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ABSTRACT 

 

 

 

Every year several patients have to deal with bone tissue loss due to trauma or diseases. 

Bone tissue engineering aims to restore or repair musculoskeletal disorders through the 

development of bio-substitutes that require the use of cells and scaffolds which should 

possess both adequate mechanical properties and interconnecting pores to allow cellular 

infiltration, graft integration and vascularization. The ideal cell for tissue engineering should 

possess a potential plasticity with the ability to functionally repair the damaged tissue, and 

it should be available in large amount. Mesenchymal stem cells (MSCs) are present in many 

adult tissues, and adipose tissue represents an attractive source of MSCs for researchers 

and clinicians of nearly all medical specialties. Adipose-derived stem cells (ASCs) are similar 

to MSCs isolated from bone marrow, placenta, and umbilical cord blood in morphology, 

immunophenotype, and differentiation ability, and they represent a promising approach of 

bone regeneration. Additional features of ASCs are their immunoregolatory and anti-

inflammatory properties both in vivo and in vitro and their low immunogenicity. 

Since several years our laboratory is studying mesenchymal stem cells isolated from human 

and animal adipose tissues. Human ASCs (hASCs) have been characterized by their 

immunophenotype, their self-renewal potential, and they have been induced to 

differentiate towards adipogenic, osteogenic and chondrogenic lineages. The ability of 

hASCs to grow in the presence of several scaffolds has also been tested. hASCs adhered to 

the surface of tested biomaterials, filling the pores and forming a 3D web-like structure, 

allowing these progenitor cells to osteo-differentiate more efficiently respect to cells 

maintained on polystyrene. Since our interest was to regenerate muscle-skeletal defects by 

ASCs in pre-clinical models, we first studied ASCs isolated from adipose tissue of rat (rASCs), 

rabbit (rbASCs) and pig (pASCs), considered good models in the orthopaedic field. We have 

shown that animal ASCs behaved similarly to the human ones, and, in collaboration with 

the Faculty of Veterinary Medicine of University of Milan and the IRCCS Galeazzi 
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Orthopaedic Institute of Milan, we have tested the ability of autologous ASCs to regenerate 

a full-thickness critical-size bone defect in rabbits. The experimental study was conducted 

on the tibiae of 12 New Zealand rabbits, and from 6 rabbits out of 12 we have collected 

adipose tissue from the interscapular region. We have isolated 2.8x105±1.9x105 rbASCs per 

ml of raw tissue, and after 3-4 days in culture the cells showed the typical fibroblast-like 

morphology. One week later, all the 6 cellular populations started to steadily proliferate, 

and they generated fibroblast (CFU-F) and osteoblast (CFU-O) colonies, highlighting the 

presence of osteogenic progenitors. Indeed, when rbASCs were induced to osteo-

differentiate, either after 7 and 14 days, we have observed an up-regulation of specific 

osteogenic markers, such as alkaline phosphatase (ALP, +28.9%), collagen (+105.9%) and 

extracellular calcified matrix (+168.1%), compared to undifferentiated cells. In parallel, 

testing HA, the scaffold selected for the in vivo experiment, we found that rbASCs were 

osteoinduced; indeed the presence of HA granules increased per se the amount of collagen 

production (+48.2%). 

1.5x106 undifferentiated rbASCs were seeded on custom-made HA disks (8 mm Ø x 4 mm 

↕), and the day after, each bioconstruct was implanted into the lesion created in the tibia 

of each rabbit. We had an additional experimental group of defects where the same 

number of rbASCs were inserted in the lesion as a semi-liquid suspension; moreover, as 

controls, we treated 6 lesioned tibia with just the scaffolds, and we left 6 untreated 

lesioned bone. 

8 weeks after surgery animals were sacrificed and the tibia explanted. A macroscopic 

analysis showed no bone resorption, no abnormal bone callous formation, no fractures, 

infection or inflammatory reactions, and all the bone defects were completely filled 

without any significant differences among the four groups.  

Interestingly, in the presence of scaffold seeded with rbASCs, histology and 

immunohistochemistry showed a new bone tissue more mature and similar to the native 

bone. These data have also been confirmed by biomechanical tests: indeed, the mechanical 

properties of the bone defect treated by rbASCs-HA were improved, suggesting that these 

constructs bore mechanical loading with an increase in stiffness of 19.8% and in hardness 

of 31.6% respect to just HA treated group, indicating that the bioconstructs made out of 

autologous rbASCs and hydroxyapatite might ameliorate the treatment for large bone 

defects. We would suggest the use of ASCs as a safe cellular therapy in future clinical 
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applications where a large bone defect needs to be treated. These promising results on 

small size animals allow us to plan a new study on large size animals such as minipigs. 

However, before moving to the clinic, we know that there are several important aspects 

that need to be faced regarding safeness and the features of the candidate patients:  

1. may the “quality” of hASCs be affected by the donor’s physiological or pathological 

conditions?  

2. may the use of pharmacological treatment enhance cellular plasticity of multipotent 

cells? 

3. may the use of immunoselected hASCs ameliorate tissue regeneration in the field of 

muscle-skeletal?  

We have addressed some of these aspects, comparing different populations of hASCs from 

subcutaneous adipose tissue of healthy-young-female donors (hASCs<35 y/o, n=12, mean 

age 31±4 years, BMI=23.5±1.6), and from middle-age ones (hASCs>45 y/o n=14, mean age 

56±7 years, mean BMI=28.4±1.8). The cellular yield of hASCs derived from older donors was 

2.5 fold greater than the one of hASCs<35 y/o, whereas hASCs from younger donors were 

more clonogenic than hASCs isolated from older ones, with an increase of 129%. No 

significant differences were observed looking at their immunophenotype.  

When hASCs were induced to differentiate into cells of the adipogenic and osteogenic 

lineages, the donor’s age did not affect their adipogenic differentiation, whereas the 

osteogenic one was significantly affected by age both in the absence and in the presence of 

three-dimensional scaffolds, showing a decreased ALP basal levels of about 10-fold in 

hASCs>45 y/o respect to hASCs<35 y/o.  

These results seems to indicate that ASCs from different donors could behave differently.  

Trying to overcome this aspect we have used different approaches, and we have studied if 

Reversine, a synthetic purine already known to increase plasticity of terminally 

differentiated cells, might improve the differentiation ability of hASCs. 72 hours treatment 

with 50 nM Reversine induced hASCs to differentiate into osteoblast like-cells (+45% of 

alkaline phosphatase activity), smooth muscle cells (+89% of α-actin expression) and 

skeletal muscle cells (myotubes formation) compared to control hASCs. 

Moreover, since it is known that CD34 and L-NGFR positive cells define a subset of high 

proliferative and multipotent MSCs, we have immunoselected, these progenitor cells from 

hASC populations. In contrast to the whole population, the immunoseparated fractions 
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maintained their undifferentiate state and their ability to differentiate much longer during 

culture. We have shown that both CD34+ and L-NGFR+ hASCs can be used as alternative 

candidates for tissue engineering and regenerative medicine applications. In particular, due 

to the improved ability of L-NGFR positive cells to adipo- and chondro-differentiate, they 

appear an ideal tool in reconstructive plastic surgery and cartilage regeneration. 

From our data, and the ones from researchers in other fields, we believe that in the near 

future adipose-derived stem cells might be considered a safe tool in regenerative medicine. 

Furthermore, to improve this “cellular therapy”, we could either pre-treat ASCs with 

molecules, such as drugs and/or siRNAs known to affect specific differentiation pathways, 

or by selecting subpopulations of progenitor cells which may be used as allogenic implants. 

Next step will be to confirm our in vivo data in a large size animal model such as minipig, 

and then to test if pre-treated cells or selected population might be used in an autologous 

and allogenic small size animal model. 
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INTRODUCTION 

 

 

 

CHAPTER 1 

 

1. STEM CELLS 

Stem cells are biological cells characterized by two properties: the ability to self-renewal 

maintaining their undifferentiated state (symmetric division), and the ability to give rise to 

cells identical to the mother cells and to differentiated daughter cells with different 

characteristics (asymmetric division) [Weiss and Troyer, 2006] (Figure 1).  

 

Figure 1. Stem cells division. Green dots: stem cells; orange dots: progenitor cells; light blue dots: 

differentiated cells. 1. symmetric stem cells division; 2. asymmetric stem cells division; 3. progenitor division 

and terminal differentiation (modified by [Weiss and Troyer, 2006]). 

 

Stem cells are distinguished by their ability to produce mature cells belonging to different 

genealogies (Figure 2): 
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Totipotent Stem Cells able to differentiate into embryonic and extra-embryonic cell 

types. These cells are produced from the fusion of an egg and sperm cell.  

Pluripotent Stem Cells, cells that originate from the inner cell mass of the blastocyst 

and that can give rise to any fetal or adult cell type of the three germ layers (mesoderm, 

endoderm and ectoderm), but they are not able to generate an adult organism.  

Multipotent Stem Cells able to differentiate into a number of cells, but only those of 

a closely related family of cells; however, has been demonstrated the ability of these cells 

to trasndifferentiate into cell lineages of different embryonic origin. 

Unipotent Stem Cells able to differentiate into only one type of tissue/cell type. 

 

Figure 2. Source of stem cells (modified by http://www.sciencecases.org/superman_ethics/primer.asp). 

 

1.1. STEM CELLS FROM ADULT TISSUES 

At the end of embryogenesis each tissue is characterized by heterogeneous populations of 

cells at different stages of maturation, including a population of undifferentiated cells 

called adult stem cells [Atala, 2007]. Adult stem cells are responsible of the maintaining of 

tissue homeostasis [Tarnowski and Sieron, 2006], and of the replacing of terminally 

differentiated cells lost during senescence or due to trauma and injury [Barry and Murphy, 

2004]. These cells are located in a specialized compartment defined "stem cell niche": it is 

an anti-proliferative and anti-differentiative environment, with the ability to recall and 

reprogram themselves [Xie and Spradling, 2000; Shinohara et al., 2001, 2002]. In the tissues 

it is possible to find a tissue’s hierarchy, important to minimizing the occurrence of 

pathological states. Stem cells are characterized by a high proliferation rate that permit to 

protect the integrity of the stem cell compartment, and are also able to produce committed 

progenitor stem cells which can give rise to mature and functionally differentiated cells 

[Piscaglia, 2008].  
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Adult stem cells, in the presence of specific chemical and physical stimuli, can give rise to 

cells derives of the three primary germ layers: mesoderm, ectoderm and endoderm 

[Caplan, 2007].  

It has been observed that neural stem cells can give rise to blood and skeletal muscle cells 

when transplanted into an ectopic site [Panchision et al., 1998]. Another study has shown 

that mesenchymal stem cells isolated from adipose tissue can differentiate into pancreatic-

β cells [Timper et al., 2006]. For these reason, adult mesenchymal stem cells could be 

considered suitable candidates for applications in tissue engineering and regenerative 

medicine. 

 

1.1.1. MESENCHYMAL STEM CELLS (MSCs) 

The presence in the bone marrow of non-hematopoietic stem cells, was suggested by 

Friedenstein in 1968. These cells, after several passages in culture, showed a typical 

fibroblast-like morphology able to give rise to different cell lineages such as osteoblasts, 

chondrocytes and adipocytes [Friedenstein et al., 1968]. The bone marrow is still the main 

source of Mesenchymal Stem Cells (MSCs), but several studies have identified these cells in 

other tissues such as periosteum, dental pulp, skeletal muscle, synovial membrane, 

trabecular bone tissue, and adipose tissue [Arai et al., 2002; Noth et al., 2002; Zuk et al., 

2002; De Ugarte et al., 2003; Sakaguchi et al., 2004]. Adipose tissue is also an abundant 

source of stem cells (Adipose-derived Stem Cells, ASCs) and it is a tissue easily accessible by 

a minimally invasive liposuction procedure; in addition, a significant number of ASCs can be 

isolated from a small volume of subcutaneous fat, expanded and subsequently 

differentiated or cryopreserved. ASCs show high plasticity and are able to differentiate in 

mesenchymal-derived tissues, such as:  

Adipocytes: specific medium, characterized by dexamethasone, indomethacin, 

insulin, and isobutyl-methylxanthine, induce ASCs differentiation towards the adipogenic 

lineage with lipid vacuoles accumulation [Yu et al., 2011]. 

Chondrocytes: pellet culture maintained in specific inductive medium characterized 

by transforming growth factor β (TGF-β), ascorbic acid, and dexamethasone, induce ASCs 

chondrogenic differentiation able to secrete extracellular matrix proteins, such as collagen 
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type II, VI and proteoglycans and expressing biochemical markers of mature chondrocytes 

[Erickson et al., 2002; Wickham et al., 2003].  

Osteoblasts: in the presence of ascorbic acid, β-glycerolphosphate, dexamethasone 

and vitamin D3, ASCs express osteogenic markers [Halvorsen et al., 2001; Zuk et al., 2001; 

Zuk et al., 2002; de Girolamo et al., 2007].  

Cardiomyocytes: when exposed in culture with 5'-azacytidine, ASCs express specific 

proteins of cardiac myocytes, such as troponin I [Fraser et al., 2006a]. This suggests that 

ASCs can be used in the treatment of ischemic damage.  

Smooth Muscle Fibrocells: specific inductive media, characterized by 1% FBS and 

heparin, induce ASCs differentiation with an up-regulation of smooth muscle α-actin and 

caldesmin [Rodriguez et al., 2006]. 

Myocytes: in the presence of horse serum (HS), ASCs express early markers of 

myogenic differentiation such as myoD and myogenin [Mizuno et al., 2002; Lee and Kemp, 

2006]. 

ASCs are also able to trans-differentiate in cell types of the non-mesodermal origin, such as 

neurons: human and murine ASCs cultured in the presence of antioxidants and in the 

absence of serum, acquire a bipolar morphology expressing nestin, intermediate filament, 

and fibrillary glial protein M [Safford et al., 2004; Fujimura et al., 2005]. Moreover, ASCs are 

also able to differentiate into endothelial and epithelial cells, hepatocytes and pancreatic-β 

cells [Seo et al., 2005; Timper et al., 2006; Banas et al., 2007] (Figure 3). 
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Figure 3. Mesenchymal stem cells can differentiate into several mesenchymal tissues such as bone, cartilage, 

muscle, bone marrow, adipose tissue and tendon. 

 

An overview of MSCs characteristics is summarized in Table 1.  

SOUCE  DIFFERENTIATION 

Bone Marrow 
Trabecular Bone 
Periosteum 
Articular Cartilage 
Synovial Membrane 
Synovial Fluid 
Muscle 
Adipose Tissue 
Tendon 
Blood 
Blood Vessels 
Umbilical Cord Vessels 
Fetal Tissue 
Spleen and Thymus 
Skin 

Mesenchymal Stem Cells 
(MSCs) 

Osteoblasts 
Chondrocytes 
Adipocytes 
Cardiac Muscle 
Fibroblasts 
Myofibroblasts 
Skeletal Muscle 
Pericytes 
Tenocytes 
Retina Cells 
Neuronal Cells 
Astrocytes 
Hepatocytes 
Pancreatic Cells 
Hematopoietic Supporting Stroma 

Table 1. Sources and cell types derived from mesenchymal stem cells (MSCs) [Pountos and Giannoudis, 2005]. 

 

In addition, ASCs and, more generally MSCs, present important properties such as the 

ability to maintain their undifferentiated state and to proliferate during in vitro expansion 

[Bruder et al., 1997]. The doubling time of ASCs is directly related to several factors, such as 
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donor age [de Girolamo/ Arrigoni et al., 2009], donor site (subcutaneous or visceral, 

unpublished data), surgery, and also culture conditions [Gimble, 2003; Izadpanah et al., 

2006]. 

Great effort has been applied to identify specific surface markers on mesenchymal stem 

cells for their identification in vivo and in vitro: ASCs express CD9, CD10 (membrane 

metalloendopeptidase), CD13 (aminopeptidase), CD29 (β1 integrin), CD44 (receptor that 

binds hyaluronic acid), CD49d (α4 integrin), CD54 (intracellular adhesion molecule 1 or 

ICAM-1), CD55, CD59, CD71 (transferrin receptor), CD73 (lymphocyte-vascular adhesion 

protein-2), CD90 (thymocyte differentiation antigen 1), CD105 (endoglin), CD106 and 

CD166 (Activated leukocyte cell adhesion molecule). ASCs express class I histocompatibility 

antigen HLA-ABC and do not express class II molecules HLA-DR. These cells do not express 

hematopoietic markers CD14, CD31 and CD45 [Pittenger et al., 1999; Noort et al., 2002; Zuk 

et al., 2002; de Girolamo/ Arrigoni et al., 2008].  

One of the features that makes the use of MSCs interesting in a clinical setting, is their 

ability to migrate to the damaged tissue or toward inflammatory sites after intravenously 

administration [Devine et al., 2001]. This ability has been demonstrated in bone fractures 

[Devine et al., 2002], myocardial infarction and cerebral ischemia [Saito et al., 2002; Jiang et 

al., 2005; Erbs et al., 2007]. The mechanism by which MSCs migrate across the endothelium 

to the injury site has not yet been understood, but it is reasonable to assume that the 

damaged tissue expresses receptors or ligands that facilitate the transport, adhesion and 

transmigration of MSCs, like the recruitment of lymphocytes to the inflammation site. 

Essential molecules for the transmigration of leukocytes from the blood to the tissue, such 

as integrins, selectins and chemokine receptors are also expressed by MSCs [Krampera et 

al., 2006; Chamberlain et al., 2007].  

Several studies have shown that MSCs have immunomodulatory properties: MSCs are able 

to inhibit the function of most cells involved in immune response, such as B and T 

lymphocytes, dendritic cells and natural killer cells [Sotiropoulou et al., 2006]. MSCs 

inhibited in vitro proliferation, differentiation and chemotaxis of human B cells; moreover, 

these cells inhibit the proliferation of T cells, and activated T cells can increase the 

immunosuppressive properties of MSCs [Corcione et al., 2006]. Up to now, the mechanisms 

underlying the immunosuppressive activity of MSCs, have not be elucidated, but both the 

direct contact between MSCs and cells of the immune system, and also the release by MSCs 
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of soluble factors such as TGF-β, HGF, and prostaglandin E2 (PGE-2) seem to be important 

for this function [Zappia et al., 2005].  

One of the important properties of MSCs is also the tropism for cancer cells, which makes 

them as cellular vehicles for the release of anticancer agents. The MSCs can be engineered 

to release IFN-β, cytosine deaminase, or oncolytic viruses. These approaches have been 

evaluated in preclinical models and have demonstrated significant antitumoral efficacy 

[Josiah et al., 2010; Pessina et al., 2011]. Some studies have reported that MSCs can 

promote tumor growth: subcutaneous co-injection of ASCs with lung carcinoma cells 

(H460) or glioma cells (U87MG) in nude mice, leads to an increase in tumor size [Yu et al., 

2008]. In conflict with the studies reporting a role of MSCs in promoting tumor growth, 

other studies show that MSCs are able to inhibit tumor expansion: MSCs inhibited the 

proliferation of human liver cancer cells and the expression of oncogenes in vivo and in 

vitro [Qiao et al., 2008]. The effect of MSCs on tumor progression can be explained 

considering the heterogeneity of MSCs, the injected dose, the patient variability and the 

time of cells administration: in early tumor development studies, the ability of MSCs to 

support tumor growth may depend on both their immunosuppressive effect and on their 

ability to promote angiogenesis, a key event in cancer development and in the process of 

metastatization.  

 

1.2. CANCER STEM CELLS (CSCs) 

Tumorigenicity is a multistep process and requires the accumulation of genetic mutations 

that lead to the transformation from normal to tumor cells. In a tissue, all proliferating cells 

may undergo to malignant transformation, including stem cells and committed progenitor 

cells. Several studies have shown that in most tumors, it is possible to find a hierarchical 

organization of functionally distinct subpopulations: the majority of tumor cells are not able 

to support the growth of the tumor or to give rise to metastases. At the top of the 

hierarchical organization there is a small subpopulation of tumor cells responsible of tumor 

progression: these cells are known as Cancer Stem Cells (CSCs) which possess some 

characteristics of stemness. CSCs may generate tumors through the stem cells processes of 

self-renewal and differentiation into multiple cell types (Figure 4). Such cells are proposed 



 
12 

 

to persist in tumors as a distinct population and cause relapse and metastasis by giving rise 

to new tumors.  

 

Figure 4. Normal and cancer stem cells show similar properties, included their ability to self-renewal and to 

differentiate (http://www.childrenshospital.org/gallery/index.cfm?G=67). 

 

The existence of CSCs is a subject of debate within medical research, because many studies 

have not been successful in discovering the similarities and differences between normal 

tissue stem cells and cancer stem cells [Gupta et al., 2009]. CSCs must be capable of 

continuous proliferation and self-renewal in order to retain the many mutations required 

for carcinogenesis, and to sustain the growth of a tumor since differentiated cells cannot 

divide indefinitely. There is also debate on the cell of origin of CSCs - whether they originate 

from stem cells that have lost the ability to regulate proliferation, or from more 

differentiated population of progenitor cells that have acquired abilities to self-renew 

(Figure 5). 

CSCs have recently been identified in several solid tumors, including brain cancer [Singh et 

al., 2003], breast cancer [Al-Hajj et al., 2003], prostate cancer [O'Brien et al., 2007] and 

melanoma [Schmidt et al., 2011]. The existence of CSCs has several implications in terms of 

future cancer treatment and therapies. These include disease identification, selective drug 

targets, prevention of metastasis, and development of new intervention strategies. Normal 

somatic stem cells are naturally resistant to chemotherapeutic agents: they have various 

pumps (such as Multiple Drug Resistance, MDR) that pump out drugs, DNA repair proteins 
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and they also have a slow rate of cell turnover [Lu and Shervington, 2008]. CSCs may also 

express proteins that would increase their resistance towards chemotherapeutic agents. 

 

Figure 5. Origins of cancer stem cells. One theory is that a mutation occurs in a normal tissue stem cell, 

endowing it with cancerous properties and causing it to become a cancer stem cell. Another theory is that the 

mutation occurs in a normal differentiated cell. There also appear to be cases in which a partially 

differentiated cell, known as a progenitor cell, can become a cancer stem cell. In any of these scenarios, the 

cancer stem cell is able to self-renew, creating more cancer stem cells, and to differentiate, creating the 

various types of cancer cells that make up a tumor 

(http://www.childrenshospital.org/gallery/index.cfm?G=67). 

 

These surviving CSCs then repopulate the tumor, causing relapse. By selectively targeting 

CSCs, it would be possible to treat patients with aggressive, non-resectable tumors, as well 

as preventing the tumor from metastasizing. The hypothesis suggests that upon CSCs 

elimination, cancer would regress due to differentiation and/or cell death. A number of 

studies have investigated the possibility of identifying specific markers that may distinguish 

CSCs.  

Several studies have suggested that the fraction of CSCs of the various tumor types could 

be identified by the expression of the transmembrane glycoprotein CD133. Glioblastoma 

CD133 positive cells are able to induce tumor formation when injected into the skull of 

NOD/SCID mice [Singh et al., 2004]. However, it is shown that in 40% of glioblastoma, cells 

do not express CD133 [Beier et al., 2007] and this suggests the limits of selection of CD133 

positive CSCs [Son et al., 2009]. Furthermore, CD133 is also expressed in normal stem cells 
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and in neuronal, hematopoietic, epithelial and endothelial progenitor cells. This 

glycoprotein may be useful to enrich the fraction of CSCs, but is requires the identification 

of other specific markers [Idikio, 2011]. 

 

1.3.  INDUCED PLURIPOTENT STEM CELLS (iPSCs) 

Induced pluripotent stem cells (iPSCs) are differentiated non-pluripotent stem cell returned 

to a state of pluripotency through the introduction, in an adult somatic cells, of 

reprogramming factors, generally transcription factors which regulate gene activity. These 

cells are similar to natural pluripotent stem cells, in many aspects, such as the expression of 

stem cell genes and proteins, chromatin methylation patterns, and differentiative ability, 

but the full extent of their relation to natural pluripotent stem cells is still being assessed 

(Figure 6). 

 

Figure 6. Adult cells are used for the derivation of induced pluripotent stem cells (iPSCs), followed by directed 

differentiation of these cells into cells that have a crucial role in the disease 

(http://www.sigmaaldrich.com/life-science/stem-cell-biology/ipsc.html). 

 

The first successful iPSCs, which showed many similarities to embryonic stem cells, were 

created in 2006 by transducing the factors Oct-4, Sox-2, Klf.4, and c-Myc into mouse 
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fibroblasts via retroviruses; the same results were achieved a year later using adult human 

fibroblasts [Takahashi and Yamanaka, 2006] (Figure 7). This has been cited as an important 

advance in stem cell research and potentially have therapeutic uses, without the 

controversial use of embryos. Because iPSCs are developed from a patient's own somatic 

cells, it was believed that treatment of iPSCs would avoid any immunogenic responses.  

 

Figure 7. Generation of induced pluripotent stem cells. (1) Isolate and culture donor cells. (2) Transfect stem 

cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous 

genes. (3) Harvest and culture the cells according to ES cell culture, using mitotically inactivated feeder cells 

(lightgray). (4) A small subset of the transfected cells become iPS cells and generate ES-like colonies. 

 

Although the traditional method using transcription factors such as Oct4, Sox2, c-Myc, and 

Klf4, was good proof of concept that somatic cells can be reprogrammed to iPS cells, there 

are still many key challenges for this method to overcome: 1. The throughput of 

successfully reprogrammed cells has been incredibly low (0.01-0.1%) [Takahashi and 

Yamanaka, 2006]. The low efficiency rate may reflect the need for precise timing, balance, 

and absolute levels of expression of the reprogramming genes. 2. Genomic integration of 

the transcription factors limits the utility of the transcription factor approach because of 

the risk of mutations being inserted into the target cell’s genome [Selvaraj et al., 2010]. 3. 

Some of the reprogramming factors are oncogenes that bring on a potential tumor risk. 

Inactivation or deletion of the tumor suppressor p53, which is the master regulator of 

cancer, significantly increases reprogramming efficiency [Marion et al., 2009]. One of the 

main strategies for avoiding problems (1) and (2) has been to use small compounds that 

can mimic the effects of transcription factors. These molecule compounds can compensate 

for a reprogramming factor that does not effectively target the genome or fails at 

reprogramming for another reason; thus they raise reprogramming efficiency. They also 
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avoid the problem of genomic integration, which in some cases contributes to tumor 

genesis. Melton et al. studied the effects of histone deacetylase (HDAC) inhibitor valproic 

acid. They found that it increased reprogramming efficiency 100-fold (compared to 

Yamanaka’s traditional transcription factor method) [Huangfu et al., 2008]. In 2008, Ding et 

al. used the inhibition of histone methyl transferase (HMT) with BIX-01294 in combination 

with the activation of calcium channels in the plasma membrane in order to increase 

reprogramming efficiency [Shi et al., 2008] (Table 2).  

YEAR GROUP STRATEGY CONTRIBUTION 

2006 Yamanaka et al. First to 
demonstrate 

iPS cells were first generated using retroviruses 
and the four key pluripotency genes; failed to 
produce viable chimera 

2007 Yamanaka et al. Different 
Selection 
method 

iPS cells were generated again using 
retroviruses, but this time produced viable 
chimera (they used different selection method) 

2007 Thomson et al Vector iPS cells were generated again using 
lentiviruses, and again produced viable chimera 

2008 Melton et al. Small Compound 
Mimicking 

Using HDAC inhibitor valproic acid compensates 
for c-Myc 

2008 Ding et al. Small Compound 
Mimicking 

Inhibit HMT with BIX-01294 mimics the effects 
of Sox-2, significantly increases reprogramming 
efficiency 

2008 Hochedlinger et al. Vector The group used an adenovirus to avoid the 
danger of creating tumors; however, this led to 
lower efficiency 

2008 Yamanaka et al. Vector The group demonstrated reprogramming with 
no virus (they used a plasmid) 

2009 Ding et al. Proteins Used recombinant proteins; proteins added to 
cells via arginine anchors was sufficient to 
induce pluripotency 

2009 Freed et al. Vector Adenoviral gene delivery reprogrammed human 
fibroblast to iPS cells 

2009 Bielloch et al. RNA Embryonic stem-cell specific microRNA 
promoted iPS reprogramming 

2011 Morrisey et al. RNA Demonstrated another method using micro 
RNA that improved the efficiency of 
reprogramming to a rate similar to that 
demonstrated by Ding 

Table 2. This timeline summarizes the key strategies and techniques used to develop iPS cells over the past 

half-decade. Rows of similar colours represents studies that used similar strategies for reprogramming. 

 

Reversine, a synthetic purine originally synthesized by Schultz and Ding [Chen et al., 2004], 

is also able to increase the plasticity of several terminally differentiated cell lines, such as 

http://en.wikipedia.org/wiki/IPS
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fibroblasts and murine C2C12, by inducing their de-differentiation to stem cells and their 

differentiation into osteoblasts and adipocytes in the presence of suitable stimulations 

[Anastasia et al., 2006; Chen et al., 2007; Anastasia et al., 2010] (Figure 8). 

Another key strategy for avoiding problems such as tumor genesis and low throughput has 

been to use alternate forms of vectors: adenovirus, plasmids, and protein compounds 

[Okita et al., 2008; Shi et al., 2008]. Studies by Blelloch et al. in 2009 demonstrated that 

expression of ES cell-specific microRNA molecules (miR-291, miR-294 and miR-295) 

enhances the efficiency of induced pluripotency by acting downstream of c-Myc. More 

recently, Morrisey et al. demonstrated another method using microRNA that improved the 

efficiency of reprogramming to a rate similar to that demonstrated by Ding [Anokye-Danso 

et al., 2011]. 

 

Figure 8. The synthetic chemical Reversine induces dedifferentiation of adult and differentiated cells. In the 

presence of specific stimuli, iPSCs are able to differentiate into several cell types 

(http://www.scripps.edu/news/press/122203.html). 

 

It is foreseeable that such experiments will continue to find small compounds that improve 

efficiency rates. Ultimately, the goal is to discover a cocktail of reprogramming factors and 

compounds that efficiently and reliably reprogram somatic cells to iPS cells. 
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CHAPTER 2 

 

2. MSCs AND OSTEOGENIC DIFFERENTIATION 

Bone tissue is a specialized form of connective tissue and is the main element of the 

skeleton with the function of protection and support. It originates from the mesenchyme, it 

is composed by cells and intercellular substance and fibrillar or amorphous matrix. 

However, it differs markedly from all the other connective tissues due to the fact that its 

matrix is highly mineralized. Bone is a hallmark of all vertebrates and absolutely essential in 

terms of organ protection and support, brain and lung function, locomotion, support of 

haematopoiesis in the bone marrow, storage of minerals and providing attachment to 

muscles [Proff and Romer, 2009]. For this reason, it is able to modulate its structure and 

architecture as a result of mechanical stimuli, highlighting the dynamic properties and 

plasticity of this tissue (Table 3). 

The cells that are found in bone tissue are osteoblasts, osteocytes, lining cells and 

osteoclasts, all derived from mesenchymal cells. The organic component of the 

extracellular matrix (ECM) consists of collagen type I fibres (97%), non-collagenous 

proteins, glycoproteins, proteoglycans, and lipids, important for the elasticity and 

resistance to fracture. The inorganic phase of ECM is mainly composed of mineral 

hydroxyapatite [Ca10(PO4)2•Ca(OH)2] (approximately 85%), calcium carbonate (about 10%) 

and other salts (magnesium phosphate, calcium fluoride), as well as traces of sodium, 

potassium, manganese and zinc, that are involved in the mechanical properties in term of 

hardness and resistance to the load.  
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FUNCTION OF BONE TISSUE 

MECHANICAL 
 
 
 
 
 
SYNTHETIC 
 
 
 
METABOLIC 
 

Protection: bones can protect internal organs 
 

Structure: bones provide a frame to keep the body supported 
 

Movement: bones, skeletal muscles, tendons, ligaments and 
joints function together to generate movement 
 
Blood production: the marrow, located within the medullary 
cavity of long bones and interstices of cancellous bone, produces 
blood cells in a process called haematopoiesis 
 
Mineral storage: bones act as reserves of minerals important for 
the body (calcium and phosphorus) 
 

Growth factor storage: mineralized bone matrix stores important 
growth factors such as insulin-like growth factors, transforming 
growth factor, bone morphogenetic proteins and others 
 

Fat storage: yellow bone marrow acts as a storage reserve of 
fatty acids 
 

Acid-base balance: bone buffers the blood against excessive pH 
changes by absorbing or releasing alkaline salts 
 

Detoxification: bone tissues can store heavy metals and other 
elements, removing them from the blood and reducing their 
effects on other tissues 
 

Endocrine organ: bone controls phosphate metabolism by 
releasing fibroblast growth factor 23 (FGF-23), which acts on 
kidneys to reduce phosphate resorption. Bone cells also release a 
hormone called osteocalcin, which contributes to the regulation 
of blood sugar (glucose) and fat deposition. Osteocalcin increases 
both the insulin secretion and sensitivity, in addition to boosting 
the number of insulin-producing cells and reducing stores of fat 

Table 3. Main function of bone tissue. 

 

Bone tissue is externally covered by a connective tissue called periosteum, which is absent 

in the articular cartilage and in proximity of insertion of tendons and ligaments. There are 

two types of bone tissue: compact or cortical and spongy or trabecular bone (Figure 9). The 

compact bone tissue presents a complex structure responsible for the stability of the 

skeleton. Its main unit, the osteon consists of concentric deposition of collagen fibres, 

which are composed of a central canal (Haversian canal), containing blood vessels and 

unmyelinated nerve fibres, through which the bone communicates with the surrounding 

environment. In longitudinal sections are also present other canals (Volkmann canals), that 

contain connective tissue and vessels.  

http://en.wikipedia.org/wiki/Skeletal_muscle
http://en.wikipedia.org/wiki/Tendons
http://en.wikipedia.org/wiki/Ligament
http://en.wikipedia.org/wiki/Joint
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/Medullary_cavity
http://en.wikipedia.org/wiki/Medullary_cavity
http://en.wikipedia.org/wiki/Hematopoiesis
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Growth_factor
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Bone_morphogenetic_protein
http://en.wikipedia.org/wiki/Fat
http://en.wikipedia.org/wiki/Fatty_acid
http://en.wikipedia.org/wiki/Acid
http://en.wikipedia.org/wiki/Base_(chemistry)
http://en.wikipedia.org/wiki/PH
http://en.wikipedia.org/wiki/Alkali_salts
http://en.wikipedia.org/wiki/Heavy_metals
http://en.wikipedia.org/wiki/Endocrine_system
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Fibroblast_growth_factor_23
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Reabsorption
http://en.wikipedia.org/wiki/Osteocalcin
http://en.wikipedia.org/wiki/Blood_sugar
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Body_fat
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Beta_cell
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The spongy bone tissue, is designed to resist to compressive stress, to ensure elasticity and 

stability of the skeleton and to account for the main part of bone metabolism (about 70%). 

The compact and spongy bone tissues are made of the same elements, cells and matrix 

proteins, although they play different structural and metabolic functions [Neumann and 

Schett, 2007]. 

 

Figure 9. Bone schematic representation 

(http://training.seer.cancer.gov/module_anatomy/unit3_2_bone_tissue.html). 

 

The differentiation process of the various cell types of bone tissue represents an important 

field of research, because the knowledge about the genesis of osteoblasts, osteocytes and 

osteoclasts is relevant for understanding complex phenomena from a biological, 

pathological and clinical point of view, such as skeletal and mineral homeostasis and 

diseases. Under the control of specific growth and transcriptional factors, mesenchymal 

stem cells differentiate toward osteogenic lineage during a number of developmental 

stages, starting from commitment to osteo-progenitors, pre-osteoblasts and osteoblasts 

and finally osteocytes or lining cells. In contrast, osteoclasts derive from the fusion of 

differentiated mononuclear macrophages (pre-osteoclast). They reach the bone through 

the blood and in this environment they should establish a population of monocytes 

[Katagiri and Takahashi, 2002]. 

 

2.1.  BONE REMODELING 

In order to maintain stability and integrity, bone is constantly undergoing remodeling 

[Lerner, 2006]: during its lifespan, bone tissue is constantly subject to cycles of resorption 
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and deposition, with the purpose to fill the metabolic and functional requirements of the 

bone tissues and to adapt the structure of the skeleton to mechanical stress which it is 

subjected. 

Bone remodeling is a complex process that involves bone resorption performed by 

osteoclasts, followed by bone formation carried out by osteoblasts. In this process, these 

cells closely collaborate in basic multicellular units (BMU) [Hadjidakis and Androulakis, 

2006]. Different cells populations are involved (Figure 10): 

Pre-osteoblasts, osteoprogenitor cells derived from mesenchymal cells. These cells 

can divided during the lifespan of an individual and they can differentiate, in the presence 

of specific stimuli (parathyroid hormone PTH, growth hormone GH and TGF-β) into mature 

osteoblast.  

Osteoblasts, cells with an intense osteogenic activity involved in the bone formation 

by synthesizing and secreting all the components of the bone matrix. Osteoblasts are rich 

of the enzyme alkaline phosphatase, which plays a central role either in the formation of 

bone mineral matrix, and in the synthesis and secretion of collagen fibres. Generally, 

osteoblasts are walled in the extracellular matrix deposited by themselves and they 

become osteocytes or lining cells [Rosen and Spiegelman, 2000; Karsenty and Wagner, 

2002].  

Osteocytes, cells of mature bone tissue implicated in its preservation and able to 

induce bone remodeling. They are terminally differentiated cells that develop from 

osteoblasts and are located in lacunae within the bony matrix [Ehrlich and Lanyon, 2002]. 

Osteocytes have cytoplasmic processes located in canaliculi important to make contact 

with the processes from neighbouring osteocytes. Their functions include bone formation, 

matrix maintenance, and calcium homeostasis. They have also been shown to act as 

mechano-sensory receptors regulating the bone's response to stress and mechanical load. 

Lining cells, temporarily inactive flat cells localized on the surfaces of bone where 

they exert an exchanging role between blood and interstitial fluid that circulates in the 

lacunae and in canaliculi [Aubin, 1998]. 

Osteoclasts, large and multinucleated cells of the bone tissue involved in bone 

resorption. These cells originate from monocytes and are included in the mononuclear 

phagocyte system. They secrete the acid phosphatase enzyme which is involved in the 

erosion of the bony matrix determining the cavity formation known as Howship's lacunae.  
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Figure 10. Overview of bone remodeling. During resorption phase osteoclasts degrade old bone matrix; after 

bone removal, osteoclasts undergo apoptosis and osteoblasts become activated and lay down new bone 

material in the trench. With the replacement of old bone by new one, the osteoblasts form resting flattened 

lining cells on the surface of bone, while the embedded in bone matrix one evolve to osteocytes. 

 

2.2.  BONE HEALING 

The complex series of cellular events that lead to bone healing have been extensively 

studied in experimental models. Histologically is possible to distinguish an early 

inflammatory phase characterized by haematoma formation, inflammation and 

angiogenesis, a reparative phase, characterized by cartilage callus and immature bone 

tissue formation following by replacement of the callus with lamellar bone, and a late 

phase of remodeling, by restoring the original shape of the bone. 

Inflammation. The interruption of skeletal integrity induces the destruction of bone 

architecture and it affects also the vascular structure and the supply of nutrients and 

oxygen to the lesion site. The haematoma represents a source of signaling molecules 

(growth factors and cytokines) for the recruitment of monocytes-macrophages and osteo-

chondroblasts precursors. Macrophages and other recruited inflammatory cells, secrete 

fibroblast growth factor (FGF), tumor necrosis factor-α (TNF-α), PDGF, TGFβ, insulin-like 

growth factor I (IGF-I) and a variety of cytokines, including interleukin 1 (IL-1) and IL-6. In 
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turn, these have a chemotactic effect on inflammatory cells and osteoblasts precursors. 

During the early stage, the mesenchymal precursors proliferate and differentiate towards 

osteo-chondrogenic lineages (Figure 11); moreover, new blood vessels are formed from 

pre-existing vascular structures through a complex chain of events: enzymatic degradation 

of basement membrane, endothelial cell migration, proliferation, maturation and 

organization of endothelial cells in capillary tubes. This process is regulated by FGF, vascular 

endothelial growth factor (VEGF) and angiopoietin 1 and 2. 

 

Figure 11. MSCs from blood, periosteum,  bone marrow and other tissues, migrate to the site of bone 

fracture. Growth factors such as TGF-β, FGF, PDGF and IGF-I and the chemokine IL-1, IL-6 and TNF-α, released 

by ECM and platelets, promote the recruitment, migration, proliferation and the homing of MSCs to the site 

of the lesion. 

 

Reparing. Intramembranous ossification begins few days after tissue damage, while 

enchondral ossification, which involves the adjacent tissues of the fracture site, spreads for 

more than a month. Subperiosteal and soft tissues, immediately surrounding the site of the 

fracture, formed the “hard callus” and directly create new bone tissue. In this process, 

mesenchymal precursors recruited to the site of injury, differentiate into osteoblasts and 

produce compact and trabecular bone, without inducing cartilage formation (Figure 12). 
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Figure 12. The site of fracture, micro-environmental factors, such as oxygen, mechanical stress and growth 

factors, induce MSCs differentiation in fibroblasts (FB), chondroblasts (CB) and osteoblasts (OB). These cells 

synthesize ECM that will undergo to a calcification process and then be converted into bone. 

 

Chondrogenesis leads to the formation of a cartilaginous callus that fills and stabilizes the 

fracture site. Chondrocytes release calcium into the matrix and deposit collagen type II, 

type X and aggrecan. Subsequently, the partially mineralized membrane, is resorbed and 

replaced with collagen type I matrix. Chondrocytes release proteases and phosphatases to 

prepare the matrix to the next mineralization. After 4-5 weeks, chondroclasts, the 

multinucleated cells responsible of calcified cartilage degradation, are activated. During 

cartilage matrix resorption, the chondroclasts release signals that promote perivascular 

mesenchymal stem cells differentiation into osteoprogenitor cells. Endothelial cells 

promote vascular invasion, and the removal of residual cartilage structures.  

Remodeling. The complete healing of the fracture is obtained during remodeling, in 

which osteoblasts and osteoclasts cooperate to convert the callus fracture in a bone 

structure able to bear physiological loads. Angiogenesis has a crucial role in the regulation 

of bone remodeling and fracture repair. Angiogenic factors such as VEGF and endothelin 

are regulators of osteoclasts and osteoblasts; moreover, blood vessels formation is 

important for the transport of osteogenic precursors at the site of bone remodeling. “Bone 

remodeling compartment” (BRC) consisting of bone lining cells expressing osteotrophic 

cytokines and growth factors, that regulate bone remodeling without interfering with the 

growth factors secreted by bone marrow cells. 
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2.3. MSCs AND MOLECULAR PATHWAYS INVOLVED IN OSTEOGENIC 

DIFFERENTIATION 

The cells committed to the osteoblastic phenotype are called osteo-progenitors. 

Continuous recruitment, proliferation and differentiation of cells within bone tissue is 

regulated by the expression of genes providing the characteristics to the bone phenotype. 

A precise pattern of the expression of genes encoding the osteoblast phenotype has been 

shown [Heino et al., 2009; Lo Celso et al., 2009], which can be subdivided in three 

chronologically related distinct stages: 

Proliferation phase: high mitotic activity that is accompanied by the expression of 

cell-cycle genes, including genes that encode for histones and cell growth genes (c-Myc, c-

Fos, and c-Jun). During this period, genes associated with the formation of ECM, such as 

collagen type I, osteopontin (OPN) and fibronectin are actively expressed. 

Matrix development phase: ECM composition and organization is widely modified, 

providing a favourable environment for the mineralization and an increase in alkaline 

phosphatase (ALP) activity. 

Mineralization phase: coordinated by the osteoblast activity and by the deposition 

of calcium phosphate hydroxyapatite.  

An overview of these modification is shown in Figure 13. 

 

Figure 13. Markers modification during MSCs differentiation through osteoblast lineage. 
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Osteoblast differentiation, recruitment, function and maturation is promoted and regulated 

by the secretion of lipid modified glycoproteins of the Wnt family, bone morphogenetic 

proteins (BMPs) and several transcriptional factors [Proff and Romer, 2009].  

Wnt signaling pathway. Wnt proteins are secreted glycoproteins that bind the 

Frizzled transmembrane receptor (FZD), activating two distinct signal transduction 

pathways: the canonical and non-canonical Wnt pathway. The first involves the formation 

of a complex between the Wnt proteins, FZD, and the co-receptor LRP5 or LRP6. In the non-

canonical pathways, Wnt binds the FZD receptor and activates heterotrimeric G proteins, 

inducing an increase of intracellular calcium by protein C-dependent mechanisms.  

Wnt proteins regulate growth, differentiation, function and cell death, and have a key role 

in bone biology. The binding of Wnt proteins with the complex FZD/LRP5/6 induce a signal 

transduction, that involved Dishevelled, Axin and Frat-1 proteins causing the inhibition of 

glycogen synthase kinase 3β (GSK3). Thus, β-catenin phosphorylation and subsequent 

ubiquitin-mediated degradation are inhibited, and β-catenin translocates into the nucleus 

where it cooperates with factors T-cell transcription factor/lymphoid enhancer factor 

(TCF/LEF) in the regulation of target genes expression. 

Canonical Wnt pathway is involved in bone formation and specific bone markers 

expression. It is likely that β-catenin activity is required for specific transcription factors 

activation such as Runx2, that plays a key role in osteogenic and chondrogenic 

differentiation [Day et al., 2005; Hu et al., 2005]. 

TGF-β signaling. Several members of the TGF-β superfamily, such as BMPs, have 

potent osteogenic effects. BMPs transmit signals thought Smad-dependent and Smad-

independent pathway, including ERK, JNK and p38/MAPK transduction pathways. The 

BMPs-Smad pathway activates the expression of Distal-less homeobox 5 (Dlx5), which in 

turn induces the expression of Runx2 and Osterix (Osx) in osteoprogenitor cells.  

Hedgehog (Hh) signaling. The protein Indian hedgehog (Ihh) is produced by 

hypertrophic chondrocytes and it has a direct effect on osteoblast progenitors. The 

signaling mediated by Ihh regulates the timing and spatial early osteoblastic commitment.  

Notch signaling. Since Notch receptors and their ligands (Delta 1, 3, 4 and Jagged 1, 

2) are transmembrane proteins, the signal transduction is activated upon cell-cell 

interaction. Notch 1 and Notch 2 are expressed into osteoblasts, while Notch 3 and Notch 4 

were identified in subgroups of osteogenic lineage. Notch signaling is able to positively 
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regulate the expression of genes of osteoblastic differentiation, and also to suppress the 

osteoblasts maturation induced by BMPs, through Runx2 inhibition. 

MAPK signaling. The MAPK are serine/threonine kinase proteins involved in cellular 

regulation. The MAPK pathway is activated by several growth factors, such as FGF, PDGF, 

IGF, and TGF-β involved into osteogenesis. Extracellular stimuli determine the activation of 

signal transduction consisting of MAP kinase, MAP kinase kinase (MKK or MAP2K) and MAP 

kinase kinase kinase (MAP3K or MKKK).  

 Transcription factors. A central regulator of bone formation is Runx2, also known as 

Core-binding factor α1 (Cbf-α1), a member of the Runx (Runt-related factors) family of 

transcription factors. Runx2 is expressed in mesenchymal stem cells and it is important 

during the osteogenic differentiation by the activation of genes such as osteonectin, 

osteopontin and collagen type I [Komori, 2006]; moreover, Runx2 serves as an initial 

marker of osteogenic cell lineage [Franceschi et al., 2007]. During osteoblast differentiation, 

Runx2 and canonical Wnt signalling, play essential roles in the commitment of pluripotent 

mesenchymal cells to the osteoblastic lineage [Komori, 2006]: after commitment into the 

osteoblastic lineage, the osteoblasts express bone matrix proteins at different levels 

depending on the maturation grade of the cells. 

Immature mesenchymal cells and pre-osteoblasts weakly express collagen type I, and its 

expression is up-regulated in immature osteoblasts [Inada et al., 1999]. Immature 

osteoblasts also express osteopontin (Spp1) and sialoproteins (Ibsp); maturate osteoblasts 

strongly express osteocalcin (bGlap) [Maruyama et al., 2007]. Mature osteoblasts are 

embedded into the bone matrix and finally become osteocytes, which express dentin 

matrix protein 1(Dmp1) [Toyosawa et al., 2001] (Figure 14). 
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Figure 14. RUNX2 directs pluripotent mesenchymal cells to the osteoblast lineage, increases the number of 

immature osteoblast, but inhibits osteoblast maturation. Pre-osteoblasts express Runx2. Immature 

osteoblasts express Runx2 and Spp1. Mature osteoblast Runx2 expression is down-regulated. Osteocytes 

express Dmp1+. The transition of immature osteoblasts to osteocytes occurs at an early stage of bone 

development. 

 

Targeted disruption of Runx2 results in the complete lack of bone formation by osteoblasts 

[Komori, 2008]. Runx2 has been designated as the most pleiotropic regulator of 

skeletogenesis [Karsenty and Wagner, 2002]; it functions as an inhibitor of proliferation of 

progenitor cells [Pratap et al., 2003], and it is also required for osteoblast function and 

differentiation [Ducy et al., 1999; Liu et al., 2001]. Other important transcription factors are 

Osx, involve into osteoblast differentiation from pre-osteoblast to immature osteoblasts, 

and Slug, or SNAIL-2, a transcriptional factor that plays a central role in different stages of 

development [Hemavathy et al., 2000; Nieto, 2002], but also involved in several biological 

functions, such as cell differentiation, cell motility, cell-cycle regulation, and apoptosis 

[Barrallo-Gimeno and Nieto, 2005]. Slug is also expressed in most normal adult human 

tissues, but little is still known about its potential functions. Recently, Lambertini et al have 

demonstrated that Slug is involved in osteoblast differentiation and maturation: Slug is 

positively correlated with osteoblast markers, such as Runx2, collagen type I, osteocalcin 

and osteopontin and Wnt/ β-catenin signaling and it is involved in osteoblast differentiation 

[Lambertini et al., 2009; Lambertini et al., 2010]. Other transcription factors involved in the 

process of osteoblastogenesis are ATF4 or CREB2 (cAMP Response Elements Binding Protein 

2), which through the interaction with Runx2, regulates the transcription of osteocalcin 

[Xiao et al., 2005]; AP1, an important regulator of bone formation, and PPARγ 

(Proliferation-activated Receptor γ), known transcription factor involved in the 

differentiation of MSCs: an increased expression of PPARγ induces adipogenic 
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differentiation and reduces the osteogenic differentiation of MSCs [Lecka-Czernik et al., 

1999].  

Hormones and growth factors also play an important role in osteoblastogenesis. Estrogens, 

glucocorticoids, PTH and vitamin D, control bone tissue formation through the regulation of 

transcription factors in osteoblasts. PTH promotes bone formation through 

phosphorylation and activation of Runx2 resulting in gene activation [Krishnan et al., 2003]. 

In addition, PTH increases the expression of Osx and reduces the expression of PPARγ in the 

progenitor cells [Wang et al., 2006]. Estrogens and glucocorticoids support 

osteoblastogenesis promoting the differentiation of MSCs towards the osteogenic lineage 

through the activation of transcription factors such as Runx2 and Wnt/β-catenin pathway 

[McCarthy et al., 2003; Kousteni et al., 2007]. Growth hormones (GH) can modulate the 

transcriptional function of Runx2 in osteoblasts [Ziros et al., 2004], while vitamin D up-

regulates the expression of Runx2 and simultaneously down-regulates the expression of 

PPARγ inducing osteoblastogenesis [Duque et al., 2004].  



 
30 

 

CHAPTER 3 

 

3. TISSUE ENGINEERING AND REGENERATIVE MEDICINE 

Diseases, injury and trauma can lead to a damage and the degeneration of tissues in the 

human body, which requires treatments to ameliorate their repair, replacement or 

regeneration.  

The field of tissue engineering aims to regenerate damaged tissues by developing biological 

substitutes that may restore, maintain or improve tissue function [Atala, 2007]. The term 

“tissue engineering” was officially coined at a National Science Foundation workshop in 

1988 to mean “the application of principles and methods of engineering and life sciences 

toward the fundamental understanding of structure-function relationships in normal and 

pathological mammalian tissues and the development of biological substitutes to restore, 

maintain or improve tissue function”. The field of tissue engineering is highly 

multidisciplinary and it includes experts from clinical medicine, mechanical engineering, 

materials science, biology, biotechnology, genetics, and related disciplines from both 

engineering and life sciences. The field relies extensively on the use of porous 3D scaffolds 

to provide the appropriate environment for the regeneration of tissues and organs. These 

scaffolds essentially act as a template for tissue formation and are typically seeded with 

cells and occasionally growth factors, or subjected to biophysical stimuli by the use of 

bioreactors. These cell-seeded scaffolds are either cultured in vitro to synthesize tissues 

which can then be implanted into an injured site, or are directly implanted into the injured 

site, using the body’s own systems, where regeneration of tissues or organs is induced in 

vivo. This combination of cells, signals and scaffold is often referred as a tissue engineering 

triad (Figure 15).  
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Figure 15. Player in tissue engineering [Boost et al., 2002]. 

 

These constructs must have the appropriate characteristics of mechanical function, 

strength and flexibility; in addition, an appropriate cell source for tissue engineering should 

be non-immunoreactive (unable to induce rejection and graft-versus-host disease, GvDH), 

has to possess a controlled proliferation rate and not to be tumorigenic. These populations 

should be available in large amount, expandable in vitro for many generations, possess or 

be able to acquire a specific protein expression patterns similar to that of the tissue to be 

regenerated, and finally, have adequate capacity to integrate within the surrounding 

tissues. 

 

3.1. MSCs AND THERAPEUTIC APPLICATIONS 

Mesenchymal stem cells are good candidates for applications in regenerative medicine: 

there are no limitations to their practical use related to ethical or religious considerations, 

and techniques of isolation and culture are simple to implement. Moreover, their 

phenotypic stability, multipotentiality and low immunogenicity give these cells a high 

therapeutic potential [Gimble, 2003]. The use of MSCs as therapeutic agents for the 

maintenance, regeneration or repair of damaged tissues, has been proposed in recent 

decades [Kirouac and Zandstra, 2008]. Stem cells are the basis for cell therapy: they are 

functionally undifferentiated cells with the ability to differentiate into different cell lineages 

and self-renewal, representing a potential inexhaustible cell source [Burns and Zon, 2002]. 
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Therapeutic strategies using stem cells have been proposed in various clinical applications 

including Parkinson's and Alzheimer's disease, spinal cord injury, stroke, burns, arthritis, 

heart disease, diabetes, osteoarthritis and rheumatoid arthritis (http://stemcells.nih.gov) . 

Clinical studies show the success of the in situ injection of autologous MSCs in combination 

with suitable scaffolds for the treatment of critical bone [Lendeckel et al., 2004] and 

articular cartilage defects. In a recent study on 5 patients, autologous MSCs isolated from 

bone marrow and in vitro expanded were reimplanted in combination with a scaffold of 

fibrin glue and platelet rich plasma (PRP), in order to promote the repair of articular 

cartilage defects in the knee. Diagnostic investigations followed a year after treatment, 

showed an improvement of patients’ outcome. Magnetic resonance imaging reveals in 3 of 

5 patients a complete filling of the lesion and a complete compliance of the neo-formed 

cartilage surface [Haleem et al., 2010]. MSCs have also been used in a small number of 

patients with coronary heart disease. The injected cells were well tolerated and promoted 

functional recovery of patients. However, these results need to be confirmed by 

randomized clinical trials with larger numbers of patients [Lee and Makkar, 2004]. In a 

study it has also been investigated the effect of allogenic transplantation of systemic MSCs 

in a patient with osteogenesis imperfecta: the results showed the ability of homing of 

injected cells to the bone and their consequent ability to produce collagen [Kassem et al., 

2004]. 

The therapeutic potential of ASCs was also used in the treatment of chronic ulcers: 20 

patients undergoing chemotherapy and with functional impairment, were treated with 

autologous ASCs administered through a minimally invasive surgical procedure. In all the 

patients there has been a systematic improvement of the clinical outcome or remission of 

the symptoms [Rigotti et al., 2007]. In another recent study, a group of diabetic patients 

suffering of ulcer, were treated by traditional therapy associated with autologous ASCs 

transplantation, which have been able to promote neovascularisation and an acceleration 

of the healing process. However, further pre-clinical and clinical studies are required to 

better understand the therapeutic potential of ASCs and their possible future used in the 

treatment of diseases for which current medical and surgical therapies might be strongly 

improved. 
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3.2. MSCs AND BONE TISSUE REGENERATION 

The repair of large bone defect remains a major clinical problem in orthopaedic the case of 

extensive bone loss due to pathological events such as trauma, inflammation, and tumor 

[Sarkar et al., 2006]. The biological processes involved in bone regeneration require an 

osteogenic potential able to provide cells directly into the graft site, osteoinductive factors 

able to promoting stem cells differentiation into mature osteoblasts, and osteoconductive 

scaffolds promoting the neovascularisation and cells infiltration [Miyazaki et al., 2009]. 

Actual therapeutic approaches include autologous or heterologous bone graft 

transplantation and implants of different bone substitutes. Autologous bone graft is 

considered a gold-standard for bone regeneration: it possesses a good characteristics of 

osteoconduction, osteoinduction and osteogenesis, and present a safe solution for the 

compatibility and absence of immune response. Although the percentage of success is high, 

complications, or non-unions are also common using bone grafts in the clinical practice. 

Moreover, the harvesting of autologous bone often results in significant donor site 

morbidity. Allografts, either from human cadaver or animal, present potential risks of 

infection, immune response, inadequate supply, difficulties in obtaining and processing 

tissue, and rapid resorption. In addition, the procedures for preparation and storage 

(freeze-drying and cryopreservation), performed in order to decrease the immunogenicity 

of the graft, result in a significant alteration of the osteoinduction and therefore a 

significant reduction in bone repair capacity [Giannoudis et al., 2005].  

As alternative to transplantation is the use of implants made of metallic, polymeric or 

ceramic materials. These prostheses are not widely used (8% cases) since they have 

significant disadvantages. The main problem with prosthetic joints lies in their wear and 

corrosion during long-term use. The debris formed as a consequence of this wear results in 

tissue inflammation, osteolysis and finally loosening of the implant [Roy and Lee, 2007]. In 

order to reduce this phenomenon, new techniques of surface treatment and coating 

deposition have been developed to modify the biomaterials surface [Sharma et al., 2009]. 

There have been many studies during the last decade regarding innovative techniques to 

coat orthopaedic materials in order to obtain a hard and inert material to give an adequate 

protection to the implant and to decrease the wear rate of prosthetic devices.  
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Nowadays, for the treatment of bone diseases a valid alternative approach is the use of 

autologous cells able, alone or in combination with osteoconductive scaffold, to enhance 

the regeneration process of bone defect. Molecules or factors able to induce cell 

proliferation can be chemically conjugated to the material and can be released in the 

tissues at a controlled rate, by diffusion or fragmentation. These bioactive materials are 

able to induce locally a growth factors release, which in turn stimulates the cells involved in 

tissue regeneration. 

Several types of approach are of particular interest in improving bone repair (Figure 16). 

 

Figure 16. Different strategies can be used and combined to treat disease that weaken bones. Bone formation 

can be activated by (i) enhancing osteoblast (Obs) activation (ii) suppressing the activity of osteoclasts (Ocs) 

(iii) adding growth factors and hormones (inducers molecules). Osteoprogenitors cells (like MSCs) within bone 

defects can be added with or without the use of biomaterials (synthetic biomaterials, demineralized bone) 

(modified by [Deschaseaux et al., 2009]). 

 

Scaffolds, cells and factors are the basic tools of tissue engineering and are distinguished 

according to their use of cell-free systems, cellular systems and factor-based therapies. 

In cell-free systems, the chemistry and the structure of the scaffolds play a dominant role 

for the correct repair. With regard to skeletal tissue, bone substitutes should posses pores 

and interconnections and also be biodegradable in parallel to the in situ bone regeneration, 

without generate toxic products or induce a decrement of pH.  

In a cell systems or cell-based therapies, are necessary stages from collection of cells from 

the donor site, their seeding on suitable scaffolds, their induction to proliferate and 

differentiate and finally the cells-scaffold constructs transplantation. In order to obtain an 
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effective and stable bone repair is necessary to isolate an adequate number of cells and 

maintain their correct phenotype. The cells should be organized within the three-

dimensional structure of the scaffold and produce extracellular matrix, in order to achieve 

full integration with the local host tissue. 

The factor-based therapies consist in the introduction in a cell-scaffold system of 

osteoinductive stimulus. BMPs, by binding to specific receptors on the surface of 

osteoprogenitor cells, activate signal transduction cascades, stimulating MSCs to 

differentiate into mature osteoblasts. In a prospective pilot study, BMP-2 has been applied 

in a specific device of collagen sponge in an anterior lumbar fusion. In this study, were 

found a total absence of adverse effects and 100% of fusion [Baskin et al., 2003]. A recent 

prospective randomized study has compared autologous bone graft with the administration 

of rhBMP-2 linked to a collagen, tricalcium phosphate and hydroxyapatite support, in the 

treatment of postero-lateral fusion. The results showed an increase in the rate of fusion for 

the group treated with rhBMP-2 [Dimar et al., 2006]. In many studies of bone regeneration 

have been used the centrifuged platelet-rich plasma (PRP), characterized by high levels of 

growth factors (PDGF and TGF-β) that promote chemotaxis and proliferation of MSCs: the 

combination of MSCs and PRP, significantly increases the osteogenesis of mandibular 

distraction [Hwang and Choi, 2010]. A more recent study conducted on 20 patients, has 

evaluated the efficacy of the combination of β-tricalcium phosphate and PRP in the 

treatment of periodontal defects, showing an improvement of the process of bone healing 

[Saini et al., 2011]. Moreover, autologous MSCs isolated from adipose tissue have been also 

used to promote bone regeneration in a 7 years paediatric patient suffering from a severe 

craniofacial injury. Autologous bone graft remains the gold-standard for the treatment of 

bone regeneration in craniofacial surgery, but this technique is difficult to implement in 

paediatric patients due to the limited amount of available autologous bone from the iliac 

crest. In this study, ASCs were isolated and immediately reimplanted in bone defects in 

combination with autologous fibrin glue and bone micro-fragment. The post-operative 

course did not present complications, and 3 months after the results demonstrated the 

complete bone regeneration at the defects areas [Lendeckel et al., 2004]. 
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3.3. BIOMATERIALS 

Several scaffolds produced from a variety of biomaterials have been used in attempts to 

regenerate different tissues and organs in the body. Regardless of the tissue type, a 

number of key considerations are important when designing or testing the suitability of a 

scaffold for their use in tissue engineering. 

Biocompatibility. Cells must adhere, function, and migrate onto the surface and 

eventually through the scaffold and begin to proliferate before laying down new matrix. 

After implantation, the scaffold or tissue engineered construct must elicit a negligible 

immune reaction in order to prevent severe inflammatory response that might reduce 

healing or cause rejection by the body. 

Biodegradability. Scaffolds and constructs, are not intended as permanent implants. 

The scaffold must therefore be biodegradable so it could allow cells to produce 

extracellular matrix. The products of degradation should also be non-toxic and able to be 

eliminated by the body without interfering with other organs. In order to allow degradation 

to occur in tandem with tissue formation, an inflammatory response combined with cells 

such as macrophages is required [Brown et al., 2009; Lyons et al., 2010]. 

Mechanical properties. Ideally, the scaffold should posses mechanical properties 

consistent with the anatomical site into which has to be implanted and, from a practical 

perspective, it must be stiff enough to allow surgical handling during implantation. While 

this is important in all tissues, it provides some challenges for cardiovascular and 

orthopaedic applications. Production of scaffolds with adequate mechanical properties is 

one of the great challenge in bone and cartilage repair. In these cases, the implanted 

scaffold should have sufficient mechanical integrity to function from the time of 

implantation to the completion of the remodeling process. A further challenge is the fact 

that the healing rates vary with age; for example, in young individuals, fractures normally 

heal to the point of weight-bearing in about six weeks, with complete mechanical integrity 

approximately at one year after fracture, but in elderly patients the rate of repair slows 

down. This should be considered when producing scaffolds for orthopaedic applications. 

However, as the field has evolved, many efforts have been placed on trying to develop 

scaffolds with mechanical properties similar to bone and cartilage. It is clear that a balance 
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between mechanical properties and porous architecture, sufficient to allow cellular 

infiltration and vascularisation, is the key to the success of any scaffold. 

Scaffold architecture. The architecture of scaffolds used for tissue engineering is of 

critical importance. Scaffolds should have interconnected pores and high porosity to ensure 

cellular infiltration and adequate diffusion of nutrients to cells within the construct, and 

allow the diffusion of waste products out of the scaffold [Ko et al., 2007; Phelps and Garcia, 

2009]. Another key component is the mean pore size of the scaffold. The pores thus need 

to be large enough to allow cells to migrate into the structure, but small enough to 

establish a sufficiently high specific surface, leading to a minimal ligands density to allow 

efficient binding of a critical number of cells to the scaffold [O'Brien et al., 2005]. Therefore, 

it exists a critical range of pore sizes [Murphy et al., 2010; Murphy and O'Brien, 2010] which 

may vary depending on the cell type used and the tissue to be engineered. 

Manufacturing technology. The development of manufacturing processes to good 

manufacturing practice (GMP) is critically important in ensuring successful translation of 

tissue engineering strategies to the clinic [Hollister, 2009].  

In the first Consensus Conference of the European Society for Biomaterials (ESB) in 1976, a 

biomaterial was defined as “a nonviable material used in a medical device, intended to 

interact with biological systems”; however, the ESB’s current definition is a “material 

intended to interface with biological systems to evaluate, treat, augment or replace any 

tissue, organ or function of the body”. This subtle change in definition is indicative of how 

the field of biomaterials has evolved. Biomaterials have moved from merely interacting 

with the body to influencing biological processes toward the goal of tissue regeneration.  

Typically, three groups of biomaterials, ceramics, synthetic polymers and natural polymers, 

are used in the production of scaffolds for tissue engineering. Each of these groups have 

specific advantages and disadvantages, so the use of composite scaffolds made out of 

different phases is becoming increasingly common. Ceramic scaffolds, such as 

hydroxyapatite (HA) and tricalcium phosphate (TCP), have been widespread use in bone 

regeneration applications. These scaffolds are typically characterized by high mechanical 

stiffness, very low elasticity, and an hard brittle surface. They exhibit excellent 

biocompatibility due to their chemical and structural similarity to the mineral phase of 

native bone. The interactions of osteogenic cells with ceramics are important for bone 

regeneration [Ambrosio et al., 2001]. Various ceramics have been used in dental and 



 
38 

 

orthopaedic surgery to fill bone defects and to coat metallic implant surfaces to improve 

their integration with the host bone. However, their clinical applications for tissue 

engineering has been limited because of their brittleness, difficulty of shaping for 

implantation and new bone formed in a porous HA network cannot sustain the mechanical 

loading needed for remodeling [Wang, 2003]. In addition, although HA is a primary 

constituent of bone and might seem ideal as a bone graft substitute, some problems exist 

to control its degradation rate. Numerous synthetic polymers have been used to produce 

scaffolds including polystyrene, poly-l-lactic acid (PLLA), polyglycolic acid (PGA) and poly-dl-

lactic-co-glycolic acid (PLGA). These materials can be produced with a specific architecture, 

and their degradation characteristics, controlled by modifying the polymer itself or the 

composition of each polymer [Lu et al., 2000; Rowlands et al., 2007]; however, they have 

also drawbacks including the risk of rejection due to reduced bioactivity. In addition, the 

degradation process of PLLA and PGA by hydrolysis, produce carbon dioxide that induces a 

local decrease of the pH resulting tissues necrosis [Liu et al., 2006]. Biological materials 

such as collagen, proteoglycans, alginate-based substrates and chitosan have all been used 

for the production of scaffolds. Unlike synthetic polymer-based scaffolds, natural polymers 

are biologically active and able to promote cell adhesion and growth. Furthermore, they are 

also biodegradable and so they allow host cells to produce extracellular matrix and replace 

the degraded scaffold. However, these scaffolds generally have poor mechanical 

properties, which limits their use in load-bearing orthopaedic applications. A number of 

groups have attempted to introduce ceramics into polymer-based scaffolds, while others 

have combined synthetic polymers with natural polymers  in order to enhance their 

biological ability [Damadzadeh et al., 2010]. Moreover, metallic materials are also 

particularly suitable for the replacement of hard tissues such as bones and teeth and for 

the production of structures able to support loads without the risk of large elastic 

deformations. Biocompatibility is linked to the corrosive power of biological fluids on them; 

the corrosion may cause the release of metal ions in situ and their accumulation in other 

body districts. The metals used as biomaterials for the manufacture of prostheses are iron, 

cobalt, nickel, titanium, and tungsten. In particular, due to the characteristics of 

biocompatibility, corrosion resistance and excellent mechanical properties of titanium and 

titanium alloys, is suggested the use of these biomaterials in oral surgery, maxillofacial and 

orthopaedic surgery. 
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CHAPTER 4 

 

4. MSCs AND CULTURE SYSTEMS 

The main drawback in MSCs transplantation is sometimes the low number of MSCs. Since 

the biology of MSCs and their microenvironment are not totally understood, it is not easy 

to overcome this issue. Ex vivo expansion of MSCs became an alternative approach to 

increase the cell-dose available for transplants and to further understand MSCs [Zhai et al., 

2004]. The differentiation of MSCs has been also extensively studied, using mainly well-

established in vitro assays with culture-expanded MSCs. The data obtained in vitro are 

dependent on culture conditions for isolation and expansion of MSC populations, which 

unlikely correspond to the native cells which interact physically with the surrounding 

environment. The first line of interaction for MSCs is with the extracellular environment, be 

it plastic, a resorbable bio-scaffold, or a more rigid structure [Augello and De Bari, 2010]. 

Evidence of how the extracellular matrix can control stem cell fate, inducing seeded MSCs 

toward osteogenesis or chondrogenesis was reported [Engler et al., 2006]: these findings 

open up unexpected avenues for the regulation of MSC differentiation in regenerative 

medicine using physical factors, avoiding or combining these conditions with exogenous 

growth factors (Figure 17). 
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Figure 17. Modulation of cells phenotype could be reached at different levels through many different 

approaches, involving cell physical and biochemical environment modifications. 

 

This knowledge leads to a new approach by researchers: to investigate all the possible 

conditions in vitro that can simulate or mimic the in vivo ones. 

 

4.1. STATIC CULTURE 

Static culture systems, such as polystyrene Petri dishes, multiwells, or flasks, have been the 

most widely used culture devices. MSCs are conventionally cultured in these containers, 

and put into a biological incubator, where two physical parameters are regulated: 

temperature and pH. Temperature is usually set at 37°C, whereas pH control is performed 

by maintaining an atmosphere at 5% CO2 concentration, which corresponds to the 

physiological pH of 7.2. The main sources of variability among different culture protocols 

reside in medium composition, cell seeding density, and time intervals between cell 

dilutions, called cell passages, and medium changes. Conventional cultivation methods 

need of both optimized protocols and ad hoc technology [Cabrita et al., 2003]. 

Most investigators have used Dulbecco Modified Essential Media (DMEM) supplemented 

with animal or human serum and combinations of cytokines. Alternatively, serum-free and 

animal product-free media have been developed to avoid immunological issues affecting 
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transplantation [Andrade-Zaldivar et al., 2008]. Different cytokine cocktails aim the 

proliferation of undifferentiated MSCs and the maintenance of their engraftment capacity. 

The optimal combination and concentration of growth factors to preserve the stem state 

has not been yet established.  

In normal conditions, after damage, bone formation begins when mesenchymal cells begin 

to respond to specific growth factors. Growth factors (GFs) are cytokines secreted by many 

cell types, which act as signaling molecules and that are essential for tissue formation. 

These proteins have pleiotropic effects: they play an important role in tissue engineering, 

since the link between growth factor and its receptor initiates a cascade of events such as 

the promotion or inhibition of cell adhesion, proliferation, migration and differentiation via 

up-regulation or down-regulation of specific proteins synthesis. 

Like other tissues, bone responds to bone-specific soluble growth factors (Table 4).  

TGF-β is able to affect cell growth and differentiation during the developmental processes 

such as embryogenesis and tissue repair, in particular modulating the expression of Runx2 

and down-regulating the expression of PPARγ [Ahdjoudj et al., 2002]. In addition, several 

molecules belonging to the BMPs family, have been cloned and their involvement in the 

osteogenic differentiation was shown [Hay et al., 2004].  

Additional growth factors also regulate bone development, and their role in MSCs 

differentiation is being investigated [Foster and Somerman, 2005].  

FGF-2 or b-FGF (basic Fibroblast Growth Factor 2) is a growth factor involved in the 

proliferation of endothelial cells, in the process of bone remodeling, in the regulation and in 

the maintaining of the balance between bone formation and resorption [Kim et al., 2003]. 

Moreover, it also promotes angiogenesis, such as VEGF (Vascular Endothelial Growth 

Factor) and PDGF (platelet-derived growth factor), and has a role in the stimulation of 

osteogenic phenotype through the activation of the transcription complex Cbaf-1/Runx2  

IGF-1 (Insulin Growth Factor 1 or somatomedin C) is an hormone with a quaternary 

structure very similar to that of insulin. It is produced mainly in the liver as an endocrine 

hormone, but also in its target tissues with paracrine/autocrine effect. IGF-1 is one of the 

most potent natural activators of the expression of Osterix, stimulating cell proliferation 

and inhibiting pro-apoptotic processes [Celil and Campbell, 2005]. Both IGF-1 and IGF-2 (or 

somatomedin A) seem to have a similar effect on bone metabolism. They are always found 

in the site of bone fracture: in fact, is known their role in the stimulation of collagen type I 
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synthesis, with an increase of bone matrix deposition. Moreover, PDGF, produced by 

osteoblasts, platelets and monocytes/macrophages, has also an important role in 

osteoblast progenitors migration toward the injury site. 

The biological actions of growth factors are different, and have an important role in tissue 

regeneration, cell differentiation, embryonic development and regulation of the immune 

system. In particular, GFs regulate mesenchymal stem cells proliferation and the 

mitogenesis of fibroblasts, osteoblasts and endothelial cells, and they monitor the effects 

of other mitogenic growth factors [Everts et al., 2002].  

BMPs are a group of growth factors well known for its ability to induce cartilage and bone 

tissue formation. They interact with specific receptors (Bone Morphogenetic Receptors, 

BMPRs,) and their activation induces signal transduction and activation of transcription 

factors, such as Cbfa-1, able of induce phenotype-specific genes pushing the cell to a 

complete differentiation. In addition, the BMPs, in association with their inhibitors, play a 

critical role in fetal development of specific organs like heart, central nervous system and 

cartilage, and, in the post-natal development, of bones. 

The mechanism of action through which they act on MSCs has not yet been elucidated, but 

it is known, for example, that the BMP-2 plays a key role in the expression of some 

osteogenic markers, including alkaline phosphatase (ALP) and osteocalcin (OC). At the same 

time, BMP-2, together with BMP-7, is also involved in the expression of Cbaf-1/Runx2, the 

transcription factor responsible of the osteogenic differentiation and of the expression of 

osteocalcin and osteopontin. VEGF could also be potentially useful in bone tissue 

engineering due to its angiogenetic activity.  

Due to the side effects of uncontrolled release of these factors in some culture conditions, 

like in static conditions, many researchers have studied appropriate delivery systems in 

form of nanoparticles, microspheres, and scaffolds. Although their design and composition 

are unique for each other, they share the same goal: how to deliver factors to the target 

and to meet their temporal and spatial need [Bae et al., 2010; Roger et al., 2010]. 

Among these candidates, biodegradable polymeric microspheres (PMs) have been widely 

utilized as a favourable vehicle in delivering various cytokines and proteins. The 

encapsulation of various drugs, bioactive proteins, or other molecules within degradable 

polymers has long been recognized an effective way to control the release profile of the 

retained substances [Bae et al., 2010]. Many efforts have been done to identify new drug 
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delivery systems able to enhance drug permeation and to control drug delivery release 

rate. In this context striking advantages can be given by nanotechnology [Civiale et al., 

2009]. Pharmaceutical nanotechnologies including nanosuspensions, solid lipid 

nanoparticles, liposomes and polymeric micelles can allow to overcome some of the 

inconveniences of conventional drug delivery and sometimes improve water solubility of 

poorly soluble drugs and their chemical stability [Kayser et al., 2005]. 

GROWTH FACTOR SOURCE FUNCTION ACTION ON BONE TISSUE 

Bone 
Morphogenetic 
Proteins (BMPs) 

Osteoprogenitor cell, 
osteoblast, 
chondrocyte, 
endothelial cells 

Osteochondrogenesis, 
BMP2-7 and BMP9 are 
osteoinductive 

Induction of chemotaxis, 
proliferation, 
differentiation and ECM 
synthesis; Angiogenesis 

Transforming 
Growth Factor β 
(TGF-β) 

Platelet, stromal cell, 
chondrocyte, 
endothelial cells, 
fibroblast 

Immunosuppressor, 
pro-angiogenesis, 
cellular growth, 
differentiation and 
ECM synthesis 

Induction of proliferation 
of undifferentiated MSCs, 
recruitment of osteoblast 
precursor, induction of 
osteogenic 
differentiation, ECM 
production 

Fibroblast Growth 
Factor (FGF) 

Macrophage, 
monocyte, stromal 
cell, chondrocyte, 
osteoblast, 
endothelial cell 

Pro-angiogenesis FGF-1 induce 
chondrocyte maturation; 
FGF-2 induce osteoblast 
proliferation and 
differentiation, inhibits 
apoptosis of immature 
osteoblast and stimulate 
apoptosis of osteocyte 

Platelet-derived 
Growth Factor 
(PDGF) 

Platelet, osteoblast, 
endothelial cell, 
monocytes, 
macrophage 

Mitogen for 
connective tissue cells, 
chemotactic for 
monocytes, 
macrophages and 
smooth muscle cells, 
pro-angiogenesis 

Induce osteo-progenitors 
proliferation and 
differentiation 

Vascular 
Endothelial Growth 
Factor (VEGF) 

Endothelial cell, 
osteoblast, platelet 

Pro-angiogenesis, 
chemotactic for 
endothelial cells 

Conversion from cartilage 
to bone tissue, osteoblast 
proliferation and 
differentiation, RANK 
induction in osteoclast 
precursor 

Insulin-like Growth 
Factor (IGF) 

Osteoblast, 
chondrocyte, 
hepatocyte, 
endothelial cell 

Biological regulation 
of growth hormone 

Induce osteoblast 
proliferation and ECM 
synthesis; bone 
resorption 

Table 4. Growth factors and their role in bone repair. 



 
44 

 

Natural polymers, such as pectin and gelatin, can be used to produce biocompatible and 

biodegradable microparticles, obviating the toxicity or biodegradability problems (i.e., 

formation of localized granulomatous inflammation) related to the use of synthetic 

materials [Esposito et al., 2001]; [Civiale et al., 2009]. Alginate microspheres have been 

used for the encapsulation of a wide variety of biologically active agents, including proteins, 

antibodies, DNA and eventually cells [Capretto et al., 2010]. Recently, the production of 

alginate microbeads was also accomplished by microfluidic procedures [Choi et al., 2007]. 

All these strategies try to obtain controlled and predictable factors delivery, targeting sites 

or cells in a temporal and spatial optimized condition. However, in static conditions, the 

problem of the limited interactions of cells with the extracellular matrix or environment is 

not overcame yet. 

 

4.2. DYNAMIC CULTURE 

Despite static cultures have shown expansion of MSCs, the scaling-up represents a major 

problem because more volume means less oxygen flow and less nutrient availability in the 

system. Several dynamic models that incorporate gas flow have been used to overcome 

this problem [Andrade-Zaldivar et al., 2008]. Several bioreactors with specific 

characteristics have been designed for MSCs expansion since the 1990s. In addition, the 

latest designs have served as well to study the MSCs biology. Differences between tissues 

suggest that reactor design considerations and operating conditions can be different when 

dealing with a specific tissue. However, every type of tissue beneficiates from controlled 

shear stresses and optimal nutrient availability and wastes elimination [Martin and 

Vermette, 2005]. 

The term “bioreactor” has been frequently used. Bioreactors can be defined as devices in 

which biological and/or biochemical processes develop under closely monitored and tightly 

controlled environmental and operating conditions (ie. pH, temperature, pressure, nutrient 

supply, and waste removal). Different bioreactor systems matching this definition are 

currently being used in a wide range of biotechnological applications including industrial 

fermentation processing, wastewater treatment, food processing, and manufacturing of 

biopharmaceuticals. However, many systems encountered in the tissue-engineering 
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literature are composed of vessels of few millilitres, which, under many aspects, do not fit 

in the presented definition of a bioreactor [Martin and Vermette, 2005]. 

Dynamic bioreactor culture systems are essential for the in vitro cultivation and maturation 

of bone tissue engineering grafts, especially for larger grafts where the core of the scaffold 

is more than 200 mm from the surface [Chen and Hu, 2006]. Bioreactors improve the mass 

transport of nutrients and allow the diffusion limitation of traditional static culture, which is 

generally taken to be around 200 mm, to be overcome. In addition, the dynamic media flow 

applies a mechanical stimulus to the cells, enhancing cellular osteogenesis and 

mineralization through triggering of mechano-transduction signalling pathways [Gomes et 

al., 2003]. Currently, several types of bioreactors have been developed for bone tissue 

engineering applications, providing truly microgravity environment (Figure 18). 

 

Figure 18. Designs of bioreactor systems. 
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CHAPTER 5 

 

5. ANIMAL MODELS IN ORTHOPAEDIC RESEARCH 

The development and modification of orthopaedic and dental implants has taken place for 

many years in an effort to create an optimal interaction between the body and the 

implanted material. The goal of achieving an optimal bone-implant interface has been 

approached by the alteration of implant surface topography, chemistry, energy and charge 

as well as bulk material composition. Schmidt et al. [Schmidt et al., 2001] defines an ideal 

bone implant material as having a biocompatible chemical composition to avoid adverse 

tissue reaction, excellent corrosion resistance in the physiologic environment, acceptable 

strength, a high resistance to wear and with a modulus of elasticity similar to that of bone 

to minimise bone resorption around the implant. The features relating to implant safety, 

such as avoidance of adverse tissue reaction and resistance to wear and corrosion are of 

high clinical significance for implants used in long-term clinical situations in both human 

and veterinary medicine, as there have been some links between prolonged exposure to 

non-biocompatible materials and neoplastic tissue responses. In order to determine 

whether a new material conforms to the requirements of biocompatibility and mechanical 

stability prior to clinical use, it must undergo rigorous testing under both initial in vitro and 

then in vivo conditions. In vitro testing is popular for the characterisation of bone-

contacting materials, particularly as medical researchers embrace the principles of animal 

reduction. It is accepted that in vitro experiments must be used primarily as a first stage 

test for acute toxicity and cytocompatibility to avoid the unnecessary use of animals in 

testing cytologically inappropriate materials. These tests give information regarding 

cytotoxicity, genotoxicity, cell proliferation and differentiation [Hanks et al., 1996] and it is 

more easily standardised and quantifiable than in vivo testing. In vitro studies are also 

useful for screening new materials for product quality and the release of potentially 

harmful additives incorporated during the manufacturing process [Pizzoferrato et al., 

1994]. 

However, in vitro characterisation is not able to demonstrate the tissue response to 

materials, instead being confined to the response of individual cell lines or primary cells 
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taken from animals. Moreover, no in vitro cell culture system is able to produce loading 

that simulates the in vivo situation and currently very few ex vivo systems are able to 

approach such physiological loading [Davies et al., 2006]. For these reasons animal models 

are essential for evaluating biocompatibility, tissue response and mechanical function of an 

orthopaedic material prior to clinical use in humans. Animal models allow the evaluation of 

materials in loading or unloading conditions over potentially long time durations and in 

different tissue qualities (i.e. normal healthy or osteopenic bone) and ages. While animal 

models may closely represent the mechanical and physiological human clinical situation, it 

must be remembered that it is only an approximation, with each animal model having 

unique advantages and disadvantages. Currently there are numerous models for testing 

implant materials in vivo, ranging in purpose from the assessment of protein adsorption 

and soft tissue adherence to the integration of bone and the dissemination of implant wear 

particles. For testing orthopaedic implants, it is necessary to use a model which is 

reproducible and in which implant dimensions are comparable to those used in humans. 

The number and size of implants to be tested will influence directly the species of animal 

chosen for a study and, regardless of the design, implants should have an appropriate size 

for the species chosen and for the bone implantation site. Guidelines are provided for the 

dimensions of implants for in vivo studies, based on the size of animal and bone chosen and 

on the implant design, in order to avoid pathological fracture of the test site. Moreover, 

these implants should be of a material already used in clinic (International Standard ISO 

10993-6, 1994) and should allow outcome data to be related to existing products. 

Kirkpatrick et al. outlines three types of studies which yield data on factors influencing the 

biological response to materials implanted in bone [Kirkpatrick et al., 2002]. These are 

studies on explanted biomaterials, in vitro techniques and animal models. Desirable 

attributes of an animal model include demonstration of similarities with humans, both in 

terms of physiological and pathological considerations as well as being able to observe 

numerous subjects over a relatively short time frame [Liebschner, 2004; Egermann et al., 

2005]. When deciding on the species of animal for a particular model there are several 

factors that should be considered: cost to acquire and care for animals, availability, 

acceptability to society, tolerance to captivity and ease of housing. Other factors include 

low maintenance care, ease of handling, resistance to infection and disease, inter-animal 

uniformity, biological characteristics analogous to humans, tolerance to surgery, adequate 
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facilities and support staff and an existing database of biological information for the 

species. In addition to this, the lifespan of the species chosen should be suitable for the 

duration of the study. More specifically, for studies investigating bone-implant interactions, 

an understanding of the species specific bone characteristics, such as bone microstructure 

and composition, as well as bone modelling and remodeling properties, are important 

when later extrapolating the results to the human situation. Finally the size of the animal 

must be considered to ensure that it is appropriate for the number and size of implants 

chosen [Schimandle and Boden, 1994].  

The rodent are one of the most commonly used species in medical research and 

orthopaedic field (38% of preclinical studies) [O'Loughlin et al., 2008]. These animal models 

are the most commonly used for their low cost and easy handling. For their anatomy, they 

may be more easily subjected to surgery and biomechanical analysis. Several studies of 

biocompatibility involve them [Hoemann et al., 2005]. However, rodents have also been 

used in a limited number of studies of articular defects [Dausse et al., 2003] and in the field 

of bone tissue engineering: both mice that rats are often used to evaluate the bone healing 

process of the skull [Aalami et al., 2004]. In addition, both species can be manipulated to 

generate pathological situations that mimic the process of bone degeneration typical of 

human, such as osteoporosis.  

The rabbit is one of the most commonly used animals for medical research, being 

used in approximately 35% of musculoskeletal research studies [O'Loughlin et al., 2008]. 

This is in part due to ease of handling and size. The rabbit is also convenient since it reaches 

skeletal maturity shortly after complete sexual development at around 6 months of age 

[Gilsanz et al., 1988]. A drawback with the rabbit used for the assessment of multiple 

implant materials is its size limitation. Despite this, the rabbit remains a very popular choice 

for testing of implanted materials in bone. Clearly there are gross differences in the bone 

anatomy between the rabbit and human both in size and shape of the bones and also in 

loading due to the differences in stance between the two species. While there is minimal 

literature on the differences between human and rabbit bone composition and density, 

some similarities are reported in the bone mineral density (BMD) [Wang et al., 1998]. 

Moreover, in comparison to other species, such as primates and some rodents, the rabbit 

has faster skeletal change and bone turnover [Castaneda et al., 2006]. This may make it 

difficult to extrapolate results from studies performed in rabbits onto the likely human 
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clinical response. However, rabbits are commonly used for screening implant materials 

prior to testing in a larger animal model.  

The dog is one of the most frequently used large animal species for musculoskeletal 

and dental research. Unlike other animal species, there is a considerable amount of 

literature comparing canine and human bone with regard to the usefulness of the dog as a 

model for human orthopaedic conditions. The highly tractable nature of dogs can be 

beneficial during the post-operative healing phase where they may be trained to take an 

active part in recuperative protocols. However, there are increasing ethical issues relating 

to the use of dogs in medical research due to their status as companion animals. Depending 

on the size of dog, there may be some discrepancy in the size, shape and loading of canine 

bones in comparison to human bones. A study by Aerssens et al. [Aerssens et al., 1998] 

examines the differences in bone composition, density and quality between various species 

(human, dog, sheep and pig), finding that there is most similarity in bone composition 

between the dog and human. However, another difference between human and canine 

bone which may be important when assessing the effect of implant modifications, is the 

rate difference in bone remodeling between the species. The dog, like humans, do not 

possess the intrinsic ability to heal cartilage lesions [Cook et al., 2003], and suffer of 

problems such as osteochondrite and osteoarthritis as in human population. Canine models 

have also been used in studies of bone healing: the use of MSCs loaded on biomaterials 

were used in the treatment of bone defects with good results [Nakamura et al., 1998].  

Most of the literature reports that the dog is a more suitable model for human bone 

from a biological standpoint than the sheep; however, adult sheep offer the advantage to 

be more similar to human for body weight and it has long bones of suitable dimensions for 

the insertion of human implants and prostheses [Newman et al., 1995], which is not 

possible in smaller species such as rabbits or dogs. Macroscopically, sheep bones may 

represent human bones enough closely, however, from the histology point of view, the 

bone structure is quite different, in particular considering  its bone density. Moreover, 

several studies argue that the sheep is still a valuable model for human bone turnover and 

remodeling activity [den Boer et al., 1999].  

Pigs are reported as the subjects of choice in a variety of studies including studies of 

osteonecrosis of the femoral head, fractures of cartilage and bone, bone ingrowths and 

studies evaluating new dental implant designs [Sun et al., 1999]. Commercial breeds of pig 
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are generally considered undesirable for orthopaedic research due to their large growth 

rates and excessive final body weight. However, the development of minipigs has overcome 

this problem to some extent. Nevertheless, pigs are often considered difficult to handle, 

noisy and aggressive and are therefore overlooked in favour of more amenable species 

such as the sheep and goat [Newman et al., 1995]. With regard to bone anatomy, 

morphology, healing and remodeling, the pig is considered to be closely representative of 

human bone and therefore a suitable species of choice [Thorwarth et al., 2005]. While 

having a denser trabecular network, the pig is described as having a lamellar bone structure 

which is similar to that of humans [Mosekilde et al., 1987]. When comparing the bone 

composition of various species, Aerssens et al. find that porcine bone mineral density and 

bone mineral concentration show similarities to human bone [Aerssens et al., 1997]. 

Moreover, the literature describes the pig as having bone remodeling processes similar to 

humans, for both trabecular and intracortical BMU based remodeling [Mosekilde et al., 

1987].  

The pig is widely used in various fields of tissue engineering: dental, maxillofacial and 

orthopaedic field [Wang et al., 2007; Ciocca et al., 2009]. Despite pig model has been 

widely used in the treatment of osteochondral defects [Chang et al., 2011], the use of 

minipigs is expanded, due to their docile and gentle behaviour, and also their body weight 

similar to that of an adult human (70-80 kg). The minipig bone reaches maturity 18-22 

months of age, and does not have good self-healing capacity of chondral and osteochondral 

lesions [Gotterbarm et al., 2008]. Different studies have shown that, in these animal models 

the process of bone remodeling, bone structure, and cartilage thickness are quite similar to 

humans [Frisbie et al., 2006; Zelle et al., 2007]. Different studies of chondral and 

osteochondral defect healing were performed using this animal model [Harman et al., 

2006], showing promising results in the field of tissue engineering.  

Preclinical studies are crucial before proceeding to human trials, but the transition from 

preclinic to clinic requires a large number of significant statistically data. 
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RABBIT ADIPOSE-DERIVED STEM CELLS 

AND TIBIA REPAIR 

 

 

 

The aim of this study conducted during my PhD course, was to evaluate the effect of the 

administration of adipose-derived stem cells to repair or regenerate loss bone tissue. For 

this purpose, in collaboration with the Faculty of Veterinary Medicine of the University of 

Milan and the IRCCS Galeazzi Orthopaedic Institute of Milan, we have performed an 

experimental study on 12 adult New Zealand White rabbits (Oryctolagus Cuniculus, 2.5-3 

kg) with the aim to evaluate the ability of autologous rabbit Adipose-derived Stem Cells 

(rbASCs) in association with clinical-grade hydroxyapatite disks (HA), to repair a critical size 

bone defect.  

All the animals were treated in accordance with both policies and principles of laboratory 

animal care and with the European Union guide-lines (86/608/ECC) approved by the Italian 

Ministry of Health (Law 116/92). 
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MATERIALS AND METHODS 

 

 

 

1. Adipose Tissue Harvesting 

Adipose tissue was collected from interscapular region of six rabbits (group C and D). 

Anaesthesia was induced by intramuscular injection of a combination of ketamine (44 

mg/kg) and xylazine (6-8 mg/kg) and maintained via inhalation of a mixture of oxygen and 

isofluorane. Sagittal incision of about 2-3 cm of length was performed in the interscapular 

skin region and subcutaneous adipose tissue was harvested, being careful to separate 

vessels from skin. After harvesting the minimum required amount of adipose tissue, the 

small wound was sutured and rabbits were treated with marbofloxacin (5 mg/kg) every 24 

hours for 7 days. To reduce pain, rabbits were administered with flunixin (1 mg/kg) every 

12 hours for 5 days. Adipose tissue was collected in a sterile jar with PBS 1X (NaCl 137 mM, 

KCl 2.7 mM, Na2HPO4•7H2O 4.3 mM, KH2PO4 1.4 mM, pH 7.4) supplemented with 300 U/ml 

penicillin, 300 µg/ml streptomycin and 0.75 µg/ml amphotericin B (Sigma-Aldrich, Milano, 

Italia) (Figure 1). 

 

Figure 1. Adipose tissue harvesting (a) and carrying in a sterile refrigerate jar in the lab (b). 
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2. Isolation of Rabbit Adipose-derived Stem Cells (rbASCs) 

After adipose tissue harvesting, the tissue was finely minced and washed with PBS 1X 

supplemented with 300 U/ml penicillin, 300 µg/ml streptomycin and 0.75 µg/ml 

amphotericin B and centrifuged at 1200 g for 2 minutes to remove erythrocytes and cellular 

debris. Samples were then digested in a shaking water bath for 60 minutes at 37°C by 0.1% 

collagenase type I (225 U/mg; Worthington, Lakewood, NJ) in PBS 1X supplemented with 

300 U/ml penicillin, 300 µg/ml streptomycin and 0.75 µg/ml amphotericin B. After 

digestion, the collagenase type I was neutralized by adding an equal volume of control 

medium (CTRL) made up of DMEM (Sigma-Aldrich) supplemented with 10% (v/v) FBS (Fetal 

Bovine Serum, Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), 100 U/ml penicillin 

(Sigma-Aldrich), 100 µg/ml streptomycin (Sigma-Aldrich) and 0.25 µg/ml amphotericin B 

(Sigma-Aldrich). The samples were centrifuged for 10 minutes at 1200 g to separate the 

Stromal Vascular Fraction (SVF) from adipocytes, cellular debris and undigested tissue 

(Figure 2). The SVF was filtered through sterile medication lint, the cellular suspension was 

centrifuged for 4 minutes at 320 g and the pellet was resuspended in CTRL medium. Cell 

number and viability were determined by trypan blue exclusion. Rabbit Adipose-derived 

Stem Cells (rbASCs) derived from SVF were plated in CTRL medium at a density of 105 

cells/cm2 and maintained at 37°C in a humidified atmosphere with 5% CO2. After 48-72 

hours, non-adherent cells were discarded by washing with PBS 1X.  

 

Figure 2. Rabbit Adipose-derived Stem Cells (rbASCs) isolation protocol. 

 

3. In Vitro Culture of rbASCs 

During all the period of culture the medium was changed three times a week and after 

reaching of 80-90% of confluence, cells were detached by incubation with 0.5% Trypsin/ 

0.2% EDTA (Ethylene Diamine Tetra Acetic acid, Sigma-Aldrich) for 3 minutes at 37°C. Cell 
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number and viability were determined by trypan blue exclusion and rbASCs were plated at 

a density of 5x103 cells/cm2 for further expansion and experiments. 

 

3.1. Cryopreservation and Defreezing of rbASCs 

The aim of cryopreservation is to enable stocks of cells to be stored to prevent the need to 

have all cell lines in culture at all times, to reduce the risk of microbial contamination or 

cross contamination with other cell lines or to reduce the risk of genetic drift and 

morphological changes. The basic principle of successful cryopreservation is a slow freeze 

and quick thaw. Cultures should be healthy with a viability of > 90% and should be in log 

phase of growth. 106 of rbASCs were resuspended in 1 ml of freezing medium made up of 

90% FBS and 10% DMSO, a cryopreservant to help protect the cells from rupture by the 

formation of ice crystals. rbASCs suspension was put in cryovials and placed in a jar 

(Nalgene) containing 100% isopropanol (Fluka) at -80°C; this permit that cells were cooled 

at a rate of -1°C to -3°C per minute. Important is also that the cells were thawed quickly by 

incubation in a 37°C water bath for 2-3 minutes. When defrozen, cellular suspension was 

diluted with CTRL medium to neutralize DMSO and centrifuged at 300 g for 3 minutes. The 

pellet was resuspended and plated in a Petri dish that was placed in incubator at 37°C with 

5% CO2. 

 

3.2 In Vitro rbASCs Characterization 

3.2.1. MTT Cell Proliferation Assay 

The MTT cell proliferation assay measures the cell proliferation rate and conversely, when 

metabolic events lead to apoptosis or necrosis, the reduction in cell viability. The yellow 

tetrazolium MTT [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] is reduced 

by metabolically active cells, by the action of dehydrogenase enzymes in the mitochondria, 

to generate reducing agents such as NADH and NADPH. The resulting intracellular purple 

formazan can be solubilized and quantified by spectrophotometric means [Denizot and 

Lang, 1986]. From passage 1 to 4 in culture, rbASCs were trypsinized and plated at a 

density of 5x103 cells/cm2 in control medium. rbASCs viability was monitored at various 

time points (1, 6, 10 or 14 days) by addition to the culture medium of MTT at a final 
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concentration of 0.5 mg/ml and further incubation for 4 hours at 37°C. The resulting 

formazan precipitate was then solubilised by using 100% DMSO and the absorbance was 

read at 570 nm with a Wallac Victor II plate reader. 

 

3.2.2. Fibroblast and Osteoblast Colony-Forming Unit Assay 

A colony forming unit-fibroblast assay (CFU-F) was performed as previously described 

[Castro-Malaspina et al., 1980] with minor modifications with the aim to identify the 

percentage of stem cell precursor in a primary cell culture. rbASCs were plated in six-well 

plates at low density (50 cells/cm2, 25 cells/cm2 and 12.5 cell/cm2) and cultured at 37°C in a 

humidified atmosphere with 5% CO2 in CTRL medium supplemented with 20% FBS. At day 

7, the medium was changed and, at day 14 cells were fixed with 100% methanol (Sigma-

Aldrich) and stained with 2 mg/ml Crystal Violet (Fluka, Buchs, Switzerland). A colony 

forming unit-osteoblast assay (CFU-O) was performed by plating cells in six-well plates by 

limiting dilution (100 cells/cm2, 50 cells/cm2 and 25 cell/cm2) and culturing at 37°C in 

osteogenic medium (as described below) for 14 days. Colonies were fixed with 70% cold 

ethanol and stained with 40 mM Alizarin Red S (ARS, pH 4.1 - Sigma Aldrich). The frequency 

of the CFU-F and CFU-O was established by scoring individual colonies (consisting of at least 

20-30 cells) respect to the number of seeded cells. 

 

3.2.3. Haematoxylin-Eosin Stain  

Haematoxylin and eosin stain is a popular staining method in histology. The staining 

method involves application of hemalum, which is a complex formed from aluminium ions 

and oxidized haematoxylin. This colours nuclei of cells blue. The nuclear staining is followed 

by counterstaining with an aqueous or alcoholic solution of eosin, which colours 

eosinophilic structures in various shades of red, pink and orange.  

105 rbASCs were seeded on a polylysine coverslips (PolysineTM 25 mm x 75 mm x 1 mm) and 

left adhere overnight. The day after, the cells were fixed with 100% methanol (Fluka) for 5 

minutes and then stained for 2-3 minutes with a solution of haematoxylin-eosin (Sigma-

Aldrich), washed with deionized water and mounted with Pertex mountat (Bio-Optica, 

Milano, Italia). 
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3.3. Osteogenic Differentiation and Evaluation of Differentiation Markers 

From passage 1 to 4, rbASCs were differentiated towards the osteogenic lineage by using a 

specific inductive medium (OSTEO) supplemented with 10 nM dexamethason (Sigma-

Aldrich), 10 mM glycerol-2-phosphate (Sigma-Aldrich), 150 µM L-ascorbic acid-2-phosphate 

(Sigma-Aldrich) and 10 nM cholecalciferol (Sigma-Aldrich) (Table 1) [de Girolamo et al., 

2007]. 

Table 1. Control (CTRL) and osteogenic (OSTEO) medium composition 

 

Differentiation was performed in monolayer, cells being seeded at a density of 5x103 

cells/cm2. Cells were cultured at 37°C in a humidifier atmosphere (5% CO2) for various 

periods (7 and 14 days), the medium being changed three times a week. At the appointed 

time, differentiated rbASCs were photographed to document morphological changes. After 

7 and 14 days in culture, the expression of specific markers of osteogenic differentiation 

such as alkaline phosphatase activity, calcified extracellular matrix deposition and the 

expression of collagen type I, osteocalcin and osteonectin, was evaluated. 

 

3.3.1. Immunofluorescence 

7x104 rbASCs differentiated for 7 days on coverslips were rinsed and fixed with 3% 

paraformaldehyde and incubated with the first-step primary antiserum, rabbit α-actin 

(1:200 dilution) (Abcam, Cambridge, USA) for 24 hours and subsequently treated with the 

Avidin-Biotin blocking kit solution (Vector Laboratories Inc., USA). The samples were 

incubated with a solution of 10 μg/ml goat biotinylated α-rabbit IgG (Vector Laboratories 

 BASAL MEDIUM SUPPLEMENT 

CTRL 
 MEDIUM 

(CTRL) 

DMEM + 10% FBS 
2 mM L-glutamine 
100 U/ml penicillin 

100 μg/ml streptomycin 
0.25 μg/ml amphotericin B 

 

 
OSTEOGENIC 

MEDIUM 
(OSTEO) 

 

DMEM + 10% FBS 
2 mM L-glutamine 
100 U/ml penicillin 

100 μg/ml streptomycin 
0.25 μg/ml amphotericin B  

150 µM L-ascorbic acid-2-phosphate 
10 nM dexamethason  

10 mM glycerol-2-phosphate  
10 nM cholecalciferol 
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Inc.) in TBS for 1 hour and then treated with Fluorescein-avidin D (Vector Laboratories Inc.), 

10 μg/ml in NaHCO3, 0.1 M, pH 8.5, 0.15 M NaCl for 1 hour. For the second step of the 

double immunofluorescence procedure, the slides were treated with either α-collagen type 

I (Coll I, 1:200 dilution) (Chondrex Inc, USA) or α-osteopontin (OPN, 1:100 dilution) (Santa 

Cruz Biotecnology, USA) antisera, blocked as described above and incubated with 10 μg/ml 

goat biotinylated α-mouse IgG (Vector Laboratories Inc.) for 1 hour. The samples were then 

treated with Rhodamine-Avidin D (Vector Laboratories Inc.), 10 μg/ml in NaHCO3, 0.1 M, pH 

8.5, with 0.15 M NaCl for 1 hour, and finally they were embedded in Vectashield Mounting 

Medium (Vector Laboratories Inc.) and observed by a confocal laser scanning microscope 

(FluoView FV300, Olympus, Italy). All reactions were performed at 18-20°C; the absence of 

cross-reactivity with the secondary antibody was verified by omitting the primary antibody 

during the first incubation. 

 

3.3.2. Cellular Lysis 

At passage 4, rbASCs were plated in 12-multiplate at 5x103 cells/cm2 in CTRL and OSTEO 

medium, replacing the medium twice a week. At day 7 and 14 of the culture, cells were 

washed with PBS 1X and lysed in non-denaturant conditions using 60 µl of 0.1% Tryton X-

100 (Sigma-Aldrich) in distilled H2O, to induce osmotic shock and cellular lysis without 

altering the biochemical properties of alkaline phosphatase (ALP). The lysates were 

collected in 1.5 ml tube and were placed on ice for 30 minutes, vortexing every 10 minutes. 

After incubation were performed 3 cycles of freezing/ thawing to facilitate the breaking of 

the cell membrane. Finally, the samples were centrifuged at 14000 g for 10 minutes (4°C) 

and supernatants recovered and frozen at -20°C until use.  

Western Blot samples were prepared lysing 106 rbASCs in 100 µl of 50 mM Tris-HCl pH 8, 

150 mM NaCl, 1% Nonidet P40, 0,1% Sodium Dodecyl Sulfate (SDS) supplemented with 

protease inhibitor cocktail (104 mM AEBSF, 1.4 mM E-64, 4 mM bestadin, 2 mM leupeptin, 

80 μM aprotinin, 1.5 mM pepstatin A, Sigma-Aldrich) and 1 mM Phenyl Methane Sulfonyl 

Fluoride (PMSF, Sigma-Aldrich) for 30 minutes on ice followed by centrifugation at 14000 g 

for 10 minutes (4°C). 
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3.3.3. Protein Assay 

Protein concentration was determined using the BCATM Protein Assay Kit (Pierce, Rockford, 

IL, USA) optimized with the use of 96-multiplate. This assay is a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for the colorimetric detection and 

quantification of total protein. This method combines the reduction of Cu2+ to Cu1+ by 

protein in an alkaline medium (the biuret reaction) with the highly sensitive and selective 

colorimetric detection of the cuprous cation (Cu1+) using a unique reagent containing 

bicinchoninic acid. The purple-coloured reaction product of this assay is formed by the 

chelation of two molecules of BCA with one cuprousion.  

In each well, 3 μl of cellular lysates were dosed adding 200 μl of solution obtained mixing 

two reagents (CuSO4 and bicinchoninic acid) following the manufacturing instruction. The 

plate was incubated at 37°C for 30 minutes to allow the reaction and the samples were 

read by measuring the absorbance at 550 nm using a microplate reader Wallac VictorII-

1420. The protein concentrations of samples were obtained interpolating the absorbance 

data on a standard curve of Bovine Serum Albumine (BSA, Sigma-Aldrich) at known 

concentrations (range 125 μg/ml - 2 mg/ml). 

 

3.3.4. Alkaline Phosphatase Activity (ALP) 

ALP activity is performed on cellular lysates using a colorimetric assay in which p-

nitrophenyl phosphate (pNPP), a colourless phosphatase substrate, is converted into p-

nitrophenol (pNP) when dephosphorilated by ATP, producing a yellow product (λ = 405 nm) 

(Figure 3).  

 

Figure 3. Alkaline phosphatase reaction with substrate pNPP 
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Experiments were performed as previously described with minor modifications to be 

applicable in 96-well plates [Bodo et al., 2002]. 20 μl of lysate were assayed (each sample is 

assayed in duplicate to calculate a statistical variability) and in each well were added 100 μl 

of substrate solution (10 mM pNPP diluted in 100 mM diethanolamine buffer (Fluka)/ 0.5 

mM MgCl2•6H2O, pH=10.5). Samples were incubated at 37°C for the time necessary to 

develop the reaction. At the end of the incubation period, the reaction was stopped with 50 

μl NaOH 1N and the absorbance was read using a microplate reader Wallac VictorII-1420. 

The absorbance values of samples were interpolated with a standard curve of pNP (range 

6.25-200 μM) (Sigma-Aldrich). Enzymatic activity was calculated in Unit (U), where 1U is the 

amount of enzyme required to hydrolyze 1 μmol of pNPP according to the formula: U= μM/ 

min * 1000 → 1000 nM / min. 

Alkaline phosphatase activity were then normalized to protein concentration of each 

samples and percentage increase was calculated comparing treated to control samples.  

 

3.3.5. SDS-PAGE and Western Blot Analysis 

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis, is a technique widely 

used in biochemistry, genetic and molecular biology to separate proteins according to their 

electrophoretic mobility (a function of length of polypeptide chain or molecular weight).  

Samples were boiled at 90°C for 5 minutes in 4X sample buffer (250 mM Tris-HCl pH 6.8 

supplemented with 40% Sucrose, 6% SDS, 20% β-mercaptoethanol e 0.04% bromophenol 

blue). A total of 20 µg of proteins were loaded in each wells and an electric field was 

applied across the gel (80 V in the stacking gels and 120 V in the resolving gel), causing the 

negatively-charged proteins to migrate across the gel towards the positive electrode. 

Depending on their size, each proteins moved differently through the gel matrix.  

The proteins are then transferred to a membrane of nitrocellulose (Amersham Bioscences, 

Milan, Italy) in the transfer buffer (20% methanol, 20 mM Tris-HCl, 150 mM glicin, 0.05% 

SDS) for 2 hours at 80V (4°C). The uniformity and the effectiveness of protein transfer from 

the gel to the membrane was checked by staining the membrane with Ponceau S dyes 

(0.1% Ponceau S, 5% acetic acid in distilled H2O) for 5 minutes. Ponceau S is sensible and 

water soluble dye and can subsequently destain using TBS-Tween 0.1% (200 mM Tris-HCl, 

15 mM NaCl, 0.1% Tween 20). Blocking of non-specific binding was achieved by placing the 
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membrane in a solution of 5% nonfat dry milk in TBS-Tween for 1 hours at room 

temperature. Membrane was then incubated at 4°C overnight with either mouse anti-

osteonectin (1:200 dilution; Santa Cruz Biotecnology, Santa Cruz, Calif., USA) and mouse 

anti-collagen type I (1.1000 dilution, Chondrex Inc. USA) and mouse anti-β-actin (1:3000 

dilution, Sigma-Aldrich). Specific proteins were revealed by horse-radish peroxidase (HRP)-

conjugated secondary antibodies (GE Healthcare).  

The pattern of primary and secondary antibodies used for this study is described in Table 2. 

PRIMARY ANTIBODY  SPECIES  ORIGIN  DILUTION  
 

α-collagen type I  Mouse  Monoclonal  1:1000  Chondrex Inc. USA  

α-osteonectin  Mouse  Monoclonal  1:200  Santa Cruz Biotecnology Inc.  

α-β tubulin  Mouse  Monoclonal  1:5000  Sigma-Aldrich  
 

SECONDARY ANTIBODY DILUTION  
 

Horseradish peroxidase 
(HRP) anti mouse 

1:3000  Ge Healthcare 

Table 2. Primary and secondary antibody 

 

After incubation the membrane was washed 3 times with TBS-Tween 0.1% in order to 

remove the excess of secondary antibody and the signal was detected using ECL Western 

Blotting Analysis System Kit (GE Healthcare) according to the manufacturer’s protocol. 

Proteins expression was then quantified by using ImageJ software. The osteo-specific 

proteins content was normalized to that of β-actin. 

 

3.3.6. Collagen Production 

Osteogenic differentiation was also evaluated by collagen deposition assay. This method is 

based on the ability of Sirius Red compound to selectively bind to fibrillar collagens (types I 

to V), specifically to the {Gly-X-Y]n helical structure. Collagen type I, produced by 

osteoblast, represents about 90% of total collagen. This assay is performed as previously 

described [Tullberg-Reinert and Jundt, 1999; Bosetti et al., 2003; Sandrini et al., 2005] with 

minor modifications.  
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Undifferentiated rbASCs were plated in 12-multiplate at 5x103 cells/cm2 and osteo-

differentiated for 14 days in culture. The cells were fixed with Bouin’s solution (Sigma-

Aldrich) for 1 hour at 37°C. The total collagen was evaluated by using 0.1% Sirius Red F3BA 

in saturated picric acid (Sigma-Aldrich) (w/v) for 1 hour at room temperature and the non-

specific stain was removed by washing with 10 mM HCl (Sigma-Aldrich). Sirius Red was then 

resolubilized with 600 µl 0.1 M NaOH (Sigma-Aldrich) for 5 minutes. After extraction, 

absorbance was read at 550 nm using a microplate reader Wallac VictorII-1420. The 

amount of secreted collagen was calculated based on a standard curve of known 

concentration of calf skin type I collagen (Sigma-Aldrich, range 5-80 g) and their optical 

density measurements, and percentage increase was calculated comparing treated to 

control samples.  

 

3.3.7. Extracellular Calcified Matrix Deposition 

Alizarin Red-S (AR-S) staining has been used to evaluate calcium-rich deposits by cells in 

culture. It is particularly versatile and the dye can be extracted from the stained monolayer 

and assayed. To evaluate extracellular calcified matrix deposition, 5x103 rbASCs/cm2 were 

plated and maintained in culture in CTRL or OSTEO medium for 14 days. After fixation in 

70% ice-cold ethanol (Sigma-Aldrich), the cells were stained with 40 mM Alizarin Red-S for 1 

hour at room temperature and the quantification of mineral deposition was performed by 

incubating the samples with 600 µl 10% w/v cetylpyridinium chloride (CPC, Sigma-Aldrich) 

in 0.1 M phosphate buffer (pH 7.0) for 15 minutes to extract AR-S. Absorbance was read at 

550 nm with a Wallac Victor II plate reader [Halvorsen et al., 2001], and percentage 

increase was calculated comparing treated to control samples.  

 

3.4. In Vitro rbASCs–Hydroxyapatite Constructs 

Granules of the same clinical-grade HA (Ca10(PO4)6(OH)2, 70-80% of porosity, pore size 

<10µm, ≈3% vol; 10-150 µm, ≈11% vol; >150 µm, ≈86% vol, kindly provided by Finceramica 

S.p.A., Italy) used for the in vivo experiments were seeded with undifferentiated rbASCs at 

passage 4 (2x105 cells/scaffold – 7.5x106 cells/cm3), to evaluate their ability to grow and 

differentiate in a 3D environment. Cells were let adhere overnight to HA in 1.5ml-tubes at 
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37°C in a 5% CO2 humidified incubator and the following day the seeded scaffolds were 

transferred into a 24-well plate and cultured for 14 days in non inductive medium (CTRL).  

 

4. Surgical Technique and Constructs Implantation 

At passage 2, undifferentiated ASCs from each rabbit (1.5×106 cells/80 µl) were loaded on 

clinical-grade HA (Ca10(PO4)6(OH)2; Finceramica S.p.A., Faenza, Italy) cylindrical scaffolds (8 

mm diameter × 4 mm height). The seeded scaffolds were maintained overnight in the 

incubator in cryovials to let rbASCs adhere to the disk. The following day, an 8-mm 

diameter full-thickness bone defect was created bilaterally in the proximal epiphysis of the 

medial facet of the tibia in all the rabbits (Figure 4a), inducing anaesthesia as previously 

described. HA scaffold constructs were implanted into the defect through “press-fit” 

technique in groups B and D (Figure 4b and 4d). The same number of rbASCs (1.5×106 

cells/40 µl) in semi-liquid suspension was directly injected in the bone defects of group C 

just before the last suture stitch of the periostium (Figure 4c). After surgery rabbits were 

allowed free movement and again administered with marbofloxacin and with flunixin as 

described for the post-surgical recovery treatment after the adipose tissue harvesting.  

Eight weeks after implantation, animals were sacrificed under general anaesthesia (44 

mg/kg ketamine, 6-8 mg/kg xilazine followed by an overdose of 50 mg/kg thiopental and 60 

mEq KCl); tibia specimens were explanted, and evaluated by gross examinations, 

radiography, bone mineral density (BMD) measurements, histology and 

immunocytochemical analysis, histomorphometric and biomechanical tests. 

 

Figure 4. Surgical technique and constructs implantation. Creation of a critical size tibia defect using a 

trephine (a), implantation of HA scaffold alone (b) or in association with rbASCs (d) into defect through “press-

fit” technique, and filling of the lesion site with a semi-liquid suspension of rbASCs (c). 
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5. Radiographic Analysis 

Lateral radiographs were taken immediately after the surgical treatment (T0), 6 weeks after 

intervention (T6) and post-tibia removal (8 weeks, T8). The scoring system (Table 3) included 

an evaluation of bone integration in terms of good repair for the group treated without 

scaffold, or integration of the HA scaffolds. 

 

6. Gross Analysis 

Eight weeks after implantation, rabbits were euthanized under anaesthesia with an 

overdose of pentothal sodium (50 mg/kg) and potassium chloride (60 mEq) and left and 

right proximal tibiae were dislocated from each rabbit and dissected free of soft tissue. 

Filling of the lesions and stiffness of the new regenerated tissue were evaluated, using a 

modified version of Wakitani scale, adapted to the description of bone defects (Table 3) 

[Wakitani et al., 1994]. 

MACROSCOPIC ANALYSIS RADIOGRAPHIC ANALYSIS 

Filling Stiffness Bone integration 

Same level = 3 Same stiffness = 3 Good repair/integration = 3 

Overgrowth = 2 Softer = 2 Overgrowth = 2 

Undergrowth >1 mm = 1 Very soft = 1 Undergrowth >1 mm = 1-0 

Table 3. Morphologic and radiographic scoring system for the evaluation of the bone regeneration process. 

 

7. Bone Mineral Density (BMD) 

Measurement of Bone Mineral Density (BMD) was conducted using a Hologic QDR 

1000/Plus DXA instrument (70 kVp/l40 kVp), localized at the section of Veterinary 

Radiology of the Faculty of Veterinary Medicine at the University of Milan. BMD is a 

medical term referring to the amount of matter per cubic centimetre of bones, that is used 

in clinical medicine to evaluate the mineral content (hydroxyapatite) in the bone tissue and 

is considered an indirect indicator of osteoporosis and fractures risk. There were analyzed 

three different areas for each tibiae, as seen in the scheme (Figure 5): R1 (0.25 cm2), R2 

(0.25 cm2), and R3 (0.09 cm2), where R2 represented the lesion site. Pure scaffold density 
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(HA cylindrical scaffold inserted in explanted rabbit tibia) and normal tibia density were also 

measured as control. BMD was expressed in grams for cm2 (g/cm2). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Three different BMD areas, for each tibia were analyzed, where R2 represented the lesion site. 

 

8. Histological Analyses 

The removed tibiae (8 weeks) were dissected free of soft tissue and fixed for 3 days in 10% 

buffered formalin and decalcified in a formic acid-sodium citrate solution. The solution was 

changed daily until it was calcium free; at this time point decalcification was considered 

complete [Donath and Breuner, 1982]. After decalcification procedure, samples were 

embedded in paraffin, cut into 5 µm-thick sections and stained with haematoxylin and 

eosin (HE) sequential stain for ascertaining structural details with light microscope 

(Olympus BX51, Olympus, Italy). The sections were also analyzed with a polarized light 

microscope (LeicaDM LP; Leica Microsystems, Wetzlar, Germany) in order to investigate the 

tissue organization of the newly formed structures. 

 

9. Immunohistochemistry 

Explanted tibiae were prepared for immunohistochemical evaluation as previously 

described. 5 µm-thick decalcified sections were rehydrated and then a heat-induced 

antigen retrieval was performed (5 minutes at 500 W). To block endogenous peroxidase 

activity, sections were incubated in an aqueous solution of 1% H2O2 for 30 minutes at room 

temperature. Sections were then incubated overnight with either mouse anti-collagen type 

I antibody (1:500 dilution) (Chondrex Inc) or osteopontin (1:250 dilution) (Santa Cruz 

Biotechnology). Antigen-antibody complexes were detected with a peroxidase-conjugated 
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polymer which carries secondary antibody molecules directed against mouse 

immunoglobulins (EnVisionTM+, DakoCytomation, Italy) applied for 60 min at room 

temperature. Peroxydase activity was detected with diaminobenzidine (DAB, 

DakoCytomation) as the substrate. For both the immunohistochemical procedures the 

sections were weakly counterstained with Mayer’s haematoxylin, dehydrated, and 

permanently mounted. The specificity tests for the collagen type I or osteopontin antisera 

were carried out. Microphotographs were taken using Olympus BX51 microscope 

(Olympus, Italy) supplemented by a digital camera. 

 

10. Histomorphometric Analysis 

Explanted specimens were fixed in 10% formalin/0.1M phosphate buffer saline solution 

(PBS, pH 7.4) at RT for 48 hours and then processed for undecalcified light microscopy 

[Donath and Breuner, 1982]. Bone cores were dehydrated using increasing concentrations 

of ethanol (from 70 to 100%), infiltrated for 30 days and embedded in Kulzer Technovit 

7200 VLC (Bio-Optica, Italy). Each resin block was sliced perpendicularly to the long axis of 

the tibia using a diamond saw (Micromet Remet, Italy). The two longitudinal sections 

passing through the center of the critical defect area were grounded and polished 

(Micromet & LS2, Remet, Italy) to a final thickness of about 40 mm. The sections were 

stained with Toluidine blue/Pyronine Y (Sigma-Aldrich). Histomorphometric measurements 

of tissue fractions (newly formed bone, non mineralized connective tissue and HA in the 

scaffold-treated samples) in the defect area were performed by a computer-assisted 

differential standard point-counting technique. Briefly, a 100 test points grid was placed 

over the defect area of each 40 µm-thick histological section and photographed at a total 

microscopic magnification of 40X. The tissue underlying each grid intersection was 

recorded as either new bone, residual HA or bone marrow spaces and expressed in 

percentage values representing the volume density of these 3 components. 

 

11. Biomechanical Tests 

Mechanical tests consisted in nanoindentation experiments conducted using a NanoTest 

Indenter System (Micro Materials Ltd., UK) with a diamond Berkovich indenter tip. Both the 
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tip area function and the machine compliance were calibrated on a fused silica reference 

sample. An automatic preliminary thermal drift correction was applied at all indentation 

data.  

Nanoindentation tests were performed on sections obtained from non-decalcified samples 

(thickness ~ 40 µm) treated with both empty HA disk and HA seeded with ASCs. Three 

different maximum loads (1mN, 5mN, and 50mN) were chosen as to acquire knowledge of 

the mechanical properties of the tissue at multiple length-scales. 4x4 indentation matrices 

were carried out for each load on three different locations for each sample. Some care was 

taken to conduct experiments in regions with mature bone tissue, which was found 

primarily along the walls of the scaffold pores. 

The classical Oliver-Pharr method [Oliver et al., 1992] was employed to obtain the reduced 

modulus Er, which represents a measure of the stiffness of the tissue and is directly related 

to its elastic properties (Young’s modulus E), and the hardness H, which is related to the 

strength of the tissue. 

 

12. Statistical Analysis 

Data are expressed as mean ± standard deviation and statistical analysis (Two-way ANOVA) 

were performed using GraphPad Prism v5.00 (GraphPad Software, USA). * p<.05; ** p<.01; 

*** p<.001. 
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RESULTS 

 

 

 

The aim of my PhD work has been to assess in vitro the use of autologous rbASCs in 

association with hydroxyapatite (HA), in the regeneration of a critical-size bone defects in 

the tibial crest of a small size animal such as the rabbit. This has been possible by a tight 

collaboration with the Faculty of Veterinary Medicine of the University of Milan, the Centre 

for Research and Biotechnological Applications in Cardiovascular Surgery (CRABCC) of Milan 

and the IRCCS Galeazzi Orthopaedic Institute of Milan. 

The study was conducted on 12 New Zealand White rabbits (2.5-3 kg). All animals were 

maintained and treated according to the rules dictated by the European Union relating to 

care of laboratory animals (86/609/ECC). The study was divided into the following phases: 

1. Withdrawal of adipose tissue from the rabbit interscapular region 

2. Isolation and culture of rbASCs 

3. rbASCs osteogenic differentiation and in vitro evaluation of specific osteo-markers  

4. Surgical creation of critical-size bone defect and its treatment 

5. Radiographic analysis immediately after surgery and at 6 weeks from intervention 

6. Macroscopic and radiographic analysis after tibia removal (8 weeks) 

7. Evaluation of Bone Mineral Density (BMD)  

8. Histological and immunohistochemical analyses of the newly formed bone tissue 

9. Histomorphometric analysis 

10. Bio-mechanical tests by nanoindentation experiments 
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Withdrawal of Adipose Tissue from the Rabbit Interscapular Region 

Collection of adipose tissue was performed with particular attention to the mini-

invasiveness of the procedure, to ensure animals’ survival. 

Rabbits have a large adipose tissue pouch with a definite location and easy access: these 

rabbits have an H-shaped deposit of adipose tissue located along the dorsomedial line, 

nearly 5 cm from the skull in the craniocaudal direction (Figure 6a).  

The adipose tissue is accessed through a sagittal incision of 2- to 3-cm in the dorsomedial 

line over the tissue location (Figure 6b). 

 

Figure 6. Adipose tissue localization. Label on the anatomic region in which the adipose tissue pouch is 

located (a). Pouch of adipose tissue (b) [Torres et al., 2007]. 

 

The tissue was collected from the interscapular region of 6 rabbits, under general 

anaesthesia, and after the removal of the minimum amount of fat the wound was sutured. 

The amount of collected adipose tissue varied according to the animal mass: we have 

obtained from a minimum volume of 3 ml of raw adipose tissue from rabbit #3, to 8 ml of 

adipose tissue from rabbit #2 (Table 4). 

 

Isolation and Culture of rbASCs 

rbASCs were isolated from six rabbits with an average of 2.8×105±1.9×105 cells/ml of 

adipose tissue. The highest cell number was obtained from rabbit #4 (Table 4). 
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Adipose tissue 

(ml) 
rbASCs/ ml 

of raw adipose tissue 

rbASCs1 5.5 1.64x105 

rbASCs2 8 4.38x104 

rbASCs3 3 4.33x105 

rbASCs4 5 5.60x105 

rbASCs5 5 2.80x105 

rbASCs6 5 2.00x105 
   

MEAN ± SD 5.2 ± 1.6 2.8x105 ± 1.9x105 

Table 4. Cellular yield of rbASCs per ml of adipose tissue 

 

One week later, all the rbASCs rapidly started to proliferate and, at passage 1, the 

variability in terms of cell number among the 6 different derived rbASCs, was reduced, 

reaching, in 30 days, 2.6x108 ± 9.9x107 cells starting from 1.5x105 rbASCs. These cells 

showed the characteristic fibroblast-like morphology that was maintained during culture, 

without any sign of cellular senescence (Figure 7). 

 

Figure 7. Microphotographs of rbASCs2 (a) and rbASCs3 (b) maintained in undifferentiated culture conditions 

(100X magnification). 

 

To maintain rbASCs in culture, usually cells were seeded at 5x103 cells/cm2 reaching 80-90% 

of confluence every 7 days: their doubling time was 56.9 ± 14.8 hours, quite constant from 

passage 2 to 6 (Figure 8a), to drastically decrease at late passages in culture, reaching at 

passage 9, a doubling time of 115.96 ± 39.02 hours (data not shown). 

By MTT cell viability assay we confirmed that all the rbASCs maintained a similar trend of 

vitality when monitored for 7 days in culture (Figure 8b). 
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Figure 8. Proliferation trend at early passages assessed by cell counting at different passages in culture and 

expressed as doubling time [DT= t ×ln(2)/ln( N /N0), t: time in culture, N: final number of cells, N0 initial 

number of cells] (a) and viability of rbASCs maintained for 1 week in undifferentiated condition (b) 

 (mean ± SD) (n=6). 

 

rbASCs were able to produce fibroblast (CFU-F) and osteoblast (CFU-O) colonies. From 

passages 1 to 4, clonogenic abilities were quite similar among the six-cell populations, with 

an average value of 3.0±1.6% (range: 2.0-5.2%) and 4.3±1.9% (range: 3.5-6.9%), for CFU-F 

and CFU-O, respectively (Figure 9). Surprisingly, rbASCs-2 cells showed a reduced 

clonogenic ability respect to the other cell populations. 

Furthermore, cryopreservation did not affect rabbit stem cells features, as we have 

previously shown for human cells (hASCs). Despite the fact that it has been observed a brief 

lag phase after thawing, the DT was similar to that of fresh cells maintained in culture at 

the same passages (data not shown). 

 

Figure 9. CFU-F and CFU-O frequencies expressed as percentage of number of colonies/number of plated cells 

(mean ± SD) (n=6) (left panel); microphotographs of CFU-F and CFU-O by rbASCs stained with Crystal Violet 

and Alizarin Red-S, respectively (right panel). 
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rbASCs Osteogenic Differentiation  

Osteogenic differentiation was obtained maintaining rbASCs in osteo-inductive medium 

(OSTEO) for 7 and 14 days.  

As early as 7 days in culture, all of the cells exhibited some morphological modifications 

compared to cells maintained in undifferentiative medium (CTRL): differentiated cells lost 

their fibroblast-like morphology (Figure 10a and 10c), assuming a more rounded/cubical 

shape (Figure 10b and 10d). 

To determine the induced modifications, specific osteogenic proteins have been checked 

over time: alkaline phosphatase (ALP) and OPN for early osteogenesis , collagen type I (Coll 

I) and osteonectin (ONC) for the intermediate phase, and osteocalcin (OC) and bone 

mineralization for late osteogenesis. 

 

Figure 10. Morphological analysis of rbASCs maintained in CTRL and osteo-inductive medium (OSTEO). 

Microphotographs of 7-days undifferentiated (a, c) and differentiated cells (b, d) (100X magnification). 

 

As shown in Figure 11, rbASCs, in the presence of osteogenic stimuli, efficiently 

differentiate into osteoblast-like cells: indeed, already after 7 days, ALP activity is abundant 

in osteo-differentiated cells respect to undifferentiated ones, and the average increase was  

about 28.9% (range 7.2-85.4%) (Figure 11a). Moreover, the expression of OPN is up-

regulated in rbASCs, and it is possible to appreciate its cytoplasmic localization (Figure 11b). 
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Figure 11. 7 days of differentiation: ALP activity (means ± SD) of rbASCs (mean ± SD) (n=6) (a); Double 

immunofluorescence of osteo-induced rbASCs for either collagen type I (Coll I) or osteopontin (OPN) (red 

fluorescence) and β-actin (β-Act) (green fluorescence) (scale bar 50 µm) (b). 

 

Similar, osteo-rbASCs early expressed ONC (+157.6%), even if its expression was more 

evident after 14 days (+1193.7%) in comparison to undifferentiated cells (Figure 12). The 

kinetic of expression was similar for collagen type I (Figure 12): indeed, densitometric 

analysis of collagen I expression quantified a significant increase in Coll I/ β-Act protein 

ratio in osteo-differentiated rbASCs compared to undifferentiated ones with a significant 

increase 432.2% and 1233.9% after 7 and 14 days, respectively (Figure 12). 

These data were also confirmed by Sirius Red assay. Osteogenic differentiated cells 

produced a significantly increased level of collagen I, of 105.9% respect to the same cells 

maintained in CTRL medium (range 23.3-159.4%) (Figure 13b). Despite a great inter-donor 

variability,  in rbASCs5 (+159.4%) then in rbASCs1 (+109.9%), in rbASCs4 (+100.4%) and then 

rbASCs6 (+23.3%) populations, the collagen production was always more abundant in 

differentiated cells respect to the undifferentiated ones (Figure 13a). 
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Figure 12. Western blot analysis of osteonectin (ONC) and Coll I expression at 7 and 14 days in 

undifferentiated (CTRL) and osteogenic differentiated (OSTEO) rbASCs (a) and densitometric analysis of ONC 

(b) and Coll I (c) normalized on β-Act expression (means ± SD) (n=2).  

CTRL vs OSTEO: **p<.01; 7 days vs 14 days: §p<.05. 

 

Figure 13. Collagen production by rbASCs cultured for 14 days in undifferentiated and osteogenic conditions 

(a): average collagen production (means ± SD) (n=4) (b). Pictures of rbASCs stained with Sirius Red and 

maintained in CTRL or OSTEO medium (c). CTRL vs OSTEO: **p<.01. 

 

Moreover, adipose progenitor cells produced an abundant amount of calcified extracellular 

matrix with a significant increase of 168.1% respect to undifferentiated rbASCs (range 69.5-
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324.4%) after 2 weeks (Figure 14b). In particular, osteo-differentiated rbASCs5 showed the 

greatest increment of calcium deposition in comparison to the undifferentiated cells 

(+324.4%). Osteo-differentiated rbASCs4 and rbASCs3 showed a significant increase of 

204.3% and 143.1%, respectively, compared to the same cells maintained in non-inductive 

medium. Finally, differentiated rbASCs1, rbASCs2 and rbASCs6 produce 124.8%, 91.9%, and 

69.5% more calcified matrix than the same cells maintained in control medium (Figure 14a). 

 

Figure 14. Extracellular calcified matrix quantification produced by rbASCs cultured on polystyrene for 14 days 

in undifferentiated and osteogenic conditions (CPC, cetylpyridinium chloride extraction) (a); average of 

extracellular calcified matrix deposition (mean ± SD) (n=6) (b). Pictures of rbASCs stained with Alizarin Red-S 

maintained in CTRL or OSTEO medium (c). CTRL vs OSTEO:  *p<.05. 

 

In vitro rbASCs - hydroxyapatite constructs 

In the orthopaedic field, the efficacy of hydroxyapatite as a bone substitute has been 

already established. Hydroxyapatite (HA) is a biocompatible and bioactive material that can 

be used to restore or repair damaged bone tissue. Moreover, this scaffold exhibits strong 

bonding to the bone, and possesses suitable mechanical properties and interconnecting 

pores which allow cellular infiltration, graft integration and vascularisation. Other 

important features of this scaffold are its osteoinductive and osteoconductive properties 

and its high grade of resorbability. To confirm all of these characteristics in our 

experimental setting, and to assess if rbASCs respond to the physical stimuli produced by 

HA, undifferentiated rbASCs were seeded in the presence of HA and they showed a great 
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ability to finely adhere to the scaffold (Figure 15) and to produce a marked production of 

collagen type I, respect to the same cells grown on monolayer (PA, plastic adherence). The 

average increase was 48.2% (range 17.8-100.7%) (Figure 15). 

 

Figure 15. rbASCs - hydroxyapatite interaction. Light microscopy and SEM pictures of HA granules unseeded 

or seeded with rbASCs (a). Collagen quantification produced by each rbASCs population cultured on 

polystyrene (PA) or on hydroxyapatite (HA) for 14 days in undifferentiated conditions (b); average collagen 

production (mean ± SD) (n=4) (c). HA vs PA: *p<.05. 

 

Surgical Creation of critical-size bone defect and its treatment 

About 15 days of cell culture, 1.5x106 of undifferentiated passage 2 rbASCs from each 

rabbits, were resuspended in 80 µl of fresh control medium, loaded on HA disks (Figure 

16a), and maintained at 37°C - 5% CO2 overnight. 

 

Figure 16. Loading of 1.5x10
6
 undifferentiated rbASCs on hydroxyapatite disks (a). Percentages of cell 

adhesion after 16 hours of contact of rbASCs with the HA disk (b). 



 
76 

 

An average of 97.1±2.4% of cells finely adhered to the disks that were then implanted in 

the bone defect (Figure 16b). 

All the animals were underwent surgery under general anaesthesia. A critical lesion of 8 

mm of diameter was bilaterally created in the proximal tibia of each animal by the use of a 

dental trephine. The animals were previously divided into four groups, as shown in Table 5. 

Group Defect treatment Side n 

A Untreated Right 6 

B HA Left 6 

C rbASCs Right 6 

D rbASCs-HA Left 6 

Table 5. Experimental Scheme of the Bone Defects Treatment. 

 

For group A, the lesion was left untreated as a control, whereas in the left tibia (group B) 

the defect was filled with just HA disks. In group C, a semi-liquid suspension of 1.5x106 

autologous rbASCs in 40 µl of medium was directly inoculated in the lesion site, before the 

last stitches. At last, in group D, the combination of autologous rbASCs and HA disks was 

implanted.  

All the rabbits survived during the experimental study without any complications during the 

surgical procedures and the follow up. No bone resorption, abnormal bone callous 

formation, fractures, extrusions, infections, or severe inflammatory reactions were 

observed. The next day after surgery, all the rabbits could move regularly in their cages. 

 

Radiological Assessment and Gross Appearance Analyses  

The surgical outcome and the state of bone healing during the study were evaluated by 

lateral radiographs immediately after the surgical treatment (T0), 6 weeks after intervention 

(T6) and post-tibia removal (8 weeks, T8). At T0, we observed that all the scaffolds were 

correctly placed and no bone fracture was present at the lesion site (Figure 17, T0). The 

second radiographic analysis evaluated the status of the bone regeneration process, and no 

signs of osteolysis, fracture, or osteopenia were observed and all the lesions showed a 

quite advanced bone remodeling process (Figure 17, T6). 
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Figure 17. Rabbits were X-rayed immediately after surgical treatment (T0), after 6 weeks from intervention 

(T6), and post-tibia removal (8 weeks, T8) Untreated group (group A), treated with hydroxyapatite scaffold 

(group B), semi-liquid suspension of rbASCs (group C) and with the combination of rbASCs loaded on 

hydroxyapatite (group D). 

 

8 weeks later, the animals were sacrificed and the tibia explanted. In order to evaluate 

bone integration, we applied the scoring system showed in Table 6.  

 

Gross Appearance Analyses  Radiographic Analyses 

Filling Stiffness  Bone Integration 

Same level = 3 Same stiffness = 3  Good repair / integration = 3 

Overgrowth = 2 Softer = 2  Overgrowth = 2 

Undergrowth > 1 mm = 1 Very soft = 1  Undergrowth > 1 mm = 1-0 

Table 6. Morphologic and radiographic scoring system for the evaluation of the bone regeneration process. 

 

In all the four groups bone defects were satisfactorily filled and, according to the modified 

Wakitani scale, the stiffness was considered good. Indeed, no significant differences were 

observed between the control and rbASCs treated group (Figure 18). The same observation 

was made for scaffold-implanted cells, where no significant differences have been observed 

between empty or seeded scaffolds (Figure 18). Only in one defect of group D, we observed 

a modest mobilization of the scaffold. 
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Group Filling Stiffness Bone Integration 

A 2.83±0.41 2.83±0.41 2.00±1.10 

B 2.67±0.52 2.83±0.41 2.83±0.41 

C 2.50±0.55 2.50±0.55 0.83±1.17 

D 2.67±0.52 3.00±0.00 2.83±0.41 

Figure 18. Morphological appearance of untreated group (group A), treated with hydroxyapatite scaffold 

(group B), semi-liquid suspension of ASCs (group C) and with a combination of ASCs loaded on hydroxyapatite 

(group D) at 8 weeks of follow-up (upper panel). Analyses of the tibia explanted from the 4 animal groups. No 

significant differences have been depicted. A, untreated; B, HA; C, rbASCs; D, rbASCs - HA (lower panel). 

 

Bone integration was also checked by radiographic analysis. Bone defects of group A, 

seemed to be partially filled in a non-homogeneous way, showing a mild periosteal 

reaction, whereas the use of just rbASCs (group C) allowed a more complete and 

homogeneous filling of the lesion. In both groups B and D, the scaffolds showed signs of 

good osteointegration, even if a conspicuous amount of HA was not reabsorbed and still 

clearly evident (Figure 17, T8).  

 

Evaluation of Bone Mineral Density (BMD) 

The amount of mineral matter per square centimetre of new bones in the lesion site was 

evaluated by bone mineral density (BMD) analysis. The BMD of R1 and R3 regions resulted 

very homogeneous among all groups and not significantly different from normal tibia 

values. R1 BMD mean values were 0.31±0.01, 0.27±0.04, 0.29±0.05, and 0.28±0.05 g/cm2 

for groups A, B, C, and D, respectively; R3 BMD mean values were 0.81±0.15, 0.77±0.01, 

0.58±0.12, and 0.70±0.12 g/cm2. The group A’s mean R2 BMD value (just lesion) was not 

significantly different from those of group C (just ASCs) too, with values of 0.46±0.03 and 

0.40±0.08 g/cm2, respectively. For scaffold-treated groups, R2 mean BMD’s value was 

0.73±0.05 g/cm2 for group D, showing an increase of 15% respect to those of group B 

(0.66±0.05), even if this difference was not statistically significant. Normal tibial density was 

0.34±0.01, 0.48±0.01, and 0.60±0.01 g/cm2 for R1, R2, and R3, respectively . 
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Histological and Immunohistochemical Analyses  

The untreated defects (group A) showed little or no new bone formation; just a periosteal 

reaction participated in the defect repair (Figure 19a). The semi-liquid suspensions directly 

injected in the lesions of the animals of group C revealed that newly formed bone was 

present to fill the defect and that it had a distinct woven matrix conformation (Figure 19c). 

In the scaffold-implanted defects (groups B and D, Figure 19b and 19d, respectively), 

analyses revealed variable amounts of newly formed bone. Both in the absence and in the 

presence of rbASCs, the new bone formation was observed within the scaffold pores in all 

the implants, as well as a small number of multinucleated giant cells. In the cell-free 

scaffolds, bone formation did not occur at a uniform rate within the pores: the new bone 

was always in a direct contact with the walls of the pores, whereas the central part of the 

pores was commonly filled with bone marrow (Figure 19b). In particular, most of the larger 

pores were filled with adipocytes, suggesting the presence of poorly differentiated bone 

marrow. The rbASCs-HA constructs showed a lower rate of pores filled with adipocytes 

respect to those of group B. Moreover, in the cell-seeded scaffolds, pores were filled more 

homogeneously (Figure 19d): along the walls we observed new mature bone and in the 

inner part connective fibrous tissue, indicating an ongoing maturation process of bone 

tissue. In both groups, osteoblasts were observed in conjunction with bone trabecules, 

located at the periphery of the scaffold pores, which displayed a lamellar matrix. 
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Figure 19. Histological analyses of sections of decalcified tibial samples. Periosteal reaction in the defect 

reparation site of group A (a). Newly formed tissue at the lesion site of group treated with hydroxyapatite 

scaffold (b), semi-liquid suspension of rbASCs (c) and with the combination of rbASCs loaded on HA (d). 

Haematoxylin-eosin staining (a, scale bar - 500 µm; b, scale bar – 100 µm; c-d, scale bar - 200 µm). 

 

The expression of specific proteins of bone tissue was also detected on tissue sections by 

immunohistochemical analysis. In particular, it was analyzed the expression of collagen 

type I (Coll I) and osteopontin (OPN). Immunohistochemistry confirmed the results of 

histological analysis, in fact, a variable amount of newly formed bone tissue was observed 

within the pores of the scaffold either in the presence and in the absence of rbASCs. 

The expression of two markers of osteogenic differentiation was absent in 75% of the 

untreated tibia samples (group A) and was extremely weak in the remaining (Figure 20a 

and Figure 21a). The same result was obtained when the defect was treated by rbASCs 

injection (Figure 20c and Figure 21c).  

Strong immunopositivity of new bone tissue for Coll I and OPN proteins were observed in 

conjunction with bone trabecules located at the periphery of the scaffold pores both in 

group B and D, even if bone formation did not occur at a uniform rate within the pores 

themselves (Figure 20b,c and   21b, c). In particular, in all rbASCs-scaffold implanted 

defects, several positive osteoblasts and new mature lamellar bone matrix, strongly 

positive for Coll I and OPN, were observed, all along the walls of the pores; however, also in 

the inner part, immunostaining revealed the positivity of the connective fibrous tissues for 

these markers (Figure 20d and Figure 21d). In contrast, the defects treated with not seeded 

HA presented positive osteoblasts only along the wall of the pores, whereas the inner part 
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is filled by less mature fibrous tissue, with some residual bone marrow, faintly positive for 

Coll I and OPN (Figure 20b and Figure 21b). 

 

Figure 20. Expression of collagen type I in sections of tibiae. Untreated group (a), group treated with just 

autologous rbASCs (b), scaffold alone(c, arrow) and group treated with autologous rbASCs in combination 

with HA (d, arrow) (scale bar 100 µm). 

 

  

Figure 21. Expression of osteopontin in sections of tibiae. Untreated group (a), group treated with just 

autologous rbASCs (b), scaffold alone(c, arrow) and group treated with autologous rbASCs in combination 

with HA (d, arrows) (scale bar 100 µm). 
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Inside the pores of the scaffold and in the presence of rbASCs was also observed the 

presence of plurinucleate giant cells and osteoclasts that are responsible of bone 

resorption and are able to destroy the mineral component of bone and enzymatically 

digesting the organic ones (Figure 22). 

 

Figure 22. Bone resorption performed by osteoclasts (arrows) located in the proximity of the pores of the 

scaffold (scale bar 200 µm). 

 

Histomorphometric Analyses 

Histological examination of the explanted specimens (5 µm thick sections), stained with 

Toluidine blue/Pyronine Y (Figure 23a), showed an important formation of new bone 

without inflammatory infiltrate.  

In both scaffold-implanted defects with or without rbASCs, similar amount of HA was still 

detectable: 30.3±5.6% and 29.2±4.1% of the new tissue filling the defects was composed by 

HA for group D and group B, respectively. No Howship’s lacunae with resorption activity 

were visible next to the walls of the scaffold pores. Considering the overall area of the 

defect, also similar quantities of new bone were found between the two samples with a 

percentage of 21.9±4% for group D and of 20.4±4.3% in group B, with some differences in 

its spatial distribution (Figure 23 and 24). Indeed, in the unseeded scaffold, the new bone 

filled in almost all the pores at the level of the walls (Figure 23b, c), but only few 

regenerated areas were present in the inner portion of the defect where a poorly cellular 

adipose tissue was prevalent (Figure 23c). In contrast, in the cell-seeded scaffold the new 

bone formation seemed to proceed from the periphery to the centre of the defect and 

remarkable amount of new bone was present within the pores localized in the cancellous 

part of the tibia (Figure 23d, e). In particular, the HA pores of small dimensions were filled 
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by new bone for about one third, while the larger pores contained variable amounts of 

regenerated bone at their boundary (Figure 23e). The new bone consisted of immature 

tissue with a prevalent woven bone structure. In the regenerated areas, the surface of 

mineralized tissue was surrounded by osteoid matrix covered by a layer of osteoblast-like 

cells. Bone marrow spaces were filled by undifferentiated mesenchymal cells, adipocytes 

and several blood vessels with erythrocytes; the proportion of adipose tissue increased in 

the deeper part of the defect (Figure 23e). 

 

Figure 23. Representative thick section of undecalcified tibia stained with Toluidine blue/Pyronine Y (~40 mm 

of thickness, 4X magnification - scale bar 500 µm) (a). Group B - HA (b, c) and group D - rbASCs-HA (d, e) 

defect area in which histomorphometric analyses were performed using a standard point-counting technique 

(4X magnification - scale bar 500 µm) (b, d). Microphotographs of hydroxyapatite pores of each experimental 

groups (10X magnification - scale bar 100 µm) (c, e). 
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Figure 24. Graphic representation of the percentage of new formed bone tissue, soft tissue and not resorbed 

HA in the four experimental groups. 

 

Biomechanical Tests 

Nanoindentation is derived from the classical hardness test, but it is carried out on a much 

reduced scale. 4x4 indentation matrices showed a good reproducibility of the experiments 

in terms of loading-unloading curves repeatability and in terms of reduced modulus (Er) 

and hardness (H), where a ratio between standard deviation and mean value lower than 

10% was obtained. These measurements involve applying a small force (1mN, 5mN, and 

50mN) to a sample using a sharp probe and measuring the resultant penetration depth. 

The measured values are used to calculate the contact area and hence the particular 

property of the sample material. Residual indents left by the nanoindentation testing at a 

maximum force of 50 mN were clearly visible (Figure 25a, b). 

A comparison of the reduced modulus Er and the hardness H of the two analyzed groups at 

the three investigated loads was reported as a function of the mean penetration depth with 

the purpose to show how the mechanical properties of the tissue were in fact evaluated 

over characteristic lengths spanning one order of magnitude. 

Defects treated with rbASCs-HA show improved mechanical properties, suggesting that 

these constructs have an improved capability to bear mechanical loading. This is quite 

evident at low forces (1mN, corresponding to 200 nm of penetration depth), where it is 

possible to observe an increase of 19.8% in stiffness and 31.6% in hardness for rbASCs-HA 

treated group with respect to HA-group (Figure 25). In contrast, at the highest depth the 
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opposite outcome has been found; i.e. the empty scaffold treated group is slightly stiffer 

and harder than the other one (Figure 25).  

The obtained reduced moduli Er and the hardness H are summarized in Table 7. 

 

 

Figure 25. Locations of the indentation experiments for the empty hydroxyapatite disk group B - HA (a) and 

for the hydroxyapatite disk (group D - rbASCs-HA) (b). The white boxes approximately include the specific 

regions where the tests were carried out. Residual indents at a maximum force of 50 mN are clearly seen. 

Reduced moduli Er (c) and hardness H (d) of the two analyzed groups at the three investigated loads (1mN, 

5mN and 50mN, corresponding to ≈200 nm, ≈500 nm, and ≈2000 nm maximum depths, respectively) are 

reported (mean ± SD) (n=44). 

 

Er [GPa] Load 

 
1mN 5mN 50mN 

HA 21.39±2.48 20.84±1.99 17.93±1.80 

rbASCs-HA 25.71±3.55 21.16±1.46 16.35±1.23 
 

H [GPa] Load 

 
1mN 5mN 50mN 

HA 1.08±0.09 0.87±0.08 0.70±0.04 

rbASCs-HA 1.40±0.31 0.96±0.11 0.65±0.04 

Table 7. Reduced moduli Er and hardness H of samples from group B - HA and group D - rbASCs-HA. Data are 

expressed as mean ± SD. 
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...BEFORE MOVING TO THE CLINIC... 

 

 

 

On the basis of their regenerative properties, hASCs could become important tools for cell-

mediated therapy in bone diseases. Preclinical applications for hASCs in muscle-skeletal 

tissue engineering are reported [Abdallah and Kassem, 2008; de Girolamo/ Arrigoni et al., 

2011; Arrigoni et al., submitted], but, there are several aspects that have to be considered 

before moving to the clinic. 

 If autologous cellular therapy will be chosen, may the ability of human ASCs to osteo-

differentiate be affected by the donor’s physio/pathological conditions?  

 May the use of selected pharmacological treatment, such as Reversine, enhance the 

cellular plasticity?  

 If autologous or heterologous cellular application will be applied, may the use of 

immunoselected CD34+ and L-NGFR hASCs be advantageous in the field of skeletal-

muscle tissue regeneration?  
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MATERIALS AND METHODS 

 

 

 

1. Isolation of Human Adipose-derived Stem Cells (hASCs) 

Adipose tissue used in these studies was collected by the surgeons at the IRCCS Galeazzi 

Orthopaedic Institute of Milan. Subcutaneous fat aspirates were obtained from donors, 

after written consent and Institutional Review Board (IRB) approval. Primary cultures of the 

stromal vascular fraction (SVF) were established as previously described with minor 

modification. Briefly, the matrix was digested with 0.075% type I collagenase in a shaking 

water bath at 37°C for 30 minutes and then centrifuged for 10 minutes at 1200 g to 

separate the SVF from adipocytes, cellular debris and undigested tissue. Cells derived from 

the SVF were plated in control medium, at 105 cells/cm2. The cells were maintained at 37°C 

in a humidified atmosphere with 5% CO2. After 24 to 48 hours, non-adherent cells were 

discarded and the medium was changed twice a week [Zuk et al., 2001]. Once they reached 

80-90% of confluence, cells were detached by 0.5% trypsin/0.2% EDTA (Sigma-Aldrich) and 

plated at a density of 104 hASCs/cm2 for further expansion and experiments.  

 

2 .Positive Selection of CD34+ and L-NGFR+ hASCs 

hASCs obtained from liposuction has been divided into three fractions: one of these 

fractions, obtained simply by adherence to plastic, representing the total cell population 

(PA, Plastic Adherence) and two fractions selected by immunomagnetic sorting by the 

expression of markers CD34 or L-NGFR. 

hASCs were positively selected for CD34+ and L-NGFR+ using the Direct CD34 Progenitor 

Cell Isolation Kit and the CD271 Microbead Kit, respectively (Miltenyi Biotech, Calderara di 

Reno, Italy), according to the manufacturers’ instructions.  

Briefly, using the Direct CD34 Progenitor Cell Isolation Kit, the cell suspension was 

centrifuged at 300 g for 10 minutes and resuspended in 300 µl of buffer (PBS supplemented 
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with 0.5% BSA, and 2 mM EDTA). Starting from 108 cells, 100 µl of FcR Blocking Reagent 

were added to prevent non-specific binding of cells to the microspheres. 100 µl of CD34 

MicroBeads were then added to the cell suspension and the samples were incubated for 30 

minutes at 4°C. After incubation, hASCs were washed with 5-10 ml of buffer, centrifuged at 

300 g for 10 minutes and resuspended in 500 µl of buffer. Cell suspension was loaded onto 

a MACS® Column which was placed in the magnetic field of a MACS Separator. The 

magnetically labeled CD34+ cells were retained within the column. The unlabeled cells run 

through; this cell fraction is thus depleted of CD34+ cells. After removing the column from 

the magnetic field, the magnetically retained CD34+ cells can be eluted as the positively 

selected cell fraction. 

In CD271 Microbead Kit, cells were firstly labeled with CD271 (LNGFR)-PE, and then with 

Anti-PE MicroBeads. The cell suspension was then loaded onto a MACS® Column placed in 

the magnetic field of a MACS Separator. The magnetically labeled CD271 (LNGFR)+ cells 

were retained on the column. The unlabeled cells run through; this cell fraction is thus 

depleted of CD271 (LNGFR)+ cells. After removing the column from the magnetic field, the 

magnetically retained CD271 (LNGFR)+ cells can be eluted as the positively selected cell 

fraction.  

CD34+ and L-NGFR+ cells were then counted and assessed for viability; their purity was 

determined by flow cytometry. 

 

3. Flow Cytometry 

Flow cytometry is the technique most commonly used for the detection of cell membrane 

antigens. Cell suspensions are incubated with specific antibodies directed against 

membrane antigens, directly or indirectly labelled with a fluorescent dye. UV exposure of 

these samples causes the emission of fluorescence from the dye. The individual cells in the 

suspension is passed through a laser and analyzed for fluorescence emission using special 

tools (Fluorescence Activated Cell Sorter, or FACS).  

hASCs (3X105 per sample) were washed in PBS supplemented with 10% FBS, 0.01% NaN3 

(FACS Buffer, FB) to remove the growth medium. All the procedures were performed on ice 

to increase the antigen-antibody binding and to prevent the antibodies internalization. Cells 

were centrifuged and the pellet were resuspended in 100 µl FB with the primary antibody 
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(Table 1) and incubated for 30 minutes on ice. After incubation, samples were washed 2 

times with FB and primary antibodies were revealed with secondary antibody either with 

Streptavidin-PE or FITC conjugated sheep anti-mouse Ab for 20 minutes at 4°C. Samples 

were then washed with FB, resuspended in 500 µl of FB and analyzed using FACS 

(FACSCalibur flowcytometer - BD Biosciences Europe, Erembodegem, Belgium) and data 

was analyzed using CellQuest software (BD Biosciences Europe). 

PRIMARY 
ANTIBODY  

FUNCTION  SPECIES  TYPE  COMPANY 

CD13 
Aminopeptidase N - Zinc-binding 

metalloproteinase 
Mouse 

Monoclonal 
FITC 

Ancell 

CD14 LPS/LBP receptor Mouse 
Monoclonal 

FITC 
Ancell 

CD29 VLA-1/4 subunit (β1 Integrin) Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD34 Stem cell marker Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD44 H-CAM - Adhesion Mouse 
Monoclonal 

FITC 
Alexis 

CD45 
LCA - Leukocyte common 

antigen 
Mouse 

Monoclonal 
FITC 

Ancell 

CD49d VLA-4 subunit (α4 Integrin) Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD54 ICAM-1 - Adhesion Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD71 T9 - Transferrin receptor Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD90 
Thy-1 - stem cell and neuron  

differentiation 
Mouse 

Monoclonal 
Byotinilated 

LabVision 

CD105 Endoglin - TGF-β1 receptor Mouse 
Monoclonal 
Byotinilated 

Ancell 

CD106 VCAM-1 - Adhesion Mouse 
Monoclonal 

Purified 
LabVision 

CD271 Neurotrophin-receptor - L-NGFR Mouse 
Monoclonal 

PE 
Santa Cruz 

 

SECONDARY ANTIBODY  SPECIES  LABEL  COMPANY  

Sheep anti-mouse Sheep FITC Boheringer 

Streptavidin (SA) 
 

PE Ancell 

Table 1. Primary and secondary antibodies used in FACS experiments. 
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4. MTT Cell Proliferation Assay 

104 cells/cm2 of hASCs were plated in control medium and MTT assay was performed as 

previously reported. 

 

5. Fibroblast Colony Forming Unit (CFU-F) Assay 

A colony forming unit - fibroblast assay was performed as previously described, with minor 

modifications. hASCs were plated in 6-well plates at low density by limiting dilution 

(starting from 48 cells/cm2, ending dilution 1 cell/cm2) and cultured at 37°C in a humidified 

atmosphere with 5% CO2 in CTRL medium supplemented with 20% FBS. After 6 days the 

medium was replaced, and 10 days after cells were fixed with 100% methanol (Sigma-

Aldrich) and stained with 2 mg/ml Crystal Violet (Fluka). The frequency of CFU-F was 

established by scoring the individuals colonies and expressed as a percentage relative to 

the seeded cells. 

 

6. Osteogenic Differentiation 

104 cells/cm2 were induced to differentiate on monolayer in osteogenic medium (OSTEO), 

as previously reported. After 14 and 21 days, alkaline phosphatase activity and extracellular 

calcified matrix deposition were determined as previously described.  

 

7. Adipogenic Differentiation 

104 cells/cm2 were induced to differentiate into the adipogenic lineages using a pulsed 

induction comprising 48 hours in control medium supplemented with 1 µM dexamethason 

(Sigma-Aldrich), 10 µg/ml insulin (Sigma-Aldrich), 500 µM 3-isobutyl-1-methyl-xanthine 

(IBMX, Sigma-Aldrich) and 200 µM indomethacin (Sigma-Aldrich), followed by 48 hours 

maintenance in CTRL medium supplemented only with 10 µg/ml insulin. After 14 and 21 

days, the medium was removed and cells were rinsed, fixed in 10% neutral buffer formalin 

for 1 hour and stained with fresh 2% w/v Oil Red O in 60% isopropanol (ORO, Sigma-

Aldrich) for 15 minutes. Oil Red O is a neutral lipid-soluble dye used to detect the presence 

of triglycerides and non-polar lipids, due to its partition coefficient that allows it to 
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concentrate in the polar phase. After incubation the dye was removed and the excess dye 

was removed by washing with distillate H2O, and the samples were then photographed. To 

quantify the lipid vacuole content, the dye was extracted with 100% isopropanol and 

absorbance was read at 490 nm using Wallac Victor II plate reader. Adipogenic 

differentiation was also evaluated analyzing PPAR-γ expression by Western Blot analysis as 

previously described. 15 µg of proteins were loaded on 10% SDS-PAGE and 

electrotransferred onto Hybond-ECLTM extra nitrocellulose membrane (Amersham 

Bioscience). After blocking in 5% non-fat dry milk in TBS and 0.1% Tween-20 for 1 hour at 

room temperature, the membrane was incubated with rabbit anti-PPAR-γ (Santa Cruz 

Biotecnology Inc) and mouse anti-β-actin (Sigma-Aldrich), diluted 1:500 and 1:3000, 

respectively. This was followed by incubation with horseradish peroxidise (HRP)-conjugated 

secondary antibodies (GE Healtcare) for 1 hour at room temperature. Protein visualization 

was performed using the ECLTM Western blotting analysis kit (GE Healtcare) according to 

the manufacturing protocol. The images were analyzed using ImageJ software. 

 

8. Chondrogenic Differentiation 

Chondrogenic differentiation was induced in pellet culture conditions: 5×105 hASCs were 

centrifuged (500 g , 5 minutes) in a 15-mL centrifuge tube, the pellets were resuspended 

either in control or in chondrogenic medium consisting of DMEM supplemented with 1% 

FBS, 50 U/mL penicillin, 50 μg/mL streptomycin, and 2 mM L-glutamine, 1 mM sodium 

pyruvate (Sigma-Aldrich), 0.15 mM L-ascorbic acid-2-phosphate (Sigma-Aldrich), 1× ITS 

(Sigma-Aldrich), 0.1 μM dexamethason (Sigma-Aldrich), and 10 ng/mL TGF-β1 (Biosource-

Invitrogen, Camarillo, CA) and then centrifuged again (500 g, 5 minutes). After 21 days, 

micromasses were digested overnight at 56°C by proteinase K (50 μg/ml in 100 mM 

K2HPO4, pH 8.0, final digestion volume 100 μl; Sigma-Aldrich). The next day, the digestion 

was blocked by incubating the samples at 90°C for 10 minutes to inactivate the proteinase 

K [Calabro et al., 2000]. Sulphated glycosaminoglycans (GAGs) were then quantified 

according to a modified version of the dimethylmethylene blue (DMMB; Sigma-Aldrich) 

assay [Barbosa et al., 2003]. 50 µl of each sample were incubated for 30 minutes with 400 

µl of DMMB Complexation Solution to allow the DMMB to form an insoluble complex with 

glycosaminoglycans. Briefly, DMMB Complexation Solution was made of 3.2 mg DMMB 



 
92 

 

dissolved in 5 ml ethanol and filtered through filter paper. 40 ml of 1 M GuHCl, 0.25 g 

sodium formate, and 0.4 ml 98% formic acid were then added to the DMMB ethanol 

solution, and the final volume was completed to 200 ml with distilled H2O. After incubation, 

the samples were centrifuged at 12000 g for 10 minutes and the supernatant was removed. 

The pellets were then resuspended in 350 µl of Decomplexation Solution: 50 mM sodium 

acetate solution buffer (pH 6.8) containing 10% 1-propanol was prepared and used to 

solubilise powdered GuHCl to a final concentration of 4 M; this solution consist of an high 

salt concentration to prevent the maintenance of the link between glycosaminoglycans and 

DMMB. Absorbance was read at 655 nm and the GAGs content, expressed as μg 

GAGs/micromass, was determined using bovine trachea chondroitin-4-sulfate (Sigma-

Aldrich) as standard. GAGs content of each sample was normalized with respect to DNA 

measured by Hoechst 33258 fluorescence assay (355 nm excitation - 460 nm emission, 

Wallac Victor II plate reader). For each micromass lysate were assayed 5 µl of sample 

adding 5 µl of TNE buffer (10 mM Tris, 200 mM NaCl, 1 mM EDTA, pH 7.4) to obtain a final 

volume of 10 µl. In each well were added 200 µl of a solution 0.2 µg/ml Hoechst 33258 

(Sigma-Aldrich) in TNE buffer; the samples were incubated 1 minute and the fluorescence 

was read using the microplate reader Wallac Victor-1420. Data were interpolated in a 

standard curve of salmon sperm DNA (range 1.25-40 µg/ml). 

 

9. hASCs-Scaffold Constructs 

105 undifferentiated hASCs were seeded on porous (60%) hydroxyapatite blocks (HA) 

(Finceramica, Faenza, Italy) and silicon-carbide-plasma-enhanced chemical vapour 

deposition (SiC-PECVD) fragments. Cells were allowed to adhere overnight to scaffolds in 

polypropylene vial, then transferred to a 24-well plate and cultured in static conditions for 

14 and 21 days. The SiC-PECVD samples were assessed for ALP activity after 14 days of 

differentiation and for calcium deposition after 21 days; ALP activity at 14 and 21 days was 

evaluated for HA samples. 



 
93 

 

10. Reversine Treatment 

Reversine was synthesized in the laboratories of Dr. Anastasia according to the published 

procedure [Chen et al., 2004], and its purity ( 98%) was checked by HPLC and LC-MS 

analysis. All Reversine treatments were conducted 24 hours after cell seeding in CTRL 

medium and maintained for 72 hours. Control cells were incubated with DMSO at the same 

concentration used for dissolving Reversine (0.05% w/v).  

 

10.1. MTT Cell Proliferation Assay 

hASCs were plated at a density of 5x103 cells/cm2 in control medium in 96-well plate. hASCs 

viability was monitored at various time points (1-3 days during Reversine treatment; 1-3-7 

days after Reversine treatment), using different Reversine concentration (50-250-750 nM, 

1.5-5 µM), and MTT assay was performed as previously reported.  

 

10.2. Osteogenic Differentiation 

4x103 control or Reversine 50 nM and 5 µM pre-treated cells/cm2 were induced to 

differentiate on monolayer in osteogenic medium (OSTEO). Osteogenic differentiation of 

hASCs was assessed by evaluating morphological changes, alkaline phosphatase staining, 

expression by Real Time PCR, and enzymatic activity. For ALP staining cells were fixed with 

4% paraformaldehyde at room temperature for 10 minutes and stained with ALP staining 

according to the manufacturer’s procedures (Sigma-Aldrich). ALP expression was also 

determined by Real Time PCR (Table 2). Total RNA was isolated with RNeasy Mini kit 

(Qiagen, Milan, Italy) and cDNA was synthesized starting from 0.8 µg of RNA, with the 

iScript cDNA Synthesis kit (Bio-Rad Laboratories) according to the manufacturer’s 

instruction. Briefly, 10 ng of total RNA was used as template for real-time PCR performed 

using the iCycler thermal cycler (Bio-Rad Laboratories). PCR mixture included 0.2 μM gene-

specific primers for human ALP or human UBC (Ubiquitin), which was used as housekeeper 

gene, 50 mM KCl, 20 mM Tris/HCl, pH 8.4, 0.8 mM dNTPs, 0.7 U iTaq DNA Polymerase, 3 

mM MgCl2, and SYBR Green (iQ SYBR Green Supermix from Bio-Rad Laboratories) in a final 

volume of 20 μl. Amplification and real-time data acquisition were performed using the 
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following cycle conditions: initial denaturation at 95°C for 3 minutes, followed by 40 cycles 

of 10 seconds at 95°C and 30 seconds at 57°C. 

 

10.3. Smooth Muscle Cells Differentiation 

Control or Reversine 50 nM and 5 µM pre-treated hASCs were plated at the concentration 

of 4x103/cm2 and induced to differentiate to smooth muscle cells using DMEM 

supplemented with 1% FBS and 0.2 µl/ml TGF-β1 (Millipore) for 7 days. Cells were then 

fixed with 4% (w/v) paraformaldehyde at room temperature for 10 minutes and 

permeabilized with 0.1% (w/v) Triton X-100 and 1% (w/v) BSA in PBS for 30 minutes. 

Immunostaining was carried out with anti smooth muscle α-actin (α-SMA) monoclonal 

antibody (Sigma-Aldrich) at 1:200 dilution. After incubation with primary antibody cells 

were washed three times in PBS and incubated with FITC-conjugated secondary antibodies 

1 hour at room temperature. After washing in PBS, cells were analyzed under a fluorescent 

microscope. Cell nuclei were counterstained with Hoechst 33342 (1:500) for 15 minutes. 

Smooth muscle α-actin expression was determined by Real-Time PCR, as described before 

for ALP, but using the primer showed in Table 2. 

 

10.4. Skeletal Muscle Cells Differentiation 

After 50 nM Reversine (or DMSO) treatment for three days, hASCs were washed twice with 

PBS and twice with DMEM containing 10% FBS. C2C12 myoblasts were then added to stem 

cells containing plates in a ratio of 4:1, C2C12 being prevalent. The following day co-

cultures were shifted in DMEM supplemented with 2% horse serum HS (Sigma-Aldrich) and 

differentiation was carried out for 7 days. Cells were then fixed with 4% (w/v) 

paraformaldehyde at room temperature for 10 minutes and then permeabilized with 0.1% 

(w/v) Triton X-100 and 1% (w/v) BSA in PBS for 30 min. Cells were incubated for 1 hour at 

room temperature with the following primary antibodies: anti-human nuclei antibody 

(Millipore) at 1:400 dilution, anti-myosin heavy chain (MF20) monoclonal antibody (Sigma-

Aldrich) at 1:100 dilution. After incubation cells were washed three times in PBS and 

incubated with the appropriate FITC- or TRIC-conjugated secondary antibodies (Sigma-

Aldrich) 1 hour at room temperature. After washing in PBS, cells were analyzed under a 
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fluorescent microscope (Olympus IX51). Cell nuclei were counterstained with Hoechst 

33342 (1:500) for 15 minutes. 

 

10.5. Stem cell markers expression 

The expression of Klf-4, c-Myc, Nanog and Oct4 was determined by Real-Time PCR, as 

described before for ALP, but using the primers Klf-4, c-Myc, Nanog, and Oct4, as shown in 

Table 2. 

 

NAME PRIMER FORWARD PRIMER REVERSE 

ALP CGCACGGAACTCCTGACC GCCACCACCACCATCTCG 

ACTA2 CTGTTCCAGCCATCCTTCAT TCATGATGCTGTTGTAGGTGGT 

Klf-4 GACTTCCCCCAGTGCTTC CGTTGAACTCCTCGGTCTC 

c-Myc AGGAGGAACAAGAAGATGAGG GTTGTGCTGGATGTGTGGAGA 

Nanog GGTCCCAGTCAAGAAACAGA GAGGTTCAGGATGTTGGAGA 

Oct-4 AGGAGAAGCTGGAGCAAAA GGCTGAATACCTTCCCAAA 

Table 2. List of primer used in the Real-Time PCR experiments. 
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RESULTS 

 

 

 

Influence of Physiological Conditions on hASCs’ Donors 

In this study we evaluated the influence of age of female healthy donors, on proliferation, 

clonogenic ability and differentiation potential of mesenchymal stem cells isolated from 

human adipose tissue (hASCs). 

 

hASCs were isolated from liposuction of subcutaneous adipose tissue from 26 female 

donors. We determined the progenitor cell numbers and clonogenic potential of hASCs 

derived from healthy-young-females under 35 years old (hASCs<35 y/o, n=12, mean age 

31±4 years, BMI=23.5±1.6), and middle-age ones (hASCs>45 y/o n=14, mean age 56±7 

years, mean BMI=28.4±1.8). We isolated an average of 2.7±1.3x105 hASCs<35 y/o per ml of 

raw tissue, and 6.1±4.0x105 from the older donors, as shown in Table 3. Despite the large 

fluctuations among samples derived from the over 45-years/old group, the cellular yield 

turned out to be significantly different in comparison to the younger group. 

 n Age BMI 
hASCs / ml of raw 

adipose tissue 

hASCs<35 y/o 12 31±4 23.5±1.6 2.7±1.3x105 
hASCs>45 y/o 14 56±7 28.4±1.8 6.1±4.0x105 

**
 

Table 3. Comparison of cell number of hASCs derived from three groups of female. Cellular yield is expressed 

as the average of hASCs/ml of raw adipose tissue ± standard deviation. 

 

After an initial lag phase of about one week, cells isolated from donors belonging both 

groups started to growth and presented a homogeneous fibroblast-like shape without any 

differences among the donors (Figure 1). 
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Figure 1. Morphology of two representing samples of  cells isolated from donors under 35 years of age and 

over 45 years of age. Optical microscope photographs of hASCs grown in CTRL medium for 2 weeks after 

isolation (40X magnification). 

 

hASCs cells isolated from young and elderly women reached 80-90% confluence about 

every 7 days: the doubling time (DT) was 123.9±10.6 and 148.2±14.6 hours for hASCs<35 

y/o and hASCs>45 y/o, respectively. Donor’s age did not influence the proliferation rate of 

hASCs, although a high inter-donor variability is observed (Figure 2). 

 

Figure 2. Average doubling time (DT) of different population of hASCs<35 y/o and hASCs>45 y/o; DT= t 

×ln(2)/ln( N /N0), where t is the time in culture (in hours), N is the final number of cells and N0 is the initial 

number of cells (mean ± SD). 

 

The clonogenicity of these cells has been compared by CFU-F assays (Figure 3). At earlier 

passages, hASCs from both younger and older groups produced colonies, although cells 

from younger donors showed a statistically significant increase in clonogenic activity (15±4% 

and 7±3%, respectively). This trend was maintained during passages, even if a slight 

decreased was observed in hASCs<35 y/o (data not shown).  
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Figure 3. Microphotographs of colonies at passage 1 stained with Crystal Violet of hASCs isolated from 

younger and older donors, respectively. 

 

By FACS analysis, no significant variations related to donor age were observed between 

hASCs isolated from younger and older donors. These cells expressed high levels of CD13, 

CD90, CD105 and CD44, whereas they did not express hematopoietic markers such as 

CD14, CD45 and CD71 (Figure 4). hASCs<35 y/o expressed more CD49d in comparison to 

hASCs>45 y/o; moreover, in hASCs<35 y/o, the expression of CD34 was variable 

(30.8±29.4%), whereas hASCs isolated from older donors were CD34 low. 

 

Figure 4. Immunophenotype of fresh human adipose-derived stem cells (hASCs) deriving from younger and 

older donors (hASCs<35 y/o and hASCs>45 y/o, respectively) (mean ± SD).  

 

hASCs induced to differentiate towards adipocytes and osteoblast-like cells for two weeks, 

showed a significant morphological changes compared to undifferentiated hASCs (Figure 

5a). The typical fibroblast-like morphology of undifferentiated hASCs was progressively lost 

when cells were maintained in adipogenic and osteogenic media; hASCs became large, with 

a cytoplasm full of lipid vacuoles, or less outstretched, with an indented cellular membrane, 

respectively. We did not observed any relevant morphological variations among all the 

older and younger females.  
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We have evaluated the hASCs adipocytes differentiation potential by comparing the 

amount of lipid vacuoles produced by several samples of adipogenic-differentiated hASCs, 

as shown in Figure 5. The in vitro adipogenic differentiation potential of younger and older 

donors was not statistically different, although the increase in lipid content of 

differentiated hASCs was 140 and 360% for cells derived from under 35 and over 45 years 

old donors, respectively. 

 

Figure 5. Microphotographs of hASCs<35 y/o and hASCs>45 y/o in CTRL medium and differentiated towards 

adipogenic lineage stained with Oil Red O after 14 days in culture (40X magnification) (a). Quantification of 

lipid deposition in undifferentiated (CTRL) and adipogenic-differentiated hASCs for 14 days (ADIPO) in both 

age groups. Data are expressed as mean ± SD (n=5) (IPA, isopropanol) (b). ADIPO vs CTRL: *p<.05.  

 

PPAR-γ expression in undifferentiated and adipogenic differentiated hASCs was also 

analyzed (Figure 6). PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) is a 

member of the super-family of nuclear receptors and regulates the transcription of several 

genes involved in adipogenic differentiation and fatty acids metabolism. PPAR-γ was 

expressed in undifferentiated cells and up-regulated in adipogenic-differentiated cells, after 

14 days of culture, of about 40 and 52% in hASCs<35 y/o and hASCs>45 y/o, respectively. 

However, the difference of PPAR-γ expression in differentiated hASCs was not significant.  
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 CTRL ADIPO  CTRL ADIPO 

PPAR-γ/β-Actin 1.49±0.21 2.08±0.02*  1.64±0.05 2.16±0.44* 

Figure 6. PPAR-γ expression in younger and older donors. Western blot analysis of two populations for each 

group (upper line) and quantification of PPAR-γ expression standardized on β-Actin content; data are 

expressed as mean ± SD (n=4). ADIPO vs CTRL: *p<.05. 

 

When hASCs isolated from younger and older donors were induced to differentiate towards 

osteogenic lineage, after one week of differentiation, both hASCs lost their fibroblast-like 

shape assuming a more rounder and cubical morphology, characteristic of osteoblast cells 

(Figure 7a). hASCs from younger donors cultured in osteogenic medium for 14 days showed 

a higher ALP activity compared with cells from older donors (Figure 7b). Indeed, 

differentiated cells from the younger groups showed an increase in ALP activity of 280% 

with respect to undifferentiated ones, whereas the increase was just 40% for hASCs derived 

from the over 45 years old group. Osteo-differentiated hASCs<35 y/o showed also a 

significant increase of about 771% in comparison to osteo-hASCs>45 y/o; moreover, 

hASCs>45 y/o when induced to osteo-differentiate did not produce ALP levels significantly 

higher in comparison to undifferentiated ones (+39%) (Figure 7b). Moreover, the ALP basal 

level in undifferentiated hASCs derived from younger donors was 3-fold higher than from 

older donors (55 U/µg vs 17 U/µg).  
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Figure 7. Microphotographs of hASCs<35 y/o and hASCs>45 y/o differentiated towards adipogenic lineage 

stained with haematoxylin-eosin after 14 days in culture (40X magnification) (a). ALP activity, in 

undifferentiated hASCs and osteogenic-differentiated hASCs for 14 days. Data are normalized with respect to 

protein content and expressed as mean ± SD (n=5) (b). OSTEO vs CTRL: ***p<.001; hASCs<35 y/o vs hASCs>45 

y/o: §§§p<.001 

 

These observation were partially confirmed by quantification of calcium deposition: after 

21 days of culture, cells isolated from the under 35 y/o group produce a greater amount of 

calcium deposits compared with cells from the over 45 y/o group (+110%) (Figure 8a,b). 

However, a great variability among donors meant no significant difference between the 

two groups. The increase in extracellular matrix deposition by differentiated hASCs was 220 

and 73% from younger and older donors, respectively.  

 

Figure 8. Quantification of calcium deposits in undifferentiated and osteogenic-differentiated hASCs for 21 

days. Alizarin Red S-stained samples were extracted with CPC; data are expressed as mean ± SD (n=5) (a). 

Alizarin Red S staining of extracellular calcified matrix of CTRL and OSTEO hASCs<35 y/o and hASCs>45 y/o 

cultured for 21 days (b). OSTEO vs CTRL: **p<.01. 
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Moreover, due to it is known that cells-scaffold construct play an important role in the field 

of bone regeneration, we have compared the osteogenic potential of hASCs<35 y/o and 

hASCs>45 y/o in the presence of hydroxyapatite granules (HA) and fragment of silicon 

carbide plasma enhanced chemical vapour deposition (SiC-PECVD). 

hASCs of both groups cultured on scaffolds well adhered on HA, colonizing the pores of its 

3D structure (Figures 9a). Their osteoblastic differentiation ability in the presence of HA 

scaffolds was monitored after 14 and 21 days of culture, by ALP assay only, as the amount 

of calcium produced by cells could be masked by the calcium released by HA. As shown in 

Figure 9b, even when cultured on HA, the ALP activity of hASCs from younger and older 

donors produced significant levels of ALP activity in comparison to the same cells 

maintained on plastic (PA) in CTRL and OSTEO medium, showing and confirming the 

osteoinductive properties of HA. Osteo-differentiated hASCs<35 y/o cultured for 14 days on 

plastic or in the presence of HA, showed a significant increase of ALP activity of 303.5 and 

290.7%, respectively (Figure 9b). These data were also maintained after 21 days of culture. 

hASCs>45 y/o were also able to osteo-differentiate: after 14 days of differentiation both 

hASCs cultured on plastic or on HA, produce significant level of ALP activity (+27.5 and 

+31.4%, respectively), respect to CTRL cells (Figure 9c). After 21 days of differentiation, 

hASCs significantly differentiate, even if the basal level of ALP was reduced in comparison 

to the values at 14 days. Moreover, ALP activity of hASCs isolated from younger donors was 

significantly higher compared with the one determined in cells from older donors, with an 

increase of about 10-fold (Figure 9b, c).  
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Figure 9. SEM picture of unseeded (A) and seeded hydroxyapatite granules (B) maintained in osteogenic 

medium for 14 days (a). Influence of HA on in vitro osteoblastic differentiation of hASCs belonging to the two 

age groups. ALP activity, in undifferentiated hASCs, from hASCs under 35 year-old and the over 45 year-old 

groups cultured for 14 (b) and 21 days on PA and HA (c). Data were standardized with respect to protein 

content and expressed as mean ± SD (n=3). OSTEO vs CTRL: *p<.05, **p<.01, ***p<.001; HA vs PA: §p<.05, 

§§p<.01, §§§p<.001. 

 

As shown in Figure 10a, undifferentiated and osteogenic differentiated hASCs were able to 

adhere on the surface of SiC-PECVD. The influence of this scaffold on the osteoblastic 

differentiation ability of hASCs was analyzed evaluating ALP activity at 14 days of 

differentiation, and extracellular calcified matrix deposition after 21 days. SiC-PECVD did 

not show any particular osteoinductive property: no significant difference in ALP activity 

was detected from cells derived from both groups cultured on PA and SiC-PECVD (Figure 

10b), even if hASCs<35 y/o showed higher level of ALP activity in comparison to hASCs from 

older donors. Indeed, these cells produce significant increases of ALP activity and calcium 

deposition both on plastic (+303.5 and +321.7%, respectively) and in the presence of SiC-

PECVD (+231.6 and +358.3%, respectively) (Figure 10 b, c). Also, donor age negatively 

influenced the osteoblastic marker expression analyzed (Figure 10 b, c).  
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Figure 10. SEM picture of unseeded (A) and seeded SiC-PECVD fragments (B) maintained in osteogenic 

medium for 14 days (a). ). ALP activity, in undifferentiated (CTRL) and osteogenic differentiated (OSTEO) 

hASCs cultured for 14 days on PA and SiC-PECVD. Data were standardized with respect to protein content and 

expressed as mean ± SD (n=3) (b) Quantification of calcium deposits in undifferentiated and osteogenic-

differentiated hASCs cultured for 21 days on PA and SiC-PECVD. Alizarin Red S-stained samples were extracted 

with CPC (c). OSTEO vs CTRL: ***p<.001; SiC-PECVD vs PA: §§p<.01, §§§p<.001 
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Treatment with Reversine to Increase hASCs Plasticity 

We have also explored the possibility to increase hASCs plasticity by pre-treatment with the 

purine Reversine before differentiation toward osteoblasts, smooth and skeletal muscle 

cells (Figure 11). 

 
Figure 11. Schematic experimental protocol. 

 

At first we have treated hASCs for 3 days with different doses of Reversine (range 50 nM - 5 

µM), to determined its cytotoxicity. As shown in Figure 12a, the vehicle (DMSO 0.05%) did 

not reduced cells viability. Reversine, from 50 nM to 1.5 µM, was not cytotoxic, however, 

cells viability was reduced increasing Reversine concentration (Figure 12b). Reversine 5 µM 

was cytotoxic for hASCs (Figure 12b). 

 

Figure 12. Viability of hASCs treated with different doses of Reversine. Comparison of hASCs untreated or 

treated with the vehicle DMSO 0.05% (a); hASCs treated with different doses of drug (b) (mean ± SD) (n=3). 

 

Then we worked with 2 concentration of Reversine 50 nM and 5 µM. 
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50 nM Reversine, did not cause appreciable changes in cell morphology and maintained a 

normal proliferation rate (Figure 13). In contrast, 5 µM Reversine caused drastic 

morphological changes: cells became larger in size and more sticky to the culture plates. 

Moreover, this treatment caused an average of 25.3% of cell death.  

 

Figure 13. Phase-contrast microphotographs of hASCs after 3 days of treatment with DMSO 0.05% and 

Reversine 50 nM and 5 µM (100X magnification) (a). Control and Reversine-treated cell proliferation rate (b). 

 

After a three-days Reversine pre-treatment at 50 nM or 5 µM, hASCs were cultured in 

osteogenic medium for 12 days. Alkaline phosphatase (ALP) staining revealed the presence 

of several osteoblasts-like cells in all Reversine-treated and untreated cells, with a  

significant increase in the number of ALP-positive cells at 50 nM, while a slight reduction 

could be observed at 5 µM (Figure 14). 

 

Figure 14. Reversine effects on osteogenic differentiation of hASCs after three-days of Reversine treatment at 

50 nM or 5 µM stained with alkaline phosphatase (ALP). In purple osteoblast-like cells (100X magnification). 

 

To confirm the osteogenic Reversine pre-treatment effect, we have also tested ALP gene 

expression and ALP activity (Figure 15a, b). As known, osteogenic medium significantly up-

regulate ALP gene expression, with an increase of 429.1, 349.6 and 663.9% in DMSO, 50 nM 

and 5 µM Reversine pre-treated hASCs respect to undifferentiated ones (Figure 15a). 
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Similar results were obtained evaluating ALP activity (+126.7, +86.4 and + 37.0% of DMSO, 

50 nM and 5 µM Reversine pre-treated hASCs, respectively respect to CTRL ones) (Figure 

15b). Moreover, ALP gene expression and ALP activity increased in 50 nM Reversine pre-

treated and osteo-differentiated hASCs, with an average of 45.8 and 44.2%, respectively, in 

comparison to untreated osteo-differentiated ones. On the other hand, 5 µM Reversine 

pre-treatment did not cause any significant change after osteo-differentiation induction.  

 

Figure 15. ALP gene expression by Real-Time PCR (a) and ALP enzymatic activity of undifferentiated and 

osteo-differentiated, untreated and Reversine pre-treated hASCs (b) Both quantitative data are expressed as 

relative values respect to control group DMSO OSTEO (mean ± SD) (n=4). 

OSTEO vs CTRL: ***p<.001; Reversine vs DMSO: §§p<.01. 

 

hASCs were also induced to differentiated into muscle cells lineages. 

Cells were cultured in smooth-muscle medium for 5 days and treated as previously 

described. Immunofluorescence with smooth muscle α-actin (α-SMA) antibody revealed 

stem cell differentiation toward smooth muscle cells. Qualitative analysis of α-SMA staining 

revealed a substantial fluorescence increase in 50 nM Reversine pre-treated hASCs (Figure 

16a). Instead, an appreciable reduction in signal intensity could be observed in 5 µM 

Reversine pre-treated cells. Next, to quantify Reversine-induced changes in the 

differentiation potential of mesenchymal cells toward smooth muscle cells, we tested α-

SMA gene expression by Real-Time PCR. Inductive media induce an increased expression of 

189.9, 339.5 and 162.6% of DMSO, R 50 nM and 5 µM treated cells in comparison to 

undifferentiated ones (Figure 16b). Moreover, α-SMA gene expression showed an average 

increase of 89.0% in Reversine pre-treated hASCs at 50 nM, while 5 µM Reversine caused a 

30% decrease (Figure 16b). 
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Figure 16. Immunofluorescence analysis of hASCs stained with smooth muscle α-actin (α-SMA) antibody (a) 

and α-SMA gene expression by Real-Time PCR in undifferentiated and smooth mesce-differentiated, 

untreated and Reversine pre-treated hASCs (mean ± SD) (n=4) (b). SMM vs CTRL: ***P<0.001; Reversine vs 

DMSO: §p<.05, §§p<.01. 

 

Moreover, to test whether Reversine pre-treated hASCs would acquire myogenic 

competence to differentiate into skeletal muscle, which they normally do with very low 

yield, cells were pre-treated with 50 nM Reversine for 3 days, and then co-cultured with 

C2C12 murine myoblasts, in a 1:4 ratio.  

Co-immunostaining with human-nuclei (red) and myosin heavy chain (MHC, green) 

antibodies, and staining of all nuclei with Hoechst 33342 (blue), revealed the formation of 

myotubes incorporating human nuclei only in Reversine pre-treated hASCs (Figure 17, pink 

arrow heads in the merge panels), expressing sarcomeric myosin in the cytoplasm. Overall, 

we observed the incorporation of human nuclei inside MHC positive myotubes with a 

frequency of roughly 30%, calculated by dividing the number of myotubes containing at 

least one human nuclei by the overall number of myotubes for each field. Control cells, did 

not show appreciable presence of human nuclei in the formed myotubes. No pink nuclei 

could be detected inside the myotubes, but just nuclei stained by Hoechst 33342, as 

revealed in the merge panels (Figure 17, merge of controls, blue arrow heads). 
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Figure 17. Co-immunostaining with human-nuclei (red) and myosin heavy chain (MHC, green) antibodies, and 

staining of all nuclei with Hoechst 33342 (blue) revealed the formation of myotubes incorporating human 

nuclei (pink arrow) in undifferentiated and muscle skeletal-differentiated, untreated and Reversine pre-

treated hASCs (a). Quantification of the incorporation of human nuclei inside MHC expressing myotubes 

(mean ± SD) (n=4). **p<.01. 

 

Finally, with the aim to understand the mechanism of action promoted by Reversine, key 

genes which have been shown to be crucial in adult cell reprogramming have been 

analyzed. Real-Time PCR analysis of mRNA extracted from hASCs revealed a 2.5-fold 

increase in Klf-4 in 5 µM Reversine pre-treated cells, while no significant changes could be 

detected at 50 nM or in c-Myc and Oct 4, and Nanog remained undetectable (Figure 18). 

 



 
110 

 

 

Figure 18. Real-Time PCR expression of key “reprogramming factors” (Klf-4, c-Myc, Nanog and Oct-4) used to 

genetically de-differentiate adult cells into pluripotent stem cells (iPSCs) in reversine treated and untreated 

hASCs (mean ± SD). **p<.01. 



 
111 

 

Analysis of hASCs Immunoselected CD34+ and L-NGFR+ Subpopulation 

Compared with the Whole hASCs Population 

In this study, we compared the whole hASCs population, purified by plastic adherence (PA 

hASCs), with two immunoselected subpopulations (L-NGFR+ and CD34+ hASCs), evaluating 

their immunophenotype and their ability to differentiate. 

 

hASCs populations were divided in three fractions: one obtained by plastic adherence (PA), 

and the others obtained by immunoselection for CD34 and L-NGFR markers. Starting from a 

variable number of cells, the percentage of immunoselected L-NGFR+ cells was 4.4±6.3% 

and the purity of the immunoselected population was 88.5±10.6% (Table 4 and Figure 19). 

The mean percentage of CD34+ cells was 13.7±19.5% and the purity after 

immunoseparation was 82.6±12.9% (Table 4 and Figure 19).  

 n Cellular Yield Immunoselected hASCs 

CD34 7 13.7±19.5% 2.4x106 - 5.9x106 

L-NGFR 6 4.4±6.3% 4.8x106 - 2.5x106 

Table 4. Average cellular yield of CD34+ and L-NGFR+ obtained after immunoselection of hASCs. 

 

The freshly purified L-NGFR+ and CD34+ cells appeared small round cells that rapidly 

adhered to the plastic and expressed surface markers associated with a primitive 

phenotype. Despite the high variability among donors, immunomagnetic separation 

allowed us to identify 2 distinct subpopulations: a high percentage of L-NGFR+ cells co-

expressed the stem markers CD34 (78.0±10.6%), while CD117 and CD105 were variably 

expressed (45.9±36.5 and 24.8±32.3%, respectively). The endothelial-committed progenitor 

markers KDR and P1H12 were mainly expressed on CD34+ cells (12.2±21.9 and 36.0±23.0%, 

respectively) (Figure 19).  

Interestingly, CD34 was always highly expressed on L-NGFR+ cells, whereas a variable but 

smaller percentage of CD34+ cells expressed the L-NGFR antigen (28.0±34.7%). As shown in 

Table 5, both CD34 and L-NGFR expressions were progressively down-modulated during 

culture and definitively lost within 5-8 weeks. CD34 expression was reduced of about 36% 

at early passages and progressively decrease at late passages (-70%), whereas L-NGFR 
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expression was constant during early passages in culture to reducing of 80% at late 

passages (Table 5). 

 

Figure 19. Immunophenotype of fresh human adipose-derived stem cells (hASCs) fractions, analyzed 

immediately after isolation (PA) or immunoselection (CD34+ and L-NGFR+ or CD271+) (mean ± SD). 

 

 Early Passages Late Passages 

CD34 13.7±19.5 2.9±0.7 

L-NGFR 4.4±6.3 0.7±0.1 

Table 5. Modulation of CD34 and L-NGFR expression during culture in hASCs PA fraction.  analysed by FACS. 

Data are expressed as % of CD34 and L-NGFR positive cells until passage 3 (early passages) and after passage 5 

(late passages) (mean ± SD). 

 

The L-NGFR- and CD34- populations were also analyzed. Both fractions showed a strong 

decrease in stem cell markers expression compared to the positive cells: in CD34- cells 

(CD34 expression: 0.4±0.5%) L-NGFR, KDR, and P1H12 positivity diminished to 0.9±0.8%, 

0.6±0.8% and 1.7±1.9%, respectively; in the L-NGFR- cells (L-NGFR expression: 0.7±1.1%) 

CD34, CD117, and CD105 decreased to 6.8±1.0%, 7.2±4.5%, and 4.1±3.5%, respectively 

(data not shown).  

In Figure 20 is reported a representative trend of PA, CD34+ and L-NGFR+ hASCs deriving 

from one donor. After about 5 weeks, cells start to rapidly proliferate without any signs of 

cellular aging for additional 20 weeks. The 3 cellular populations proliferated similarly; 

however, in the long period, PA cells reduced their dividing potential in comparison to the 

immunoseparated cells (Figure 20). 
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Figure 20. Proliferation rate of PA, CD34+ and L-NGFR+ hASCs isolated from the same donors. Proliferation 

rate was evaluated by cells count at each passage in culture. 

 

At early weeks of culture, all the 3 populations showed the typical fibroblast-like aspect. 

Furthermore, the morphology of the 3 fractions became quite different after 15-20 weeks: 

PA hASCs grew with a larger and latten shape, with cells gathered in clusters and cytoplasm 

rich in granules, in contrast to the immunoselected cells that still appeared homogeneous, 

spindle-shaped, and with well-defined shape and nuclei (Figure 21). 

 

Figure 21. Morphologic appearance of PA, CD34+, and L-NGFR+ cells at 9th week (upper panel) and 18th week 

(lower panel) of culture (400X magnification). 

 

A great variability was found among different donors in term of clonogenic potential. At 

early passages, we did not observe any significant differences among the 3 populations; at 

late passages, we observed a decrease in the colony-forming ability in all the 3 populations, 
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and in particular a reduction of 10-fold in PA hASCs and 50% in CD34+ and L-NGFR+ hASCs 

respect to the early passages (Figure 22). 

 

Figure 22. Clonogenic potential of PA, CD34+ and L-NGFR+ hASCs at early and late passages in culture  

(mean ± SD). 

 

When maintained in adipogenic medium, hASCs from the 3 fractions showed, already after 

few days of differentiations, some morphological changes: cells became bigger and rounder 

in comparison to undifferentiated ones, with the presence of several lipid vacuoles in the 

cytoplasm, indicating their multipotent features.  

After 21 days, PA, CD34+ and L-NGFR+ hASCs showed a significant increase of vacuoles 

production of 384.1, 676.0 and 711.4%, respectively, in comparison to undifferentiated 

ones (Figure 23a). Moreover, CD34+ and L-NGFR+ cells presented significant increase in 

differentiation ability compared to the unselected cells: at early passages the average 

increments were of 40.1 and 47.9% for CD34+ and L-NGFR+ hASCs, respectively (Figure 

23b). We have also analysed the adipogenic differentiation ability of the 3 populations 

during culture: at late passages, despite the reduced adipogenic ability of the 

immunoselected cells, they still generated more lipid vacuoles compared to the unselected 

ones (+33.5 and +36.0% for CD34+ and L-NGFR+ cells, respectively). 



 
115 

 

 

Figure 23. Quantification of lipid deposition in undifferentiated (CTRL) and adipogenic-differentiated hASCs in 

PA, CD34+ and L-NGFR+ fractions (a). Quantification of lipid vacuoles in PA, CD34+, and L-NGFR+ cells isolated 

from a representative donor, after different periods of culture (b) (IPA, isopropanol). 

ADIPO vs CTRL: ***p<.001; Immunoselected vs PA: §§§p<.001. 

 

When the 3 fractions of cells were induced to differentiate towards osteoblast-like cells, 

after 21 days, all the hASCs nicely differentiated; indeed a 96.2, 427.1 and 389.6% of 

calcium deposition was determined respect to the cells maintained in CTRL medium. CD34+ 

and L-NGFR+ hASCs showed a significant increase in their differentiation ability compared 

to PA cells: at early passages, the average increment was 680.7% for CD34+ hASCs, and 

345.0% for L-NGFR+ cells (Figure 24b). This difference was maintained in the long term, 

although the calcified matrix deposition strongly decreased for all of cells (Figure 24b).  

 

Figure 24. Quantification of extracellular calcified matrix deposition in undifferentiated (CTRL) and 

adipogenic-differentiated hASCs in PA, CD34+ and L-NGFR+ fractions (a). Quantification of calcium depots in 

PA, CD34+, and L-NGFR+ cells isolated from a representative donor, after different periods of culture (b). 

OSTEO vs CTRL: ***p<.001; Immunoselected vs PA: §§§p<.001. 

 

We have also studied the chondrogenic potential of the 3 hASCs populations evaluating 

GAGs production in cells differentiated in 3D culture condition for 21 days (Figure 25).  
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Figure 25. Chondrogenic differentiation in pellet culture conditions. Sections of micromasses maintained for 

21 days in undifferentiated media (a, b - 4X and 10X magnification, respectively) and in chondrogenic medium 

(c, d - 4X and 10X magnification, respectively) stained with haematoxylin/eosin.  

 

Surprisingly, we found that DNA content of each pellet in PA and CD34+ chondrogenic 

micromasses was about 2-fold higher compared to pellets cultured in control medium, 

whereas there was no significant difference between differentiated and undifferentiated L-

NGFR+ micromasses (Table 6), suggesting that the L-NGFR positive cells do not proliferate if 

maintained in 3D culture for 21 days like the other cells did. 

 µg DNA/ Pellet 

 PA CD34+ L-NGFR+ 

CTRL 4.40±1.65 3.53±1.88 4.39±2.64 

CHONDRO 7.30±2.56* 8.20±3.45* 4.38±1.30 

Table 6. DNA content in each pellet formed by PA, CD34+, and L-NGFR+ cells maintained in either control or 

chondrogenic medium (n= 6) CHONDRO vs CTRL: *p<.01. 

 

All the three hASCs factions were able to chondro-differentiate showing significant 

increases of 125.4, 28.9 and 86.0% of GAGs production, in PA, CD34+ and L-NGFR+ hASCs, 

respectively, in comparison to the same cells maintained in CTRL medium (Figure 26a). 

The immunopurified populations showed a similar differentiation potential when compared 

to PA hASCs. In Figure 26b, we analysed GAGs production in the 3 hASCs populations 

isolated from a single donor and differentiated at different times during culture: at early 

passages not significant differences were observed between PA and CD34+ hASCs, whereas 
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a significant production of GAGs was observed (+40.1%). Moreover, at late passages, we 

observed a general and progressive decrease in GAGs production with no relevant 

differences among the populations.  

 
Figure 26. Quantification of GAGs production in undifferentiated (CTRL) and chondrogenic-differentiated 

hASCs in PA, CD34+ and L-NGFR+ fractions (a). Quantification of GAGs in PA, CD34+, and L-NGFR+ cells 

isolated from a representative donor, after different periods of culture (b). CHONDRO vs CTRL: ***p<.001; 

Immunoselected vs PA: §§§p<.001. 

 

The multipotentiality of these cells clearly decreased keeping them in culture for many 

passages; so we suggest to use these cells until passage 15 and to cryopreserving them, 

take advantages of the fact that cryopreserved cells maintained their multipotentiality. 
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DISCUSSION 

 

 

 

In the last few years, tissue engineering and regenerative medicine are becoming 

prominent fields in research and modern medicine due to the aging population and the 

shortage of donor tissues [Fraser et al., 2006b]. A convenient cell source for autologous 

cells will aid the approach of regenerative medicine and mesenchymal stem cells derived 

from adipose tissue present several advantages compared to bone marrow MSCs. Indeed, 

fat is routinely available in large amount from liposuction and a great number of MSCs can 

be isolated from a minimal amount of withdrawn tissue, and with a minimal discomfort for 

the patient. Moreover, the number of purified progenitor cells is quite abundant [De 

Ugarte et al., 2003]. In our previous data we have demonstrated the ability of human ASCs 

to constantly proliferate over an extended period of time, showing clonogenic activity and a 

stable phenotypic profile [de Girolamo/ Arrigoni et al., 2008]. Moreover, hASCs 

differentiated in vitro toward chondrocyte and adipocyte-like cells, showing an 

enhancement of GAGs deposition and lipidic vacuoles production, respectively. The broad 

clinical potential application of hASCs is also able be based on their ability to differentiate 

towards endothelial [Scherberich et al., 2007; Zannettino et al., 2008] and muscle cells 

[Mizuno et al., 2002], making them a promising tool for regeneration of highly vascularised 

tissues such as bone and in the cardiovascular field, respectively. In particular, we have 

focused our interest on the osteogenic potential: hASCs were induced to differentiate into 

osteoblast-like cells both by biochemical stimuli and by the physical interaction with 

scaffolds [de Girolamo/ Arrigoni et al., 2008; Lopa/ Arrigoni et al., 2011]. Interestingly, the 

adherence of hASCs to the tested scaffolds induced progenitor cells to spontaneously 

differentiate, showing the osteoinductive features of tested biomaterials. Few years ago 

several authors have also demonstrated that ASCs can be isolated from the adipose tissue 

of various animal models such as rat [Tholpady et al., 2003; Yoshimura et al., 2007], rabbit 
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[Torres et al., 2007], pig [Qu et al., 2007] and horse [Vidal et al., 2007]. Moreover, various 

ASCs-based preclinical models have been reported in bone tissue engineering. In an our 

work, we have isolated ASCs from small, medium and large animal models, such as rat 

(rASCs), rabbit (rbASCs) and pig (pASCs), comparing the features of these cells in the 

undifferentiated state and their ability to differentiate in vitro, with particular interest to 

their osteogenic differentiation potential [Arrigoni et al., 2009]. All these cell types possess 

suitable osteogenic potential as assessed by up-regulation of specific markers of such as 

alkaline phosphatase, osteocalcin and osteonectin, and as confirmed by the ability of these 

cells to produce a large amount of calcified extracellular matrix. In addition, the ability of 

these cells to adhere and grow on suitable scaffolds, such as hydroxyapatite, suggests that 

this biomaterial may be an efficient support for future in vivo applications. Rabbits and pigs 

are interesting animal models in the field of regenerative medicine for muscle-skeletal 

tissue. In particular, rabbits are useful for screening some experimental conditions because 

of their low cost of maintenance, whereas pigs represent a more predictive model due to 

their greater similarity to human beings with regard to diet, weight and working load.  

Starting from our in vitro results, in collaboration with the Faculty of Veterinary Medicine of 

the University of Milan and the IRCCS Orthopaedic Galeazzi Institute of Milan, we have 

established an autologous rabbit model of critical-size bone defect by using rbASCs in 

association with disks of hydroxyapatite (HA), in order to assess the in vivo integration of 

the cells/scaffold construct with the surrounding bone tissue.  

The results of our preclinical study suggest that culture-expanded undifferentiated 

autologous rbASCs seeded on HA scaffolds are able to promote a good bone healing 

already after 8 weeks from implantation in rabbit critical-size bone defects [de Girolamo/ 

Arrigoni et al., 2011; Arrigoni et al., submitted]. 

Many authors have demonstrated the efficacy of MSCs loaded onto osteoconductive 

scaffolds, both in small and in large animal models [Bruder et al., 1997; Kadiyala et al., 

1997; Kon et al., 2000; Viateau et al., 2007]. It is known that bone healing is strongly 

dependent on the type of used graft substitute [Hing et al., 2007]; in particular, in bone 

tissue engineering, the adequate biomaterial should provide the biomechanical support, 

until tissue regeneration is completed, and during this process, it needs to progressively 

disappear to allow new tissue formation and cell colonization. Nowadays bioceramic 

scaffolds are considered particularly suitable for bone regeneration due to their 
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osteoconductivity and their osteointegration ability [Heise et al., 1990; Elsinger and Leal, 

1996; Ge et al., 2004; Mastrogiacomo et al., 2006]. The first demonstration of their efficacy 

was by Goshima et al., who showed that rat expanded BMSCs seeded on ceramic scaffold 

were able to deposit bone when implanted in immunodeficient mouse subcutaneously 

[Goshima et al., 1991]. More recent studies confirmed the same ability of BMSCs in other 

animals, both implanting scaffolds subcutaneously and in experimental bone defects. Kon 

et al. have shown the efficacy of autologous BMSCs loaded on ceramic constructs of HA to 

repair a critical-size tibia gaps in sheep: 2 months after implantation, bone formation was 

found to occur both within the internal macropore space and around the HA cylinder 

resulting in a faster bone repair [Kon et al., 2000]. Another study reports the efficacy of BM 

stem cells in regenerating critical-size bone defects in a swine mandible model, showing 

that these cells were able to engraft and regenerate bone 6 months post-surgery with a 

good restoration of the orofacial skeletal tissue [Zheng et al., 2009]. Moreover, in a more 

recent work, both the osteogenic potential and the influence of platelet-rich plasma (PRP) 

on BMSCs and ASCs were evaluated in a large animal model: cells were seeded on 

mineralized collagen sponges and implanted into a critical size defect of the sheep tibia for 

26 weeks. Radiographic and histological evaluations revealed a significantly more abundant 

amount of newly formed bone in the BMSCs-group compared to the ASCs-group suggesting 

that ASCs seem to have a reduced osteogenic potential compared to BMSCs; however the 

addition of PRP seems to partially filled this functional gap [Niemeyer et al., 2010]. In 

addition to these works, there are several studies documenting that adipose-derived stem 

cells are an alternative cells source for bone regeneration. Autologous osteo-differentiated 

ASCs were used with coral scaffolds to repair a cranial bone defect in a canine model [Cui et 

al., 2007]: bilateral full-thickness defects of parietal bone were created, and treated 

animals were sacrificed 6 month after surgery. Radiographic analysis and histological 

examination revealed that the defect was repaired by bone tissue just in the experimental 

group, while only minimal bone formation with fibro-connective tissue was observed with 

coral scaffolds only. More recently, Hao et al. produced a novel biomimetic construct based 

on a combination of rabbit ASCs encapsulated in collagen I gel with a PLGA-β-TCP scaffold. 

The composites implanted into a 15-mm length critical-sized segmental radial defect, 

showed a consistent degradation of the scaffold with an enhanced in vivo osteogenesis of 

these cells and bone defect healing after 24 weeks [Hao et al., 2010b].  



 
121 

 

Respect to the above mentioned studies, we performed a wider full-thickness defects 

compared to those usually considered critical in rabbit [Cui et al., 2007; Pearce et al., 2007; 

Lee et al., 2010]. We have chosen a very severe lesion in order to accurately evaluate the 

ability of autologous rbASCs to improve bone healing. Indeed, the combination of bone 

self-regeneration and the osteoconductive properties of HA might have been sufficient to 

achieve a fast regeneration in smaller defects, thus hiding a possible contribution of 

rbASCs. Moreover, due to the known faster bone remodeling process in rabbit, respect to 

human [Pearce et al., 2007], we have chosen a quite short follow-up, in order to better 

highlight differences between the experimental conditions. 

The in vitro characterization of rbASC populations, used in our study, showed some inter-

donor differences, both in term of proliferation, clonogenic ability, and osteogenic 

differentiation, as already reported in previous studies [Arrigoni et al., 2009]. Our in vivo 

results showed neither bone resorption, or abnormal bone callus formation, or infections 

and severe inflammatory reactions, thus suggesting the feasibility of using rbASCs in this 

kind of applications.  

Differently from previous studies [Viateau et al., 2007; Hao et al., 2010a], gross and 

radiographic examinations did not reveal a dramatically different filling of the untreated 

specimens respect to the treated ones. This can be related to the kind of defect: we 

performed circular full-thickness defects instead of an osteo-periosteal segmental one, 

which is normally more difficult and slow to be repaired. We chose such type of defect in 

order to avoid the use of mechanical stabilization devices, which are known to be able to 

affect bone healing, providing different mechanical stimulation in relation to the kind of 

chosen device. Moreover, it is very difficult to perform an adequate and reproducible 

stabilization in the chosen small animal model.  

The different defects’ treatment did not affect the BMD of the areas surrounding the 

lesions (R1 and R3), which are comparable to the normal tibia values. However, for R2 

region, corresponding to the defect site, although not significant, the group D BMD was 

higher than the group B one, suggesting that in the first period of the defect healing, the 

bone deposition activity is predominant respect to the remodeling activity [Mastrogiacomo 

et al., 2006]. However, the histological analysis revealed strong differences in term of 

quality of new-formed tissue: in untreated specimens just a periosteal reaction participated 

to the defect repair, and no osteoblasts were observed. When treated with the semi-liquid 
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rbASCs suspension, defects were filled by a woven matrix, indicating an immature bone 

tissue. These data suggest that rbASCs are able to respond to the microenvironment signals 

inducing the differentiation into osteogenic-like cells. After a short period from the implant 

of cells and in the absence of a three-dimensional scaffold on which arrange themselves, 

rbASCs did not show to be able to form a well-organized tissue; anyway, they significantly 

participate in the bone defect regeneration. In both cell-seeded and unseeded scaffolds, a 

good osteointegration was observed, even if a significant amount of hydroxyapatite was 

not resorbed yet. In these treated groups, an initially bone formation occurred mostly in 

the part of the scaffolds close to the bone ridge. Indeed, accordingly to previous studies 

[Kon et al., 2000], little new bone formation occurred also within cell-free scaffold pores, 

indicating the ability of this scaffold to be colonized by the resident cells and to induce their 

osteogenesis. However, in the group treated with the construct rbASCs-HA a uniform 

spatial distribution of newly formed tissue was observed, indicating the presence of bone 

tissue not only along the walls of the pores, but also in their inner part, and suggesting that 

the bone maturation process is more advanced in the cell-treated defects, where lamellar 

bone was largely represented. 

Furthermore, defects treated with rbASCs showed good mechanical properties, suggesting 

an improved capability to bear mechanical loading. This is quite evident when low forces 

(1mN, corresponding to 200 nm of penetration depth) are applied. This result might be 

explained by a higher mineral content present in the lesions treated with rbASCs-HA and 

representing a more advanced step in the healing process. Instead, at higher maximum 

depth no differences have been observed, and the response is dominated by the 

deformation mechanisms occurring in tissue, namely the debonding between the collagen 

fibres and the slippage at the mineral-collagen interfaces [Fantner et al., 2005; Mercer et 

al., 2006]. These results are qualitatively consistent with Pelled et al. who found that a 

decrease in the elastic modulus and hardness values correlated with an increasing 

maximum load [Pelled at al., 2007]. 

Moreover, with the aim to minimally manipulate cells, we seeded non osteogenic-induced 

rbASCs on HA. As already reported, some authors demonstrated the efficacy of engineered 

bioconstruct using pre-osteogenic-induced MSCs: Hao et al. cultured rabbit ASCs on 

collagen I gel PLGA-TCP for 2 weeks in osteogenic medium, before using these hybrid 

composites to treat rabbit segmental bone defects [Hao et al., 2010a]; also Viateau et al. at 
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first suspended BMSCs in osteogenic medium, and then they seeded them on coral 

scaffolds [Viateau et al., 2007]. Although in both cases these authors obtained satisfactory 

results, our data, together with other previous study [Kon et al., 2000; Cowan et al., 2004; 

Mastrogiacomo et al., 2006], support the idea that a pre-osteogenic induction of MSCs is 

not strictly necessary to achieve a good bone regeneration, probably due to the combined 

effect of the surrounding bone microenvironment with the selected scaffold. Indeed, HA is 

able to promote osteogenic differentiation in vitro: collagen type I is expressed in rbASCs 

seeded on HA fragments, and cultured in non-inductive medium, confirming the 

osteoconductive effect of HA on rbASCs. We believe that this osteoconductive feature of 

HA accelerate the osteogenic differentiation of rbASCs and consequently the bone 

deposition process. This evidence may be very useful in a hypothetic one-step bone defect 

treatment, where mesenchymal stem cells could be purified from the donor tissue, directly 

seeded on scaffold, and immediately implanted in the defect, without the necessity of a 

pre-stimulation. However, the marked osteogenic differentiation variability among the 

different cell populations, as we have found in vitro and as it has been already reported in 

several papers concerning animal or human ASCs [Arrigoni et al., 2009; de Girolamo/ 

Arrigoni et al., 2009; Quirici/ Arrigoni et al., 2010] seems not to affect bone healing . 

Indeed, we have not observed any relevant differences among rabbit tibia, both in terms of 

bone formation, distribution and mechanical properties: the best “in vitro performing 

rabbit” did not show the best results in vivo compared to the others. We suggest that the 

microenvironment may promote the bone healing masking the inter-donor variability, and 

it allows all different cellular populations to adequately contribute to the bone 

regeneration process suggesting also that the exogenous cells could recruit and lead the 

endogenous ones in the reparative process. So, the treatment of bone defects with 

autologous rbASCs-hydroxyapatite bioconstructs might be a promising approach improving 

bone healing and reducing the rehabilitation period for the patients. 

Few months ago, we have also concluded a new pre-clinical study in a large animal model 

using autologous and heterologous porcine ASCs in association with OPF 

[oligo(poly(ethylene glycol) fumarate] hydrogel (MayoClinic, Rochester, Minnesota, USA) to 

repair a critical osteochondral defect in the knee of minipigs.  

Briefly, always in collaboration with the vet team of the University of Milan and the IRCCS 

Galeazzi Orthopaedic Institute of Milan, we have at first isolated ASCs from the 
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interscapular region of 7 male minipigs, we have expanded and characterized these cells in 

vitro, and about 4 weeks after isolation we have loaded 3x106 of either autologous or 

heterologous ASCs (female pig) on cylinders of OPF hydrogel and implanted in a critical size 

osteochondral defects at the level of the right knee (four defects/ joint). The follow up has 

been of 6 month and right now the histological, immunohistochemical and bio-mechanical 

analyses are in progress. All the minipigs have been fine during the follow up, except one 

animals which sufferer the first 3 day after surgery of a local inflammation at the knee that 

in a week has disappeared. If the results of this study will be promising we will try to apply 

for a phase I trial. However, there are several aspects that need to be consider dealing with 

humans: may the “quality” of human ASCs be affected by the donor’s physiological or 

pathological conditions? and in this case may the use of selected pharmacological 

treatment enhance the cellular plasticity? or may the use of allogenic hASCs overcome 

some hASCs deficiency? or may the use of immunoselected hASCs be more advantageous 

in the field of muscle-skeletal tissue regeneration? 

It is well known that MSCs play an essential role in the maintaining tissue homeostasis and 

in participating in tissue repair during the lifespan of an individual.  

The decline in their proliferative and differentiation potential can contribute to aging and to 

the onset of age-related diseases [Rao and Mattson, 2001; Van Zant and Liang, 2003] and, 

for this reason, the use of autologous MSCs in tissue engineering applications should take 

into account the possibility that the proliferative and differentiative potential decreases in 

relation of the donor’s age [Pal et al., 2009; Carrion et al., 2010]. 

In recent years, several studies both in animals and in humans, have reported that age 

induce some alterations in term of MSCs cellular yield, doubling time, ability to produce 

colonies and differentiation potential [Baxter et al., 2004; Fehrer and Lepperdinger, 2005; 

Bonab et al., 2006].  

For this reason we have analyzed and compared hASCs harvested from female donors aged 

under 35 and over 45 years. The significantly more abundant hASCs yield per ml of raw 

adipose tissue from the over 45 year-old donors may be related to the hormonal 

disequilibrium in this period of a woman’s life, which may enhance the number of 

progenitor mesenchymal cells in adipose tissue, known to increase with age. On the other 

hand, the number of CFU-F was just slightly reduced from older donors. No significant 

differences were detected in terms of the in vitro adipogenic differentiation potential of 
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hASCs from younger or older donors; indeed, in both cases cells were able to differentiate 

into adipocyte-like cells. On the contrary, age affected the hASCs in vitro osteogenic 

differentiation potential: a reduced differentiation capacity of hASCs>45 y/o was observed, 

as assessed by ALP activity and calcium deposition. Hence our data suggest the potential 

use of autologous hASCs, although inter-individual differences related to sex, age and tissue 

inflammatory state [Barry, 2003; van Harmelen et al., 2003] need to be taken into account 

for regenerative medicine application, together with the opportune indications for this kind 

of treatment.  

Now, in collaboration with a group of the University of Rome, we are evaluating the effect 

of obesity, on hASCs features from obese subcutaneous adipose tissue, in comparison to 

hASCs from healthy donors. It is known that adipose tissue is an endocrine organ able to 

secrete hormones, growth factors and cytokines involve in the regulation of the 

physiological homeostasis and also to contribute to the development of pathological states 

as obesity. This disease and the associated metabolic pathologies affect over 50% of the 

adult population, and are associated with a reduced pressure of oxygen that induced a 

chronic inflammatory response characterized by abnormal production of cytokines and 

activation of inflammatory signalling pathways that could affect the properties of adipose-

derived stem cells. For this reason, we are studying if the inflammatory status of the human 

tissue in vivo reduces the pool of mesenchymal stem cells and their differentiation 

potential. Preliminary data indicate that hASCs isolated from adipose tissues of normal-

weight (n-hASCs) and obese (ob-hASCs) donors showed different morphological and 

functional features [Tissue Engineering and Regenerative Medicine International Society 

(TERMIS), 2011; 35° Congresso Nazionale della Società Italiana di Farmacologia (SIF), 2011]. 

The proliferation rate of n-hASCs was higher compared to those cells obtained from obese 

patients with an average doubling time of 123.9±10.6 and 173.4±10.4 hours, respectively. 

We have also confirmed the different presence of progenitor cells: n-hASCs showed a 

clonogenic potential 77% higher than stem cells isolated from obese donors. Moreover, the 

osteogenic potential of hASCs seems also to be affected by obesity: indeed, n-hASCs and 

ob-hASCs in the presence of osteogenic stimuli showed a significant up-regulation of ALP 

activity of 326 and 48%, in comparison to the undifferentiated ones, respectively. It is 

important to mention that osteo-differentiated ob-hASCs presented about 10-fold lower 

ALP basal levels respect to n-hASCs. We have also cultured hASCs in hypoxic conditions: 
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both cell types were responsive to hypoxic environment resulting in the activation of pro-

inflammatory genes such as hypoxia-inducible factor (HIF-1α), vascular endothelial growth 

factor (VEGF-α), suppressor of cytokine signalling (SOCS-1) and cyclooxygenase-2 (COX2). 

So, obesity seems to negatively affect the self-renewal and the differentiation ability of 

hASCs, likely due to the inflammatory state related to this condition. Indeed, both hASCs 

from healthy and obese donors are responsive to hypoxic environment resulting in the 

activation of pro-inflammatory genes, with major influence for n-hASCs in comparison to 

ob-hASCs, that could be due to an adaptation of ob-hASCs to an inflammatory 

microenvironment in vivo. 

As the use of MSCs in regenerative medicine applications requires tissue engineering skills 

[Atala, 2007], and the selection of a suitable scaffold is fundamental in order to set up 

hybrid constructs [Mano and Reis, 2007], we have shown that hASCs may be used 

conveniently to screen several biomaterials, natural and synthetic, with potential clinical 

application [de Girolamo/ Arrigoni et al., 2009; Lopa/ Arrigoni et al., 2011]. We seeded 

undifferentiated hASCs on hydroxyapatite (HA) and on SiC-PECVD, a suitable ameliorative 

biocompatible coating layer [Santavirta et al., 1998], and then compared their ability to 

differentiate into osteoblast-like cells with cells cultured on polystyrene (PA). With regard 

to physiological condition of age, hASCs from younger donors, when cultured on both HA 

and SiC-PECVD, produced higher ALP activity and a greater amount of calcium deposition 

compared with cells derived from older donors. As expected, HA showed a strong and 

direct osteoinductive effect on hASCs; indeed, cells derived from both young and old 

donors, when cultured on HA, showed greater ALP activity compared with cells grown on 

PA, even if maintained in control medium.  

From these results, it is possible conclude that, the outcome of the use of autologous hASCs 

in tissue engineering applications may depend on the physio/pathological conditions of the 

donors which should be considered before proposing the use of progenitor cells for a 

cellular therapy. 

For this reason, with the aim to improve the use of MSCs, we pharmacologically treated 

hASCs to improve their plasticity. 

As previously demonstrated [de Girolamo/ Arrigoni et al., 2009], there are some cases in 

which mesenchymal stem cells give unsatisfactory differentiation yields, especially when 

used for the regeneration of skeletal or cardiac muscle, where reports in the literature 
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could be classified as “proof of concept” studies, more than realistic strategies for cell 

therapy [Mizuno, 2009]. Therefore, we tested whether Reversine, a synthetic purine that 

has been shown to increase cell plasticity of adult differentiated cells, could enhance 

mesenchymal stem cell differentiation. In particular, in this study, we have focused our 

attention on adipose-derived stem cells differentiation toward osteogenic and myogenic 

cell lineages. 

Initially, we have decided to treat hASCs with 5 µM Reversine, which Anastasia et al. had 

previously found as the optimal concentration for fibroblast de-differentiation [Anastasia et 

al., 2006]. However, this dose was toxic for hASCs and we treated them with 50 nM 

Reversine, which was already used in another study [Chen et al., 2007], and which gave the 

best results in terms of differentiation ability toward osteoblast and smooth muscle cells, 

without reduction in cell proliferation. Moreover, since the main goal of our study was to 

determine whether we could improve the differentiation yields of mesenchymal stem cells 

in those cases where they normally give really poor results, we tried to induce Reversine-

pretreated hASCs to differentiate into myocytes. Reversine treated hASCs co-differentiated 

with murine myoblasts C2C12, produced the formation of myotubes expressing the muscle 

differentiation marker MHC and containing human nuclei that could only be generated 

from hASCs, clearly demonstrating the differentiation of hASCs into skeletal muscle. It is 

not known the mechanism of action of Reversine yet, and we have shown that genes such 

as c-Myc, Oct-4, Kfl-4 and Nanog are not modulated by the treatment in these cells. Along 

this line, several studies are in progress to elucidate and clarify the Reversine mechanism of 

action.  

Another aspect that we have considered, was the possibility to isolate, specific progenitor 

cells, such as CD34 and L-NGFR positive cells from hASCs population (PA) by 

immunoselection. The enrichment of MSCs by selection with a monoclonal antibody raised 

against L-NGFR and bound to magnetic beads has been previously described in BMSCs 

[Quirici et al., 2002], where a subset of cells showed a high proliferative, clonogenic, and 

multipotential differentiation ability. More recently, Yamamoto et al. isolated and analyzed 

L-NGFR+ cells from mouse subcutaneous adipose tissue, showing that the rate of 

differentiation into adipocytes, osteoblasts, and neuronal cells was higher than for L-NGFR- 

hASCs [Yamamoto et al., 2007]. 
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As already reported, Lee et al. isolated a population of muscle-derived CD34+ stem cells 

able to improve both muscle regeneration and bone healing [Lee et al., 2000], whereas 

Garcia-Pacheco et al. found that human decidual stromal cells positive for both CD34 and 

STRO-1 are related to BM stromal precursors [Garcia-Pacheco et al., 2001]. Moreover, 

expression of CD34 had been already reported in BMSCs, although it was rapidly lost after 

in vitro culture [Simmons and Torok-Storb, 1991; Deans and Moseley, 2000; Quirici et al., 

2002]. In human adipose tissue, L-NGFR and CD34 MoAbs were able to identify 2 fractions 

expressing surface markers associated with a primitive phenotype. Accordingly, we 

observed that L-NGFR and CD34 expressions are progressively down-modulated during 

culture, in parallel with both the reduction of hASCs clonogenic and multi-differentiative 

ability and the acquisition of a fibroblast phenotype. The developmentally programmed loss 

of marker expression is reminiscent of what was observed in the case of the CD34 [Civin et 

al., 1987], L-NGFR [Quirici et al., 2002], and Stro-1 [Simmons and Torok-Storb, 1991] 

antigens on BMSCs, supporting the hypothesis that they are markers of primitive cells. Both 

immunoseparated cellular fractions showed higher proliferative and differentiative ability 

throughout the time of culture compared to PA hASCs. Nevertheless, the immunoselected 

subpopulations better responded both to the physical stimuli and to the hypoxia condition 

of the 3-dimensional culture, positively affecting the chondrogenic differentiation [Vinatier 

et al., 2009]. Indeed, just the 3D condition induced CD34+ and L-NGFR+ cells to produce 

similar or even higher levels of GAGs than PA hASCs cultured in chondrogenic medium: this 

could be due to the greater ability of the selected hASCs to respond to the 3D physical 

stimuli. Furthermore, DNA quantification showed a higher proliferative effect of the 

chondrocyte-inductive TGF-β on PA and CD34+ fractions in comparison to L-NGFR+ cells, 

maybe depending on the large number of primitive cells able to differentiate and survive in 

conditions of stress and able to rapidly differentiate.  

All together, these data suggest that the selection by anti-L-NGFR MoAb allows us to obtain 

a more homogeneous and primitive population: the almost total co-expression of CD34, the 

expression of the stem markers CD117 and CD105, and the higher proliferative, clonogenic, 

and differentiative potential, in particular at early passages, seem to support this 

observation. The role of L-NGFR in MSCs is still unclear, although its expression has been 

described in BM and in other tissues [Jones et al., 2004] and it has been shown to be 

involved in several functions including morphogenesis [Sariola et al., 1991; Campagnolo et 
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al., 2001; Suzuki et al., 2008], growth factor presentation [Glass et al., 1991], and apoptosis 

in response to NGF stimulation [Trim et al., 2000]. We observed a higher heterogeneity in 

CD34+ population, with <30% of cells co-expressing L-NGFR and low levels of CD117 and 

CD105 expression. In the last years, some authors have isolated from human adipose tissue 

CD34+/CD31- cells including adipocytes progenitor cells and CD34+/CD31+ cells defined as 

capillary endothelial cells [Miranville et al., 2004]. They proposed that adipocytes and 

endothelial cells might share a common precursor, as also suggested by Planat-Benard et 

al. [Planat-Benard et al., 2004], which could play a determinant role in the excessive 

development of the adipose tissue by contributing to neo-vascularisation and to the 

apparent adipocyte hyperplasia. Moreover, Traktuev et al. recently described a hASCs 

subset (CD34+/CD140a+/CD140b+/CD31−/CD45−/CD117−/CD144−) with pericytic 

properties that participate in vascular stabilization by mutual structural and functional 

interactions with endothelial cells, maintaining the ability to differentiate into multiple 

lineages [Traktuev et al., 2008]. These evidences suggest that CD34+ hASCs could be 

preferentially used for bone tissue engineering, due to their ability to promote the neo-

vascularization process, which is known to be a critical point in the healing of bone defects. 

These cells could be also combined with other terminally differentiated cells to allow a 

satisfactory vascularization of the “repaired” tissue. 

 Nowadays, in the field of regenerative medicine, physicians prefer one-step surgical 

procedures in order to reduce patients’ discomfort, risks of pathogens transmission, and 

social costs. In this context, the possibility to rapidly select subpopulations of cells more 

prone to differentiate into a specific lineage would be very advantageous, and could be 

useful tools in regenerative medicine applications. 

In conclusion, ASCs can be considered good candidates in the field of tissue engineering 

and regenerative medicine, in particular in the field of skeletal-muscle tissues. 

In our pre-clinical studies, we have demonstrated that rbASCs seeded on hydroxyapatite 

disks, are able to repair a critical-size bone defect producing, in the defect site, a new tissue 

with the characteristics of mature and healthy bone tissue [de Girolamo/ Arrigoni et al., 

2011; Arrigoni et al., submitted]. 

However, before moving to the clinic is important consider if some physio/ pathological 

conditions of the donors can influence the features of hASCs. Indeed, we have 

demonstrated that age [de Girolamo/ Arrigoni et al., 2009] and obesity [Stanco/ Arrigoni et 
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al., manuscript in preparation], could be considered important to predict the outcome of a 

regenerative medicine treatment by hASCs, and possible strategies to overcome 

differentiation deficiency could be the pharmacological treatment with Reversine to 

enhance the differentiative potential of hASCs [Conforti/ Arrigoni et al., 2011], the use of 

immunoselected subpopulation of hASCs [Quirici/ Arrigoni et al., 2010], or the use of 

allogenic hASCs from young healthy donors that may produce a better results. In 

collaboration with Prof. Sacerdote at the Department of Medical Pharmacology of the 

University of Milan, we have obtained preliminary results on hASCs, co-cultured for 24 

hours together with heterologous peripheral blood lymphocytes, where they do not induce 

any T-cells activation and any significant release of Th1 and Th2-specific cytokines 

confirming the low immunogenicity of these hASCs, as already shown by others [Calderon 

et al., 2011; McIntosh KR, 2011] and making us believing feasible to perform allotransplant. 
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