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Chapter 1
Introduction

An interesting fact in nature is that if we observe agents (neurons, par-
ticles, animals, humans) behaving, or more precisely moving, inside
their environment, we can recognize - tough at different space or time
scales - very specific patterns. The existence of those patterns is quite
obvious, since not all things in nature behave totally at random, es-
pecially if we take into account thinking species like humanbeings.
On the contrary, their analysis is quite challenging. Indeed, during
the years we can find in the literature a lot of efforts to understand
the behavior of complex systems through mathematical laws.If a first
phenomenon which has been deeply modeled is the gas particlemo-
tion [68] as the template of a totally random motion, other phenomena,
like foraging patterns of animals such as albatrosses [44],and specific
instances of human mobility [56] wear some randomness away in fa-
vor of deterministic components. Thus, while the particle motion may
be satisfactorily described with a Wiener Process (also called Brown-
ian motion) - hence particle coordinates distributed like Gaussian vari-
ables with variance increasing with time - other phenomena like alba-
trosses’ foraging patterns or human mobility are better described by
other kinds of stochastic processes calledLevy Flights. Both may be
simulated at discrete time with an infinite sum of equally distributed
steps. But the former are Gaussian, the latter have heavy tailed distri-
butions like Cauchy or Pareto distributions. Many researcher did try
to explain this peculiar aspects in terms of stochastic models often
based on complex superstructures, yet only seldom they got astrong
plausibility. Minding at these phenomena in a unifying way,in terms
of motion of agents – either inanimate like the gas particles, or an-
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2 1 Introduction

imated like the albatrosses –the point is that the latter aredriven by
specific interests, possibly converging into a common task,to be ac-
complished. Since the moment when these needs arise, agentsmove
from one place to another moulding long or even short lastingcommu-
nities, whose importance has led the scientific community toterms as
social communities. These kind of spontaneous groups are as interest-
ing as the motionsper se: indeed we can consider social communities
as a real effect of the intentional (either physical or virtual) motion.

The whole thesis work turns around the concept of agent intention-
ality at different scales, whose model may be used as key ingredient
in the statistical description of complex behaviors. The two main con-
tributions in this direction are:

1. the development of a “wait and chase” model of human mobility
having the same two-phase pattern as animal foraging [44] but with
a greater propensity of local stays in place and therefore a less dis-
persed general behavior [13];

2. the introduction of a mobility paradigm for the neurons ofa multi-
layer neural network and a methodology to train these new kind of
networks to develop a collective behavior. The lead idea is that neu-
rons move toward the most informative mates to better learn how
to fulfill their part in the overall functionality of the network.

With these specific implementations we have pursued the general
goal of attributing both a cognitive and a physical meaning to the in-
tentionality so as to be able in a near future to speak of intentionality
as an additional potential in the dynamics of the masses (both at the
micro and a the macro-scale), and of communication as another net-
work in the force field. This could be intended as a step ahead in the
track opened by the past century physicists [50] with the coupling
of thermodynamic and Shannon entropies in the direction of unifying
cognitive and physical laws.

This thesis is organized as follows:

• Chapter 2 is intended as a compendium of useful preliminary no-
tions and concepts to read the rest of the thesis. It comprises both
the necessary mathematical foundations and the main basic defini-
tions to support next chapters, without any exhaustivenesspretense.

• Chapter 3 runs along a path starting from some theoretical consid-
eration on stochastic processes with and without memory andthe
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relationship lying between them. Then, it continues with the pre-
sentation of a human mobility model that supports a real applica-
tion embedded in concrete contexts - the opportunistic networks,
gps communities, etc. - as an implementation of the previoustheo-
retical considerations.

• Chapter 4 prosecutes the study at a micro scale. Here, takinginspi-
ration by brain morphogenesis, we add a mobility functionality to
the neurons of an artificial neural network and toss this new cogni-
tive device on well known benchmarks. We prove the social attitude
acquired by the neurons thanks to their mobility to be beneficial to
the learning task of a deep architecture neural network.

• Chapter 5 contains some concluding remarks and considerations for
a future work.





Chapter 2
Mathematical tools

In this chapter we will present a streamline of theoretical results which
are at the basis of both the motivations and the methodologies of this
thesis work.

By first, we introduce the Levy flights, as the reference pointpro-
cess of our mobility model. Actually, we will locate our model at an
intermediate position between them and the Brownian motion, hence
owning the same infinite divisibility properties. To study this process,
we cannot strictly apply the tools from Palm calculus which we dis-
cuss in this chapter. Rather, we simply obtain from them somein-
sights about an almost stationarity of the process. As a result, the rel-
evant times follows a heavy tailed distribution law, but with a more
contained variance, thus allowing for suitable statics to infer the dis-
tribution parameters. To accomplish this inference task weadopt the
Algorithmic Inference framework that we recall in the thirdpart of this
chapter. Here we introduce only the basic concepts; while the actual
inference procedures will be discussed at the moment of their imple-
mentation later on. Then we list in a very essential way some defi-
nition and algorithms attaining the neural networks that wewill use
for accomplishing the training task of our intentional agents. They are
very popular notions that we recall with the unique aim of fixing the
notation. We conclude this roundup with the blowup of a special expe-
dient we use to improve the signal representation during thetraining
of our neural network. It consists of extracting boolean features from
the signal, and we show an entropic device to get them.

5



6 2 Mathematical tools

We just list definitions and results in order to provide the reader
some pointers to topics that are covered with more details (and often a
greater rigor as well) in numerous textbooks an papers in theliterature.

2.1 Lèvy processes

2.1.1 Preliminary notions

Before introducing the definition of Lèvy Process, we provide some
preliminary notions.

Let S be a non-empty set andF a collection of subsets ofS. We
call F a σ -algebraif the following hold.

1. S∈ F

2. A∈ F ⇒ Ac ∈ F

3. If (An,n∈ N) is a sequence of subsets inF then
⋃∞

n=1An ∈ F

The pair(S,F ) is called ameasurable space.
A measureon (S,F ) is a mappingµ : F 7→ [0,∞] that satisfies:

1. µ( /0) = 0,
2.

µ

(
∞⋃

n=1

An =
∞

∑
n=1

µ(An)

)

for every sequence(An,n∈ N) of mutually disjoint sets inF

The triple(S,F ,µ) is called ameasure space.
For our purposes it is useful to define two measures:

• Let Sbe a subset ofRd . We equipSwith the topology induced from
R

d, so thatU ⊆ S is open inS if U ∩S is open inRd. Let B(S)
denote the smallestσ -algebra of subsets ofS that contains every
open set inS. We callB(S) theBorelσ −algebra of S. Elements of
B(S) are calledBorel setsand any measure on(S,B(S)) is called
aBorel measure. The linear space of all bounded Borel measurable
functions fromS to R will be denoted byBb(S)

• Here we usually writeS= Ω and takeΩ to represent the set of
outcomes of some random experiment. Elements ofF are called



2.1 Lèvy processes 7

eventsand any measure on(Ω ,F ) of total mass 1 is calledproba-
bility measureand denoted byP. The triple(Ω ,F ,P) is then called
probability space.

Definition 2.1. (Measurable mapping).For i = 1,2 let (Si,Fi) be
measurable spaces. A mappingf : S1 7→ S2 is said to be(F1,F2)-
measurableif f−1 ∈F1 for all A∈F2. If eachS1 ⊆R

d,S2 ⊆R
m and

Fi = B(Si), f is said to beBorel measurable.

Remark 2.1.In what follows, we will speak only of measurable map-
pings that are equipped with a Borelσ -algebra.

Definition 2.2. (Random Variable).Given the probability space(Ω ,F ,P),
the measurable mappingX : Ω 7→ R

d is calledrandom variable.

2.1.2 L̀evy family

Definition 2.3. (Stochastic Process).A stochastic process{Xt}t∈T is
a collection of random variablesXt , taking values in a common mea-
sure space(S,F ), indexed by a setT.

Lèvy processes are essentially stochastic processes withstationary
and independent increments. Their importance in probability theory
stems from the following facts:

• they are the analogues of random walks in continuous time;
• they form special subclasses of both semi-martingales and Markov

processes for which the analysis is on the one hand much simpler
and on the other hand provides valuable guidance for the general
case;

• they are the simplest examples of random motion whose sample
paths are right-continuous and have a number (at most countable)
of random jump discontinuities occurring at random times, on each
finite time interval.

• they include a number of very important processes as specialcases,
including Brownian motion, the Poisson process, stable andself-
decomposable processes.

Definition 2.4.Suppose that we are given a probability space(Ω ,F ,P).
A Lèvy processX = (X(t), t ≥ 0) taking values inRd is essentially a
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stochastic process having stationary and independent increments; we
always assume thatX(0) = 0 with probability 1. So:

• eachX(t) is define d inΩ 7→ R
d;

• given any selection of distinct time-points 0≤ t1 < t2 < · · · < tn,
the random vectorsX(t1),X(t2)−X(t1),X(t3)−X(t2), . . . ,X(tn)−
X(tn−1) are all independent;

• given two distinct times 0≤ s< t < ∞, the probability distribution
of X(t)−X(s) coincides with that ofX(t−s).

2.1.3 Infinite divisibility

2.1.3.1 Convolution of measures

Definition 2.5.Let M (Rd) denote the set of all Borel probability
measures onRd. We define the convolution of two probability mea-
sures as follows:

(µ1∗µ2)(A) =
∫

Rd
(A−x)µ2(dx) (2.1)

for eachµi ∈ M (Rd), i = 1,2,and eachA ∈ B(Rd), where we note
thatA−x= {y−x,y∈ A}.

Proposition 2.1.The convolutionµ1 ∗µ2 is a probability measure on
R

d.

Proposition 2.2.If f ∈ Bb(R
d), then for allµi ∈ M (Rd), i = 1,2,3,

∫

Rd
f (y)(µ1∗µ2)(dy) =

∫

Rd

∫

Rd
f (x+y)µ1(dy)µ2(dx),

µ1∗µ2 = µ2∗µ1,

(µ1∗µ2)µ3 = µ1∗ (µ2∗µ3).

Now letX1 andX2 be independent random variables defined on a prob-
ability space(Ω ,F ,P) with joint distributionp and marginalsµ1 and
µ2 respectively.

Corollary 2.1. For each f∈ Bb(R
d),

E( f (X1+X2)) =

∫

Rd
f (z)(µ1∗µ2)(dz). (2.2)
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By Corollary 2.1, we see that convolution gives the probability law
for the sum of two independent random variablesX1 andX2, i.e.

P(X1+X2 ∈ A) = E(χA(X1+X2)) = (µ1∗µ2)(A) (2.3)

whereχA is theindicator functiondefined for anyA∈ F by

χA(x) =

{
1, if x∈ A
0, if x /∈ A

Proposition 2.2 tells us thatM (Rd) is an abelian semigroup under∗
in which the identity element is given by the Dirac measureδ0, where
we recall that in general, forx∈ R

d ,

δx(A) =

{
1 if x∈ A
0 otherwise

for any Borel setA, so we haveδ0∗µ = µ ∗δ0 = µ for all µ ∈M (Rd).
We defineµ∗n

= µ ∗ · · · ∗ µ (n times) and say thatµ has aconvo-
lution n-th root, if there exists a measure denotedµ1/n ∈ M (Rd) for
which (µ1/n)∗

n
= µ.

Remark 2.2.In general, the convolutionn-th root of a probability mea-
sure may not be unique. However, it is always unique when the mea-
sure is infinitely divisible

Definition 2.6. Infinite divisibility. LetX be a random variable taking
values inRd with law µX. We say thatX is infinitely divisible if, for

all n∈ N, there exist i.i.d. random variablesY(n)
1 , . . . ,Y(n)

n such that

X =Y(n)
1 + · · ·+Y(n)

n (2.4)

Let ΨX(u) = E(ei〈u,X〉) denote the characteristic function ofX, where
u∈R

d. More generally, ifµ ∈M (Rd) thenΨµ(u) =
∫
Rd ei〈u,y〉µ(dy).

Proposition 2.3.The following are equivalent:

1. X is infinitely divisible;
2. µX has a convolution n-th root that is itself the law of a random

variable, for each n∈ N;
3.ΨX has an nth root that is itself the characteristic function ofa

random variable, for each n∈ N.
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Proposition 2.3(2) suggests that we generalize the definition of infinite
divisibility as follows: µ ∈ M (Rd) is infinitely divisible if it has a
convolutionnth root inM (Rd) for eachn∈ N.

2.1.3.2 L̀evy-Khintchine formula

Now we will present a formula, first established by Paul Lèvyand
A.Ya. Khintchine in the 1930s, which gives a characterization of in-
finitely divisible random variables through their characteristic func-
tions. First we need a definition.

Definition 2.7.Let ν be a Borel measure defined onRd−{0}= {x∈
R

d,x 6= 0}.We say that it is aLèvy measureif

∫

Rd−{0}

|y|2
1+ |y|2ν(dy)< ∞ (2.5)

for eachy∈ R
d.

Theorem 2.1.(Lèvy-Khintchine)µ ∈ M (Rd) is infinitely divisible if
there exist a vectorb ∈ R

d, a positive definite symmetric d×d matrix
A and a L̀evy measureν onRd −{0} such that, for allu ∈ R

d,

ψm(u) = exp

{
i〈b,u〉− 1

2
〈u,Au〉+

∫

Rd−{0}

[
ei〈u,y〉−1− i〈u,y〉χB̂(y)

]
ν(dy)

}
(2.6)

whereB̂ = B1(0)1. Conversely, any mapping of the form (2.6) is the
characteristic function of an infinitely divisible probability measure
onR

d .

The Lèvy-Khintchine formula represents all infinitely divisible ran-
dom variables as arising through the interplay between Gaussian and
Poisson distributions. So, a vast set of different behaviorappears be-
tween these two extreme cases.

1 The open ball of radiusr centered atx in R
d is denotedBr(x) = {y∈R

d; |y−x|< r} and we will
write B̂= B1(0).
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2.1.4 Stable random variables

We consider the general central limit problem in dimensiond = 1,
so let(Yn,n ∈ N) be a sequence of real-valued random variables and
construct the sequence(Sn,n∈ N) of rescaled partial sums

Sn =
Y1+Y2+ · · ·+Yn−bn

σn

where(bn,n∈N) is an arbitrary sequence of real numbers and(σn,n∈
N) an arbitrary sequence of positive numbers. We are interested in the
case where there exists a random variableX for which

lim
n→∞

P(Sn ≤ x) = P(X ≤ x) (2.7)

for all x ∈ R, i.e. (Sn,n ∈ N) converges in distribution toX. If each
bn = nmandσn =

√
nσ for fixedm∈R,σ > 0, thenX ∼ N(m,σ2)by

the Laplace-de-Moivre central limit theorem.
More generally a random variable is said to be stable if it arises as
a limit, as in (2.7). It is not difficult to show that (2.7) is equivalent
to the following. There exist real-valued sequences(cn,n ∈ N) and
(dn,n∈ N) with eachcn > 0 such that

X1+X2+ · · ·+Xn = cnX+dn (2.8)

whereX1,X2, . . . ,Xn are independent copies ofX. In particular,X is
said to be strictly stable if eachdn = 0.

To see that (2.8)⇒ (2.7) take eachYj = Xj ,bn = dn andσn = cn. In
fact it can be shown that the only possible choice ofcn in (2.8) is of
the formσn1/α , where 0< α ≤ 2. The parameterα plays a key role
in the investigation of stable random variables and is called theindex
of stability. It follows immediately from (2.8) that all stable random
variables are infinitely divisible. The characteristic functions in the
Lèvy-Khintchine formula are given by the following result.

Theorem 2.2.If X is a stable real-valued random variable, then its
characteristic function must take, according to (2.6), oneof the two
following forms:

1. whenα = 2, v= 0, so X∼ N(b,A);
2. whenα 6= 2, A= 0 and
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ν(dx) =
ci

x1+α
χ(0,∞)(x)dx+

c2

|x|1+α χ(−∞,0)(x)dx,

where c1 ≥ 0,c2 ≥ 0 and c1+c2 > 0

A careful transformation of the integrals in the Lèvy-Khintchine (2.6)
formula gives a different form for the characteristic function, which is
often more convenient.

Theorem 2.3.A real-valued random variable X is stable if and only
if there existσ > 0,−1≤ β ≤ 1 andµ ∈ R such that for all u∈ R:

• whenα = 2,

ψX(u) = exp

(
iuµ − 1

2
σ2u2

)
;

• whenα 6= 1,2,

ψX(u) = exp
{

iµu−σα |u|α
[
1− iβsgn(u) tan

(πα
2

)]}
;

• whenα = 1,

ψX(u) = exp

{
iµu−σ |u|

[
1+ iβ

2
π

sgn(u) log(|u|)
]}

. (2.9)

It can be shown thatE(X2) < ∞ if and only if α = 2 (i.e. X is Gaus-
sian) and thatE(|X|)< ∞ if and only if 1< α ≤ 2. All stable random
variables have densitiesfX, which can in general be expressed in a
series form. In three important cases, there are closed forms.

1. The normal distribution

α = 2 X ∼ N(µ,σ2); (2.10)

2. The Cauchy distribution

α = 1,β = 0, fX(x) =
σ

π [(x−µ)2+σ2]
(2.11)

3. The Lèvy distribution

α = 1,β = 1,

fX(x) =
( σ

2π

)1/2 1

(x−µ)3/2
exp

[ −σ
2(x−µ)

]
for x> µ. (2.12)
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As we can notice, stable distributions are both Normal and Cauchy
distributions, the latter belongs to the family of the so called Heavy-
tailed distributions (not exponentially bounded) so as thePareto dis-
tribution. However it is not always possible to have an analytical form
for a general alpha stable distribution, and in these cases we can only
write the corresponding characteristic functionψ expressed as the
Fourier transform of the probability density.

More precisely, note that if a stable random variable is symmetric
then Theorem 2.3 yields

ψX(u) = exp(−ρα |u|α) ∀ 0< α ≤ 2

whereρ = σ for 0< α < 2 andρ = σ
√

2 whenα = 2.
One of the reasons why stable laws are so important is the decay

properties of the tails. For example, withα = 2 we have an exponen-
tial decay, indeed for a standard normalX

P(X > y)∼ e−y2/2
√

2πy
asy→ ∞

. On the other side, whenα 6= 2 we have a slower, polynomial, decay
as expressed by:

lim
y→∞

yαP(X > y) =Cα
1+β

2
σ α

lim
y→∞

yαP(X <−y) =Cα
1−β

2
σ α

whereCα > 1. The relatively slow decay of the tails of non-Gaussian
stable laws makes them ideally suited for modelling a wide range
of interesting phenomena, some of which exhibitlong-range depen-
dence.

2.2 Point processes and Palm Calculus

In the following sections we will give some basic notion on point pro-
cesses and Poisson point processes and how we can exploit thetools
that the Palm calculus offers us.
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2.2.1 Poisson Point Process

Consider thed-dimensional Euclidean spaceR.

Definition 2.8.A spatialpoint process(p.p.)Φ is a random, finite of
countably-infinite collection of points in the spaceRd, without accu-
mulation points.

One can consider any given realizationφ of a p.p as a discrete subset
φ = {xi} ⊂ R

d of the space. It is often more convenient to think ofφ
as acounting measureor a point measureφ = ∑i δxi whereδx is the
Dirac measure atx.
Consequently,φ(A) gives the number of “points” ofφ in A. Also, for
all real functionsf defined onRd, we have∑i f (xi) =

∫
Rd f (x)φdx.

We will denote byM the set of all point measures that do not have
accumulation points inRd. This means that anyφ ∈M is locally finite,
that isφ(A) < ∞ for any boundedA ⊂ R

d (a set is bounded if it is
contained in a ball with finite radius). Note that a p.p.Φ can be seen
as a stochastic processΦ = Φ(A)A∈B with state spaceΦ(A) ∈ N =
{0,1, . . .} and where the indexA runs over bounded Borel subsets of
R

d.

Definition and Characterization

Let Λ be a locally finite non-null measure onRd

Definition 2.9.ThePoisson Point ProcessΦ of intensity measureΛ
is defined by means of its finite-dimensional distributions:

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk}=
k

∏
i=1

(
e−Λ (Ai)

Λ(Ai)
ni

ni !

)
(2.13)

for every k = 1,2, . . . and all bounded, mutually disjointed setsAi
for i = 1, . . . ,k. If Λ(ds) = λdx is a multiple of a Lebesgue measure
(volume) inRd, we callΦ a homogeneous Poisson p.p.andλ is its
intensity parameter.

Remark 2.3.Φ is a Poisson p.p. if and only if for everyk=1,2, . . . and
all bounded, mutually disjointAi ⊂R

d with i =1, . . . ,k , (Φ(A1), . . . ,Φ(Ak))
is a vector of independent Poisson random variables of parameter
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(Λ(A1), . . . ,Λ(Ak)), respectively. In particular,E(Φ(A)) = Λ(A) for
all A.

Remark 2.4.Let W be some boundedobservation windowand let
A1, . . . ,Ak be some partition of this window:Ai ∩ A j = /0 for i 6= j
and

⋃
i Ai =W. For alln, n1, . . . ,nk ∈ N with ∑i ni = n,

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk|Φ(W) = n}=
n!

n1! · · ·nk!
1

Λ(W)n ∏
i

Λ(Ai)
ni . (2.14)

Operations Preserving the Poisson Law

Superposition

Definition 2.10.The superposition of p.p. Φk is defined as the sum
Φ = ∑k Φk

Note that the summation in the above definition is understoodas the
summation of (point) measures. It always defines a point measure,
which however, in general, might not be locally finite (we do not as-
sume the last sum to have finitely many terms). Here is a usefulcon-
dition to guarantee the above property.

Lemma 2.1.The superpositionΦ = ∑k Φk is a p.p. if∑k E[Φk(·)] is a
locally finite measure.

A refined sufficient condition may be found by the Borel-Cantelli
lemma.

Proposition 2.4.The superposition of independent Poisson point pro-
cesses with intensitiesΛk is a Poisson p.p. with intensity measure
Φ = ∑kΛk if and only if the latter is a locally finite measure.

Thinning

Consider a functionρ : Rd 7→ [0,1] and a p.pΦ .

Definition 2.11.The thinning ofΦ with the retention functionρ is a
p.p. given by

Φρ = ∑
k

γkδxk (2.15)
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where the random variables{γk}k are independent givenΦ , and
P{γk = 1|Φ}= 1−P{γk = 0|Φ}= p(xk). Less formally, we can say
that a realization ofΦρ can be constructed from that ofΦ by randomly
and independently removing some fraction of points; the probability
that a given point ofΦ located atx is not removed (i.e. is retained
inΦρ ) is equal toρ(x).

Random Transformation of Points

Definition 2.12. (Probability kernel). A measure kernel from a mea-
surable space(Ξ ,X ) to another measurable space(ϒ ,Y ) is a func-
tion κ : Ξ ×Y 7→ R

+2 such that

1. for anyY ∈ϒ , κ(x,Y ) is X -measurable;
2. for anyx∈ Ξ , κ(x,Y ) ≡ κx(Y ) is a measure of(ϒ ,Y ). We will

write the integral of a functionf : ϒ 7→R, with respect to this mea-
sure, as

∫
f (y)κ(x,dy),

∫
f (y)κx(dy), or , most compactly,κ f (y).

If, in addition,κx is a probability measure onϒ ,Y for all x, thenκ is
aprobability kernel.

Consider a probability kernelκ(x,B) from R
d to R

d′ , whered′ ≥ 1,
i.e. for allx∈ R

d, κ(x, ·) is a probability measure onRd′ .

Definition 2.13.The transformationΦκ of a p.p.Φ by a probability
kernelκ(·, ·) is a p.p. inRd′ given by

Φκ = ∑
i

δyi (2.16)

where theRd′-valued random vectors{yi}i are independent givenΦ ,
with P{yi ∈ B′|Φ}= p(xi ,B′).

In other words,Φκ is obtained by randomly and independently dis-
placing each point ofΦ fromR

d to some new location inRd′according
to the kernelκ . This operation preserves the Poisson p.p. property as
stated in the following theorem.

Theorem 2.4.(Displacement Theorem).The transformation of the
Poisson p.p. of intensity measureΛ by a probability kernelκ is the

2
R
+

denotes the extended real number set.
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Poisson p.p. with intensity measureΛ ′(A) =
∫
Rd κ(x,A)Λ(dx), A ⊂

R
d′ .

2.2.2 Palm Theory

Palm theory formalizes the notion of the conditional distribution of
a general p.p. given it has a point at some location. Note thatfor a
p.p. without a fixed atom at this particular location, the probability
of the condition is equal to 0 and the basic discrete definition of the
conditional probability does not apply. In this section we will outline
the definition based on the Radon-Nikodỳm theorem.

We first define two measures associated with a general point pro-
cess:

Definition 2.14.Themean measureof a p.p.Φ is the measure

M(A) = E[Φ(A)] (2.17)

onR
d. Thereduced Campbell measureof Φ is the measure

C!(A×Γ ) = E
[∫

A
χ(Φ −δx ∈ Γ )Φ(dx)

]
(2.18)

onR
d×M, whereM denotes the set of point measures.

Note thatM(A) is simply the mean number of points ofΦ in A. The
reduced Campbell measureC!(A×Γ ) is a refinement of this mean
measure; it gives the expected number of points ofΦ in A such that
when removing a particular point fromΦ , the resulting configuration
satisfies propertyΓ . The fact that one measure is a refinement of the
other, or more formally, thatC!(· ×Γ ) for eachΓ is absolutely con-
tinuous with respect toM(·), allows us to express the former as an
integral of some functionP!

x , called the Radon-Nikodym derivative
with respect to the latter:

C!(A×Γ ) =

∫

A
P!

x M(dx) forall A⊂ R
d. (2.19)

The functionP!
x = P!

x(Γ ) depends onΓ . Moreover, ifM(·)is a lo-
cally finite measure,P!

x(·)can be chosen as a probability distribution
in M for each givenx.
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Definition 2.15.Given a point process with a locally finite mean mea-
sure, the distributionP!

x(·) is called thereduced Palm distribution of
Φ given a point atx.

The following central formula of Palm calculus, which is called the
Campbell-Meckeformula, is a mere rewriting of the above definition
when f (x,ν) = χ(x∈ A,ν ∈ Γ ).

Theorem 2.5.(Reduced Campbell-Mecke Formula).For all non-negative
functions defined onRd ×M

E
[∫

Rd
f (x,Φ −δx)Φ(dx)

]
=
∫

Rd

∫

M

f (x,φ)P!
x(dφ)M(dx) (2.20)

Corollary 2.2. The mean measure of a Poisson p.p. is equal to its in-
tensity measure M(·) = Λ(·).

We now state a central result of the Palm theory for Poisson p.p. It
makes clear why the reduced Palm distributions are more convenient
in many situations.

Theorem 2.6.(Slivnyak-Mecke Theorem).Let Φ be a Poisson p.p.
with intensity measureΛ . For Λ almost all x∈ R

d,

P!
x = P{Φ ∈ ·} (2.21)

that is, the reduced Palm distribution of the Poisson p.p. isequal to its
(original) distribution.

Using now the convention, according to which a p.p. is a family of ran-
dom variablesΦ = {xi}i , which identify the locations of its atoms (ac-
cording to some particular order) we can rewrite the reducedCamp-
bell formula for Poisson p.p.

E

[

∑
xi∈Φ

f (xi ,Φ{xi})
]
=
∫

Rd
E[ f (x,Φ)]M(dx) (2.22)

2.2.3 Stationarity

Throughout this section we will use the following notation:
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v+Φ = v+∑
i

δxi = ∑
i

δv+xi

Definition 2.16.A point processΦ is stationary if its distribution is
invariant under translation through any vectorv∈ R

d; i.e. P{v+Φ ∈
Γ }= P{Φ ∈ Γ }.

Proposition 2.5.A homogeneous Poisson p.p. is stationary

Corollary 2.3. Given a stationary point processΦ , its mean measure
is a multiple of Lebesgue measure: M(dx) = λ dx

We have thatλ = E[Φ(B)] for any setB∈ R
d of Lebesgue measure

l . One defines the Campbell-Matthes measure of the stationaryp.p.Φ
as the following measure onRd×M:

C(A×Γ )E
[∫

A
χ(Φ −x∈ Γ )Φ(dx)

]
=E

[

∑
i

χ(xi ∈ A)χ(Φ −xi ∈ Γ )

]
.

(2.23)
If λ < ∞, one can define a probability measureP0 onM, such that

C(A×Γ ) = λ |A|P0(Γ ) (2.24)

for all Γ

Definition 2.17. Intensity and Palm distribution of a stationary
p.p. For a stationary point processΦ , we call the constantλ described
in Corollary 2.3 the intensity parameter ofΦ . The probability measure
P0 defined in (2.24) providedλ < ∞ is called the Palm-Matthes dis-
tribution of Φ .

One can interpretP0 as conditional probability given thatΦ has a
point at the origin. Below, we always assume 0< λ < ∞. The follow-
ing formula, which will often be used in what follows, can be deduced
immediately from (2.24):

Corollary 2.4. (Campbell-Matthes formula for a stationary p.p.).
For a stationary point processΦ with finite, non-null intensityλ , for
all positive functions g

E
[∫

Rd
g(x,Φ −x)Φ(dx)

]
= λ

∫

Rd

∫

M

g(x,Φ)P0(dφ)dx. (2.25)
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Remark 2.5.It should not be surprising that in the case of a station-
ary p.p. we actually define only one conditional distribution given a
point at the origin 0. One may guess that due to the stationarity of the
original distribution of the p.p. conditional distribution given a point
at another locationx should be somehow related toP0. Indeed, using
formulae (2.25) and (1.11) one can prove a simple relation betweenPx
andP0 . More specifically, takingg(x,Φ) = χ(Φ +x∈ Γ ) we obtain

∫

Rd
Px{φ : φ ∈ Γ }ds=

∫

Rd
P0{φ : φ +x∈ Γ } (2.26)

which means that for almost allx ∈ R
d the measurePx is the image

of the measureP0 by the mappingΦ 7→ Φ + x on M. This means
in simple words, that the conditional distribution of points of Φ seen
from the origin givenΦ has a point there is exactly the same as the
conditional distribution of points ofΦ seen from an arbitrary location
x givenΦ has a point atx. In this context,P0 (resp.Px) is often called
the distribution ofΦ seen from itstypical point located at 0 (resp.
at x). Finally, note by the Slivnyak Theorem 2.6 that for a stationary
Poisson p.p.Φ , P0 corresponds to the law ofΦ +δ0 under the original
distribution.

In what follows we will often consider, besidesΦ , other stochastic
objects related toΦ . Then, one may be interested in the conditional
distribution of these objects seen from the typical point ofΦ . In these
situations it is more convenient to define the Palm-Matthes (or shortly
Palm) probabilityP0 on the probability space where the p.p.Φ and all
other objects are assumed to be defined, rather than on (some exten-
sion of)M as above. Expectation with respect toP0 will be denoted
by E0. Thus the Campbell-Matthes formula (2.25) can be rewrittenas

E
[∫

Rd
g(x,Φ −x)Φ(dx)

]
= λ

∫

Rd
E0[g(x,Φ)]dx. (2.27)
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2.3 Statistical framework

2.3.1 Sampling mechanism

Now our focus here is on data. What we want to do is to organize
the data{d1, . . . ,dm} available about a given phenomenon in a way
suitable for future operations. Thus, we refer to a parametric infer-
ence problem that we may summarize as follows. Assume we know
that the continuation of the observations log of a given phenomenon
is such that the frequency of observations showing a value less than a
currentx is asymptotically close to a functionFXθ (x), but we do not
know the value ofθ . So we say that the log is described by a ran-
dom variableX with Cumulative Distribution Function (CDF)FXθ (x)
completely known, except for a vector parameterθ . On the basis of
{d1, . . . ,dm}, we want to quantifyθ . Moreover, since the parameter
concerns an unknown future, we look for a set ofθ values that we de-
scribe through a random variable (call it random parameter)Θ as well.
The sole reason why we can inferΘ from {d1, . . . ,dm} is that both the
latter andX refer to the same variable of a given phenomenon. Hence,
we rename the data as the sample{x1, . . . ,xm} of X . A very suitable
ancillary condition is that we may assume thexis to be realizations of
random variables{X1, . . . ,Xm} that have the same CDF asX and are
mutually independent. With these assumptions, we may say that both
the sample and its continuation – call it population with thefurther
understanding that it is so long that the above frequency practically
coincides withFXθ (x) – are generated by the same sampling mecha-
nism as follows.

Definition 2.18. (Sampling Mechanism).With reference to the ran-
dom variableX, a sampling mechanismMX is a pair(Z,gθ ),whereZ is
a completely specified random variable andgθ is a function that maps
from realizations ofZ to realizations ofX. The scenario is the follow-
ing. We generate a sample ofX starting from a sample ofZ, which
figures the seeds of the former, and using the functiongθ (called ex-
plaining function) which we split into a common partg and a free
parameterθ . In turn, we can determine the latter in relation to the
global features ofX. For the sake of generality, we assumeθ to be a
vector by default.
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An example of a universal sampling mechanism is suggested bythe
integral transformation theorem [115]. It is represented by MX =
(U, F̃−1

Xθ
), whereU is a [0,1]-uniform variable and̃F−1

Xθ
is a gener-

alized inverse function of the CDFFXθ of the questioned random vari-
ableX. NamelyF̃−1

Xθ
(u) = min{x|FXθ (x) ≥ u}. The above definition

readsF̃−1
Xθ

(u) = (x|FXθ (x) = u) for continuousX, with an obvious ex-
tension for discreteX. With this scenario, an entire observation his-
tory, made of the actual prefix – the sample – and the data we will ob-
serve in the future – the population – appears as a sequence ofseeds
(in its turn partitioned into those that refer to the sample and those
that refer to the population) mapped onto the history through the ex-
plaining function. Actually, at this point we know almost everything
about the constituting parts of the sampling mechanism except for the
free parameterθ of the explaining function that, on the other end, it
is crucial to being able to generate samples compatible withthe phe-
nomenon we are observing. We cannot say in advance the value of
θ because we don’t know the corresponding seeds associated with θ .
Thus what we can do is to transfer the probability mass of the seed
from the sample to the parameter value realizing the sample.The key
concept of this approach is thecompatibilityof the CDF (hence of the
value ofθ , sinceg is known) with the observed sample-a measure we
deal with in terms of probabilities and a random parameterΘ . The key
operational tool to exploit the concept is a property of the sample to
contrast with the unknown parameter which we denote as statisticsΘ .
3 More formally:

Definition 2.19. (Master equation).Given a statistics as a function
ρ of {x1, . . . ,xm} themaster equationis the direct relation:

s= h(θ ,z1, . . . ,zm) (2.28)

between statistic and seeds deriving froms= ρ(gθ (z1), . . . ,gθ (zm)),
obtained by plugging the explaining function into the expression
ρ(x1, . . . ,xm).

In order to transfer the probability masses from seeds that generate
samples to seeds that generate parameters, we go through a master
3 Let us comment on the notation.S is a random vector representing a sample property but here
he we focus on its realizations which we actually observe in the drawn sample. Conversely, we
expect that exactly one valueθ has generated this sample. However, we do not know this valueand
indexs with the random parameterΘ with which we handle this lack of knowledge.
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equation (2.28) that denotes these masses as compatible with the ob-
served property of a sample. The correctness of the transferlies in the
fact that each element of theΘ sample has a definite weight within
the sample and the asymptotic probability masses sum to 1. These
requisites are reflected in the properties of the statistic that denote it
aswell-behavingw.r.t. the parameter [12].

Definition 2.20. (Well-behaving statistics).Given a random variable
X whose distribution law depends on a parameterθ , for a sample
{x1, . . . ,xm}, a functionρ(x1, . . . ,xm) is awell-behaving statisticw.r.t.
θ if it satisfies following three properties:

1. strongly monotonic relationship. There must exist a unique solu-
tion of (2.28) inθ . In the case of scalar parameterθ we simply
need a scalar statistic as well, where the uniqueness occurswhen
a uniform monotonic relation exists betweens andθ for any fixed
seeds{z1, . . . ,zm}. Otherwise the same relation will concern in a
non trivial way the outputs of suitable ordering functions in the two
domainsS andΘ whereS andΘ , respectively span;

2. well-definition. On each observeds the statistic is well defined for
every value ofθ , i.e., any sample realization{x1, . . . ,xm}∈Xm such
thatρ(x1, . . . ,xm) = s has a probability density different from 0;

3. local sufficiency. ParameterΘ is the modeling counterpart of ex-
actly the property we observe and nothing else-so thatθ̆i realiza-
tions are independent of the particular sample{x1, . . . ,xm} which
the S realization is based on. This, in turn, means that the proba-
bility of observing the sample depends onθ only through the com-
puteds, so that the probability of the same event for a givens does
not depend onθ – a condition that looks like a local joint suffi-
ciency of the statisticS as a loose variant of the sufficient statistics
introduced by Fisher [52].

Definition 2.21. (Compatible distribution). For a random variable
and a sample as in 2.20, acompatible distributionis a distribution that
has the same sampling mechanismMX = (Z,gθ ) of X with a value
θ̆ of the parameterθ derived from a master equation (2.28) which is
rooted in a well-behaving statistics. In turn,θ̆ is aθ value compatible
with the sample.

Once the master equations have been set, we have two ways of actu-
ally deducing theΘ population: one numerical-which we callpopula-
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tion bootstrap-and one analytical-which we have customarily referred
to as thetwisting argument.

2.3.2 Population Bootstrap

Starting from the sample{x1, . . . ,xm}, we compute a (possibly well-
behaving ) statistics, then we sampleΘ realizations compatible with
them in a numbern as large as desired to compute an empirical distri-
bution ofΘ . We achieve this by extractingn samples of sizem from
the variableZ used for drawing seeds. Referring (2.28) to each seed
(z̆1, . . . , z̆m) of the statistic, we solve the master equation inθ , so as to
obtain ann-long set of candidatĕθs, hence theΘ ECDF through:

F̂Θ (θ) =
n

∑
j=1

1
n

χ(−∞,θ ](θ̆ j) (2.29)

where the extension of the characteristic function to vector instances
entailsχ(−∞,θ ](θ̆ j) = 1 if −∞ < θ̆ ji ≤ θi , for eachi-th component fo
the parameter vector.

2.4 Artificial Neural Network

2.4.1 Basic definitions

Actually the concept of Artificial Neural Network is widely known,
thus only for completeness we will shortly give just few definitions
about the the basic notions concerning artificial neural networks.

Definition 2.22. (Neural Network). An Artificial Neural Network is
a graph constituted ofν processing units (PE) connected by oriented
arcs4. The graph is not necessarily fully connected, in the sense that
it may lack a connection between some pairs of PE’s. The PE’s may
be either symbolic or sub-symbolic. In case both kind of processors
appear in the network, we generally speak ofhybrid neural networks.

4 Thus the arc connecting PEi to PE j is different from the one connecting PEj to PEi.
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Definition 2.23. (Network state).The stateτ = (τ1, . . . ,τν) is the cur-
rent ordered set of messages in output of each processor, where each
messageτi takes values in a setT⊆R. We introduce the order to iden-
tify the messages of the single PE’s, thus we refer to astate vector. If
we want to specify a time dependence we will denote the state with
τ(t), and a sub-state related to PEs’ locationL (capital letter) withτL.

Definition 2.24. (Free parameters).The free parameters(w,θ) con-
sist of the weight vectorw = (w11, . . . ,wi j , . . . ,wνν) ∈ DW wherewi j
is associated to the connection from processorj to processori (wi j = 0
if no connection exists fromj to i), and the inner parameters vector
θ = (θ1, . . . ,θν), whereθi is associated to processori. Depending on
its use, typically according to (2.30) later on, when no ambiguity oc-
curs we will refer to the sole vectorw adding a dummy PE piping a
signal constantly equal to 1 to thei-th PE through a connection with
weight set toθi .

Definition 2.25. (Activation function). The activation function vec-
tor is the ordered set of functionshi : Tν 7→ T computing a new state
τi = hi(τ) of the i-th PE in function of the current state vector (as a
component of the hypothesish computed by the whole network).

Definition 2.26. (Activation mode).Activation mode is the synchro-
nization order of the single processors. We may distinguishfor in-
stance between the following activation modes:

1. parallel: the PE updates its state at the same time as the other PE’s
synchronized with it.

2. asynchronous: the PE updates its state according to an inner clock.
3. random: theith PE tosses a die with as many faces as there are

randomly activated processors in the network. It renews itsstate
when the die outcomes exactlyi).

4. delayed: the PE updates its state a given time after the updating of
the afferent PE’s. In particular, instantaneous mode meansa delay
equal to 0.

In the case of sub-symbolic processors (the sole processorsconsid-
ered in this paper) the notation specifies as follows:

• PE→ neuron;
• arc→ connection;
• free parameters:wi j → connection weight,θi → threshold;
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• activation function:hi(τ) = f (neti(τ)), where

neti(τ) =
ν

∑
j=1

wi j τ j +θi (2.30)

is thenet inputto PEi. Hiding the neuron index, the most common
expressions off are the following:

1. the simplest one is alinear function:

f (net) = βnet (2.31)

with β ∈ R;
2. the primary nonlinear one is theHeavisidefunction:

f (net) =

{
1 if net≥ 0

0 otherwise
(2.32)

which smooths in two directions described in the following two
points;

3. the primary probabilistic one is described as follows:

P( f (net) = 1) =
1

1+e−βnet
; P( f (net) = 0) =

1

1+eβnet

(2.33)
with β ∈ R

+, which smooths function (2.32) in terms of ran-
dom events, coinciding with the original function forβ =+∞ 5.
Hence the meaning ofβ is the inverse of a temperatureθ of a
thermodynamic process determining the value ofτ;

4. the primary continuous one is the so-calledsigmoidfunction:

f (net) =
1

1+e−βnet
(2.34)

with an analogous smoothing effect,f (net) in (2.34) being the
expected value off (net) in (2.33).

If the connections’ grid does not contain a loop the graph shows an
orientation. Thus we may interpret the nodes without incoming arcs
as input nodesand those without out-coming nodes asoutput nodes.
We fix the stateτ I = xI of the former, then wait for all the nodes to
5 Hence P( f (net) = 1)+P( f (net) = 0) = 1.
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have updated their states after this external solicitation(we may fig-
ure this as apropagationof the input through the network). We con-
sider the states of the output nodes as the outputτO of the function
h computed by the network. Training a network is the most common
way of fixing their connection weights. We fix a cost functionE to
penalize the difference betweenτO and the valuexO you expect in
correspondence ofτ I , sum the values ofE instantiated on a series of
pairs(xI ,xO) constituting the training set, and look for thew minimiz-
ing this sum. Here below we consider two instances of this procedure:
i. the archetype of these algorithms aimed to train a single neuron,
and ii. theback-propagation algorithmthat we will use, with some
changes and improvements, in this thesis work.

2.4.2 Perceptron

The simplest neural network is calledperceptron, it computes an in-
dicator function labeling with 1 the pointsx = τ I having a positive
distanced(x) from the hyperplaneh described by a constantθ0 and
coefficientsw0 j (being 0 the index of the output neuron) – let us call
them positive points – and with 0 those having negative distance –
negative points. Indeed

net(τ I) = h(x) =
νI

∑
j=1

w0 jx j +θ0 and d(x) =
h(x)√

∑νi
j=1w2

0 j

(2.35)

The following theorem states that we can easily adapt the perceptron’s
free parameters to divide the unitary hypercube according to any hy-
perplane. More precisely, identifying concepts and hypotheses with
both the indicator functions and the underlying hyperplanes, if a hy-
perplanec divides a set of pointsx into positive points and negative
points but we have no record of it apart from the labelsf (c(x)) of
the points, with little computational effort we can build another hy-
perplaneh equivalent to the former.

Namely, for whatever starting values we give the parameters, we
must change these values according to the following simple rule:
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1. pick a pointx in the sample and compute a label f(h(x)) for it
according to the current values of the free parameters, where σ is
computed according to (2.32).

2. If it coincides with the original label f(c(x)) then do nothing.
3. Otherwise, if f(c(x)) = 1 and f(h(x)) = 0 (denoting too low an

h(x)) increasew, vice versadecrease it.

If for the sake of uniformity we includeθ0 in the vectorw (by adding
a dummy input neuron piping a signal equal to 1 through a connection
with weight exactly equal toθ0), we obtain these changes onw sim-
ply by adding or subtracting the augmented input(x,1) to/from the
augmented parameter(w0,θ0).

2.4.3 Gradient descent minimization method

If we have that the cost is a continuous functions(w), then we know
its minima lie in points where the first derivative with respect to ev-
ery wi j is 0. This occurs for instance in a fully connected network
of neurons activated as in (2.34). Then, like in many NP-hardsearch
problems, the algorithm for finding an exact solution is welldefined,
but its implementation might prove computationally unfeasible, for
example even only the set ofν2 equations





∂s(w)

∂w11
= 0

...
∂s(w)

∂wνν
= 0

(2.36)

is generally hard to solve analytically. Moreover, to distinguish min-
ima from maxima, more complex conditions must be checked on the
second derivatives. Therefore we generally look for incremental meth-
ods, where we move along directions in the parameter space where the
derivatives ofs do not increase, thus denoting a local descent of it.

This strategy has many drawbacks. The first is represented bythe
local minima traps. Another is that we have no guarantee in general
about the running time even to reach so poor a minimum. All de-
pends on the length of the step we take in the descent direction: if it is
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too long, it could trespass the minimum; if too short, it could require
an unsustainable time to get close to minimum. And then we canin-
vent a lot of degenerate minimum situations where the point in the
parameter space runs infinitely along a loop of two or more points,
etc. Despite all these considerations, the gradient descent strategy is
not only the one most commonly used for training a neural network,
but the most successful one as well. The fact is that, in the absence
of exploitable formal knowledge on the cost landscape, the more ele-
mentary the method the more robust it is.

2.4.4 The back-propagation algorithm

The most popular learning scheme in this framework is the so called
Back-Propagationalgorithm [116] that one may find in many math-
ematical software libraries and can easily download from the web as
well. In its basic version, the method refers to a cost function repre-
sented by the quadratic error:

E =
m

∑
i=1

l2(τO
i −xO

i ) (2.37)

wherel2 is the quadratic norm, and a neural network with a multilayer
layout (usually referred to multilayer perceptron, MLP, for short) con-
sisting of a set of ordered layers. The neurons of each layer are exclu-
sively connected to those of the subsequent one, hence without any
back or self-connection, in the absence of connections between neu-
rons of the same layer. At the bottom we have the input layer whose
neurons have states set to external values codingτ I . These values are
piped up through the various layers up to the last one (sayR-th) coding
the function output. At each cross of a neuron the signal is updated ac-
cording to the activation rules so that the output neurons code a signal
that we compare with thexO associated toxI in the training set and the
quadratic difference between them is added in (2.37). As mentioned
before, the learning method consists in the steepest descent along the
E landscape in the parameter space. The basic ingredient is the com-
putation of the derivatives ofE w.r.t. the single parameterswi j s and
θis. This is obtained through the derivative chain rule risinga back-
propagationof the error terms from output to input layer through the
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intermediate layers, denoted ashiddenlayers, that gives the name to
the corresponding algorithms’ family. Namely, the recurrent formulas
read

∂E(w)

∂w jk
= δ jτk, with (2.38)

δ j =

{
∂E

∂h(x) j
f ′(netj) if j denotes an output neuron

f ′(netj)∑ν
h=1 δhwh j if j denotes a hidden neuron

Hence we have a forward phase, where the inputτ I
k is flown till

the output layer through (2.30) and (2.33) to obtainτO
k and the corre-

sponding costek = (τO
k −xO

k )
2 on thek-th output neuron, and a back-

ward phase whereek is piped back to the input layer trough (2.37) and
(2.38).

There are many ways to use the gradient. The most elementary is
to make a step in the parameters space exactly in the direction of the
E(w) steepest descent. This corresponds to updating each parameter
according to

wi j = wi j −η
∂E(w)

∂wi j
(2.39)

It represents an algorithmic counterpart of a local independence as-
sumption of the single weight influences. The step widthη is denoted
learning rate. Newwi j give rise to new costsek and a new run of the
bcak-propagation algorithm.

2.5 BICA: Boolean Independent Component Analysis

BICA is a feature extraction procedure oriented to optimizethe perfor-
mances of a classification algorithm. It is framed in the Algorithmic
Inference approach and takes its rationale from entropic results.

2.5.1 A peculiar clustering framework

Given a set ofm objects that we identify through a set of vectorial
patternsym = {y1, . . . ,ym}, the clustering problem is to group them
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into n clusters{d1, . . . ,dn} in a suitable way. We denote bydi the
i-th class, by∆i the decision of attributing a generic patterny to it,
and byl(∆i,d j) the comparative cost (loss function) of attributingy
to di in place ofd j . In this framework, we identify the problem of
establishing clusters of patterns with that of maximizing the costC of
an incorrect attribution of patterns to clusters, i.e. of misclassification
once we decide to actually use clusters as classes. Hence, wewant to
partition the pattern spaceY into n subsets through a decision rule
∆(y) : Y→{d1, . . . ,dn} such that

∆ = argmax
∆̃

C(∆̃) = argmax
∆̃

{

∑
y∈ym

n

∑
j=1

l(∆̃(y),d j)

}
(2.40)

whose solution depends on the shape ofl , i.e. we want to sharply
discriminate the cluster on the basis of the loss function. For instance,
for l identified with the Euclidean distance, i.e. with thel2 metric

l(∆(y),d j) =

{
0 if ∆(y) = d j

(y−µd j )
T(y−µd j ) otherwise

(2.41)

whereµd j plays the role of representative of classd j , then the solution
is

∆(y) = argmin
j

{
(y−µd j )

T(y−µd j )
}

(2.42)

µd j =
1
ν j

ν j

∑
i=1

y j i (2.43)

with ν j the number of objectsy j i with index i attributed to thej-th
cluster.6

6 Note that rule (2.42) and templates (2.43) come form the conventional Bayesian approach to
clustering [41] as well. Our enunciation of the problem however does not requires the existencea
priori of true classes of data. Rather, they come from the use as a suitable way of organizing data,
in the thread of Algorithmic Inference.
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2.5.2 The representation problem

Denoting byH(X) andH(X|Z) the entropy ofX and the conditional
entropy ofX givenZ respectively, forY normally distributed around
the representative of its cluster the above rule consists inthe minimiza-
tion of conditional entropyH(Y|D) of the data given the distribution
of the clusters, rather, of its sample estimate. Indeed, by definition

H(Y|D) =−∑
di

pdi H(Y|di) (2.44)

wherepdi is the probability measure of clusterdi. With this notation

fY(y)=
n

∑
i=1

pdi fY|D=d j
(y)=

n

∑
i=1

pdi

1

(2π)n/2
exp[−(y−µdi )

T(y−µdi )]

(2.45)
Hence

H(Y|D) = ∑
di

pdi E[(Y−µdi )
T(Y −µdi )]+a (2.46)

wherea is a constant and E denotes the expectation operator. By de-
noting with I(X,Y) the mutual information betweenX andY and re-
reading in true entropic terms our clustering strategy, thegeneral goal
of any useful mapping fromY to D is to ensure a high mutual informa-
tion [16]. Now, in the case where the mapping realizes a partition of Y
range, hence in the case of univocal mapping, we have the following
expression of the mutual information.

Lemma 2.2.For any univocal mapping fromY to D,

H(Y|D) = H(Y)−H(D) (2.47)

I(Y,D) = H(D) (2.48)

Claim (2.48) says that a clustering so more preserves information
of patterns the more the entropy of clusters is higher, i.e. the more they
are detailed. Claim (2.47) denotes the gap between entropy of patterns
and entropy of clusters that is managed by the clustering algorithm. As
H(Y) is not up to us, the algorithm may decide to group the patterns
so as to increaseH(D), in line with the claim (2.48) suggestion.

In a case where the labels of the patterns are given and no other
information about them is granted, we are harmless with respect to the
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H(D) management. Rather, our problem is to find an algorithm that
reproduces the given labeling. If the task is hard, we may tryto split it
into two steps: i) improve the pattern representation so that their label
may be more understandable, and ii) find a clustering algorithm with
this new input. This corresponds to dividing the gap betweenH(Y)
andH(D) in two steps and, ultimately, looking for an encodingZ of Y
minimizingH(Z|D), i.e. the residual gapH(Z)−H(D). We have two
constraints to this minimization. One is to maintain the partitioning
property of the final mapping. Hence

Definition 2.27.Consider a setA of Y patterns, each affected by a
labeld ∈ D. We will say that an encodingZ of Y is correct if it never
happens that two patterns ofA with different labels receive the same
codeword7.

The second constraint is strategic: as we do not know the algorithm
we will invent to cluster the patterns, we try to preserve almost all in-
formation that could be useful to a profitable running of the algorithm.

This goal is somehow fuzzy, sincevice versaour final goal is to
reduce the mean information of the patterns exactly to its lower bound
H(D). A property that is operationally proof against the mentioned
fuzziness is the independence of the components ofZ. The following
claim is connected to a special way of minimizingH(Z). This is why
we speak of operationally proofness. It is however a very natural way
in absence of any further constraint onZ.

Lemma 2.3.Consider a set A ofY patterns and a probability distri-
butionπ over the patterns. Assume that for any mapping fromY to Z
entailing an entropy H(Z) there exists a mapping fromY to Z′ with
H(Z′) = H(Z) such thatZ′ are independent. Then the function

H̃(Z) =−∑
k

pk ln pk−∑
k

(1− pk) ln(1− pk) (2.49)

with k spanning the image of A, has minima over the above mappings
in Zs having independent components.

7 of course we will check this property on the available patterns, with no guarantee as to any future
pattern we will meet.
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Fig. 2.1 Graph of the functionEs with n= 2.

2.5.3 The Boolean option

Finally, with the aim of lowering the vagueness of our entropic goal,
we want to have BooleanZ, as a way of forcing some reduction of
data redundancy and information as well, in the direction oftaking
a discrete decision, ultimately, the clustering. This produces the side
benefit of a concise description of both patterns and clustering for-
mulas as a nice premise for a semantic readability of them. Tothis
end, and limiting ourselves to a binary partition of the patterns, we
assume as cost function of the single patterns in our coding problem
the following Schur-concave function [72] which we calledge pulling
function:

Es= ln

(
n

∏
k=1

z
−zs,k
s,k (1−zs,k)

−(1−zs,k)

)
(2.50)

wherezs,k is thek-th components of the encoding of the patterns. In
line with the general capability of Schur-concave functions of leading
to independent component located on the boundaries of theirdomain
[113], we may prove that minimizing over the possible encodings the
sumH̆ of the logarithm ofEs over all patterns leads us to a represen-
tation of the patterns that is binary and with independent bits, which
we call BICA representation.

Lemma 2.4.AnyZ mapping that is correct according to Definition 2.27
and meets assumptions in Lemma 2.3 while minimizing theedge
pulling function (4.18) is expected to produce Boolean independent
components minimizing (2.44) as well.



Chapter 3
Capturing aggregation dynamics in space and
time

We introduce our mobility model using a social community as alead-
ing scenario. This allows us to focus on the agent intentionality as
the key feature differentiating it from a particle in a gas boule. The
latter is the archetype of total random community of non intelligent
agents whose interaction is just uniformly ruled by the rigid body
elastic collision laws. On the contrary, a social communityis a crasis
between social networks and virtual communities, hence a set of per-
sons grouped together in a community because they share a common
interest (the social core of the community) and need a communication
network to cultivate this interest (the structural counterpart) [43].

For the members of this community we introduce await and chase
schememodeling their inter-contact times starting from the metaphor
of a duel between dodgem cars. This calls for a mobility process that is
stochastic but with memory at the same time, with the former compo-
nent subtended by Brownian motions and the latter by the chaser ca-
pability of maintaining the correct angle of the line connecting him to
the target. In this way, we add a further mobility model to thevast lit-
erature on the field, giving rise to a distribution law of the inter-contact
times merging features of both negative exponential and Pareto distri-
bution laws. Of this law we:

1. discuss the probabilistic features,
2. isolate a few free parameters and related almost sufficient statistics,
3. estimate them in order to fit experimental data,
4. provide a constructive model for simulating data,
5. regress statistical parameters into mobility physical parameters,
6. contrast results with the state-of-the-art models in theliterature.

35
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The experimental data are partly produced by ourselves through
expressly featured devices within an accurate experimental campaign,
and partly drawn both from specific benchmarks in the field of op-
portunistic networks [121], and from wider scope databasesrecently
collected through GPS devices within members of more or lessex-
plicit location-based social communities [112, 103].

3.1 The dynamics of a social community

Social community is the common attractor of the evolutionary trajec-
tory of many recent ICT (Information Communication Technology)
ventures, from pervasive computing [59] to ensembles of agents [136],
collaborative computational intelligence [5], emerging functionali-
ties [10], and so on. While from a static perspective, the main em-
phasis in social networks, such as LinkedIn [81] or Facebook[49], is
placed on the relationship graph between the agents (therole assign-
mentproblem [79]), as a result of sophisticated studies (in terms, for
instance, of linguistic/Bayesian analysis of direction-sensitive mes-
sages sent between agents [89], statistical mechanics [4],or solu-
tion of ecological graph coloring problems [19]), the time variability
of these graphs is commonly dealt with in terms Dynamic Network
Analysis (DNA) by combining previous approaches with multi-agent
simulation techniques [27], or even through more abstract dynamical
structures such as in [83].

However, new paradigms connected with the empowered telecom-
munication technologies, such as the mobile wireless ad hocnetwork
(MANET) [101], stress a richer management of the communications,
now under the decision of the agents, which bring back the connec-
tion timing, and the updating timing consequently, at a meso-scale
that cannot be ignored [54]. It is a different approach to thenetwork
evolution, for it is rooted on the individual behavior of thesingle com-
municating members having the network as a corollary ratherthan the
reference gear of the dynamics. In this, we expect the results of the
two complementary approaches to be suitably integrated into various
DNA branches [23]. Epidemic processes [22] and opportunistic net-
works [129, 94] are two instances of this focus on the dynamics of
a social community where the scientific community has focused re-
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search efforts in recent years. The main ingredients are: a)the fact
that the members of the community travel inside it; b) they have a
limited infection raw, so that a message must rely on many hops from
one member to another in order to cross the entire community or even
a subset of it; and c) each member may manage the message trans-
mission by himself – for instance to decide whether or not to receive
a message, whether or not to forward it to another member.

The presented scenario produces a new form of proactive connec-
tionist system whose primary engine of information exchange lies in
the mobility habits of the agents. We keep our focus on the connec-
tion timing, pursuing the dry technical task of understanding thein-
tercontact timesdistribution between members of the same commu-
nity [70] – i.e. the distribution law of the random variable reckoning
the elapsed times between contacts stated within the community. The
sole assumption we make is that if a member has something to trans-
mit to others, he looks for an individual within the community who
is reachable and chases him until he succeeds in transferring the mes-
sage. This is the atomic motion of the community, consistingof await
phase(until the member has something to transmit and someone to
whom transmit it) and the abovechase phase. Plugging these atomic
motions into a stationary dynamics, we deduce the inter-contact times
distribution law. This distribution has been investigatedfor about ten
years in the frame of opportunistic networks, but interest in it dates
much further back in analogous frames, such as animal foraging pat-
terns [106] or human mobility at the basis of infectious diseases [32].
With these patterns we move from Brownian motion [46] – whichis
the favorite framework in physics to study inanimate particles ensem-
ble dynamics – to Lévy flights [24, 112] – which denote a definite
bias of animal patterns toward food locations. We identify this bias
with the intentionalityof the animal, say of the agent in general, and
give it a constructive model as a modification of the originalBrown-
ian motion. As Palm probability theory explains [14], this leads to a
timing of events that may diverge from the negative exponential dis-
tribution, still allowing for an equilibrium distributionof the mobility
process, which leads to the family of Pareto distribution laws.
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3.2 Processes with memory

In very essential terms, we speak of memory if we have a direction
along which to order the events. Now, for anyorderedvariableT, such
that events on their sorted values are of interest to us, the following
master equationholds

P(T > t|T > k) = P(T > q|T > k)P(T > t|T > q) ,∀k ≤ q≤ t
(3.1)

It comes simply from the fact that in the expression of the conditional
probability

P(T > t|T > k) =
P(T > t)
P(T > k)

=
g(t)
g(k)

(3.2)

we may separate the conditioned variables from the conditioning ones.
While (3.1) denotes the time splitting in the fashion of the Chapmann-
Kolmogorov theorem [74] as a general property of any sequence of
data, equation (3.2) highlights that events(T > t) and(T > k) are by
definition never independent. What is generally the target of the mem-
ory divide in random processes is the timet−k elapsing between two
events. In this perspective, the template of the memorylessphenomena
descriptor is the (homogeneous) Poisson process, whose basic prop-
erty is P(T > t) = P(T > q)P(T > t − q), if t > q. It says that if a
random event (for instance a hard disk failure) did not occurbefore
timeq and we ask what will happen within timet, we must forget this
former situation (it means that the disk did not become either more ro-
bust or weaker), since your our question concerns whether ornot the
event will occur at a timet −q. Hence our true variable isT= T −q,
and the above property is satisfied by the negative exponential distri-
bution law with

P(T > t) = 1−FT(t) = e−λ t (3.3)

for constantλ , since with this law (3.1) reads

e−λ (t−k) = e−λ (q−k)e−λ (t−q) (3.4)

and the property thatg(t)g(k) in (3.2) equalsg(t−k) is owned only by the
exponential function.
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Fig. 3.1 CCDF LogLogPlot whenT follows: (a) a Pareto law withα = 1.1 andk=1; (b) a negative
exponential law withλ = 0.09. Parameters were chosen to have the same mean.

On the contrary, we introduce a memory of the past (q-long) if we
cannot separateT − q from q. Here we consider very simple cases
where this occurs because the time dependence is of the formT =
(T/q)β . The simplest solution of (3.1) is represented by

P(T > t|T > k) =
( t

k

)−α
(3.5)

so that the master equation reads

( t
k

)−α
=

(
t
q

)−α (q
k

)−α
(3.6)

Note that this distribution, commonly called Pareto distribution [102],
is defined only fort ≥ k, with k > 0 denoting the true time origin,
where α identifies the distribution with the scale of its logarithm
(more details will be presented in Subsection 3.2.1). The main dif-
ference w.r.t. the negative exponential distribution is highlighted by
the LogLogPlots ofFT in Fig. 3.1: a line segment with a Pareto curve
(see picture (a)) in contrast to a more than linearly decreasing curve
with the exponential distribution (Fig. 3.1(b)).

The difference between the graphs in Fig. 3.1 shows that, fora same
mean value of the variable, we may expect this occurrence in amore
delayed time if we maintain memory of it as a target to be achieved,
rather than if we rely on chance.

Let us introduce a local timẽt as a companion of the universal timet
measured by any standard clock system. Locality stands for the speci-
ficity of the time features that are relevant for a given phenomenon. In
the exponential model the two time scales coincide (with thesole ex-
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ception of the two time origins). In the Pareto model the local time is
measured in multiples (t

k in (3.5)) of the last time you know the ques-
tioned event has not yet occurred. Moreover, you pass from a ParetoT
to an exponential variableΘ just by reckoning the time in logarithmic
scale rather than linear scale, which means thatΘ = logT, so that

P(Θ > θ) = P(T > eθ ) =

(
eθ

k

)−α

= e−α(θ−θ0) (3.7)

with θ0 = logk, inviting us to readθ in terms of the logarithm of a
corresponding linear timet. Hence the homogeneity of the process,
in the sense of a constant rate with time in (3.4), is just a matter of
considering a suitable time metering. In addition, on the one hand the
time homogeneity of exponential distribution gives rise toa stationary
counting process ruled by a stationary Poisson distribution.

3.2.1 The Pareto family

The Pareto distribution is named after an Italian-born Swiss profes-
sor of economics, Vilfredo Pareto (1848-1923). Pareto’s law, as for-
mulated by him (1897), dealt with the distribution of incomeover a
population and can be stated as follows:

N = kx−α (3.8)

whereN is the number of persons having income greater that x, and
k,α are parameters:α is theshapeparameter andk is thescaleparam-
eter. During years the Pareto distribution has maintained its original
form

FX(x) = P(X ≥ x) =

(
k
x

)α
, k> 0,α > 0,x≥ k (3.9)

whereFX(x) is the complementary cumulative distribution function
and represents the probability that the income is equal to greater than
x and k represents some minimum income. Then we can write the
CDF ofX as
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FX(x) = 1−
(

k
x

)α
, k> 0,α > 0,x≥ k (3.10)

and the PDF

fX(x) = αkαx−(α+1), k> 0,α > 0,x≥ k (3.11)

The (3.10) is known asPareto distribution of the first kind. Two other
forms of this distributions were proposed by Pareto. The first one,
now referred to asPareto distribution of the second kind(also called
Lomax distribution) has the form

FX(x) = 1−
(

C
(x+C)

)α
, x≥ 0 (3.12)

This was used by Lomax in 1954 for the analysis of the businessfail-
ure data. The Pareto of type II in its standard form hasC = 1 so that
its PDF reads:

fX(x) = α(1+x)−α−1, x> 0,α > 0 (3.13)

and the survival function is

FX(x) = (1+x)−α , x> 0,α > 0 (3.14)

The third distribution proposed by Pareto - thePareto distribution of
the third kind- has the CDF:

FX(x) = 1− Ce−bx

(x+C)α , x> 0 (3.15)

The original form and its variants found many rationales during the
years. For Instance, in his work, Harris [60] has pointed outthat a mix-
ture of exponential distributions, with parameterθ−1 having a Gamma
distribution, and with origin at zero, gives rise to a Paretodistribution.
Indeed if

P(X ≤ x) = 1−e−x/θ (3.16)

with µ = θ−1, then
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P(X ≤ x) =
1

β αΓ (α)

∫ ∞

0
tα−1e−t/β(1−e−tx)dt

= 1− 1
β αΓ (α)

∫ ∞

0
tα−1e−t(x+β−1)dt

= 1− (βx+1)−α (3.17)

More in general the Pareto family is a wide scope family that proves
capable of describing many phenomena in the field of social com-
munities, from various internet communication aspects (such as node
outdegrees [64], byte flow per request [135], number of crawled
links [25] and so on) to traditional communication volumes in terms of
telephone calls [1, 2], physical travels of community members [125],
or citations of scientific papers [39], etc., taking theoretical roots
on various paradigms, such asrich gets richer i.e. preferential at-
tachment [137, 84], transmission entropy minimization [86], log-
returns [85, 70], phase transitions and self-organized criticality [40],
etc. For short, in our perspective, facing two random times,distributed
respectively according to a negative exponential and to a Pareto dis-
tribution, if they have the same average, the latter has a longer tail de-
noting the possibility of having a contact even after a long period. We
may interpret this persistency as an expression of the agentintention-
ality, in turn viewed as a consequence of the fact that the underlying
random process has a memory. Said in other words, it is easy torec-
ognize that we move from exponentially distributed times – denoting
intervals between sorted points uniformly drawn in a large segment
– to Pareto times just by increasing at any exponential rate the scale
of these intervals, like in (3.7). On the one hand this time expansion
captures the heavy tailed feature of mobility processes that run faster
than diffusive ones [90] (often associated to Lévy flights [123]). On
the other hand, it denotes in our vision an intrinsic memory of these
processes.

While in the rest of this thesis we will concentrate on thePareto
type II distribution, in the next section we will investigate from an
analytical perspective the above time stretching which characterize
the Pareto type I distribution.
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3.3 Reasoning about scalable processes

Until now we considered the processes with and without memory as
separated and very different entities. Actually they are, but we are in-
terested in understanding more about their connection and more pre-
cisely their generative procedure, in the aim of finding relevant statis-
tics for a deep inference of their sampling mechanisms.

The generative model

Let (0,a) be a segment on the real axisu and{u1, . . . ,um} the sorted
coordinates of points uniformly randomly shot on it. The random vari-
ableTi/a = (Ui+1−Ui)/a is distributed as a Beta distribution with
parametersα = 1,β = m. In the limit a/m→ 0, Ti follows a negative
exponential distribution law. Namely

fTi (t) = λe−λ t I[0,∞); ∀i (3.18)

with λ = m/a. Note that:

• under the above limit hypothesis, we may reformulate the joint dis-
tribution of (Ui,Ui+1) as follows:

fUi ,Ui+1(ui,ui+1) = fU,T(ui,ui+1−ui) = fU(ui) fT(ui+1−ui)
(3.19)

• for Y = exp(T) we have

FY(t) = P(T < logt) = 1−exp(−λ logt) = 1−
(

1
t

)λ
(3.20)

Hence we pass from a process without memory whose times are
distributed according to a negative exponential distribution of pa-
rameterλ to one with memory whose times are distributed accord-
ing to a Pareto distribution of parameters 1,λ just after a change of
scales.

It is a notably change of scale the one considered in the previous point,
which largely extend the time elapsed between two events of our point
process. We will investigate on it in the next subsection in order to
capture its property and the one of similar processes.
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Sampling mechanism

As mentioned in Section 2.3.1 the seed of a sampling mechanism may
be anyone, provided its distribution law is completely known. Here
we focus onUi+1−Ui (and possiblyUi as well) as the seed of the ran-
dom variableTi according to various explaining functions. Let us start
with the following equalities which partly hold only approximately
for smallui+1−ui .

(ui+1−ui)≈ exp(ui+1−ui)−1=

exp(ui+1−ui)−exp(0) (3.21)

(ui+1−ui)≈ exp

(∫ ui+1

s=ui

ds

)
−1=

∫ ui+1−ui

s=0
exp(s)ds (3.22)

ti ≈
nti

∏
i=1

exp(∆s)−1≈
nti

∑
s=0

ns

∏
i=1

exp(∆s) (3.23)

The former one roots on the first terms of the Taylor expansionof
ex, namely:

ex ≈ 1+x (3.24)

The second line translates these results in terms of local operations
done on the infinitesimal segmentsds joining ui to ui+1. The latter
rewrite them in terms of finite differences∆s.
Remarks:

1. Equation (3.23) highlights a non uniform process as the basis of the
random process filling the segment(ui ,ui+1) of terms that are pro-
gressively decreasing. This is an interpretative key of oursampling
mechanism.

2. Equation (3.24) denotes that ifT follows and exponential distribu-
tion, T +1 follows a Pareto distribution of parameters 1,λ . Actu-
ally T +1 ≈ exp(T) , as seen in (3.20). The approximation holds
for a/m→ 0. But the shape of the distribution is not dependent on
a liner scale, so that this remains true for anya provided we adopt
the correct parameters of the Pareto distribution.

3. With a small linear scale factorc, such thatc(Ui+1−Ui)≪ 1 so that
(3.24) still holds, we have :
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ct ≈ exp[ct]−1= exp

(∫ ui+1

s=ui

c ds

)
−1=

c
∫ ui+1−ui

s=0
exp(cs)ds (3.25)

ti =
nti

∏
i=1

exp(c∆s)−1=

nti

∑
s=0

ns

∏
i=1

exp(c∆s) (3.26)

Sincec∆s≪ 1, we remain with an exponential distribution, namely:

FT(t) = 1−exp
(ca

m
t
)

(3.27)

4. If we increasec in (3.25), so thatc∆s > 1, or even we adopt a non
linear scale, i.e with a scale factorc(s) increasing withs, then (3.27)
does not hold longer. An interesting family ofc(s) is represented by
c(s) = log[h(s)] with h(s) moderately increasing withs. Reasoning
with finite elements we have:

ti =
nti

∏
i=1

h(s)∆s−1=

nti

∑
s=0

ns

∏
i=1

h(s)∆s (3.28)

And passing to the infinitesimal calculus

exp

(∫ ui+1

s=ui

log(h(s)) ds

)
−1=

∫ ui+1−ui

s=0
exp(slog(h(s))) ds

(3.29)
So that, in particular:

• with h(s) = s/ log(s) – rather with its extension

h(s) =

{
1 if s< e

log
(

s
log(s)

)
otherwise

it results:
– the sampling mechanism

ti = exp

(∫ ui+1

s=ui

log(h(s)) ds

)
−1 (3.30)

does no longer generates a negative exponential variable. Mean-
while,
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– the sampling mechanism

ti = exp

(∫ ui+1

s=ui

log(h(s)) ds

)
(3.31)

generates a Pareto variable.
• Idem for largeh(s) = c, for instance withc= 10.
• With still more fast increasing functions, for instanceh(t) = t0.5,

both sampling mechanisms give rise to a Pareto distribution, de-
noting that the offset−1 becomes inessential.

3.3.1 The sampling mechanism benefits

On the one side, we easily estimate the parameters of a Paretodistri-
bution on the basis of the joint sufficient statistics mini ti and∑i log(ti).
A more challenging task is to entering the sampling mechanism in or-
der to estimate for instance the parameters(c,α) as well ofh(s) = c
andh(s) = sα , respectively. The aim is to get these estimates on the
basis of simple statistics again, possibly regardless of the sequence of
observed times. Actually, exploiting the Palm calculus we can change
the reference frame oft from the genericui to the fixed origin 0:

Proposition 3.1. E[W(t)] = E0
[∫ T

s=0W(s)ds
]

when t is computed

from the origin. The notation on left hand side of the equation rep-
resents the mean E[W(s)] cumulated on all the trajectories of values
of Ui < s<Ui+1, averaged on T and normalized by1/λ .

The stationarity requiresW(t) =W(t −ui), in this way we can figure
all traits(ui,ui+1) to be dragged back to 0 so becoming(0,ui+1−ui).
This is both the rational of the above integral and the way of comput-
ing E [W(t)] = E [W(0)] from a sample coming from the above mech-
anism. Thanks to the ergodicity of the process we can

• either integrateW(t) along the whole segment(0,a) and divide by
a,

• or integrateW(t) separately along the different traits(ui ,ui+1), then
take the sample mean of these values, and finally divide by thesam-
ple mean of the traits length.
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This statement finds a companion on the following equality that is true
for anyc

exp

(∫ ui+1

s=ui

c ds

)
−1= c

∫ ui+1−ui

s=0
exp(c s) ds (3.32)

We look for analogous formulas also for non constanth(s). For in-
stance, we are looking forβ mediating theh(s) values, such that:

ti =exp

(∫ ui+1

s=ui

log(h(s))ds/h(ui)

)
−1≈α

∫ ui+1−ui

s=0
exp(slog(h(s))α)ds

(3.33)
In this way we try to pair a non homogeneously scaled process (we
normalize the integral in the exponent of the first member by afunc-
tion of one of the extremes), on the one side, with a function of the
sole observed times, on the other, in view of discovering parameters
of the original process.

The matter of this section is still an open problem. Rather, in the
next section we work with a specific generative model which proved
very suitable in many operational fields.

3.4 A Model to maintain memory in a time process

Brownian motion has for long time been the favorite process to de-
scribe ensembles of particles within a system in equilibrium [93], for
instance a gas in a cylinder, or even a crowd at an expo. In the sec-
ond case we consider people behaving no differently from inanimate
particles: each individual moves along a series of steps, giving each
of them a constant size and no preference re the direction options,
so that the symmetry of the starting scenario is maintained during its
evolution (see Fig. 3.2(a)). On the contrary, a distinguishing feature
of animate agents within a well structured ensemble – such asa social
community – is the causality of their actions, say their intentionality.
In turn, intentionality introduces local asymmetries in the motion that
have been variously studied. Following [71], we may extend the re-
producibility property of the Brownian motion – so that, in analogy
with fractal systems [87], the large scale dynamics reproduces the low
scale one, in that both are ruled by Gaussian distribution laws – using
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Fig. 3.2 Trajectories described by: (a) Brownian motion, (b) Lévy flights, and (c) the proposed
mobility model.

Lévy flights [56] in place of random walks [68] as elementarytraits of
the motion. The theoretical framework of this motion is described in
Chapter 2, Section 2.1. A typical picture of a sequence of Lévy flights
is shown in Fig. 3.2(b). It denotes trajectories that may describe the
foraging patterns of animals such as monkeys [106], albatrosses [44],
and targeted human walking as well [112]: namely, local stays in place
(to eat and rest) plus sudden jumps here and there (to chase the food).
The drawback of this dynamics is its high dispersion, so thatthe cen-
tral limit theorem does not hold in its classical form (hencewe do not
come to a Gaussian distribution in spite of the fact that we are tracking
the sum of equally distributed movements). Rather, while the scaling
of the Brownian motion is

√
t (since the variance is proportional to

the elapsed timet), Lévy flights (with concentration parameterα < 2)
have no scaling factor with time as a consequence that the single step
has no finite variance [30].

Here we present a model having the same two-phase pattern as ani-
mal foraging, but with a greater prominence of local stays inplace and
therefore a less dispersed general behavior (see Fig. 3.2(c)), at some
expense of the reproducibility property. To introduce it, think of the
dodgem cars at an amusement park.

Assume you are playing with dodgem cars. You drive around until,
from time to time, you decide to bang into a given car which is un-
aware of your intent. For the sake of simplicity, we may assume the
trajectory of each car to be a plane Brownian motion before the chase
triggering. Thus, with the reference frame in Fig. 3.3(a), indexing with
i = 1,2 the cars whose stories we are following, we have

Xi(t)∼ N0,
√

t Yi(t)∼ N0,
√

t (3.34)
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Fig. 3.3 Joint traces of two cars (plain and dashed curves respectively) when: (a) both move ac-
cording to a Brownian motion behavior; (b) the former moves only in one quadrant (absolute value
of the Brownian motion components) from a trigger time on; and (c) an oracle rotates this trajectory
toward the other car with some approximation (quantified by the ray of a proximity circle).

whereNµ,σ is a Gaussian variable of meanµ and standard deviation
σ . Then you, sitting in the first car, decide at timew to reach and
crash into the second car. The questioned variable records the instant
T > w when you succeed. In the case study, where cars are points in
the plane, in order to identify this instant we must specify:i) an opera-
tional definition of the cars’ clash since the probability ofexact match-
ing is 0, and ii) the symmetry break introduced by the chase intention.
The chase effectiveness depends on the ability to orient your motion
in the direction of the target, which corresponds to converting a part of
the motion along the cars’ connecting line from symmetric tooriented
moves. Mathematically, orientation corresponds to takingthe absolute
value of the elementary steps in that direction, so as to workwith Chi
distributed addends in place of Gaussian ones (see Fig. 3.3(b)).

In order to overcome analytical complications and fulfill point i) as
well, we propose this simple scheme. As the difference between two
Gaussian variables is a Gaussian variable too, we may use (3.34) also
to describe the components of the distance∆ between the two cars
beforew. We just need to multiply them by

√
2 so asX∆ (t)∼ N0,

√
2t

and similarly forY∆ (t). Moreover, if we move to polar coordinates
(r,θ) with x = r cosθ andy = r sinθ , the density functionf∆ of ∆
becomes

f∆ (r,θ) =
1

4πt
re−

r2
4t (3.35)
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which looks for the joint density function of(R,Θ), with R a Chi
variable with 2 degrees of freedom scaled by a factor

√
2t, andΘ

a variable uniformly distributed in[0,2π) independently ofR. Our
assumption about the pursuit is that, with reference to the distances
D1 andD2 of the two cars from the position of the first one at timew,
you are able to maneuverΘ1 from w on, so that whenD1 = D2 also
Θ1 =Θ2 (see Fig. 3.3(c)). As mentioned before,per sethe probability
of a match between two points representing the cars is null. Thus your
task is unrealistic. However, intentionality recovers feasibility thanks
to the fact that in practice it is enough that the angles are sufficiently
close to entangle the two cars. The actual correspondence with the
pursuit dynamics is facilitated by some free coefficients which will be
embedded in the model.

With this assumption we are interested in the timet whenD1 = D2.
Given the continuity of the latter we may measure only a probability
density witht. In other words, at any change of the sign in the differ-
enceD1−D2 with the running of the two cars, there will correspond
a matching time as a specification of a continuous variableT. Since
both D1 andD2 scale with the square root of time, expressing their
dependence on thetrigger time wand thepursuit timeτ, we have

D1(t) =
√

τχ21; D2(τ) =
√

2w+ τχ22 (3.36)

whereχ2 denotes a two degrees of freedom Chi variable whose den-

sity function is:fχ2(z)= ze−
z2
2 . Thus, after equatingD1(τ)with D2(τ)

we obtain

1=
D2(τ)
D1(τ)

=
χ22

χ21

√
2w+ τ√

τ
(3.37)

under the conditionχ22 ≥ χ21. Denoting withT the random variable
with specificationsτ andW with specificationsw, this equation finds
a stochastic solution in the random variable

V =
T

W
= 2

(
χ2

21

χ2
22

−1

)−1

(3.38)

It follows the same distribution law of the ratio between twoun-
constrained Chi square variables, i.e. an F variable with parameters
(2,2) [52], whose cumulative distribution function (CDF) reads
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FV(v) = 1− 1
1+v

I[0,∞)(v) (3.39)

whereI[a,b](x) is the indicator function ofx w.r.t. the interval[a,b],
thus being 1 fora≤ x≤ b, 0 otherwise.

Sinceτ = vw, to have the car pursuit timeT , we need to have a
convolution of the above distribution with the one of the trigger times.
Let fW be the probability density function (PDF) of the latter, defined
in a range(winf,wsup). Sinceτ +w = (v+ 1)w, we obtainFT , with
T = T +W, by computing

FT(t) =
∫ min{t,wsup}

winf

FV

( t
w
−1
)

fW(w)dw (3.40)

The dependence of the convolution integral extreme ont induces
a tangible dependence of the final distribution on the trigger time’s.
Nevertheless, having in mind some experimental results we will dis-
cuss in the next sections, we look for a general shape ofT distribution
that is capable of recovering the mentioned dependences in awide
range of operational fields. To this aim, we first generalize the form
(3.39) into

FV(v) = 1− 1
1+v2α I[0,∞)(v) (3.41)

obtained by changing
√

t into tα in (3.34). In this way we extend the
scaling of the stochastic dynamics from the1

2 power – used in the
Brownian motion – to a generic powerα – in analogy to Lévy flights.
Then, we approximate and further generalize this form through

FV(v) = 1− b+1
b+(v

c +1)a I[0,∞)(v) (3.42)

whose template shape is reported in Fig. 3.4 in terms of bothFT(t)
in normal scale (see picture (b)), andFT(t) = 1−FT(t), i.e. the com-
plemetary cumulative distribution function (CCDF), in LogLog scale
(see picture (b)) – thus representing both abscissas and ordinates in
logarithmic scale. We call it ashifted-Paretodistribution since its typ-
ical elbow shape in the latter representation may be recovered from a
Pareto distribution [96] just by shifting the time origin, i.e. through a
law

FX(x) =
b

b+xα I[0,∞)(x) (3.43)
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Though somewhat structurally different from (3.41), (3.42) coincides
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Fig. 3.4 (a) CDF Plot of a shifted-Pareto distribution, and (b) LogLogPlot representation of its
complement .

exactly with (3.39) whena= c= 1 andb= 0. Indeed, the main bene-
fit we draw from (3.42) is the gain in model generality and flexibility:
thanks to the three free parameters, we may get satisfactoryapproxi-
mations not only of (3.41) but also of (3.40) in a wide range ofopera-
tional frameworks. Actually, by plugging (3.41) or (3.42) and the cho-
sen trigger time distribution in (3.40), we obtain expressions whose
analytical form is generally not easily computable. For instance, an
approximate expression of the above convolution integral for a Pareto
trigger time distribution, such as

FW(w) = 1−
(w

k

)−ν
I[k,∞)(w) (3.44)

under the conditionτ ≫ w is:

FT(t) =
ν
(

1−
(k

t

)2α)−2α
((

1− k
t

)ν)

ν −2α
(3.45)

with an analogous power dependence ont. A better understanding
of the interpolating role of (3.42) can be appreciated by referring to
numerical integrations of (3.40), whose typical curves arereported in
Figs. 3.5(a) to (c). They refer to different trigger time distributions –
reflecting in slight changes in the length of the initial plateau, in the
slope of the linear trend, and also in the smoothness of theirunions –
which are well recovered by the parameters of (3.42).

Thus we will refer to the random variableT as a generic success
time concerning the wait and chase process, expressed either as a ra-
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Fig. 3.5 CCDF LogLogPlot of contact times with a trigger time varyingaccording to distribution
law: (a) Pareto; (b) negative exponential; and (c) uniform.Parameterα = 0.9 in (3.41) for all
distributions, while parameters specific to the various trigger distributions are set in order to have
the same expected value for the latter.

tio V between chaseT and wait timeW, or as pure chase timeT ,
otherwise as the sumT +W of the two times. In any case we expect
this variable to be described by the CDF (3.42) with suitableparame-
ters.

3.4.1 Completing the mobility model

A second component we must take into account to model the clash
times is represented by non intentional encounters interleaving with
the desired ones. By their nature, we may expect them to be biased
toward short values, which may be ruled by a negative exponential
distribution law. A further matter is that we are generally interested in
the difference between subsequent clash times, as an instance of inter-
contact times in the mobility models. While this is precisely the true
variableT we deal with through the exponential distribution of the
non intentional clashes, with the chase target we have no strict theo-
retical results. However, basing on loose reproducibilityproperties de-
riving from both Brownian and Lévy processes ours lies between [55],
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we rely on the same distribution law (3.42), with proper parameters,
also for these differences. We recover these aspects numerically. For

instance, denoting witĥFT(t) the empirical complementary cumula-
tive distribution function (ECCDF) for a samplet = {t1, . . . , tm} drawn
from T, i.e.

F̂T(t) = 1− 1
m

m

∑
i=1

I(−∞,t](ti) (3.46)

in Fig. 3.6 we see two ECCDFs LogLogPlot referring to aT sample
obtained by drawing a trigger time uniform in[1,150] and reckoning
intervals between subsequent clash times whose ratio w.r.t. the former
is simulated through (3.41). To these points we add further samples
coming from an exponential distribution with a set parameter λ . In
both figures we see a plateau analogous to those in Fig. 3.5, having
the abscissa of its right end at around 100, followed by a linear slope
that may be recoverd through a shifted-Pareto distribution(3.42). The
effect of the exponentially drawn points is the small hump over the
sloping course that variously characterizes the experimental curves
with respect to their interpolations through the mentioneddistribu-
tion. Thus from this and similar graphs, we may recognize a general
trait of the figures that we will use henceforth, where: i) thelength of
the plateau plays the twofold role of order of magnitude of the mean
trigger time, as for the constructive model, and ofb

1
a , as for the in-

terpolating law; and ii) the slope of the linear trend is close toa. To
sharpen our intuition, in very broad terms we will refer to the first
part of the curve as gathering almost exclusively the non intentional
encounters, while the second describes almost entirely theintentional
ones. On the contrary, the difference in the graphs in Fig. 3.6 is re-
lated both to the numberme of exponentially drawn points w.r.t. the
size of the sample connected to distribution (3.42), and to the respec-
tive values of parametersλ andα. As we may appreciate from the
CDF course, these additional times have the effects of globally de-
laying the times within the plateau and of incrementing their number
after its end. While in both casesα = 0.9, the former hasme

m = 0.5
andλ = 0.1, the latterme

m = 0.4 andλ = 0.0001. Shifted-Pareto pa-
rameters reada= 1.85,b= 11,819 andc= 1.27 in the first settings,
anda= 3.61,b= 7.55×1010 andc= 0.85 in the second one.
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Fig. 3.6 Recovering the intercontact ECCDF shape through our mobility model. First row: CDF,
second row: CCDF. Columns: different mobility parameters.Gray curves: experimental distribu-
tions; black curves: their interpolations.

3.5 Real world benchmarks and artificial datasets

While the paradigms of social networks and virtual communities date
to over forty years ago [105, 95, 133, 134], social communities, in
the dynamics connotation we explained in our introduction,repre-
sent a social and technological phenomenon whose features are still in
progress [127, 43, 27]. We acquainted them from the narrow techno-
logical perspective of communication protocols, and adopted a loose
opportunistic networks scenario [129, 94] in order to stress the com-
munication features we expect from advanced social communities. In
a strict sense, they are networks of mobile radio devices carried by
community members, equipped with a short-range antenna andlim-
ited batteries yet with a topology continuously evolving asa function
of mobility. With these devices, which you may imagine as a further
enhancement of your mobile (as in smartphones, netbooks, etc.), you
must abandon any real-time ambitions and reliability requirements. It
works because you and other members want to communicate through
a message that reaches you because someone in the immediate past
decided to send it and others to transpond it. Since the atomic action
of this protocol is a contact between (at least) two members to transfer
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Dataset Location Technology # AgentsMean Trace
Length

# Processed
Agents

Beaconing
Time (sec.)

Artificial Intel Core 2 Duo – 39 275 39 1
PTR Computer Science

Dept. in Milan
PTR 39 1876 39 1.5

Crawdad
CH1 Intel Research in Cam-

bridge
iMote 9 145 9 125

CH2 Cambridge Univ. Com-
puter Lab

iMote 12 342 12 125

CH3 IEEE INFOCOM 2005
Conf. in Miami

iMote 41 510 41 125

HMTD

Orlando Disney World Garmin GPS 60CSx 37 68 18 30
NCSU Raleigh (North Car-

olina) Univ. campus
Garmin GPS 60CSx 30 34 15 30

NY New York City Garmin GPS 60CSx 35 25 18 30
KAIST Daejeon (Korea) Univ.

campus
Garmin GPS 60CSx 91 308 12 30

Nokia
Helsinki Helsinki GPS equipped mobile 522 212 50 1
London London GPS equipped mobile 199 233 50 1

Table 3.1 Description of real world and synthetic benchmarks.

a message – ahop in the message trip from the origin to the destina-
tion – we study exactly the distribution of the time elapsingbetween
one contact and the next. In a looser sense, we may consider aspo-
tential hop all occasions where two people of a same community are
close enough.

Of these intercontact times we have collected a huge amount of
data, partly by ourselves and partly from either public or proprietary
repositories available on the web. We produced our own experimental
data as well, so as both to compare ours with the former’s features and
to check the generality of the proposed model. In addition, we have
simulated a huge dataset as an efficienttrait-d’union between proba-
bility model and truth, with the aim of checking the appropriateness
both of the former with the mobility model and of this model with the
virtual community we are exploring. The essentials of the benchmarks
are reported in Table 3.1, while a short description of them is reported
here below.

3.5.1 Benchmarks from the WEB

We check our methods on two categories of benchmarks: a former
expressly connected with opportunistic networks, the latter to virtual
communities which could implement analogous communication pro-
tocols thanks to the contacts between their members.
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Fig. 3.7 LogLogPlot of ECCDF intercontact times for datasets CH1 (a), CH2 (b) and CH3 (c).
Gray curves: individual intercontacts; black curves: merge of the former.

3.5.1.1 The Cambridge/Haggle (CH) datasets

The Cambridge/Haggle (CH) datasets represent four of the earliest
benchmarks available on the web, stored in the Crawdad database [121].
These data concern contact times between mobile agents whose com-
panion inter-contacts, of a single agent versus the remaining ones,
may be appreciated as usual through CCDF curves as in Fig. 3.7. The
first dataset (CH1) refers to eight researchers and interns working at
Intel Research in Cambridge. The second (CH2) records data from
twelve doctoral students and faculty comprising a researchgroup at
the University of Cambridge Computer Lab. The third (CH3) concerns
contacts collected from 41 attendees of the IEEE INFOCOM 2005 4-
day conference held in Miami. We skipped the fourth dataset because
it is less homogeneous as for both the people exchanging messages
and the devices carrying them. During the former experiments, very
short messages are exchanged between the agents through theiMote
platform [66], an embedded device equipped with ARM processor,
Bluetooth radio, and flash RAM, all fed by CR2 battery. Optimized
algorithms deduce both contact – the period when two agents are in
range of one another – and intercontact times – the period between
the contact times, when data are not directly transferrablebetween
the two agents – through a Bluetooth base-band layer inquiry, a sort
of beaconing strategy where a five seconds “enabled inquiry mode”
alternates with a 120 seconds “sleep mode” to save batteries.

Here we focus on intercontact times, where the usual basic inspec-
tion tool is the ECCDF of the time log registered on a single individual
getting in contact with any other of the agents participating in the ex-
periment. We jointly visualize these curves for all devicesin LogLog
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scale in Fig. 3.7. Namely, the time logs constitute thetracesof the
single agents in the time domain as a companion of theirtrajectories
in the space domain. The corresponding ECCDF LogLog representa-
tions are the agenttracksfrom a statistical perspective. In the follow-
ing we will consider them both as a curve sheaf and through single
representatives. While when referring to the interpolating parameters
central values such as medians will be suitable, the overallshape of
the tracks looks to be better preserved by themergeof the curves, i.e.
the ECCDF of the merged traces.

3.5.1.2 GPS trajectories

In the last few years we had a wide proliferation of personal devices,
mainly smart-phones, endowed with GPS facilities. This, onthe one
hand, stimulated the devising of many location-based services, mainly
shared by members of a same social community. On the other hand,
it made a plenty of mobility GPS trajectories available, as aresult of
current activities and a necessary basis for planning new ones. The ex-
change of information, and actions in general, between the involved
mobile agents constitutes the core point of many of these ventures,
where the exchange occurs after the encounter between agents, who
may have different meeting modalities. To check extreme instances,
we analyze two benchmarks where in the former – the Human Mo-
bility Trace Dataset (HMTD) collected at the NC State University
of Raileigh (NC) [111] – encounters occur when people enter arel-
atively large interaction neighborhood re topological distances but at
the same time instant. We consider the complementary situation in the
second benchmark, coming from Nokia’s Sports Tracker project [98].
It concerns people who virtually interact with one another because
they cross the same site though at (possibly) different times.

The trajectories in the HMTD dataset, collected worldwide on var-
ious cities/ campuses through Garmin GPS devices, are at thebasis of
many research activities concerning human mobility modeling, rout-
ing, content search and distribution in delay tolerant networks (DTN)
and ad hoc (MANET) environment [111]. From these signals, after
a preprocessing phase (for instance isolating only the logsrecorded
within a radius of 10 km from the center of each site), and focusing
on a single area where they have been collected, for instanceNew



3.5 Real world benchmarks and artificial datasets 59

-10 000 -5000 0 5000 10 000 15 000

5000

10 000

15 000

100 500 1000 50001´104 5´104

0.02

0.05

0.10

0.20

0.50

1.00

logF̂T

logt(a) HMTD 7→ New York

4000 6000 8000 10 000 12 000 14 000 16 000
4000

6000

8000

10 000

12 000

14 000

16 000

2 5 10 20 50

0.01

0.02

0.05

0.10

0.20

0.50

1.00

logF̂T

logt(b) Nokia 7→ Helsinki

Fig. 3.8 Agent trajectories and tracks for HTMD and Nokia datasets, one per benchmark in Ta-
ble 3.1. Gray ECCDF curves: individual inter-contact times; black ECCDF curves: merge of the
former ones.

York City, we obtain the cartesian coordinates of the walkers posi-
tion, as shown on the left in Fig. 3.8(a-b). Stating that a contact occurs
when two people are less than 250 meters from each other, we ob-
tain the companion inter-contact times ECCDF as in Fig. 3.8(a-b) on
the right. In Table 3.1 we distinguish between the number of avail-
able agents for each location and the number of them processed to get
statistics. This denotes that some trajectories have been discarded in
that tangibly anomalous (for instance 2 or less inter-contacts) w.r.t. the
phenomenon we are considering.

The second dataset is definitely larger and increases continuously.
It is the follow-out of the Nokia Sports Tracker service [98]to which
any person may apply by running a specific software on his own GPS-
equipped smartphone. Now more than 125,000 trajectories are avail-
able, collected at a rate of one beacon per second from many regions
in the world. They reduce to 9,000 circa when we focus on people
walking (neither running nor cycling or anything else) and to 522 and
199, respectively in the cities of Helsinki and London, after having
discarded bugged trajectories. With reference to the pic onthe left in
Fig. 3.8(b), we isolated 236 trajectories spanning mainly at the bot-
tom left corner. Then we sampled variously 50 tracks re the walker
we monitor and the number of other walkers (10 to 100) whose tra-
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jectories we consider to reckon contacts. We did analogously for the
London tracks. In Table 3.2 we will distinguish between lesscrowded
(sparse: fewer than 60 crossing walkers) and more crowded (dense)
trajectories.

3.5.2 The ground truth

The puzzling point of the above interpretations is that all found a tan-
gible number of authors sustaining them with theoretical and numer-
ical arguments. Thus, in order to have a clearer perspectiveof the
phenomenon, we decided to essentially replicate the experiment but
with a finer time scale and, in any case, with perfectly known environ-
ment conditions. We achieved this by both developing portable radio
devices, denoted as Pocket Traces Recorders (PTRs), and deploying
the test bed [53].

Requirements

The design of the PTR has functional as well as architecturalrequire-
ments. The former are related to traces collection, recording and trans-
ferring to a server station for off-line analysis. The primary focus of
the PTR design is the collection of data that describe the contacts
among encountering devices. The main architectural requirement is to
enable experiments to last 3-4 weeks with limited human intervention
as to battery changes. Consequently, we too base the communication
protocol on beaconing transmission with a limited frequency. After
sending its beacon, a PTR enters a sleep mode and wakes up when-
ever it receives a beacon from the neighborhood. Whenever a beacon
is received from a given encounter, the device creates a new entry
in the localcontact-log. The beacon contains the following items: i)
local ID and ID of the encounter PTR; ii) the timestamp of the first
contact; and iii) the time stamp of the contact closing event. As for
the latter, an entry in the contact-log isclosedwhenever no beacons
are received from the encounter device for more thant seconds, with
t = 60 seconds in our experiments. The local memory size has been
dimensioned to store traces of experiments lasting up to 3 weeks. As a
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Fig. 3.9 PTR architecture.

matter of fact, our test beds have generated on average 1900 contacts
per device, with beaconing time set to 1.5 seconds.

The Architecture

The overall PTR architecture is described in Fig. 3.10. It uses the
Cypress CY8C29566 micro-controller and the radio module AUREL,
model RTX-RTLP. The radio range has been limited to 10 metersin
order both to maintain a sparse PTR distribution even in an office area
and to limit power consumption. In particular, the experiments may
last for more than a week with common batteries NiMh, AA 1.2V.
Each PTR is equipped with 1 MB flash memory, capable of storing
more than 50.000 contacts.

The PTR firmware implements the first two layers of ISO-OSI
model [73]: Manchester coding is used at the physical layer,while
a CSMA non-persistent MAC protocol that regulates access tothe
2400b/s channel implements the data-link layer. The local time is set
at the configuration time. The clock drift in 3-week experiments has
been evaluated in 10-12 seconds and therefore we have not executed
any run-time clock synchronization. Each PTR uses an USB inter-
face to communicate with the Pocket Viewer, the Desktop application
software, which has been used to configure the devices, collect the
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Fig. 3.10 Tracks from the PTR datasets. Gray ECCDF curves: individualinter-contact times; black
ECCDF curves: merge of the former ones.

recorded data at the end of the experiment, and support data analysis
and device monitoring.

The collected data

The data were collected through a set of 50 PTRs circa in two exper-
imental campaigns between February and October 2008 [11]. Each
device was enabled to send and collect signals for 18 days with a cou-
ple of battery recharges. The PTRs were distributed to students and
administrative / teaching staff within the Computer Science Depart-
ment of the University of Milano. At the conclusion of the campaign
their logs were gathered in a single server and remodulated so as to
remove artifacts. In particular, we eliminated idle periods represented
by the time intervals where people were expected to be far from the
campus. Namely, we contracted to 0 the time intervals between 7 p.m
and 8 a.m. of workdays and all during the weekend. We also clamped
to 0 the last 60 seconds of contacts artificially generated bythe above
beaconing control rule.

After this preprocessing, we computed for each PTR a log of its
inter-contact times with any other of the PTRs participating in the
experiment 3.10.

3.5.3 The artificial dataset

We have numerically implemented the mobility model introduced in
Section 3.4 on a simulated field. Namely, replacing the agents of the
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PTR campaign with dodgem cars, we consider a field of 200×200
square meters with 39 individuals uniformly located insideit as our
initial configuration. Each agent has two mobility modes: random
waypoint [67] up to trigger timew, and the mentioned pursuit strat-
egy after it. In the first mode, an agent randomly selects a direction
that follows for a time lengthθ uniformly drawn in[0,2000] steps
with a mean velocity ofv= 1.47 meters per second (mean pedestrian
velocity). This is simulated by tossing a positive random number less
than or equal to 2000, as forθ , a uniform value between 0 and 2π ,
as for direction, and a random number drawn from a Chi distribution
with 2 degrees of freedom scaled by 1.17t (to maintain the mentioned
mean velocity), to sample the distanceD(t) covered by the agent at
time t. At the completion of timeθ , it selects a new random direction
and so on. When the trigger timew expires, it shifts to the second
mode: the above Chi step is now coupled with a suitable angle ro-
tation directing the agent toward the chosen target. A matchoccurs
when, for any reason, an agent gets closer than 10 meters to another
one. We remark that we do not impose any constraint on the agent
location (i.e. rebounds handling, etc.) since the chase features auto-
matically maintain an overall attractor within the original 200×200
square. Fig. 3.11(a) reproduces a story of this model when the trigger
time is drawn, for a mere choice of convenience, according toPareto
distribution (3.44) (see Fig. 3.5). In particular, dynamics parametersα
(the exponent in (3.41) modulating the agent mean speed versus time
in this phase) andν (describing the rate of the trigger time distribution
(3.44)) were set to 0.9 and 1.5, respectively, and suitable values were
chosen for ancillary parameters, such ask or the chased target dis-
tribution. The contact times are collected along the entireexperiment
log corresponding to 18 days of simulated time.

3.6 Fitting the model traces

Our final goal is to propose our mobility model as an adequate tool
for interpreting mobility tracks observed in some relevantsocial com-
munities. To this aim, denoting witht = {t1, . . . , tm} the sample of
intercontact times of a given trace, we solve two orders of inference
problems:
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Fig. 3.11 Agent trajectories and tracks from the Artificial datasets.Gray ECCDF curves: individ-
ual intercontact times; black ECCDF curves: merge of the former ones.

1. fitting of t through form (3.42), by identifyingstatistical parame-
ters a,b,c (s-parameters, henceforth) for each agent, with the aim
of proving suitability of the proposed model to describe mobility;

2. regression of the s-parameters versus themobility parameters(for
short m-parameters), which accounts for understanding the main
traits of human mobility. Here we focus onα andν (the parame-
ters of (3.41) and (3.44) respectively), whose acquaintance allows
us to better appreciate the departure of human mobility frompure
Brownian motion, as we will show in the next section. In turn,these
parameters may be thought as critical ingredients in the efficient
implementation of any optimized message forwarding algorithm, a
task to be the subject of further research conducted by the authors.

To be most convincing, we solve these problems in two steps, in terms
of: i) a reconstruction problem, by working with the artificial dataset
introduced in Section 3.5.3, and ii) true inference problems over real
world data described in Sections 3.5.1 and 3.5.2.

Having an efficient automatic procedure to draw the interpolating
curves is a first matter. Actually, inferring a shifted-Pareto distribu-
tion is not a standard taskper se. In addition, we must consider that,
besides the hump discussed earlier, empirical data are affected by
many artifacts, linked for instance to seasonal phenomena such as
user habits during a particular week and/or on a particular day of the
week, special tasks shared exclusively by some pairs of users, etc.
Thus, rather than expecting a perfect fitting, we look for tight regions,
such as confidence regions [7] where the experimental curveslie com-
pletely with a good probability. The identification of theseregions is
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a favorite task of Algorithmic Inference paradigm [12], which we ex-
ploit here as follows.

3.6.1 The Statistical Bases

Looking at curves as in Fig. 3.11, we may consider our estimation
problem in terms of drawing a regression curve through the set of

pairs
(

ti, F̂T(ti)
)

, coupling the observed intercontact time with the

ECCDF computed on it. According to our model, this regression curve
depends on three s-parameters:a,b,c. Following our stated goal, we
look for a suitable region containing this curve that we consider as
a specification of a random function, in principle. Thus, in analogy
with the usual notion of confidence interval [114], we may define a
confidence regionas follows.

Definition 3.1.For setsX,Y and a random functionC : X 7→ Y, de-
note by abusec ⊆ D the inclusion of the set{x,c(x);∀x ∈ X} in D.
We define a confidence region at levelγ to be a domainD ⊆ X×Y

such that
P(C⊆D) = 1− γ. (3.47)

Within the Algorithmic Inference framework [9], we infer this region
via a bootstrap procedure in a slightly different version ofthe Efron
paradigm [45]. The lead idea is that, starting from the observed data{(

ti, F̂T(ti)
)}

, we generate a huge set of curves thatcould fit them.

They represent replicas of a random curve (i.e. a curve with random
parameters) at the basis of these data, where the bootstrap generation
method allows us to attribute a probability to each curve whose reck-
oning identifies the confidence region. With this perspective we devise
a procedure running through the following steps [8].

1. Sampling mechanism.According to Definition 2.18, the explaining
function forT distributed according to (3.42) is

t = F−1
T (u) = ga,b,c(u) = c

((
bu+1
1−u

)1
a

−1

)
(3.48)

2. Master equations.The actual connection between the model and
the observed data is exploited in terms of a set of relations between
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statistics on the data and unknown parameters that come as a corol-
lary of the sampling mechanism. With these relations we may in-
spect the values of the parameters that could have generateda sam-
ple with the observed statistic from a particular setting ofthe seeds.
Hence, if we draw seeds according to their known distribution –
uniform in our case – we get a sample of compatible parameters
in response. As mentioned in Section 2.3.1, in order to ensure this
sample clean properties – so as to have clear connection between
the model and the observed data – it is enough to involve sufficient
statistics w.r.t. the parameters [126] in the master equations. Un-
luckily, because of the shift terms, the parameters are so embedded
in the density function ofT that we cannot identify such statistics
for them. Rather we may rely on statistics that arewell behaving
with analogous benefits [9].
Namely, denoting byt(i) the i-th element of the sorted intercontact

times and bym the quantity
⌊
(m+1)

2

⌋
, we use the well behaving

statistics

s1 = t(m) (3.49)

s2 =
1
m

m

∑
i=1

ti −s1 (3.50)

s3 =
m

∑
i=m

logt(i) (3.51)

Thanks to the sampling mechanism (3.48) relating a realization of
the uniform random variableU to aT ’s, we obtain the master equa-
tions

s1 = ga,b,c(u(m)) (3.52)

s2 =
1
m

m

∑
i=1

ga,b,c(ui)−ga,b,c(u(m)) (3.53)

s3 =
ξm
2

logc+
1
a

m

∑
i=m

log

(
bui +1
1−ui

)
(3.54)

As usual, we solve them in the s-parameters in correspondence to a
large set of randomly drawn seeds{u1, . . . ,um}. In this way we ob-
tain a sample of fitting curves, as in Fig. 3.12, which we statistically
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Fig. 3.12 Curves fitting with compatible parameters. (a) Sample size:30; (b) sample size: 500.
Thick plain curves: sample ECCDF; gray curves: 200 population replicas; thick dashed curves:
median of the replicas. Light gray region: 0.90 confidence region.

interpret to becompatiblewith the observed data. The two pictures
differ only in the size of the sample generated through (3.48), shar-
ing the same s-parametersa= 1.1, b= 1000 andc= 1.2. The free
parameterξ is set to a value slightly greater than 1 in order to com-
pensate the bias coming both from computing the last statistic only
on a part of the observed sample, and, in the case of simulated/real
tracks, from the truncation at the last intercontact, as a direct con-
sequence of the finiteness of the campaign duration. In the figure
we also report the 0.90 confidence regions for these curves. We ob-
tain these regions through a standardpeelingmethod [82, 7]. We
remark that in these experiments we prefer referring to the median
as a central value, rather than the mean, because of the estimation
method we use, as explained in [6]. But different choices maybe
done as a function of specific statistical goals, as will be shown in
Section 3.8. The pictures highlight the tight influence of the sample
size on the width of the confidence region, which in any case com-
pletely contains the whole ECCDF uniformly over its supportin
both situations. We also note a sort of indeterminacy – to be read as
non univocity – in the triples fitting the observed ECCDF. We may
attribute this both to the high variance of the sample data and to
the intricate interrelations among the trend of the curves and the s-
parameters per se. Namely, though the large sample allows usto in-
fer s-parameters closer to the original ones ( ˘a= 1.14,b̆= 1800 and
c̆= 1.05, withθ̆ denoting the median estimate of parameterθ using
the above extreme peeling procedure), with the smaller sample we
have acceptable interpolation as well, despite the great difference
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between the inferred parameters and their true values ( ˘a = 0.87,
b̆= 320 and ˘c= 0.87).

3.6.2 Testing the inference algorithm

First of all we tested the procedure on a controlled environment repre-
sented by the artificial dataset introduced in Section 3.5.3. Fig. 3.13(a)
shows the fitting curves obtained through our procedure. More in de-
tail, from the tracks of the single agents we get the confidence region
at the top of the picture. Fitting intercontact times obtained by merg-
ing individual trajectories, we get the dashed curve at the bottom of
the picture which proves very close to the merge ECCDF curve.

We did not have the same success with real tracks. This motivated
us to do a deeper analysis of the data described in Sections 3.5.1 and
3.5.2, suggesting that the hypothesis of their independence should be
removed. While with intercontact times derived from simulation this
hypothesis is true (within the limit of our ability to generate indepen-
dent seeds in the sampling mechanisms ruling the simulation), with
real people we may expect non independent performances. With the
exception ofcold individuals who allow no influence on their attitude
by external events, most people are more reactive to both theenvi-
ronmental conditionings and their own personality traits.So we may
expect that with busy, sociable and/or even anxious people,if a task
required a quick contact with colleagues, a subsequent one will do
the same with a high probability; idem for encounters that donot last
very long. On the contrary, a different attitude may induce agreater
duration after a rushed task andvice versa. In our context, this calls es-
sentially for respectively positive and negative autocorrelation among
intercontact times [37]. Far from enunciating a general theory on non
independent samples, we may within our sampling mechanism rever-
berate this dependence directly on the observation seedsuis entering
the sample mechanism (3.48). We may look directly at a Markovpro-
cess on the seeds, so that their conditional distribution depends on cer-
tain batches of previous seeds. If we are so lucky that some standard
conditions are satisfied [74], we may rely on an equilibrium distribu-
tion from which to pick more suitable seeds of the sampling mecha-
nism of the observed non independent intercontact times. Using the
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Fig. 3.13 Fitting agent tracks drawn from the dataset in Table 3.1 through our Shifted-Pareto distribution. First row→ 0.90 confidence region and median curve
for single agents; same notation as in Fig. 3.12. Second row→ merge track of all agents from the same dataset (gray curve) and its fit (black dashed curve).
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Fig. 3.14 ECDF of samples drawn according to the sampling mechanismui ≡ u
(

ui−1
k )

r

i (gray
curves) andui ≡ ud

i (black curves) when: (a)r = −1,h = 1,d = 4,ρUi ,Ui+1 = −0.24; and (b)
r = 1,h= 3,d = 0.25,ρUi ,Ui+1 = 0.37.

special typed symbolU (resp.u) to distinguish the new seed from the
uniform variableU (or its realizationu), we have a very preliminary
hypothesis on its CDF as follows:

FU(u) = u1/d (3.55)

with d > 0. It is definitely a gross hypothesis, relying just on some
similitude between the ECDF of samples generated by the mecha-
nismui ≡ ud

i (hence from the random variableUd having exactly the

CDF (3.55)) and the sampling mechanismui ≡ u
(

ui−1
h )

r

i (reproducing a
Markovian dependence of the currentui from the previous oneui−1),
for suitabled as a function ofr, with h a suitable tuning parameter (see
Fig. 3.14). As for the autocorrelationρUi ,Ui+1, the valued = 1 denotes
independence between sample items, whereasd < 1 corresponds to
r > 0 andρUi ,Ui+1 > 0, andd > 1 to r < 0 andρUi ,Ui+1 < 0.

On the one hand with knownd nothing changes on the above statis-
tical procedures, apart from the new seed generation, sincethe sam-
pling mechanism now reads

t = c



(

bud+1
1−ud

) 1
a

−1


 (3.56)

leading to the CDF

FT(t) =

(
1− (b+1)

b+
( t

c +1
)a

) 1
d

(3.57)
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Fig. 3.15 Discovering the seed bias from a correlation rooted on reconstructed data. (a) The re-
construction mechanism. (b) Course of correlation with thebiasing exponent.

On the other hand, addingd within the set of s-parameters would un-
bearably complicate the procedure. Thus we decide to used as an
external parameter that we infer by inspection with the helpof the
correlationρT,T̃ between actually observed timestis and reconstructed

timest̃is. The latter are obtained by inverting the inferred CDFFT̃ on
the ECDFF̂T specifications computed ontis. Namely, with reference
to Fig. 3.15(a),

t̃i = (t : FT̃(t) = F̂T̃(ti)) (3.58)

This corresponds to relatingti to the i
m-th quantilẽti of FT̃ , with i =

1, . . . ,m.
We choose thed maximizing the above correlation, with the fur-

ther expedient of selecting a proper scale for the input data. In this
respect, we experimentally found that the best indication comes from
ρT,T̃ when the times are recorded in logarithmic scale and possibly
truncated to their minimum value (see Fig. 3.15(b)).

In this way we obtain the other pictures in Fig. 3.13, to complete
the analogous ones in Fig. 3.11, yet referring to different datasets
within the same benchmarks so as to widen the inspection on the data.
We see that the confidence regions satisfactorily include the empiri-
cal curves, whereas the median of the compatible curves absorbs the
hump commonly occurring in the right part of the curve (afterthe
plateau). As discussed earlier, we may attribute it to a superposition of
casual encounters which go in parallel to the intentional ones. While
with Crawdad and HMTD benchmarks the bending of the ECCDF
around the estimated median curve suggests the presence of further
local phenomena to generate these balanced shifts, the moreregular
course of Nokia tracks may depend on the different way of collect-



72 3 Capturing aggregation dynamics in space and time

Single tracks Merge track
ă b̆ c̆ d̆ ă b̆ c̆ d̆

Artificial 1.834(0.215) 30584.6 (28461.6) 1.177(0.046) 1. (0.) 2.97367 4.46×108 1.02844 6
PTR 1.484(0.115) 44920.6 (39575.6) 1.097(0.042) 2.6 (0.6) 1.752 709781 0.959 4

HMTD

Orlando 1.018(0.185) 31.881(27.445) 1.261(0.142) 0.2 (0.) 2.005 2.08×107 0.959 8.
NCSU 1.084(0.262) 8336.36 (8334.31) 0.959(0.388) 6. (2.) 1.329 151719. 1.531 6.6

NewYork 1.099(0.304) 10048.3 (9611.62) 1.133(0.183) 2.6 (0.) 1.305 244650. 1.337 5.8
KAIST 0.794(0.17) 5.376(4.204) 1.012(0.21) 0.2 (0.) 1.819 1.73×107 0.798 11.

Nokia

Helsinkidense 1.318(0.324) 2.118(1.517) 0.71 (0.067) 0.4 (0.2) 1.092 1.738 0.63 0.6
Helsinkisparse 1.524(0.334) 11.45 (10.881) 0.835(0.094) 0.6 (0.4) 1.328 0.933 0.758 0.2
Londondense 1.883(0.897) 32.886(31.314) 0.863(0.026) 1.2 (0.6) 1.646 1.985 0.829 0.2
Londonsparse 2.922(0.217) 715.551(318.767) 0.869(0.014) 1.7 (0.1) 2.991 1441.7 0.858 2.4

Crawdad
CH1 0.934(0.166) 118.228(98.693) 0.939(0.128) 0.2 (0.) 0.879 106.163 0.926 0.3
CH2 0.849(0.122) 41.172(26.771) 0.762(0.111) 0.2 (0.) 0.977 530.91 0.724 0.8
CH3 0.872(0.082) 54.245(32.943) 1.68 (0.24) 0.2 (0.) 0.813 31.488 1.725 0.2

Table 3.2 Synopsis of the parameters fitting the benchmark tracks. Cell values: single track col-
umn 7→ median and MAD (in brackets) of the estimated parameters within the dataset; merge track
column 7→ parameters fitting this track.

ing intercontacts. With the former benchmarks we reckon thetime
differences between one contact and the next one for one agent versus
another specific one, and subsequently gather the differences referring
to the same agent. With the latter, for a same agent we reckon the time
difference between contacts with any other agent.

As for the merge curves, we observe again a good fitting of the
inferred median parameters.

3.6.3 An overall evaluation

In Table 3.2 we sum up the above inference on the benchmarks listed
in Table 3.1. As mentioned before, our main statistic is the median
of the parameters of the compatible curves computed for eachagent.
In turn, of these values we report in the first column the median and
the median absolute deviation (MAD) [58] to capture, respectively,
the central trend and the dispersion over the agents. In the second col-
umn we refer directly to the merge traces of the various benchmarks
for which we analogously report the compatible curve medianparam-
eters. A first insight arising from an overall outlook is thatwith our
model we cover a vast variety of targeted short-range walking situa-
tions, as for walking mode (relaxed, jogging), common goals(work,
entertainment, sport, shopping, etc), geographic location (from Eu-
rope to U.S.A. to Asia) and recording method (merge of specific pair
contacts, one trajectory crossing a variable number of other trajecto-
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ries, merge tracks). This reverberates in a parameter variety, though
with some structural commonalities.

While we will contrast a general good fitting performance with
other methods in the next section, focusing on the specific features
of our model, from a modeling perspective we note that the weak re-
producibility property of our shifted-Pareto distribution hypothesized
in Section 3.4.1 reflects in the parameters as well (with someexcep-
tions). Indeed, taking note that the plateau parameter to becompared
is b

1
a , we see the parameters of the merge track close to the medians

of the single agent parameters enough, with the main exceptions for
Orlando and KAIST, plus discrepancies on a restricted number of pa-
rameters in three other sites. There is no clear relationship between
these discrepancies and the dispersion of the parameters drawn from
the single agents. Rather, we note that they never occur alone, but on at
least a couple of parameters per benchmark. Paired with the variability
of the solutions of the inversion problem (3.52-3.54) we mentioned in
Section 3.6.1 and the chimeric effects due to tracks mixing,the above
fact might suggest attribute discrepancies to numerical artifacts rather
than to statistical reasons. In this sense paradigmatic is the high cor-
relation described by parameterd, which takes values much greater
than 1 in the merge curve of the artificial benchmark, in spiteof the
true intercontact independence (by construction) in the single agent
traces. The benefit of our approach, in any case, is that from apos-
sible unconstrained number of compatible curves we may select the
best fitting one according to the fitness criterion we decide,in order
to for example preserve reproducibility, stress some centrality index,
or follow statistical reasonings like those we will use in Section 3.8.
As for the parameter dispersion, which we appreciate through MAD,
we actually do not expect moderate values as an indicator of good
estimates. Rather, on the one hand their high values are again a con-
sequence of the different experimental condition each track refers to,
where the almost coincidence with median forb denotes an exponen-
tial distribution law of this parameter, while other minor peculiarities
emerge for the others. On the other hand, we cumulated a set ofaround
300 traces for a total of 140,000 observed intercontacts circa that we
will exploit as a whole in Section 3.8 to have very meaningfulfitness
tests. For the moment we get rid of the experiment variationsthrough
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the structural coherence between data and use the differentvalues as
a cue to characterize the experiments.

From an operational perspective, in Table 3.2 we note that the
slopes ˘as have a value slightly less than 1 with the Crawdad datasets
and notably greater than 1 with the others. Now, values ofa outside
of the interval(0,1) stands for a favorable feasibility indicator. In-
deed, in [29] it is shown that this interval gathers unfavorable values
of the slopeν of a Pareto distribution describing intercontact times,
since with these slopes none of the algorithms developed up till now
for MANET routing protocols can guarantee a finite message delivery
expected delay [138]. This suggests that the feasibility ofan oppor-
tunistic communication protocol is not a free lunch in social commu-
nities. Rather, it may occur with a well featured mobility model in
conjunction with a good practice level, like with our experiment. On
the contrary, Crawdad experimental settings seem not to be destined
to support these protocols, at least not at this level of investigation.

3.7 Understanding the mobility model

In the previous section we are left with a satisfactory matchbetween
experimental data and their modelization made up of three ingredi-
ents: 1) the ability of the dodgem car model to capture the main fea-
tures of the agent mobility; 2) the robustness of the expression (3.42)
to synthesize these dynamics even in the presence of many additional
effects drifting the dynamics from the model; and 3) the adequacy of
the Algorithmic Inference statistical tools to draw probabilistic sce-
narios compatible with the observed data, even in the presence of
variations in the mobility parameters. Now we want to exploit these
statistical benefits to invert the model, i.e. to deduce the m-parameters
from the s-parameters (recall their definition at the beginning of Sec-
tion 3.6). It accounts for a regression problem that we solveusing
artificial datasets like in Section 3.5.3 as training set. Namely, we
keptα andν exponents as free parameters in a range compliant with
the PTR opportunistic network. In detail, we letα vary in the range
[0.35,1.05], so as to appreciate sensible deviations from pure Brown-
ian motion (i.e.α = 0.5), andν in [0.1,20], spanning a wide range of
Pareto rates to cover both finite and non finite moments of thisdistri-
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Fig. 3.16 Relation between s-parameters and m-parameters in the artificial dataset. Surfaces: best
fitting curves; points: s- and m-parameters.

bution (see rightmost picture in Fig. 3.16). Note that thed parameter
is out of the question, since it is constantly equal to 1 in theartificial
setup. To learn the regression function of the remaining s-parameters
a,b,c versus m-parametersα andν, first we identify the median as a
template of the CCDF curves, then we regress its parameters through
a polynomial in the m-parameters. In Fig. 3.16 we see the bestfitting
we obtain separately ona, b

1
a andc. The interpretation of these curves

is far from simple. As a matter of fact, with this kind of mobility phe-
nomena we theoretically rely mainly on asymptotic results in space
and time domains, and on tighter results only in the Fourier transform
framework [21]. Hence, here we just venture some guesses, declar-
ing in advance that they are partial and need serious validation. With
these caveats, we note that the first graph shows a complex trend of a
with α that we interpret in this way. On the one hand, the comparative
inspection of curves as in Fig. 3.17 shows that ana increase (a↑) in
(3.42) has the effect of shifting the elbow between the non-Pareto and
Pareto trends back (as for turning time) and down (as for the corre-
sponding probability). This produces the twofold effect ofreducing
both the distribution time scale (t↓) and the rate of contact times (r↓)
falling in the second trend (call them the intentional timesaccording
to our broad curve interpretation in Section 3.4.1). On the other hand,
we see thata has a parabolic trend withα having the top in the sur-
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Fig. 3.17 CCDF LogPlot of shifted-Pareto distribution (3.42) witha ranging from 2 (black curve)
to 3.6 (light gray curve).

rounding ofα ≈ 0.5, a value that calls for the Brownian motion as the
basic component of the model. Moving far from this value, we see a
decreasing ofa that we alternatively relate to the two effectst↓ and
r↓. Namely, sinceα is a mobility speed-up factor, on the lefthand side
of the trend we relate the increase ofa with α to a decrease in the
time scale (t↓). This effect is contrasted by the rarefaction of the ran-
dom encounters whenα becomes still higher, since the probability of
crossing a same 10 meter raw transmitting coverage diminishes with
the velocity due to the low agent density. Under these conditions we
have an overwhelming amount of intentional contacts (belonging to
the Pareto trend) (r↑).

We may similarly explain the second graph, where we broadly re-
late theb

1
a parameter to the scale of the non intentional encounter

times. In principle, this scale decreases withν – since the average of
the related Pareto does so – and increases withα – because of the
aforementioned spreading effects of this parameter. However, in this
case too we have a saturation effect, so that very smallνs equalize the
trigger times. As a consequence, the number of (now almost purely
intentional) contacts follows a Poisson distribution thatis analogous
to the one of the almost purely non intentional encounters reckoned
in the opposite corner. Likewise, we have seen that shortas in cor-
respondence to shortαs may reduce the number of non intentional
encounters (sincer↑) contributing to the definition of the scale of the
non Pareto trend.

The third parameter,c, looks like a fine tuning factor indirectly af-
fected by the m-parameters.

Moving on the experimental datasets, we want to discover both the
mean velocity and mean waiting time of the people who wear the
beaconing device using the above regression curves. Namely, hav-
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Simil-Pareto BestSimil-Pareto MedianExponentialParetoLogNormal Tapered ParetoTruncated Pareto

PTR
0.154 0.077 0.821 0. 0.026 0. 0.077
0.949 0.923 0. 0. 0.026 0. 0.

Crawdad
0.508 0.169 0.067 0.051 0.034 0.017 0.068
0.441 0.101 0. 0. 0.288 0. 0.271

HMTD
0.593 0.468 0. 0.25 0.468 0.562 0.781
0.656 0.469 0. 0. 0. 0.062 0.281

Nokia
0.937 0.796 0. 0.312 0.641 0.437 0.328
0.531 0.281 0. 0.218 0.141 0. 0.109

Table 3.3 Statistical comparison between competitor models. Rows: benchmarks; column: mod-
els; cells: CvM test acceptance rate (upper line) and Akaikecriterion winning rate (lower line).

ing computed s-parameter replicas compatible with the collected ex-
perimental datasets through master equations (3.52-3.54), as in Sec-
tion 3.6, we look for the corresponding m-parametersα andν that
minimize the relative error between the computeda,b,c and the triple
obtained through the regression curves. We depict all of them (merged
re the benchmark subsets) in Fig. 3.18.

Omitting for a moment the third column, we see that the formertwo
denote a notable generalization of the regression curves onthe new
points, despite their location in regions that may be far from the ones
spanned by the training set. The clouds of points refer to theunion of
numerous curves (hence the triplets of parameters specifying them)
that are compatible with the single agent tracks. For instance, we have
73,180 curves related to the PTR benchmark, 20,000 to the Nokia
benchmark, and so on. For all these curves, on the one hand we obtain
values in line with the overall trend of botha andb with α andν, as
modeled in the previous sections. On the other hand, these values are
compatible with the physics of the people’s dynamics and reflect the
two polarizations of the dynamics (before and afterα =0.5) discussed
in the previous section.

To get these results we had to do a small preprocessing of the GPS
benchmarks. Namely we had to suitably enlargeb through a scale
factor that depends on the single dataset. As this parameteris a gross
indicator of the mean span of the waiting phase, we are not surprised
by the need for this correction in order to adapt the regression curves
drawn on the ideal model to track peculiarities, such as the time differ-
ence vanishing with which people cross each other in the Nokia tra-
jectories. However, this rescaling appears to be consistent. Still within
the Nokia datasets, we must enlarge more theb values referring to
dense traces rather than to sparse ones. Moreover, we cannotguaran-
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Fig. 3.18 Mobility parameters emerging from smearing the s-parameters of our experimental benchmark tracks on the surfaces in Fig. 3.16. First three columns
→ gray points: same simulated parameters as in Fig. 3.16; black points: replicas compatible with the processed dataset; white points: median parameters among
the replicas (graphically hidden in general by the former ones). Last column→ gray points: mobility parameters colored according to the cluster they belong to;
bullets: cluster centroids.
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tee trigger times to be Pareto distributed. But we have also realized
a broad independence of the final distribution on the specifictrigger
one, so that we may appreciate the inferredν as an indicator of the
first and second moment values.

With c things go worse. But this is to be expected given the tuning
role of this parameter. We note, however, that taking into account its
value in back-regressingα andν (through the minimizing procedure)
diminishes the spread of these parameters.

Fig. 3.18, fourth column reinforces the hypothesis of a common
phenomenon at the basis of the different community mobilities. In-
deed, it highlights the great similarity between the mobility parame-
ters underlying the different benchmarks. This comes through in the
shape of the clouds gathering them and even in the location ofthe cen-
troids of the clusters emerging from a naive k-means algorithm [61]
computed on the whitened data [41] (to take into account the different
dispersion of the mobility features).

3.8 Contrasting the literature

The common features emerging from the various tracks drawn from
the different experimental setups include: a prominent elbow, separat-
ing the plateau from the slope, and a linearity of the tail. Actually, the
elbow is an artifact of the CCDF LogLog representation of a vast va-
riety of distribution laws, from uniform distribution to Gaussian, and
even to exponential one. Among them, the following distributions are
adopted in the literature as candidates to cope with a prominence of
this feature: exponential, Pareto, lognormal, tapered Pareto, truncated
Pareto. In this section we will use these as competitors of our shifted-
Pareto distribution. An exception w.r.t. this feature is precisely repre-
sented by the power law, here identified with the Pareto distribution,
i.e. the most simple version of the generalized power laws enunciated
in the literature [124], whose graph, on the contrary, fullymeets the
second feature of our tracks (see Figs. 3.11 and 3.13).

The time distribution we propose captures both features (prominent
elbow and linear slope) by introducing a shift in the coordinate of
the power law distribution as done by Pareto himself over a century
ago [102]. Then, in analogy with the 3-parameter generalized Pareto
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Fig. 3.19 CCDF LogLogPlot of aT randomly varying according to: (a) a double Pareto; (b) a
tapered Pareto.

described by the formula

FT(t) =

(
1+

a(t −c)
b

)− 1
a

I[c,+∞)(t) (3.59)

we introduce in (3.42) further scale parameters to render itadaptive
to many experimental situations, but in a slight different way than
in (3.59) in order to get more efficient statistical tools forestimat-
ing its parameters as in Section 3.6. By contrast, the randomprocess
we consider, is quite different from those to which the Pareto family
usually applies [96], as mentioned in our introduction. Thus, the wait
and chase model has no direct connection with therich get richer
paradigm used both in economics [110] and in web consensus phe-
nomena [25]. The same holds for the dynamics of exceptional events
in nature, such as earthquakes [104], which are far from the dynamics
of our agents.

From a strictly analytical perspective, with our curves we have a
course that is close to be exponential before the elbow and definitely
power law after it. They cope respectively with the mentioned plateau
and slope we observe in the experimental tracks. Wanting to explic-
itly maintain this dichotomy, other authors gave differentreadings of
these courses, for instance in terms of: i) adouble Paretocurve (a
lower power curve followed by a greater power one) [109], or,in al-
ternative, ii) a temporal sequencing of a Pareto trend proceeding with
an exponential distribution that quickly nears 0 [29]. Now,while ex-
tensively studied in growth phenomena [91, 110], the doublePareto
not only has been adapted to mobility studies with feeble results; it
also misses the real course of the first part of the experimental curves
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(see Fig. 3.19(a)).Vice versa, the tapered Pareto distribution [69]

FT(t) = 1−
(

k
t

)α
e

k−t
b I[k,+∞)(t) (3.60)

and similar ones [26, 66] recently brushed out to cope with the ques-
tioned phenomena [29] in line with alternative ii), have theexponen-
tial decrease in the rightmost part of the curve as their maindraw-
back (see Fig. 3.19(b)). This is somehow explained in terms of no-
madic motion [76], and find a good fitting only with specially de-
vised traces [112]. As a matter of fact, researchers workingon Nokia
datasets also [103] lean toward an analytical description of these data
through a tapered Pareto distribution, though admit that other types of
mobility patterns, and consequent distributions, could equally serve
their purpose.

Other authors prefer concentrating their analysis on the most pop-
ulated part of the traces to gain simplicity. Thus they [26, 29] bind
the analysis near the plateau, lowering the relevance of theremaining
times with the twofold effect of shading off times that are exceedingly
long and exceedingly costly to process re parameter estimation. Then,
they analyze the surviving data according to the candidate distribu-
tions mentioned in this section, using various goodness-of-fit (GoF)
tests to decide the ultimate model. Aiming to show the benefits of our
model, we both repeat part of these tests and make specific theoretical
considerations as a further preference argument.

We use the same statistics as in [33] and [65], i.e. the Cramer-von-
Mises (CvM) test [35] and the Akaike criterion [3], respectively. Thus
in Table 3.3 we index the rows with the experimental benchmarks
considered, and head the columns with the candidate distributions. In
each cell we report both the percentage of traces not rejected by the
CvM test having the column distribution as null hypothesis,and the
percentage of traces whose Akaike statistic computed on thecolumn
distribution proves to be the best, i.e. the lowest, re the other candi-
dates. To be compliant with analogous tables in the cited papers, we
used the maximum likelihood estimators of the competitor distribu-
tion laws, mentioning that their computation deserves somenumerical
instability when referred to the tapered distribution [69].

We remark the general superiority of our distribution, which is
partly due to the recalled fact that for each trace we have concretely
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Fig. 3.20 Comparison between median curves (thick black) and the bestfitting ones (dashed black)
computed according to: (a) CvM test, and (b) Akaike criterion, for a Helsinkidense track. Same
notation as in Fig. 3.13.

available a huge set ofcompatibledistributions from which to select
the one minimizing the test statistic. Fig. 3.20 shows this point with
respect to one of these curves. Of the compatible distributions, we re-
ported both the median one (the usual reference term of the other pic-
tures) and the optimal one re the adopted test. From their comparison,
two different inference targets clearly emerge. The mediancurve aims
to fit the entire experimental track well with special regardto the tail,
due to the special features of heavy tailed distributions onthe one hand
and the involved statistics on the other one. The optimal curve focuses
on the mean score of the fitted points, thus tending to sacrifice the tail
points at the entire benefit of the remaining bulk. This is particularly
true with the CvM test, where the contribution of each point to the
statistic is at most1m, no matter how far the point is from the hypothe-
sized track. Actually, while the Akaike criterion is alwaysin our favor,
the CvM test promotes the truncated Pareto distribution on the HMTD
benchmark, and the exponential distribution on the PTR benchmark.
Note that on the other two benchmarks we beat the other candidates
also on the basis of the median curves. The difference between the two
inference targets mainly determines the beneficial difference between
ours and most alternative approaches. Actually, the various artifices to
embed an elbow in the Pareto distribution, such as by multiplying it
with an exponential distribution (the origin of tapered distribution), or
truncating the former to its maximum observed value (the origin of the
truncated Pareto), have the main effect of canceling the heavy tailed
feature. As a consequence we miss the fitting of the tail observations,
which nevertheless constitute however almost one third of the entire
sample. Thus, losing the CvM test in the mentioned benchmarks, de-
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spite we win w.r.t. the Akaike criterion, may denote the unsuitability
of this test to our inference goal rather than a failure of theinference.
In any case, since these statistics are distribution free, we may state
that, over a sample of 303 elements, the goodness of fitting a general
walker mobility through our model passes the CvM test in 81.52%
of the cases and beats the competitor models on the basis of Akaike
statistic 100% of the time.

Summarizing the comparison with state-of-the-art models,we can
say that ours gives rise to an intercontact distribution lawhaving a
strong rationale in the dynamics of human agents within a social com-
munity and that it enjoys efficient statistical tools to infer its free pa-
rameters. These tools are so powerful that they meet different fitting
criteria. We often beat competitor models as for standard GoF tests,
with the additional ability to earn comparable scores even under the
unprecedented constraint of preserving the heavy tailed feature of the
observed data.

3.9 Concluding remarks

In view of discussing the genuine roots of the non Brownian mo-
tions we toss in this chapter thenon symmetryfeatures of the involved
random phenomena. Reading these features in terms ofintentionality
driving the members of a social community far from a simple random
walk, we focus on elementary processes where trajectories cannot be
considered as the accumulation of a symmetric noise. To thisaim we
have introduced an extended Pareto distribution law with which we
analyzed some intentional trajectories.

Actually, discovering a law ruling Nature requires managing fea-
tures that are common to its application field. Without any philosoph-
ical pretension, we may identify them with properties with acertain
degree of uniformity. It may refer toinvarianceof physical laws [97],
uniformity of organic systems [120] or constancy of living systems’
morphology [47], and so on. Under a logical perspective all of them
share the minimal feature of symmetry as both a fairness guarantee
and a universality prerequisite. Moving from static laws toalgorithms,
their correctness has been customary tossed in terms of homogeneity:
the algorithm is correct since it produces a correct output for whatever
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input, with the understatement that an extended form of symmetry
now concerns the tool for processing data and not the phenomenon
generating them. Recently, the granular computation framework [9]
moved a step ahead in the consideration of symmetry constraints ver-
sus benefits. Within this framework, an algorithm is satisfactory if it
works well on a certain set of inputs, not necessarily coinciding with
the input universe. To be useful, however, we expect that this set cov-
ers a wide family of instances that we may encounter in the real world.
Now, with this strategy algorithms are tailored on data, thus producing
statistics, by definition. The study of statistics, however, is tightly con-
nected to the study of probabilistic models, in turn heavilybiased by
symmetry constraints as antidotes to lack of knowledge. This opens
a hiatus in the above sequence toward the symmetry release. So, in
this chapter, on the one side we introduce a very elementary model
to explain the clean, and complex as well, phenomena connected to
the bumps of a dodgem car, in the ambition of having them as a tem-
plate of a vast family of intentional processes. On the otherside, to
empower the model, we have been pushed to fill the mentioned gap
between model and statistics for its identification.

Facing a new kind of processes we found beneficiary using a new
statistical framework represented by the Algorithmic Inference, get-
ting some satisfactory results. Far from considering exhausted the
matter, in the next chapter we introduce this mobility modelin a
very complex process implementing a subsymbolic learning proce-
dure. Learning indeed looks us to be the archetype of the intentional
processes.



Chapter 4
Information driven dynamics

One of the most relevant topic of the computer science is the compu-
tational learning, i.e. to design algorithms enabling a computer system
to (almost) autonomously add a new program in its software library
just after analyzing relevant data. This looks us to be the archetype and
the abstraction as well of any intentional behavior. Relating the degree
of autonomy to the absence of any structured knowledge transmitted
by other systems, an extreme stretching of the above goal is to reach
it through a sub-symbolic computational tool, say a neural network.
With these premises, in this chapter we toss the augmentation of a
neural network through the addition of the motion facility of its neu-
rons. For short:What’s better than a neural network? A network of
mobile neurons.We interpret this empowering as an addition of a fur-
ther intentionality expression. Hence we finalize the neuron motion
to exploit a greater cognitive performance, like it happensin Nature.
This is why we start this chapter with some biological recalls. Then we
move to our artificial implementation, by introducing a new paradigm
of neural network by coupling the well assessed evolution ofthe net-
work parameters through the back-propagation algorithm with a dy-
namics of its neurons. They move according to Newtonian lawswhich
are parametrized on cognitive quantities and finalized to reaching a
ground state denoting a firm stability of the acquired knowledge. This
entails a new training algorithm that we toss on two common bench-
marks for regression and classification tasks, respectively. Besides the
canonical efficiency indicator, such as convergency speed and test er-
ror, we discuss of the structural features emerging from thedynamics
of this network.

85
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4.1 A biological insight of intentionality

The macro-scale intentional behavior we caught by the use ofpro-
cesses with memory can be found also in the micro-scale domain.
Moving for a while our discussion to biology, we can find a verysim-
ilar representation of the previously discussed intentionality, though
intended in a little different way. We are referring to what happens
during the process of the human brain morphogenesis, here the first
step in wiring the nervous system together is the generationof neu-
rons. Consider for example the striate cortex. In the adult,there are
six cortical layers, and the neurons in each of these layers have char-
acteristic appearances and connections that distinguish striate cortex
from other areas. Neuronal structure develops in three major stages:
cell proliferation, cell migration, and cell differentiation. We will use
the central visual system as an example of this process [15].

Cell proliferation

The brain develops from the walls of the five fluid-filled vesicles.
These fluid-filled spaces remain in the adult and constitute the ven-
tricular system. Very early in development, the walls of thevesicles
consist of only two layers: the ventricular zone and the marginal zone.
Theventricularzone lines the inside of each vesicle, and themarginal
zone faces the overlying pia mater1. Within these layers of the telen-
cephalic vesicle, a cellular ballet is performed that givesrise to all the
neurons and glia of the visual cortex. The process can be summarized
as follows:

1. A cell in the ventricular zone extends a process toward thepia mater
that reaches the upward zone of the cortical plate.

2. The nucleus of the cell migrates upward from the ventricular sur-
face toward the pial surface; the cell’s DNA is copied.

3. The nucleus, containing two complete copies of the genetic instruc-
tions, settles back to the ventricular surface.

4. The cell retracts its arm from the pial surface.

1 The surface of the central nervous system is covered by threemembranes called meninges: the
dura mater, thearachnoid membraneand thepia mater. The pia mater is the innermost of these
three meninges.
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5. The cell divides in two.

The fate of newly formeddaughter celldepends of a number of fac-
tors. As a matter of fact, a ventricular zone precursor cell that is
cleaved vertically during division has different fate thanone that is
cleaved horizontally. After vertical cleavage, both daughter cells re-
main in the ventricular zone to divide again and again. This mode of
cell division predominates early in development to expand the popula-
tion of neuronal precursors. Later in development, horizontal cleavage
is the rule. In this case, the daughter cell lying farthest away from the
ventricular surface migrates away to take up tis position inthe cortex,
where it will never divide again. The other daughter remainsin the
ventricular zone to undergo more divisions. Ventricular zone precur-
sor cells repeat this pattern until all the neurons and glia of the cortex
have been generated (see Fig. 4.1).

In humans, the vast majority of neocortical neurons are bornbe-
tween the fifth week and the fifth month of gestation, peaking at the
astonishing rate of 250,000 new neurons per minute. Recent findings
suggest that although most of the action is over well before birth, the
adult ventricular zone retains some capacity to generate new neurons.
However, it is important to realize that once a daughter cellcommits
to a neuronal fate, it will never divide again.

Mature cortical cells can be classified as glia or neurons, and the
neurons can be further classified according to the layer in which they
reside, their dendritic morphology, and the neurotransmitter they use.
Conceivably, this diversity could arise from different types of precur-
sor cell in the ventricular zone. In other words, there couldbe one class
of precursor cell that gives rise only to layerVI pyramidal cells, an-
other that gives rise to layerV cells, and so on. However, this is not the
case. Multiple cell types, including neurons and glia, can arise from
the same precursor cell. Because of this potential to give rise to many
different types of tissue, these precursor cells are also called neural
stem cells. The ultimate fate of the migrating daughter cell is deter-
mined by a combination of factors, including the age of the precursor
cell, its position within the ventricular zone, and its environment at
the time of division. Cortical pyramidal neurons and astrocytes derive
from the dorsal ventricular zone, whereas inhibitory interneurons and
oligodendroglia derive from the ventral telencephalon. The first cell to
migrate away from the dorsal ventricular zone are destined to reside
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Fig. 4.1 (Up-left) The wall of the brain vesicles Initially consistsof only two layers, the marginal
zone and the ventricular zone. Each cell performs a characteristic ”dance” as it divides, shown
here from left to right. The circled numbers correspond to the five ”positions” described in the
text. The fate of the daughter cells depends On the plane of cleavage during division. (Up-right)
After cleavage in the vertical plane. both daughters remainin the ventricular zone to divide again.
(Down-right) After cleavage in the horizontal plane, the daughter farthest away from the ventricle
ceases further division and migrates away.

in a layer called thesubplate, which eventually disappears as devel-
opment proceeds. The next cells to divide become layerVI neurons,
followed by the neurons of layersV, IV , III andII .

Cell migration

Many daughter cells migrate by slithering along thin fibers that radi-
ate from the ventricular zone toward the pia. These fibers arederived
from specializedradial glial cells, providing the scaffold on which
the cortex is build. The immature neurons, calledneuroblasts, follow
this initial radial path from the ventricular zone toward the surface of
the brain. Recent studies indicate that some neurons actually derive



4.1 A biological insight of intentionality 89

Fig. 4.2 The first cells to migrate to the cortical plate are those thatform the sub-plate. As these
differentiate into neurons. the neuroblasts destined to become layer VI cells migrate past and col-
lect in the cortical plate. This process repeats again and again until all layers of the cortex have
differentiated. The sub-plate neurons then disappear.

from radial glia. In this case, migration occurs by the movement of
the soma within the fiber that connects the ventricular zone and pia.
When cortical assembly is complete, the radial glia withdraw their ra-
dial processes. Not all migrating cells follow the path provided by the
radial glia cells, however. About one-third of the neuroblasts destined
to become sub-plate cells are among the first to migrate away from
the ventricular zone. Neuroblasts destined to become the adult cor-
tex migrate next. They cross the sub-plate and form another cell layer
called thecortical plate. The first cells to arrive in the cortical plate
are those that will become layerVI neurons. Next come the layerV
cells, followed by layerIV cells, and so on. Notice that each new wave
of neuroblasts migrates right past those in the existing cortical plate.
In this way, the cortex is said to be assembledinside-out(see Fig. 4.2).
This orderly process can be disrupted by a number of gene mutations.
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Cell differentiation

The process in which a cell takes on the appearance and character-
istics of a neuron is calledcell differentiation. Differentiation is the
consequence of a specific spatiotemporal pattern of gene expression.
Neuroblasts differentiation begins as soon as the precursor cells divide
with the uneven distribution of cell constituents. Furtherneuronal dif-
ferentiation occurs when the neuroblast arrives in the cortical plate.
Thus, layerV andVI neurons have differentiated into recognizable
pyramidal cells even before layerII cells have migrated into the corti-
cal plate. Neuronal differentiation occurs first, followedby astrocytes
differentiation that peaks at about the time of birth. Oligodendrocytes
are the last cells to differentiate.

Differentiation of the neuroblast into a neuron begins withthe ap-
pearance about the same, but soon, one becomes recognizableas the
axon and the other dendrites.

4.2 Moving from biological neural networks to Artificial Neural
Networks

After the completion of the morphogenesis process, the resulting
structure is a complex network spread on almost seven layersrep-
resenting one of the fundamental part of the whole abstraction and
learning mechanism. Few years ago, in the artificial neural network
field there were the first attempt to pass from the usual 1,2 or 3 levels
architecture to a deeper one with 5,6 or 7 layers, like the human brain
really is. The passage was not so easy due to the fact that the common
learning algorithms used to train artificial neural network, when ap-
plied to this deeper architecture present a great deterioration in term of
performances. For example the well known back-propagationlearning
algorithm run on thisdeep architecturesused to get stuck in poor local
minima of the objective function [75]. Thus, new ways to train such
deep networks have been crafted: the seminal work on this wasdone
by Hinton et al. who introduced the so called Deep Belief Networks
(DBN) [62] with a learning algorithm that greedily trains one layer at
a time, exploiting an unsupervised learning algorithm for each layer,
named Restricted Boltzmann Machine (RBM) [119]. These kindof
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networks have been applied successfully to a huge number of prob-
lems: classification tasks [18, 107, 78], but also in regression [118],
dimensionality reduction [117], modeling textures [100],modeling
motion [128], object segmentation [80], information retrieval [130],
natural language processing [92], etc . However the question remains:
is it possible to profitably train a deep neural network with standard
algorithms like back-propagation so that to maintain a simple learning
procedure without having to pay in terms of performances ?

4.3 An Artificial Neural Network with mobile neurons

Looking at biology we can state that the success of a complex biolog-
ical neural network is determined by two main factors [88]:

1. an effective mobility of neurons during the brain morphogenesis
2. a selective formation of synaptic connections

In the field of Artificial Neural Networks we can find a huge quantity
of techniques inspired on the second point, we can mention for ex-
ample the ART algorithms [28] or the whole family of growing and
pruning methods [20]. While the second point has been deeplyinvesti-
gated, the first one has never been taken into account explicitly, indeed
many author preferred to consider directly the entire neural architec-
ture to evolve toward an optimal configuration to be trained [99].

To fill this lack we introduce both a mobility paradigm for theneu-
rons of a multilayer neural network and a methodology to train this
new kind of network so that all neurons, though acting as single en-
tities, cooperate together bringing out a collective behavior. The lead
idea is that neurons move toward the most informative mates to better
learn how to fulfill their part in the overall functionality of the net-
work. Thus, on the one hand neurons from the upper layer attract those
lying on the lower layer with the strength of the informationthey pipe
(the back-propagated delta term). On the other hand, the latter repulse
one another whenever they do the same job, i.e. have similar weights
connecting them with upwards neurons. If we associate a potential
field to these attraction/reaction forces, and put neurons in this field as
particles ruled by a Newtonian dynamics, we obtain a neuron dynam-
ics that we plan to be modulated by the learning process. Withthis
aim we have to add the Hamiltonian of this motion into the costfunc-
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tion of the training process thus obtaining a great synergy between
the physical and information components of an extended Lagrangian
ruling the entire dynamics of the network.

Thanks to this contrivance we are able to work well with deep neu-
ral network architectures on different benchmarks bypassing the men-
tioned drawbacks (as seen before) and getting satisfactorylearning
results, though not yet stretched to compete with the best ones avail-
able in the literature. Rather, we use these benchmarks to capture some
features of the above physics-cognition synergy.

4.3.1 The model

Let us start with a standard model of anr-layer neural network where
all neurons of a layer are located in a Euclidean spaceX which is two-
dimensional by default. The activation of the generic neuron is ruled
by:

τ j = f (netj); netj =
νℓ
∑
i=1

w ji λ ji τi ; λ ji = e−µd ji ; (4.1)

whereτ j is the state of thej-th neuron in theℓ+1-th layer,w ji the
weight of the connection from thei-th neuron of the lower layerℓ
(with an additional dummy connection in the role of neuron thresh-
old), νℓ the number of neurons lying on layerℓ, and f the activation
function, as usual. By contrast, netj is a new expression ofj-neuron
net-input whereλ ji is a penalty factor depending on the topological
distanced ji between the two neurons, or from another point of view
it can be read as the scaling factor that influences the contribution
coming from the neurons belonging to the layerℓ. This reads in the
following rule: the closer is a neuron on the layerℓ to one lying on the
ℓ+1 the greater is its contribution to the state of the latter. Namely,
d ji = ‖x j −xi‖ 2, wherex j denotes the position of the neuron within
its layer. Note that the distance formula does not take into account
the valueℓ of the layer where the single neurons lie. Thus, if they
belong to two different layers we may figure them as projectedinto
the sameX plane. The penalty factor is a distinguishing feature of our
model linking thecognitive aspectsto the neuron dynamics determin-
2 With ‖ · ‖i we denote theLi -norm, wherei = 2 is assumed wherever not expressly indicated in
the subscript.
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ing the distanced ji – a feature that we ascribe to thephysical aspects
of the network. As for the latter, we assume the neurons to be em-
bedded into a potential field smeared in a singleX plane into which
we project contiguous layers. The potentials are linked to the men-
tioned attraction/repulsion forces which move the neuronsaccording
to a Newtonian dynamics (see Fig. 4.3).
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Fig. 4.3 Potential field generated by both attractive upward neurons(black bullets) and repulsive
siblings (gray bullets). The bullet size is proportional tothe strength of the field, hence either to
the neuron mass (black neurons) or to the outgoing connection weight averaged similarity (gray
neurons). Arrows: stream of the potential field; black contour lines: isopotential curves.
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4.3.2 Potentials

Let us fix the notation:

• with the subscriptj we refer to the neurons belonging to the layer
ℓ+1;

• with the subscripti,i′ we identify the neurons belonging to the layer
ℓ;

• ℓ goes from 1 tor.

For each neuron of the network, let us say thei-th neuron, we have:

1. an attraction forceA by every j-th neuron of the upward layer ex-
pressed by the formula:

A= G
mjmi

ζ 2
ji

(4.2)

whereG is the gravitational constant andζ ji is the distance between
the two neurons in their role of particles of massesmi,mj . The dis-
tance is considered in a three-dimensional space, where thethird
coordinate refers to the distance between layers. We assumeit to be
a constanth so high that it allows us to resume in it both the contri-
bution of the components in theX plane and the square root ofG,
for the sake of simplicity;

2. an l -repulsive elastic forceR between particles of the same layer
which are closer thanl , expressed by:

R= kii ′ max{0, l −dii ′} (4.3)

wherekii ′ is the elastic constant between particlesi andi′. The force
is linearly dependent on the compressionl −dii ′ between them.

3. a massm expressed in term of the information content of eachi-th
neuron identifiable in our back-propagation training procedure by
the error termδ :

mi =
δi

‖δ‖1
(4.4)

where in the standard formulationδ is defined as:

δi =

{
f ′(neti)(τi −oi) if ℓ= r

f ′(neti)∑ j δ jw ji otherwise.
(4.5)
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In the next paragraphs there will emerge that whenℓ< r the formula
is quite different due to the introduction of an entropic term we will
motivate later.

Let now combine the attraction forceA with both the repulsive force
Rand another term expressing the kinetic energy in correspondence to
the neuron velocitiesv’s, obtaining the energy of the network by the
formula:

P = ξP1P1+ξP2P2+ξP3P3 (4.6)

whereξP1,ξP2,ξP3 are suitable coefficient in the role of tuning param-
eters and

P1 =
1
h∑

i, j
mimj (4.7)

P2 =
1
2∑

i,i′
kii ′max(0, l −dii ′)

2 (4.8)

P3 =
1
2∑

i
mi‖vi‖2 (4.9)

Equation (4.7) state the gravitational potential according to (4.2)
whereas eq. (4.8) identifies thel -repulsive elastic energy where the
elastic constantkii ′ is a function of the angular distance between the
weight vectorswi ,wi′ connecting thei, i′-th neuron to those lying on
the layerℓ+1:

kii ′ =

∣∣∣∣
〈wi ·wi′〉

‖wi‖ · ‖wi′‖

∣∣∣∣=

∣∣∣∣∣∣∣

∑ j wi j wi′ j√
∑ j w

2
i j

√
∑ j w

2
i′ j

∣∣∣∣∣∣∣
(4.10)

Finally,P3 is the kinetic energy of the network wherevi is the velocity
of the i-th neuron calculated using the following formulas relating
together the positionxi , the velocityvi and the accelerationai of each
computational moving unit:

x(n) = x(0)+
n

∑
h=1

v(h)t(h) = x(n−1)+v(n)t(n) (4.11)

v(n) =
n

∑
h=1

a(h)t(h) = v(n−1)+a(n)t(n) (4.12)
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where the superscript refers toh-th discrete time instant. Now we can
substitute (4.12) in (4.11) so that we are able to computex(n) using
the formula:

x(n) = x(n−1)+v(n−1)t(n)+a(n)t2(n) (4.13)

so it remains to calculate the accelerationa(n) at timen. Through the
potentialP we are able to calculate the global acceleration of the
system: on the one side the potential energy moves thei-th neuron
toward thej-th neuron with higherδ , according to the formula

∑
j

mjsign(x j −xi) (4.14)

on the other side the elastic repulsion moves away the neurons on the
same layer with an acceleration i) in inverse proportion to the angular
distance between the synaptic weights of the neurons lying on the
same layer and ii) in inverse proportion to their distances.

By design we decided to introduce a rest position through thecon-
stantℓ beyond which there is no repulsion, so the complete formula
is

−∑
i

kii ′max(0, l −dii ′)sign(xi′ −xi) (4.15)

and finally we obtain the acceleration formula for the generic neuron
i:

ai = ξ1∑
j

mjsign(x j −xi)−ξ2∑
i

kii ′max(0, l −dii ′)sign(xi′ −xi)

(4.16)
for properξis. Actually, for the sake of simplicity we embed the mass
of the accelerated particle intoξ2. Since this mass is not a constant, it
turns out to be an abuse which makes us forget some sensitivity terms
during the training of the network. Moreover, in order to guide the
system toward a stable configuration, we add a viscosity termwhich
is inversely proportional to the actual velocity, namely−ξ3vi , which
we do not reckon within the Lagrangian addends for analogoussim-
plicity reasons. It is worth noting that theξh, h= 1,2,3 multipliers are
different from those introduced in (4.6), moreover here thesuperscript
indicating the time instant is not reported for a better readability.
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4.3.3 Error term

The missing part that completes our model creating in the meanwhile
a cost function comprehensive of both dynamics and cognitive as-
pects, can be resumed in:

• a customary quadratic error function

Ec =
1
2∑

o
(τo−zo)

2 (4.17)

whereo indexes the output neurons,τ is the network output andz
is the target output.

• an entropic term devoted to promoting a representation of the neu-
ron state vector through independent Boolean components via a
Schur-concave function as discussed in Section 2.5. According to
the notation of this section, the edge pulling function reads now:

Eb = ln

(

∏
i

τ−τi
i (1− τi)

−(1−τi)

)
(4.18)

As a conclusion, we put together both the Lagrangian of physical
part of the neuron motion and the cognitive parts regarding the error
terms, thus obtaining an HamiltonianH of the form:

H = ξecEc+ξebEb+ξp1P1+ξp2P2+ξp3P3 (4.19)

and substituting with have:

H = ξe
1
2∑

o
(τo−zo)

2+ξbln

(

∏
i

τ(−τi)
i (1− τi)

−(1−τi)

)
+

ξ1∑
i, j

mimj +ξ2
1
2∑

i,i′
kii ′max{0, l −dii ′}2+ξ3

1
2∑

i
mi‖vi‖2 (4.20)

We want to minimize (4.20) in order to find the configuration oflower
energy that better approximates the function we are trying to learn.
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4.4 Training the network

In spite of recent trends to look for different strategies for training
the multilayer perceptron, specially if designed with morethan one
hidden layer, once again we commit back-propagation (Chapter 2)
to perform this task. The idea is that the dynamic we introduce on
the neurons’ layout, along with the augmentation of the cognitive as-
pects, will be sufficient to get rid of some of the standard implementa-
tion drawbacks [17].Per se, the classical back-propagation algorithm
comes directly from the functional minimization of a Lagrangian re-
lated exactly to the quadratic errorEc [36]. Rather, taking for granted
the Newtonian dynamics that comes from the extended Lagrangian as
well, we focus on the Hamiltonian of our system and specifically look
for its parametric minimization. This leads to the identification of the
systemground statewhich according to quantum mechanics denotes
one of the most stable configurations of the system equilibrium. Actu-
ally, the framing of neural networks into the quantum physics scenario
has been variously challenged in recent years [57]. Howeverthese ef-
forts mainly concern the quantum computing field, hence enhanced
computing capabilities of the neurons. Here we consider conventional
computations and classical mechanics. Rather,superpositionaspects
concern the various endpoints of learning trajectories. Many of them
may prove interesting (say, stretching valuable intuitions). But a few,
possibly one, attain stability with a near to zero entropy – acondition
which we strengthen through the additional viscosity term.

Looking for the minimum of the cost function (4.20) requiresonly
a careful computation of the derivatives of all its addends w.r.t. each
connection weightw ji . In particular, as for the cognitive part, we must
consider the dependence ofλ ji on w ji which passes through the de-
pendence of the positionxi andx j on the same parameter. As for the
physical part, we must also consider the dependence of the accelera-
tion ai , velocity vi and the elastic constantk ji on w ji .Thus the main
expressions related to the above derivatives are summarized in Ta-
ble 4.1.

The interested reader could find all the details about the derivatives
for the back-propagation in Appendix A.
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error

∂ (Ec+Eb)

∂w ji
=

(
1− w ji

d ji
(x j −xi)

∂xi

∂w ji

)
λ ji τiδ j ;

δ j = f ′(netj )

(
−γ ln

(
τ j

1− τ j

)
+∑

k

δkλk jwk j

)
; γ =

ξeb

ξec

potential

∂P1

∂w ji
= mj

sign(δi)

‖δ‖1
(1−mi) f ′(neti)δ j

∂P2

∂w ji
= ∑

i′

1
2

max{0, l −dii ′}2 ∂kii ′

∂w ji
+∑

i′

kii ′

dii ′
max{0, l −dii ′}(xi′ −xi)

∂xi

∂w ji

∂P3

∂w ji
=

1
2
‖vi‖2 sign(δi)

‖δ‖1
(1−mi) f ′(neti)δ j +mivi

∂vi

∂w ji

dynamics

∂a(n)i

∂w ji
= −ξ2

(
∑
i′
(max{0, l −dii ′})sign(xi′ −xi)

∂kii ′

∂w ji
+

−∑
i′

kii ′sign(xi′ −xi)
∂dii ′

∂w ji

)

∂v(n)i

∂w ji
=

∂v(n−1)
i

∂w ji
+ tn

∂a(n)i

∂w ji

∂x(n)i

∂w ji
=

∂x(n−1)
i

∂w ji
+ tn

(
∂v(n−1)

i

∂w ji
+ tn

∂a(n)i

∂w ji

)

∂kii ′

∂w ji
= sign

( 〈wi ·wi′〉
‖wi‖ · ‖wi′‖

)w ji ′‖wi‖ · ‖wi′‖−〈wi ·wi′ 〉w ji
‖wi′ ‖
‖wi‖

(‖wi‖ · ‖wi′‖)2

∂dii ′

∂w ji
= −xi′ −xi

dii ′

∂xi

∂w ji

Table 4.1 Gradient expressions for the backward phase from last-but-one layer down.

4.5 Numerical Experiments

Adding degrees of freedom to a neural network makes sense only
if we are able to govern its evolution. The failure of this attitude is
the common reason why we generally abandon the implementation
of both recurrent neural networks [63] and the most ingenuous ver-
sions of deep architectures as well [48]. Hence we stress ournetwork
of mobile neurons – which copes both with the recursiveness through
the neurons physical motion and with the deepness of the architecture
through a relatively high number of its layers – on two typical bench-
marks as a specimen of a regression problem and a classification task,
respectively.

1. The Pumadyn benchmark pumadyn8-nm. It is drawn from a family
of datasets which are synthetically generated from a Matlabsim-
ulation of a robot arm [34]. It contains 8,192 samples, each con-
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stituted by 8 inputs and one output. The former record the angular
positions and velocities of three arm joints plus the value of two ap-
plied torques. The latter is the resulting angular acceleration of one
of the joints. This acceleration is a nonlinear function of the inputs
which is affected by moderate noise as well.

2. The MNIST benchmark. This handwritten digits benchmark [77]
consists of a training and a test set of 60,000 and 10,000 examples,
respectively. Each example contains a 28×28 grid of 256-valued
gray shades (between 0 and 255, with 0 meaning black and 255
white). It is a typical benchmark for classification algorithms, given
the high variability of the handwritten representation of the same
digit.

With these highly demanding datasets, at the moment we have no
ambition to win a competition with the many methods which have
been tossed on them. Rather, we want to use these data as different-
size/different-task instances on which to carry out a test lap of the new
learning machinery we have set up.

4.5.1 Assessing the new training procedure

At the start of the lap, we had to solve three kinds of partly nested
problems:

1. designing the architecture,
2. assessing the particle dynamics,
3. tuning the learning parameters.

The solution we assessed for the moment are the following:

1. As for the former, we strove to stress the capability of working with
deep networks. Therefore we devised a 5-layer network in each ex-
periment. We distribute the neurons on the crosses of a planesquare
grid in each layer, apart from the output layer. We standardize the
grid edge to a size equal to 100 and centered each grid in(0,0).
Then, the number of neurons per layer is determined by the bench-
marks as for input and output, while is decided by us in order to be
sufficientto manage the piped information, as for the intermediate
layers. In particular,
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Fig. 4.5 The initial network layouts for: (a) Pumadyn, and (b) MNIST.

• for Pumadyn dataset we have 8 input neurons in a grid of 3×1
cells and only one output neuron. This results in a 8×100×80×
36×1 perceptron.

• For the MNIST benchmark, facing the 28×28 raster of the digits,
we reduce the number of pixels by 4, just by periodically taking
the average of contiguous values on both axes. Hence we have an
input layer of 196 neurons spread in a grid of 13×13 cells. Con-
cerning the output, we opted for a unary representation; hence
we commit a single neuron to answer 1 and the others 0 on each
digit. We distributed these neurons on a circle of ray equal to 50
centered in the axes origin like the other layers. In conclusion,
we have a 196×120×80×36×10 network.

This is for the initial layouts which we may see in Fig. 4.5. Then
the neurons will find their proper positions by themselves.

2. The physics of the particle motion is characterized by a time step
tn equal to 0.02 per state update. This is a critical parameter tun-
ing the velocity of the physical particles within the Euclidean space
w.r.t. the velocity of the same particles in the weight space. We
assume that particles are able to find the best reciprocal positions.
However, an exceeding velocity could thwart any training effort be-
cause of the continually changing configuration of the network. In
Fig. 4.7 we highlight this crucial aspect which we may synthesize
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(a) (b)

Fig. 4.7 Neuron trajectories of: (a) a not well tuned training story,and (b) a successful one
where the dynamic is more gentle. Bullets: neurons of the second layer in the MNIST benchmark
(grey/black: initial/final position).

by claiming that we need a gentle particle motion to avoid hard
training backtracking which frustrates the overall training.
Our neurons are cognitive particles which need a proper metering
system. We take care of it in a tight empirical way through theξ
coefficients with the practical aim of balancing the cost terms in the
Hamiltonian (4.20). It is suggestive the fact that we use thesame
coefficients in the two benchmarks, in spite of the very different
goals of the two experiments.

3. As for the cognitive aspects, the effect of neuron motion on the
training process is linked to two factors. An indirect one isrepre-
sented by the enriching of the cost function with physical energy
terms, so that its minimization entails that the connectionweights
must change also in order tofreezethe dynamics of the ground
state. The more direct effect comes from the penalty termλ ji which
reduces the influence of farther neurons in the net-input accumula-
tion. This plays a dual role of: 1) modulating the load of the Hamil-
tonian gradient cumulated over the reversed outgoing connections,
hence the amount of weight changes along the training steps,and 2)
determining the specialization rate of the various neuronsw.r.t. the
facing mates in the contiguous layers. We experimented on several
alternative time strategies aimed at either reducing or increasing the
radius of influence of the single back-propagating neurons,attest-
ing at end that the better choice is to keep the radius at fixed value
– it could be a different one layer per layer – along the training.
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Fig. 4.9 Histograms of the state values of two typical hidden layer neurons at the end of training.

A second key aspect in the training process is the effect of the BICA
term (4.18). As aforementioned, this cost term is devoted topro-
moting a meaningful representation of the network state vector τ
at each layer, in terms of tendentially binary independent compo-
nents. At the beginning of the training, specially if we initialize the
weights to very small values in order to prevent bias, this term may
prove exceedingly high, and thus requires a proper calibration of
the coefficientγ. As a matter of fact, we want this stretching of the
state vector components toward the extremes to occur at the end of
the training, so as to saturate the output of the activation functions to
suitable values. Moreover, to increase the sensitivity of the system,
we adopt the usual back-propagation trick of normalizing the state
range to(−1,1) through the hyperbolic tangent activation function.
The sole exception is the output neuron’s of the regression task,
which is linear. Thus a typical histogram of the component states is
the one depicted in Fig. 4.9.
In essence, we venture the conjecture that motion plus BICA goal
induce a preprocessing of the state vector in the same direction as
more explicit techniques like Restricted Boltzmann machines [51]
in the role of autoencoders [132], but in a simpler and quicker way,
without straying from the root of the back-propagation method. The
curves in Fig. 4.10 confirm our conjecture. Namely, the descent of
the error termEc summed over the training set – the training Mean
Square Error (MSE) – with the iterations improves when we add
the BICA term in the cost function of the standard backpropagation,
and improves still more when we add motion to the neurons of the
same architectures.
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Fig. 4.10 Course of training MSE with weight updates’ number (wun) forthe regression problem.
Same architecture different training algorithms: light gray curve→ standard back-propagation,
dark gray curve→ back-propagation enriched with the BICA term, black curve→ our mob-neu
algorithm.

To complete the setup of the training procedure we have to fix
the learning rate parameters. We differentiate a coefficient concern-
ing the contribution to weight adaptation deriving from theweight
sensitivity of the cognitive part (Ec+Eb) from another linked to
the analogous sensitivity of the dynamic part (P1+P2+P3). Both
are exponentially decaying of a pair of orders with the number of
elapsed steps, whereas their fixing depends on the benchmarkfea-
tures and on batch size, as usual.

4.5.2 Discussing some results

4.5.2.1 The regression task

In Table 4.2 we compare the test-set MSE of our procedure on the
Pumadyn benchmark with the ones obtained with other methodsin
the literature. To have a fair comparison we use a completelystandard
framework. Namely, according to the Delve testing scheme [108] ap-
plied to the pumadyn-8nm dataset, we generate five groups of training
sets, of size 64,128,256,512 and 1024, respectively. Each group is
made up of 8 different subsets (4 subsets for the 1024 one) of the
downloaded dataset, each paired with a different test set offixed di-
mension 512 (1024 for the last one) drawn from the same dataset.
Each pair training/test-set is the basis for one experiment. To have
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comparable results to be statistically considered for the same training
set size, targets are normalized around their median value using the
Median Absolute Deviation as a scale factor. MSE results arecom-
puted on the original feature set removing the above normalization.
Namely, on this framework we compare the mean and standard devi-
ation of the MSEs obtained by our network of mobile neurons (mob-
neu) with those of other methods drawn from the Delve repository. For
small sizes (64 and 128), our method outperforms the others based on
back-propagation even when they benefit from both test and valida-
tion sets, while it loses out w.r.t. regression methods based on differ-
ent strategies (for instance hidden Markov models, Bayesian methods,
and so on). Things become less sharp with higher sizes, wherea few
trespasses occur between the methods as for the means and tangible
overlaps as well of the confidence intervals. Admittedly, the consid-
ered methods date at least 20 years, yet offering a completely definite
comparison framework. Looking at the most recent results wefind
notably progresses in this regression problem. For instance, support
vector regression methods improve these results of even twoorders
when they are based on very specialized kernels [38], while model se-
lection and specific error functions may reduce the MSE of theback-
propagation procedure by a factor ranging from 2 to 3 [122]. Rather,
we remark that our implementation was very naive, in the sense that
we did not spend much time searching for the best updating strategy
and parameter tuning, nor did we stretch out the procedure for long
time. Moreover, we did not miss the general-purpose features of the
training scheme. We simply enriched the structure and the functional-
ity of the underlying neural network.

The typical MSE descent of the training error (in the normal scale)
with the number of weight updates is reported in Fig. 4.11(a)for a
batch size equal to 20. We appreciate the generalization capability of
the network in Fig. 4.11(b), where we represent in gray the sorted
test set targets and in black the corresponding values computed by our
network for one of the 8 replicas of the 512 experiment. In Fig. 4.11(c)
we also plot the sorted lists of the absolute errors obtainedby our
method and a couple of competitors. Since the latter refer tothe first
and last rows of Table 4.2 we may realize how close the proposed
method works to the best one.

Lastly, in Fig. 4.12(a) we report the final layout of the neural net-
work after training, as a companion to the initial layout reported in
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Fig. 4.5(a). Even though we do not have yet a functional interpreta-
tion of the new layout, its features denote some persistencyalong the
Delve replicas, which put them far from a random generation.

4.5.2.2 The classification task

Moving on the classification problem, Table 4.3 shows the confusion
matrix of the classifier on the entire MNIST test set we get directly
from the output of a well trained neural network (i.e. assigning to a
test pattern the label of the output neuron which computes the highest
state value). Postponing a more deeply statistical analysis to a further

64 128 256 512 1024

mlp-mc-1
1.96726 1.61052 1.25143 1.13004 1.07711
(0.276) (0.154) (0.0613) (0.0397) (0.0355)

gp-map-1
2.00875 1.55786 1.31765 1.13152 1.0794
(0.132) (0.0506) (0.0363) (0.0319) (0.0312)

mob-neu
5.25507 2.24522 1.81821 1.28294 1.21273
(0.541) (0.154) (0.096) (0.036) (0.034)

mlp-mdl-3h
6.40296 3.12531 2.82356 2.35649 2.1694
(0.620) (0.475) (0.575) (0.417) (0.614)

mlp-mc-2
8.93908 1.43405 3.21679 2.35757 1.08938
(2.53) (0.0412) (1.85) (1.22) (0.0322)

mlp-ese-1
9.36373 3.81698 1.73787 1.37629 1.2133
(0.776) (0.225) (0.0455) (0.0378) (0.0340)

mlp-wd-1
19.3383 6.78868 3.56734 2.71222 2.14455
(1.84) (1.76) (0.252) (0.228) (0.364)

Table 4.2 Comparison of regression performances. Raw: method; column: size of the pumadyn8-
nm training set; cell: MSE average and standard deviation (in brackets)

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 964 0 2 2 0 2 4 3 2 1 1.63
1 0 1119 2 4 0 2 4 0 4 0 1.41
2 6 0 997 2 2 2 4 11 8 0 3.39
3 0 0 5 982 0 7 0 6 6 4 2.77
4 1 0 2 0 946 2 7 2 1 21 3.67
5 5 1 1 10 0 859 7 1 5 3 3.70
6 5 3 1 0 3 10 933 0 3 0 2.61
7 1 5 14 5 2 1 0 988 3 9 3.89
8 4 1 2 8 3 3 8 4 938 3 3.70
9 5 6 0 11 12 8 1 11 7 948 6.05

Table 4.3 Confusion matrix of the MNIST classifier.
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Fig. 4.11 Errors on regressing Pumadyn. Course of: (a) training MSE with weight updates’ number
, (b) network output with sorted target patterns (stp), and (c) sorted absolute test error of our model
(black curve) and competitor mlp-mc-1 and mlp-wd-1 (gray curves) in Table 4.2.

work, we note in the matrix a fair distribution of the errors on the
digits, though reflecting the widely recognized greater difficulty of
classifying digits like ‘9’.

The cumulative error rate is about 3.26%, that is definitely worse
than the best results, which attest at around one order less [31], yet
without suffering a bad ranking w.r.t. a plenty of methods given the
amount of tuning efforts (2 days), the number of weight updates
(50,000) and the length of the running time (128 minutes) we devote
to this task. For instance, in Fig. 4.13 we report a few example of hard
handwritten digits that have been correctly classified, together with
another set of such digits on which the network did not succeed. Con-
sidering their shape we wander if it makes sense looking for anetwork
which recognizes the second picture of the first line to be a 9.Ore-
ationally, a recognition percentage of 99.7% is better than 97.0%, of



108 4 Information driven dynamics

course. But it sounds like to give label to random noise. Hence a ques-
tion arises on the replicability of the experiment on another dataset.

Fig. 4.14 shows the error decreasing of the 10 digits classification.
We use a batch size of 30 examples randomly drawn from the 60,000
long training set, whereas the error reported in Fig. 4.14 ismeasured
on 200newexamples – actually a generalization error causing some
ripples on the trajectories of the single digits.

From Fig. 4.12(b) we capture the different displacement of the
nodes w.r.t. the original layout, due to a motion which preserves some
symmetries but generates some peculiar features as well. Asmen-
tioned before, we cannot claim to have reached a great classifica-
tion result in absolute. However we use a relatively small amount of
computational resources, and process examples that are roughly com-
pressed just by averaging neighboring pixels. Nevertheless, we are
able to classify digits which would prove ambiguous even to ahuman
eye. In addition, we are able to train a network of 5 layers and442
nodes without falling in a local minimum outputting the average tar-
get value, as often happens with these deep networks. Thus weare
motivated to investigate whether and how the introduction of the dy-
namics in the network layers could care these benefits.
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Fig. 4.12 The final layout of the multilayer perceptrons in Fig. 4.5.
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Fig. 4.13 Examples of wrongly and correctly classified ‘9’s.

A first consideration is that thanks to the large number of theem-
ployed neurons and their stable evolution, almost the entire (60,000
long) training set is well digested by the training procedure, even
though each example is visited meanly twice according to ourbatch-
ing strategy. We assume it to be due to the cognitive structure the
moving neurons realize within the network. As an early analysis, in
Fig. 4.15 we capture the typical dendritic structure of the most corre-
lated and active nodes reacting to the features of a digit. Namely, here
we represent only the nodes whose output is significantly farfrom
0 with a significant frequency during the processing of the test set.
Then we establish a link between those neurons, belonging tocon-
tiguous layers, which are highly correlated during the processing of
a specific digit. In this respect, the pictures in Fig. 4.15 highlight a
dendritic structure underlying the recognition of digits ‘3’ and ‘4’. An
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Fig. 4.14 Course of the single digits testing errors with the number ofweight updates.
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Fig. 4.15 Dendritic structure in the production of digits: (a) ‘3’, and (b) ‘4’.

analogous analysis on intra-layer neurons highlights cliques of neu-
rons jointly highly correlated in correspondence of the same digit, as
shown in Fig. 4.16.
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Fig. 4.16 Cliques of highly correlated neurons on the same digits of Fig. 4.15. Bullets: locations
of all 2-nd layer neurons.
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4.6 Further improvements

Fuzzyfication ofλs

The influence of the cognition on the dynamics is ruled by the cogni-
tive masses and the elastic constants, as shown before. The reciprocal
influence of the dynamics on cognition is determined by the penalty
termsλ jis. We may consider these coefficients in terms of member-
ship degrees (see Fig 4.17). Actually the upper layer neurons act as
attractors of the lower-layer neurons as for the information piping.
As their core business is to learn, the latter must decide to which at-
tractor to pay more attention. In terms of fuzzy sets, this translates
in the solution of a fuzzy c-means algorithm (FCM) [42] with given
cluster centroids (the above attractors), once a proper metric has been
fixed. Using the Euclidean distance of the lower-layer neuron to its
upper-layer attractor as a metric, the classical instantiation consists in
solving the minimization problem:

min
λ

∑
i j

λ µ
ji d

2
ji ; µ > 0;∑

j
λ ji = 1 (4.21)

which find solution:

λ ji =
1

∑k

(
d2

ji

d2
ki

) 1
µ−1

(4.22)

Hereµ plays the role of the overposition factor. Like as in quantum
mechanics, a neuron may belong to more than one attracting basin
(actually, its state) whenµ 6= 1. Whereas, the deterministic case, i.e.
each neuron of the lower layer attributed to a single neuron of the
upper layer, occurres withµ exactly equal to 1. We get a solution more
compliant with our expression of the penalty term in (4.1), considering
the negative entropy as membership regularization [131] inthe FCM
solution. In this case the objective function read:

min
λ

∑
i j

λ ji d
2
ji +µ ∑

i j
λ ji log ji ; µ > 0;∑

j
λ ji = 1 (4.23)

with solution:
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1

Fig. 4.17 Example of the membership functions determining the influence received by the down-
ward neurons from upward ones.

λ ji =
exp(−µd2

ji )

∑k exp(−µd2
ki)

(4.24)

with an analogous meaning ofλ . Theλ values computed in this way
present some normalization problems, since the constraint∑ j λ ji = 1
gives rise to very small values when the number of cluster is high, as
usual with our networks. Therefore we restrict the sum to thesole val-
ues exceeding a suitable quantile. In Fig. 4.18 is represented theper
layerλs distribution of these coefficients. Their shapes denote a dif-
ferent role of the nodes in the various layer as for their specialization.

A unified learning space

Recalling our aim regarding the study about the impact of theinten-
tionality in learning processes we want to strengthen the relationship
between the topological space motion of neurons and the cognitive
information passing through them. In this way we are mergingtwo
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Fig. 4.18 Distribution ofλ coefficients on the various layersℓs at the last training iteration.
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substantially different spaces - the topological space andthe weights
space - into a unified space. As a result we stress the membership of
a lower-layer neuron to a upper-layer companion by directlyenhanc-
ing the absolute value of their connection weight when the neurons
get closer (i.e. the distance between them diminishes) andvice versa
when they get farther apart. Symmetrically, we directly push closer
those neurons in contiguous levels whose absolute value of the con-
nection weights increases (andvice versa). Namely, lettingα, δw ji , c
be the momentum term, the weight increment term ruled by the back-
propagation algorithm, and a suitable regularization termrespectively,
we have the following update rules:

w ji (t +1) = w ji (t)+∆w ji(t) (4.25)

∆w ji (t) =
(
(1−α)∆w ji (t −1)+

α
(
δw ji (t)−c sign(w ji (t))

(
d ji (t)−d ji(t−1)

)))

xi(t +1) = xi(t)−∆xi(t) (4.26)

∆xi(t) = ∑
j

xi(t)−x j(t)

d ji(t)
sign(w ji (t))δw ji(t)

1
c

In this way both weight and positions are very tightly correlated.

Replicated outputs

We further drawn on the biological original of our artificialneural
network by replicating the goals of the output nodes. This induces a
replicated representation of external objects and, possibly, a better ab-
straction capability of our machinery. Think about the classification
task presented before with the MNIST dataset: we have 10 classes re-
ferring to handwritten digits from 0 to 9 and it is plausible to think that
even in each single class of digits (e.g. 0) we can find different samples
that could be clustered in respect to secondary features of the hand-
written characters. As a counterpart, these features, if not properly
managed, may induce misclassifications. To fill this gap our approach
is to increase the number of output neurons per single class and train
the network without any further modification. At a first glance the re-
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Fig. 4.19 Course of the train (black) and test (gray) misclassification error on MNIST dataset with
an increasing number of output neuronsψo associated to the single target classes.

sults are promising, in Fig. 4.19 we can notice a decreasing trend in the
error percentage that goes with the number of output neuronsper sin-
gle target class. In Table 4.5 is shown the final confusion matrix w.r.t.
the test set, that, if compared with Table 4.3 we can notice a signifi-
cant, though not yet really competitive (see Table 4.6), improvement
in the misclassification error percentage reaching a final 2.76%.

The new setup of the last layer introduce the necessity of putting
into the game a proper approach to deal with replicated outputs. We
investigated different ways to achieve this: the first and until now more
profitable approach consists in the plain multiplication ofthe num-
ber of output neurons per target class, followed by the usualback-
propagation of the correspondingδ -errors. We tried also to induce a
different behavior in term of the quantity ofδ -error back-propagated
in order to promote a better differentiation between the intra-class out-

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 5842 2 11 4 4 9 23 1 18 9 1.37
1 1 6626 35 15 8 0 3 17 30 7 1.72
2 7 8 5850 15 10 8 5 28 17 10 1.81
3 4 1 50 5910 3 55 2 44 37 25 3.60
4 5 13 9 0 5722 5 18 7 7 56 2.05
5 7 4 3 30 6 5303 35 1 15 17 2.18
6 13 6 1 2 8 26 5851 0 11 0 1.13
7 3 9 33 6 24 1 0 6124 11 54 2.25
8 10 22 18 16 11 25 14 3 5712 20 2.38
9 11 7 4 18 39 19 2 40 31 5778 2.87

Table 4.4 Confusion matrix of the MNIST classifier on 60,000 train samples.
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Fig. 4.20 Example of last last layer layout in the replicated output configuration.

put but without getting better results than with the plain approach.
However this is still an open research line. In Fig. 4.20 we report the
fifth layer layout of an experiment where we split ten times the output.
Hence 10 neurons are deputed to output 0, then 1 and so on. The lo-
cation of the neurons on the layer prove to be essential for the success
of the results.

4.7 Concluding remarks

At the end of this chapter we cannot conclude with breaking news.
Our algorithms work well, but not optimally. The final layouts of the

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 967 0 1 0 0 2 4 1 5 0 1.33
1 0 1121 4 2 0 1 2 0 5 0 1.23
2 7 1 1005 4 3 0 0 6 6 0 2.62
3 0 0 9 980 0 7 1 7 4 2 2.97
4 1 1 2 0 954 1 4 1 3 15 2.85
5 3 0 0 7 1 863 7 2 5 4 3.25
6 2 2 0 0 6 11 935 0 2 0 2.40
7 1 3 13 1 1 1 0 987 6 15 3.99
8 4 0 2 7 2 2 5 3 948 1 2.67
9 4 3 0 7 11 7 0 5 5 967 4.16

Table 4.5 Confusion matrix of the MNIST classifier on 10,000 test samples in thereplicated
output experiment
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considered neural networks suggest some intriguing features, but do
not show anything clear. The last contrivances we adopt to improve the
training procedure are promising, but need further refinements. Thus
we may sell at this moment only the philosophy, which we synthesize,
in a very abstract way, in two points:

• we manage motion as a physical counterpart of agent intentionality
in a unified space, where both cognitive forces and physical forces
merge in a homogeneous milieu. This appear a natural consequence
of a mechanistic perspective where thoughts are the output of neu-
ral circuits and the latter obey to the physical laws of Nature. Of
course, we are not claiming our Newtonian force fields to be the
ones actually ruling the intentionality. We simply assume them to
may be a very simplistic modeling of the physical-cognitiveinter-
action.

• we revive the original Artificial Neural Network project, where a
single, possibly complex, neural device is able to face any kind of
learning task, like our brain does. Also in this case we carryout an
extreme simplification of the matter. However, we did so to solve
two far different problems, as for goals, features and dimension-
ality, with a same architecture and same training algorithm. The
unique differences concern the input and output layer layouts –
which are determined by the training set features – and a few tuning
parameters, whose values need a relatively limited set of numerical
experiments for their assessment.

As a matter of fact, the contrivance we raised up is definitelycomplex,
and we expect a long work is still necessary to get ride of its behavior.
We just hope having thrown a stone into the water and wait for aripple
reaching other researchers in the field.
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CLASSIFIER PREPROC.MISS%
linear classifier (1-layer NN) none 12
boosted stumps none 7.7
K-nearest-neighbors, Euclidean (L2) none 5
2-layer NN, 300 hidden units, mean square error none 4.7
2-layer NN, 1000 hidden units none 4.5
2-layer NN, 1000 HU, [distortions] none 3.8
1000 RBF + linear classifier none 3.6
2-layer NN, 300 HU, MSE, [distortions] none 3.6
40 PCA + quadratic classifier none 3.3
K-nearest-neighbors, Euclidean (L2) none 3.09
3-layer NN, 300+100 hidden units none 3.05
3-layer NN, 500+150 hidden units none 2.95
K-nearest-neighbors, L3 none 2.83
Mobneu, 120+80+36 hidden units none 2.76
3-layer NN, 300+100 HU [distortions] none 2.5
3-layer NN, 500+150 HU [distortions] none 2.45
2-layer NN, 800 HU, Cross-Entropy Loss none 1.6
3-layer NN, 500+300 HU, softmax, cross entropy, weight decay none 1.53
boosted trees (17 leaves) none 1.53
SVM, Gaussian Kernel none 1.4
products of boosted stumps (3 terms) none 1.26
2-layer NN, 800 HU, cross-entropy [affine distortions] none 1.1
Convolutional net LeNet-4 none 1.1
Convolutional net LeNet-4 with K-NN instead of last layer none 1.1
Convolutional net LeNet-4 with local learning instead of last layer none 1.1
NN, 784-500-500-2000-30 + nearest neighbor, RBM + NCA training [no dis-
tortions]

none 1

Convolutional net LeNet-5, [no distortions] none 0.95
2-layer NN, 800 HU, MSE [elastic distortions] none 0.9
large conv. net, random features [no distortions] none 0.89
Convolutional net LeNet-5, [huge distortions] none 0.85
Trainable feature extractor + SVMs [no distortions] none 0.83
Virtual SVM deg-9 poly [distortions] none 0.8
Convolutional net LeNet-5, [distortions] none 0.8
2-layer NN, 800 HU, cross-entropy [elastic distortions] none 0.7
Convolutional net Boosted LeNet-4, [distortions] none 0.7
Virtual SVM, deg-9 poly, 1-pixel jittered none 0.68
large conv. net, unsup features [no distortions] none 0.62
Convolutional net, cross-entropy [affine distortions] none 0.6
large conv. net, unsup pretraining [no distortions] none 0.6
unsupervised sparse features + SVM, [no distortions] none 0.59
Trainable feature extractor + SVMs [elastic distortions] none 0.56
Trainable feature extractor + SVMs [affine distortions] none 0.54
large conv. net, unsup pretraining [no distortions] none 0.53
Convolutional net, cross-entropy [elastic distortions] none 0.4
large conv. net, unsup pretraining [elastic distortions] none 0.39
6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU) [elastic distortions] none 0.35

Table 4.6 Comparison between several methodologies applied on MNISTdataset [77]. All the
techniques do not use preprocessed data.





Chapter 5
Conclusions

In this thesis work we state a bridge between two kind of forces ruling
the motion of natural agents: cognitive forces expressed bythe inten-
tionality of the agents and physical forces entailed by their masses.
This bridge is at the basis of a mobility model that we may recognize
in Nature in humans, but also in animals and in other scenarios like in
the morphogenesis of the brain cortex.

Abandoning the symmetry of the Brownian motion – the template
of non intelligent agent motion – during this thesis work we have been
drawn to understand the general mechanism behind this duality be-
tween physics and intentionality.

First of all, we take under observation the social communities in
terms of mobility models. These models represented a challenge both
for their exploitation in many social contexts and for the sophistication
of the theoretical tools required by their analysis and identification. To
this aim, we introduce an atomic wait and chase motion of the single
agents, essentially following a heuristic approach. However, we had
in mind and tried to relate methods and results to two very sophis-
ticated theoretical paradigms represented by the Lévy flights and the
Palm Calculus. Thus we dealt with an ergodic process that we fol-
lowed along the single trajectories drawn by the dodgem carsin the
case study, but also along real trajectories emerging from operational
scenarios such as those of opportunistic networks, GPS tracking, and
so on. To describe these real data we had to abandon the canonical
statistical framework in favor of a more ductile methodology coming
from Algorithmic Inference. In this way we were able to quickly infer
the parameters of the mobility model as a necessary step to validate
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its suitability. Actually we were successful even in the case of obser-
vations that are not mutually independent, as we may expect from the
behavior of humans rather than mechanical particles.

Then we moved our mobility model, and related intentional pro-
cesses, form the macro scale scenarios to the micro scale ones. The
subject changes but the overall behavior does not: biological neurons
that moves separately from one place to another in order to constitute
the brain. Inspired by this behavior we tried to exploit it todesign a
machinery that could benefit by this kind of intentionality,so that we
build an artificial neural network where each neuron has additional
degrees of freedom deriving on a new element: its mobility. These en-
tails a new kind of connectionist paradigm whose exploration is at a
very preliminary stage. We may observe that the multilayer networks
we handle do not suffer from the typical deep architecture network
drawback of getting stuck in local minima around the averageoutput
during the training. Tossing these networks on canonical benchmarks
we cannot match the top results shown in the literature. However, we
work with a robust connectionist tool that requires no exceedingly
sophisticated tuning in correspondence of the specific computational
tasks and, in any case, no extra expedients generally devised by com-
petitor methods. The neuron motion has asocial value: each neuron
try to find its best reciprocal position w.r.t. the others in terms of infor-
mation transmission and production efficiency. This emergea layout
adaptivity which seems to revive the initial connectionistproject of
one architecture for a vast variety of learning tasks. A changing lay-
out is more difficult to mould than a static one. Thus, at this early
stage of the research, the question whether the additional degrees of
freedom represent a benefit or a drawback. Preliminary experiments
lean towards the first option because of the emerging self-organizing
attitude of the network. The current advantage is that we getrid of
complex networks, as for number of both layers and neurons, with a
suitable behavior and acceptable results.

To give a bit pretentious conclusion to this thesis work, anddelin-
eate a future research line as well, we may observe the following. A
milestone connection between cognitive and physical aspects of think-
ing agents life has been stated in the past century by the Boltzmann
constant numerically connecting thermodynamic entropy toShannon
entropy. Our idea is that thismaterializationof thought could nowa-
days continue with an analogous numerical connection between the
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various kind of forces, from physical to cognitive, ruling the motion
of the thinking agents. We also remark that in this thesis work we
started with a model of the physical motion of the agents, andcome to
an overall model where the distinction between motion and learning
is only a matter of different coordinate spaces where the agent moves.





Appendix A
Derivation rules for the back-propagation
algorithm

A.1 Potential derivatives

Let us determine the sensibility of the potentialP w.r.t. the synaptic
weights

∂P

∂w ji
=

3

∑
k=1

ξk
∂Pk

∂w ji
(A.1)

A.1.1 Gravitational attractionP1

Let be the following derivation chain rule:

∂P1

∂w ji
=

∂P1

∂mi

∂mi

∂δi

∂δi

∂w ji
+

∂P1

∂mj

∂mj

∂δ j

∂δ j

∂w ji
(A.2)

• The first addend of the sum is the product ofmj times sign(δi)
‖δ‖1−δi

‖δ‖2
1

that we can write assign(δ1)
‖δ‖1

(1−mi). Recalling the definition ofδi in
(4.5) we say that even not expressively stated we will not consider
the contributions of the neurons of the output layer.

• The second addend does not contribute to the global variations due

to ∂δ j

∂w ji
= 0.
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A.1.2 Elastik repulsionP2

Starting with the following derivation chain rule

∂P2

∂w ji
= ∑

i′

∂P2

∂kii ′

∂kii ′

∂w ji
+∑ ∂P2

∂dii ′

∂dii ′

∂w ji
(A.3)

• We have
∂P2

∂kii ′
=

1
2

max{0, l −dii ′}2 (A.4)

whereas for the second factor∂kii ′
∂w ji

:

∂kii ′

∂w ji
= sign

( 〈wi ,wi′〉
‖wi‖ · ‖wi′‖

) ∂ 〈wi ,wi′〉
∂w ji

‖wi‖ · ‖wi′‖−〈wi ,wi′〉∂‖wi‖·‖wi′‖
∂w ji

(‖wi‖ · ‖wi′‖)2

= sign

( 〈wi ,wi′〉
‖wi‖ · ‖wi′‖

)
w ji ′‖wi‖ · ‖wi′‖−〈wi ,wi′〉w ji

‖wi′‖
wi

(‖wi‖ · ‖wi′‖)2
(A.5)

• For the second addend we have

∂P2

∂dii ′
=−kii ′ max{0, l −dii ′} (A.6)

• and

∂dii ′

∂w ji
=

∂dii ′

∂xi

∂xi

∂w ji
+

∂dii ′

∂xi′

∂xi′

∂w ji
=−xi′ −xi

dii ′

∂xi

∂w ji
(A.7)

Going deeper inside the last equation, we need to consider the contri-
butions from all the components of the vectorxi = {xi1, . . . ,xid}, with
d = 2:

∂dii ′

∂w ji
=

d

∑
p=1

∂dii ′

∂xip

∂xip

∂w ji
+

∂dii ′

∂xi′p

∂xi′p

∂w ji
(A.8)

In order to lighten the notation we rewrite the latter as

∂dii ′

∂w ji
=

∂dii ′

∂xi

∂xi

∂w ji
+

∂dii ′

∂xi′

∂xi′

∂w ji
(A.9)

It is worth noting that the motion inside the layerℓ and indexed withi
remove the sensibility ofxi′ with reference tow ji . Instead, for the first
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addend we have

∂dii ′

∂xi
=− xi′ −xi

‖xi′ −xi‖
=−xi′ −xi

dii ′

on the one side; on the other side we can exploit (4.11-4.13) as fol-
lows:

∂xn
i

∂w ji
=

∂xn−1
i

∂w ji
+

∂vn
i tn

∂w ji
=

∂xn−1
i

∂w ji
+tn

∂vn
i

∂w ji
+vn ∂ tn

∂w ji
=

∂xn−1
i

∂w ji
+tn

∂an
i

∂w ji

(A.10)

∂vn
i

∂w ji
=

∂vn−1
i

∂w ji

∂an
i tn

∂w ji
= tn

∂an
i

∂w ji
+an

i
∂ tn

∂w ji
=

∂vn−1
i

∂w ji
+tn

∂an
i

∂w ji
(A.11)

Summarizing

∂xn
i

∂w ji
=

∂xn−1
i

∂w ji
+ tn

(
∂vn−1

i

∂w ji
+ tn

∂an
i

∂w ji

)
(A.12)

It remains to calculate the term∂an
i

∂w ji
that we will explicit in Sec-

tion A.2. Finally we can interpret

∂dii ′

∂w ji
=−xi′ −xi

dii ′

∂xi

∂w ji
(A.13)

as
∂dii ′

∂w ji
=− 1

dii ′

d

∑
p=1

(xi′p−xip)
∂xi

∂w ji
(A.14)

Kinetic energyP3

From the usual derivation chain rule we have

∂P3

∂w ji
=

∂P3

∂mi

∂mi

∂w ji
+

∂P3

∂vi

∂vi

∂w ji
(A.15)
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• For the first added we have12‖vi‖2 multiplied by ∂mi
∂w ji

as in Subsec-
tion A.1.1.

• For the second one we havemivi multiplied by ∂vi
∂w ji

. The computa-

tion of ∂P3
∂w ji

is done component-wise in the vectorvi .

A.2 Computation of the acceleration derivative

From (4.15) we decompose the acceleration in its three components:

ai =
3

∑
k=1

ξka
k
i (A.16)

and we derive the following derivation chain rules:

∂a1
i

∂w ji
=

∂a1
i

∂mj

∂mj

∂w ji
+

∂a1
i

∂xi

∂xi

∂w ji
+

∂a1
i

∂x j

∂x j

∂w ji
(A.17)

∂a2
i

∂w ji
= ∑

i′

∂a2
i

∂kii ′

∂kii ′

∂w ji
+

∂a2
i

∂dii ′

∂dii ′

∂w ji
+

∂a2
i

∂xi′

∂xi′

∂w ji
(A.18)

∂a3
i

∂w ji
momentum term w.r.t. the timetn−1 (A.19)

In particular we have that:

a1
i No addends here are dependent from the synaptic weights because
of:

– mj does not depend onw ji
– the derivative of thesign function is null
– ais are not dependent with respect to the positionsx j of the

upper-layer neurons.

a2
i For dii ′ ≥ l the first addend is null, the third and the fourth are al-
ways null thus we obtain:
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∂a2
i

∂w ji
= ∑

i′
(max{0, l −dii ′})sign(xi′ −xi)

∂kii ′

∂w ji
+

−∑
i′

kii ′sign(xi′ −xi)
∂dii ′

∂w ji
(A.20)

where the two derivatives are computed according to (A.5) and
(A.7).

A.3 Error derivatives

For the sake of simplicity we will use the subscripto to indicate those
neurons belonging to the output layer. Let us recall the error formula-
tion:

E =
1
2∑

o
(τo−zo)

2 (A.21)

wherezo is theo-th target w.r.t. theo-th neuron.
Here we are interested in∂E

∂w ji
that we calculate through the usual

back-propagation rule on theδs defined in (4.5). However, due to the
introduction of an additional termλ inside thenet formula, we have
to recompute the derivatives as follows:

• on the output neurons:

∂E
∂woi

= (τo−zo) f ′(neto)
∂neto
∂woi

= δo

(
∂neto
∂woi

+
∂neto
∂λoi

∂λoi
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)

= δo

(
λoil τo− τowoi

∂doi
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)
=

(
1−woi

∂doi

∂woi

)
λoiτoδo (A.22)

• on the hidden layer neurons the derivatives are:

∂E
∂w ji

= ∑
o

δo
∂neto
∂w ji

= ∑
o

δo
∂neto
∂τ j

∂τ j
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(
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∂w ji

+
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)
=
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1−w ji
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)
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(A.23)
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A.4 Thresholds

The introduction of the thresholdsθ j into the network state function

netj = ∑
i

w ji λ ji τi +θ j (A.24)

can be interpreted as an additional fictitious neuron whose output is
constantly equal to 1 and whose connections toward theℓ+ 1 layer
are defined by theθ j parameter. However, this neuron has no specific
position in the plane; actually we may imagine it located at infinity so
as to have cosntantλ and no derivative in theHamiltonianapart the
error termerror term:

∂E
∂θ j

= δ j (A.25)
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