polessCm , eq. (2.41). It

can be obtained by neglecting self-gravitation since this greatly facilitate to handle the

analytical expression of the viscoelastic Love numberk̃(r, s) in the Laplaces-domain.

This simplification does not alter the main issue of the Longman (1962) paradoxor the

appearance of instability (Klemannet al., 2003). Indeed, the only alteration consists

in the fact that gravitational potential perturbation is zero by definition. Particularly,

eq. (1.124) still holds in the gravitating case and constrains volume variation tobe zero

for compositional stratifications. As a consequence, in view of the fact that the radial

displacement must coincide with the geoid perturbation, eq. (1.136), the radial displace-

ment yields zero in the simpler case of a gravitating inviscid Earth model.

In Appendix A.3, we obtain the analytical solution of the viscoelastic load Love

numberk̃(r, s) in the Laplaces-domain for the self-compressed compressible sphere

by neglecting self-gravitation, eq. (A.88), and we use this solution to obtain analytical
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Figure 2.4: Characteristic relaxation times, tCm
= |1/sCm

|, of the first ten compositional modes obtained
numerically (solid) and using their analytical approximation, eq. (A.100) (dashed).

approximations for poles,sCm , and strengths,kCm(r)/sCm , of compositional modes,

eqs. (A.100-A.102). Note that the dominant terms of the analytical approximations are

the same for the poles,sCm , obtained accounting for self-gravitation, eq. (2.41), or not

accouting for, eq. (A.100). This confirms the small influence of self-gravitation on the

final transition from Newtonian-fluid behaviour to isostatic equilibrium.

Figure 2.4 shows for degreesℓ = 2, · · · , 30 the characteristic relaxation times

tCm = |1/sCm | of the first ten compositional modes obtained numerically without any

approximation and using their analytical approximation, eq. (A.100). They were calcu-
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lated for the self-compressed compressible sphereCC−0.15 already used in section 2.2,

although we now neglect self-gravitation. In particular, we chose the bulkmodulusκ to

be15 per cent larger than the compressional bulk modulusκ0 in order to obtain a stable

compositional stratification and to take into account that, for the Earth, the contribution

of the compositional stratification does not amount to more than10 − 20 per cent of

that of the compressional stratification (Birch, 1952; Birch, 1964; Wolf and Kaufmann,

2000). In this respect, fig. 2.4 shows that the analytical approximation fits quite well

and deviates only for the first compositional modes and increasing harmonicdegrees.

Furthermore, the shortest exact characteristic relaxation time is105 kyr, corresponding

to the first compositional mode of degreeℓ = 5. This short time scale is due to the

simplified model; more realistic Earth models based on PREM predict much larger char-

acteristic relaxation times of order1−100Myr (Plag and Jüttner, 1995; Vermeersen and

Mitrovica, 2000) as already noted for the self-gravitating case, section 2.2..

From eqs. (A.101) and (A.102), we obtain that radial and tangential strengths at the

Earth surface,a,

hCm(a)

sCm

= ǫ
(2 ℓ+ 1) log

(

b
a

)

(πm)2
+O

(

m−3
)

(2.54)

lCm(a)

sCm

= − (2 ℓ+ 1)

ℓ(ℓ+ 1) log
(

b
a

) +O
(

m−2
)

(2.55)

Here, the tangential strengths,lCm(a)/sCm , converge to a non-zero value in the limit of

m → ∞. This finding proves mathematically eq. (2.52), that Cambiotti and Sabadini

(2010) obtained numerically in the case of self-gravitation. Also in this simpler case

of gravitating Earth models, stable compositional stratification triggers the long-period

tangential flux with eq. (2.53),

VC(a, t) ≈
(ǫ κ0
ν

t
)1/4 (2 ℓ+ 1)Γ[3/4]

[ℓ(ℓ+ 1)]
3
4 π

(2.56)

We find a proportionality at the fourth root ofǫ, which describes deviation from the

compressional stratification, eq. (2.6), and an inversely proportionality tothe fourth root

of the viscosityν. These dependences confirm the findings of Cambiotti and Sabadini
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Figure 2.5: Differences between secular, hS(a), and isostatic, eq. (2.58), radial displacements at the Earth
surface a.

(2010), that the long-period tangential flux is a specific process of compositional strat-

ifications when the material behaves like a Newtonian fluid, i.e., after relaxationof the

initial elastic stress due to loading.

The radial strengths,hCm(a)/sCm , at the Earth surface, eq. (2.54), decay asm−2 to

zero assuring the existence of a finite isostatic equilibrium,

lim
t→∞

U(a, t) = hS(a)−
∞
∑

m=1

hCm(a)

sCm

(2.57)

The summation overm can be obtained using the analytical approximations for the

strengths of compositional modes, eq. (2.54). Here, the numerical estimatesof the

first modes are considered in order to avoid inaccuracy of eq. (2.54) at low m and the

analytical approximations is used only form greater than20. In this way, we confirmed

the isostatic equilibrium,

lim
t→∞

U(a, t) = hS + lim
t→∞

UC(a, t) ≃ −2 ℓ+ 1

2
(2.58)

for degreesℓ = 2, · · · , 30 with an accuracy of10−5 attributable to numerical precision

of the algorithm. In contrast to the compressional stratification, eq. (2.50),the isostatic

equilibrium is achieved here only after relaxation of compositional modes which con-

tribute about 0.1–0.2. This is shown in Fig. 2.5, where we plotted the difference between
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Figure 2.6: Degree-2 secular radial and tangential displacements (left and right panels, respectively) for com-
pressional (dashed) and compositional (solid) stratifications.

secular,hS(a), and isostatic, eq. (2.58), radial displacements at the Earth surfacea for

degreesℓ = 2, · · · , 30. For the considered parameterisation, it starts at0.075 at degree

2 and increases to0.187 at degrees larger than15.

Figure 2.6 shows the radial variation from the CMB to the Earth surface forthe

degree-2 secular radial,hS , and tangential,lS , displacements of the considered com-

pressional and compositional stratifications. The secular radial displacements of the

compositional stratification have an offset of about10−1 with respect to the compres-

sional stratification. In particular, this means that the secular radial displacement of

the compositional stratification is non zero at the CMB, whereas the displacement of the

compressional stratification vanishes as it describes consistently an isostatic equilibrium,

eq. (2.49). Secular tangential displacements differ mainly in the upper partof mantle by

about10−1, where the compositional stratification predicts smaller values than compres-

sional stratification.

The transition from the secular displacements to the isostatic equilibrium for the case

of compositional stratification is shown in Fig. 2.7, at increasing timest = 102, 103,

104, 106, 108, 1010 kyr. According to the momentum equation for a gravitating inviscid

body with compositional stratifications, radial and tangential displacements converge

to zero in the limit oft → ∞ within the viscoelastic mantle. Thus, compositional

modes account for buoyancy forces that bring particles from the deformed secular state

described by the fundamental modes back to the initial state of hydrostatic equilibrium.

This process starts at the CMB and proceeds towards the Earth surfacegenerating a

superficial layer that thins with increasing time. There, the tangential materialflow

towards and away from the load diverges according to eq. (2.56) in the lower and upper
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Figure 2.7: Degree-2 radial, U(t) and tangential, V (t), displacements (left and right pannels, respectively) at
increasing times t = 102, 103, 104, 106, 108 kyr, 1010 kyr (from top to bottom).
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parts of this layer.

In view of this and eq. (2.58), compositional stratifications achieve the isostatic equi-

librium by means of mass rearrangement confined in an infinitesimally-thin superficial

layer that compensates the weight of the load. This behaviour is comparableto the find-

ings of Pekeris and Accad (1972) in the frequencyω-domain for static perturbations of

the inviscid core, and corresponds to their findings if the viscosity is reduced toν → 0.

2.5 Conclusion

From the analysis of the analytical solution of the self-compressed compressible sphere

(Cambiotti and Sabadini, 2010), we have shown that both, compressionaland stable

compositional stratifications, achieve the isostatic equilibrium with surface loading, al-

though in very different ways. For compressional stratifications, the isostatic equilibrium

yields mass rearrangement within the whole mantle, whereas for stable compositional

stratifications, buoyancy forces due to relaxation of compositional modes bring particles

back to the initial position of hydrostatic equilibrium as prescribed by the momentum

equation for an inviscid body (Longman, 1963). Due to the fact, that perturbations within

an infinitesimally-thin superficial layer provides isostatic compensation of surface load-

ing, the first-order perturbation theory demands a divergent long-period tangential flux

of material at the Earth surface as described in Cambiotti and Sabadini (2010).

Perturbations of the interfaces of the layers of the Earth model yields surface-density

perturbations at those interfaces that are dealt with by boundary conditions comparable

to those used for surface loading. As a consequence, isostatic compensation of surface

loading and of the mantle bumping into the inviscid core do not differ from a physical

point of view. This supports our arguments against Deniset al. (1998) who criticised

the conditions for static perturbations at the CMB proposed by Smylie and Mansinha

(1971) and Chinnery (1975), as discussed in section 1.3.3. Furthermore, for stable com-

positional stratifications, we obtain isostatic perturbations of viscoelastic Earth models

due to surface loading similar to those obtained by Pekeris and Accad (1972), where

mass rearrangement is confined to an infinitesimally thin layer that compensatesthe

weight of the loading.
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Abstract

Mass redistribution caused by giant earthquakes is made visible by its long-wavelength

gravity signature, nowadays detectable by the Gravity Recovery And ClimateExperi-

ment (GRACE) space mission (Gross and Chao, 2001). The scientific community has

used GRACE data for studying the three major seismic events in the past decade, the

2004 Sumatran (Hanet al., 2006; de Linageet al., 2009; Cambiottiet al., 2011a; Broerse

et al., 2011), 2010 Maule (Heki and Matsuo, 2010; Hanet al., 2010) and 2011 Tohoku

(Matsuo and Heki, 2011; Zhouet al., 2011) earthquakes. These megathrust earthquakes

occur within subduction environments of fast converging oceanic and continental plates,

and cause volume changes of rocks in the surrounding of the fault, as well as deformation

of the Earth surface and internal layer boundaries with density contrasts. Furthermore,

due to the uplift of the ocean floor, they also displace ocean water away from the near

field, the gravitational effect of which is comparable with that from mass rearrangement

within the solid Earth (de Linageet al., 2009; Cambiottiet al., 2011a; Broerseet al.,

2011).

In Chapter 3 we discuss the 2004 Sumatran earthquake on the basis of a novel treat-

ment of the boundary conditions at the Earth surface and of the Poisson equation, aimed

to model ocean water redistribution due to earthquakes by means of a thick global ocean

layer and separate gravitational potential perturbations due to volume changes from

those due to the advection of the initial density field. The analysis of GRACE Level

2 data time series from the Center for Space Research (CSR) and GeoForschungs- Zen-

trum (GFZ) allows us to estimate the co-seismic gravity signature. It is characterized by

a bipolar pattern where the north-eastern negative pole (in the foot-wall side of the fault

plane), with minimum gravity anomaly of−12.7 ± 0.9µGal, is twice as large as the

south-western positive pole (in the hanging-wall side), with maximum gravity anomaly

of +6.1± 1.5µGal.

We demonstrate here that adequate Earth and dislocation models are required to

properly interpret GRACE data from comparison between compressible and incompress-

ible self-gravitating Earth models and seismic source models located at different depths,

in the crust and uppermost part of the lithospheric mantle. Owing to the noveltreatment

of the boundary conditions at the Earth surface and of the Poisson equation, we are able

to prove that the spatial asymmetry of the co-seismic gravity anomaly towards thenega-
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tive pole is not due to a large dilatation of the crust as proposed by Hanet al. (2006). We

show that the large dilatation obtained by Hanet al. (2006) is actually a dilatation local-

ized at the fault discontinuity, the gravitational effect of which is howevercompensated

by an opposite contribution from topography due to the uplifted crust. We then discuss

the importance of discriminating the effects of co-seismic volume changes in the layers

of the Earth from the dilatation localized at the fault discontinuity. Otherwise, because

the latter dominates over the former, we should conclude that thrust earthquakes cause an

overall dilatation of the crust, and this is not physically sound because it does not reflect

the pattern of compression and extension induced by the seismic forcing. The overall

negative anomaly is rather mainly due to the additional gravitational effects ofthe ocean

water that is displaced away from the near field due to the uplift of the oceanfloor, as

first indicated by de Linageet al. (2009). Furthermore, we discuss the sensitivity of

the most robust estimates from GRACE data analysis, consisting of the peak-to-peak

gravity anomaly and an asymmetry coefficient given by the ratio of the negative gravity

anomaly over the positive anomaly, to seismic source depths and dip angles. This allows

us to exploit space gravity data for the first time to help to constrain Centroid Momen-

tum Tensor (CMT) seismic models of the 2004 Sumatran earthquake and to conclude

that the seismic moment has been mainly released in the lower crust rather than inthe

lithospheric mantle.

In Chapter 4 we use this new physics in order to develop a novel procedure for the

inversion of the principal seismic source parameters (hypocentre and moment tensor)

of large earthquakes relying solely on space gravity data. This procedure, which com-

plements traditional seismology and we name Gravitational Centroid Moment Tensor

(GCMT) analysis, is applied for the first time to the 2011 Tohoku earthquake. Rather

than analysing the GRACE Level 2 data in the spatial domain as done in previous works,

we deal with space gravity data in the spectral domain of Slepian functions. This allow

us to spatially localize the long-wavelength gravity anomalies observed by the GRACE

space mission and obtain the independent components of the signal in the surrounding of

the earthquake. We thus invert this data set and find two distinct seismic solutions. One

consistent with previous seismological solutions, with moment magnitudeMW = 9.1,

dip angle13◦ and located in the forearc crust of Japan. The other has a greater moment

magnitude,MW = 9.2, a steeper dip angle,19◦, and is located beneath the Japan trench

at37.8N, 143.9E, within the oceanic mantle.
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Space gravity data thus help us to gain deep insight into the physics of megathrust

earthquakes in terms of huge mass rearrangement within the crust and lithospheric man-

tle, and ocean water redistribution
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Co–seismic gravitational potential perturbations are made visible from GRACEspace

mission (Gross and Chao, 2001; Mikhailovet al., 2004; Sabadiniet al., 2005; Hanet al.

2006; de Linageet al., 2009). We herein analyze long–wavelength co–seismic geoid and

gravity anomalies caused by the 2004 Sumatran earthquake by means of a compressible

self–gravitating Earth model, that is fully realistic as it builds on PREM (Dziewonski

and Anderson, 1981) and represents the elastic limit of viscoelastic models,recently

used for post–glacial rebound studies (Cambiottiet al., 2010) and developed for co–

seismic studies by Smylie and Mansinha (1971) and Sun and Okubo (1993).Thus, we

overcome the limitation of assuming incompressibility in co–seismic studies (Sabadini

et al., 2005; Meliniet al., 2010) or the approximation of compressibility based on the

Gilbert and Backus (1968) analytical solutions (Cambiottiet al., 2009) used in Sabadini

et al. (2008) to quantify the effects of the 2004 Sumatran earthquake on the Earth’s

rotation.

The 2004 Sumatran earthquake was one of the strongest non–periodic gravity vari-

ations that occurred at the Earth’s surface in the last decade. However, the analysis of

the co–seismic signature is quite challenging due to the peculiar noise presentin the

GRACE data, the so–called stripes, that is particularly strong at equatoriallatitudes, and

to the contamination that originates from post–seismic perturbations and other phenom-

ena occurring in the Sumatran region, such as hydrological and residual ocean circula-

tion cycles. Then, we devote particular attention to removing those signals other than

the co–seismic signature from GRACE data time series in order to provide a realistic

comparison between observations and models.

In order to correctly interpret the mass rearrangement caused by the 2004 Suma-

tran earthquakes, we extend the classic theory for the modelling of co–seismicgravity

anomalies. Differently from Smylie and Mansinha (1971) and Sun and Okubo (1993),

we decompose the Poisson equation in order to discriminate between gravity anomalies

due to volume and topography changes; we can thus address the style of deformation,

dilatational versus compressional, without the limitations suffered by plane half–space

models, as in Hanet al. (2006). Furthermore, we refine the approaches used in Hanet

al. (2006) and de Linageet al. (2009) for modelling the gravitational effect of ocean

water redistribution by developing a self–consistent treatment of the globalocean layer

of PREM. This novel theoretical treatment allows us to discuss in detail the different

interpretations of the GRACE data proposed in the previous works, which ascribed the
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observed pattern of the co–seismic gravity anomaly to the co–seismic dilatation within

the crust (Hanet al., 2006) or to ocean water redistribution (de Linageet al., 2009).

Then, similar to the concept suggested by Gross and Chao (2006) for space–based Earth

rotation measurements, we exploit gravity data from the GRACE space mission tohelp

constrain the seismic source model of the 2004 Sumatran earthquake obtained by the

multiple Centroid Momentum Tensor (CMT) source analysis of Tsaiet al. (2005).

3.1 Extension of the classic theory

The perturbation of the gravitational potentialφ∆ due to an earthquakes is the results of

density perturbations of the Earth caused by volume changes of the rock and the advec-

tion of the initial density field of the planet, which also includes the contribution from

topography perturbations of the internal boundaries and the Earth surface. It satisfies the

Poisson equation

∇2φ∆ = −C (ρ0∆+ u · er ∂rρ0) (3.1)

whereρ0,∆, u ander are the initial density, the volume change, the displacement vector

and the radial unit vector, and, for brevity, we have definedC = 4πG, withG being the

universal gravitational constant.

By solving the momentum and Poisson equations for the elastic mantle and imposing

the boundary conditions at the core–mantle boundary and the Earth surface, as described

in Chapter 1, we obtain the displacement and the gravitational potential perturbation at

the Earth surface that can be compared with geodetic observations. However, we cannot

distinguish between the contributions from the density perturbations within the different

layer of the Earth model. Also, we cannot separate the contribution due to volume

changes from that due to the advection of the initial density field.

To obtain the contribution to the gravitational potential due only to volume changes

occuring in a single layer of the Earth, that we denoted withφ(1), we should make use

of the classic definition of the gravitational potential in terms of the volume integral of

the ratio of the density distribution over the distance from the observation point r
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φ(1)(r) = C

∫

V

ρ0(r
′)∆(r′)

|r− r′| dV ′ (3.2)

whereV is the 3–D volume of the layer. For an observation point at the Earth surfacea,

after the expansion in spherical harmonics, eq. (3.2) becomes (Gross and Chao, 2006)

Φ
(1)
ℓm(a) =

4πG

aℓ+1 (2 ℓ+ 1)

∫

I
ρ0 χℓm r

ℓ+2 dr (3.3)

whereΦ(1)
ℓm andχℓm are the degree–ℓ and order–m spherical harmonic coefficients of

the gravitational potentialφ(1) and the volume change∆, andI = [rB, rT ] is the radial

interval of the layer of which we are considering the contribution from volume changes,

with rB andrT being the radii of the bottom and top interfaces.

For each harmonic degree and order, this approach require the calculation of volume

changesχℓm in the radial interval of the layer of the Earth and their integration entering

eq. (3.3). Instead of this classic approach, we propose a novel methodthat, in addi-

tion to computational advantages, allows to point out an important aspect of the way in

which the seismic source is taken into account that, if neglected, can lead to erroneous

interpretations of the style of deformation (dilatational versus compressional).

We decompose the gravitational potentialφ∆ into the contributionφ(1) due only to

volume changes within the radial intervalI of the layer, and the remaining contribution

φ(2) from all other sources of density perturbations (i.e., volume changes in other layers

and the advection of the initial density field)

φ∆ = φ(1) + φ(2) (3.4)

Owing to the linearity of the Poisson equation, the two potentials satisfy the follow-

ing Poisson equations

∇2φ(1) = −C ρ0∆HI (3.5)

∇2φ(2) = −C ρ0∆(1−HI)− C u · er ∂rρ0 (3.6)
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whereHI is the characteristic function of the intervalI

HI =

{

1 r ∈ I

0 r /∈ I
(3.7)

Note that the RHS of eq. (3.5) describes the density perturbation due only tovolume

changes within the intervalI, whereas the RHS of eq. (3.6) is the remaining density

perturbation. This decomposition formally affects the momentum equation, where the

gravity perturbation−∇φ∆ is replaced by the sum of the two gravity perturbations

−∇φ(1) −∇φ(2), but this does not mean that we are altering the body forces.

After spherical harmonic expansion, eqs (3.5)–(3.6) become

∇2Φ
(1)
ℓm = −C ρ0 χℓmHI (3.8)

∇2Φ
(2)
ℓm = −C ρ0 χℓm (1−HI)− C Uℓm ∂rρ0 (3.9)

whereΦ(2)
ℓm andUℓm are the degree–ℓ and order–m spherical harmonic coefficients of

the potentialφ(2) and the radial displacementu · er. By applying the Gauss theorem at

the Poisson equations (3.8)–(3.9) within a volume embedded in an infinitesimal pill–box

at the internal boundaries and at the Earth surface, it can be shown that the potential

stressesQ(1)
ℓm andQ(2)

ℓm for the potentialsΦ(1)
ℓm andΦ(2)

ℓm must be defined as follows

Q
(1)
ℓm = ∂rΦ

(1)
ℓm +

ℓ+ 1

r
Φ
(1)
ℓm (3.10)

Q
(2)
ℓm = ∂rΦ

(2)
ℓm +

ℓ+ 1

r
Φ
(2)
ℓm + C ρUℓm (3.11)

Note that the total potential stressQℓm defined in eq. (1.79) is given by the sum of the

two potential stresses

Qℓm = Q
(1)
ℓm +Q

(2)
ℓm (3.12)
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and that both potential stresses must be continuous across the internal boundaries with

density contrast and that they are zero at the free Earth surface (we are only considering

the seismic forces, not surface loading and external potentials). In this way, indeed, the

only potentialφ(2) accounts for the density perturbations associated with topography

perturbations of the internal boundaries and the Earth surface.

In order to simultaneously solve the momentum equation and the two Poisson equa-

tions (3.8)–(3.9), similarly to the spheroidal6–vector solution introduced in Chapter 1,

eq. (1.78), herein we define the spheroidal8–vector solutionyℓm

yℓm =
(

Uℓm, Vℓm, Rℓm, Wℓm, Φ
(1)
ℓm, Q

(1)
ℓm, Φ

(2)
ℓm, Q

(2)
ℓm

)T
(3.13)

HereT stands for the transpose, andVℓm,Rℓm andSℓm are the degree–ℓ order–m spher-

ical harmonic coefficients of spheroidal tangential displacements and spheroidal radial

and tangential stresses. By definition, the spheroidal solution8–vector solutions is con-

tinuous across the internal boundaries and satisfies the following conditionat the free

Earth surface

P1yℓm(a) = 0 (3.14)

whereP1 is the projector for the3–rd,4–th,6–th and8–th components. Afterwards, we

will however consider different Earth surface boundary conditions inorder to account

for a thick global ocean layer at the top of the solid Earth.

After spherical harmonic expansion, we cast the spheroidal radial and tangential

components of the momentum equation, eqs (1.70)–(1.71), and the two Poisson equa-

tions (3.8)–(3.9) into the following linear differential system

∂ryℓm = Aℓ yℓm −mℓm (3.15)

whereAℓ andmℓm are the block8× 8–matrix and the8–vector describing the seismic

forces defined as
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Aℓ =

[

A
(U)
ℓ

A
(L)
ℓ

]

(3.16)

mℓm(r) =
M

r2

(

δ(r − r0)

r0
m

(0)
ℓm +

∂δ(r − r0)

∂r
m

(1)
ℓm

)

(3.17)

with M , rS andδ(r − rS) being the seismic moment, the radial distance from the Earth

centre of the point–like seismic source and the Dirac delta. The4 × 8–matricesA(U)
ℓ

andA(L)
ℓ entering eq. (3.16) are given by

A
(U)
ℓ (r) =















−2λ
r β

ℓ(ℓ+1)λ
r β

1
β 0

−1
r

1
r 0 1

µ
4
r2

(

3κµ
β − g ρ r

)

ℓ(ℓ+1)
r2

(

g ρ r − 6κµ
β

)

−4µ
r β

ℓ(ℓ+1)
r

1
r2

(

g ρ r − 6κµ
β

)

2µ
r2

[

2 ℓ(ℓ+ 1)
(

1− µ
β

)

− 1
]

− λ
r β −3

r

· · ·

· · ·

0 0 0 0

0 0 0 0

− (ℓ+1) ρ
r ρ − (ℓ+1) ρ

r ρ
ρ
r 0 ρ

r 0













(3.18)

A
(L)
ℓ (r ∈ I) =













0 0 0 0

−4C ρµ
r β

2 ℓ(ℓ+1)C ρµ
r β −C ρ

β 0

−C ρ 0 0 0

−C ρ
r

[

ℓ+ 1− 4µ
β

]

ℓ(ℓ+1)C ρλ
r β

C ρ
β 0

· · ·

· · ·

− ℓ+1
r 1 0 0

0 ℓ−1
r 0 0

0 0 − ℓ+1
r 1

0 0 0 ℓ−1
r













(3.19)
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A
(L)
ℓ (r /∈ I) =













0 0 0 0 − ℓ+1
r 1 0 0

0 0 0 0 0 ℓ−1
r 0 0

−C ρ 0 0 0 0 0 − ℓ+1
r 1

− (ℓ+1)C ρ
r

ℓ(ℓ+1)C ρ
r 0 0 0 0 0 ℓ−1

r













(3.20)

whereµ, λ, κ andg are the two parameters of Lamé, the bulk modulus and the initial

gravity, respectively, andβ is the elastic parameter given by eq. (1.82). Note that the

form of the lower matrixA(L)
ℓ depends on whether the radial distance from the Earth’s

centerr is within or outside of the intervalI defining the layer of which we are separately

considering volume changes, eqs (3.19) and (3.20), respectively. The expressions for

m
(0)
ℓm andm(1)

ℓm entering eq. (3.17) are similar to those obtained for the classic seismic

problem, eq. (1.228), but for the fact they have two extra zero components

m
(x)
ℓm =

(

0, 0, m
R(x)
ℓm , m

S(x)
ℓm , 0, 0, 0, 0

)T
(3.21)

wheremR(x)
ℓm andmS(x)

ℓm are given by eqs (1.214)-(1.225), forx = 0, 1.

The solution of the dishomogeneous differential system 3.15) yields

yℓm(r) = Πℓ(r, rC)IC C−wℓm(r) (3.22)

whererC is the core radius,Π the propagator matrix that solve the homogeneous differ-

ential system, andwℓm is given by

wℓm(r) = H(r − rS)Πℓ(r, rS)

M

r2S

[

m
(0)
ℓm(rS) +Aℓ(rS)m

(1)
ℓm(rS) +

2

rS
m

(1)
ℓm(rS)

]

(3.23)

Also, IC is the8× 4–matrix that describes the core–mantle boundary conditions andC
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is the4–vector of constants of integration that must determined using the Earth surface

boundary conditions. These boundary condition will be discussed in section 3.2.

3.1.1 Volume changes localized at the dip-slip fault discon tinuities

Owing to this approach for the study of gravitational potential perturbationsdue to co-

seismic volume changes, it is possible to clearly point out a specific feature of dip-slip

faults. Let us consider the different cases of seismic sources located within or outside

of the intervalI where we evaluate the contribution due to co-seismic volume changes.

It is well known from Smylie and Mansinha (1971), Takeuchi and Saito (1972) and eq.

(3.22) that the seismic force is equivalently described by the step-like discontinuity of

the spheroidal solution vectoryℓm at the radial distance from the Earth centrerS where

the seismic source is located

[yℓm(rS)]
+
− = −M

r2S

[

m
(0)
ℓm(rS) +Aℓ(rS)m

(1)
ℓm(rS) +

2

rS
m

(1)
ℓm(rS)

]

(3.24)

Here,[f(r)]+− indicates the discontinuity of the generic fieldf at r

[X(r)]+− = X(r+)−X(r−) (3.25)

If the seismic source is outside of the radial intervalI, rS /∈ I, the potential stresses

Q
(1)
ℓm andQ(2)

ℓm are continuous acrossrS in view of eq. (3.20) and of the fact that the only

non-zero components ofm(0)
ℓm andm(1)

ℓm are the3–rd and4–th components, eq. (3.21). In

contrast, if the seismic source is within the shell defined by the radial intervalI, rS ∈ I,

the potential stressesQ(1)
ℓm andQ(2)

ℓm are discontinuous acrossrS in view of eqs (3.19)

and (3.21)

[

Q
(1)
ℓm(rS)

]+

−
= −δ0mM

(2 ℓ+ 1)G

r2S

ρ(rS)

β(rS)
sin 2δ sin γ (3.26)
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[

Q
(2)
ℓm(rS)

]+

−
= −

[

Q
(1)
ℓm(rS)

]+

−
(3.27)

Here,δ, γ andδ0m are the dip and slip angles of the seismic source and the Kronecker

delta selecting only order-0 harmonic coefficients. Note that the discontinuities ofQ(1)
ℓm

andQ(2)
ℓm compensate for each other, eq. (3.27), according to the fact that the total

potential stressQℓm, eq. (3.12), must be continuous acrossrS (Smylie and Mansinha,

1971).

This peculiar behavior of the potential stresses is explained by considering the dis-

continuity in the radial displacement due to the seismic source

[Uℓm(rS)]
+
− = δ0mM

2 ℓ+ 1

4π r2S

1

β(rS)
sin 2δ sin γ (3.28)

and the radial derivative of the radial displacement entering the geometricdefinition of

volume changesχℓm, eq. (1.60). Indeed, the discontinuity of the radial displacement

contributes with a volume change localized at the seismic source that we denotewith

χS
ℓm

χS
ℓm = [Uℓm(rS)]

+
− δ(r − rS) (3.29)

As reflected by the dependence of eq. (3.28) on the slip angleγ, it should be noted that

for reverse and thrust faults, such as that of Sumatran, eq. (3.29) describes a localized

dilatation becauseγ ∈ [0◦, 180◦]. On the contrary, for normal faults, eq. (3.29) describes

a localized compression becauseγ ∈ [180◦, 360◦].

When the seismic source is within the radial intervalI, the localized volume change

χS also contribute to the gravitational potential perturbationΦ
(1)
ℓm. By denoting its con-

tribution withΦ(1S)
ℓm , from eqs (3.3) and (3.29)-(3.28), we obtain

Φ
(1S)
ℓm (a) = δ0mM

ρ0(rS)

β(rS)

G

a
sin 2δ sin γ

(rS
a

)ℓ
(3.30)

As we will show in section 3.5, this contribution dominates over the gravitational po-
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tential perturbations due to volume changes elsewhere the seismic source and mask the

typical style of deformation in the surrounding of the fault that, for reverse and thrust

earthquakes like the Sumatran event, is characterized by compression anddilatation in

the foot- and hanging-wall sides of the fault plane, respectively. This contribution, if not

properly accounted for, causes the local dilatation associated with the seismic source to

be erroneously interpreted as dilatation in the surrounding of the fault, thusleading to

the unphysical interpretation given by Hanet al. (2006) that reverse and thrust faults

cause an overall dilatation of crust.

It is noteworthy that we can obtain the gravitational perturbation due to volume

changes in the surrounding of the fault, without including the effects of thelocalized

volume changeχS
ℓm, by neglecting the discontinuities of the potential stressesQ

(1)
ℓm and

Q
(2)
ℓm, eqs (3.26)-(3.27). This means that eq. (3.20) should be used instead of eq. (3.19)

for the matrixAℓ(rS) when we compute eq. (3.23), even ifrS ∈ I. This alteration of

Aℓ(rS) entering eq. (3.23) only has the effect of removing from the gravitationalpo-

tential perturbationsΦ(1)
ℓm andΦ(2)

ℓm the contributions due to the opposite discontinuities

in the relevant potential stresses, eqs (3.26)-(3.27). This does not alter the radial,Uℓm,

and tangential,Vℓm, displacements and the total gravitational potential perturbationΦℓm

because the gravitational potential perturbations due to these discontinuitiescancel each

other out and they then do not involve any effective volume force in the momentum

equation.

3.2 Boundary conditions

Let us discuss how to derive the core-mantle boundary conditions for thesheroidal solu-

tion 8–vector and modify the Earth surface boundary conditions in order to account for

the global ocean layer of PREM in a physical self-consistent way.

3.2.1 Core-mantle boundary

As pointed out by Longman (1962), volume changes are allowed within the inviscid core

only for compressional stratifications. On the contrary, volume changes must be zero

for compositional stratifications. However, both for compressional and compositional

stratifications, the Poisson equation takes the same form as discussed in Chapter 1, eq.
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(1.125). Here, for the sake of simplicity and because we are more interested in volume

changes within the mantle rather than in the Longman (1962) paradox, we decided not

to discriminate the gravitational potential due to volume changes in the core. We thus

assume that the layer for which we are separately considering volume changes does not

intersect the core,I ∩ [0, rC ] = ∅. In this respect, eqs (3.8)-(3.9) and (3.10)-(3.11)

become

∇2
rΦ

(1)
ℓm = 0 (3.31)

∇2
rΦ

(2)
ℓm =

C ∂rρ0
g

(

Φ
(1)
ℓm +Φ

(2)
ℓm

)

(3.32)

Q
(1)
ℓm = ∂rΦ

(1)
ℓm +

ℓ+ 1

r
Φ
(1)
ℓm (3.33)

Q
(2)
ℓm = ∂rΦ

(2)
ℓm +

ℓ+ 1

r
Φ
(2)
ℓm − C ρ0

g

(

Φ
(1)
ℓm +Φ

(2)
ℓm

)

(3.34)

In view of the regularity conditions at the center of the Earth, we impose that

lim
r→0

Φ
(1)
ℓm r

−ℓ = A (3.35)

lim
r→0

Φ
(2)
ℓm r

−ℓ = B (3.36)

with A andB being two constants of integration. These conditions also reflect into con-

ditions for the potential stresses that, from eqs (3.33)-(3.34), must satisfythe following

regularity conditions

lim
r→0

Q
(1)
ℓm r

−ℓ+1 = (2 ℓ+ 1)A (3.37)

lim
r→0

Q
(2)
ℓm r

−ℓ+1 = −3A+ 2 (ℓ− 1)B (3.38)
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Here we have utilized

lim
r→0

C ρ0(r) r

g(r)
= 3 (3.39)

that holds for a finite initial density at the Earth centre. From these consideration, fol-

lowing Longman (1962), Smylie and Mansinha (1971) and Chinnery (1975), we thus

impose the core-mantle boundary conditions

yℓm(r+C ) = IC C (3.40)

whereIC is the8× 4–matrix given by

IC =



































−Φ
(1)
A

(rC)+Φ
(2)
A

(rC)

g(rC) −Φ
(2)
B

(rC)

g(rC) 0 1

0 0 1 0

0 0 0 ρ(r−C ) g(rC)

0 0 0 0

Φ
(1)
A (rC) 0 0 0

Q
(1)
A (rC) 0 0 0

Φ
(2)
A (rC) Φ

(2)
B (rC) 0 0

Q
(2)
A (rC) Q

(2)
B (rC) 0 C ρ(r−C )



































(3.41)

andC is the4–vector of constants of integration that must be determined by means of

the Earth surface boundary conditions

C = (A, B, C, D)T (3.42)

The subscriptsA andB in eq. (3.41) indicate solutions of the differential equations

(3.31)-(3.32) obtained using the regularity conditions (3.35)-(3.38) with(A = 1, B = 0)

and (A = 0, B = 1), respectively. Furthermore, the constants of integrationC and

D in eq. (3.42) describe the free slip at the core-mantle boundary and the isostatic

compensation of the mantle bumping into the core, similarly to the classic theory for the
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core-mantle boundary discussed in Chapter 1, section 1.3.3.

3.2.2 The self-consistent global ocean

We assume that the ocean behaves as an inviscid fluid with constant initial density ρw,

i.e., ∂rρw = 0. In this respect, the Poisson equations forΦ
(1)
ℓm andΦ(2)

ℓm coincide with

those for the inviscid core and become the Laplace equations because the initial density

is constant

∇2
rΦ

(1)
ℓm = 0 (3.43)

∇2
rΦ

(2)
ℓm = 0 (3.44)

Similarly, the potential stressesQ(1)
ℓm andQ(2)

ℓm are still given by eqs (3.33)-(3.34), once

substitutedρw for ρ0.

The solutions of eqs (3.43)-(3.44) yields

Φ
(1)
ℓm = A1 r

ℓ +B1 r
−ℓ−1 (3.45)

Φ
(2)
ℓm = A2 r

ℓ +B2 r
−ℓ−1 (3.46)

Q
(1)
ℓm = A1 (2 ℓ+ 1) rℓ−1 (3.47)

Q
(2)
ℓm = A2 (2 ℓ+ 1− Z(r) r) rℓ−1 −A1 Z(r) r

ℓ − (B1 +B2) Z(r) r
−ℓ−1 (3.48)

whereAj andBj , with j = 1, 2, are four constants of integration and

Z(r) =
C ρw
g(r)

(3.49)
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Because, for the seismic problem, the top surface of the ocean is a free surface on which

the radial displacement coincides with the geoid, the potential stresses are zero

Q
(1)
ℓm(b) = 0 (3.50)

Q
(2)
ℓm(b) = 0 (3.51)

with b being the radius of the Earth, including the global ocean layer. From eqs (3.47)-

(3.48) evaluated atr = b, we thus obtain

A1 = 0 (3.52)

A2 = α(b) (B1 +B2) (3.53)

where for brevity we have definedα as

α(r) =
Z(r) r−2 ℓ

2 ℓ+ 1− Z(r) r
(3.54)

Then eqs (3.45)-(3.48) yield

Φ
(1)
ℓm = B1 r

−ℓ−1 (3.55)

Φ
(2)
ℓm = B1 α(b) r

ℓ +B2

(

α(b) rℓ + r−ℓ−1
)

(3.56)

Q
(1)
ℓm = 0 (3.57)

Q
(2)
ℓm = (B1 +B2) Z(r) r

−ℓ−1

[

α(b)

α(r)
− 1

]

(3.58)
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In order to determineB1 andB2, we must consider proper boundary conditions at the

bottom of the ocean, namely at the solid Earth radiusa. Following Longman (1962),

Smylie and Mansinha (1971) and Chinnery (1975), we impose

yℓm(a−) = IO O (3.59)

whereIO is the8× 4–matrix defined as

IO =



































−α(b) aℓ +a−ℓ−1

g(a) −α(b) aℓ +a−ℓ−1

g(a) 0 1

0 0 1 0

0 0 0 ρw g(a)

0 0 0 0

a−(ℓ+1) 0 0 0

0 0 0 0

α(b) aℓ α(b) aℓ + a−ℓ−1 0 0
Z(a)
aℓ+1

[

α(b)
α(a) − 1

]

Z(a)
aℓ+1

[

α(b)
α(a) − 1

]

0 C ρw



































(3.60)

andO is the4–vector consisting of the constants of integration

O = (B1, B2, B3, B4)
T (3.61)

The two constantsB1 andB2 describe the gravitational perturbationsΦ(1)
ℓm andΦ

(2)
ℓm

within the ocean via eqs (3.55)-(3.56), whileB3 andB4 take into account the free slip

and loading due to the water redistribution coming from the gap between the geoid and

the radial displacement at the solid-fluid interface.

Let us now consider that the spheroidal8-vector solutionyℓm is determined with the

four constants of integrationC of the core-mantle boundary conditions (3.40). Then,

from eqs (3.22) and (3.59), we obtain the following block matrix equations

[

Πℓ(a, rC) IC , −IO

]

[

C

O

]

= wℓm(a) (3.62)
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which allow us to obtain the eight constants of integrationC andO

[

C

O

]

=
[

Πℓ(a, rC) IC , −IO

]−1
wℓm(a) (3.63)

The case of perturbations of harmonic degreeℓ = 1 must also be considered in order to

discriminate between gravitational perturbations due to volume,Φ
(1)
1m, and topography,

Φ
(2)
1m, changes that can be non-zero, though the total degree–1 gravitational perturbations

Φ1m must be zero in view of the conservation of the center of mass (Farrell, 1972, pp.

774–777; Sun and Okubo, 1993). In Appendix A.4, we discuss the additional consider-

ations that this case requires.

We have now fully determined the perturbations both within the solid Earth and the

inviscid ocean. At the same time, we have accounted for the interaction between the

ocean and solid Earth consisting of the ocean water redistribution and its loading effect.

It is noteworthy that for an infinitesimally thin ocean layer, in the limit ofb → a, our

approach reproduces exactly the sea level theory discussed by Farrell and Clark (1976)

in the case of a global ocean. Nevertheless, the present approach cannot be extended to

a non spherically symmetric ocean; thus, it cannot consider the continents.On the other

hand, it allows a correct description of the effect of the thickness of theocean layer,

which instead is neglected by the sea level theory of Farrell and Clark (1976). For all

intents and purposes, the effects for the Earth are small, becauseb− a ≈ 3 km, and can

be ignored.

3.3 Ocean water redistribution

We present results for a compressible self–gravitating Earth model basedon PREM

(Dziewonski and Anderson, 1981) taking into account the ocean waterredistribution

by means of our modified boundary conditions at the fluid–solid boundary between the

solid Earth and the global ocean layer. We will refer to this model as Ocean–PREM (also

abbreviated as O–PREM). In order to quntify the impact of the ocean waterredistribu-

tion on the gravitational potential perturbation, these results will be comparedwith those

obtain for the same Earth model, but without including the effects of the oceanwater re-

distribution, i.e., implementing the classic boundary conditions for a stress freesolid
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Earth surface, eq. (3.14). We refer to the latter model as Solid–PREM (also abbrevi-

ated as S–PREM). We describe the 2004 Sumatran earthquakes using the seismic source

model of Tsaiet al. (2005), which is composed of five point–like sources at the same

depth of25 km, below the Moho discontinuity that is at21.4 km depth for PREM, and

distributed along the strike of the fault. The total seismic moment isNS = 1.17× 1023

N m, corresponding to a moment magnitude of9.3. Although more realistic slip distri-

butions over the fault are typically used to explain seismic waves and groundmotions

from GPS (Ammonet al. 2005), the differences in the gravitational potential perturba-

tions with respect to the use of the simple seismic source model of Tsaiet al. (2005)

are expected to be small at the limited spatial resolution of GRACE data. For this rea-

son, the analysis will concerns only long–wavelength geoid anomalies, thatwe obtain

by applying an isotropic Gaussian filter with half–width of350 km (Wahret al., 1998).

Slip distribution along dip instead affects the long–wavelength seismic signal, a sensi-

tivity that we will use in section 3.4.2 to obtain information about the depth at whichthe

largest seismic moment has been released.

In order to gain insight into the physics of ocean water redistribution caused by the

2004 Sumatran earthquake, particularly regarding the asymmetry between the negative

and positive gravitational anomalies observed in GRACE data (Hanet al., 2006; de

Linageet al., 2009), we begin by considering geoid anomalies∆G rather than grav-

ity anomaliesδg. This way, we can directly compare geoid anomalies∆G and radial

displacementsu · er in terms of sea level variations∆S

∆S = ∆G− u · er (3.64)

that describes the height of the column of ocean water that loads the Earth with respect

to the initial state of hydrostatic equilibrium. To better isolate the main features of the

co–seismic phenomenon, we focus on the maximum,∆Gmax, and minimum,∆Gmin,

geoid anomalies and we investigate the main physical processes affecting theasymmetry

coefficientAS, that we define as the ratio between the absolute values of the maximum

positive and negative geoid anomalies

AS =

∣

∣

∣

∣

∆Gmin

∆Gmax

∣

∣

∣

∣

(3.65)
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Figure 3.1: Co–seismic geoid anomalies for compressible S–PREM (a) and O–PREM (b), after the 350 km
Gaussian filtering.

Fig. 3.1 compares the co–seismic geoid anomalies for the Solid– and Ocean–PREM

(pannels a and b, respectively). Both patterns are bipolar, with the positive and nega-

tive poles in the hanging– and foot–wall sides of the fault plane, respectively, although

the negative pole is more pronounced when we include the gravitational effects of the

ocean water redistribution. For Solid–PREM, we obtain maximum and minimum geoid

anomalies of+2.57 mm and−2.28 mm, respectively, and the asymmetry coefficient is

AS = 0.88. The positive geoid anomaly results slightly greater in absolute value than

the negative one. This indicates that, even if the 2004 Sumatran earthquakecaused a

large dilatation within the crust, as suggested by Hanet al. (2006), this dilatation is

not sufficiently large to explain the spatial asymmetries observed in GRACE data. On

the contrary, for Ocean–PREM, we obtain maximum and minimum geoid anomalies of

+1.24 mm and−2.52 mm, respectively, and the asymmetry coefficient isAS = 2.03.

As shown in fig. 3.2, the geoid anomalies due to ocean water redistribution, which we

obtain by subtracting the geoid anomalies for Ocean–PREM (fig. 3.1b) fromthose for

Solid–PREM (fig. 3.1a), are comparable in magnitude with the geoid anomalies for
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Sea level geoid anomaly
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Figure 3.2: Co–seismic geoid anomalies due to ocean water redistribution, obtained subtracting compressible
O–PREM and S–PREM geoid anomalies shown in fig. 3.1, after the 350 km Gaussian filtering.

Solid–PREM and negative almost everywhere, with a minimum value of−1.36 mm.

In order to better understand how ocean water redistributes in responseto the earth-

quake, we show in fig. 3.3 the topography perturbations of the solid Earth surface for

both Solid– and Ocean–PREM (pannels a and b, respectively), after the350 km Gaus-

sian filtering for the sake of comparison with the geoid anomalies shown in fig. 3.1.

For Solid–PREM, the predicted maximum uplift,+93.1 mm, is greater in magnitude by

about a factor5 than the maximum downdrop,−18.3 mm. From the comparison with

Ocean–PREM, we also note that the loading due to water redistribution has a negligible

effect on the topography perturbations of the ocean floor because themaximum uplift,

+97.0 mm, and downdrop,−18.6 mm, differ from those for S–PREM by less than3 per

cent. These differences are, however, comparable with the geoid anomalies shown in

fig. 3.1. The fact that the radial displacement is larger than the geoid anomaly by almost

two order of magnitude indicates that the co–seismic sea level variation, eq. (3.64), is

mainly characterized by the variation of the topography rather than that of the geoid.

Particularly, the uplift of the ocean floor displaces way ocean water fromthe near field,
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S−PREM radial displacement
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Figure 3.3: Co–seismic radial displacements for compressible S–PREM (a) and O–PREM (b), after the 350
km Gaussian filtering for the sake of comparison with the geoid anomalies shown in fig. 3.1 in terms of sea
level variations, eq. (3.64).

causing the reduction of the geoid shown in fig. (3.2).

In the light of these preliminary results, we agree with de Linageet al. (2009) in

saying that the asymmetry towards the negative pole of the co–seismic gravity anomalies

observed in GRACE data is due the ocean water redistribution, rather than the crustal

dilatation proposed by Hanet al. (2006). We will further discuss this issue in sections 3.4

and 3.5 by exploiting our novel approach for the study of gravitational perturbations due

to co–seismic volume changes, after the comparison between models and observations

from GRACE.

3.4 GRACE data analysis

Let us discuss the main features of the 2004 Sumatran earthquake as recorded in GRACE

data. We adopt the representation of GRACE data in gravity anomalies. The other nat-

ural choice, the representation in geoid anomalies, is more global and prone to leakage

of signals from nearby regions, that are indeed very active from a hydrological point
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of view. Hydrology can give strong fluctuations that can be confused with step–like

phenomena like the co–seismic perturbation, due to the limited time resolution of the

GRACE space mission of one month, and mask the specific slope variation characteriz-

ing the time dependence of the post–seismic perturbation. The gravity anomaly repre-

sentation is instead less sensitive to this form of contamination because is more spatially

localized. In this respect, we redefine the asymmetry coefficientAS as the ratio be-

tween the absolute values of the maximum positive,δgmax, and negative,δgmin, gravity

anomalies

AS =

∣

∣

∣

∣

δgmin

δgmax

∣

∣

∣

∣

(3.66)

rather than geoid anomalies, eq. (3.65).

GRACE data are also affected by a peculiar noise, the so called stripes, that is par-

ticularly strong at equatorial latitudes and, due to its typical north–south shape, can

make the co–seismic signature in the Sumatran region less clear. A good treatment of

the stripes is therefore important. Among the various solutions proposed recently, we

choose to rely on the anisotropic filtering described in Kuscheet al. (2007) and Kusche

et al. (2009). Indeed, at present, this decorrelation filter is the most accuratetreatment

of the stripe problem, and it does not suffer from the bias present in approaches that are

targeted to selected areas or phenomena (Werthet al., 2009) because it is based on the

analysis of the orbital characteristics of the GRACE space mission. Kuscheet al. (2009)

provide three anisotropic filters with different spatial resolutions. To better address the

main features of the local scale signature of the 2004 Sumatran earthquake, we choose

the filter with the highest spatial resolution: the DDK3 filter. Depending on the com-

parison criterion, this filter is roughly equivalent to an isotropic Gaussian filter of about

240 − 330 km half width. This spatial resolution is close to the limit of the GRACE

nominal resolution, and it can be a risk because some noise can still be present. On

the other hand, the earthquake signal is strong at short wavelengths, and, because of the

overall improvement in the processing techniques and the effectivenessof the decorre-

lation, the data are quite clean compared to those used in the early stage of the GRACE

space mission.

GRACE Level 2 data are processed and provided to the scientific community by
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three official analysis centers: the Center for Space Research (CSR,University of Texas),

the GeoForschungsZentrum (GFZ, Potsdam) and the Jet Propulsion Laboratory (JPL,

California Institute of Technology). The solutions that they provide are ofsimilar quality,

though there are some differences. The CSR data have the longest time series, but some

months are affected by serious errors and the Stokes coefficients are available only up

to the harmonic degree60. The GFZ data have Stokes coefficients available up to the

harmonic degree120, but some months are missing. The JPL data have the shortest time

series.

In this work, we consider the two official CSR and GFZ solutions. In orderto opti-

mize the information that we can gain from different solutions, we perform our analysis

on the average of CSR and GFZ data, for each common month of the two time series

(i.e. present in the series of both processing centers), although separate usage of the

two time series is expected not to impact our conclusions. The average is done after

applying the corrections prescribed to the Stokes coefficients of the two data sets and

replacing the degree–2 order–0 Stokes coefficient with its more stable estimate from the

Satellite Laser Ranging (SLR) constellation satellites, as recommended. The GFZ so-

lution is truncated at the harmonic degree60 in order to conform to the lower spatial

resolution of the CSR solution. The principle at the basis of this average of the solutions

is that the two centers work with comparable accuracy, and the possibility of common

systematic errors is low. By considering that the unprocessed GRACE dataportray a

meaningful signal plus errors, the correlation between the data processed from the two

centers should be maximized when a strong signal occurs and reduced when errors are

dominant. This was first noted by Chambers (2006) and then used in Bauret al. (2009)

and Barlettaet al. (2011).

This approach allows us to estimate the uncertainty of GRACE data by consider-

ing the spatial distribution of the time–averaged deviation of the DDK3–filtered CSR

and GFZ solutions from their mean, which is shown in fig. 3.4(a,b). This uncertainty

from different processing is quite small, with values ranging from0.3µGal to1.5µGal

worldwide. Particularly, it can be estimated to be between0.4µGal and0.8µGal in

the Sumatran region (fig. 3.4b), with the largest errors north–east of theSumatra trench,

both in the near field and over the Cambodia. This indicates that the main features of the

signal are coherent in the official solutions. Clearly, the difference between data from

different processing methods could be even larger if one uses data from other processing
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Figure 3.4: Spatial distribution of the time averaged deviation of the DDK3–filtered CSR and GFZ solutions
from their mean (a) and its enlargement in the Sumatran region (b). Zonal spatial distribution of the nominal
error (c) for the DDK3–filtered CRS solution.

centers (Steffenet al., 2009), but here we decide to consider only the two official releases

from CSR and GFZ.

In addition to the uncertainty from different processing, we also take into account

the nominal error of GRACE data that we show in fig. 3.4c only for the CSR solution

because this error for the GFZ solution is similar. The pattern of the nominal error is

zonal, depending mainly on the latitude, and is about0.9µGal at the equatorial latitudes

of the Sumatran region. Then, by combining the uncertainty due to the processing and

the nominal error in a conservative way, we assume an error of about2µGal for GRACE

data time series (CSR–GFZ solutions) in the Sumatran region.

3.4.1 Estimate of the co–seismic gravity anomaly

We consider GRACE data time series from August 2002 to November 2009, with June

2003 missing because no estimates are available from either of the two centers(CSR and

GFZ) and rejecting December 2004 and January 2005 because the Sumatran earthquake

occurred on December 26, 2004. We therefore have27 and58 data before and after
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Figure 3.5: Original (thin solid lines, cross–shaped points) and smoothed (thick solid lines) DDK3–filtered
GRACE data time series at points 2.1N, 94.2E and 7.7N, 97.0E, in the south–west (a) and north–east (b) near
field of the Sumatran trench.

the earthquake, respectively, spanning periods of about2 and5 years. Fig. 3.5 shows the

GRACE data time series in gravity anomaly representation (thin solid line, cross–shaped

points) at the two points2.1N, 94.2E and7.7N, 97.0E, in the south–west (a) and north–

east (b) near fields of the Sumatra trench, respectively. Because the timeresolution of

gravity measurements by GRACE space mission is monthly, the estimate of the co–

seismic signature is not straightforward. Indeed, as can be seen in fig. 3.5, the upward

transition (a) is slow compared to the downward transition (b). This indicates that local

phenomena other than the co–seismic jump contribute to the signal. In order to only

estimate the seismic signature, particularly the co–seismic gravity anomaly, we avoid

the use of fitting schemes for the elimination of seasonal and interannual contributions

and the alias at161 days due to the model error of theS2 tidal wave (Ray and Luthcke,

2006). Differently, instead of explicitly addressing the different contributions to gravity

anomalies, we smooth GRACE data time seriesδg by means of a Gaussian filterW in

the time domain (Barlettaet al., 2011)

δg(t) =

∫ T

−T
δg(t′)W (t′, t) dt (3.67)

with
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W (t′, t) =







1
N e

− 1
2

(

t′−t
σW

)2

|t′ − t| ≤ T

0 |t′ − t| > T
(3.68)

Here,t,N , σW andT are the time, the normalizing constant and the half width of the fil-

ter, and the truncation constant used to deal with finite time series. We chooseT = 3
2 σW

andσW = 6 months. This filter in time reduces by about one order of magnitude the

variability due to seasonal and interannual signals due to hydrology fromthe continent

and to the residual ocean circulation component present in the data, together with the

alias at161 days due to the model error of theS2 tidal wave (Ray and Luthcke, 2006).

Permanent co– and post–seismic signatures and signals due to long–period(greater than

2 years) hydrological cycles of periods are preserved.

After the Gaussian smoothing in the time domain, GRACE data time series show evi-

dent long–term signals that cannot be considered as the only co–seismic gravity anomaly,

as it can be seen in fig. 3.5 (thick solid line). We face this issue by choosing the following

interpolating function to describe both co– and post–seismic gravity anomalies

f(t) =







−a t < 0

b+ c 1−e−
t
τ

1−e−
tS
τ

t ≥ 0
(3.69)

wheret = 0 andtS = 5 years are the earthquake time and the end of the GRACE data

time series,a + b andc are the co–seismic gravity anomaly and the post–seismic con-

tribution up to the end of the time series, andτ is the characteristic relaxation time. Eq.

(3.69) tacitly assumes that the long–period hydrological and residual ocean circulation

signals are weak compared to post–seismic perturbations. However, in order to faithfully

base on the actual information contained in GRACE data, we do not introduceany prior

information about the mean and variance of the interpolating parameters, except for the

lower bound of4 months for the characteristic relaxation timeτ that we impose in view

of the time resolution of the GRACE data.

Because the Gaussian smoothing in time that we used for removing seasonal and

interannual hydrological and ocean circulation cycles from GRACE dataalso affects the

other signals contained in GRACE data, particularly the signal due to the co–seismic

gravity anomaly loss its typical step–like signature, we must apply the same filter to the
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interpolating functionf , eq. (3.69), in order that it has the same physical meaning of the

smoothed signals contained in GRACE data time series. This means that we actuallyfit

the smoothed version of eq. (3.69) to the smoothed GRACE data time series

f(t) =

∫ T

−T
f(t′)W (t, t′) dt (3.70)

Fig. 3.6 compares the estimated co–seismic gravity anomalies and the post–seismic

gravity anomaliestS = 5 years after the 2004 Sumatran earthquake at each node of the

grid of Gauss for harmonic degreeℓ = 128, which samples the Sumatran region about

every1.4◦. We find maximum,+6.1 ± 1.5µGal, and minimum,−12.7 ± 0.9µGal,

co–seismic gravity anomalies at points0.7N, 95.6E and6.3N, 97.0E, respectively. The

peak–to–peak co–seismic gravity anomaly is+18.8± 1.7µGal, and the asymmetry co-

efficient isAS = 2.1 ± 0.5. The post–seismic gravity anomalies are comparable in

magnitude with the co–seismic estimates and have maximum,+8.7 ± 0.7µGal, and

minimum,−7.1± 1.6µGal, values at points4.9N, 94.2E and9.1N, 99.8E, respectively.

We also find large co– and post–seismic gravity anomalies in the far field that are com-

parable in absolute value with those in the near field. Particularly, the large estimates

north–east of the Sumatran trench, over Cambodia, indicates that phenomena other than

the seismic one, likely associated with long–period hydrological and ocean circulation

cycles, affect GRACE data.

In order to better understand how the fitting to GRACE data behaves, we compare

in fig. 3.7 the smoothed GRACE data time series, eq. (3.67), with the interpolating

functions, eq. (3.70), at the points where the maximum (a) and minimum (c) estimates

of the co–seismic gravity anomalies are located. The respective original timesseries and

interpolating functions, eq. (3.69), are shown in the right panels (b, d).At the maximum

co–seismic gravity anomaly (top), the estimated characteristic relaxation time is short,

about20 months, whereas at the minimum co–seismic gravity anomaly (bottom), the

fitting yields large characteristic relaxation times, namelyτ → ∞. These two quite

different ways to fit to the data result from the fact that we have not imposed prior

information about the mean and variance of the interpolating parameters, thusallowing

the non–linear fitting to obtain the best estimate linearly if the post–seismic signatureis

hidden by other signals. Indeed at the minimum co–seismic gravity anomaly, in addition
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to some long–term signal (which could be the post–seismic signature), there are also

strong fluctuations of period of about4 years, likely associated with hydrological and

ocean circulation cycles (solid line, fig. 3.7c). Unless the latter signals are carefully

removed, looking in this data for post–seismic events with short characteristicrelaxation

times would not be a good choice. On the other hand, at the maximum co–seismic

gravity anomaly (fig. 3.7a), where long–period fluctuations are small compared to the

post–seismic signature, the fitting is able to remove the post–seismic signature. These

two representative cases show that we should not interpret the results of fig. 3.6b as only

post–seismic gravity anomalies because they absorb a number of other phenomena as

well.

In light of the characteristic of the data, we must focus our attention only on esti-

mates in the near field. For this reason, in the next section, the comparison withour

models will be done only with respect to the maximum,+6.1 ± 1.5µGal, and mini-

mum,−12.7±0.9µGal, estimates of the co–seismic gravity anomaly from observations,

with the warning that thea–posteriorione–sigma errors of1.5µGal and0.9µGal only

simplistically account for the uncertainties due to long–period hydrological and ocean

circulation cycles.

3.4.2 Comparison with co–seismic models

In order to make the comparison between estimates from observations with those from

models significant, it is important to apply the same spatial filter used to deal with

GRACE data to models because the spatial features of the seismic signature make the

gravity anomalies very sensitive to the type of filtering. The use of different filters would

yield unphysical differences, which would make the comparison less effective. For this

reason, we now compare DDK3–filtered CSR–GFZ solutions with equivalently filtered

co–seismic models.

Fig. 3.8a shows the co–seismic gravity anomalies modelled using Ocean–PREM

(that we introduced in section 3.3) and the seismic source model of Tsaiet al. (2005),

after the DDK3 filtering. We find maximum,+8.6µGal, and minimum,−10.0µGal,

gravity anomalies at points2.1N, 92.8E and6.3N, 97.0E, respectively. The modelled

pattern is quite different from that estimated from GRACE data analysis, fig.3.6a. In-

deed, although the peak–to–peak gravity anomaly obtained from the model,+18.6µGal,



3.4 GRACE data analysis 123

Co−seismic gravity anomaly

85˚ 90˚ 95˚ 100˚ 105˚
−10˚

−5˚

0˚

5˚

10˚

15˚

20˚

−12 −9 −6 −3 0 3 6 9 12
µGal

(a)

Post−seismic gravity anomaly

85˚ 90˚ 95˚ 100˚ 105˚
−10˚

−5˚

0˚

5˚

10˚

15˚

20˚

−12 −9 −6 −3 0 3 6 9 12
µGal

(b)

Figure 3.6: Co–seismic gravity anomalies (a) and post–seismic contribution 5 years after the earthquake (b)
obtained by the non–linear fitting, eqs (3.69)–(3.70), to the smoothed DDK3–filtered GRACE data time series,
eq. (3.67).

is in agreement, within one–sigma error, with the observed one,+18.8 ± 1.7µGal, the

asymmetry coefficientAS = 1.2 differs from the observed one,AS = 2.1 ± 0.5, by

about two–sigma error.

As pointed out in section 3.3, in view of the fact that the asymmetry coefficientAS

depends mainly on the ocean water redistribution and that the latter is strongly char-

acterized by variations of topography at the bottom of the ocean, we expect AS to be

sensitive to the material parameters of the layer of the Earth in which the seismic sources

are located, particularly to the elastic parameterβ, eq. (1.82). Indeed, from eq. (3.28),

the discontinuity of the radial displacement is inversely proportional to the elastic pa-

rameterβ at the seismic source depth. By considering thatβ reduces by about a factor

2 at the Moho discontinuity (Dziewonski and Anderson, 1981), from2.22 × 1011 Pa

at the top of the lithospheric mantle to1.34 × 1011 Pa at the bottom of the crust, we

then expect larger radial displacements for earthquakes occurring in the crust than those

in the lithospheric mantle. This should cause a larger removal of ocean waterfrom the
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Figure 3.7: Smoothed DDK3–filtered GRACE data time series (solid line), eq. (3.67), and non–linear interpo-
lating functions (dashed line), eqs (3.69)–(3.70), at points 0.7N, 95.6E and 6.3N, 97.0E, where the maximum
(a) and minimum (c) estimates of the co–seismic gravity anomaly are located. The respective original time
series (thin solid line, cross–shaped point) and non–linear interpolating functions (dashed line), eq. (3.69),
are shown in the right panels (b,d).

near field and, thus, a larger asymmetry coefficientAS for seismic sources within the

crust than those obtained by using the seismic source model of Tsaiet al. (2005), which

locates all five seismic sources at the depth of25 km, within the lithospheric mantle.

We investigate this matter in fig. 3.9, where we report the peak–to–peak co–seismic

gravity anomaly (thick solid line, a) and the asymmetry coefficientAS (thick solid line,

b) obtained for compressible O–PREM and modifying the seismic source modelof Tsai

et al. (2005), varying the source depthdS from 1 km to 40 km. Both the peak–to–

peak gravity anomaly and the asymmetry coefficientAS are quite sensitive to the source

depth, with values ranging from11.7µGal to27.8µGal and from1.1 to4.4, respectively.

In particular, they have step–like discontinuities at the Moho discontinuity,dS = 21.4

km, and at the lower–upper crust interface,dS = 12.0 km, caused by the step–like

variations of PREM material parameters. Three depth intervals,[6, 9] km, [14, 18] km
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Figure 3.8: DDK3–filtered co–seismic gravity anomalies for compressible O–PREM obtained using the original
(a) and modified (b) seismic source models of Tsai et al. (2005), with source depths below, 25 km, and above,
15 km, the Moho discontinuity, respectively. The dip angles for the modified seismic source model have been
increased by 50 per cent.

and[22, 28] km, within the upper and lower crusts and lithospheric mantle, respectively,

agree within one–sigma error (dark gray zone) with the estimate of+18.8 ± 1.7µGal

from observations. On the contrary, the asymmetry coefficientAS exhibits a monotonic

dependence on the source depth and only the depth interval[11, 21.4] km within the

lower crust, but for a small portion of the upper crust, agrees within one–sigma error

(dark gray zone) with the observed asymmetryAS = 2.1± 0.5.

The joint use of these findings, accepting the confidence of one–sigma error (dark

gray zones, fig. 3.9), allows us to conclude that the seismic moment of the 2004 Suma-

tran earthquake has been mainly released within the lower crust. Nevertheless, there is

a gap of4 km between the seismic source depths that match the best estimates of the

observed peak–to–peak gravity anomaly and asymmetry coefficientAS (dashed lines,

fig. 3.9),16 km and12 km, respectively. In order to reduce the misfit between observa-

tions and predictions from models, we tried dip angles different from thosegiven by Tsai

et al. (2005). Fig. 3.8b shows the results that are in best agreement with observations
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Figure 3.9: Peak–to–peak gravity anomalies (a) and asymmetry coefficient AS (b) for compressible O–PREM
(thick solid line) obtained using the seismic source model of Tsai et al. (2005) and varying the source depth
from 1 km to 40 km, after the DDK3 filtering. The dashed lines indicate the peak–to–peak gravity anomaly,
18± 1.7µGal, and asymmetry coefficient, AS = 2.1± 0.5, obtained by the non–linear fitting to the smoothed
DDK3–filtered GRACE data time series. The dark and light gray zones indicate values within one– and two–
sigma errors, respectively.

obtained for a source depth ofdS = 15 km and increasing the dip angles by50 per cent,

such that they become(9.6◦, 9.45◦, 8.7◦, 12.6◦, 12.15◦) compared to the original values

of (6.4◦, 6.3◦, 5.8◦, 8.4◦, 8.1◦). In this case, both the peak–to–peak gravity anomaly and

the asymmetry coefficientAS from modeling match the best estimates from observa-

tions,18.8µGal and2.1, respectively.

In view of the sharp dependence of the peak–to–peak gravity anomaly and of the

asymmetry coefficient on the material parameters of the layer at which the seismic

sources are located, we can argue that our results could be affected by lateral hetero-

geneities of the material parameters in the surrounding of the seismic source.For this

reason the so modified seismic source model is intended rather to be aneffectiveseismic

source model for PREM because the latter does not take into account the variations in

depth of the Moho discontinuity, which are large at the subduction trench, or the hetero-

geneities that are present where the oceanic crust descends into the lithospheric mantle.

This warning also holds for the CMT source analysis (Tsaiet al., 2005). Indeed, even

though this analysis takes into account the long wavelength three–dimensional Earth

structure (Ekströnet al., 2003), it does not accounts for heterogeneities at small spatial
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scales, such as those characterizing the subduction zone.

3.5 Volume changes and compressibility

We now exploit the extension of the classic theory for the study of co–seismicvolume

changes (section 3.1) in order to address the style of deformation, compressional versus

dilatational, due to the 2004 Sumatran earthquake and discuss the findings ofHanet al.

(2006) about the large dilatation of the crust. Rather than the seismic sourcemodel of

Tsai et al. (2005), we will implement the modified seismic source model obtained in

section 3.4.2 from the comparison with GRACE data.

Fig. 3.10 shows the DDK3–filtered gravity anomalies for O–PREM due to co–seismic

volume changes of the mantle (a) and of the crust (b). We obtain compression within the

mantle, evident by the positive pole with maximum gravity anomaly of19.1µGal. This

approximatively agrees with the results of Hanet al. (2006) (their fig. 3, bottom row),

even if their maximum gravity anomaly, about30µGal, is larger than ours. In addition

to the different spatial filter applied to the model, this difference in magnitude is due to

the fact that Hanet al. (2006) use a simple half–space model (Okubo, 1992), wherein

the elastic parameters are those of the crust. This means that they do not account for the

realistic stratification of PREM, where the larger bulk modulus of the mantle limits vol-

ume changes. As it concerns gravity anomalies due to volume changes of thecrust, we

obtain a bipolar patter characterized by maximum,6.6µGal, and minimum,−7.0µGal,

gravity anomalies in the foot– and hanging–wall sides of the fault plane, respectively.

This shows that there is both compression and dilatation within the crust and invalidates

the interpretation of Hanet al. (2006) that thrust earthquakes, like the Sumatran event,

cause an overall crustal dilatation. This difference between our resultand that of Hanet

al. (2006) is due to the fact that we have not included in this estimate the contribution

due to the volume changes localized at the fault discontinuity, eq. (3.30). Weshow the

latter contribution in fig. 3.10c. In agreement with the physics of dip–slip faultsdis-

cussed in section 3.1.1, the thrust earthquake causes a large dilatation localized at the

fault discontinuity that is responsible for an overall negative gravity anomaly, with a

minimum of−40.7µGal.

These findings highlight the importance of discriminating the effects of the co–

seismic volume changes in the layers of the Earth from the volume change localized
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Figure 3.10: DDK3–filtered co–seismic gravity anomalies for compressible O–PREM due to volume changes
of the mantle (a), of the crust (b) and localized at the fault discontinuity (c), obtained using the seismic source
model of Tsai et al. (2005) modified as discussed in section 3.4.2. Panel d is the sum of the previous panels,
i.e., the co–seismic gravity anomalies due to the total volume changes within solid Earth.
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at the fault discontinuity. Otherwise, because the latter dominates over the former, we

should have concluded that thrust earthquakes cause an overall dilatation of the crust,

and this is not physically sound because it does not reflect the pattern ofcompression

and extension induced by the seismic forcing. This does not mean that the co–seismic

gravity anomalies due to volume changes modelled by Hanet al. (2006) are incorrect.

Indeed, once considered the total gravity anomaly due to all sources of volume changes

(within the mantle and the crust, and localized at the fault discontinuity) shown infig.

3.10d, we obtain results similar to those obtained by Hanet al. (2006), characterized

by a minimum,−21.5µGal, in the near field of the Sumatran earthquake and two less

pronounced maxima southwards,5.3µGal, and northwards,2.9µGal.

To gain further insight into this issue, we show in fig. 3.11a the co–seismic gravity

anomalies obtained using the compressible Solid–PREM that are due only to massrear-

rangement within the solid Earth, without including the gravitational effect ofthe ocean

water redistribution. The peak–to–peak gravity anomaly is22.8µGal and the pattern

is bipolar and asymmetric towards the positive pole, with asymmetry coefficientAS of

0.8. In this respect, the gravity anomaly due to the advection of the initial density field,

including the topography perturbations of internal boundaries with densitycontrast and

the solid Earth surface, widely compensates the overall negative anomaly due to volume

changes shown in fig. 3.10d. Particularly, the gravitational effect due tothe large dilata-

tion localized at the fault discontinuity, eq. (3.30), is compensated by an opposite effect

due to the positive perturbations of the solid Earth surface topography. Indeed, it should

be remained that the dilatation localized at the fault discontinuity, eq. (3.29), isthe result

of the step–like discontinuity of the radial displacement, eq. (3.28), which determines

the uplift of the portion of the solid Earth above the seismic source.

The above reasoning further invalidates the interpretation of Hanet al. (2006) that

the asymmetry of the co–seismic gravity anomaly towards the negative pole observed in

GRACE data is due to a large crustal dilatation, even if we correctly mean for the latter

the dilatation localized at the fault discontinuity. Differently, as already discussed in sec-

tions 3.3 and 3.4.2, only when the gravitational effect of the ocean water redistribution is

included in the modelling, we can explain observations. The reason that the co–seismic

model of Hanet al. (2006) yields a spatial asymmetry similar to that observed is due to

the fact that these authors include in an effective, but non–self–consistent, way the con-

tribution from the sea level variation. Particularly, when they compute the co–seismic
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Figure 3.11: DDK3–filtered co–seismic gravity anomalies for compressible (a) and incompressible (b) S–
PREM, obtained using the seismic source model of Tsai et al. (2005) modified as discussed in section 3.4.2.

gravity anomalies due to the perturbation of the Earth’s surface topography, they con-

sider the difference between the density of the crust and of the ocean asdensity contrast.

Thus, they take into account the main gravitational effects of ocean water redistribution,

which is affected mainly by radial displacements rather than geoid anomalies, as pointed

out in section 3.3.

3.5.1 Compressibility versus Incompressibility

Comparing figs 3.10a and 3.10b with fig. 3.8b, it appears that contributions toco–seismic

gravity anomalies due to volume changes of the mantle and of the crust are comparable

with the full co–seismic gravity anomaly. This indicates that compressibility is an im-

portant feature of co–seismic perturbations. Then, we now compare compressible and

incompressible Earth models in order to analyse in detail the role of compressibility in

co–seismic studies.

In fig. 3.11 we compare DDK3–filtered co–seismic gravity anomalies for compress-

ible (a) and incompressible (b) S–PREM by using the modified seismic source model
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Figure 3.12: DDK3–filtered co–seismic gravity anomalies for incompressible O–PREM, obtained using the
seismic source model of Tsai et al. (2005) modified as discussed in section 3.4.2.

obtained in section 3.4.2. The peak–to–peak gravity anomalies are22.8 and23.4µGal,

and the asymmetry coefficientsAS are0.8 and0.6, for compressible (a) and incom-

pressible (b) S–PREM, respectively. The two bipolar patterns are asymmetric towards

the positive pole, particularly in the incompressible case. To be compared withfig. 3.8b,

we show in fig. 3.12 the co–seismic gravity anomalies for incompressible O–PREM.

The peak–to–peak gravity anomaly for incompressible O–PREM,14.8µGal, is smaller

than that for compressible O–PREM,18.7µGal, by about 20 per cent. Furthermore, in

contrast to the compressible case, the modeled pattern is not asymmetric towards the

negative pole, with an asymmetry coefficient of less than one,AS = 0.6. This means

that compressible and incompressible materials mainly differ for the way in whichthey

model ocean water redistribution.

Let us further analysis this issue in fig. 3.13 where we compare the co–seismic

gravity anomalies due only ocean water redistribution for the compressible (a) and in-

compressible (b) cases. Indeed, for the compressible Ocean–PREM, the ocean water

redistribution is responsible for a large negative gravity anomaly in the nearfield, with
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Figure 3.13: DDK3–filtered co–seismic gravity anomalies due to ocean water redistribution obtained subtract-
ing compressible (a) and incompressible (b) O–PREM and S–PREM co–seismic gravity anomalies and using
the seismic source model of Tsai et al. (2005) modified as discussed in section 3.4.2.

a minimum of−10.7µGal. Instead, for the incompressible Ocean–PREM, the ocean

water redistribution causes co–seismic gravity anomalies characterized by abipolar pat-

tern, with maximum and minimum of3.3 and−5.3µGal, respectively. Note that the

latter pattern is opposite to that of the co–seismic gravity anomalies of incompressible

S–PREM (fig. 3.11b). This means that, in the incompressible case, the oceanwater

redistribution reduces the magnitude of maximum and minimum co–seismic gravity

anomalies. In this respect, it does affect the peak–to–peak gravity anomaly but cannot

explain the spatial asymmetry observed in GRACE data.

This difference between compressible and incompressible Earth models is mainly

due to the fact that within incompressible materials, seismic forcing does not cause any

discontinuity of the radial displacement at the seismic source depth, eq. (3.28), as it does

within compressible materials. Indeed, in the limit of the bulk modulusκ going to infin-

ity, also the elastic parameterβ goes to infinity and the RHS of eq. (3.28) is zero. This

is consistent with the assumption of incompressibility because otherwise, therewould
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Figure 3.14: Co–seismic radial displacements at the bottom of the ocean for compressible (a) and incom-
pressible (b) O–PREM, after the DDK3–filtering, obtained using the seismic source model of Tsai et al. (2005)
modified as discussed in section 3.4.2.

be the volume change localized at the fault discontinuity, eq. (3.29). This shortcoming

of incompressible models yields a very different pattern of topography perturbations.

This is shown in fig. 3.14 where we compare long wavelength (DDK3–filtered) radial

displacements at the bottom of the ocean for compressible (a) and incompressible (b)

Ocean–PREM. The incompressible model is characterized by a maximum downdrop,

−85mm, northeastward with respect to the subduction trench, which is absent in the

compressible case, and by a maximum uplift,143mm, southwestward that is two times

smaller than that for the compressible model,291mm. Thus, in the compressible case,

a large amount of water is displaced away to the far field and causes the gravity reduc-

tion in the near field shown in fig. 3.13a. In the incompressible case, instead,the ocean

water displaced away from the uplifted foot–wall side accumulates in the downdrop of

the hanging–wall side and causes the bipolar pattern shown in fig. 3.13b. These findings

clearly point out that the assumption of incompressibility is inappropriate for modeling

co–seismic perturbations for reverse and normal faults. This is not due tothe fact that

incompressible models do not consider volume changes localized at the faultdisconti-
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nuity, eq. (3.29), because the long–wavelength gravitational effect ofthe latter actually

does not appear in compressible models as discussed before. Instead,this is due to the

different ocean water redistribution caused by the reduction of the upliftof the crust,

reflecting the fact that the step–like discontinuity of radial displacement at the seismic

source, eq. (3.28), must be zero for incompressible models.

3.6 Conclusion

Gravity space missions provide an important opportunity to gain deep insights into the

physics of large earthquake co–seismic deformation, due to huge mass redistribution

and related gravitational perturbations. We have demonstrated here that adequate Earth

and dislocation models are required to properly interpret GRACE data time series for

comparison with a new compressible self–gravitating Earth model, applied to the 2004

Sumatran co–seismic gravity anomalies for the first time. A self–consistent treatment of

the Poisson equation has allowed us to extract the correct pattern of crustal compression

and dilatation in the foot (south–west) and hanging (north–east) walls of thefault plane

for a thrust earthquake like the 2004 Sumatran event. Furthermore, we have showed

that the previously modeled dilatation pattern of Hanet al. (2006) is mainly due to

a large dilatation localized at the fault discontinuity, the gravitational effect of which

is compensated by an opposite contribution from topography due to the uplifted crust.

The asymmetry between negative and positive gravity anomalies cannot be caused by

crustal dilatation (Hanet al., 2006), but rather, it is caused by the gravitational effects

of the ocean after water removal from the uplifted crust, which is responsible for the

gravity reduction due to the thinned water layer. This is in agreement with the findings

of de Linageet al. (2009). Furthermore, we have implemented the new mathematics

and the physics which are necessary to explain the results of the latter work. Indeed,

compressible materials provide a more accurate physical representation offaulting than

incompressible materials mainly because the latter do not account for the discontinuity of

radial displacements at the fault. This yields a reduction of the crustal upliftthat alters the

redistribution of ocean water after the earthquake. Thus, incompressiblemodels should

not be applied for co–seismic calculations, as they have been in the past (Sabadiniet al.,

2005; Meliniet al., 2010).

After the Gaussian smoothing in the time domain in order to remove short period
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hydrological and residual ocean circulation signals, we fitted the DDK3–filtered (Kusche

et al., 2009) GRACE data time series (CSR–GFZ solutions) to the co–seismic gravity

anomaly and the post–seismic contribution without introducing anya–priori information

about the mean and variance of the interpolating parameters. We found a peak–to–

peak co–seismic gravity anomaly of+18.8± 1.7µGal and an asymmetry coefficient of

AS = 2.1 ± 0.5. Then, modeled gravity anomalies were checked against GRACE data

by applying the same spatial filter, the DDK3 filter designed by Kuscheet al. (2009).

We have shown that the seismic source model of Tsaiet al. (2005) does not adequately

explain the observed asymmetry in the data. By discussing the sensitivity of themodeled

co–seismic gravity anomalies to the source depth and dip angles, we found that the

agreement between data and models is obtained locating the seismic sources above the

Moho discontinuity, particularly at the source depth of15 km and for dip angles of about

10◦.

These findings show that we can obtain a few, but important, constraints from GRACE

data that complement the CMT source analyses (Dziewonskiet al., 1981; Ekströnet al.,

2003; Tsaiet al., 2005) of the 2004 Sumatran earthquake.
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Compressible, self–gravitating Earth models (Sun and Okubo, 1993; Cambiotti et

al., 2011a) have been used in the past to simulate the long–wavelength gravity anoma-

lies due to mass rearrangement and ocean water redistribution caused by megathrust

submarine earthquakes, as discussed in Chapter 3. On the basis of this modelling, we

present a novel procedure to estimate the principal seismic source parameters (hypocen-

tre and moment tensor) of giant earthquakes from inversion of GRACE gravity data,

applied herein to the 2011 Tohoku event. Our procedure could become animportant

tool in seismic studies as it complements the well established Centroid Moment Tensor

(CMT) analysis from inversion of teleseismic wave observations (Gilbert and Dziewon-

ski, 1975; Dziewonskiet al., 1981). In this respect, we name this novel procedure the

Gravitational Centroid Moment Tensor (GCMT) analysis.

This novel procedure is accompanied by new efforts in the treatment of theGRACE

data that is aimed at optimizing the estimate of the co–seismic gravity anomaly of the

2011 Tohoku earthquake. Differently from previous GRACE data analyses, we make

use of the Slepian functions (Simonset al., 2006) in order to spatially localize the time

series of Stokes coefficients in the surrounding of the earthquake.

4.1 GRACE data analysis using Slepian function

To estimate the co–seismic gravity signature due to the March 2011 Tohoku earthquake,

we consider GRACE Level 2 data provided by GeoForschungsZentrum(GFZ, Potsdam)

from January 2009 to September 2011, with September 2010 and Januaryand June

2011 missing and rejecting March 2011, that total 24 and 5 data before andafter the

earthquake. We reduce the peculiar noise of GRACE data, the so–called stripes, by

making use of the anisotropic DDK3–filter (Kusche, 2007; Kuscheet al., 2009) that

is roughly equivalent to an isotropic Gaussian filter of about240–330 km half–width.

Because the GRACE data consist of Stokes coefficients describing the time dependent

gravity field over the whole Earth surface, we also need to spatially localize GRACE

data in the surrounding region of the earthquake. We do this by using Slepian functions

(Simonset al., 2006), bandlimited to harmonic degree60 and optimally concentrated

within the circular cup of half–width8◦ and centred at the USGS mainshock,38.22N,

134.22E. Larger half–widths of the circular cup would yield the leakage of signalsfrom

nearby regions likely associated to geophysical phenomena other than the earthquake,
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making harder the discrimination of the seismic signature in GRACE data.

Given an arbitrary regionA of the unit sphere, the Slepian functions are an orthog-

onal set of strictly bandlimited functions that are defined in such a way that asubset of

them is optimally concentrated within the region (Simonset al., 2006). The expansion

in Slepian functions of the bandlimited gravity anomalyδg reads

δg(θ, φ) =

(L+1)2
∑

α=1

Sα(θ, φ) δgα (4.1)

with L being the bandlimit. HereSα and δgα are real–valued Slepian functions and

coefficients, andθ andφ are the colatitude and longitude. The numberN of Slepian

functions that are optimally concentrated within the regionA is about the spherical ana-

logue of the Shannon numberNS in Slepian’s one–dimensional concentration problem

N ≈ NS =

(L+1)2
∑

α=1

λα = (L+ 1)2
A

4π
(4.2)

whereA is the solid angle of the region andλα ∈ (0, 1) are the eigenvalues quantifying

the spatial concentration: Slepian functions that are well (λα > 1/2) or poorly (λα ≤
1/2) concentrated within the region will have eigenvalues near unity or zero, respectively

(Simonset al., 2006). The gravity anomaly within the region can thus be approximated

by keeping in the right–hand side of eq. (4.1) only those terms associated to the optimally

concentrated Slepian functions

δg(θ, φ) ≈
N
∑

α=1

Sα(θ, φ) δgα (4.3)

where we ordered the Slepian functions for decreasing eigenvalues (i.e., λα > λα′ for

α < α′) in such a way that the firstN Slepian functions are those optimally concentrated.

In view of eqs (4.2)–(4.3), the bandlimitL and the regionA determine the number

of components that we use in order to describe the gravity anomaly, i.e, the Slepian

coefficientsδgα for α = 1, . . . , N . In this respect, the choice of the bandlimit and

the region for this spectral domain approach is roughly equivalent to the choice of the
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Figure 4.1: The N = 17 Slepian functions bandlimited to harmonic degree 60, and optimally concentrated within the circular cup (dashed circle) of
half–width 8◦ and centred at the USGS mainshock, 38.22N, 134.22E.
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sampling of the gravity anomaly in the spatial domain.

When the regionA is a circular cup (like we have assumed for dealing with GRACE

data), the Slepian functionsSα take the following form

Sα(m,k)(θ, φ) =

{

hmk(θ) cos(mφ) m ≤ 0

hmk(θ) sin(mφ) m > 0
(4.4)

wherem = −L, . . . , L andk = 1, . . . , L−|m|+1, andhmk are linear combinations of

Legendre polynomialsPℓm of the same orderm and degreesℓ = m, . . . , L. Here,θ and

φ must be intended as the colatitude and longitude in the spherical frame with polaraxis

crossing the center of the cup (Simonset al., 2006), and the indexα, as function of the

indexesm andk, orders the couple(m, k) accordingly to the order of Slepian functions

for decreasing eigenvalues.

For the bandlimit to the harmonic degreeL = 60 and the circular cup of half–

width 8◦ that we have chosen in order to spatially localize the GRACE gravity data in

the surrounding of the 2011 Tohoku earthquake, there areN = 17 Slepian functions

which are optimally concentrated (we takes only those Slepian functions whichhave

eigenvalues grater than an half,λα > 1/2). The pattern of these Slepian functions is

shown in fig. 4.1.

In order to estimate the co–seismic gravity signature of the earthquake, we transform

the time series of Stokes coefficients of GRACE Level 2 data into time series of Slepian

coefficients, of which we only consider the firstN time series. Then, we estimate the

co–seismic gravity anomaly in terms ofN = 17 Slepian coefficients that we obtain by

fitting to each time series the step like discontinuity at the earthquake time, together with

the reference constant value and a linear trend that accounts for eventual geophysical

processes of longer time scales. The interpolating functionfα for theα–th time series

thus reads

fα(t) = δgαH(t− t0) + aα + bα(t− t0) (4.5)

wheret, t0 andH are the time, the earthquake time and the Heaviside function, and

aα andbα are the reference constant value and the linear trend, andδgα is the Slepian
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Figure 4.2: The N = 17 Time series of Slepian coefficients (solid line and dots) and the interpolating functions
(dashed line) defined in eq. (4.5).
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Figure 4.3: Slepian coefficients gα(m,k) of the co-seismic gravity anomaly estimated from GRACE data anal-
ysis (horizontal segments, error bars show one-sigma errors inferred a posteriori from GRACE data analysis)
and modelled using the LC and LM gravitational seismic solutions (open circles and dots) from GCMT analysis
discussed in section 4.5.

coefficient of the estimated co–seismic gravity anomaly, which enters eq. (4.3). We do

not specifically look for the post–seismic signature due to the few data after the earth-

quake (only 5 months). Furthermore, differently from the case of the 2004 Sumatran

earthquake where clear semi–annual and annual hydrological cycles, the residual ocean

circulation cycles and the alias fromS2 tidal wave model errors can be removed fit-

ting sine and cosine functions to the time series (de Linageet al., 2009), this does not

substantially improve the fitting for the 2011 Tohoku earthquake.

Fig. 4.2 shows the time series of Slepian coefficients and the estimated interpolating

functions. The Slepian coefficientsδgα of the estimated co–seismic gravity anomaly
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and theira posteriorione–sigma errors are shown in fig. 4.3 and compared with the

Slepian coefficients modelled using the seismic solutions that we obtain from GRACE

data inversion as described in the next sections of this chapter.

Fig. 4.4 shows the co–seismic gravity changeδgco estimated from GRACE data,

after DDK3 filtering and spatial localization in the surrounding of the earthquake, eq.

(4.3). The patterns is bipolar: the negative pole in the hanging–wall side, with minimum

gravity anomaly of8.6 ± 1.6µGal at point39.0N, 137.3E, and the positive pole in the

foot–wall side that is characterized by two maxima of+3.6± 1.5 and+3.4± 1.1µGal

at points38.3N, 147.9E and33.3N, 141.0E.

4.2 Seismic source models

Seismic models belong to two families: point–like sources, which are used in CMT

analysis, and finite fault models, which account for realistic co–seismic slip distribu-

tions over the fault plane. The latter, however, require prior information on the fault

plane (usually inferred from geological information and early inversion of teleseismic

waves). In order to use as much as possible only space gravity data, we decide to closely

follow the simplifying assumptions of the CMT analysis (Gilbert and Dziewonski,1975;

Dziewonskiet al., 1981) and we describe the earthquake as a simple point–like sources.

Then, we determine from inversion of GRACE data only the principal seismic source

parameters, the hypocentrer and the moment tensorm, from which we can infer the

source mechanism, including the fault plane geometry. This means that we neglect the

finite extension of the rupture. While the along–strike extension is not important for

the modelling of long–wavelength gravity anomalies, the neglection of the along–dip

extension introduces a bias due to the sensitivity of the surface gravity pattern on the

seismic source depth, mainly due to the stratification of elastic parameters of the Earth

model (Cambiottiet al., 2011a). A similar bias also affects the CMT solution and, in this

respect, seismic source depths estimated both from CMT and GCMT analysis should be

intended as effective depths.

We model co–seismic gravity changes due to point–like seismic sources by means of

a previously developed first–order theory (Sun and Okubo, 1993) implemented in a self–

gravitating, compressible 1–D Earth model based on PREM (Dziewonski and Ander-

son:1981), where the crust and the lithospheric mantle are substituted with CRUST2.0
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Figure 4.4: Co–seismic gravity anomaly estimated from GRACE gravity data, after DDK3 filtering and spatial
localization within a circular cup (dashed circle) of half–width 8◦ and centred at the USGS epicenter.

Thickness S–wave velocity P–wave velocity Density
Layer (km) (m/s) (m/s) (kg/m3)

Sediments 0.72 1144.7 2346.0 2130.3
Upper crust 4.94 3237.3 5808.8 2692.7
Middle Crust 5.19 3679.6 6587.2 2896.8
Lower crust 5.28 3856.4 7143.8 3063.9
Upper mantle 203.86 5655.3 8146.9 3358.3

Table 4.1: Material parameters of five outer layers of the Earth based on CRUST2.0 (Bassin et al., 2000). The
soft and hard sediment layers have been joined in a single layer and the material parameters of the mantle
have been used for the whole upper mantle, above the 220 km discontinuity.
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(Bassinet al., 2000) as indicated in Table 4.2. We also account for the gravitational

effect of ocean water redistribution including a global ocean layer (Cambiotti et al.,

2011a). Within this framework, the relation between co–seismic gravity change y and

the moment tensorm is linear

y = G(r)m (4.6)

wherey consists of theN = 17 Slepian coefficients of the co–seismic gravity anomaly

y = (δg1, · · · , δgN ) ∈ Y (4.7)

andG is the data kernel which non–linearly depends on the hypocentrer. Particularly,

the data kernel also depends on the elastic parameters at the depth of the hypocentre

and, thus, is discontinuous across the internal interfaces of the Earth model where these

parameters have step–like discontinuities (Cambiottiet al., 2011a).

Preliminary tests have yielded seismic solutions characterized by large centers of

compression. Rather than to be an indication of the peculiar source mechanism, this

indicates that space gravity data that cannot discriminate between the centerof com-

pression and the double–couple system of forces equivalent to the tangential dislocation

at the fault plane (Ben–Menahem and Singh, 1981). To improve the reliability of our

inversion, we removea priori the center of compression from the moment tensor by

supplementing the six components of the tensor by a linear constrain, requiring that its

trace is zero. Within this scheme, the moment tensor can be decomposed in terms of the

balance double–couple and residual dipoles. Removinga priori also the residual dipoles

would require a non–linear constrain on the moment tensor that increases the complexity

of the inverse problem. However, the estimated residual dipoles are weak compared to

the balanced double–couple for the 2011 Tohoku earthquake.

4.3 Non–linear inverse problem

Let us consider the model and data spaces,X andY, and denote models and data with

x andy, respectively. We also assume that both spaces are linear and finite dimensional
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and that it is possible the choice of the parametrization (the system of coordinates for the

spaces) such that the metrics are constants. The square of the differential lengthds and

the volume densityv of theX × Y space yield

ds2 = dxTgXdx+ dyTgY dy (4.8)

v(x,y) = vX(x) vY (y) (4.9)

wheregX andgX are the constant metrics of the model and data spaces, andvX andvY
are the volume densities

vX =
√

detgX (4.10)

vY =
√

detgY (4.11)

Note that also the volume densities are constants. This mens that the probability density

(which depends on the specific system of coordinates) and the probabilitydistribution

only differ for a constant factor.

Following Mosengard and Tarantola (2002), we consider the probability densities

fX andfY that describe prior information on model and data spaces, and we define the

joint probability densityf in theX × Y space

f(x,y) = fX(x) fY (y) (4.12)

Given the explicit relation between models and data

y = f(x) (4.13)

the natural way of obtaining posteriori information on the models consists in deriving,

from the joint probability densityf , the conditional probability on the hypersurface in
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theX × Y space defined by eq. (4.13). This yields the posteriori probability densityp

on the model spaceX

p(x) = k f
√
detA

∣

∣

∣

y=f(x)
(4.14)

that constitutes the solution of the non–linear inverse problem. Herek is the normaliza-

tion constant and the matrixA is given by

A = gX + FgY FT (4.15)

whereF is the matrix of partial derivatives

F =
∂f

∂x
(4.16)

The factor
√
detA in the RHS of eq. (4.14) is because we are not assuming theoretical

uncertainties in the modelling (Mosengaard and Tarantola, 2002).

Because the metricsgX andgY are constant, the posteriori probability distribution

P on the model spaceX takes the same form of eq. (4.14)

P (x) = k f
√
detA

∣

∣

∣

y=f(x)
(4.17)

although the normalization constantk differs from that used in eq. (4.14) since it adsorbs

the constant term1/vX . From now onk may indicate different normalization constants.

Let us specify the posteriori probability distribution for the general non–linear in-

verse problem, eq. (4.17), to the case of the principal seismic source parameters (hypocen-

ter and moment tensor) from GRACE data inversion. The datay are theN = 17 Slepian

coefficientsδgα of the co–seismic gravity anomaly that we have discussed in sections

4.1 and 4.2, eq. (4.7). We thus keep the data spaceY as theN–dimensional linear

space composed by theN Slepian coefficientsδgα associated to Slepian functions that

are optimally concentrated within the surrounding of the earthquake. The modelsx are

instead constituted by the hypocentrer and the moment tensorm of the point–like seis-
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mic source. The model spaceX is thus given by the Cartesian product between the 3–D

space restricted to the Earth bodyV ⊂ R
3 for the hypocentre and the5–D spaceM for

the moment tensor

x = (r,m) ∈ X = V ×M (4.18)

Note that the moment tensor space has only5 dimensions, rather than6, because wea

priori remove the centre of compression as discussed in section 4.2. We parametrize the

model space using Cartesian components both for the hypocentre (in the geographycal

reference frame) and for the moment tensor (in the epicentral reference system, Ben–

Menahmen and Singh, 1981).

We begin assuming the Gaussian probability densityf to describe prior information

on models and data

f(r,m,y) = k exp (−SR − SM − SY ) (4.19)

where

2SR = (r− rpr)
TC−1

R (r− rpr) (4.20)

2SM = (m−mpr)
TC−1

M (m−mpr) (4.21)

2SY = (y − yob)
TC−1

Y (y − yob) (4.22)

Here,rpr, mpr andyob are prior information on the hypocentre, the moment tensor and

the observed datum, with uncertainties described by the covariance matrices, CR, CM

andCY . As suggested by Mosengard and Tarantola (2002), we use these covariances to

define the constant metricsgR, gM andgY over the model,X = V ×M, and data,Y,

spaces

gR = C−1
R (4.23)
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gM = C−1
M (4.24)

gY = C−1
Y (4.25)

This gives the following definition of differential length

ds2 = drTC−1
R dr+ dmTC−1

M dm+ dyTC−1
Y dy (4.26)

Within this framework and by making use of the relation between models and data,

eq. (4.6), into eq. (4.17)), we thus specify the posteriori probability distribution P on

the model spaceX = V ×M

P (r,m) = k exp (−SR − SM − SY )
√
detA

∣

∣

∣

y=G(r)m
(4.27)

where the matrixA takes the form of the following block matrix

A =

(

C−1
R + FR C−1

Y FT
R FR C−1

Y G

GTC−1
Y FT

R GTC−1
Y G

)

(4.28)

andFR is the matrix of the partial derivatives with respect to the hypocentrer

FR = ∇ (Gx)T (4.29)

with ∇ being the gradient operator in the 3–D space.

4.4 Gravitational Centroid Moment Tensor solution

Eq. (4.27) constitutes the solution of the inverse problem. Due to the quite largenumber

of variables,8, it is difficult giving a full description of this solution. However, as we

are going to show, it can be further simplified after some straightforward algebra taking

advantage of the linear relation between tensor momentm and datay, eq. (4.6).
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We formally define the mean moment tensorm̃ and covariance matrix̃CM that one

would obtain using the least–square method (Tarantola, 2005) when the datakernelG

is constant

m̃ = mpr + δm̃ (4.30)

C̃M =
(

C−1
M +GTC−1

Y G
)−1

(4.31)

with

δm̃ = C̃M GT C−1
Y δyobs (4.32)

δyobs = yobs −Gmpr (4.33)

Because the data kernelG actually depends on the hypocentre, the above expressions

are not the solution of the non–linear inverse problem but they shed light on it. We will

also use the data resolution matrix̃NM defined by

G δm = ÑM δyobs (4.34)

that takes the following form

ÑM = GC̃MGT C−1
Y (4.35)

By definition, the formal mean moment tensorm̃ minimizes the misfitSM + SY ,

eqs (4.21)–(4.22). Also, after some straightforward algebra,SM + SY can be arranged

as follows

SM + SY = S̃M + S̃Y (4.36)

where
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2 S̃M = (m− m̃)T C̃−1
M (m− m̃) (4.37)

2 S̃Y = δdobsC
−1
Y

(

1− ÑM

)

δdobs (4.38)

and1 is the identity matrix. Particularly,̃SY is the minimum ofSM + SY at fixed

hypocentre. Furthermore, we decompose the matrixA into the product of block matrices

A =

(

1 FRC
−1
Y GR

0 C̃−1
M

)(

C−1
R +Q 0

C̃MGTC−1
Y FT

R 1

)

(4.39)

where

Q = FRC
−1
Y

(

1− ÑM

)

FT
R (4.40)

The determinant of the matrixA, eq. (4.28), thus yields

detA =
det
(

C−1
R +Q

)

det C̃M

(4.41)

Note that, in view of eqs (4.29) and (4.35), the componentsQij of the matrixQ can be

expressed as

Qij = mTWijm (4.42)

whereWij are bilinear form on the moment tensor space that depend on the hypocentre

via the data kernelG and its gradient∇G

Wij =
∂GT

∂ri
C−1

Y

(

1− ÑM

) ∂G

∂rj
(4.43)

with ri being the Cartesian components of the hypocentrer = (r1, r2, r3). In this re-

spect,detA is a six–order polynomial in the components of the moment tensorm.
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By substituting eqs (4.36) and (4.41) into eq. (4.27), we thus arrange the probability

distributionP as follows

P (r,m) = K(r,m)H(r) (4.44)

whereK is the conditional probability distribution for the moment tensor at fixed hypocen-

tre andH is the marginal probability for the hypocentre

K(r,m) = G(r,m)
∆(r,m)

∆̃(r)
(4.45)

H(r) = k exp
(

−SR(r)− S̃Y (r)
)

Q(r) (4.46)

Here,G is the Gaussian distribution of the formal solution obtained using the least–

square method

G(r,m) =
exp

(

−S̃M (r,m)
)

√

(2π)5 det C̃M (r)
(4.47)

and

∆(r,m) =
√

det
(

C−1
R +Q(r,m)

)

(4.48)

∆̃(r) =

∫

M
G(r,m)∆(r,m) dm (4.49)

The calculations of the posteriori probability distributionP , eq. (4.44), does not require

numerical efforts because it is based on the analytical expressions forthe least square so-

lution, except for the5–dimensional integration over the moment tensor space involved

by the term∆̃, eq. (4.49). However, by considering the Gaussian distributionG enter-

ing eq. (4.49), we can preliminary estimate the region of the moment tensor space with

significant probabilities and optimize the numerical evaluation of this integration.
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4.4.1 Model estimators

Owing to the rearrangement of the probability distributionP given by eq. (4.44), we

can obtain model estimators as the mean model and its covariance as follows. First,

we obtain the mean moment tensorm∗ and covariance matrixC∗
M , over the moment

tensor spaceM and at fixed hypocentrer, by means of the only conditional probability

distributionK for the moment tensor

m∗(r) =

∫

M
K(r,m)m dm (4.50)

C∗
M (r) =

∫

M
K(r,m) (m− m̂)T (m− m̂) dm (4.51)

Then, the mean moment tensor< m > and covariance matrix< CM > over a subset

S ⊆ V of the Earth body yield

<m >=

∫

S
H(r)m∗(r) dr (4.52)

< CM >=

∫

S
H(r)C∗

M (r) dr+

∫

S
H(r) (m∗− <m >) (m∗− <m >) dr (4.53)

Differently, owing to the linear relation between moment tensorm and datay, the mean

hypocentre< r > and covariance matrix< CR > over a subsetS ⊆ V of the Earth

body do not involve integration over the moment tensor spaceM

< r >=

∫

S
H(r) r dr (4.54)

< CR >=

∫

S
H(r) (r− < r >) (r− < r >) dr (4.55)
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4.4.2 Best models

By making use of the step descend algorithm (Tarantola, 2005), we can easily estimate

the maximum likelihood moment tensormbest at fixed hypocentrer, i.e., the moment

tensor for which the conditional probabilityK is maximum at the fixed hypocentre.

Rather than maximize the conditional probabilityK, we minimize the negative of the

logarithmic volumetric probabilitylnKV

− lnKV (r,m) = S̃M (r,m) +
1

2
ln
[

(2π)5 det C̃M (r)
]

+

ln ∆̃(r)− ln∆(r,m) (4.56)

Particularly, choosing the formal covarianceC̃M obtained using the least–square method

as metric for the moment tensor space, the step ascent vectorγ is given by

γ = −C̃M
∂ lnKV

∂m
= m− m̃− C̃M

∂∆

∂m
(4.57)

where the partial derivative of∆with respect to the moment tensorm takes the following

form
∂∆

∂m
=

3
∑

i,j,k=1

ǫijk
[(

W1i +WT
i1

)

B2j B3k+

B1i

(

W2j +WT
j2

)

B3k +B1iB2j

(

W3k +WT
k3

)]

m (4.58)

whereǫijk andBij are the Levi–Civita symbol and the components of the matrixCR +

Q.

Then, we obtain the maximum likelihood seismic model by maximizing the posteri-

ori probability distributionP evaluated at the best moment tensormbest for the hypocen-

tre. We do this by sampling the Earth bodyV every0.2◦ degree over the Earth surface

and0.5 km along depth. In this way we also find the maximum likelihood hypocentre

rbest

P (rbest,mbest(rbest)) = max
r∈S

H(r)K(r,mbest(r)) (4.59)
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4.5 Gravitational Centroid Moment Tensor analysis

For this first application of the GCMT analysis to the 2011 Tohoku earthquake, we do not

assume prior information on models in order to investigate the resolving power of space

gravity data from GRACE. We only assume prior information on the epicenter tobe

consistent with the spatial localization of the gravity anomaly used to estimate the co–

seismic gravity anomaly from GRACE data analysis. Particularly, the prior epicenter

is the center of the circular cup, i.e., the epicenter of the USGS mainshock,38.22N,

134.22E, and the prior uncertainties correspond to the half–width of8◦, i.e., about800

km. Because prior information on model space determines the metricsgR andgM of

the model spaces, eqs (4.23)–(4.24), this choice of prior information alsoaffects the

probability distributionP as pointed out by eqs (4.15) and (4.17). In view of eqs (4.31)

and (4.41), this is the case only if

C−1
R & Q (4.60)

C−1
M & GTC−1

Y G (4.61)

Numerical tests for the 2011 Tohoku earthquake have shown that the above constrains

require prior information with accuracy comparable or smaller than1022 N m for the

moment tensor and than50 km and300 km for the depth of hypocentre and the epicentre,

respectively.

Note that the posteriori probability distributionP , eq. (4.44), has step–like discon-

tinuities at the internal interfaces of the Earth model due to the discontinuity of the data

kernelG at these interfaces. For this reason, in the following, we will focus on model

estimators as function of depths and we will search best models in each layer of the Earth

model.

Fig. 4.5 shows the marginal probability for the depth of the hypocentre. Theproba-

bilities within the upper, middle and lower crusts and the lithospheric mantle are4, 6, 30

and60 per cent, respectively. The largest probabilities are from11 km to23 km depths,

which total to75 per cent of the probability distribution, and the maximum marginal

probability is just below the Moho discontinuity. GCMT analysis thus contrasts with
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Figure 4.5: Marginal probability for the depth of the hypocentre.

Figure 4.6: Mean (b) latitude and (c) longitude of the epicenter.

the possibility of significant up–dip slip within the shallower crustal layers (Lay et al.,

2011a).

Figs 4.6 show the mean epicenter as function of depth. It varies slightly within

the crustal layers around the point38N, 142.8E. Just below the Moho discontinuity the

epicenter is shifted seaward at point37.8N, 133.9E and gradually moves landward to

the point37.8N, 133.3E for increasing depths. By comparing these findings with the

geological structure of the Pacific plate subducting beneath the northeastern Japan arc
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inferred from seismic experiments (Takahaskiet al., 2004), we note a dichotomy be-

tween gravitational seismic solutions within the crustal layers and the lithospheric man-

tle. Indeed, the mean epicenters within the crust indicate that the earthquakeoccurred

within the continental plate or at contact zone between the forearc crust and the up-

permost mantle wedge. In contrast, the mean epicenters within the lithospheric mantle

indicate an intraplate earthquake occurred beneath the trench and within theoceanic

mantle. Both cases are contemplated by the shallower seismic zones inferred from loca-

tions of microearthquake hypocentres (Takahaskiet al., 2004). However, by considering

the marginal probability for the source depth shown in fig. 4.4a, the GCMT analysis

mainly support the conclusion that the 2011 Tohoku earthquake occurred within the

oceanic mantle. This contrasts with the Global CTM Project and USGS solutionsand

with previous giant earthquakes occurred in same region, except for the 1933 Sanriku

earthquake (Kanamori, 1971), which occurred seaward of the trenchwith the mechanism

of a normal fault type.

Once removed the centre of compression from the moment tensor, the mean models

are mainly characterized by the system of double–couples. This is shown infigs 4.7a,b

by the comparison of the mean moment magnitudes of the double couple (MDC
W ) and of

the residual dipoles (MRD
W ): the former varies from9.7 to 8.8 increasing depth, while

the latter is always less than8.6 and, particularly, less than8 within the lower crust and

in a narrow depth interval of the lithospheric mantle, from22 to 25 km depths. It is

noteworthy thatMDC
W has step–like discontinuities at the internal interfaces, which are

mainly due to discontinuities in the elastic material parameters, and varies almost asthe

negative of the logarithm of depth within each layer. This suggests testing thefollowing

empirical law for the mean seismic moment of the double couple (MDC) of the 2011

Tohoku earthquake

MDC(z) ≈ α z−1 (4.62)

wherez andα are the depth and a constant that only depends on the layer of the Earth

model and can be estimated from fig. 4.7c. This empirical law reflects the factthat,

for thrust earthquakes of given seismic moment, the peak–to–peak gravityanomaly in-

creases with depth within each layer of the Earth, as it has been pointed outfor the case
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Figure 4.7: (a) Mean moment magnitude MDC
W of the double couple, (b) mean moment magnitude MRD

W of
the residual dipoles and (c) the parameter α entering eq. (4.62)

of the 2004 Sumatran earthquake (Cambiottiet al, 2011a). Indeed, in order that the

modelled peak–to–peak gravity anomaly agrees with observations, fig. 4.4a, the seismic

moment must decrease with depth. The estimate of the moment magnitudeMDC
W is thus

affected by the along depth resolving power of space gravity data. By focusing on the

depth interval with the largest probability (the lower crust and the uppermost lithospheric

mantle), the moment magnitudeMDC
W is within the range9.0 − 9.2. These estimates

agree with Global CMT Project and USGS solutions and with several finite fault models

(Lay et al.; 2011a, Ammonet al., 2011; Layet al., 2011b) from inversion of teleseis-

mic and geodetic data (which range from9.0 to 9.1), although we do not exclude higher
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Figure 4.8: Mean (a) dip, (b) slip and (c) strike angles.

magnitudes,9.2.

Fig. 4.8 shows the geometry of the fault discontinuity in terms of the mean dip,

strike and slip angles as function of depth. Within the crust the dip angle grows almost

linearly with depth, from0.5◦ (at 1km depth) to14◦ (at the Moho). Then, it jumps to

19◦ just below the Moho and decrease to12.5◦ at 50 km depth. Because we are not

using prior information on the fault plane, we can asses the reliability of theseresults by

comparison with geological information of the subduction zone. The increase of the dip

angle within the crust is consistent with the subduction angle of the Pacific platebeneath

the northeastern Japan arc that becomes gradually steeper from east towest (Takahaskiet

al., 2004), from3◦ to 11◦. The dip angle just below the Moho is instead larger by about a
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Solution LC LM Global CMT Project USGS

MDC (1029 dyne) 4.6 7.4 5.3 4.5
MDC

W 9.07 9.21 9.12 9.07
MRD (1027 dyne) −0.9 102.4 1.4 −5.0
MRD

W 7.26 8.64 7.40 7.77
Depth (km) 16.5 16.5 20.0 10
Latitude 38.0N 37.8N 37.5N 38.5N
Longitude 142.9E 143.9E 143.1E 142.6E
Dip 13◦ 19◦ 10◦ 14◦

Slip 81◦ 87◦ 88◦ 68◦

Strike 210◦ 203◦ 203◦ 187◦

Table 4.2: Best seismic model parameters of the LC, LM, Global CMT Project and USGS solutions for the
2011 Tohoku earthquake.

factor2 or greater. This further supports the dichotomy between seismic solutions within

the forearc crust and the oceanic lithospheric mantle, where the latter is lessconstrained

to follow the subduction angle. Also, the estimates of strike and slip angles, which

ranges from202◦ to 225◦ and from65◦ to 88◦, respectively, are in agreement with the

local trench and the expectation of a thrust earthquake, particularly withinthe lower crust

and the uppermost lithospheric mantle.

The linear dependence of the mean dip angle on depth within the crust, fig. 4.8a, can

be explained in terms of the gravitational effect of the ocean water redistribution. In-

deed, shallow thrust earthquakes induce an uplift of the ocean floor in the foot–wall side

which is greater in magnitude than the downdrop in the hanging–wall side (Cambiotti et

al., 2011a). This causes a greater gravity reduction due to ocean water removal from the

near field that potentially could hide the positive pole of the co–seismic gravity anomaly

observed in GRACE data, fig. 4.4a. However, a smaller dip angle reducesthe uplift of

the ocean floor, thus causing a less asymmetric pattern of the ocean floor topography.

This limits the ocean water removal from the near field because ocean water displaced

away from the uplift of hanging wall side partially accumulates in the downdrop of the

foot–wall side. In light of this, the smaller dip angles that we obtain for shallower seis-

mic sources from GRACE data inversion compensate for the greater gravityreduction

and, particularly, the modelled gravity anomalies keep the bipolar pattern observed in

GRACE data.
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Figure 4.9: Co–seismic gravity anomaly modelled using the LC and LM gravitational seismic solutions, after
DDK3 filtering and spatial localization within a circular cup (dashed circle) of half–width 8◦ and centred at the
USGS epicenter.

In order to account for the dichotomy between gravitational seismic solutionswithin

the crust and the lithospheric mantle resulting from the above analysis, we propose two

different seismic solutions. They are the maximum likelihood seismic models within

the lower crust (LC solution) and the lithospheric mantle (LM solution), the seismic pa-

rameters of which are listed in Table 4.1 and compared with the Global CMT Project

and USGS solutions. The LC solution well agrees with the two traditional seismologi-

cal solutions, but for the discrepancy between the depths of the hypocentres likely due

to different data set and Earth structures used to model the earthquake.However, the

present analysis mainly support the LM solution, which is about two or threetimes more

likely than the LC solution. On the other hand, the source mechanism of the LC solution

better agrees with a tangential dislocation, being characterized by a moment magnitude

of the residual dipoles smaller than that of the LM solution,7.3 compared to8.6. We

thus consider both solutions as plausible solutions for the 2011 Tohoku earthquake.

The LM solution mainly differs from the LC solution for the larger moment magni-

tude (9.2 instead of9.1), the steeper dip angle (19◦ instead of13◦) and the hypocentre

(at37.7N, 143.9E just below the Moho instead of38.0N, 142.8E just above the Moho).

Because point–like seismic sources neglect the finite extension of the co–seismic slip
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distribution, the estimated depths are actually effective depths. Particularly,the fact that

the LC and LM solutions are located just above and below the Moho must be intended as

indication of the type of the earthquake: the former occurs within the continental crust

just above the contact zone between the forearc crust and the uppermost mantle wedge,

while the latter occurs within the oceanic mantle, just below the oceanic crust.

Figs 4.9 compare the co–seismic gravity anomalies obtained implementing the two

GCMT solutions, after DDK3 filtering and spatial localization using Slepian functions.

Both synthetic data well agree with observations, fig. 4.4, with confidence levels of38

and36 per cent for LC and LM solutions, respectively.

4.6 Conclusion

We have developed the Gravitational Centroid Moment Tensor (GCMT) method, based

on the inversion of space gravity data, for modelling giant earthquakes in terms of the

principal seismic source parameters (hypocentre and moment tensor). Applying this

method to GRACE data of the 2011 Tohoku earthquake, we find two distinct gravita-

tional seismic solutions which are both consistent with a megathrust earthquake. The

LC solution well agrees with Global CMT Project and USGS solutions based on inver-

sion of teleseismic wave observations and is located within the forearc crust.The LM

solution, instead, differs for the steeper dip angle and the larger moment magnitudes of

the double–couple and of the residual dipoles,9.2 and8.6, respectively. Furthermore, it

is located further off–shore and within the oceanic mantle, just below the oceanic crust.

In view of this, it could be a candidate solution for explaining the huge tsunamicaused

by the earthquake.

Our new gravitational seismological method complements the traditional approaches

to seismic studies, including those based on the seismic, GPS and tsunami observations.
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Abstract

Issues related to long time scale instabilities in the Earth’s rotation have continuously

been debated, after the pioneering works of the sixties by Munk, MacDonald and Gold.

The Earth’s rotation axis is constantly tracking the main inertia axis of the planetthat

evolves due to internal and surface mass rearrangements. This motion called True Polar

Wander (TPW) is due to mantle convection on the million years time scale. On smaller

timescales, hundreds of thousand years, ice ages also cause polar excursion, although

their contribution to the Earth’s inertia tensor remains negligible compared to thatof the

mantle 3–D structure.

In Chapter 5 we show TPW simulations driven by ice ages obtained using compress-

ible Maxwell Earth models, based on the numerical integration in the radial variable

of the momentum and Poisson equations and on the contour integration in the Laplace

domain which allows us to deal with the non–modal contribution from continuousra-

dial rheological variations. We thus discuss the so called “traditional approach” to the

Earth’s rotation developed during the eighties and nineties and we explain withinthis

approach the sensitivity of TWP predictions to the elastic and viscoelastic rheologies of

the lithosphere. We agree on the necessity to include the effects of the non hydrostatic

bulge from mantle convection to obtain realistic ice age TPW rates in the lower mantle

viscosity range from1021 Pa s to1022 Pa s, as first indicated by Mitrovicaet al. (2005).

We show that their analysis represents a first attempt to couple the effects on TPW from

mantle convection and glacial forcing, by including the non hydrostatic bulgedue to

mantle convection but not the other time–dependent driving terms. This partial cou-

pling freezes in space the non hydrostatic contribution due to mantle convection, thus

damping the present–day ice age TPW and forcing the axis of instantaneousrotation

to come back to its initial position when ice ages started. We argue that a viscoelastic

(with high viscosity) rather than elastic lithosphere should be adopted in the modelling

of TPW although it is difficult to disentangle the effects of lithospheric rheology and

mantle convection on the time of ice ages. Within this framework, the maximum ice

age TPW rates, which is obtained for lower mantle viscosities of about1022 Pa s, do

not account for more than 77 per cent of the observation,0.925◦Myr−1 (McCarthy and

Luzum, 1996). Mantle convection must therefore contribute to TPW.

We also discuss the implication of self–consistent mantle convection calculationsof
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the non hydrostatic contribution and its impact on the long–term Earth’s rotationstability

during ice ages, as well as the effects of the compressible rheology compared to the

widely used incompressible one.

In Chapter 6 we face the problem of TPW driven by mantle convection on themillion

years time scale. Most studies have assumed that on this long time scale the planet read-

justs without delay and that the Earth’s rotation axis and the Maximum Inertia Direction

of Mantle Convection (MID–MC) coincide. We herein overcome this approximation

that leads to inaccurate TPW predictions and we provide a new treatment of Earth’s ro-

tation discussing both analytical and numerical solutions. We first obtain a linearized

theory for modelling finite polar excursions due to slow evolving mantle density hetero-

geneities. The novel theoretical framework allows to deeply understand the interaction

between mantle convection and rotational bulge readjustments, and providesthe physi-

cal laws for the characteristic times controlling the polar motion in the directions ofthe

intermediate and minimum principal axes of the mantle convection inertia tensor. By

solving the non–linearized Liouville equation for the past100 million years and taking

into account the delay of the rotational bulge readjustments, we obtain an average TPW

rate in the range from0.5◦Myr−1 to 1.5◦Myr−1 and a sizeable offset of several degrees

between the rotation axis and the MID–MC. This is in distinct contrast with the general

belief that these two axes should coincide or that the delay of the readjustment of the

rotational bulge can be neglected in TPW studies. We thus clarify a fundamental issue

related to mantle mass heterogeneities and to TPW dynamics.
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Starting from the works by Munk, MacDonald and Gold, issues related to thesecular

change of the Earth’s rotation axis named True Polar Wander (TPW), never ceased to be

discussed or questioned. Progresses have been made since the sixties,on two major

aspects: the first deals with the improvement in the modelling of the Earth, in terms of

rheological stratifications, and the second is related to the new insights on surface and

deep seated density anomalies originating from ice ages and mantle convectionas major

sources of polar wander. After decades, we are however still in the situation in which

it is necessary to come back to some basic TPW issues to dig out deeper insights into

the physics of this aspect of the dynamics of our planet, focussing, in particular, on the

nature, elastic or viscoelastic, of the outermost part of our planet.

Ricardet al. (1993a) first exploited the rotational behaviour of elastic versus vis-

coelastic outermost part of the Earth, introducing theT time scale characterizing the

readjustment of the equatorial bulge, based on realistically stratified viscoelastic Earth

models. Vermeersen and Sabadini (1999) pointed out the reduction in the TPW displace-

ments for Maxwell Earth models carrying a viscoelastic lithosphere comparedto those

with an elastic lithosphere. Nakada (2002) went thoroughly into the issue related to the

rheology of the lithosphere by considering high viscous viscoelastic lithospheres. He

showed as the TPW rates for the lower mantle viscosity ranging from1021 Pa s to1022

Pa s are extremely sensitive to the choice of the rheology of the lithosphere,elastic or

viscoelastic with high viscosity. This might be seen as surprising since the highviscous

viscoelastic lithosphere is expected to behave as an elastic body for time scales of1 Myr

comparable to that of post glacial rebound. Mitrovicaet al. (2005) named this sensitivity

of TPW predictions the “Nakada paradox” and (as cited by Nakada) “has suggested that

this paradox originates from an inaccuracy in the traditional rotation theory associated

with the treatment of the background equilibrium rotating form upon which anyload–

and rotation–induced perturbations are superimposed (e.g., Wu and Peltier, 1984)”.

Starting from these preliminary remarks, Mitrovicaet al. (2005) suggest a new

treatment of the rotational dynamics where the observed fluid Love number isused in

the linearized Euler dynamic equation, rather than the tidal fluid limit deduced self–

consistently from the Maxwell Earth model which is used to evaluate the load– and

rotation–induced perturbations of the inertia tensor. This apparently minor change (the

discrepancy between the observed and tidal fluid limits is about1 per cent) has a poten-

tially large impact on TPW predictions and would solve the “Nakada paradox”.
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In this chapter, we will restate the mathematical framework of the linearized Earth’s

rotation theory in order to enlighten the differences between the so called “traditional

approach” (Sabadini and Peltier, 1981; Sabadiniet al., 1982; Wu and Peltier, 1984)

and the treatment indicated by Mitrovicaet al. (2005). We show results from a newly

developed compressible Earth model, including the methodology to transform the results

from the Laplace domain into the time domain. This clarifies some issues related to the

use of the normal mode relaxation approach within rotational problems. Then, in order to

make our TPW simulations as realistic as possible, we explore the roles of the rheology

of the lithosphere, elastic or viscoelastic, and the non hydrostatic contribution to the fluid

Love number from mantle convection calculations.

5.1 The rotation theory for Maxwell Earth models

The equation of motion of a rotating body in a rotating frame is the well known Euler

dynamic equation. When no external torque is applied, it reads

d (J · ω)

dt
+ ω × (J · ω) = 0 (5.1)

whereJ andω are the inertia tensor and the angular velocity. We adopt the geograph-

ical reference frame with unit vectorsx1, x2 andx3 (x1 points to the equator and the

Greenwich meridian, whilex3 points to the north pole) and, before any perturbation

occurs, we consider the Earth rotating with constant angular rateω0 aroundx3

ω(t < 0) = ω0 = ω0 x3 (5.2)

Let us subdivide the inertia tensor into three parts

J = I 1+B + C (5.3)

The first term is the inertia of the spherically symmetric Earth model, withI and1 being

the inertia moment and the identity matrix. The second term,B, is the inertia tensor
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describing the effects of the centrifugal potential, i.e., the rotational bulge.The third

term,C, is the inertia tensor due to other contributions, like ice age loading and mantle

convection.

The difference between the approach used in a series of papers (Sabadini and Peltier,

1981; Sabadiniet al., 1982; Wu and Peltier, 1984) and the newly proposed by Mitrovica

et al. (2005) can be appreciated starting from the MacCullagh’s formula (Jeffreys, 1952;

eq. (5.2.3) of Munk and MacDonald, 1960)

B =
a5

3G
kT ⋆

(

ω ⊗ ω − ω2

3
1

)

(5.4)

wherekT andω = |ω| are the degree–2 tidal gravitational Love number in the time

t–domain and the angular rate. Here,⋆ and⊗ stand for the convolution operator and

the algebraic product, anda andG are the Earth radius and the universal gravitational

constant. As it results from the MacCullagh’s formula (5.4), by assuming that the Earth

has reached its rotating equilibrium state with the constant angular velocity before the

beginning of the ice ages, eq. (5.2), we get

B(t < 0) = B0 = Ax1 ⊗ x1 +Ax2 ⊗ x2 + C x3 ⊗ x3 (5.5)

whereC andA are the equilibrium polar and equatorial inertia moments given by

C =
2

3

a5 ω2
0

3G
kTF A = −1

3

a5 ω2
0

3G
kTF (5.6)

Here,kTF is the tidal gravitational fluid limit of the Maxwell model that is defined as the

limit for t → ∞ of the convolution of the degree–2 tidal gravitational Love numberkT

with the Heaviside time historyH(t)

kTF = lim
t→∞

kT (t) ⋆ H(t) (5.7)

Notice that the word “fluid” is poorly chosen when some layers are purely elastic and

cannot relax their stresses. It would be less confusing to use the expression tidal “equi-
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librium” limit. It is only to be in agreement with all our predecessors that we keepthe

inaccurate but widely used term of tidal “fluid” limit.

Eqs (5.5)–(5.7) implies that before the ice load perturbation, the Earth was submitted

to a constant rotation for a time scale greater than the longest characteristic relaxation

time of all the viscoelastic layers. Particularly, in the case of a viscoelastic lithosphere,

this time scale is greater than the ice age time scale of1 Myr for a 120 km thick vis-

coelastic lithosphere with viscosity higher than1024 Pa s and rigidity volume averaged

from PREM (Dziewonski and Anderson, 1981). This shows that the theory, based on

eq. (5.5) to estimate the initial state of rotational equilibrium, withC andA given by eq.

(5.6), is used also on a time scale in which the elastic and the high viscous viscoelastic

lithosphere are distinguishable. See for instance fig. 1(1a) in Wu and Peltier (1982).

In the perspective of studying the ice age TPW by means of compressible Maxwell

Earth models based on PREM, some remarks on the tidal fluid limitkTF are required.

Indeed PREM has an unstable compositional stratification above the670 km disconti-

nuity (Plag and Jüttner, 1995) corresponding to an imaginary Brunt–Väiäsala frequency

(i.e., the radial density increases with depth less than what should be expected from the

self–compression of the mantle). This unstable stratification generates growing modes

which do not converge fort → ∞ in eq. (5.7). These modes similar to Rayleigh Tay-

lor instabilities are discussed in various papers (Plag and Jüttner, 1995; Vermeersenet

al., 1996; Vermeersen and Mitrovica, 2000) and included in the wider class of composi-

tional in Cambiotti and Sabadini (2010). As shown in Vermeersen and Mitrovica (2000)

these modes are characterized by long relaxation times of102 − 103 Myr and thus their

effects are negligible on the time scale of the ice ages. In order to avoid thesemodes,

following Chinnery (1975), we compute the tidal fluid limitkTF by considering the vis-

coelastic layers of the Maxwell Earth model as inviscid, with the exception of the layers

properly elastic. This approach is in agreement with the theory of the equilibrium figure

of a rotating Earth at first order accuracy and it does not differ fromthe assumption that

Maxwell Earth models are in hydrostatic equilibrium before the loading of the last ice

age, as usually done in post glacial rebound studies.

Having clarified this issue related to the tidal fluid limitkTF , we can write the Mac-

Cullagh’s formula (5.4) in the perturbed state as

B(t ≥ 0) = B0 +∆B(t) (5.8)
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where∆B describes the perturbations of the rotational bulge

∆B =
a5

3G
kT ⋆

(

ω ⊗ ω − ω0 ⊗ ω0 −
ω2 − ω2

0

3
1

)

(5.9)

Particularly, by writing the angular velocity in the perturbed state in terms of its direc-

tion cosinesm1 andm2 with respect to the equatorial axesx1 andx2, and the relative

variation of the diurnal rotation ratem3

ω(t ≥ 0) = ω0 [m1 x1 +m2 x2 + (1 +m3)x3] (5.10)

the perturbation in the off–diagonal components∆B13 and∆B23 yield

∆Bj3 =
a5 ω2

0

3G
kT (t) ⋆ mj(t) (1 +m3(t)) j = 1, 2 (5.11)

In addition to this perturbation of the inertia tensor, one must add the driving pertur-

bations due to the direct effect of the ice load,∆I ice, and the relevant response of the

Earth, controlled by the degree–2 load gravitational Love numberkL(t)

C(t ≥ 0) =
(

δ(t) + kL(t)
)

⋆∆I
ice(t) (5.12)

with δ(t) being the Dirac distribution.

Within the assumption of infinitesimal perturbations of Earth’s rotation and in view

of eqs (5.3) and (5.8)–(5.12), the Euler dynamic equation (5.1) can be linearized for

mj ≪ 1 as in eqs (3.12)–(3.13) of Sabadini and Vermeersen (2004)

Aω0 ∂tm1 + (C −A) ω2
0m2 = ω2∆Bω

23 + ω2
0 (δ(t) + kL) ⋆∆Iice

23 (5.13)

AΩ ∂tm2 − (C −A) Ω2m1 = −Ω2∆Bω
13 − Ω2 (δ(t) + kL) ⋆∆Iice

13 (5.14)
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For the sake of simplicity, in eqs (5.13)–(5.14) we have neglected the time derivative

of the off–diagonal perturbations of the inertia tensor in view of their negligible impact

on the ice age TPW. Furthermore, in the present work we do not considerthe third

component of the Euler dynamic equation (5.1), pertaining to the relative variation of

the diurnal ratem3.

At this stage, by dividing each member of eqs (5.13)–(5.14) by(C − A) Ω2, we

obtain

∂tm1

σr
+m2 =

kT ⋆ m2

kTF
+

(δ(t) + kL) ⋆∆Iice
23

C −A
(5.15)

∂tm2

σr
−m1 = −k

T ⋆ m1

kTF
− (δ(t) + kL) ⋆∆Iice

13

C −A
(5.16)

whereσr is the Eulerian free precession frequency

σr = Ω
C −A

A
(5.17)

and, from eq. (5.6), we utilized the following identity

kTF =
3G (C −A)

a5Ω2
(5.18)

Eqs (5.15)–(5.16) can be recast in the widely used and more compact form

i

σr
∂tm(t) +

(

δ(t)− kT (t)

kTF

)

⋆m(t) =
(

δ(t) + k̃L(t)
)

φ(t) (5.19)

that, after the Laplace transformation, becomes

i s

σr
m̃(s) +

(

1− k̃T (s)

kTF

)

m̃(s) =
(

1 + k̃L(s)
)

φ̃(s) (5.20)

Here, the tilde stands for the Laplace transform,i is the imaginary number and we have
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made use of the complex notation

m = m1 + im2 φ =
∆Iice

13 + i∆Iice
23

C −A
(5.21)

This demonstrates that the theory (Sabadini and Peltier, 1981; Sabadiniet al., 1982;

Wu and Peltier, 1984), built on the work of Munk and MacDonald (1960),provides a

mathematically sound treatment of ice age TPW under the assumption that the load–and

rotation–induced perturbations and the equilibrium background form mustbe computed

using the same Earth model. In this regard, different tidal fluid limitskTf are used in

eq. (5.20) for models with an elastic or viscoelastic lithosphere since the firstcarries a

finite strength after the initial rotational spin–up of the model, while the second is fully

relaxed. For models sharing the same reference density profile, this results in a smaller

initial rotational bulge for the elastic case (E) than for the viscoelastic case (V)

kTF,E < kTF,V (5.22)

Two rheological models of the Earth will only predict the same ice age TPW if their

behaviours agree both on the time scale of the ice ages (. 1 Myr) and at infinite time,

since the latter controls the initial rotational bulge within the traditional approach, as

shown in eq. (5.18). The behaviour of elastic and high viscous viscoelastic lithospheres

are indistinguishable on short time scale but not at infinite time. This issue was dis-

cussed in detail by Mitrovicaet al. (2005), though we believe their use of the term

“Nakada paradox” was an overstatement. Indeed, the findings of Nakada (2002) consist

in the understanding that the dependence of ice age TPW predictions on thelithospheric

rheology can be very important for lower mantle viscosities lesser than1022 Pa s, as we

will show in detail in sections 5.2, 5.3 and 5.4.

The new treatment made by Mitrovicaet al. (2005) consists in noticing that the in-

ertia tensor of the real Earth is not only that of a homogeneous rotating planet plus an

ice load perturbation as implied by (5.3), but that perturbations due to the mantle3–D

structure are also present. Coming back to the stage before the linearizationof the Eu-

ler dynamic equation (5.1), this is equivalent to adding to the equilibrium inertia tensor

obtained by the rotational spin–up of the model, eq. (5.5), the perturbations∆IC11, ∆I
C
22
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and∆IC33 in the diagonal components due to mantle convection. This choice implies that

mantle convection does not directly drive polar motion, since the off–diagonal compo-

nents∆IC13 and∆IC23 due to mantle convection are not added, or, alternatively, that the

axis of rotation has already readjusted to the slowly evolving convection forcing so that

the off–diagonal inertia perturbations are only those arising from post glacial rebound.

This assumption implies that the evolution of the convective mantle is so slow that it

appears frozen during the glaciation–deglaciation phases. Since the series of eight ice

age cycles occurs over800 kyr, this remains probably a reasonable approximation but

not necessarily so and convection may also have contributed to the TPW during this pe-

riod. According to Besse and Courtillot (1991), over geological times the TPW occurs

indeed at rates not much slower than those due to glacial readjustments. Thissuggests

that the two processes of mantle driven and surface driven TPW may be intermingled.

Before Mitrovicaet al. (2005), in all studies of glaciation induced TPW, the diagonal

components∆IC11, ∆I
C
22 and∆IC33 were not introduced, and the mantle was considered

without lateral density variations. The role of mantle convection was studied separately

from the ice age TPW, as done by Ricardet al. (1993a,b).

By keeping the assumption of symmetry around the polar axis,∆IC11 = ∆IC22, we

therefore perform the change of variables

C → C +∆IC33 A→ A+
∆IC11 +∆IC22

2
(5.23)

Particularly, eq. (5.18) has to be written as

kTF,obs = kTF + β =
3G (C −A)

a5Ω2
(5.24)

wherekTF,obs is the observed fluid Love number andβ is given by

β =
3G

a5Ω2

(

∆IC33 −
∆IC11 +∆IC22

2

)

(5.25)

We will refer to eq. (5.24) as the “β correction” to the tidal fluid limitkTF following

eq. (16) in Mitrovicaet al. (2005). ThekTF,obs is thus an observation andkTF a predic-
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tion from viscoelastic modelling, whileβ is the contribution from mantle convection,

assumed frozen during the period of ice ages. In view of this, eq. (5.20)becomes

i s

σr
m̃(s) +

(

1− k̃T (s)

kTF + β

)

m̃(s) =
(

1 + k̃L(s)
)

φ̃(s) (5.26)

Making use ofkTF,obs = kTF + β, rather thankTF , has thus the meaning of coupling, in a

simplified fashion and within a linearized scheme, the effects of the ice age TPWwith

those from mantle convection, but assuming for the latter only its contribution to the non

hydrostatic ellipsoidal shape of the Earth (∆IC11, ∆I
C
22 and∆IC33 differing from zero)

and not its active driving effect (∆IC13, ∆I
C
23 assumed equal to zero).

5.1.1 Layered compressible Earth models

For layered incompressible models it is possible to show analytically how theβ correc-

tion impacts the linearized equations for the ice age TPW. The normal mode expansions

of the gravitational Love numberk in the Laplaces–domain, both for loading and tidal

forcing (denoted with the superscriptsL andT , respectively), is

k̃(s) = kE +
∑ kj

s− sj
(5.27)

wherekE , kj andsj are the elastic gravitational Love number, the residue and the pole

of thej–th relaxation mode. The long term behavior, whens = 0, is controlled by

kF = kE −
∑ kj

sj
(5.28)

and thereforẽk(s) can be rearranged as follows

k̃(s) = kF + s
∑ kj

sj (s− sj)
(5.29)

This allows us to collect in eq. (5.20) (i.e. in the case where the initial flattening isonly

due to rotation without contribution from mantle dynamics,β = 0) a term linear in the



5.1 The rotation theory 179

Laplace variables

s

(

i

σr
− 1

kTF

∑ kTj
sj (s− sj)

)

m̃(s) =

(

1 + kLF + s
∑ kLj

sj (s− sj)

)

φ̃(s)

(5.30)

as in eq. (3.47) in Sabadini and Vermeersen (2004). By solving this equation for m̃(s),

we get

m̃(s) =
1 + kLF + s

∑ kLj
sj(s−sj)

s

(

i
σr

− 1
kT
F

∑ kTj
sj(s−sj)

) φ̃(s) (5.31)

where the factors collected at the denominator is responsible for the so–called secular

term, which characterizes the ice age TPW in such a way that it gains a net displacement

at the end of each ice age cycle.

If now we want to account for the contribution of mantle convection to the inertia

tensor by applying theβ correction, eq. (5.31) becomes

m̃(s) =
1 + kLF + s

∑ kLj
sj(s−sj)

β
kTF+β

+ s

(

i
σr

− 1
kTF+β

∑ kTj
sj(s−sj)

) φ̃(s) (5.32)

The secular term is, in this case, substituted by an extra exponential decaying term, which

drags the equatorial bulge and forces the ice age TPW to return to the initial position of

the rotation axis, after a sufficiently long time. This can be explained in the follow-

ing way. While the hydrostatic flattening readjusts during the ice age TPW, the mantle

density anomalies act as a counterweight that limits the polar excursion and ultimately

control the position of the pole. In section 5.4, we will show that these considerations are

not restricted to the simple layered incompressible models, but they extend alsoto the

case of more realistic compressible Earth models which take into account the continuous

variations of the material parameters. It is noteworthy that our advanced Earth model has

a continuous relaxation spectrum (Fang and Hager, 1995; Tanakaet al., 2006; Cambiotti
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and Sabadini, 2010), which does not allow the analytical derivation of eqs (5.31)–(5.32)

based on the discretized normal mode expansion given by eq. (5.27).

5.1.2 The compressible Maxwell Earth model

We thus consider a self–gravitating, compressible Maxwell Earth model, with the initial

densityρ0, shear modulusµ and bulk modulusκ of PREM. We consider these material

parameters as given in Table 1 of Dziewonski and Anderson (1981), interms of poly-

nomials of the radial distance from the Earth centrer in each of the main layers of the

Earth. In this way we take into account the continuous variations of the material pa-

rameters, without introducing any fine layered stratification. As concerns the viscosity

ν, even though we could consider continuous variations, in the present work we adopt

a simple stepwise profile characterized by the lower,νLM, and upper,νUM, mantle vis-

cosities and the lithospheric viscosityνL. The thickness of the lithosphere is of120 km

and we choose the lithospheric viscosityνL = 1026 Pa s in order to discuss the issues

raised by Nakada (2002) and Mitrovicaet al. (2005). Besides this, we consider the

lower mantle viscosityνLM as free parameter, ranging from1021 Pa s to1023 Pa s, while

the upper mantle viscosityνUM is fixed at1021 Pa s. The outer oceanic layer of PREM

is replaced by extending the upper crust to the Earth’s radiusa. The tidal fluid limit

kTF for this model with viscoelastic lithosphere agrees with the value of0.934 given in

Mitrovica et al. (2005).

In order to get the degree–2 load, k̃L(s), and tidal,k̃T (s), gravitational Love num-

bers in the Laplaces–domain, we integrate the differential system describing the conser-

vation of the momentum and the self–gravitation, after expansion in sphericalharmon-

ics and Laplace transformation. The radial integration, from the core–mantle boundary

(CMB) to the Earth surface, is based on the Gill–Runge–Kutta fourth ordermethod. We

consider the core as inviscid and we impose the fluid–solid boundary conditions (Chin-

nery, 1975) as Cauchy data for the differential system at the core radius. This implies

that we have to get the perturbation of the equipotential surface of the inviscid core at

the CMB and we do it as described in Smylie and Manshina (1971). At the interfaces

at which the material parameters of PREM have stepwise discontinuities, we impose the

chemical boundary conditions, while at the Earth surfaceawe impose the boundary con-

ditions describing the surface loading and the tidal forcing. This algorithm thus strictly
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follows the theory outlined in Chapter 1.

In this way we have a numerical algorithm able to provide load,k̃L(s), and tidal,

k̃T (s), gravitational Love numbers at fixed Laplace variables. As pointed out in a series

of papers (Fang and Hager, 1995; Tanakaet al., 2006; Cambiotti and Sabadini, 2010), the

continuous variations of the rheological parameters (not those of the initialdensityρ0 as

pointed out in Cambiotti and Sabadini, 2010) lead to a continuous relaxation spectrum.

In this respect, we cannot resort to the normal mode approach (Wu and Peltier, 1982; Han

and Wahr, 1995) in order to get the perturbations in the time domain. Then, following the

Bromwich path approach described in Tanakaet al. (2006), we get the degree–2 non–

dimensional perturbationK(f ; t) due to a forcing with time historyf(t) by evaluating

the inverse Laplace transform of the productk̃(s) f̃(s)

K(f ; t) = L−1
[

k̃(s) f(s)
]

= kE f(t) +
1

2π i

∫

Γ
k̃(s) f̃(s) es t ds (5.33)

wherekE andf̃(s) are the elastic gravitational Love number and the Laplace transform

of the forcing time historyf(t), andΓ is the contour in the Laplaces–domain enclosing

the sets in which̃k(s) andf(s) are not analytic as discussed in Chapter 1, sections 1.5

and 1.6.

The same algorithm is used to evaluate the direction cosinesm1 andm2 describing

the ice age TPW, eq. (5.10). We solve eq. (5.26) form̃(s) and we evaluate the complex

contour integral entering the solution in the timet–domain

m(t) =
1 + kLE

1− kTE
kTF+β

φ(t) +
1

2π i

∫

Γ

1 + k̃L(s)

1− k̃T (s)

kTF+β

φ̃(s) es t ds (5.34)

Note that we have made use of the approximation proposed in Wu and Peltier (1984),

which consists in neglecting in eq. (5.26) the term associated with the Eulerian free

precession frequencyσr. As pointed out in Mitrovica and Milne (1998), this replaces

the Chandler wobble by an instantaneous elastic response, representingthe time average

of the Chandler Wobble. In this way, we can maintain the same contourΓ as in eq.

(5.33) since the rotation pole associated with the Chandler Wobble is avoided (this pole
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with a large imaginary part does not lie within the contourΓ). Furthermore, we note

that this approximation neglects the coupling between the direction cosinesm1 andm2.

Nevertheless, such a coupling, in addition to the14 month Chandler wobble, results in

a long term wobble around the initial rotation axis, characterized by time scale much

longer than the ice age time scale of1 Myr (Mitrovica and Milne, 1998; Sabadini and

Vermeersen, 2004). In the following sections we consider the TPW displacementm(t)

defined as

m(t) = p
√

m2
1(t) +m2

2(t) (5.35)

with p being+1 or −1 respectively whether the instantaneous rotation pole is farther

away or closer from the position of the surface load than its initial position. A zero value

m(t) = 0 means that the instantaneous rotation pole is crossing the initial north pole

position.

5.2 Readjustment of the rotational bulge

The numerical algorithm described in section 5.1.2 is now used to elucidate the role of

the rheology of the lithosphere, elastic or viscoelastic. We assume that the viscoelastic

lithosphere has a very high viscosityνL = 1026 Pa s. The lower and upper mantle

viscosities areνLM = 1022 andνUM = 1021 Pa s, respectively.

In fig. 5.1 (a) we compare the time evolution of the Green functionkTF −KT , with

KT being the convolution of the tidal gravitational Love numberkT with the Heaviside

time historyH, for the models with the elastic (E, solid line) and viscoelastic (V, dashed

line) lithospheres

KT (t) = kT (t) ⋆ H(t) (5.36)

It expresses how fast the rotational equatorial bulge readjusts to a newrotation axis,

where the total readjustment is obtained whenkTF − KT = 0. As discussed in section

5.1, we obtain the tidal fluid limitkTF from the tidal isostatic response (Chinnery, 1975),

which iskTF,E = 0.920 andkTF,V = 0.934 for the cases of elastic and viscoelastic litho-

sphere, respectively. The difference between the tidal fluid limitskTF,V − kTF,E = 0.014
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Figure 5.1: (a, b) Readjustment of the equatorial bulge, kFT − KT , and (c) load response, 1 + KL, for
compressible PREM with elastic (solid) and high viscous viscoelastic (dashed) lithosphere and lower mantle
viscosity νLM = 1022 Pa s. In the panel (b) the difference between the reajustments of the equatorial bulge
of the model with the elastic (E) and viscoelastic (V) lithosphere is also shown, kTF,V − KT

V − (kTF,E − KT
E )

(dashed–dot line).
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reflects a difference in the equilibrium flattening. The elastic lithosphere carries a finite

strength that, instead, the model with the viscoelastic lithosphere does not have, being

fully relaxed at large time (i.e., the elastic lithosphere is pre–stressed while the viscoelas-

tic lithosphere is in hydrostatic equilibrium). Note that the Green functionkTF,E −KT
E

for the elastic lithosphere case (solid line) is always smaller than the Green function

kTF,V − KT
V for the viscoelastic case (dashed line). Within10 Myr, kTF,E − KT

E ap-

proaches zero, namely the equatorial bulge readjusts completely to a new rotation axis.

On the contrarykTF,V − KT
V is 0.014 at 10 Myr, which is precisely the difference be-

tween the tidal fluid limitskTF,V andkTF,E . This indicates that the accumulated stresses

during the displacement of the equatorial bulge are almost completely relaxedwithin the

viscoelastic mantle, but they are still present in the viscoelastic lithosphere withhigh

viscosity. Indeed the viscoelastic lithosphere behaves as an elastic body at time scale

lower than the lithospheric Maxwell time,50 Myr. We show this in fig. 5.1 (b) for the

time window of50 Myr where, in addition to the previous Green functions, we plot also

their differencekTF,V − KT
V −

(

kTF,E −KT
E

)

(dash–dotted line). Before10 Myr, the

Green functionsKT
V andKT

E coincide and the only difference betweenkTF,V −KT
V and

kTF,E −KT
E is due to the difference in tidal fluid limitskTF,V − kTF,E = 0.014. After 10

Myr this difference reduces since the viscoelastic lithosphere relaxes and the rotational

bulge readjusts completely to the new rotation axis. Nevertheless, as shown infig. 5.1

(a), this process is intermingled with the gravitational overturning due to the unstable

compositional stratification of PREM above the670 km discontinuity (Plag and Jüttner,

1995). The unstable compositional modes (Cambiotti and Sabadini, 2010) make KT

change sign. The cuspidal point att = 400 Myr represents, in the logarithmic scale, this

change of sign, from positive to negative, of the Green functionkTF,V −KT
V for the case

of viscoelastic lithosphere. For the elastic lithosphere case, the change ofsign of the

Green functionkTF,E −KT
E occurs at130 Myr. This overturn is a mathematical conse-

quence of the unstable PREM stratification but has little physical consequence because

TPW is anyway dominated by mantle convection on this long time scale (Spadaet al.,

1992b).

In fig. 5.1 (c) we compare the time evolution of the Green function1 + KL, with

KL being the convolution of the load gravitational Love numberkL with the Heaviside

time historyH, for models with elastic (E, solid line) and viscoelastic (V, dashed line)

lithospheres
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KL(t) = kL(t) ⋆ H(t) (5.37)

It expresses the return to isostatic compensation of a surface point–like load, that is

obtained when1+KL = 0. The two load Green functions agree up to10 Myr, but after

this time1 +KL
V goes to zero for the viscoelastic lithosphere case as the load becomes

fully compensated. Instead,1 + KL
E for the elastic lithosphere case converges to the

value of0.01, which is the gravitational anomaly1 + kLF,E remaining because of the

elastic support. In the end, starting from1 Gyr, the gravitational overturn breaks the

final equilibrium with the load, the cuspidal points at2.3 and1.3 Gyr for the elastic and

viscoelastic lithosphere cases, respectively, having the same meaning as infig. 5.1 (a).

These findings show that over the time scale of post glacial rebound and until 10

Myr as well, there are no significant differences between the tidal,KT , and load,KL,

Green functions computed with an elastic lithosphere or with a viscoelastic lithosphere

with high viscosity,νL = 1026 Pa s. However the TPW involves not only the Love

numbersKT andKL at short time period but also the limit at infinite time of the tidal

Green functionKT , which is the so called tidal fluid limitkTF as seen in eq. 5.20.

Particularly, the rheology of the lithosphere, elastic or viscoelastic (i.e., fluidat infinite

time) does affect the TPW because it controls the equilibrium figure of the Earth because

kTF,V ≥ kTF,E , eq. (5.22) (see also fig. 1 in Mitrovicaet al., 2005). The equilibrium

figures are different for the two cases and the rotation of the model with thehigh viscous

viscoelastic lithosphere is more stable since its equatorial bulge is not able to readjust

to a new rotation axis on the ice age time scale (Mitrovicaet al., 2005). From fig.

1(a,b), we can understand that the sensitivity on the lithospheric rheology, pointed out

by Nakada (2002), actually is due to the stabilizing effects of delay of the readjustment

of the rotational bulge. Classically, the lower mantle viscosityνLM was considered as

the main parameter controlling this delay. Instead, adopting Earth models with the high

viscous viscoelastic lithosphere allows to take into account also the delay associated with

the high lithospheric viscosityνL, in addition to that associated with the lower mantle

viscosityνLM. In view of this, models with elastic and viscoelastic lithospheres are not

expected do lead to the same TPW.
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Figure 5.2: Readjustment of the equatorial bulge, kTF,E − KT
E , for compressible (solid) and incompressible

(dashed) PREM with elastic lithosphere. The lower mantle viscosity νLM is (a) 1021 Pa s, (b) 1022 Pa s and
(c) 1023 Pa s.



5.3 Compressible and incompressible True Polar Wander 187

5.3 Compressible and incompressible True Polar Wan-

der

Incompressible Maxwell Earth models have been widely used in the last two decades

for TPW simulations. For this reason we now compare these models with the compress-

ible Maxwell Earth models. At the same time, we quantify the effects of the different

rheologies of the lithosphere, elastic or viscoelastic.

Fig. 5.2 shows the comparison between the compressible (solid line) and incom-

pressible (dashed line) Green functionskTF,E − KT
E in the case of an elastic (E) litho-

sphere, 120 km thick. The lower mantle viscosityνLM is increased by one order of

magnitude from1021 Pa s to1023 Pa s from top to bottom panel. The time window

considered is10 Myr, much longer than the ice age time scale of1 Myr. In general the

compressible rotational bulge readjusts faster than the incompressible one.Indeed, the

Green functionkTF,E −KT
E for the compressible model is lower than that for the incom-

pressible model, with the exception of the time intervals[3× 102, 4× 103] kyr (panel a)

and[103, 104] kyr (panel b) for the lower mantle viscositiesνLM = 1021 and1022 Pa s,

respectively. ForνLM = 1023 Pa s (panel c) the two models predict very similar values

until 1 Myr, where the compressible rotational bulge begins to readjust faster to the new

rotation axis than the incompressible rotational bulge.

In fig. 5.3, the elastic (E) lithosphere has been replaced by the viscoelastic(V)

lithosphere, with viscosityνL = 1026 Pa s. In this case, the Green functionkTF,V −KT
V

for the compressible model is always lower than that for the incompressible model. The

vertical scale has been reduced compared to fig. 5.2. Indeed, at 10 kyr, all the layers have

significantly relaxed except for the high viscous viscoelastic lithosphere,which behaves

as an elastic body as shown in fig. 5.1 (b). This results in the fact that at10 Myr both the

compressible and incompressible Green functionskTF,V − KT
V differ from zero by the

discrepancykTF,V − kTF,E . SincekTF,E depends on the rheology of the elastic lithosphere,

compressible,0.920, or incompressible,0.918, the discrepancykTF,V − kTF,E for the

compressible model,0.014, is smaller than that for the incompressible model,0.016.

Thus, before10 Myr, the viscoelastic compressible lithosphere is more deformable than

the incompressible lithosphere and this explains the fact that the compressiblebulge

readjust faster than the incompressible bulge.

Fig. 5.4 shows the comparison between the compressible (solid line) and incom-
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Figure 5.3: Readjustment of the equatorial bulge, kTF,V − KT
V , for compressible (solid) and incompressible

(dashed) PREM with viscoelastic lithosphere. The lower mantle viscosity νLM is (a) 1021 Pa s, (b) 1022 Pa s
and (c) 1023 Pa s, and the lithosphere viscosity νL is always 1026 Pa s.
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Figure 5.4: Load response 1 + KL
E of the compressible (solid) and incompressible (dashed) PREM with the

elastic lithosphere. The lower mantle viscosity νLM is (a) 1021 Pa s, (b) 1022 Pa s and (c) 1023 Pa s.
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pressible (dashed line) Green function1+KL
E for the elastic (E) lithosphere case. As in

figs 5.2 and 5.3, the lower mantle viscosityνLM is increased of one order of magnitude

from 1021 Pa s to1023 Pa s in each panel and we consider a time window of10 Myr.

The Green function1 + KL
E for the compressible model is always lower than for the

incompressible models, indicating that compressible models are more deformable. The

difference between the compressible and the incompressible cases is larger for the load

response than for the equatorial bulge readjustment (compare fig. 5.4 withfigs 5.2 and

5.3). Particularly, in the elastic limitt → 0, the readjustment of the equatorial bulge is

marginally affected by the different rheologies (see fig. 5.2 and 5.3), while compressible

and incompressible cases differ by10 per cent for loading, fig. 5.4. We do not show the

results for the model with the viscoelastic lithosphere since, on the time scale of10 Myr,

they are very similar to those shown in fig. 5.4 for the elastic lithosphere case.

By comparing the Green functions between the panels of figs 5.2, 5.3 and 5.4, we

note that the increase of the lower mantle viscosityνLM by one order of magnitude, from

1021 to 1023 Pa s, delays by about one order of magnitude the time at which compress-

ibility becomes effective during the transient, from10 kyr to 103 kyr, both for loading

and equatorial bulge readjustments. Particularly, for the high lower mantle viscosity

νLM = 1023 Pa s (panel c), the compressibility is almost undistinguishable from incom-

pressibility on time scale of the ice ages,1 Myr.

We now consider TPW simulations driven by ice ages. For the ice loading, we

begin by consider only the last ice age, characterized by linear glaciation and deglacia-

tion phases of90 kyr and10 kyr, respectively, and the same maximum ice sheet inertia

perturbations as in Mitrovicaet al. (2005),∆Iice
13 = −6.67 1031 kg m2 and∆Iice

23 =

2.31 1032 kg m2. Fig. 5.5 compare the TWP displacements, eq. (5.35), for compressible

(solid line) and incompressible (dashed line) PREM with elastic lithosphere, without

considering any non hydrostatic contribution from mantle convection,β = 0. Fig. 5.6

is the same but for the case of viscoelastic lithosphere, with viscosityνL = 1026 Pa s.

As for figs 5.2, 5.3 and 5.4, the TPW displacements are computed for increasing lower

mantle viscositiesνLM, from 1021 Pa s to1023 Pa s from top to bottom.

The shape of TPW displacement curves is characterized by an increasing displace-

ment during the glaciation phase, from10 to 90 kyr, away from Hudson bay followed by

a still ongoing displacement toward Hudson Bay. Starting from the elastic lithosphere

results, fig. 5.5, the TPW displacements for the compressible models are always smaller
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than those for the incompressible models, except whenνLM = 1021 Pa s (panel a) in

the time interval[120, 200] kyr. This finding is in agreement with the Green functions

1 + KL
E of fig. 5.4. Indeed, the incompressible lithosphere does not readjust to aload

as fast as the more deformable compressible lithosphere, and thus the ice age loading

drives more efficiently the polar wander for the incompressible rheology.

As already observed from the Green functions, an increase of the lower mantle vis-

cosityνLM reduces the differences between the compressible and incompressible mod-

els, as clearly shown in fig. 5.5 (c). The TPW displacements are always positive, mean-

ing that the rotation pole does not cross the initial north pole while it moves backtowards

Hudson bay. Indeed the displacementsm at t = 1 Myr differ significantly from the ini-

tial north pole position at zero, particularly for lower mantle viscosities1021 and1022

Pa s, fig. 5.5 (a, b), and for the incompressible rheology. This shows that each glaciation

cycle moves the pole by a finite amount away from Hudson bay not only for the layered

incompressible models as the secular term of eq. (5.31) implies, but also for continuous,

compressible or incompressible, models.

The models with the viscoelastic lithosphere are depicted in fig. 5.6. The TPW

displacements resemble those shown in fig. 5.5 for the case of the elastic lithosphere,

although with some reduction in amplitudes. This behaviour is more effective for the

lower mantle viscosityνLM = 1021 Pa s, characterized by almost a factor of2 reduction

(compare panels (a) of figs 5.5 and 5.6). This indicates that the difference between

viscoelastic and elastic lithospheres is the largest for a soft lower mantle. Differently

from fig. 5.5, now the rotation pole crosses the initial north pole at about200 kyr, fig.

5.6 (a), and at700 kyr, fig. 5.6 (b), both for compressible and incompressible models,

while for the lower mantle with high viscosity, fig. 5.6 (c), the crossing occursat 500

kyr only for the compressible model. Thus the TPW displacement of models with a

viscoelastic lithosphere does not end up with any finite displacement away from Hudson

bay (Mitrovicaet al., 2005). This drastic reduction of the TPW displacement is due to

the increased delay in the readjustment of the hydrostatic equatorial bulge due to the high

viscous viscoelastic rheology of the lithosphere which stabilizes rotationally the planet,

as discussed in section 5.2.

The drastic reduction of the TPW displacement when the viscosity of the viscoelas-

tic lithosphere is reduced to that of the upper mantle,νL = 1021 Pa s, compared to the

elastic case, has been shown first by Vermeersen and Sabadini (1999) in their fig. 8,
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Figure 5.5: The TPW displacement m due only to the last ice age for the compressible (solid) and incompress-
ible (dashed) PREM with the elastic lithosphere. The lower mantle viscosity is νLM = 1021 (a), νLM = 1022

(b) and νLM = 1023 (c) Pa s.
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Figure 5.6: The TPW displacement m due only to the last ice age for the compressible (solid) and incom-
pressible (dashed) PREM with the viscoelastic lithosphere, νL = 1026 Pa s. The lower mantle viscosity is
νLM = 1021 (a), νLM = 1022 (b) and νLM = 1023 (c) Pa s. The negative values of m indicate that the rotation
pole has already crossed its initial position.
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for the full series of ice age cycles. In this case, two counteracting effects are involved.

First, the easier relaxation of the lithospheric stresses accumulated during the polar ex-

cursion allows the equatorial bulge to readjust faster, as pointed in fig. 3 of Ricard et

al. (1993). Second, the full isosatic compensation on the ice age time scale reduces the

perturbation of the inertia tensor due to the ice age loading, eq. (5.12). Between the two

effects, which respectively reduces and increases the rotational stability of the Earth, the

stabilizing one due to isostatic compensation is dominant as indicated by the reduction

of the TPW displacement. The importance of the full isostatic compensation in TPW

predictions can be understood by considering that the viscoelastic lithosphere nullifies

the secular term responsible of a net shift of the rotation axis away from Hudson bay

after the end of each ice age cycle. Indeed, the load fluid love number iskFL = 1 for the

viscoelastic lithosphere and, then, the factors can be simplified from the numerator and

the denominator of eq. (5.31).

Although carried out with different values for the lithospheric viscosityνL, the TPW

simulations of Vermeersen and Sabadini (1999), Nakada (2002), Mitrovicaet al. (2005)

and those given in fig. 5.6 behave as expected on the basis of the underlying physi-

cal hypotheses. Particularly, the “Nakada paradox” is explained within the “traditional

approach” in terms of an increase in the delay of the readjustment of the hydrostatic

equatorial bulge due to the high lithospheric viscosityνL .

5.4 The role of mantle heterogeneities

In order to estimate the correctionβ, eq. (5.25), Mitrovicaet al. (2005) considers

the difference between the observed fluid Love numberkTF,obs and the tidal fluid limit

kTF,II coming from the second–order theory of the hydrostatic equilibrium figureof the

rotating Earth (Nakiboglu, 1982). These authors found thatβ = kTF,obs − kTF,II = 0.008.

This difference represents the non–hydrostatic contribution due to the lateral density

variations and dynamic topography sustained by convection.

Nakiboglu’s hydrostatic flattening is close to the values given by other authors (De-

nis, 1989; Alessandrini, 1989). However as theβ parameter is the small difference

between two large numbers (observed fluid Love number and tidal fluid limit), the β

deduced from these different authors only agree within10 per cent. Notice also that all

these papers were using PREM (Dziewonski and Anderson, 1981) which was in agree-
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ment with an Earth’s mass and inertia that have been sligthly reevaluated since. The

hydrostatic flattening according to Clairaut’s first order theory is essentially controlled

by I/Ma2 (Radau’s result, whereI,M anda are the Earth’s, inertia, mass and radius), a

parameter equal to0.3308 in PREM while the most recent estimate is0.33069 (Chambat

and Valette, 2001). This reevaluation should reduce the predicted hydrostatic flattening

and, by consequence, increaseβ. Clearly a more rigorous estimate of the hydrostatic

flattening is needed but is beyond the goal of this paper (see Chambatet al., 2010). It

seems qualitatively that theβ parameter chosen by Mitrovicaet al. (2005) might be

a conservative value that could be increased up toβ = 0.01. Mitrovica et al. (2005)

were aware of the possible uncertainity on theβ parameter and indeed they consider the

reasonable range0.006 < β < 0.01 in their fig. 10.

We now quantify the effects of the slow mantle convection for models with a high

viscous viscoelastic lithosphere,νL = 1026 Pa s, by making use of the sameβ correc-

tion as in Mitrovicaet al. (2005), namelyβ = 0.008 in eq. (5.24). Fig. 5.7 shows

the effects of this non hydrostatic contribution to the equatorial bulge, to be compared

with fig. 5.6. For the soft lower mantleνLM = 1021 Pa s (panels a of figs 5.6 and 5.7),

the minor differences during the active loading glaciation–deglaciation phase, from10

to 100 kyr, are accompanied by large deviations at the end of the unloading. At100 kyr,

the displacement is reduced by a factor of 3 with respect to the compressiblerheology

and almost by a factor of 2 with respect to the incompressible one. For the higher lower

mantle viscositiesνLM = 1022 Pa s (panel b) andνLM = 1023 Pa s (panel c). Differently,

the effects of the non hydrostatic contribution are not as important. The TPWdisplace-

ment forνLM = 1021 Pa s is so inhibited by the non hydrostatic contribution that both

compressible and incompressible models predict a change of sign in the displacement

m at about15 kyr after the end of deglaciation, fig. 5.7 (a), with the axis of rotation

being displaced toward the deglaciated region with respect to the initial north pole. Zero

crossings occur earlier in time also for the higher viscosity cases, fig. 5.7 (b, c), but not

as dramatically as for the models with the soft lower mantle ofνLM = 1021 Pa s.

This behaviour of the TPW displacement, like a dampened pendulum crossingthe

initial north pole, occurs both for the high viscosity lithosphere and in the presence of

a non hydrostatic correctionβ. It is a completely different process than that due to the

coupling in the linearized rotation equations of the direction cosinesm1 andm2 involved

by the first term of the right side of eqs (5.20) and (5.26), neglected in thepresent work
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Figure 5.7: The TPW displacement m due to the last ice age only of the compressible (solid) and incompress-
ible (dashed) PREM with the viscoelastic lithosphere, νL = 1026 Pa s, and the non–hydrostatic correction
β = 0.008. The lower mantle viscosity is νLM = 1021 Pa s(a), νLM = 1022 Pa s (b) and νLM = 1023 Pa s (c).
The negative values of m indicate that the rotation pole has already crossed its initial position.
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following Mitrovica and Milne (1998). This coupling explains the 14 month Chandler

wobble and a small amplitude wobble with a period much larger than the1 Myr consid-

ered in figs 5.6 and 5.7.

We now investigate the sensitivity of the present–day TPW predictions to the rheol-

ogy of the lithosphere and to theβ correction. Fig. 5.8 shows the present–day TPW rate,

namely the time derivative of the displacements of figs 5.5, 5.6 and 5.7 evaluatedat 6

kyr after the end of unloading, as a function of the lower mantle viscosityνLM. We use

the compressible model with a viscoelastic lithosphere (dashed line) and we vary theβ

correction (thin solid lines) by steps of0.002 from 0.002 to 0.016, around the value of

0.008 (dash–dotted line) used in Mitrovicaet al. (2005). The case with an elastic litho-

sphere is indicated by the thick solid line. In this figure, only one ice cycle is considered.

The largest sensitivity of TPW rates to lithospheric rheology andβ correction occurs for

lower mantle viscositiesνLM smaller than1022 Pa s. AtνLM = 1021 Pa s the predicted

rates vary from−0.91 deg/Myr, for the model with the elastic lithosphere (thick solid

line), to−0.29 deg/Myr, for the model with the viscoelastic lithosphere and the correc-

tion β = 0.008 (dash–dotted line). As first shown by Mitrovicaet al. (2005), the effects

of the non hydrostatic bulge is to dampen TPW rates when the lower mantle viscosity

νLM is in the range from1021 Pa s to1022 Pa s. For very largeβ corrections,0.014 and

0.016, the damping effect of the non hydrostatic bulge is made evident by the change of

sign of the TPW rate, indicating that the rotation pole crosses its initial position and is

going now away from Hudson bay once again. The non hydrostatic contribution from

convection is so effective in fixing the rotation axis that the pole of rotation comes back

to its initial position without any finite displacement of the pole.

A better comparison with Mitrovicaet al. (2005) results, and a more realistic esti-

mate of present–day TPW rates, is obtained by considering the full series of eight ice age

cycles, as shown in fig. 5.9. For the elastic lithosphere case and whenνLM = 1021 Pa

s, adding the seven previous ice age cycles to the single cycle consideredin fig. 5.8, in-

creases the TPW rates by a factor of2, while for νLM greater than1022 Pa s the increase

is only of 10% or less. On the contrary, for the model with the viscoelastic lithosphere,

both with or without the non hydrostatic contribution, the previous seven ice ages have

a negligible effect, the differences being lesser than5% for the whole range of lower

mantle viscosity. This shows that the TPW rate remains mostly sensitive to only the last

ice age.
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Figure 5.8: The present TPW rate ∂tm due only to one ice age, evaluated at 6 kyr after the end of the
deglaciation, as function of the lower mantle viscosity νLM, for PREM with the elastic lithosphere (thick solid
line), the high viscosity viscoelastic lithosphere, (dashed line), νL = 1026 Pa s, and with the non–hydrostatic
contribution β = 0.008 (dashed–dot line). The thin solid lines refer to the PREM with the hard viscoelastic
lithosphere and the non hydrostatic correction β varying from 0.002 to 0.016 by steps of 0.002, from top to
bottom. The sign of ∂tm indicates whether the rotation pole moves forward to, negative, or go away from,
positive, the Hudson bay.

This latter remark explains also why, with the elastic lithospheric rheology, the TPW

rate versus lower mantle viscosityνLM does not have the same bell shape as the geopo-

tential changes due to PGR. In this case, the TPW predictions are sensitivealso to the

previous seven ice ages mainly for lower mantle viscosity in the range from1021 Pa s

to 1022 Pa s as it results from the comparison of figs 5.8 and 5.9 for the model with the

elastic lithosphere (thick solid line). This is due to the fact that, without a high viscosity

viscoelastic lithosphere or a non hydrostatic contribution from mantle convection, the

only stabilizing effect is the delay in the readjustment of the hydrostatic equatorial bulge

to the axis of instantaneous rotation controlled by the lower mantle viscosityνLM, which

becomes smaller and smaller decreasingνLM.

The damping effect due to the high viscosity of the lithosphere and to the non hy-

drostatic contribution is more evident in the displacement of the rotation axis thanin

the TPW rate, as we show in fig. 5.10. After the eight ice age cycles, in the case of
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Figure 5.9: The same as fig. 5.8, but for the full series of eight ice ages.

the elastic lithosphere (thick solid line), the axis of rotation is displaced from its initial

position by0.27 deg, atνLM = 1021 Pa s, and this value diminishes gradually with the

lower mantle viscosity to about0.02 deg/Myr atνLM = 1023 Pa s. The rheology change

from elastic (thick solid line) to viscoelastic (dashed line) lithosphere causesreductions

in the TPW displacements by factors ranging from20, at νLM = 1021 Pa s, to2, at

νLM = 1023 Pa s. The value obtained for our compressible model with the elastic litho-

sphere and the low lower mantle viscosity ofνLM = 1021 Pa s is very similar to what is

obtained in Vermeersen and Sabadini (1999) for a simpler5–incompressible model. The

TPW displacements are subjected to further reductions when aβ correction is added.

Particularly, forβ = 0.008 (dash–dotted line), the rotation pole crosses the initial north

position. Generally, as shown in fig. 5.10 (b), the TPW displacements for theviscoelas-

tic lithosphere range in a narrow interval for any values of the lower mantle viscosity

νLM, from−0.011 deg to0.022 deg even without theβ correction.

The present–day TPW rates obtained using the correctionβ = 0.008 reaches at

most−0.71 deg/Myr for a lower mantle viscosityνLM = 8× 1021 Pa s. This is−0.215
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Figure 5.10: The present TPW displacement m due to the full series of eight ice ages, evaluated at 6 kyr
after the end of the deglaciation, as function of the lower mantle viscosity νLM, for PREM with the elastic
lithosphere (thick solid line), the high viscosity viscoelastic lithosphere, (dashed line), νL = 1026 Pa s, and
with the non hydrostatic correction β = 0.008 (dashed–dot line). The thin lines refer to PREM with the
viscoelastic lithosphere and the non hydrostatic correction β varying from 0.002 to 0.016 by steps of 0.002,
from top to bottom. The negative values of m indicates that the rotation pole has already crossed its initial
position. The panel (b) shows the enlargement of the panel (a) in the range of [−0.015, 0.03] deg.
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deg/Myr lower than the observed rate of−0.925 deg/Myr (McCarthy and Luzum, 1996).

Our findings fully support the results obtained by Mitrovicaet al. (2005) and, hav-

ing been obtained on the basis of compressible Earth models which take into account

continuous variations of the material parameters, and thus relying on the contour in-

tegration rather than on normal mode summation, they provide an independentconfir-

mation. Even if we consider models with elastic lithosphere we obtain the same TPW

predictions once the tidal fluid limitKT
F,E = 0.920 from modelling is replaced by the

estimatekTF,obs = 0.942 of Mitrovica et al. (2005), their eq. (16). Indeed the sta-

bilizing effect of the larger non hydrostatic bulge for models with elastic lithosphere,

β = kTF,obs − KT
F,E = 0.022, would be quantitatively the same of the two stabilizing

effect acting in the case of models with the high viscous viscoelastic lithosphere: the

delayed readjustment of the equatorial bulge together with the smaller non hydrostatic

bulge,β = kTF,obs −KT
F,V = 0.008. This means that TPW studies cannot discriminate

between the effects of the lithospheric rheology and of the lateral density variations and

dynamic topography sustained by convection. In any case, the parameterβ has to be

consistent with mantle convection models.

5.5 Conclusions

We have compared ice age TPW predictions using the traditional approach where the

equilibrium flattening is self consistently computed (Sabadini and Peltier, 1981; Saba-

dini et al., 1982; Wu and Peltier, 1984) and the scheme proposed by Mitrovicaet al.

(2005) where the observed tidal fluid number is considered. The motion ofthe rotation

axis, given by the linearized Liouville equation (5.20), depends on the load–induced

perturbation,1 + k̃L(s), and on the readjustment of the equatorial bulge,kTF − k̃T (s).

Over the time of ice age, the load,k̃L(s), and tidal,̃kT (s), Love numbers, computed for

models with an elastic and high viscous viscoelastic lithosphere are the same. Neverthe-

less, the traditional approach leads to different TPW predictions due to thefact that the

high viscous viscoelastic lithosphere implies an extra delay of the readjustmentof the

equatorial bulge, compared to the elastic lithosphere (see fig. 1). The elastic and vis-

coelastic lithospheres are indeed associated with different stress patters. Frozen stresses

are present in the elastic lithosphere before and after the glaciation, while the viscoelas-

tic lithosphere is initially stress free and it builds up stress that cannot relax during the
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polar motion for high lithospheric viscosities.

In order to take into account the difference between observed and modelled tidal fluid

numbers, Mitrovicaet al. (2005) introduce theβ–correction, eq. (5.25). This scheme

represents a first attempt to couple mantle convection with ice age TPW within a linear

rotation theory. As first enlightened by Mitrovicaet al. (2005), this ice age–convection

coupling dampens present–day ice age TPW rates since the non hydrostaticextra bulge,

frozen within the planet, stabilizes the planet by slowing down the displacementof the

axis of rotation away from this fixed orientation so effectively that the rotation pole goes

back to its initial position at large time. We show that self–consistent non hydrostatic

bulge resulting from convection calculations plays a fundamental role in obtaining re-

alistic estimates of this non hydrostatic contribution, due to its major impact in TPW

simulations in the lower mantle viscosity range from1021 Pa s to1022 Pa s.

With the extra degree of freedom given by the parameterβ, models with elastic and

high viscous elastic lithosphere lead to the same ice age TPW prediction. It is therefore

difficult to choose the most appropriate lithospheric rheology when the distinction is

made between the actual shape of the Earth and its equilibrium shape. We agree however

with Mitrovica et al. (2005) that using a viscoelastic lithosphere in the framework of the

traditional theory seems reasonable because it is simpler (but not necessary true) to start

from a relaxed lithospheric stress and because the tidal fluid limit from the viscoelastic

modelling is closer to observation and thus a smaller mantle contributionβ needs to be

introduced.

The present–day value ofβ, related to the excess flattening due to mantle convection,

cannot be best evaluated than by subtracting the computed hydrostatic tidalfluid limit

to the observed fluid Love number, eq. (5.25). On geological time scale, asthe Earth is

constantly reorienting to maximize its equatorial inertia, i.e., to be more flattened than

the hydrostatic estimate,β should always remain positive except maybe during excep-

tional inertial interchange polar excursion (Richardset al., 1999). The value of the non

hydrostatic contributionβ due to convection can be estimated by means of convection

models or, for the last hundred million years, from paleoreconstruction ofplate tectonics

(Ricardet al., 1993b). The difference between the time dependent inertia terms remains

of the same order than Mitrovicaet al. (2005) estimate of0.008 within a factor 2. This

means that the Earth’s rotation axis is always very stable with respect to short term forc-

ings like glaciations: as soon as the forcing vanishes, the mantle density anomalies force
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the rotation axis to come back to its initial position. Only mantle convection, can drive

large TPW displacements (Spadaet al., 1992b).

Once the Mitrovicaet al. (2005) estimate of the correctionβ = 0.008 is taken into

account, the highest present–day TPW rate of0.71 deg/Myr from glacial forcing is ob-

tained for a lower mantle viscosity of1022 Pa s, which means that at least23 per cent

of the observed value of0.925 deg/Myr (McCarthy and Luzum, 1996) remains unex-

plained. This implies that mantle convection must drive polar motion to be compliant

with observations. Recent mantle circulation models by Schaberet al. (2009), charac-

terized by a large heat flux at the core–mantle boundary, require a lowermantle viscosity

of 1023 Pa s to stabilize the planet rotation, leading to TPW rates of about0.5 deg/Myr

in rough agreement with the direction towards Newfoundland in the last100 Myr. The

first self–consistent TPW calculations from mantle convection have been obtained by

Ricardet al. (1993b) and already required a substantial increase in the lower mantle vis-

cosity,1022 Pa s at least, to rotationally stabilize the planet. The ice age TPW, coupled

with the stabilizing effect of the excess flattening due to mantle convection, in addition

to the TPW driven by mantle convection are thus both needed to fulfill observations,

requiring lower mantle viscosity ranging from1022 to 1023 Pa s. If this is the case, the

β–correction proposed by Mitrovicaet al. (2005) would only impact marginally the es-

timate of ice age TPW rates, as it would be the high viscosity of the lower mantle that

would control the TPW. It is notable that an inconsistency for lower mantle viscosity

predictions between glacial and convection forcing continues to exist. Indeed, for the

Schaberet al. (2009) estimate of1023 Pa s lower mantle viscosity, glacial forcing would

provide at most TPW rates of0.1 deg/Myr that, summed to the convection TPW rate

of 0.5 deg/Myr, would not explain the observation of1 deg/Myr. The exact balance of

the TPW, between deglaciation and convection forcings, is therefore notyet well under-

stood.
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True Polar Wander, the slow motion of Earth’s rotation axis with respect to theman-

tle is generally taken as evidence of mantle convection (Spadaet al., 1992) and Pleis-

tocene ice sheet melting (Sabadini and Peltier, 1981; Mitrovicaet al., 2005; Cambiotti

et al., 2010). Owing to the ability of the rotational bulge to relax and readjust to pertur-

bations of the rotation axis on a time scaleT that ranges from1 to 100 kyr, depending

on the internal viscoelastic stratification (Ricardet al., 1993a), Earth’s rotation axis con-

stantly tracks the Maximum Inertia Direction of Mantle Convection (MID–MC) onthe

million year time scale of mantle convection. On this long time scale, however, it is

often assumed that the planet readjusts without delay and that the rotation axis and the

MID–MC coincide (Jurdy, 1978; Steinberger and O’Connell, 1997; Roubyet al., 2010).

This coincidence, however, cannot be taken as a general rule. Usingmantle density

anomalies observed by seismic tomography, Ricard and Sabadini (1990) showed out

that the present–day rotation axis lags behind the MID–MC by some degrees. Ricard

et al. (1993a) pointed out that the planet, submitted to a change of inertia of orderE

attributable to mantle convection, will wander with a characteristic time of orderT (C−
A)/E, with C andA being the polar and equatorial inertia moments. In view of this,

the Earth can shift its rotation pole from a starting position to a new position in a time

larger than a few100 kyr or a few million years. On the basis of similar arguments,

Steinberger and O’Connell (1997) estimated that the offset between the rotation axis

and the MID–MC should be less than1◦, even for an high viscous mantle with lower

mantle viscosity of1023 Pa s. This estimate, however, was obtained assuming a MID–

MC rate less than0.2◦/Myr during the past50Myr. Accounting for the delay of the

readjustment of the rotational bulge and allowing for an offset between thegeographic

north pole and the present–day MID–MC, Richardset al. (1997) estimated TPW paths

for different viscosity profiles of the mantle. Nevertheless, they did not quantify the

offset and concluded that the influence of the delay on TPW is small.

In light of this, although Ricardet al. (1993a), Richardset al. (1997) and Stein-

berger and O’Connell (1997) provided some insights into the long time scale rotational

behaviour of the Earth, a concise and complete picture of the problem is still lacking

at the moment. We herein overcome these limitations and discuss a new treatment of

the non–linear Liouville equation that allows to describe the long time scale rotational

behaviour of the Earth via a simple linear theory. Thus, we clarifies this long debated

issue and its connections with seismic tomography.
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6.1 Linearized rotation theory for finite polar excursions

To clarify the long time scale rotational behaviour of the Earth, we must start with the ba-

sic laws governing the relative motion of the rotation axis with respect to the MID–MC.

It can be appropriately dealt with in the reference frame defined by the three eigenvectors

ek of mantle convection inertia tensorC

C =
3
∑

k=1

Ck ek ⊗ ek (6.1)

where⊗ stands for the algebraic product and whereCk are the inertia moments. HereC3

is the maximum inertia moment (C3 ≥ C2 andC3 ≥ C1) ande3 is the MID–MC. This

is a time dependent reference frame and, from geometric considerations (Ben–Menahem

and Singh, 1981), the time derivatives of the eigenvectorsek yield

dek
dt

= ξ × ek (6.2)

Here,ξ is the angular velocity of the mantle convection inertia that we write as follows

ξ = −V2 e1 + V1 e2 + V3 e3 (6.3)

in such a way thatV1 andV2 are the components of the MID–MC velocityde3/dt along

the equatorial axese1 ande2, respectively.V3 describes the counterclockwise rotation

rate of the equatorial axes around the MID–MC.

We write Earth’s angular velocityω asω = ωn, whereω andn are the rotation

rate and axis. Within the reasonable assumption that the angle between rotationaxis and

MID–MC is small, the rotation axisn can be expressed in terms of direction cosinesm1

andm2 along the equatorial axese1 ande2,

n = m1 e1 +m2 e2 + e3 (6.4)

The time variation of Earth’s angular velocityω is therefore
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dω

dt
= n

dω

dt
+ ω

dn

dt
(6.5)

where the first term on the right is related to the change of the length of the day and the

second term to the TPW velocityv = dn/dt, which, assuming that the time evolution

of mantle convection is slow, becomes

v =

(

dm1

dt
+ V1

)

e1 +

(

dm2

dt
+ V2

)

e2 (6.6)

The expressions (6.4) and (6.6) are correct to first order, for smallm1, m2 andξ (i.e.,

neglecting terms of ordermimj ormi Vj).

The rotation axis, averaged over a few Chandler periods, is aligned with the direction

of maximum total inertia (Munk and MacDonald, 1960), i.e., is the eigenvector of the

sum of the inertia tensors due to the rotational bulge,B, and the mantle convection,C,

n× (B + C) · n = 0 (6.7)

We take into account the relaxation of rotational bulge by means of the long–term ap-

proximation (Spadaet al., 1992; Ricardet al., 1993a) of the MacCullagh’s formula for

centrifugal deformation (Munk and MacDonald, 1960). As shown in Appendix A of

Cambiottiet al. (2011b), it can be cast as follows

B = β ω2

[(

1− 2T

ω

dω

dt

)(

n⊗ n− 1

3
1

)

− T (n⊗ v + v ⊗ n)

]

(6.8)

where1 is the identity matrix,T the time scale of readjustment of rotational bulge and

β ω2 the difference between polar and equatorial inertia moments of the hydrostatic ro-

tational bulge. The time scaleT can easily be computed for any spherically symmetric

viscoelastic Earth’s model and should be of the order of30 kyr (Ricardet al., 1993a).

Eq. (6.8) accounts for the readjustment of the rotational bulge due to variations of

the length of day via the term proportional todω/dt. However, as we have neglected the

time derivative of the angular momentum in the Liouville equation averaged overa few
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Chandler periods (see eq. (6.7)), the length of day remains constant and the minute term

(2T/ω)(dω/dt) can also be neglected.

Thus, by solving eq. (6.7) using eqs (6.1), (6.4), (6.6) and (6.8), we obtain a first

order differential equation for each direction cosinemi

dmi

dt
+
mi

Ti
= −Vi (i = 1, 2) (6.9)

whereTi are time scales defined by

Ti =
β ω2

C3 − Ci
T (i = 1, 2) (6.10)

Eqs (6.9) and (6.10) show thatVi are the forcings of the relative motion of rotation

axis and that the actual time scalesTi controlling this relative motion are not simply

the time scaleT of the rotational bulge readjustment, but are increased by the factor

β ω2/(C3 − Ci).

The difference between polar and equatorial inertia moments of the hydrostatic ro-

tational bulgeβ ω2 has been recently estimated (Chambatet al., 2010)

β ω2 ≈ 1.0712× 10−3Ma2 (6.11)

with M anda being the Earth’s mass and mean radius. The differences between the

inertia moments of mantle convection,C3 − Ci, is typically of order of the differences

between the observed total inertia moments of the Earth (usually defined asA, B and

C), minus the hydrostatic contributionβ ω2 (Chambat and Valette, 2001)

C3 − C1 ≈ (C −A)− β ω2 = 1.48× 10−5Ma2

C3 − C2 ≈ (C −B)− β ω2 = 0.78× 10−5Ma2
(6.12)

Thus, as already argued in Ricardet al. (1993a), the time scalesTi are greater thanT by

a factor of about100. AssumingT = 30 ky, the relative motion of rotation axis is con-
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trolled by time scalesTi ≈ 3Myr, that are comparable with those of mantle convection,

say greater than1Myr. These findings show that the previous approximation based on

the assumption that the rotational bulge readjusts instantaneously to perturbations of the

rotation axis is not accurate. Particularly, it missed a fundamental aspect of TPW dy-

namics: the inertia perturbations due to mantle convection are two orders of magnitude

smaller than those of the rotational bulge. Such a smallness increases the time scales for

viscoelastic readjustment of the rotational bulge during the TPW to values comparable

to those of mantle convection. Notice also that the two direction cosinesm1 andm2 be-

have differently asT1 andT2 are likely to differ due to dependence in eq. (6.10) on the

differencesC3 − C1 andC3 − C2 (they differ by a factor of2 at the present–day). Fur-

thermore, since the time scalesTi are evolving with time, they could potentially become

infinite during inertial interchanges (Richardset al., 1999), a case that would invalidate

our linearized approach.

The role of the time scalesTi becomes clear by assuming them constant. In this case,

the solution of the linearized Earth’s rotation differential equations, eq. (6.9), yields

mi(t) = −e−t/Ti ⋆ Vi(t) (i = 1, 2) (6.13)

with ⋆ standing for time convolution. This means that the time scalesTi are the relax-

ation times for the relative motion of the rotation pole forced by the MID–MC velocity

componentsVi. In this respect, eq. (6.9) and its particular solution, eq. (6.13), allow

us to discerns the effects on TPW dynamics due to the delay of the readjustment of the

rotational bulge and to the time evolution of mantle convection. A MID–MC velocity,

constant for a time greater thanTi, drives the pole at the same velocity,dmi/dt = 0, but

with the pole lagging behind the MID–MC by the angle

mi = −Ti Vi (i = 1, 2) (6.14)

This result has the same physical meaning as eq. (1) of Steinberger and O’Connell

(1993). Furthermore, from eq. (6.13), it is also clear that variations ofthe MID–MC

velocity, occuring on times comparable or smaller thanTi, break the equilibrium of the

relative position of the rotation axis with respect to the MID–MC given by eq.(6.14).
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Particularly, they yield different TPW and MID–MC velocity amplitudes and directions.

Such a result cannot be inferred within the previous framework (Ricardet al., 1993a;

Richardset al., 1997; Steinberger and O’Connell, 1997) and shows that estimates of

TPW rates must account both for fluctuations of Earth’s inertia tensor andthe delay of

readjustment of rotational bulge.

6.2 Time–dependent inertia due to mantle convection

Let us consider the componentsCij = xi · C · xj andBij = xi · B · xj of the mantle

convection and rotational bulge inertia tensors in the geographical reference frame with

unit vectorsx1, x2 andx3 (x1 points to the equator and the Greenwich meridian, while

x3 points to the north pole, i.e., coincides with the present–day rotation axis). In view of

eq. (6.7), at present timet = 0, the total inertia tensor (mantle convection plus rotational

bulge) has zero off–diagonal components alongx3

Ci3(0) + Bi3(0) = 0 (i = 1, 2) (6.15)

and, by making use of eqs (6.8), we obtain

Ci3(0) = β ω2 T xi · v(0) (i = 1, 2) (6.16)

which corresponds to eqs (8)–(9) of Ricardet al. (1993b) or eq. (3) of Steinbergeret al.

(1997). Thus, the off–diagonal componentsC13(0) andC23(0) of the mantle convection

inertia tensor are non–zero in a wandering planet (i.e., whenv(0) 6= 0) and cannot be

estimated from observations of the total inertia of the Earth as they are compensated by

the rotational bulge not yet readjusted to the north pole. They must be estimated from 3–

D models of Earth’s density anomalies, accounting for the effect of dynamictopography

(Ricardet al., 1993b), or by solving the rotational problem as we are going to show.

We compute the mantle convection inertia tensor by means of our previously de-

veloped modelling strategy (Ricardet al., 1993b; Richardset al., 1997), assuming that

largest changes in mantle density heterogeneities are likely caused by subduction. We

use reconstructions of global plate motions for Cenozoic and late Mesozoic(Lithgow–
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Bertelloniet al., 1993), to inject cold slabs into the mantle where plates converge. In or-

der to account for present–day geoid, for much of the observed seismicheterogeneities of

the mantle and for the long term rotational stability of the Earth indicated by paleomag-

netic data (Richardset al., 1997), we consider lower/upper mantle and lithosphere/upper

mantle viscosity ratios ofη1 = 30 andη2 = 10, respectively. The sinking velocity of

slabs when they enter the lower mantle is reduced by a factor of4.4 (the velocity de-

crease is expected to scale roughly with the logarithm of the viscosity increase). This

relation between viscosity increase and velocity reduction is a crude estimate that ne-

glects the complexity of thermal exchanges between the slabs and the transitionzone

(Ohta, 2010), but it is validated by the good fit to the geoid and to the lower mantle

tomography provided by the sinking slab model (Ricardet al., 1993b). Our kinematic

approach is independent of any assumed absolute mantle viscosity and yields an average

sinking velocity of slabs in the lower mantle of order 1.6 cm yr−1. This typical sinking

velocity has been confirmed by other studies (e.g., van der Meeret al., 2010).

This kinematic model of the mantle time–dependent density anomalies is certainly

simple but it provides a robust estimate of the inertia tensor which is related to a radial

integral of the longest wavelengths of the density anomalies (degree 2). Therefore, the

details of paleo–reconstructions do not impact this model. This model should provide

a better estimate of the time dependent evolution of Earth’s inertia than complex dy-

namic models (e.g., Steinberger, 2000) that require many questionable assumptions (a

backward in time advection of the present density anomalies that requires thechoice of

an absolute viscosity and assumes a depth dependent rheology in contradiction with the

very existence of plates).

The kinematic slab model provides a time–dependent inertia tensorCslab(t). At

present time, this model,Cslab(0), maximizes the correlation with the observed inertia

deduced from the geoid,Cobs, and is in good agreement with seismic tomography. As

discussed previously, the mantle inertia tensorCobs observed from geoid does not ac-

count for the two off–diagonal components alongx3 that, according to eq. (6.16), are

related to the history of TPW. As a consequence we consider that Earth’srotation is

forced by

C(t) = C
slab(t) + C

obs − C
slab(0) + δC (6.17)
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whereδC stands for the two present–day off–diagonal termsC13(0) andC23(0)

δC = C13(0) (x1 ⊗ x3 + x3 ⊗ x1) + C23(0) (x2 ⊗ x3 + x3 ⊗ x2) (6.18)

In this way, the inertia tensorC(t) is in agreement with that observed and has a time

dependence estimated from slab paleo–positions. We then constrain the two unknown

termsC13(0) andC23(0) by solving the non–linear Liouville equation (6.7) for a given

time scaleT and by requiring that the present–day rotation axisn(0) coincides with

the geographical north pole. In this way, the present–day total inertiaC(0) + B(0) has

zero off–diagonal components alongx3, as required by eq. (6.15). Note also that the

termCobs − Cslab(0) entering eq. (6.17) accounts for any contribution other than slab

subduction that can be assumed to remain constant with time, as large–scale upwellings

(Roubyet al., 2010) and the two large low shear velocity provinces (LLSVPs) in Earth’s

lowermost mantle (Torsviket al., 2006; Steinberger and Torsvik, 2010). This term is

small as the slabs by themselves explain most of the geoid, which suggests thatthe

LLSVPs should not affect significantly the inertia tensor.

This approach is somewhat similar to the method used in Richardset al.(1997) (see

their note 26). However, it does not arbitrarily assume that the present–day mantle iner-

tia termsC13(0) andC23(0) are zero. The latter assumption has been made in Steinberger

and O’Connell (1997) or Schaberet al. (2009). It implies the coincidence between the

present–day rotation axis and the MID–MC which is in contradiction with the observa-

tion of ongoing TPW as shown in eq. (6.16). Instead, by solving for the twounknown

terms,C13 andC23, we respect the correct physics of the problem. Notice also that we

solve the Liouville equations from past (starting∼ 100Myr ago) to present. It is incor-

rect to try to solve the Liouville equation backward in time as was done in Schaber et

al. (2009) which results in rotation axis apparently preceding the MID–MC rather than

lagging behind the MID–MC as it should (see their fig. 5).

In the following, we will express the off–diagonal termsC13 andC23 of the mantle

convection inertia tensor in terms of theC21 andS21 geoid coefficients in meters, that

are due to mantle convection alone and would be observed in the absence rotation. They

are related to each other as follows
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Figure 6.1: TPW paths for three time scales T = 0, 30 and 100 kyr (solid, dashed and dot lines with circles,
triangles and stars, respectively). The symbols are given at intervals of 10Myr. The present–day MID–MC
positions for three time scales T = 0, 30 and 100 kyr are also shown (open circles, triangles and stars,
respectively). Only when the rotational bulge readjusts instantaneously (T = 0), the MID–MC coincides with
the north pole.
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C13 = −M a2
√
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3

C21
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C23 = −M a2
√

5

3

S21
a

(6.19)

6.3 True Polar Wander simulations

Fig. 6.1 compares TPW paths obtained for three time scalesT = 0, 30 and100 kyr. The

case ofT = 0 corresponds to the readjustment of the rotational bulge without delay. For

viscosity ratios ofη1 = 30 (lower to upper mantle) andη2 = 10 (lithosphere to upper

mantle), the time scalesT = 30 and100 kyr correspond to upper mantle viscosities

of about1021 and3.3 × 1021 Pa s, respectively (the time scaleT is proportional to the

upper mantle viscosityνM , as discussed in Ricardet al., 1993a,b). As initial condition

for the Liouville equation, we assume that the rotation axis coincides with the MID–MC

at 100Myr before present. However, in view of eq. (6.13), it should be noticed that the

TPW path is affected by the initial condition only for a time of orderTi (fig. 6.2), about

3 and9Myr for T = 30 and100Kyr.

Due to the differences in the relaxation of the rotational bulge, TPW paths differ from

each other. Particularly, the polar excursion in the past10Myr reduces from6.9◦ for

T = 0 to 5.3◦ and3.6◦ for T = 30 and100 kyr, respectively. Furthermore, the present–

day MID–MC occupies different positions, reflecting the estimatedC21 andS21 geoid

coefficients due to mantle convection driven by slab subduction (Table 1).Particularly,

for T = 0, the present–day MID–MC is at the north pole since the rotational bulge

readjusts instantaneously. On the contrary, forT = 30 and100 kyr, the present–day

MID–MC are displaced by3.4◦ and7.1◦ towards68.9◦E and64.6◦E, respectively.

A reduction of the polar excursion by increasing the time scaleT is expected on

physical grounds, once the herein developed linearized differential equations, eqs (6.9)

and (6.13), are considered to reinterpret the non–linear calculations. For the three time

scalesT = 0, 30 and100 kyr, fig. 6.3 compares the MID–MC and TPW rates. For

T = 0, the rotational bulge readjusts instantaneously and, thus, the MID–MC andTPW
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Figure 6.2: Time scales T1 and T2 (solid and dashed lines, respectively) controlling the relative motion of the
rotation axis with respect to the MID–MC, eq. (6.10), for the time scale T = 30 and 100 kyr (black and gray
lines, respectively).

GEOID COEFFICIENTS(m) C21 S21
Seismic tomography −1.00 0.53
TPW dynamics (T = 0) 0 0
TPW dynamics (T = 30 kyr) −1.05 −2.07
TPW dynamics (T = 100 kyr) −2.87 −4.19

Table 6.1: Present–day C21 and S21 geoid coefficients due to mantle convection estimated from seismic
tomography (top line, coefficients obtained using the tomographic model Smean of Becker and Boschi (2002)
as described in Ricard et al., 1993b) or self–consistently estimated from TPW dynamics driven by the model
of subduction, for the three time scales T = 0, 30 and 100 kyr (bottom lines).

rates and paths coincide. Particularly, the TPW rate is affected by every short–term

fluctuation of Earth’s inertia tensor. Instead, forT = 30 and100 kyr, the inhibition

of the bulge relaxation filters out in time the short–term fluctuations of Earth’s inertia,

thus smoothing TPW rates. Furthermore, accordingly to eq. (6.13), variations of TPW

rates are delayed with respect to those of MID–MC by a time comparable to the time

scalesTi (fig. 6.2). Particularly, this yields a reduction of the present–day TPW rate

since the MID–MC rate increases by about1◦Myr−1 in the past10Myr. Compared to

the present–day TPW rate of1.24◦Myr−1 for T = 0, the present–day TPW rates of

0.85◦Myr−1 and0.55◦Myr−1 for T = 30 and100 kyr, respectively, are reduced by32

and56 per cent.
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Together with the TPW rate decrease, the offset angle between the rotationaxis and

the MID–MC increases, see fig. 6.4. ForT = 30 and100 kyr, they are about0.8◦ and

2.2◦ in the past100Myr and they increase to3.4◦ and7.1◦ at the present–day due to

the acceleration of the MID–MC in the past10Myr. Differently, the present–day TPW

directions are only slightly affected by the readjustment of rotational bulge (fig. 6.1) and

they point towards66.7◦E, 61.5◦E and55.7◦E for T = 0, 30 and100 kyr, respec-

tively. Even though the estimated TPW rates are in rough agreement with the observa-

tion of 0.925±0.022◦Myr−1 (McCarthy and Luzum, 1996), these results are in contrast

with the observed direction towards Newfoundland (75.0 ± 1.1◦W ). The general mo-

tion since the early Tertiary (50 to 60 Myr) of about4◦–9◦ toward Greenland is however

in agreement with paleomagnetic data (Besse and Courtillot, 2002), althoughtwe do not

obtain the period of (quasi) standstill at10–50Myr.

6.4 Conclusion

We have reinterpreted TPW simulations on the basis of the linearization of the Liou-

ville equation provided in eq. (6.9). Discerning between the effects of the delay of the

readjustment of the rotational bulge from those of the specific mantle convection models

used in TPW simulations, we have pointed out when the former can affect significantly

both TPW path and rates. By implementing a previously developed mantle circulation

model (Ricardet al., 1993b; Richardset al., 1997), we have shown that the delay of the

readjustment of the rotational bulge can shift the TPW and MID–MC paths byseveral

degrees and affects present–day TPW rates by about50 per cent.

The slow change of the mantle convection inertia tensor remains the main factor

explaining the long–term rotational stability of the Earth (Richardset al., 1997). How-

ever, as clearly indicated by eqs (6.9) and (6.13), the relaxation of the rotational bulge

introduces a further stabilizing effect. Indeed, it filters out every short–term fluctuations

of the Earth’s inertia tensor and delays variations of TPW rates by the time scalesTi,

eq. (6.10), with respect to MID–MC rates. This yields significant differences between

TPW and MID–MC rates, particularly during the past10Myr for our mantle convection

model.

In addition to slab subduction, we have accounted also for any other contributions

to mantle density anomalies that can be assumed to remain constant with time. Further-
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Figure 6.3: MID–MC, |de3/dt|, and TPW, |v|, rates (solid and dashed lines, respectively) for the three time
scales T = 0, 30 and 100 kyr (panels a, b and c, respectively). The MID–MC and TPW rates coincide for
T = 0. The TPW rates for T = 30 and 100 kyr are zero at 100Myr before present since we have imposed
as initial condition that the rotation axis and the MID–MC coincide at that time. The TPW simulations do no
longer depend on the initial condition after a time comparable with the time scales Ti (fig. 6.2).

more, the present–dayC21 andS21 geoid coefficients due to mantle density anomalies

alone, which cannot be observed since they are compensated by the rotational bulge not

yet readjusted to the north pole, have been estimated self–consistently with TPW dynam-

ics. Within our framework, it is possible to check if TPW simulations are in agreement

with seismic tomography. By using in eqs (6.16) and (6.19) theC21 andS21 geoid coef-

ficients obtained from the tomographic model Smean of Becker and Boschi (2002) (see

Table 1) which is an average of various recent models, we obtain a present–day TPW

direction of28◦W , in rough agreement with the observed direction towards Newfound-

land, and a present–day TPW rate of0.0123◦/T , inversely proportional to the time scale

T (the observed TPW rate of0.925 ± 0.22◦Myr−1 is explained whenT = 13 kyr).
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Figure 6.4: Offset angle, arccos (n · e3), between the rotation axis and the MID–MC for the time scales T = 30
and 100 kyr (solid and dashed lines, respectively). For T = 0 the offset angle is zero at any time since the
rotational bulge readjusts instantaneously.

Nevertheless, these estimates concern only the present–day and are notconsistent with

TPW simulations obtained using the time evolution of mantle convection inferred from

global plate motions (Ricardet al., 1993b; Lithgow–Bertelloni, 1993).

The combined use of seismic tomography and reconstructions of global platemo-

tions could greatly improve our understanding of both past and present–day TPW driven

by mantle convection. However, these two data sets cannot be used contemporarily to

simulate TPW if the delay of the rotational bulge is accounted for. Furthermore, in order

to fulfill observations, the contribution to TPW from Pleistocene ice sheet melting must

be also considered, being comparable in magnitude with that from mantle convection

and pointing towards Newfoundland (Mitrovicaet al., 2005; Cambiottiet al., 2010).

Because it occurs on a much shorter period than mantle convection, the deglaciation af-

fects the TPW, but its contribution to Earth’s inertia tensor remains negligible compared

to that of the mantle 3–D structure.
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A.1 Curilinear orthonormal coordinates

Let us identify the pointsP of the 3–D space by means of curvilinear orthogonal coordi-

nates(q1, q2, q3) and consider the associated position vectorr as function of(q1, q2, q3)

r = r(q1, q2, q3) (A.1)

At a given pointP , we define the unit vectorseα, with α = 1, 2, 3, as the unit tangent

to theα-th coordinate line passing atP (i.e., the line obtained varying the onlyα-th

coordinateqα while the remaining coordinates are fixed and those ofP ) and oriented in

the direction of increasingqα, that is

eα =
1

hα

∂r

∂qα
(A.2)

wherehα are normalizing constants, also called scale factors, which are given by

hα =

√

∂r

∂qα
· ∂r
∂qα

(A.3)

in order thateα · eα = 1. By definition, if the unit vectorseα define an orthonormal

right-hand base, they also have to satisfy the following conditions

eα · eβ = δαβ (A.4)

eα × eβ =
∑

γ

ǫγαβ eγ (A.5)

with δαβ andǫγαβ being the Kronecker delta and the Levi-Civita symbol.

The expression for the gradient operator∇ in curvilinear orthogonal coordinates is

obtained by writing the differentialdf of a scalar functionf in two ways

df =
∑

α

∂f

∂qα
dqα (A.6)
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df = ∇f · dr (A.7)

with dr being the differential

dr =
∑

α

∂r

∂qα
dqα =

∑

α

hα eα dqα (A.8)

Indeed, comparing eqs (A.6)–(A.7) and using eqs (A.4) and (A.8), we obtain that the

gradient of a scalar function yields

∇f =
∑

α

eα
1

hα

∂f

∂qα
(A.9)

where the gradient operator∇ is defined by

∇ =
∑

α

eα
1

hα

∂

∂qα
(A.10)

A.1.1 The unit vectors

The unit vectorseα of curvilinear coordinates can be expressed in terms of the three

Cartesian unit vectorsx1, x2 andx3, that have fixed orientations in space. Let us con-

sider the position vectorr in the Cartesian frame

r(q1, q2, q3) =
∑

j

rj(q1, q2, q3)xj (A.11)

where (r1, r2, r3) are the Cartesian coordinates that we consider as functions of the

curviliear coordinates(q1, q2, q3)

rj = rj(q1, q2, q3) (A.12)
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Then, by using eq. (A.2) and eqs. (A.11)–(A.12), we obtain the followingexpression

for the unit vectorseα

eα =
1

hα

∑

j

xj
∂rj
∂qα

(A.13)

with

hα =

√

√

√

√

∑

j

∂rj
∂qα

∂rj
∂qα

(A.14)

In the particular case of spherical coordinates(q1, q2, q3) = (θ, ϕ, r), eq. (A.12)

takes the following form

r1(θ, ϕ, r) = r sin θ cosϕ (A.15)

r2(θ, ϕ, r) = r sin θ sinϕ (A.16)

r3(θ, ϕ, r) = r cos θ (A.17)

and, from eqs (A.13)-(A.14), the unit vectorseα and scale factorshα yield

eθ = cos θ cosϕx1 + cos θ sinϕx2 − sin θx3 (A.18)

eϕ = − sinϕx1 + cosϕx2 (A.19)

er = sin θ cosϕx1 + sin θ sinϕx2 + cos θx3 (A.20)

and

hθ = r hϕ = r sin θ hr = 1 (A.21)
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From eq. (A.10), the gradient∇ becomes

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
(A.22)

A.1.2 Christoffel symbol

Afterwards, we shall evaluate partial derivatives of the unit vectorseα with respect to the

curvilinear coordinatesqβ . These are vector quantities and, thus, they can be expressed

as a linear combination of the unit vectorseγ

∂eα
∂qβ

=
∑

γ

Γγ
αβ eγ (A.23)

Here,Γγ
αβ is the Christoffel symbol of the second kind representing the component of

the derivatives∂eα/∂qβ alongeγ

Γγ
αβ = eγ ·

∂eα
∂qβ

= − 1

hα

∂hα
∂qβ

δαγ +
1

hγ hα

∂r

∂qγ
· ∂2r

∂qβ ∂qα
(A.24)

Despite this lengthly expression, the Christoffel symbol satisfies some identities that

make simple their use. By differentiating eq. (A.4) with respect to the coordinateqγ and

using eq. (A.23), it can be shown that

Γβ
αγ + Γα

βγ = 0 (A.25)

from which the following identities hold

Γα
αγ = 0 Γα

αα = 0 (A.26)

Furthermore, by making use of eqs (A.24)-(A.25) and (A.27), we can prove that

hα Γ
γ
αβ = hβ Γ

γ
βα γ 6= α 6= β (A.27)
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Γγ
αβ = 0 γ 6= α 6= β (A.28)

In view of eqs (A.26) and (A.28), the Christoffel symbolΓγ
αβ is different from zero

only for α 6= β = γ andα = β 6= γ. Particularly, by using eqs (A.24)-(A.25), it can be

shown that

Γγ
αγ =

1

2hγ hα

∂

∂qα

(

∂r

∂qγ
· ∂r
∂qγ

)

=
1

hα

∂hγ
∂qα

γ 6= α (A.29)

Γα
γγ = −Γγ

αγ = − 1

hα

∂hγ
∂qα

γ 6= α (A.30)

Having defined the components of the partial derivatives of the unit vectorseα with

respect to the coordinatesqβ in terms of the Christoffel symbolΓγ
αβ , eq. (A.23), we can

now consider divergence and curl of a vector fielda in curvilinear coordinates

a =
∑

α

aα eβ (A.31)

They are given by the scalar and cross products, respectively, between the gradient op-

erator∇ and the vector fielda

∇ · a =
∑

α,β

1

hα
eα · ∂(aβ eβ)

∂qα
=
∑

α

1

hα





∂aα
∂qα

+
∑

β

aβ Γ
α
βα



 =

=
∑

α

1

hα





∂aα
∂qα

+
∑

β 6=α

aβ
hα

∂hβ
∂qα



 (A.32)

∇× a =
∑

α,β

1

hα
eα × ∂(aβ eβ)

∂qα
=
∑

α,β

1

hα

(

∂aβ
∂qα

+
∑

γ

aγ Γ
β
γα

)

eα × eβ =
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=
∑

α,β

1

hα

(

∂aβ
∂qα

− aα
hβ

∂hα
∂qβ

)

eα × eβ (A.33)

The Laplacian operator∇2, which is defined as the scalar product of the gradient

operator∇ by itself, yields

∇2 = ∇ ·∇ =
∑

α, β

1

hα
eα · ∂

∂qα

(

1

hβ
eβ

∂

∂qβ

)

=

=
∑

α





1

hα

∂

∂qα

(

1

hα

∂

∂qα

)

+
∑

β 6=α

1

h2β

∂hα
∂qβ

∂

∂qβ



 (A.34)

and, in spherical coordinates, it reads

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)

(A.35)

A.2 Dyadics

Tensor fields as the material incremental stress,σδ, and strain,ǫ, tensors can be dealt

with in general coordinate systems by means of the dyadic formulation. The general

expression for a dyadicB is given in terms of the unit vectorseα

B =
∑

α, β

Bαβ eα ⊗ eβ (A.36)

where⊗ stands for the algebraic product. Each of its elementBαβ eα ⊗ eβ is known

as a dyad, andBαβ are the components of the dyadic. We may writeBαβ eα ⊗ eβ =

eα ⊗ eβ Bαβ , but the order of the vectors cannot be changed. If we reverse the order of

the vectors in each dyads of a dyadic, we get transpose of the dyadic

BT =
∑

α, β

Bαβ eβ ⊗ eα =
∑

α, β

Bβα eα ⊗ eβ (A.37)
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denoted with the subscriptT .

The most general dyad is the juxtaposition of any two vectora andb and it is written

asa⊗ b. It is defined as a particular case of eq. (A.36)

a⊗ b =
∑

α, β

aα bβ eα ⊗ eβ (A.38)

and it is known as the algebaric product betweena andb, in contradistinction to the

scalar,a · b, and cross,a × b, products. It can be shown that any dyadicB can be

reduced to the sum of three dyads

B = a⊗ u+ b⊗ v + c⊗w (A.39)

where(a, b, c) or (u,v,w), but not both, are arbitarily chosen non-coplanar vectors (as

the unit vectorseα which compose an orthonormal right-hand base).

The left and right, scalar and cross products between dyadicsB and vectorsc are

defined by those between dyadsa⊗ b and vectorsc

c · a⊗ b = b (c · a) a⊗ b · c = a (b · c) (A.40)

c× a⊗ b = b (a× c) a⊗ b× c = a (b× c) (A.41)

Note that the left scalar and cross products between a vector and a dyadic yield the right

scalar and cross products between the vector and the transpose of the dyadic, respectively

a ·B = B
T · a (A.42)

a×B = B
T × a (A.43)

The divergence of a dyadic is obtained by considering the scalar product between

the gradient operator and the dyadic. It yields the following vector
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∇ ·B =
∑

γ,α,β

1

hγ
eγ ·

∂ (Bαβ eαeβ)

∂qγ
=

=
∑

α,β

[

1

hα

∂Bαβ

∂qα
+
∑

γ

1

hγ

(

Bαβ Γ
γ
αγ +Bγα Γ

β
αγ

)

]

eβ =

=
∑

β







∑

α

1

hα

∂Bαβ

∂qα
+
∑

α 6=β

1

hα hβ

(

∂hβ
∂qα

Bβα − ∂hα
∂qβ

Bαα

)

+
∑

α

∑

γ 6=α

Bαβ

hγ hα

∂hγ
∂qα







eβ (A.44)

We can also consider the gradient of a vector. It is defined as the algebraic product

between the gradient operator and the vector, and it yields the following dyadic

∇⊗ a =
∑

α, β

eα ⊗
[

1

hα

∂ (aβ eβ)

∂qα

]

=
∑

α, β

1

hα

(

∂aβ
∂qα

+
∑

γ

aγ Γ
β
γα

)

eα ⊗ eβ =

=
∑

α

1

hα









∂aα
∂qα

+
∑

γ 6=α

aγ
hγ

∂hα
∂qγ



 eα ⊗ eα +
∑

β 6=α

(

∂uβ
∂qα

− aα
hβ

∂hα
∂qβ

)

eα ⊗ eβ





(A.45)

It can be easily shown that the following identities hold

b · (∇⊗ a) = (b ·∇)a (A.46)

∇⊗ (a · b) = (∇⊗ a) · b+ (∇⊗ b) · a (A.47)

∇ · (∇a) = ∇2a (A.48)
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∇ · (∇⊗ a)T = ∇⊗ (∇ · a) (A.49)

A.2.1 Stress and strain in spherical coordinates

The above results, after substitution of the scale factorshα for spherical coordinates

given by eq. (A.21), allow us to obtain the expression for the divergence of the material

incremental stress tensorσδ entering the momentum equation (1.46)

∇ · σδ =

[

∂rσ
δ
rr +

1

r

(

∂θσ
δ
θr +

1

sin θ
∂ϕσ

δ
ϕr + 2σδrr − σδθθ − σδϕϕ + σδθr cot θ

)]

er

+

[

∂rσ
δ
rθ +

1

r

(

∂θσ
δ
θθ +

1

sin θ
∂ϕσ

δ
ϕθ + 3σδrθ +

(

σδθθ − σδϕϕ

)

cot θ

)]

eϕ

+

[

∂rσ
δ
rϕ +

1

r

(

∂θσ
δ
θϕ +

1

sin θ
∂ϕσ

δ
ϕϕ + 3σδrϕ + 2σδθϕ cot θ

)]

eϕ (A.50)

where we have utilized that fact the stress tensor is symmetric, i.e.,σδαβ = σδβα.

Furthermore, by making use of eqs (A.37) and (A.45), the strain tensorǫ defined in

eq. (1.24) reads

ǫ =
1

2

[

∇u+ (u∇)T
]

=
∑

α

1

hα





∂uα
∂qα

+
∑

γ 6=α

uγ
hγ

∂hα
∂qγ



 eα eα

+
∑

α

∑

β 6=α

1

2

(

hβ
hα

∂ (uβ/hβ)

∂qα
+
hα
hβ

∂ (uα/hα)

∂qβ

)

eα eβ (A.51)

whereuα are the component of the displacementu
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u =
∑

α

uα eα (A.52)

By considering the trace of the strain tensorǫ, i.e., the sum of its diagonal components

ǫαα

Tr [ǫ] =
∑

α

ǫαα =
∑

α

1

hα





∂uα
∂qα

+
∑

γ 6=α

uγ
hγ

∂hα
∂qγ



 (A.53)

we note that it coincides with the divergence of the displacement∇ ·u, that corresponds

to the volume change∆ defined in eq. (1.22) and that one can also obtain by means of

eq. (A.32). Thus, we have that the trace of the strain tensor coincides withthe volume

change

∆ = ∇ · u = Tr [ǫ] (A.54)

After substitution of eq. (A.21) into eqs (A.51)-(A.53), we obtain the componentsǫαβ
of the strain tensorǫ and the volume change∆ in spherical coordinates

ǫrr =
∂ur
∂r

(A.55)

ǫθθ =
1

r

[

∂uθ
∂θ

+ ur

]

(A.56)

ǫϕϕ =
1

r

[

1

sin θ

∂uϕ
∂ϕ

+ ur + uθ cot θ

]

(A.57)

ǫrθ =
1

2

[

∂uθ
∂r

+
1

r

(

∂ur
∂θ

− uθ

)]

(A.58)

ǫrϕ =
1

2

[

∂uϕ
∂r

+
1

r

(

1

sin θ

∂ur
∂ϕ

− uϕ

)]

(A.59)
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ǫθϕ =
1

2 r

[(

∂uϕ
∂θ

− uϕ cot θ

)

+
1

sin θ

∂uθ
∂ϕ

]

(A.60)

and

∆ =
∂ur
∂r

+
1

r

[

∂uθ
∂θ

+
1

sin θ

∂uϕ
∂ϕ

+ 2ur + uθ cot θ

]

(A.61)

A.3 Gravitating self-compressed compressible sphere

Here we derive the analytical solution of the momentum equation for the gravitating

self-compressed compressible sphere, that we discuss in Chapter 2, section 2.4. After

expansion in spherical harmonics and Laplace transform, the radial andtangential com-

ponents of the momentum equation within the mantle of the gravitating self-compressed

compressible sphere can be cast as follows,

β

α
r ∂rχℓm − g ∂rUℓm + g χℓm +

µ

α
ℓ(ℓ+ 1)Hℓm = 0 (A.62)

β

α
r χℓm − g Uℓm +

µ

α
r ∂r(r Hℓm) = 0 (A.63)

We consider the representations

Uℓm =
4
∑

j=1

Cj Uj (A.64)

Vℓm =
4
∑

j=1

Cj Vj (A.65)

whereUj andVj are four independent solutions of eqs (A.62)-(A.63) that we assume of

the following form

Uj = rxj (A.66)
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Vj = vj r
xj (A.67)

Here,vj andxj are scalars to be determined in the following andCj are constants of

integration. We then subtract the radial derivative of eq. (A.62) and eq. (A.63)

β

α
∂rχℓm + g χℓm +

µ

α

[

ℓ(ℓ+ 1)Hℓm − ∂r(r Hℓm)− r ∂2r (r Hℓm)
]

= 0 (A.68)

By substituting eqs (A.64)-(A.67) into eq. (A.68), after some straightforward algebra,

we achieve

vj =
xj −Xj + (xj + 2) ζ

ℓ(ℓ+ 1)(ζ + 1)− xj Xj
(A.69)

where

Xj = xj(xj + 1)− ℓ(ℓ+ 1) (A.70)

ζ =
β − κ0
µ

(A.71)

andκ0 is the compressional bulk modulus, eq. (2.4). Eq. (A.63) can be arranged in form

of a second-order polynomial inX

a0 + a1Xj + a2X
2
j = 0 (A.72)

with

a0 = −ℓ(ℓ+ 1)

[

1 + ζ

(

4
µ

κ0
− 1

)]

(A.73)

a1 = −2
ζ µ

κ
(A.74)

a2 = 1 +
ζ µ

κ
(A.75)
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Denoting the two roots of eq. (A.72) byX1 orX3 andX2 orX4,

X1 = X3 =
−a1 +

√

a21 − 4 a0 a2
2

(A.76)

X2 = X4 =
−a1 −

√

a21 − 4 a0 a2
2

(A.77)

and from the definition ofXj , eq. (A.70), we obtain four distinct expressions forxj

xj = −1

2
− 1

2

√

1 + 4 ℓ(ℓ+ 1)Xj (A.78)

xj+2 = −1

2
+

1

2

√

1 + 4 ℓ(ℓ+ 1)Xj+2 (A.79)

with j = 1, 2. In this way, we have obtained the analytical expressions for both scalars,

vj andxj , which enter the expressions for the four independent solutions of the radial

and tangential momentum equations, eqs (A.66)-(A.67).

In order to solve the surface loading problem, we define the spheroidal4-vector

solutiony in the Laplace domain

y =













Uℓm

Vℓm

Rℓm

Vℓm













(A.80)

After substitution of eqs (A.64)-(A.65) into eq. (A.80), we thus obtain the analytical

expression for the spheroidal vector solutiony

y(r, s) = Ỹ(r, s)C (A.81)

whereY is the fundamental matrix andC is the4-vector consisting of the four constants

of integration
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Ỹ(r, s) = (y1, y2, y3, y4) (A.82)

C = (C1, C2, C3, C4)
T (A.83)

with T standing for the transpose. Here,ỹj are the four independent spheroidal vector

solutions that we obtain by substitutingUj andVj , eqs (A.66)–(A.67), forU andV into

eq. (A.80).

The four constants of integrationC must be determined imposing boundary condi-

tions at the CMB (r = rC) and at the Earth surface (r = a). The boundary conditions at

the CMB for the simple gravitating problem are given by

ỹ(rC , s) = IC D (A.84)

whereIC is the following4× 2–matrix describing isostatic compensation (first column)

and free-slip (second column)

IC =













1 0

0 1

ρ g 0

0 0













(A.85)

andD are two constants of integration

D = (D1, D2)
T (A.86)

The boundary conditions for loading at the Earth surface take the following form

P1y(a, s) = b =

(

− (2 ℓ+1) g
4π a2

0

)

(A.87)
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whereP1 is the projector for the third and forth components. By eliminating the con-

stants of integrationC from eq. (A.81) by making use of the above boundary conditions,

eqs (A.84) and (A.87), we thus obtain the analytical solution of the viscoelastic Love

numbers̃k in the Laplace domain

k̃(r, s) =

(

h̃(r, s)

l̃(r, s)

)

=
G

ag

[P2Π(r, rC , s)] [P1Π(a, rC , s)]
†

∆(s)
b (A.88)

where† stands for the matrix of the minors,h̃ and l̃ are the radial and tangential Love

numbers, and∆ is the secular determinant

∆(s) = det [P1Π(a, rC , s)] (A.89)

with

Π(r, rC , s) = Y(r, s)Y(rC , s)
−1 IC (A.90)

A.3.1 Analytical approximations

By definition, the polessCm of the compositional modes are roots of the secular deter-

minant

∆(sCm) = 0 (A.91)

and, from the residue theorem, the residueskCm are given by

kCm =

(

h̃Cm

l̃Cm

)

= lim
s→sCm

(s− sCm) k̃(r, s) =
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=
[P2Π(r, b, s)] [P1Π(a, b, s)]†

∂s∆(s)

∣

∣

∣

∣

∣

s=sCm

b (A.92)

As discussed in the main text, the origin of the Laplace domains = 0 is the cluster

point of the compositional modes. To investigate the behaviour of the independent solu-

tions, eqs (A.66)-(A.67), we consider the Taylor series of the exponentsxj at the origin

of the Laplace domain. We define the non-dimensional variableδ(s) as follow

µ̂(s) = −ℓ(ℓ+ 1) ǫ κ0 δ
4(s) (A.93)

With respect to the variableδ(s), which goes to zero fors → 0, the Taylor series take

the following forms

x1 = −i δ−1 − 1

2
+ i F δ +O

(

δ3
)

(A.94)

x2 = −δ−1 − 1

2
− F δ +O

(

δ3
)

(A.95)

x3 = i δ−1 − 1

2
− i F δ +O

(

δ3
)

(A.96)

x4 = δ−1 − 1

2
+ F δ +O

(

δ3
)

(A.97)

with

F =
4 ℓ(ℓ+ 1) + 5

8
− κ0

2κ
(A.98)

Note that the leading terms of the above Taylor expansions diverge in the limit for δ → 0.

Particularly,x1 andx3 go to−i∞ andi∞, respectively, and they are responsible for

the oscillating pattern of the perturbations through the mantle shown in fig. 2.7. Instead,

x2 andx4 goes to−∞ and∞, respectively.

We then determine the analytical approximations for the polessCm by expanding the

secular equation (A.91) in Taylor series with respect toδ and neglecting vanishing terms
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like

lim
δ→0

(rC
a

)δ−1

= 0 (A.99)

for r > rC . After much straightforward algebra, we thus obtain

sCm = −ℓ(ℓ+ 1)
ǫ κ0
ν

(

log
(

b
a

)

πm

)4

{

1− 2 log( b
a)[(ℓ(ℓ+1)+ǫ+ 1

4) log( b
a)−3 ǫ]

(πm)2

}

+O
(

m−5
)

(A.100)

Similarly, from eq. (A.92), we obtain the analytical approximations for the radial,

hCm/sCm , and tangential,lCm/sCm , strengths

hCm

sCm

= (2 ℓ+ 1)

√

a

r

(

− sin θm
πm +

ǫ (3 log( b
r )−2 log( b

a)) cos θm+log( b
a) (cos θm−sin θm)

2 (πm)2

− e−θm log( b
a)+(−1)m e−αm (1−3 ǫ) log( b

a)
2 (πm)2

)

+O
(

m−3
)

(A.101)

lCm

sCm

=
2 ℓ+ 1

ℓ(ℓ+ 1)

√

a

r

(

− cos θm
log( b

a)
− log( b

a) (cos θm+2 sin θm)+3 ǫ log( b
r ) sin θm

2 log( b
a)πm

+ e−θm+(−1)m e−αm (1−3 ǫ)
2πm

)

+O
(

m−2
)

(A.102)

whereθm andαm also depend on the radial distance from the Earth centrer

θm = πm
log
(

r
a

)

log
(

b
a

) (A.103)
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αm = πm
log
(

b
r

)

log
(

b
a

) (A.104)

A.4 The special case of the harmonic degree one

Here we derive the boundary conditions to deal with the global ocean layer of PREM,

that we discuss in Chapter 3, section 3.2.2, in the special case of seismic perturbations

of harmonic degreeℓ = 1. As it concerns the top of the ocean, in addition to eqs (3.50)-

(3.51), we must also impose the conservation of the center of mass that, following Farrell

[1972], pp. 774-777, results in

Φ1m(b) = Φ
(1)
1m(b) + Φ

(2)
1m(b) = 0 (A.105)

Then, from eqs (3.55)-(3.56) evaluated at the top of the ocean,r = b, we obtain

B2 = −B1 (A.106)

and

Φ
(1)
1m = B1 r

−2 Φ
(2)
1m = −B1 r

−2 (A.107)

q
(1)
1m = 0 q

(2)
1m = 0 (A.108)

The absence of potential stresses within the ocean, eq. (A.108), together with the con-

sistency relation proposed by Farrell (1972), pg. 775, allows us to impose the following

boundary condition at the interface between solid Earth and ocean

P2

[

Π(a, rC) IC ,−I
(ℓ=1)
O

]

[C4,O3] = P2 b(a) (A.109)
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whereO3 andI(ℓ=1)
O are the3−vector of constants and the8× 3−matrix

O3 = (B1, B3, B4)
T (A.110)

I
(ℓ=1)
O =

































0 0 1

0 1 0

0 0 ρw g(a)

0 0 0

a−2 0 0

0 0 0

−a−2 0 0

0 0 C ρw

































(A.111)

whileP2 is the projector for all the components, except for the4−th component, which

refers to the tangential stress. Indeed, the consistency relation of Farrell (1972) assures

us that, once the boundary conditions for the other components are satisfied, the tangen-

tial stress is null at the interface between solid Earth and ocean
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