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ABSTRACT 

ROMÁN-PONCE, SERGIO IVÁN. Genomic aspects for genetic improvement of 

mastitis resistance in dairy cattle (Under the supervision of Alessandro Bagnato). 

The overall objective of this work is to evaluate the mastitis resistances genetic aspects 

in cattle with genetic and genomic tools. This was accomplished by: 1) the estimation of 

genetic parameters for traits related to udder health in the Valdostana cattle breed; 2) the 

evaluation of the effect on the genomic breeding value estimation of mastitis traits of 

the assumption of different prior probability values for the proportion of markers with a 

large effect; 3) the estimation of the fraction of the genetic variance not explained by the 

54K Illumina SNP chip while using different marker-based relationship matrices; and 4) 

the exploration of the influence of the level of phenotype accuracy on the genomic 

predictions, by including phenotypes with different minimum level of reliability in the 

training population to estimate the marker effects. For the objective one, data of the 

Valdostana cattle breed were used for a total of 34,291 milking cows, collected born 

from 2002, with the milk bacteriological analysis that reported the presence of 

Staphylococcus aureus, Streptococcus agalactie, Staphylococcus ssp., Streptococcus 

ssp., Escherichia coli, minor pathogens gram positive, minor pathogens gram negative 

and fungi. Data used also included information on SCS and milk yield (MY) and 

genealogical data were extracted from the national herd book. The threshold model 

analysis was evaluated to be the most appropriate approach for the binary data under 

analysis concerning the presence/absence of pathogens in milk. Generally moderate 

heritability values (from 0.02 to 0.09) were estimated for the specific presence of the 

pathogens. This suggested that bacteriological data can be considered for the genetic 

selection to improve udder health. Promising results in mastitis selection were predicted 

through the aggregation of the indirect indicator (SCS), the trait commonly worldwide 

used in dairy cattle mastitis selection, and innate resistance to some of the major 

pathogens causing mastitis, such as Staphylococcus aureus, Streptococcus agalactie and 

Escherichia coli.  The Bovine SNP50 Illumina genotypes of 1,089 Brown Swiss bulls 

were used for the second purpose. A total of 51,582 SNP markers were considered in 

the analyses after the exclusion of markers on chromosome X. The estimated breeding 

values of bulls were provided by the Italian Brown Cattle Breeders Association for SCS 

and for the following production traits: milk yield, fat yield, protein yield, fat 

percentage, and protein percentage. To perform genomic breeding value estimation, 
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data available were split in two populations subsets: training (the 846 bulls born before 

2001) and test population (243 bulls born from 2001 and 2005). The value assumed 

(0.001, 0.005, 0.01, 0.05, 0.1 and 0.5) for the number of SNP with a large effect did not 

have impact on the marker effect estimates or on genomic predictions accuracies. For 

the objective three, genotypes from Bovine SNP50 chip of 1,086 sires were available 

for a total of 35,706 SNP with a 99.34% total genotyping rate. Phenotypic information 

consisted on EBV estimated by the National Breeder Association of Brown Swiss dairy 

cattle for SCS, production and type traits as follows: milk yield, fat yield, protein yield, 

SCS, overall conformation, stature, and rear leg side view, fore udder attachment, rear 

udder width, udder support, udder depth, feet and legs and foot height. Three 

generations of genealogical information were used (4,988 animals). The proportion of 

the genetic variance addressed by markers was estimated using different marker-based 

relationship matrices. In all traits considered the fraction of the genetic variance not 

explained by the genetic markers did not significantly differ from 0 for all the designs 

including in the training population bulls with high accuracy. Indeed no substantial 

differences were found with the use of different genomic relationship matrices. The 

only exception was the genomic matrix corrected by the heterozygosity per SNP. All the 

analysis with that genomic matrix converged and the genetic variance explained was 

bigger than with the other matrices. For the objective 4; the phenotype was associated 

with the genotype at 35,546 SNP markers for 1357 sires for all available traits and 

genomic EBV estimated using different strategy to identify the training population. 

Results indicate that selecting the training population with accurate phenotypes yield 

genomic EBV with larger accuracy. The genetic selection of a complex trait, as mastitis 

selection, involved several aspects and it would be better searched through the 

integration of classical genetic aspects and of the genomic selection. The latter genomic 

approach would benefit of the use of all the aspect considered in this thesis. In particular 

suggestions were drawn for the use of best prior parameters, the definition of the most 

informative training population, the calculation of genetic parameters for binary and 

non-binary traits, and the calculation of genomic relationship variances to be used in 

genomic breeding value estimations. 
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Chapter 1 

Literature review 
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From phenotypic to genomic selection. 

Quantitative genetics or genetics of complex traits it is based on models in which many 

genes act and interact to determinate the traits and in which non-genetic factors 

(environmental) may also play an important role in phenotype determination (Fisher, 

1918; Wright, 1922). The analysis of variance and regression models represent the 

traditional methods to dissect the genetic variance in terms of additive genetic, 

interactions of effects between alleles within loci (dominance) and among loci 

(epistasis) (Falconer and Mackay, 1996; Lynch and Walsh, 1998). 

The variance component estimation made possible the calculation of genetic 

parameters, such as heritability (h
2
), the ratio of the additive genetic variance (VA) and 

the overall phenotypic variance (VP) (Falconer and Mackay, 1996). The genetic 

parameters are basic information to predict the breeding values of individuals (expected 

performance of the offspring) and the genetic response in the genetic improvements 

programs (Hazel, 1943). 

In the middle of the last century Henderson (1984) proposed the use of mixed models 

for the variance component estimation. The mixed models equations enable the 

simultaneous incorporation of fixed (usually environmental ones) effects and random 

(usually the additive genetic component) effects (Lynch and Walsh, 1998; Sorensen and 

Gianola, 2002). The most common mixed models applied in animal breeding have been 

the sire model and the animal model to predict the additive genetic value. Predictions 

obtained with these models are defined best linear unbiased prediction or BLUP 

(Henderson, 1953; Henderson, 1984). 

In the last three decades, the worldwide efforts on genetic improvements were 

concentrated into the conventional progeny test aimed to predict the breeding value of 

sires. The objective has been to find the group of sires interesting for the seedstock 

industry. In general, the conventional scheme takes on average 54 months and a big 

amount of economic resources to prove the bulls (Schaeffer, 2006). However, the 

implementation of progeny test schemes and genetic evaluations occurred over the 

entire worldwide animal breeding industry. 

The continuous exchanges of sires among the countries, the differences in genetic 

evaluation models, breeding objectives, genetic level and farming environments 
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increased the complexity of the comparison between sires from different countries. For 

that reason, in 1983, the International Committee for Animal Recording, the European 

Association for Animal Production and the International Dairy Federation established 

Interbull. Since 1996, the European Union appointed the Interbull Centre as the 

community reference body for international sire evaluations. 

More recently molecular genetic technologies allow new approaches to be investigated 

to improve the efficiency of animal selection. Very recently the genomic analyses of 

animals DNA and their use in genetic selection is having a strong impact in dairy cattle 

selection and its industry organization. The knowledge of genomic information on DNA 

makes possible the evaluation of the genetic merit without the need of progeny 

performance knowledge and therefore without the need of waiting for the necessary 

time. Genomic selection is based on the estimation of marker additive effects in a group 

of animals that have information both on phenotypes and on genotypes. Summing all 

the marker effects for each animal the “genomic” estimated breeding value is obtained. 

This estimation is therefore possible both for the group of animals used for the 

estimation of marker effects (training population: progeny tested bulls) and for other 

animals (test population: young bulls) that only have genotypes but not phenotypes 

(Meuwissen et al., 2001). 

The availability of genomic maps with a high density of multi-locus single nucleotide 

polymorphism (SNP) made possible the introduction of the genomic selection in real 

populations. The SNP are a DNA sequence variation occurring when a single nucleotide 

is changed in the genome (Matukumalli et al., 2009). The advantage of the application 

of the genomic selection (GS) into the progeny test schemes could be the reduction of 

the generational interval and the increment of the rate of genetic gain in the breeding 

programs. 

Up today, the base of the animal breeding industry has been the conventional progeny 

test, which uses direct or indirect measure of the performance of the animals. Now a day 

with the GS, it is possible to predict the genetic merit of young animals without own 

performance with sufficient accuracy. This possibility makes possible to incorporate the 

young sires into a progeny testing scheme after the prediction of the breeding values 

obtained by markers. The possibility to obtain the genomic values for traits that are 

difficult or expensive to measure in the entire population, it is an additional advantage. 
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New information new possibilities (SNP genotyping= new information; genomic 

approach = new possibility). 

The marker-assisted selection (MAS) consisted in the selection of animals based on the 

genetic variances captured by identified quantitative trait loci (QTL). This methodology 

identifies the QTL by the application of the linkage maps as proposed by Beckmann and 

Soller (1983). The experiences of integration of the identification of QTL results into 

the genetic improvement programs has been limited because of the small response to 

selection and the small proportion of genetic variances explained (Dekkers, 2004). 

The approach of the QTL discovering improved its efficiency with the availability, at 

affordable costs, of dense genomic maps of SNP information. The SNP is a binary 

marker and by itself is less informative than the other molecular markers available. The 

presence of the non-random association of alleles at two or more loci, named as linkage 

disequilibrium (LD) allows the direct association of single markers to the quantitative 

trait commonly, commonly referred as genome wide association (GWAS). 

The principal source of SNP data had been the public databases of SNP, such as bovine 

genome sequencing efforts at the Baylor College of Medicine and Bovine HapMap 

project efforts (Matukumalli et al., 2009). The large amounts of confirmed SNP in the 

livestock populations allowed the development of high density SNP arrays. 

With the commercial availability of the high density SNP assays in cattle (Illumina SNP 

chip Bovine HD) one can expect to be able to address a substantial proportion of the 

genetic variation in complex traits. Through the use of simulated data, Meuwissen et al. 

(2001) were able to predict the breeding values using markers data alone (less dense 

than the actual SNP chips) with accuracies up to 0.85. 

The theoretical demonstration of the calculation feasibilities (Meuwissen et al., 2001) 

and the great advantages resulting from GS implementation (Schaeffer, 2006), together 

with the continuous release of new high dense genotyping arrays at reduced costs 

(Matukumalli et al., 2009), was reflected into the intensification of the genotyping 

efforts in the dairy cattle populations (Berry et al., 2009; Schenkel et al., 2009; 

VanRaden et al., 2009). 

 



 
9 

The principles of genomic selection. 

The methodology foundations of the genomic selection were presented by Meuwissen et 

al. (2001). Prediction equations, i.e. the additive marker effects, are calculated in the 

reference (training) population, using both genotype (dense SNP genotypes) and 

phenotype data (EBV of proven individuals): The prediction equations can then be used 

to calculate the genetic values of all individuals of the population, in particular young 

bulls and bull dams the one mostly contributing to genetic improvement in populations. 

The best animals will be therefore selected from the whole population according to the 

estimated breeding values. The main assumptions of genomic selection are: 1) the 

chromosome segments are the same in the whole population because the markers are in 

LD with QTL that they bracket; 2) the marker density is sufficient to ensure that all 

QTL are in LD with a marker or with an haplotype and 3) the proportion of the additive 

genetic variance explained by the markers is assumed to be close to 100% (Meuwissen 

et al., 2001).  

Generally the genomic selection process is performed with the following steps 

(VanRaden et al., 2009): 

1) The estimation of SNP effects on genotyped animals using their phenotypic 

performance, daughter yield deviation (DYD) or estimated breeding values (EBV). 

2) The calculation of direct genomic values (DGV) for the selection candidates using 

the genotype of each animal and the SNP effects estimated in the training population. 

3) The calculation of an aggregated genomic EBV (GEBV) combining DGV and 

traditional EBV. 

The first measures of the accuracy of the genomic predictions were calculated as the 

correlations of DGV with the phenotypes, such as DYD, EBV or de-regressed proofs. 

This methodology has been used to tune the models for the estimation of marker effects. 

In general it is known that the accuracy on the genomic predictions is influenced by the 

following parameters: the number of animals with both genotyping and phenotyping 

information, (Meuwissen et al., 2001; Van Raden et al., 2009), the additive 

relationships between the reference and training populations (Legarra et al., 2008; 

Meuwissen, 2009), the density of the marker assay (Meuwissen et al., 2001; Calus et 
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al., 2008; Solberg et al., 2008), and the heritability of the phenotypes (Calus, 2010; 

Solberg, 2008). 

 

The possibility to work on new traits. 

The genomic selection methodology opens the possibility of considering in selection 

also traits difficult or expensive to measure that were difficult to select with the classical 

approach. The main advantage of GS is actually that the marker effects, to estimate 

DGV, may be calculated from a small group of animals with both phenotypic and 

genotypic information and that these effects may be then used to estimate DGV of the 

whole population, also if the trait is not widely recorded. 

Feed intake and residual feed intake are two of these traits that can play an important 

role in the economic efficiency of livestock industry (Rolfe et al., 2011). Recently, these 

traits have been successfully included into some national cattle genetic evaluation 

system for beef cattle (MacNeil et al., 2011) with the prediction of genomic breeding 

values (Mujibi et al., 2011). 

In dairy cattle, the proportion of specific fatty acids in milk (Soyeurt and Gengler, 2008) 

and the coagulation properties of milk (Cecchinato, et al., 2011) are traits that can 

strongly benefit of the GS implementation. Recently, some promising results of GWA 

have been conducted for these traits opening possibilities also for the genomic selection 

for fatty acid milk composition (Bouwman et al., 2011). 

The worldwide warming for the climate changes represents a new issue of the livestock 

production. Livestock produces close to 18% of the worldwide emissions of greenhouse 

gas as methane, nitrous oxide, water vapor, carbon dioxide, and ozone (Moran and 

Wall, 2011). Nowadays it is possible to record data on individual gas emission in dairy 

cows. The availability of individual records on gas production makes possible the 

estimation of the additive genetic variances (de Haas et al., 2011) and thus the selection 

of individuals for reduced gas emission. 

The small number of animals recorded represents the principal limit for the inclusion of 

these traits in classical genetic selection programs. With the genomic approach, the 

inclusion of these traits in genetic selection programs will be possible because not all 
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the animals in the population must have records for those traits: once the SNP effects 

are estimated, those effects could be used for genomic prediction in the entire 

population. 

 

Other markers may enter the picture of genomic selection. 

The sequencing of the whole genome provides a wealth of information to tackle genetic 

problems, such as the identification of the molecular basis of complex traits, which are 

difficult to study with conventional approaches (Hobert, 2010). Furthermore, the 

structural variations take many forms in the genome, i.e. deletions, insertions, 

duplications and complex multi-site variants that are collectively named copy number 

variations (CNV). A CNV can be simple in structure, larger than 1kb, such as tandem 

duplication, or may involve complex gains or losses of homologous sequences at 

multiple sites in the genome (Rendon et al., 2006). 

The array comparative genomic hybridization (aCGH) has been so far the most used 

technique to disclose CNV (to detect, validate and characterize). In aCGH experiments 

genomic DNA samples are co-hybridized on the same oligonucleotide array and the 

genomic variation differences from the reference sample lead to CNV detection 

(Shinawi and Cheung, 2008). Studies on CNV identification are available for cattle 

(Fadista et al., 2010; Liu et al., 2010), chicken (Wang et al., 2010), swine (Fadista et al., 

2008) and goat (Fontanesi et al., 2010). 

The high dense marker genotyping platform presents a median gap spacing among 

markers minor than 3 kb; which make feasible the identification of CNV (Wang et al., 

2007). Even if CNV identification are affected by the algorithms implemented (Tsuang 

et al., 2010), some studies with high dense SNP arrays have been performed to detect 

CNV in cattle (Bae et al., 2010; Hou et al., 2011) and swine (Ramayo-Caldas et al., 

2010). 

The CNV represent a significant source of genetic diversity in mammals covering ~12% 

of the genome (Rendon et al., 2006), and they have been shown to be associated with 

phenotypes (diseases/traits) in humans (Stankiewicz and Lupski, 2010). According to 

literature consulted to today, there are not available association studies between CNV 

and complex traits in dairy cattle. This research topic represents an important source of 
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information to integrate the CNV in the genomic selection methodologies. The 

availability of this new source of information is expected to improve the accuracy of 

genomic breeding values. 

 

The new possibility for the dairy cattle selection industry. 

The advantages deriving from the introduction of the genomic selection in the dairy 

cattle industry have been already evidenced by both deterministic (Schaeffer, 2006) and 

stochastic (Buch et al., 2011) simulations. Recently, some hypothetical scenarios were 

evaluated comparing situations with or without the incorporation of genomic 

information. The “turbo” scenario in which young males and females are selected based 

on parent average GEBV is one of the possibilities. In this case the sires are selected 

based on GEBV and these animals are called genomic bulls and they enter in breeding 

programs at around 18-21 months, as soon as they are sexually mature (Buch et al., 

2011).  

In this scenario the annual genetic gain was higher than in the conventional progeny test 

schemes both for milk production (65%) and functional traits (173%). This depended 

mainly by the smaller generational interval in the turbo scheme than in the conventional 

progeny testing scheme. The rate of inbreeding predicted was only 0.74% points per 

generation, i.e. within the international recommendations (de Roos et al., 2001). 

The possibility to select candidates of sires on the genetic merit that includes the direct 

genomic breeding value modifies the entire structure of the animal breeding industry 

dramatically reducing costs (Schaeffer, 2006). 

 

What is so far the genomic application in dairy cattle? – Need of large numbers for 

training populations. Eurogenomics, Intergenomics and other. 

In early 2008, the United States of America and Canada joined their forces to create a 

large training population for Holstein-Friesian dairy cows. The result was the first 

genomics predictions, which showed the necessity to boost the genomic reliabilities 

through the aggregation of genotypes across countries (VanRaden et al., 2009). 
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Recently, the United Kingdom and Italy entered into the collaborative genomic 

evaluation consortium project of North American countries. 

In general, the collaborations are originated because of the necessity to increase the 

reference population, to avoid repeated genotyping, to integrate small breeds and to 

share algorithms and software. Such as the consortium Eurogenomics integrated by five 

European national Holstein cattle breeding companies. Each partner participates with at 

least 4,000 proven bulls to improve the reliability of the genomic breeding values. In 

total the Eurogenomics reference population is extended to at least 16,000 bulls. The 

results of these collaborative experiences are increments of 10% in the reliabilities, 

compared with the reliabilities obtained in the national genomic evaluation with the 

single national reference populations alone (David et al., 2010). These results are 

different among countries and between traits, but the improvements in the accuracy 

ranged from 2% to 19% (Lund et al., 2011). 

Another example of a worldwide collaboration in the genomics fields is the project 

Intergenomics, which was funded by the European National Associations of Brown 

Swiss together with the Interbull consortium. The main objective is to develop a 

common genomic evaluation program for the Brown Swiss guided by Interbull. In that 

program, the genomic reliabilities of the young bulls were about 2.5 times larger than 

those of their respective parent averages. Correlations between conventional proofs, 

DGV and GEBV were close to one (Zumbach et al., 2010). 

 

Genomic predictions models. 

The statistical foundation of the genomic selection consisted on three methods proposed 

by Meuwissen et al. (2001). These methods were developed to overcome the lack of 

degrees of freedom when all the markers effects are estimated simultaneously. The size 

of the training population generally is smaller than the number of markers. The models 

proposed were: 

1) Least Squares (LS). Here chromosome segment effects were treated as fixed effects. 

No assumptions are made regarding the distribution of the effects. All the genes are 

tested one by one for their statistical significance. Some markers with non-significant 

effect were close to zero. The least squares approach presented two major inconvenient. 
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The first is the choice of the significance level and the second is that the chromosome 

segment effects were estimated from single segment regression. 

2) Best Linear Unbiased Prediction (BLUP). The allelic effects are fitted as random 

effects instead of as fixed effects. This helps to avoid the problems with the degree of 

freedom. All allelic effects could be estimated simultaneously. The assumption is that 

every marker or chromosome segment effect has the same variance but this was 

considered in some case not to be appropriate. Normally, the majority of the genes have 

very little effect on the trait. These genes will be dominant on the estimation of the 

variance of the allelic effects, i.e. this estimate will be close to zero. With BLUP the 

chromosome segment (or QTL) with the largest variance tend to have a variance over-

estimated, and this will decrease the efficiency of genomic selection. 

3) Bayesian estimation (Bayes). In theory, this is a method that allows the variance of 

the chromosome segment effects to vary among segments. This approach represents the 

opportunity to obtain better estimation of breeding values. Different variance for every 

gene is assumed to exist and it is estimated based on a given prior distribution. In this 

way it is possible to take into account the prior knowledge about the distribution of the 

effects. Some of the chromosome segments with a large additive effect probably contain 

a QTL while segments with no QTL will have a moderate to small effect. 

The prior distribution of the variance for the gene i (Vai) is assumed here: 

Vai = 0   with probability π 

Vai ~ χ
2
(v,S)  with probability (1-π) 

where π depends on the mutation rate at the gene, and the distribution assumed is the 

inverse – chi squared distribution with v degrees of freedom and scale parameter S 

(χ
2
(v,S)). 

 

All the three models allow the estimation of prediction equations for the estimation of 

the genomic breeding values. The estimation of the DGV is obtained summing the 

markers effect.  

The deterministic predictions of the accuracy of the DGV may be used to establish the 

size of the reference population and to anticipate the level of accuracy in the selection of 

candidates. Some authors have used the inverse of the mixed model equations to 
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estimate the accuracy of the DGV (VanRaden, 2008; Hayes et al., 2009a,c) but this may 

overestimate the accuracy as demonstrated by Goddard et al. (2011). 

Recently, a proposal to estimate the reliability (squared accuracy) of the DGV for each 

animal in the test population was proposed by Goddard et al. (2011). To obtain the 

accuracies values, two quantities are needed: the proportion of the genetic variance 

explained by markers and the accuracy with which the combined markers effects are 

estimated (Dekkers, 2007; Goddard, 2009; Goddard et al., 2011). 

 

Design of the training and the testing populations for genomic selection. 

The genomic predictions offer exciting opportunities for genetic improvements of 

livestock. One of them is the wider opportunity to choose younger bulls in the progeny 

testing structure (Köning et al., 2009), which represents both a challenge and a 

challenge of developing genomic breeding value estimations with the smallest bias and 

the highest accuracy. Some strategy to optimally organize the populations for the 

genomic programs have been suggested but the most common design is the use of data 

sets split into training and testing populations, which avoid the generational overlapping 

between both data set (Amer and Banos, 2010). 

The prediction of breeding values of unrelated individuals is required for some of the 

most promising application of genomic selection. This is actually the case when it is 

necessary to use field data coming from elite breeding stocks (Wray et al., 2007). In this 

situation, if it necessary to obtain accuracies of around 0.90, it is necessary to use 

10*Ne*L SNPs and 2*Ne*L records in the training data set, where N is the effective 

population size and L the genome size in Morgan (Meuwissen, 2009).  

The availability of denser maps of markers did not only yield more accurate predictions 

of the genetic merit, but also enlarges the generation intervals necessary to re-estimate 

the markers effects. Simultaneously, the size of the training dataset contributes to 

decrease the differences between the predictions models (G-BLUP and BayesB). 

The inclusion of females genotypes in the training population was evaluated by Hugh et 

al. (2011). Their inclusion yields increments in accuracy and genetic gain if compared 

to traditional BLUP breeding programs. Their studies show alto that generation interval 

was reduced and inbreeding remained in a reasonable improvement rate.  
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In general, there are not clear indications on how to integrate the training population to 

estimate the markers effects to predict the genomic breeding values. In general, the 

dairy cattle populations present a complex structure of the pedigree, which increase the 

relationship between both populations, and the possibilities to predict more accurate 

genomic breeding values across much more generations. 

 

Prior probabilities (π). 

The Bayesian methods proposed by Meuwissen et al. (2001), Bayes A and B, require 

the assumption of specific hyperparameters. It has been demonstrated that the values 

assumed can affect the accuracy of the genomic predictions (Gianola et al., 2009). The 

prior distribution of QTL effects is one of the hyperparameters that concern the 

accuracy of DGV estimation. It resulted that different assumptions of prior distributions 

produced DGV highly correlated (Verbyla et al., 2010). This seems to suggest that the 

models are not affected by the choice of prior distributions. Even though, it is 

recommended that any information about a trait’s QTL effect distribution and 

phenotypic data should be integrated to determine the assumptions regarding the hyper 

parameters in the prediction of model. 

 

Relationship matrix based on markers information. 

Identity by descent (IBD) refers to alleles that descend from a common ancestor in a 

base population (Wright, 1922). This approach leads to the classic estimation of the 

relationship matrix based on pedigree. This matrix is fundamental to estimate the 

genetic parameters such as heritability for complex traits (Henderson, 1976). The 

numerator relationship matrix based on pedigree data goes back to a base population, 

which is considered unrelated, unselected and non-inbred (Henderson, 1976; Quass, 

1976). 

The genome-wide genetic markers can capture the additive relationship through the 

estimation of the relationships matrix (Fernando 1998; Habier et al., 2007; VanRaden, 

2008) based on markers, named Gmatrix (G). The values obtained correspond to twice 

the coefficient of coancestry of Malécot (Malécot, 1948), and they trace back the true 

relationship between the individual if the number of markers are dense enough. 
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The most common genomic relationship matrix (GV) was proposed by VanRaden 

(2008). Let M be the marker-genotype matrix with number of individuals (n) and 

number of loci (m) as dimensions. The elements in the matrix M were coded as -1, 0 

and 1 for homozygote, heterozygote and the other homozygote. The matrix P contains 

allele frequencies expressed as difference from 0.5 and multiplied by 2, then the column 

i of P was 2(pi-0.5). The matrix P was subtracted from M to give Z = M - P. The matrix 

GV was estimated as follow: sses: $115 due to milk yield losses, $14 because of increased 

mortality, and $50 for treatment-associated costs (Bar et al., 2008). 

The variance component estimations are based on the mixed model methodologies, in 

which fixed and random effects are estimated simultaneously. The calculation of the 

matrix numerator relationship matrix (A) based on the complete pedigree makes 

possible the estimation of the additive genetic variances and the accurate prediction of 

the breeding values for all the animals. Recently, some studies dissected the genetic 

variances of complex traits by using the G matrix, also when genealogical information 

were not known (Hong Lee et al., 2010). 

 

Udder health: clinical mastitis.  

Mastitis can be classified in clinical and subclinical cases, taking into account the 

presence of evident sign of inflammation and alteration in milk like clots, flakes or 

discolored secretion (Oliver and Calvinho, 1995; Bradley 2002). The subclinical 

mastitis is the main form in modern dairy herds. In addition, the mastitis etiology makes 

feasible another classification: infectious or contagious and non-infectious or 

environmental (Blowey and Edmondson, 1995). Mastitis with non-infectious etiology 

could be caused by mechanical or thermal traumas or chemical insults (Zhao and 

Lacasse 2008). About 20-35% of mastitis cases have an unknown etiology (Wellenberg 

et al., 2002). 

Mastitis generally produce a decrease in milk production with different outcomings 

based on the pathogen causing the infection (Gröhn et al., 2004) and the genetic 

correlations between somatic cell score and milk yields and its components are 

generally around the range of  -0.17 to 0.47 (i.e. Schutz et al., 1990a; Weller et al., 

1992; Carlen et al., 2004). 
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Somatic cell count/ Somatic cell score in milk as indirect measure of mastitis 

resistance. 

The somatic cell count in a healthy cow declines from calving to the nadir (around 60 - 

90 DIM), and increases in the second part of the lactation (Wiggans and Shook, 1987; 

Schutz et al., 1990a; De Haas et al., 2004). In the presence of infection, SCS presents 

different patterns depending on the pathogen associated (De Haas et al., 2002b). The 

alterations associated with an udder infection can be detected in a period between one to 

three weeks before and after the bacteriological diagnosis (De Haas et al., 2002b; Gröhn 

et al., 2004). 

The use of SCS in genetic selection has two main advantages: i) data collection is 

cheaper and it can be associated to routine milk recording; ii) the heritability for SCS is 

larger than for the direct measure of CM and the genetic correlation between CM and 

SCS is large with average values of 0.71 (for a review: Mrode and Swanson, 1996). 

In most of the countries in the world, genetic selection for mastitis resistance is based on 

somatic cell score (SCS) (Samorè et al., 2006 and 2009; Heringstad et al., 2008), that it 

is the normalized measure of somatic cell count by a logarithmic transformation 

(Wiggans and Shook, 1987). Only a few countries consider direct information on 

mastitis incidence in the genetic improvements programs (Heringstad et al., 2001; 

Odergard et al., 2003). 

 

Potential use of specific pathogens information for mastitis resistances. 

The largest proportion of contagious mastitis is caused by bacteria such as 

Staphylococcus aureus, Streptococcus dysgalactie and Streptococcus agalactie. 

Enterobacteriacae as Escherichia coli and Streptococcus uberi. They represents the 

most common environmental pathogens causing udder infections (Bradley 2002; 

Pyörälä 2002; Zhao and Lacasse 2008). 

When the mastitis is caused by E. coli, SCS level increases roughly but after 50 days the 

level returns to the pre-infection values; in contrast when mastitis is caused by Staph. 

aureus, Strep. dysgalactiae, Strep. uberis, and streptococci spp, the increases of SCC is 

not as fast as with the infection by E. coli, but the elevated levels of SCC continue lofty 
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for the remainder of the lactation (De Haas et al., 2002b). Recently the genetic 

parameter estimation for mastitis due to specific pathogens and SCS has been reported 

by Sorensen et al. (2009). The same authors concluded that it is important to consider 

also the pathogen causing mastitis in genetic selection for udder health in dairy cattle.  

Different costs were evaluated for mastitis caused by each group of pathogens; results 

showed that the cost attributed to mastitis vary according to the pathogen involved 

(Sorensen et al., 2010) and by consequence it is important to attribute the correct 

relative emphasis in genetic selection and therefore in the selection indexes. 

 

Genetic selection for mastitis resistance. 

Genetic selection is a long term strategy to reduce the mastitis incidence in the 

population, and it results in a permanent change in the genetic resistance of the dairy 

herd (Shook, 1989). The genetic improvement is spread over all individuals of the 

population and it is cumulative over generations. Heritability estimated for clinical 

mastitis (CM) is generally low with values below 0.05 (Heringstad et al., 2001; Haas et 

al., 2002a; Carlen et al., 2004). For this reason and for the cost associated to data 

collection for the mastitis incidence, selection in dairy cows is often based on the use of 

the number of milk SCC, logarithmically transformed into SCS (Wiggans and Shook, 

1987). 

Low values of heritability for the incidence of clinical mastitis associated to specific 

pathogens were estimated in literature using either logistic or linear models (De Haas et 

al., 2002a). De Haas et al. 2002a estimated values of genetic correlation varying from -

0.05 to 0.79 between specific pathogens mastitis and SCS or production traits (milk, fat, 

and protein yield). These authors considered the average of SCS on a lactation basis for 

150 and 305 days of lactation. Sorensen et al., 2009 estimated genetic parameters for 

pathogen specific incidence in mastitis using a Bayesian approach and they reported 

values of heritability varying from 0.035 to 0.076 and always lower than values 

estimated for unspecific mastitis (0.109). In the same study, different values of genetic 

correlations resulted depending on the specific presence of a pathogen type (0.45 to 

0.77). This suggested that the presence of specific pathogens in milk should be 

considered as specific traits in genetic selection of udder health (Sorensen et al., 2009). 
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The genomic approach to genetic improvement of mastitis resistance in dairy cattle is 

the general objective of this thesis. Different aspects were here evaluated and studied 

and results are exposed in chapter 3 to 6. 

The resistance to mastitis was studied using a specific data set on a local Italian breed, 

the Valdostana Red Pied cattle, where direct information on pathogens causing infection 

was available as the SCC information.  

The genomic approach was then studied evaluating how different strategy of selection 

of training and test population affect accuracy of GEBV calculation. 

The objectives are herein below indicated in details by chapter. 

 

Chapter 3 

The aim of this study is the estimation of genetic parameters for traits related to udder 

health in the Valdostana cattle breed, i.e. SCS and the presence of specific pathogens in 

milk, using linear (LM) and linear-threshold models (ThrM). Different strategies of 

selection based on SCS values and the presence of specific pathogens in milk are 

considered. The objective is to reduce mastitis costs. 

 

Chapter 4 

The aim of this study was to evaluate different prior probability values, assumed for 

large marker effects, in the estimation of GEBV in dairy cattle. 

 

Chapter 5 

The main objective of this study was to estimate the fraction of genetic variance not 

explained by the 54K Illumina SNP chip using different marker-based relationship 

matrices. An important additional objective was to evaluate the effect of the choice of 

the base population on the proportion of the genetic variance addressed by genomic 

relationship matrices. 

 

Chapter 6 

In this study, the aim was to explore the influence of high accurate phenotypes on 

genomic predictions, by censoring the phenotypes thought the reliability to define the 

training population for genomic selection. An important objective here evaluated it was 

the effect of the effect of the generational overlapping between training and test 

population.  
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Chapter 3 

Genetic Aspects of the Presence of Specific Pathogens in Milk and 

Somatic Cell Score in the Valdostana Cattle Breed 
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Introduction 

Mastitis is a disease of the mammary gland and it is responsible for reduced milk 

production and milk quality, increased involuntary culling rates and discarded milk 

(Ahmadzadeh et al., 2009). Bar et al. (2008) estimated the average cost of a case of 

clinical mastitis (CM) to be $179: $115 due to milk yield losses, $14 because of 

increased mortality, and $50 for treatment-associated costs. This amount increases to 

$403 for cows with high expected future net returns. Mastitis is a very common disease 

in dairy farms (Olde-Riekerink et al., 2008; Bradley et al., 2007). In Nordic European 

countries all the current economic indexes assign a significant emphasis to mastitis 

related traits (Steine et al., 2008). 

The decline in milk production associated with the occurrence of mastitis is well 

documented in literature (see e.g. Rajala-Schultz et al., 1999), nonetheless the 

magnitude of this effect is different depending on the pathogen causing the infection 

(Gröhn et al., 2004). 

Heritability of CM incidence in dairy cattle is relatively low with estimates ranging 

between 0.04 and 0.18 (Lin et al., 1989; Heringstad et al., 2003a and 2003b). In most 

analyses linear and threshold liability sire models (Zwald et al., 2009) have been 

employed, although examples of longitudinal data analysis are available (Heringstad et 

al., 2003c), particularly through the use of Poisson models (Rodrigues-Motta et al., 

2007, Vazquez et al., 2009; Vallimont et al., 2009). Although a large number of genetic 

parameters estimates are available in literature for CM, only a limited number of studies 

considered the presence of specific pathogens causing the infection. De Haas et al. 

(2002a) estimated heritability values for the presence of specific pathogens in milk 

using both logistic and linear models obtaining values ranging from 0.02 to 0.10 and 

genetic correlations between the presence of specific pathogens and lactation averages 

of SCS, ranging from 0.04 to 0.63 (de Haas et al., 2002b). Using a Bayesian approach, 

Sorensen et al. (2009a and 2009b) estimated heritability values for the presence of 

specific pathogens in milk in a range between 0.04 and 0.08, and larger values for non-

specific mastitis (0.11). The same authors reported various values of genetic 

correlations among pathogen species (from 0.45 to 0.77) and concluded that pathogens 

in milk should be considered as different traits in genetic selection programs. 
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Finally the economic value of mastitis varies with the pathogen involved (Sorensen et 

al., 2010) and therefore, in setting up selection strategies, the availability of specific 

information on bacterium causing the infection could be an alternative to the use of the 

general trait of CM event or the indirect measure of SCS. 

The Valdostana is a mountain dual purpose Italian cattle breed. Milk produced is almost 

entirely transformed into a typical local cheese named Fontina (Ambrosoli and Pisu, 

1996). Currently the breed is not selected for mastitis resistance. Nonetheless data are 

regularly collected for SCS for all lactating cows and a large number of milk 

bacteriological tests for the presence of specific pathogens are also available. 

The aim of the present paper is the estimation of genetic parameters for traits related to 

udder health in the Valdostana cattle breed, i.e. SCS and the presence of specific 

pathogens in milk, using linear (LM) and linear-threshold models (ThrM). Different 

strategies of selection based on SCS values and the presence of specific pathogens in 

milk are considered. The objective is to reduce mastitis costs. 

Material and methods 

Field data 

Data was provided by the Italian National Breeders Association of Valdostana Cattle 

and was collected from 2001 to 2008. Information on somatic cell count was collected 

together with milk yield (MY), during routine milk recordings and included 802,459 

test day records of 47,412 cows. Milk bacteriological tests were performed for all cows 

in herds where at least one case of CM was detected by veterinary services. This 

produced a different data set, not necessarily simultaneous to the milk and somatic cell 

count recording data, with information on the eventual presence of specific pathogens in 

individual milk but without any clinical record of the mastitis occurrence. 

Bacteriological milk analyses, for a total of 34,291 cows milking from 2002 to 2008, 

recorded the eventual presence of the following pathogens: Staphylococcus aureus 

(STAUR), Streptococcus agalactie (STREA), Staphylococcus ssp. (STAPH), 

Streptococcus ssp. (STREP), Escherichia coli (ECOL), minor pathogens gram positive 

(GP), minor pathogens gram negative (GN) and fungi (FUNG). Pathogen specific data 

were recorded as 1 for presence and 0 for absence of the specific pathogen. 

Data Editing 
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One record per cow was kept for the analyses as only few records (<10%) were repeated 

more than once in bacteriological data. At least three observations for each level of all 

fixed effects in the model were required. The edited data set included 23,907 records 

from cow’s daughters of 2,500 sires and 17,573 dams with the corresponding 

information on pathogen presence and SCS data in adjacent days. The pedigree file 

consisted on five generations of ancestors extracted from the Italian Herd Book for a 

total of 53,244 animals. Three subpopulations are recorded in the Valdostana Herd 

Book: Pezzata Rossa, Pezzata Nera and Pezzata Castana. The last two groups of 

animals, Pezzata Nera and Castana, are considered jointly in the official national genetic 

evaluation and they were therefore considered as one population in this study. 

Eight specific pathogens classes were included in the analysis. These were: STAUR, 

STREA, STAPH, STREP, ECOL, GN, GP and FUNG. Information on test-day MY and 

somatic cell counts were extracted from the milk recording data set choosing the closest 

one to the bacteriological test. Values of somatic cell counts were logarithmic 

transformed into SCS (Wiggans and Shook, 1987), and used as an indirect measure of 

pathogen unspecific mastitis. The environmental effects considered in the models were: 

combination of herd-year (4,701 levels), month in milk (12 levels), month of calving 

(12 levels), parity (five levels: from 1 to 4 and greater than 4), and breed type (two 

levels). Data was analyzed twice with two different models, considering the specific 

pathogen presence as a continuous (LM) or as categorical (ThrM) trait. In both models, 

all other traits were considered as linear. 

The multiple trait LM for the 10 traits (8 specific pathogens, SCS and MY) has the 

following form: 

         , 

where Y is a matrix of phenotypic records; X is the matrix of incidence for fixed effects 

(herd-year, month in milk, month of calving, parity and breed type); Z is the incidence 

matrix for animal random effect; b is the vector of solutions for the fixed effects; u is 

the vector with solutions for random effects, and e is the residual vector. Variance 

structure is as follow: 

   [
 
 
]  [

    
  

], 
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where A is the standard numerator relationship matrix based on pedigree, and G and R 

are the genetic and residual (co)variance matrices of order 10 x 10, respectively. 

The multiple trait animal ThrM is similar to the LM with the same traits and effects, and 

with Y=[
 
 
] and λ representing a vector of unobserved liabilities for pathogen traits from 

binary outcome (presences or absence) and y representing a vector of observations for 

the continuous traits (MY and SCS). Variance structure is similar but residual variances 

are forced to 1 in the ThrM. 

All analyses were performed with THRGIBBS1F90 software based on Gibbs sampling 

for mixed models (Sorensen et al, 1995). For the estimation of posterior means, the 

software POSTGIBBSF90 (Tsuruta, and Misztal, 2006) was used. The convergence of 

all analyses was assessed following the procedure proposed by Raftery and Lewis 

(1992) for a total of chain length of 300,000 iterations after a burn-in of 150,000 

iterations. 

Pathogen specific information and genetic response 

With the final aim of reducing the costs due to mastitis in the population, different 

hypotheses of selection were evaluated. Effectiveness of selection for the indicator trait 

SCS was compared to aggregated genotypes including SCS and different combinations 

of the major pathogens STAUR, STREA, and ECOL. The choice of concentrating on 

the few major pathogens was driven by the existing conclusions in literature (Sorensen 

et al., 2010). This choice was further strengthened by our estimation of genetic 

parameters for pathogens grouped by families, i.e. STAPH, STREP, GN, GP and 

FUNG. The family grouping did not allow us to calculate the specific correlations to 

individual pathogens and therefore their inclusion in the genetic selection scenarios 

could bias our conclusions. Genetic progress was calculated for each scenario after five 

generations (approximately 30 years) of selection for unspecific mastitis (using SCS), 

STAUR, STREA and ECOL. In order to evaluate the economic advantage of each 

option, the costs associated to the mastitis caused by specific or unspecific pathogens 

were retrieved from literature (Sorensen et al., 2010) and reported in Table 4. SCS was 

here considered as an indirect indicator for unspecific mastitis and the costs associated 

to SCS were considered to correspond to the costs calculated for unspecific mastitis 

(Sorensen et al., 2010). This cost was multiplied by 0.70 according to the average of 
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genetic correlations estimated in literature between SCS and mastitis (Mrode and 

Swanson, 1996). The value of each aggregation of traits in selection indexes was 

calculated as the sum of the genetic progress estimated for each trait multiplied by the 

corresponding cost 

Results and discussion 

Test day milk yield production was on average 13.92±4.64 kg. The average value of 

SCS (2.89±2.09) was low and comparable to average values previously reported for the 

Valdostana breed (Battaglini et al., 2005) and in other Italian dual-purpose breed, as i.e. 

Pezzata Rossa (ANAPRI, 2007). 

Bacteriological data were recorded and analyzed for all cows in herds with at least one 

cow showing symptoms of CM. In the complete bacteriological data set a total of 

68.71% of milk samples resulted positive for the presence of at least one of the 

pathogens considered and in some samples more than one pathogen was detected 

simultaneously. In detail, the pathogens were 22.9% (STAUR), 19.5% (STAPH), 17.2% 

(STREP), 16.7% (STREA), 5.5% (ECOL) and 4.1% (FUNG). The relative presence of 

pathogens was similar in the original data set and in the edited ones used in this analysis 

(Table 1). These percentages do not necessarily correspond to the average situation of 

the population considered as the data used in this study were collected from a non-

random sample of the population (only when at least one case of CM is diagnosed). 

Furthermore it should be noted that the dataset does not include the detail of which cow 

was diagnosed for clinical and subclinical mastitis. This is in contrast with most of data 

reported in literature. Normally the frequency of pathogens is specifically related to 

bacteriological analyses of milk of cows with CM (Sorensen et al., 2009a and 2009b) or 

to the relative frequency of the presence of specific pathogens in data sets of positive 

samples (i.e. Smith et al., 1985). 

Heritabilities 

Heritability for MY was 0.21 (Table 2 and 3) from both LM and ThrM models. The 

SCS had a moderate heritability of ~0.08 with a value similar to the one calculated by 

Colleau and le Bihan-Duval (1995) from a pooling of 39 literature estimates, and similar 

to other more recent literature results (Rupp and Boichard, 1999; Samoré et al., 2001; 

de Haas et al., 2002b). 
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Heritability values obtained with linear and threshold models differed for most of 

pathogens and they were generally higher with the ThrM. Values from LM were 0.02 

for STAUR, STREA, STAPH, STREP, ECOL, GP and GN, 0.03 for FUNG. While 

results ranged in a larger spectrum, with values from 0.02 (for ECOL and GP) to 0.09 

(for STAUR and STAPH) in the ThrM. 

For the pathogen presence in milk the discussion was focused on estimates obtained 

from the ThrM (Table 3). Estimates of binary traits from the ThrM were higher than the 

corresponding genetic parameter from the LM (Table 2). The largest heritability 

resulted for STAPH and STAUR (0.09), while the lowest values were for GN and 

ECOL (0.02). In literature, de Haas et al. (2002b) estimated 0.05 of heritability for 

STAPH in Dutch milk, while estimates for ECOL were 0.05 (Sorensen et al., 2009) and 

0.06 (de Haas et al., 2002b). The moderate values of heritabilities for STAUR (0.09), 

STAPH (0.09), FUNG (0.09) and STREP (0.08) agreed with results of Sorensen et al. 

(2010) and suggested that these pathogens should be directly considered in the genetic 

selection for mastitis reduction. Similarly the heritability estimated for the pathogen 

STREA (0.06) supported previous findings in literature (de Haas et al., 2002b; Sorensen 

et al., 2009a and 2009b) and indicated its potential role in direct genetic selection for 

specific pathogens. 

Genetic correlations 

Genetic correlations between production traits estimated with both LM and ThrM 

models (Table 2 and 3) confirmed the antagonistic association between MY and SCS. 

Genetic correlations estimated with LM versus ThrM generally resulted in the same 

sign, but in smaller, absolute value, in LM than with ThrM. The genetic correlations 

between the specific presence of pathogens and SCS obtained with ThrM showed a 

wide range of values, spanning from a minimum of -0.304 (90% highest posterior 

density, HPD: -0.461; -0.135 for GP) to a maximum of 0.583 (HPD: 0.473; -0.694 for 

STREA). According to previous findings in literature (Detilleux et al., 1996; de Haas et 

al., 2002b), these large differences in genetic correlation values with SCS, both in sign 

and in strength, potentially confirm the existence of different patterns in milk cell 

increase depending on the specific pathogens causing the udder infection. The genetic 

correlations of SCS with STAUR, STREA, STREP, ECOL and FUNG were positive 

while they were negative with STAPH, GP and GN. Correlation values were higher in 
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ThrM, than in LM, and in agreement with most of literature results (de Haas et al., 

2002b; Sorensen et al., 2009a and 2009b). The largest genetic correlations with SCS 

was found for pathogens considered to be the most economically important in mastitis 

selection (Sorensen et al., 2010), i.e. STREA (0.584, HPD: 0.473; 0.684), ECOL 

(0.399, HPD: 0.194; 0.586), and STREP (0.346, HPD: 0.136; 0.573). These positive 

correlation values should indicate therefore that cows, with occurrence of infection by 

one of these three pathogens, should also react to the infection with a genetically 

determined increase in SCS. In contrast, the behavior in the presence of pathogens that 

are in negative correlation with SCS, as GP (-0.304, HPD: -0.461; -0.135) and STAPH 

(-0.206, HPD: -0.381; -0.027) should be different. 

Genetic correlations among pathogen liabilities presented a wide range of values 

spanning from -0.723 (HPD: -0.821; -0.620) between STAUR and STAPH, to 0.522 

(HPD: 0.362; 0.682) between STAUR and STREA. This suggests that the presence of 

different pathogens might be considered as specific traits in genetic selection and that 

antagonistic genetic effects might exist between pathogens. Furthermore, the infections 

caused by the two largest classes of bacteria causing mastitis, i.e. STAUR and STREA, 

are positively genetic correlated (0.522, HPD: 0.362; 0.682). 

At phenotypic level, the presence of one of the two major pathogens causing mastitis, 

i.e. STAUR or STREA, is generally considered by veterinarians to be antagonist to the 

joint presence of some environmental pathogens, i.e. STAPH and STREP (Raindard and 

Poultrel, 1988). Nonetheless, the genetic correlations between STAUR and STREP 

(0.218, HPD: 0.033; 0.422) and STREA and STREP (0.253, HPD: 0.049; 0.467) were 

positive while negative genetic correlation were found between STAUR and STAPH (-

0.723, HPD: -0.821; -0.620) and STREA and STAPH (-0.640, HPD:-0.762; -0.524). 

Differences between phenotypic and genetic behaviors between these pathogens are 

probably related to chemical and biochemical changes in the environmental habitats 

caused by the presence of each bacterium. These changes should, by consequence, 

contrast the eventual phenotypic infection by the other pathogens with an antagonism 

that it is only due to the environmental situation and not to the genetic background. At 

phenotypic levels the detection of two different strains of the major pathogens is rare 

(Kardarmideen and Pryce, 2009) and it is believed that different strategies are adopted 

by microorganisms to reduce bacterium competition in the same environment, as i.e. 

with the production of bacteriocins (Riley and Gordon, 1999). 
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The presence of ECOL was not clearly related with others pathogens, and also the 

positive genetic correlation with STAUR and the negative genetic correlation with 

STREP were not substantially different from zero. Instead, other couples of pathogens 

were positively related to each other, as i.e. STREA with FUNG (0.395, HPD: 0.135; 

0.626), GN with STREA (0.309, HPD: 0.097; 0.482) and GP with STREA (0.262, HPD 

0.093; - 0.434). Some pathogens presented negative genetic correlations, i.e. GP with 

STREP (-0.369, HPD:-0.459; -0.137) and STAUR and FUNG (-0.277, HPD: -0.488; -

0.005). The other correlations were not different from zero probably due to the data set 

sampled rather than to true null correlations. 

Genetic correlations among pathogens were larger in size when estimated with the 

ThrM rather than with the LM. Generally, the sign was the same with the two models, 

although some differences existed, i.e. between STREA and GP that was negative and 

moderate (-0.231, HPD: -0.418; -0.055]) with ThrM, and positive with the LM (0.262, 

HPD: 0.093; 0.434). Finally, in both models STREA presented a similar positive 

genetic relationship with GN (0.336 [HPD: 0.007; 0.603] in LM and 0.309 [HPD: 

0.097; 0.482] in ThrM), with STREP (0.314 [HPD: 0.107; 0.506] in LM and 0.218 

[HPD: 0.033; 0.422] in ThrM) and with FUNG (0.222 [HPD: 0.009; 0.436] in LM and 

0.295 [HPD: 0.135; 0.626] in ThrM) and in contrast  negative with STAPH (-0.278 

[HPD: -0.493; -0.053] in LM and -0.640 [HPD: -0.762; -0.514] in ThrM). The values of 

genetic correlations were variable and there is no obvious evidence of common genetic 

determinism of immune responses. Nonetheless, genetic correlations were positive and 

moderate between bacteria of the same type and negative between the major pathogens. 

Some traits included a mixture of different specific similar pathogens that were grouped 

by families, i.e. STAPH, STREP, GN, GP and FUNG. This was done according to 

Sorensen et al. (2009a). Nonetheless it should be noted that specific immune response 

could be determined by the specific pathogen within each group. Evidence of different 

immune responses to infection caused by gram positive and gram negative bacterium 

were given by Bannerman et al. (2004) and Sorensen et al. (2009a). They suggested that 

the immune response caused by the presence of gram positive bacterium was highly 

variable depending on the specific type involved, and probably a similar situation could 

happen also for mastitis determined by gram negative bacterium. 
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The genetic correlation values between MY and mastitis-specific pathogen were 

variable. Moderate unfavorable correlation values were found between MY and STAPH 

(0.331, HPD: 0.082; 0.574) and with STREA (0.280, HPD: 0.016; 0.526).  

Specific Pathogens and Genetic Selection 

Selection for decreased SCS is commonly used in dairy cattle populations as a mean to 

reduce susceptibility to mastitis (Mark et al., 2002). Genetic correlation values between 

SCS and clinical mastitis incidence have been reported around 0.70 (Carlén et al., 2004; 

Koivula et al., 2005) supporting the use of SCS as indirect indicator of unspecific 

mastitis, i.e. infection caused by any type of pathogens. In the current study, according 

to the estimates in Table 4, selection for SCS should efficiently succeed in reducing the 

costs associated to all type of mastitis (Table 4), i.e. unspecific mastitis (indirectly 

measured by SCS trait) or specific mastitis caused by two of the three major pathogens, 

i.e. of STREA and ECOLI. The economic value of SCS was calculated based on the 

costs reported by Sorensen et al. (2010) for unspecific mastitis and multiplied by the 

average value of genetic correlations between SCS and clinical mastitis reported in 

literature. This is an approximation that aims to cover the knowledge gap of the 

economic value for SCS in the Valdostana breed. Moreover, this economic value 

attributed to SCS considers only costs associated to the reduction in mastitis incidence 

although it is known that SCS level also favorably influences both the milk quality 

(Pantoja et al., 2009) and the coagulation ability of milk for cheese-making (Cassandro 

et al., 2008). These two further economic advantages of selecting for SCS are not 

considered here, but should be included in further analyses as they increase the 

advantages of genetic selection using SCS values. 

The use of milk specific pathogen information in genetic selection to reduce mastitis 

resulted in various economic gains (here expressed as reduction in costs) depending on 

the costs associated to each type of mastitis. The best combination of traits aggregated 

STAUR, STREA, and ECOL (Figure 1). 

With the trait SCS, the best costs reduction (Figure 1) was with STAUR and STREA, 

while the inclusion of ECOL resulted in a slightly smaller benefit than with the reduced 

option. Udder infection by ECOL presence produces great economic losses and udder 

damages. These type of mastitis are among the most studied (Burvenich et al., 2003; 

Steeneveld et al., 2011). Nevertheless the genetic background here estimated, i.e. the 
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genetic correlation values with SCS and other specific pathogen presences, differed 

from those of STAUR and STREA. Probably this depends from the different 

pathogenesis of ECOL (Brand et al., 2011; Steeneveld et al., 2011) but this result also 

suggests that the inclusion of ECOL within traits of the udder health index would be of 

interest. Specifically its inclusion would allow the reduction also of economically 

impactful ECOL mastitis. Our conclusion is therefore that an udder health index 

including SCS and all the major pathogen traits should probably be the best choice.  

Although this wider index has a smaller expected economic advantage compared to the 

one with only the three major pathogens, it would contribute meaningfully also to 

unspecific mastitis selection. 

According to these preliminary analyses, it can be concluded that genetic selection to 

reduce the pathogen presence in milk of the Valdostana breed is possible. Furthermore 

the availability of information on specific pathogen incidence would improve the 

overall genetic gain expected with the simple use of SCS data. Nevertheless it should be 

pointed out that the extra economic gain obtained with the use of specific pathogen 

information in selection could be relatively small when compared to the selection for 

the trait SCS, and that the increase in costs due to bacteriological tests necessary would 

probably not entirely be justified. Economic analyses on costs associated to each 

specific udder infection, with special regards to the Valdostana breed area of breeding, 

are therefore warranted. This analysis should better define the relative weights of each 

single pathogen information in an aggregated selection and, consequently evaluate the 

relative importance of each pathogen causing the mastitis. Nonetheless, the indirect 

effect on udder infection resulting from other traits under selection, i.e. production, 

udder type and longevity traits, could strongly influence the relative importance of each 

single udder health trait. According to literature results and to previous experiences in 

other breeds, udder type traits are probably the most important to be included in an 

aggregated udder health index (Rupp and Boichard, 1999; Samoré and Groen, 2006), 

but further traits could be of interest, as bimodality of milk release (Samoré et al., 

2011), milk flow traits (Gray et al., 2011), or electrical conductivity (Milner et al., 

1996; Kamphuis et al., 2008). 

Conclusions 



 
46 

The ThrM is the best model to be used when binary traits are considered, i.e. the 

presence/absence of pathogens in milk. This model is better at detecting the genetic 

variation. The presence of specific pathogens in milk resulted in moderate heritability 

values that justify their inclusion in udder health genetic selection strategies. Genetic 

selection can be done effectively for the common mastitis indicator of SCS. The 

inclusion of major pathogens causing mastitis (STAUR, STREA, and ECOL) is 

recommended as it improves the economic gain. Economic analyses of the values of 

both specific and unspecific mastitis for the Valdostana breed are warranted as they 

could improve the udder health index definition and the expected genetic gain in 

mastitis selection.  

References 

Ambrosoli, R. and E. Pisu. 1996. Aspetti nutrizionali del formaggio Fontina. La Rivista 

di Scienza dell’Alimentazione 25:393–398. 

Ahmadzadeh, A., F. Frago, B. Shafii, J.C. Dalton, W.J. Price and M.A. McGuire. 2009. 

Effect of clinical mastitis and other diseases on reproductive performance of Holstein 

cows. Anim Reprod Sci. 112:273-282. 

ANAPRI, 2007. L'indice di selezione della Associazione Nazionale Allevatori Bovini di 

Razza Pezzata Rossa Italiana. Accessed August 12th 2010. 

http://www.anapri.eu/index.php?option=com_content&view=article&id=68&Itemid=97

. 

Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope and P. Rainard. 2004. 

Escherichia coli and Staphylococcus aureus Elicit Differential Innate Immune 

Responses following Intramammary Infection. Clin. Diagn. Lab. Immunol. 11:463-472. 

Battaglini, L., A. Mimosi, V. Malfatto, C. Lussiana and M. Bianchi. 2005. Milk yield 

and quality of Aosta cattle breeds in Alpine pasture.Ital. J. Anim. Sci. 4(suppl. 2):224-

226. 

Bar, D., L.W. Tauer, G. Bennett, R.N. Gonzalez, J.A. Hertl, Y.H. Schukken, H.F. 

Schulte, F.L. Welcome and Y.T. Gröhn. 2008. The cost of generic clinical mastitis in 

dairy cows as estimated by using dynamic programming. J. Dairy Sci. 91:2205-2214. 



 
47 

Bradley, A.J., K.A. Leach, J.E. Breen, L.E. Green and M.J. Green. 2007. Survey of the 

incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Record. 

160:253-257. 

Brand, B., A. Hartmann, D. Repsilber, B. Griesbeck-Zilch, O. Wellnitz , C. Kuhn, S. 

Ponsuksili, H.H. Meyer and M. Schwerin. 2011. Comparative expression profiling of E. 

coli and S. aureus inoculated primary mammary gland cells sampled from cows with 

different genetic predispositions for somatic cell score. Genet. Sel. Evol. 43:24. 

Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile and L. Duchateau. 2003. 

Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34:521-564 

Carlén, E., E. Strandberg and A. Roth. 2004. Genetic parameters for clinical mastitis, 

somatic cell score and production in the first there lactations of Swedish Holstein cows 

J. Dairy Sci. 87:3062-3070. 

Cassandro, M., A. Comin, M. Ojala, R. Dal Zotto, M. De Marchi,L. Gallo,P. Carnier 

and G. Bittante. 2008. Genetic parameters of milk coagulation properties and their 

relationships with milk yield and quality traits in Italian Holstein cows. J. Dairy Sci. 

91:371-376. 

Colleau, J.J. and le Bihan-Duval, E. 1995.A simulation study of selection methods to 

improve mastitis resistance of dairy cows, J. Dairy Sci. 78:659-671. 

de Haas, Y., H.W. Barkema and R.F. Veerkamp. 2002a. Effect of pathogen-specific 

clinical mastitis on the lactation curve of somatic cell count. J. Dairy Sci. 85:1314-1323. 

de Haas, Y., H.W. Barkema and. R.F. Veerkamp. 2002b. Genetic parameters of 

pathogen-specific incidence of clinical mastitis in dairy cows. Anim. Sci. 74:233-242. 

Detilleux, J.C. and P. Leroy. 1996. Indirect indicators of mastitis resistance. In: Interbull 

(Ed.). Proceedings of International workshop on genetic improvement of functional 

traits in cattle, Gembloux, Belgium. 

Gray, K.A., F. Vacirca, A. Bagnato, A. Rossoni, A.B. Samoré and C. Maltecca. 2011. 

Genetic evaluations for measures of the milk flow curve in the Italian Brown Swiss 

population. J. Dairy Sci. 94:960-970. 



 
48 

Gröhn, Y.T., D.J. Wilson, R.N. González, J.A. Herti, H. Schulte, G. Bennett and Y.H. 

Schukken. 2004. Effect of pathogen-specific clinical mastitis on milk yield in dairy 

cows. J. Dairy Sci. 87:3358-3374. 

Heringstad, B., G. Klementsdal and J. Ruane. 2001. Selection responses for clinical 

mastitis resistance in the Norwegian cattle populations.Acta Agric. Scand. Sect. A. 

Anim. Sci. 51:155-160. 

Heringstad, B., R. Rekaya, D. Gianola, G. Klemetsdal and K.A. Weigel. 2003a. Genetic 

change for clinical mastitis in Norwegian cattle: a threshold model analysis. J. Dairy 

Sci. 86:369-375. 

Heringstad, B., R. Rekaya, D. Gianola, G. Klemetsdal and K.A. Weigel. 2003b. 

Bivariate analysis of liability to clinical mastitis and to culling in first-lactation cows. J. 

Dairy Sci. 86:653-660. 

Heringstad, B., Y.M. Chang, D. Gianola and G. Klemetsdal. 2003c. Genetic analysis of 

longitudinal trajectory of clinical mastitis in first-lactation Norwegian cattle. J. Dairy 

Sci. 86:2676-2683. 

Kamphuis, C., D. Pietersma, R. Van der Tol, M. Wiedemann and H. Hogeveen. 2008. 

Using sensor data patterns from an automatic milking system to develop predictive 

variables for classifying clinical mastitis and abnormal milk. Comp. Electron. Agric. 

62:169-181. 

Kardarmideen, H.N. and J.E. Pryce. 2009. Genetic and economic relationship between 

somatic cell count and clinical mastitis and their use in selection for mastitis resistance 

in dairy cattle. Anim. Sci. 83:19-28 

Lin, H.K., P.A. Oltenacu, L.D. Van Vleck, H.N. Erb and R.D. Smith. 1989. 

Heritabilities of and Genetic Correlations among 6 Health-Problems in Holstein Cows. 

J. Dairy Sci. 1989. 72:180-186. 

Koivula, M., E.A. Mäntysaari, E. Negussie and T. Serenius, 2005. Genetic and 

phenotypic relationships among milk yield and somatic cell count before and after 

clinical mastitis. J Dairy Sci. 88:827-833. 



 
49 

Mark, T., F. Fikse, E. Emanuelson and J. Philipsson. 2002. International genetic 

evaluations of Holstein sires for milk somatic cell and clinical mastitis. J. Dairy Sci. 

85:2384-2392. 

Milner, P., K. L. Page, A.W. Walton and J.E. Hillerton. 1996. Detection of clinical 

mastitis by changes in electrical conductivity of foremilk before visible changes in milk. 

J. Dairy Sci.79, 83–86. 

Olde-Riekerink, R.G., H.W. Barkema, D.F. Kelton and D.T. Scholl. 2008. Incidence 

rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci.91:1366-1377. 

Pantoja, J.C., D.J. Reinemann and P.L. Ruegg. 2009. Associations among milk quality 

indicators in raw bulk milk. J. Dairy Sci. 92:4978-4987. 

Raftery, A. and S.M. Lewis. 1992. One long run with diagnostics: implementation 

strategies for Markov chain Monte Carlo. Stat. Sci. 7:493-497. 

Raindard, P. and B. Poultrel. 1988. Effect of naturally occurring intramammary 

infections by minor pathogens on new infections by major pathogens in cattle. Am. J. 

Vet. Res.49:327-329. 

Rajala-Schultz, P.J., Y.T. Gröhn, C.E. McCulloch and C.L. Guard. 1999. Effects of 

clinical mastitis on milk mield in dairy cows. J. Dairy Sci. 82:1213–1220. 

Riley, M.A. and D.M. Gordon. 1999. The ecological role of bacteriocins in bacterial 

competition. Trends. Microbiol. 7:129-133. 

Rodrigues-Motta, M., D. Gianola, B. Heringstad, G.J. Rosa and Y.M. Chang. 2007. A 

zero-inflated poisson model for genetic analysis of the number of mastitis cases in 

Norwegian Red cows. J. Dairy Sci. 90:5306-5315. 

Rupp, R. and D. Boichard. 1999. Genetic parameters for clinical mastitis, somatic cell 

score, production, udder type traits, and milking ease in first lactation Holsteins. J. 

Dairy Sci. 82:2198–2204. 

Samoré, A.B., A. Bagnato, F. Canavesi , S. Biffani and A.F. Groen. 2001. Breeding 

value prediction for SCC in Italian Holstein Friesian using a test-day repeatability 

model. Ital. J. Anim. Sci. 2:22-24. 



 
50 

Samoré, A.B. and A.F. Groen. 2006. Proposal of an udder health genetic index for the 

Italian Holstein Friesian based on first lactation data. Ital. J. Anim. Sci. 5:359-370. 

Samoré, A.B., S.I. Roman-Ponce, F: Vacirca, E. Frigo, F. Canavesi, A. Bagnato amd C. 

Maltecca. 2011. Bimodality and the genetics of milk flow traits in the Italian Holstein 

Friesian breed. J. Dairy Sci. 94:4081-4089.  

Smith, K.L., D.A. Todhunter and P.S. Schoenberger. 1985. Environmental mastitis: 

cause, prevalence, prevention. J. Dairy Sci. 68:1531-1553. 

Steeneveld, W., T. van Werven, H.W. Barkema and H. Hogeveen. 2011. Cow-specific 

treatment of clinical mastitis: an economic approach. J Dairy Sci. 94:174-88. 

Sorensen, D.A., S. Andersen, D. Gianola and I. Korsgaard. 1995. Bayesian inference in 

threshold using Gibbs sampling. Genet. Sel. Evol. 27:229-249. 

Sorensen, L.P., P. Madsen, T. Mark and M.S. Lund. 2009a. Genetic Parameters for 

Pathogen-Specific Mastitis Resistances in Danish Holstein Cattle. Animal 3:647-656. 

Sorensen, L.P., P. Madsen, T. Mark and M.S. Lund. 2009b. Genetic Correlations 

between Pathogen-Specific Mastitis and Somatic Cell Count in Danish Holstein. J. 

Dairy Sci. 92:3457-3471. 

Sorensen, L.P., P. Madsen, M.K. Sorensen and S. Ostergaard. 2010. Economic values 

and expected effect of selection index for pathogen-specific mastitis under Danish 

conditions.J Dairy Sci. 93:358-369. 

Steine, G., D. Kristofersson and A.G. Guttormsen. 2008. Economic evaluation of the 

breeding goal for Norwegian Red dairy cattle. J. Dairy Sci. 91:418-426. 

Tsuruta, S. and I. Misztal. 2006. THRGIBBS1F90 for estimation of variance 

components with threshold and linear models.Proc. 8th WCGALP, Belo Horizonte, 

Brazil (Abstr). 

Vallimont, J.E., C.D. Dechow, C.G. Sattler and J.S. Clay. 2009. Heritability estimates 

associated with alternative definitions of mastitis and correlations with somatic cell 

score and yield. J. Dairy Sci. 92:3402-3410. 



 
51 

Vazquez, A.I., K.A. Weigel, D. Gianola, D.M. Bates, M.A. Perez-Cabal, G.J. Rosa and 

Y.M. Chang. 2009. Poisson versus threshold models for genetic analysis of clinical 

mastitis in US Holsteins. J. Dairy Sci. 2009. 92:5239-5247. 

Wiggans, G.R. and G.E. Shook. 1987. A lactation measure of somatic cell count. J 

Anim. Sci 70:2666-2672. 

Zwald, N.R., K.A. Weigel, Y.M. Chang , R.D. Welper and J.S. Clay. 2004. Genetic 

selection for health traits using producer-recorded data. II. Genetic correlations, disease 

probabilities, and relationships with existing traits. J. Dairy Sci. 87:4295-4302. 

 



 

 
52 

TABLES 

Table 1 - Number of milk tests resulted to be positive for the presence of Staphylococcus aureus, 

Streptococcus agalactie, Staphylococcus ssp., Streptococcus ssp., Escherichia coli, minor pathogens gram 

positive, minor pathogens gram negative, and fungi in the original data set and in the edited ones. 

 

 Label Original 

data Set
 

Pathogen 

presence 

Edited 

data Set 

Pathogen 

presence 

Staphylococcus aureus STAUR 17,837 22.9% 5,469 22.9% 

Streptococcus agalactie STREA 14,566 18.7% 3,989 16.7% 

Staphylococcus ssp. STAPH 13,719 17.6% 4,658 19.5% 

Streptococcus ssp. STREP 12,335 15.9% 4,108 17.2% 

Escherichia coli ECOL 3,275 4.2% 1,320 5.5% 

Minor pathogens gram 

positive 

GP 1,669 2.1% 551 2.3% 

Minor pathogens gram 

negative 

GN 1,381 1.8% 429 1.8% 

Fungi FUNG 3,131 4.0% 992 4.1% 

Total n 77,768  23,907  
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Table 2 - Posterior mean of heritabilities (on diagonal), phenotypic (above), genetic (below) correlation values and 90% highest posterior density  intervals (in brackets) for kg 

of milk yield (MY), somatic cell score (SCS) and pathogen incidence (STAUR= Staphylococcus aureus, STREA= Streptococcus agalactie, STAPH= Staphylococcus ssp., 

STREP= Streptococcus ssp., ECOL= Escherichia coli, GP= minor pathogens gram positive, GN= minor pathogens gram negative, and FUNG= fungi in milk) estimated with 

the linear model. 
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Table 2 (cont) 

 MY SCS STAUR STREA STAPH STREP ECOL GP GN FUNG 

MY 

0.21 

[0.185; 0.228] 

-0.139 -0.008 -0.042 -0.004 0.006 -0.009 0.003 -0.008 -0.010 

SCS 

0.267 

[0.059; 0.457] 

0.07 

[0.061; 0.089] 

0.110 0.196 -0.007 0.006 0.001 0.003 0.024 -0.004 

STAUR 

0.006 

[-0.301; 0.310] 

0.157 

[-0.082; 0.423] 

0.02 

[0.007; 0.026] 

0.043 -0.124 -0.005 -0.001 -0.020 -0.016 -0.005 

STREA 

0.189 

[-0.063; 0.424] 

0.515 

[0.361; 0.666] 

-0.001 

[-0.331; 0.327] 

0.02 

[0.014; 0.027] 

-0.096 -0.121 -0.023 -0.008 -0.016 0.007 

STAPH 

0.266 

[-0.014; 0.550] 

-0.037 

[-0.249; 0.182] 

-0.142 

[-0.524; 0.200] 

-0.278 

[-0.493; -0.053] 

0.02 

[0.010; 0.024] 

-0.194 -0.055 -0.061 -0.025 -0.014 

STREP 

0.456 

[0.182; 0.731] 

0.295 

[0.070; 0.498] 

0.314 

[0.107; 0.506] 

0.027 

[-0.258; 0.296] 

-0.172 

[-0.466; 0.104] 

0.02 

[0.015; 0.027] 

-0.077 0.014 -0.012 0.018 

ECOL 

-0.322 

[-0.604; -0.036] 

0.318 

[0.132; 0.513 

0.320 

[0.024; 0.565] 

0.134 

[-0.107; 0.381] 

-0.039 

[-0.305; 0.195] 

0.000 

[-0.273; 0.248] 

0.02 

[0.014; 0.028] 

-0.060 -0.041 0.002 

GP 

0.196 

[-0.037; 0.442] 

-0.360 

[-0.506; -0.196] 

-0.269 

[-0.567; -0.007] 

0.380 

[0.196; 0.565] 

-0.231 

[-0.418; -0.055] 

-0.105 

[-0.291; 0.101] 

0.231 

[-0.015; 0.460] 

0.03 

[0.019; 0.032] 

-0.011 0.011 

GN 

0.182 

[-0.135 - 0.476] 

-0.041 

[-0.258; 0.185] 

-0.027 

[-0.279; 0.268] 

0.336 

[0.007; 0.603] 

0.329 

[0.075; 0.577] 

0.121 

[-0.075; 0.320] 

0.037 

[-0.253; 0.319] 

0.209 

[-0.012; 0.417] 

0.02 

[0.010; 0.027] 

-0.001 

FUNG 

-0.280 

[-0.566 - 0.004] 

0.229 

[0.043; 0.394] 

-0.149 

[-0.451; 0.184] 

0.222 

[0.009; 0.436] 

0.266 

[0.025; 0.487] 

0.300 

[0.000; 0.594] 

0.067 

[-0.195; 0.339] 

0.191 

[-0.004; 0.397] 

-0.082 

[-0.364; 0.202] 

0.03 

[0.018; 0.035] 



 

 55 

Table 3 - Posterior mean of heritabilities (on diagonal), phenotypic (above), genetic (below) correlation values and 90% highest posterior density intervals (in brackets) for kg 

of milk yield (MY), somatic cell score (SCS) and pathogen incidence (STAUR= Staphylococcus aureus, STREA= Streptococcus agalactie, STAPH= Staphylococcus ssp., 

STREP= Streptococcus ssp., ECOL= Escherichia coli, GP= minor pathogens gram positive, GN= minor pathogens gram negative, and FUNG= fungi in milk) estimated with 

the linear threshold model. 



 

 56 

Table 3 (cont) 

 MY SCS STAUR STREA STAPH STREP ECOL GP GN FUNG 

MY 0.21 

[0.183; 0.228] 

-0.139 -0.011 -0.068 -0.006 0.010 -0.033 0.008 -0.018 -0.017 

SCS 0.278 

[0.074; 0.479] 

0.08 

[0.066; 0.95] 

0.157 0.278 -0.020 0.009 0.010 -0.011 0.017 0.002 

STAUR 0.120 

[-0.119; 0.366] 

0.233 

[0.055; 0.441] 

0.09 

[0.064; 0.107] 

0.089 -0.126 0.023 0.013 -0.006 -0.007 -0.026 

STREA 0.280 

[0.016; 0.526] 

0.584 

[0.473; 0.694] 

0.522 

[0.362; 0.682] 

0.06 

[0.041; 0.070] 

-0.073 -0.035 -0.012 0.003 0.005 0.016 

STAPH 0.331 

[0.082; 0.574] 

-0.206 

[-0.381; -0.027] 

-0.723 

[-0.821; -0.620] 

-0.640 

[-0.762; -0.514] 

0.09 

[0.070; 0.113] 

-0.136 -0.025 -0.042 -0.018 -0.014 

STREP 0.258 

[-0.053; 0.583] 

0.346 

[0.136; 0.573] 

0.218 

[0.033; 0.422] 

0.253 

[0.049; 0.467] 

-0.583 

[-0.711; -0.438] 

0.08 

[0.057; 0.085] 

-0.046 0.008 -0.017 0.018 

ECOL -1.014 

[-1.333; -0.639] 

0.399 

[0.194; 0.586] 

0.145 

[-0.066; 0.354] 

-0.073 

[-0.296; 0.177] 

0.063 

[-0.134; 0.263] 

-0.156 

[-0.340; 0.030] 

0.02 

[0.013; 0.024] 

-0.035 -0.017 0.001 

GP 0.042 

[-0.504; 0.438] 

-0.304 

[-0.461; -0.135] 

0.010 

[-0.237; 0.314] 

0.262 

[0.093; 0.434] 

0.088 

[-0.139; 0.313] 

-0.369 

[-0.630; -0.137] 

-0.266 

[-0.459; 0.069] 

0.02 

[0.014; 0.030] 

-0.010 -0.002 

GN 0.333 

[-0.020; 0.731] 

-0.089 

[-0.254; 0.090] 

-0.019 

[-0.298; 0.226] 

0.309 

[0.097; 0.482] 

-0.010 

[-0.270; 0.223] 

-0.188 

[-0.387; 0.026] 

-0.185 

[-0.415; 0.060] 

0.207 

[-0.008; 0.451] 

0.03 

[0.017; 0.035] 

0.008 

FUNG -0.090 

[-0.395; 0.254] 

0.251 

[-0.008; 0.491] 

-0.257 

[-0.488; -0.005] 

0.395 

[0.135; 0.626] 

-0.124 

[-0.350; 0.113] 

0.051 

[-0.295; 0.343] 

0.094 

[-0.161; 0.364] 

0.063 

[-0.234; 0.357] 

0.096 

[-0.128; 0.335] 

0.09 

[0.055; 0.121] 
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Table 4 – Various strategies of selection and the predicted genetic gain for each trait: somatic cell score (SCS) and the presence of one of the major pathogens causing mastitis 

in dairy cattle (STAUR= Staphylococcus aureus, STREA= Streptococcus agalactie, and ECOL= Escherichia coli,). Reduction in costs expected (from Sorensen et al., 2010) 

were 162€ for SCS (231€ for unspecific mastitis by 0.70 the genetic correlation between SCS and mastitis), 570€ for STAUR, 149€ for STREA, and 206€ for ECOL. 

 Genetic progress for each trait 

Traits in the udder health index SCS STAUR STREA ECOL 

SCS -0.421 0.012 -0.078 -0.056 

STAUR  0.027 -0.190 -0.086  0.017 

STREA -0.244 -0.122 -0.134 -0.016 

ECOL -0.367 0.050 -0.034 -0.064 

SCS+STAUR -0.382 -0.069 -0.109 -0.045 

SCS+STREA -0.411 -0.022 -0.099 -0.050 

SCS+ECOL -0.420 0.017 -0.073 -0.058 

STAUR+STREA -0.094 -0.178 -0.116  0.004 

STAUR+STREA+ECOL -0.172 -0.165 -0.122 -0.010 

SCS+STAUR+STREA -0.363 -0.084 -0.118 -0.040 

SCS+STAUR+ECOL -0.393 -0.056 -0.103 -0.049 

SCS+STREA+ECOL -0.415 -0.014 -0.094 -0.053 

SCS+STAUR+STREA+ECOL -0.377 -0.072 -0.114 -0.044 

SCS= somatic cell score, STAUR= Staphylococcus aureus, STREA= Staphylococcus ssp., ECOL= Escherichia coli. 
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FIGURE 

Figure 1 Expected economic gain after 5 generations when selecting for different combinations of 

somatic cell score (SCS) and the major specific pathogens in milk causing mastitis, such as 

Staphylococcus aureus(STAUR), Streptococcus agalactie(STREA) and, Escherichia coli (ECOL). The 

economic values used were retrieved from literature. 
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Chapter 4 

Sensitivity Analyses to Prior Probabilities on Genomic Breeding 

Values Prediction. 

 

 

S.I. Román-Ponce, A.B. Samore’, M. Dolezal, G. Banos, T.H.E. Meuwissen and A. 

Bagnato. 
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Introduction 

With genomic prediction the proportion of genetic variance explained by markers on 

linkage disequilibrium with the quantitative trait loci (QTL) is estimated on the whole 

genome (Meuwissen et al, 2001). With the development of new techniques for 

molecular analysis, marker panels of SNP exist that may cover the whole genome 

(Matukumalli et al., 2009), thereby increasing the potential of genomic selection. The 

distribution of QTL effects has been previously described in livestock populations as a 

gamma distribution family member (Hayes and Godard, 2001; Xu, 2003) and genomic 

tools are based on it. 

Genomic estimated breeding values (GEBV) are calculated basically on two different 

approaches. The first is based on the infinitesimal model assumption (Fisher, 1918) and 

literature refers to it as GBLUP. In this model, it is assumed that all SNP contribute 

equally to the additive genetic variances of the trait and the effects of SNP are normally 

distributed. Alternatively, a second approach proposes to estimate the variance estimates 

the variance explained by every marker. The effects of SNP are coming from an 

inverted chi-square distribution and the probability that a marker has a large effect is 

generally unknown.  

Benefits of implementing genomic selection strategies in animal breeding can be 

associated with reduced costs (Schaeffer, 2006) increased rates of genetic gain as a 

consequence of the reduced generation interval and the increase of the accuracy of 

estimated breeding values (EBV) (Meuwissen et al., 2001). However, it is reported in 

literature that the values assumed for the markers effect estimation in the training 

population may affect the GEBV in the test population (Goddard and Hayes, 2007). 

The aim of this study was to evaluate different prior probability values, assumed for 

large marker effects, in the estimation of GEBV in dairy cattle.  

Material and methods 

A total of 1089 Brown Swiss bulls were genotyped with the BovineSNP50 (Illumina). 

Markers on chromosome X were excluded from the analysis, leaving a total of 51,582 

SNP. Editing of the markers included: the exclusion of sires with less than 90% 

completeness of genotyping rates (two sires deleted), deleting 583 SNP failing the test 

of missingness (>0.1), and deletion of 11,443 SNP with a minor allele frequency less 
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than 0.02. Finally, Mendelian errors were considered as missing genotypes. Editing was 

performed with two different software packages: SAS (SAS Inst. Inc., Cary, NC) and 

PLINK v1.07 (Purcell et al., 2007).The remaining data set included 1089 bulls with 

39,690 SNP and a 99.35% total genotyping rate.  

For the 1089 bulls considered, EBV for milk yield (MILK), fat yield (FATK), protein 

yield (PROTK), fat percentage (FATP), protein percentage (PROTP) and somatic cell 

score (SCS) were provided by the Italian Brown Cattle Breeders’ Association. The 

training population was defined as sires born before 2001 (n=846) and the test 

population included all bulls born from 2001 to 2005 (n=243). 

Two different models were used to estimate the markers effects (GBLUP and BayesB) 

on the training population. Different values of prior probabilities of SNP with large 

effects were tested: 39 SNP (corresponding to 0.001 of the total markers considered), 

198 (0.005), 397 (0.01), 1,985 (0.05), 3,969 (0.01) and 19,845 (0.5). Results with the 

BayesB model were obtained after ten replicates for each probability. 

The model for the markers effect estimation in the training population was as follow: 

     ∑      

 

   

 

Where y is a (Tx1) vector of phenotypes with T records, µ is overall mean; m is total 

number of genotyped SNPs; Xj is a (Tx1) vector denoting the genotype of the 

individuals for markers j, bj are standardized effects of the markers; and e is a (Tx1) 

vector of environmental effects. 

Prediction of GEBV in the test population was done by summed the markers effect 

estimated as follow: 

     ∑   

 

 

  ̂ 

Where Xi is the markers genotype of the individuali for the marker j and   ̂ is the 

estimated effect of the markers j. 

The comparison of markers effect solutions was done by one way analysis of variance 

with Tukey adjustment using the PROC GLM of SAS (SAS Inst. Inc., Cary, NC). 

Correlation coefficients (Pearson and Spearman) were calculated with the procedure 
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CORR (SAS Inst. Inc., Cary, NC) between EBV and GEBV as a measure of 

predictability of the phenotype and therefore as a sort of a measure of estimate of 

accuracy. 

Results and discussion 

Descriptive statistics of the BLUP-EBVs for the different traits for bulls in the training 

and test dataset are given in Table 1. 

The rate of QTL with large effect assumed in BayesB model did not affect the value of 

marker effects estimated and lsmeans of QTL effects with after Tukey adjustmet did not 

differ among GEBV estimation methods (Table 2). Accuracies of the prediction of 

phenotypes (calculated as Pearson and Spearman correlation coefficients between EBV 

and GEBV) only slightly varied with the number of large QTL assumed with specific 

situation for each trait considered (Table 3). Generally values were smaller than 0.30 for 

PROTP, FATP and MILK and slightly bigger for FATP and PROTP (>0.40). 

Spearman rank correlations (Table 4) between EBV and GEBV were slightly smaller 

than values in Table 3 but with similar ranges for all traits and with small differences 

depending on the amount of QTL with large effect assumed in the analysis.  

Accuracies estimated here were generally smaller than values by Luan et al. (2009), 

who reported accuracies of 0.591, 0.615 and 0.617 for MILK, FATK and PROTK, 

respectively, when the GBLUP was used, and values of 0.577, 0.590 and 0.607, 

respectively, with BayesB. In contrast, with a bigger data set of 3,576 bulls in the 

training population and the range of accuracies were from 0.42 to 0.63, and the 

difference between linear and non-linear models ranged from 0.0 to 0.08, depending on 

the traits (VanRaden et al., 2009). 

Conclusions 

According to the results presented here, the value assumed for the number of SNP with 

a large effect did not substantially influence the estimates marker effects and the 

accuracies of GEBV. It seems therefore that other factors (e.g. the assumed genetic 

parameters and amount of phenotypic data) are more crucial at determining the GEBV 

accuracy achieved. 
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Table 1 Descriptive statistics (mean and Std) for estimated breeding values (EBV) and 

reliabilities of the Italian Brown Swiss bull population. 

 

 

 

Table 2. Least-square means of marker effect solutions obtained in the Italian Brown 

Swiss bull population
∞
. 

 

 

  

Bulls population

Abbreviation Scale of measure Total (1,089) Training (846) Test (243)

Fat Percentage FATP % 0.007 ± 0.165 0.16 ± 0.17 -0.02 ± 0.16

Fat Yield FATK Kg per lactation -8.07 ± 26.12 -13.89 ± 25.68 12.22 ± 15.15

FATK Relaliability FATKr % 89.98 ± 9.63 92.42 ±  6.83 81.46 ± 12.67

Milk MILK Kg per lactation -214.78 ± 658.83 -376.00 ± 633.26 346.33 ± 379.81

MILK Reliability MILKr % 90.53 ± 9.23 92.79 ±  6.61 82.65 ± 12.24

Protein Percentage PROTP %  -9.18E-6 ± 0.11 -0.002 ± 0.11  0.009 ± 0.10

Protein Yield PROTK Kg per lactation  -8.40 ± 23.56  -14.34 ± 22.63 12.30 ± 12.40

PROTK Relaliability PROTKr % 90.32 ± 9.36 92.64 ±  6.70 82.24 ± 12.36

Somatic Cell Score SCS* Scores 57.08 ± 243.18 100.61 ± 19.14 113.36 ± 15.20

SCS Relaliability SCSr % 81.07 ± 14.14 83.25 ± 13.64 73.52 ± 13.22

*SCS= (((SCS-100)/12)* 0.5015) + 0.0434)

Model FATK FATP MILK PROTK PROTP SCS

GBLUP 9.44E-04 2.80E-06 2.00E-02 7.30E-04 -3.05E-08 -7.69E-04

BayesB ~ 40 SNP 9.23E-04 2.95E-06 1.98E-02 7.08E-04 1.35E-07 -1.43E-03

BayesB ~ 198 SNP 9.45E-04 2.73E-06 1.87E-02 6.56E-04 2.20E-07 -3.13E-04

BayesB ~ 397 SNP 9.35E-04 2.97E-06 1.98E-02 7.24E-04 5.38E-07 -6.44E-04

BayesB ~ 1985 SNP 9.27E-04 3.01E-06 1.86E-02 7.10E-04 -1.27E-07 -9.04E-04

BayesB ~ 3969 SNP 9.64E-04 2.74E-06 1.86E-02 6.98E-04 -1.42E-07 -1.03E-03

BayesB ~ 19845 SNP 9.13E-04 3.21E-06 1.79E-02 6.60E-04 2.33E-07 -1.01E-03

Aproximate SE 1.23E-04 1.17E-06 3.17E-03 1.22E-04 7.17E-07 1.29E-03
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Table 3. Pearson correlation between estimated breeding values (EBV) and genomic 

estimated breeding values (GEBV) in the test dataset (N=243) of the Italian Brown 

Swiss bull population
∞
. 

 

 

 

Table 4. Spearman rank correlation between estimated breeding values (EBV) and 

genomic estimated breeding values (GEBV) in the test data set (N=243) of the Italian 

Brown Swiss bull population
∞
. 

 

 

∞BayesB ~ 40SNP = mean of ten replicates from BayesB model with P=0.001; BayesB 

~ 198SNP = mean of ten replicates from BayesB with P=0.005; BayesB ~ 397SNP = 

mean of ten replicates from BayesB model with P=0.01; BayesB ~ 1985SNP = mean of 

ten replicates from BayesB with P=0.05; BayesB ~ 3969SNP = mean of ten replicates 

from BayesB model with P=0.1; BayesB ~ 19845SNP = mean of ten replicates from 

BayesB. 

  

Model FATK FATP MILK PROTK PROTP SCS

GBLUP 0.255 0.410 0.188 0.146 0.557 0.462

BayesB ~ 40 SNP 0.263 ± 0.018 0.423 ± 0.028 0.165 ± 0.039 0.122 ± 0.031 0.560 ± 0.011 0.442 ± 0.043

BayesB ~ 198 SNP 0.265 ± 0.025 0.440 ± 0.018 0.182 ± 0.025 0.150 ± 0.016 0.567 ± 0.022 0.436 ± 0.011

BayesB ~ 397 SNP 0.275 ± 0.028 0.437 ± 0.021 0.194 ± 0.014 0.136 ± 0.029 0.561 ± 0.019 0.438 ± 0.015

BayesB ~ 1985 SNP 0.252 ± 0.023 0.407 ± 0.031 0.187 ± 0.019 0.148 ± 0.013 0.568 ± 0.019 0.441 ± 0.007

BayesB ~ 3969 SNP 0.243 ± 0.010 0.400 ± 0.008 0.190 ± 0.014 0.146 ± 0.017 0.541 ± 0.019 0.437 ± 0.015

BayesB ~ 19845 SNP 0.240 ± 0.024 0.380 ± 0.039 0.183 ± 0.017 0.131 ± 0.035 0.529 ± 0.022 0.434 ± 0.015

Model FATK FATP MILK PROTK PROTP SCS

GBLUP 0.271 0.410 0.163 0.162 0.564 0.425

BayesB ~ 40 SNP 0.269 ± 0.018 0.411 ± 0.028 0.143 ± 0.033 0.138 ± 0.037 0.567 ± 0.012 0.402 ± 0.042

BayesB ~ 198 SNP 0.263 ± 0.026 0.429 ± 0.018 0.165 ± 0.022 0.162 ± 0.018 0.576 ± 0.020 0.398 ± 0.012

BayesB ~ 397 SNP 0.278 ± 0.027 0.426 ± 0.018 0.174 ± 0.014 0.150 ± 0.023 0.563 ± 0.017 0.396 ± 0.015

BayesB ~ 1985 SNP 0.256 ± 0.023 0.391 ± 0.032 0.158 ± 0.018 0.157 ± 0.014 0.576 ± 0.016 0.398 ± 0.007

BayesB ~ 3969 SNP 0.254 ± 0.011 0.387 ± 0.013 0.163 ± 0.013 0.158 ± 0.017 0.546 ± 0.018 0.399 ± 0.013

BayesB ~ 19845 SNP 0.255 ± 0.023 0.373 ± 0.036 0.157 ± 0.020 0.143 ± 0.031 0.537 ± 0.021 0.394 ± 0.019
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Chapter 5 

Estimating Missing Heritability of Complex Traits in Dairy Cattle 

 

 

S.I. Román-Ponce, A.B. Samoré, M. Dolezal, A. Bagnato and T.H.E. Meuwissen. 
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INTRODUCTION 

Due to molecular genetical advances, genome wide dense marker arrays covering all 

chromosomes with single nucleotide polymorphism (SNP) are available for livestock 

populations (Matukumalli et al., 2009). Today, several livestock populations are 

currently being genotyped using these arrays (Berry et al., 2009; Schenkel et al., 2009; 

VanRaden et al., 2009), with the main aim of genomic selection (GS) (Meuwissen et 

al., 2001). The methodology of GS predicts the genetic merit of young animals without 

own performance information based on marker information. Markers effects are 

estimated in a reference population, i.e. genotyped animals with phenotypic 

performances, daughter yield deviation (DYD) or estimated breeding values (EBV) 

derived from genetic evaluations (Calus, 2010). 

The principal underlying assumption of GS is that markers are in linkage disequilibrium 

(LD) with QTL alleles (Meuwissen et al., 2001; Calus et al., 2008). For that reason, LD 

is one of the key factors that affect the accuracy of genomic breeding values (GEBV) 

(Legarra et al., 2008). 

Identity by descent (IBD) refers to alleles that descend from a common ancestor in a 

base population (Wright, 1922). This approach leads to the estimation of the 

relationship matrix based on pedigree, which is fundamental for complex traits to 

estimate the genetic parameters such as heritability (defined as the proportion of the 

phenotypic variance in a population attributable to additive genetic factors). However, 

the relationship matrix can also be estimated from genome-wide genetic markers i.e. 

panels of SNP, that can capture the additive relationship (Fernando 1998; Habier et al., 

2007; VanRaden, 2008; Legarra et al., 2009); which was defined as twice the coefficient 

of coancestry of Malécot (Malécot, 1948).  

Computational methods have been developed to include genotypic data into a marker 

based relationship matrix. In order to estimate inbreeding and relationship coefficients 

the estimation of the allele frequencies in the base population is needed (VanRaden, 

2008; Forni et al., 2011). Recently, these relationship matrices have been used to 

unbiased and accurately dissect genetic variances of complex traits (Hong Lee et al., 

2010). The relationship matrix based on pedigree dates back to a base population, which 

is considered unrelated, unselected and non-inbred. The choice of the base population 

affects the estimate of the additive genetic variance (Van der Werf and De Boer, 1990). 
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The proportion of the genetic variances not addressed by markers (C) represent the 

variance that cannot be utilized by GS and the amount of C affects the maximum 

accuracy that can be achieved by the genomic selection. The term missing heritability 

(Maher, 2008) describes the fact that genome-wide association studies did not address 

all genetic variance estimated in complex traits (e.g. height in humans). Some potential 

causes of the missing heritability have been reviewed, and research strategies have been 

proposed to solve it, such as increase the sample size, expand the size of the studies, 

improve the phenotype collection, explore gene-gene interaction,  change  the structure 

of the training population (how many close relatives are included) and the use of 

genomic selection approaches (Manolio et al., 2009; Yang et al., 2010; Makowsky et 

al., 2011). 

The main objective of this study was to estimate the fraction of genetic variance not 

explained by the 54K Illumina SNP chip using different marker-based relationship 

matrices. An important additional objective was to evaluate the effect of the choice of 

the base population on the proportion of the genetic variance addressed by genomic 

relationship matrices. 

MATERIALS AND METHODS 

Genomic and phenotypic data 

Genotypes of Italian Brown Swiss bulls were performed with Illumina Bovine54K 

(Illumina Inc., San Diego, CA). All the SNPs on the X-chromosome were excluded 

from the analysis, and a total of 51,582 markers resulted. In the quality control, 8,892 

SNP were considered as missing genotypes due to Mendelian errors. Six sires were 

deleted because the completeness of genotyping rates was lower than 95%. A total of 

1,421 SNPs failed the test of missingness (>5%), and 14,774 SNP had a too low 

frequency test for minor allele frequency (<5%). Editing was performed with two 

different software packages: SAS (SAS Inst. Inc., Cary, NC) and PLINK v1.07 (Purcell 

et al., 2007). After quality controls, genotypes were available for 1,086 sires with 

35,706 SNP and genotypes with 99.34% total genotyping rate. 

The phenotypic information consists on the EBV for fat yield (FAT), milk yield 

(MILK), protein yield (PROT), somatic cell score in milk (SCS), overall conformation 

(OC), stature (STAT), rear led side view (RLSV), fore udder attachment (FUA), rear 
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udder width (RUW), udder support (US), udder depth (UD), feet and legs (FL) and foot 

height (FH). These traits represent three production traits, one functional trait and ten 

conformation traits. Three generations of genealogical information were extracted from 

the official herd book (4,988 animals) and provided by the Italian Brown Cattle 

Breeders’ Association. 

Breeding values for production traits were filtered based on reliability to create four 

datasets as follows: animals with  EBV reliability greater than 70% for each trait 

(FAT70, MILK70, PROT70 and SCS70); animals with a minimum 90% of EBV 

reliability for each trait (FAT90, MILK90, PROT90 and SCS90), and those animals 

with at least 95% of EBV reliability for each trait (FAT95, MILK95, PROT95 and 

SCS95). The breeding values for conformation traits were filtered into two datasets as 

follows: those animals with more than 90% EBV reliability for each trait (EBV90), and 

those animals with at least 95% of EBV reliability for each trait (EBV95). 

Relationship matrices: A and G 

The pedigree of the genotyped sires was traced back for 3 generations and used to 

estimate the additive genetic relationship (A) with an adapted version of the procedure 

proposed by Meuwissen and Luo (1992) as implemented in ASREML (Gilmour et al., 

2009). 

Two genomic relationship matrices (G) were computed for all genotyped animals: The 

first genomic relationship matrix (GV) was computed for all the genotyped animals as 

proposed by VanRaden (2008). Let M be the marker-genotype matrix with number of 

individuals (n) and number of loci (m) as dimensions. The elements in the matrix M 

were coded as -1, 0 and 1 for homozygote, heterozygote and the other homozygote. The 

matrix P contains allele frequencies expressed as difference from 0.5 and multiplied by 

2, then the column i of P was 2(pi-0.5). The matrix P was subtracted from M to give Z 

= M - P. The matrix GV was estimated as follow:    
   

 ∑  (    )
  

The second matrix was the genomic relationship matrix (GY) computed as follow: 

   
   

 
; where W is the Z matrix were corrected for the variance of the genotypes of 

the SNP as follow      
   

√   (    )
 (Yang et al., 2010). 
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Both the G and the pedigree relationship matrix, A, are expressed relative to a base 

population, i.e. an original population where all animals are assumed unrelated and non-

inbred, and these populations may differ. Here the scale of the G was changed to that of 

A, using Wright’s F-statistic (Meuwissen et al., 2011). We expressed the total 

inbreeding of animal i in the G matrix as:           or          (      )     , 

where     is the average inbreeding in the population, i.e. the average of the diagonal 

elements of G minus 1, and     is the inbreeding of animal i relative to the population 

inbreeding of    , which is calculated as:     
(       )

(     )
 

(         )

(     )
. 

Now the population inbreeding was changed to that of A and the total inbreeding of 

individual i was calculated as:    
      (     )     , where     is the average 

of the diagonals of A minus 1,    
  is the rescaled diagonal element of G. Similarly, the 

off-diagonals were rescaled using the same     and     values. First numerator 

relationships were transformed to kinship,  , i.e. dividing the relationship by 2, and 

performing the base-correction on the kinship level, which is the same level as that of 

inbreeding, i.e.      
(
   

 
    )

(     )
, and    

   [    (     )    ], where      is the 

kinship of animal j and i relative to the population inbreeding of    . 

Variance component estimation 

To estimate the fraction of genetic variances captured by dense markers covering the 

entire genome the approach of Goddard et al. (2011) was used. Both A and G matrices 

were used to estimate the fraction of genetic variances captured by each of these 

matrices. 

The model was fitted in ASREML-R (Butler et al., 2009) as follows:           

      ; where, y is the vector of the EBV; µ is the overall mean and Z1 and Z2 are the 

incidence matrices for pedigree based and genomic random animal effects, respectively. 

a is the vector of solutions for the additive relationship matrix (a ~ N(0, Aσ
2

a) and u is 

the vector of solutions of the genomic relationship matrix (u ~ N(0, Gσ
2

u). Finally, e is 

the vector of residuals ~NID (0, Rσ
2

e). 
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The fraction of genetic variances not addressed by the SNP chip (C) was estimated as: 

    
  
 

  
   

  
 

(  
    

 )
  where, σ

2
g= total genetic variance, σ

2
u= variance due markers based 

relationship and σ
2

a= variance due to pedigree based relationship. 

RESULTS 

In Table 1 the descriptive statistics for FAT, MILK, PROT and SCS are showed for 

each trait and dataset. The average reliability (standard deviation in brackets) was ~ 

90% (±9%) for FAT, PROT and MILK, and 81% (±14%) for SCS. The subsets which 

include sires with a minimum of 70% average reliability were similar for FAT, PROT 

and MILK with the average reliability of 91%. SCS had lower reliability, with values 

around 83%. Differences among EBV reliabilities for production and SCS disappeared 

on the sires subsets with at least 90 and 95% of reliability. In these datasets the average 

reliability was 95% (±3) for SCS and 97% (±1.5) for production traits. The descriptive 

statistics for each conformation trait on all datasets are shown in the Table 2. The 

average reliability (standard deviation in brackets), in both subsets, for all traits, was 

similar: 94% (±3%) and 97% (±1.5%) for EBV90 and EBV95, respectively. 

For production traits, the fractions of genetic variance not explained by molecular 

markers (C) were similar across the genomic relationship matrices corrected for the 

base population (table 3). The estimate of C was 0.36 (FAT) and 0.34 (FAT70). The 

estimated C value with GY was 0.24 (±0.13) for FAT90 and the analysis with GV for 

this trait and data set did not converge. In the subset which contains those sires with 

higher reliabilities (FAT95) the value of C was near or equal to zero with values of 0.05 

for GV and 4.22e-07  for GY. The trend was similar for the other production traits, 

MILK and PROT (Table 3), not only for those subsets with a reliability of at least 70% 

(0.33±0.07), but also for the subsets with reliability greater or equal to 90%. The values 

of C ranged from 0.21 to 0.27 (±0.09) for MILK90 and PROT90. For MILK95 and 

PROT95, the amount of C values were not significant different to zero. The estimated 

value of C for SCS was the highest obtained in this study and ranged from 0.55 (GV) to 

0.52 (GY). The values of C decreased with increased data set reliability, i.e. 0.48 (±0.0) 

for SCS70 and 0.33 (±0.22) for SCS90. Finally, also the parameter C estimated for 

SCS95 was not significant different from zero. 
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For OC, STAT, FUA and FH, with 90% of EBV reliability, the total genetic variance 

was explained by GY (Table 4). The analyses did not converge for STAT95, FUA90, 

RUW95 and FH90 using GV. Although the C-values for RLSV95 (0.13±0.88) and 

UD95 (0.37±0.62) were substantial, they did not differ significantly from 0. 

DISCUSSION 

For all the traits considered here, the fraction of the genetic variance not explained by 

the SNPs was not significantly different from 0, when the phenotypes are >90% 

accurate, i.e. they approach the true genetic value. The correction of marker-based 

relationship and pedigree based relationship to the same population base hardly affected 

the amount of genetic variance explained by markers; although a small increase of 

genetic variance explained by the marker based matrix was observed over all the subsets 

(~1-2% points) for GY (results not shown). The differences in C estimates among the 

different genomic relationship matrices were negligible (~1% point in favor to GY) in 

all traits and over the subsets. The only marker-based relationship matrix that converged 

in all analyses was GY. 

We estimated the fraction of the genetic variance not accounted by the Illumina 54K 

SNP chip (C) for complex dairy traits. The results showed that the estimated C values 

heavily depend on the accuracy of the EBV being used as y-values. Apparently, when 

the accuracy of the EBV increases, i.e. the correlation between EBV estimated and the 

true breeding value is high, the estimated fraction of the genetic variance explained by 

SNPs approaches the value of 100%. In contrast, when the accuracy level decreases, the 

family information is best explained by the A matrix, probably since it is calculated 

using the A matrix, which results in upwards biases of the estimates of C. The latter 

affects the C estimates of SCS more than those of FAT, MILK and PROT, due to the 

lower accuracy of SCS EBV. In the EBV90 and EBV95 data sets all the variance was 

captured by markers with values of C not significantly different from 0 representing the 

optimal situation for genomic evaluations. However in EBV70 datasets, the estimates of 

C were large and significantly different from 0. Since the estimates of C obtained in 

datasets with high accuracy were not significantly different from 0, this study found no 

evidence for missing heritability in dairy cattle. 

If phenotypes would have been used to estimate C values instead of EBV, the upward 

biases mentioned above are not expected to occur. The latter is because low heritability 
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phenotypes result in high estimates of σ
2

e, but not inflated σ
2

a values, because family 

information is not being used to increase the accuracy of the phenotype (as is the case 

for the estimation of EBV). 

The source of phenotypic information on individuals in genomic studies are often 

heterogeneous, i.e. they vary from individuals with reliable information, such as 

progeny test results, to individuals with less reliable sources e.g. individual records as in 

young cows. To take into account the differences in reliability of information sources it 

is necessary to know the value of C in order to apply the most appropriate relative 

weight depending on the precision of the sources of information (Garrick et al., 2009). 

The base population correction of the genomic relationship matrix hardly affected the 

proportion of genetic variances, neither the variance components estimates as in the 

case for pedigree based relationship matrices (Sorensen and Kennedy, 1984; Van der 

Werf and Boer, 1990). Moreover, this correction could make more feasible the 

integration of both relationship matrices A and G into a single matrix (H) according to 

Legarra et al. (2009), Christensen and Lund (2010) and Meuwissen et al. (2011). 

As an alternative to estimating the total genetic variance as (sa
2
+su

2
), i.e. the 

denominator of C, we also estimated the tota genetic variance using the model      

      , i.e. fitting only a pedigree based A matrix which is known to yield unbiased 

estimates of the total genetic variance.  Estimates of C changed by <1% points and 

differences were not significant (results not reported). This alternative estimate of C is 

not affected by any base population correction of G, since if does involve an estimate of 

su
2
. As mentioned above, the base population correction hardly affected the C values 

estimated, which is confirmed by the small changes of the estimates of C when the total 

genetic variance is estimated using pedigree relationships. 

CONCLUSIONS 

When the EBVs of the genotyped bulls are highly accurate, the fraction of the genetic 

variance explained by genetic markers was not significantly different from 0 for all the 

complex traits considered in this study. The genomic relationship matrix corrected by 

the heterozygosity per SNP, GY converged in all analyzes, and explained slightly more 

genetic variance than with the GV matrix. The estimated fraction of the genetic variance 

explained by the Illumina 54K SNP chip was close to 100% for most traits. This 
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conclusion will depend of course on the SNP chip used and probably smaller SNP chips 

may not explain 100% of the genetic variance. 
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Table 1. Descriptive statistics for estimated breeding values (EBV) and reliabilities (r
2
) 

for production traits in the genotyped sire population. 

 

Trait Label Number of 

observation 

EBV r
2 

(%) 

Mean Std Dev Mean Std Dev 

Fat yield FAT 1,086 -8.10 26.16 89.97 9.64 

FAT70 1,045 -8.93 25.95 91.45 5.66 

FAT90 741 -13.07 25.49 94.29 3.00 

FAT95 296 -16.91 27.53 97.52 1.56 

Milk yield MILK 1,086 -215.51 659.50 90.52 9.23 

MILK70 1,050 -230.82 658.14 91.84 5.46 

MILK90 772 -331.26 647.36 94.40 2.95 

MILK95 325 -459.96 667.98 97.41 1.61 

Protein yield PROT 1,086 -8.44 23.58 90.32 9.37 

PROT70 1,049 -9.08 23.44 91.67 5.57 

PROT90 759 -12.71 23.20 94.35 2.96 

PROT95 311 -16.87 24.34 97.48 1.58 

Somatic cell 

score 

SCS 1,086 0.19 0.80 81.05 14.15 

SCS70 921 0.19 0.82 85.91 7.30 

SCS90 264 0.05 0.88 94.69 3.15 

SCS95 140 0.05 0.90 97.32 1.48 

Std Dev: Standard deviation. 
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Table 2. Descriptive statistics for estimated breeding values (EBV) and reliabilities (r
2
) 

of the genotyped sire population. 

 

Trait Label Number of 

observation 

EBV r
2 

(%) 

Mean Std Dev Mean Std Dev 

Overall 

conformation 

OC90 214 102.49 11.51 95.35 2.83 

OC95 134 104.71 11.41 97.28 1.27 

Stature STAT90 208 100.48 11.76 95.36 2.79 

STAT95 132 101.32 12.19 97.23 1.28 

Rear Leg 

Side View 

RLSV90 127 100.06 12.09 94.77 2.60 

RLSV95 72 100.10 11.10 96.68 1.36 

Fore Udder 

Attachment 

FUA90 145 103.16 12.70 95.10 2.58 

FUA95 93 104.25 12.24 96.74 1.33 

Rear Udder 

Width 

RUW90 160 102.79 11.96 95.15 2.70 

RUW95 101 103.45 10.99 96.93 1.27 

Udder 

Support 

US90 140 102.55 13.00 94.96 2.58 

US95 86 103.35 13.05 96.69 1.32 

Udder Depth UD90 186 101.16 11.51 95.22 2.76 

UD95 118 99.16 12.03 97.05 1.29 

Feet and 

Legs 

FL90 127 101.91 9.19 94.77 2.60 

FL95 72 101.90 9.15 96.68 1.36 

Foot Height FH90 95 99.68 10.25 93.91 2.60 

FH95 40 101.38 9.29 96.55 1.15 

Std Dev: Standard deviation. 
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Table 3. Fraction of genetic variance not addressed (C) ± standard error (SE) for 

production traits on dairy cattle by two relationship matrices based on dense markers 

corrected to the same inbreeding base population. 

Label GY GV 

FAT 0.37 ± 0.06 0.36 ± 0.06 

FAT70 0.34 ± 0.07 0.34 ± 0.07 

FAT90 0.23 ± 0.10 NC 

FAT95 4.22e-07 ± NA 0.05 ± 0.20 

MILK 0.37 ± 0.06 0.36 ± 0.07 

MILK70 0.33 ± 0.07 0.34 ± 0.07 

MILK90 0.21 ± 0.09 0.27 ± 0.09 

MILK95 1.96e-07 ± NA 0.07 ± 0.19 

PROT 0.39 ± 0.07 0.37 ± 0.07 

PROT70 0.33 ± 0.07 0.34 ± 0.07 

PROT90 0.24 ± 0.09 0.33 ± 0.21 

PROT95 5.66e-07 ±NA 0.24 ± 0.09 

SCS 0.55 ± 0.08 0.52 ± 0.08 

SCS70 0.48 ± 0.09 0.46 ± 0.09 

SCS90 0.31 ± 0.22 0.33 ± 0.22 

SCS95 8.55e-08 ± NA 1.05e-08 ± 1.04e-07 

NA: Standard errors were not available due to parameter estimates being on the 

boundary of their space.  

NC: Log-likelihood did not converge;GY: Genomic relationship matrix as proposed by 

Yang et al., (2010); GV: Genomic relationship matrix as proposed by VanRaden, 

(2008).   
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Table 4. Fraction of genetic variance not addressed (C) ± standard error (SE) for 

conformation traits on dairy cattle by two relationship matrices based on dense markers 

corrected to the same inbreeding base population. 

Label GY GV 

OC90 5.27e-07 ± NA 5.42e-07 ± NA 

OC95 5.24e-07 ± NA 2.42e-07 ± NA 

STAT90 4.97e-07 ± NA 0.13 ± 0.76 

STAT95 7.87e-07 ± NA NC 

RLSV90 0.56 ± 0.44 0.31± 0.71 

RLSV95 0.13 ± 0.88 1.18e-07 ± NA 

FUA90 1.46e-07 ± NA NC 

FUA95 3.23e-06 ± NA 0.60 ± 3.06 

RUW90 0.44 ± 0.37 2.71e-07 ± NA 

RUW95 1.54e-06 ± NA NC 

US90 0.08 ± 0.03 0.14 ± 0.61 

US95 1.90e-07 ± NA 0.36 ± 0.38 

UD90 0.44 ± 0.39 0.45 ± 0.59 

UD95 0.37 ± 0.62 0.29 ± 0.57 

FL90 0.35 ± 0.64 7.74e-07 ± NA 

FL95 6.80e-12 ± NA 3.33e-07 ±NA 

FH90 5.36e-07 ± NA NC 

FH95 5.87e-05 ± NA 0.49 ± 0.37 

NA: Standard errors were not available due to parameter estimates being on the 

boundary of their space. NC: Log-likelihood did not converge; GY: Genomic 

relationship matrix as proposed by Yang et al., (2010); Gv:  Genomic relationship 

matrix as proposed by VanRaden, (2008).  
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Chapter 6 

Effect of high accurate phenotypes in the reference population for 

genomic selection 

 

 

S.I. Román-Ponce, A.B. Samoré, M. Dolezal, A. Bagnato and T.H.E. Meuwissen. 
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INTRODUCTION 

The livestock populations have been genotyped using genome wide dense markers 

arrays covering all chromosomes with single nucleotide polymorphism (SNP) 

(Matukumalli et al., 2009). Genomic selection (GS) methodology predicts the genetic 

merit of young animals without own performance information based on markers 

information (Meuwissen et al., 2001). Markers effects are estimated in genotyped 

animals with phenotypic performances derived from genetic evaluations (Calus, 2010), 

named as training or reference population. 

The linkage disequilibrium (LD) between markers and quantitative traits loci (QTL) 

alleles, size of the reference population, heritability of traits (defined as the proportion 

of the phenotypic variance in a population attributable to additive genetic factors) and 

number of independent chromosome segments in the population are some factors in 

determining the accuracy of direct genomic values (DGV) (Daetwyler et al., 2008; 

Calus et al., 2008, Legarra et al., 2008). Recently, it has been demonstrated that there is 

non-missing heritability in dairy cattle, in other words markers explain all the genetic 

variances, if high reliable enough phenotypes is used (Román-Ponce et al., unpublished 

data). 

The reliabilities of genomic predictions could be evaluated by splitting the data into a 

set of training populations and a set of test bulls, the most common criteria has been 

based on birth date. An additional criteria is to select randomly bulls across birth years 

to integrate the test population, named cross-validation; here the effect of the degree of 

relatedness to the training population should be taken into account when reliabilities of 

genomic predictions are published (Daetwyler et al., 2009; VanRaden et al., 2009). 

In this study, the aim was to explore the influence of high accurate phenotypes on 

genomic predictions, by censoring the phenotypes thought the reliability to define the 

training population for genomic selection. An important objective here evaluated it was 

the effect of the effect of the generational overlapping between training and test 

population. 

 

MATERIALS AND METHODS 
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Genomic and phenotypic data 

Genotypes of Italian Brown Swiss bulls derived from Illumina Bovine54K (Illumina 

Inc., San Diego, CA). SNP on X chromosome were not considered in the analysis. 

During the quality control: 9,212 SNP were considered as missing genotypes due to 

mendelian errors. Four sires were deleted because the completeness of genotyping rates 

was lower than 90%. 961 SNPs failed the test of missingness (>1%), and 10,283 SNP 

failed the frequency test for minor allele frequency (<0.02%). Editing was performed 

with two different software packages: SAS (SAS Inst. Inc., Cary, NC) and PLINK 

v1.07 (Purcell et al., 2007). After quality controls, genotypes were available from 1,357 

sires with 35,546 SNP and 99.00% total genotyping rate genotypes. 

The phenotypic information was available for 1,193 sires consists on the estimated 

breeding values (EBV) for fat yield (FAT), milk yield (MILK), protein yield (PROT) 

and somatic cell score in milk (SCS) and it was provided by the Italian Brown Cattle 

Breeders’ Association. 

Definition of training population 

Two criteria were used alone and combined to separate the genotyped sires into training 

and test subsets, these frames were year of birth and the reliability of the phenotypes, 

and were used as follow: 

First definition: The population was split by the year of birth as criteria. The training 

population was defined as sires born before 2000 (n=935) and the test population 

included all bulls born after 2001 (n=258). 

Second definition: Breeding values were filtered based on reliability to create two 

datasets as follows: those animals with more than 90% of reliability on the EBV for 

each trait (EBV90), and those animals with 95% of reliability on the EBV as lower limit 

for each trait (EBV95). The numbers of sires varying depend on the distribution of 

phenotypes reliabilities for each trait. 

Third definition: In order to avoid generational overlapping, here the training population 

was defined as sires born before 2001 and these bulls were filtered based on reliability 

in the EBV as in the first scenario. 

Estimation of DGV 
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GWBLUP and five replicates of BayesB models were used to estimate the markers 

effects on the training population for each trait as proposed by Meuwissen et al. (2001). 

The model for the markers effect estimation in the training population was as follow: 

     ∑      

 

   

 

Where y is a (Tx1) vector of phenotypes with T records, µ is overall mean; m is total 

number of genotyped SNPs; Xj is a (Tx1) vector denoting the genotype of the 

individuals for markers j, bj are standardized effects of the markers; and e is a (Tx1) 

vector of environmental effects. 

The prediction of the DGV in both populations (training and test) was done by summed 

the markers effect estimated as follow: 

    ∑   

 

 

  ̂ 

Where Xi is the markers genotype of the individuali for the marker j and   ̂ is the 

estimated effect of the markers j. 

The squared correlation coefficients of Pearson [r] and correlation coefficients of 

Spearman [ρ] correlation coefficients were calculated with the procedure CORR (SAS 

Inst. Inc., Cary, NC) between EBV and DGV as a measure of predictability of the 

phenotype and therefore as a sort of a measure of estimate of accuracy, in both 

populations (training and test). 

RESULTS 

Genotyped sires populations: Training and test subsets 

The descriptive statistics for the whole population of genotyped sires and for the subset 

of sires in the training and test population are presented in Table 1. The number of bulls 

in the training depends on the criteria implemented to split the population. In general, 

fewer sires were in the training subset of sires when higher reliabilities are required in 

the training population, as shown in the table 1. The reliability for FAT, MILK and 

PROT were close to 90%, instead of 87% for SCS. These differences were not evident 

for those subsets which contains those animals with high accurate phenotypes (more 
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that 90% and 95% of reliability). The average reliability (standard deviation in brackets) 

in training subsets for all traits was similar, 94% (±3%) and 97% (±1.5%) for EBV90 

and EBV95, respectively. FAT, MILK and PROT reliabilities in the test population for 

EBV90 subsets were close 80%, which were slightly higher than SCS (75%). Ten 

percentages point were the distances among training and test populations in the subset 

for EBV95 

Accuracy of DGV 

The predict ability of markers whether the populations was split by year of birth were 

the lowest in this study (Table 2), just 0.20 for SCS and for the FAT, PROT and MILK 

the values were ranged from 0.05 to 0.10. In the case of the definition of the training 

population based on reliability of the phenotypes, the squared Pearson correlation 

coefficients for FAT, MILK and PROT were ranged from 0.74 to 0.78 for GWBLUP, 

when at least 90% point of reliability for EBV were used in the training population. In 

the subsets which contains the highest reliabilities (>95%) the squared coefficients of 

correlations were ranged from 0.64 to 0.67 (Table 3). In both subsets, SCS presented the 

lowest accuracy 0.42 (SCS90) and 0.40 (SCS95). The predictions resulted by BayesB 

model varying from 0.72 to 0.77 for the subsets EBV90 and from 0.71 to 0.75 for the 

subset EBV95. 

The squared Pearson correlation coefficient estimated between EBV and DGV, when 

the training population was defined first with the sires born before 2001 and then all the 

animals with with a minimum of 90% reliability were 5-7% points lower that the 

previous estimations reported in table 2. Differentness among the EBV95 subsets was 

close to zero (Table 4). 

DISCUSSION 

We estimate the DGV using two different models and three criteria to define the 

training population. The first criteria was split the population by year of birth, the 

second criterion was based on the reliability of phenotypes, and in the third, and the 

population was split in to step: first by year of birth, in order to avoid the generational 

overlapping, and as the second criterion the reliability was used to cutoff the bulls. The 

aim of this study was to explore the influence of high accurate phenotyping on genomic 

predictions with or without generational overlapping into the training population. If the 
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phenotype approaches the true breeding value and the generational overlapping was 

cancelled out; the accuracies of genomic predictions were moderately high, even if the 

number of animals in the training population were not the larger. For example, the 

accuracy for GWBLUP for FAT90 0.70 with 828 sires in the training population in 

contrast with 0.68 for FAT95 with 315 sires. If the generational overlapping is not 

nullified, the differences in the accuracies were higher (~7% points) between different 

cut off point of reliability. Generational overlapping did not modify the accuracy here 

presented for BayesB when the highest reliable phenotype (EBV95) was used, although 

the major number of sire in the first scenario in contrast with the second. This results 

lead to conclude that is feasible the use of the most reliable phenotypes to estimate the 

markers effects in the training population for genomic predictions, if it used to together 

with the year of birth to nullify the generational overlapping between the training and 

test population. 

VanRaden et al. (2009) in North American Holstein reference bulls found higher 

reliability (0.23) for their total merit index (Net Merit) because of using genomic 

information. The largest increase in reliability was observed with high heritability traits, 

such as fat percentage, probably due to mutation in the DGAT1 gene (Grisart et al., 

2002; Winter et al., 2002). Depending on the size of training population, other author 

arrive to similar conclusions with comparable reliabilities, for example New Zealand 

(Harris et al., 2008), the Netherlands and Flanders (De Roos et al., 2009), Australia 

(Hayes et al., 2009a), Ireland (Berry et al., 2009), Germany (Reinhardt et al., 2009), and 

Denmark (Su et al., 2010). 

Currently, to increase the reliabilities of genomic predictions, the effort has been 

concentrated into the increment of the training population by genotyping more bulls 

(Wiggans et al., 2010) or international sharing of genotypes (David et al., 2010). The 

results achieved for total merit index in this sense with a training population with more 

than 16,000 Holstein sires were 0.65-0.70 (Wiggans et al., 2010; Lund et al., 2010). The 

results here presented comparable with these results even if the training population is 

quite smaller. 

In this study the model comparison it was not addressed, but it is necessary to remark 

something some points. First at all, the accuracies of GWBLUP were higher than 

BayesB. The second is that the generational overlapping seems to affect GWBLUP and 
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not to BayesB. In both asseverations, the quantity of sires in the training population 

played an important role in the results, probably due to the complex assumptions in the 

BayesB model, and for that reason it is necessary a major number of animals in the 

training populations to observe the differences between both models. 

CONCLUSIONS 

The objective to obtain higher accuracies in the genomics predictions, direct the 

international effort to increase the training population by sharing genotypes of 

genotyping more animals such as more bulls or dams. The results of this study shown 

that increase of training population could be not the only one way to get up the predict 

ability of genomics predictions. The incorporation of the most reliable phenotypes to 

estimate markers effects in the training population could represent additional increments 

in the current accuracies on genomic evaluations. 
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Table 1. Descriptive statistics for estimated breeding values (EBV) and reliabilities (r
2
) 

of the genotyped sire population. 

Trait Label  
Number of EBV r

2 
(%) 

 
observation Mean Std Dev Mean Std Dev 

Fat yield FAT All 1193 -10.80 28.77 89.44 10.22 

 FAT90 Training 793 -13.79 25.72 94.26 2.98 

 FAT90 Test 400 -4.90 33.27 79.90 12.54 

 FAT95 Training 315 -17.78 27.37 97.48 1.57 

 FAT90 Test 878 -8.30 28.86 86.56 10.47 

Milk yield MILK All 1193 -280.88 719.17 90.01 9.83 

 MILK90 Training 828 -349.79 653.20 94.36 2.93 

 MILK90 Test 365 -124.54 830.07 80.13 12.50 

 MILK95 Training 347 -475.84 664.04 97.36 1.61 

 MILK95 Test 846 -200.91 725.97 86.99 10.20 

Protein yield PROT All 1193 -10.87 25.85 89.80 9.96 

 PROT90 Training 814 -13.39 23.38 94.31 2.95 

 PROT90 Test 379 -5.46 29.80 80.10 12.49 

 PROT95 Training 330 -17.40 24.25 97.44 1.58 

 PROT95 Test 863 -8.37 26.02 86.87 10.27 

Somatic cell 

score 

SCS All 1193 0.18 0.79 79.16 17.40 

 SCS90 Training 281 0.03 0.86 94.63 3.18 

 SCS90 Test 912 0.22 0.76 74.39 17.22 

 SCS95 Training 146 0.03 0.88 97.34 1.48 

 SCS95 Test 1047 0.20 0.78 76.62 17.09 
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Table 2. Squared coefficients of correlation of Pearson [r
2
] and Spearman[ρ]* between 

estimated breeding values (EBV) and direct genomic values (DGV) in the test 

population (n=258) defined by the year of birth on Italian Brown Swiss bull population. 

 

 GWBLUP BAYESB 

Trait r
2
(EBV,DGV) ρ(EBV,DGV) r

2
(EBV,DGV) ρ(EBV,DGV) 

FAT 0.07 0.25 0.06 ± 0.004 0.26 ± 0.007 

MILK 0.03 0.17 0.04 ± 0.001 0.16 ± 0.004 

PROT 0.02 0.14 0.02 ± 0.003 0.14 ± 0.009 

SCS 0.24 0.46 0.22 ± 0.010 0.45 ± 0.010 

*Coefficients did not squared 
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Table 3. Squared coefficients of correlation of Pearson [r
2
] and Spearman[ρ]* between estimated breeding values (EBV) and direct genomic 

values (DGV) in the test population defined by the reliability in the phenotyping on Italian Brown Swiss bull population. 

 

 

EBV reliability > 90% EBV reliability > 95% 

  GWBLUP BAYESB  GWBLUP BAYESB 

Trait ntr r
2
(EBV,DGV) ρ(EBV,DGV) r

2
(EBV,DGV) ρ(EBV,DGV) ntr r

2
(EBV,DGV) ρ(EBV,DGV) r

2
(EBV,DGV) ρ(EBV,DGV) 

FAT 793 0.76 0.74 0.77 ± 0.010 0.73 ± 0.005 315 0.69 0.75 0.69 ± 0.003 0.75 ± 0.003 

MILK 828 0.74 0.69 0.72 ± 0.004 0.68 ± 0.004 347 0.64 0.71 0.63 ± 0.003 0.71 ± 0.003 

PROT 814 0.78 0.74 0.76 ± 0.002 0.73 ± 0.002 330 0.67 0.74 0.65 ± 0.005 0.74 ± 0.003 

SCS 281 0.42 0.63 0.39 ± 0.006 0.60 ± 0.003 146 0.40 0.61 0.38 ± 0.003 0.60 ± 0.003 

ntr: number of sires in the training population; *Coefficients did not squared 
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Table 4. Squared coefficients of correlation of Pearson [r
2
] and Spearman[ρ]* between estimated breeding values (EBV) and direct genomic 

values (DGV) in the test population defined by year of birth <2001 and by the reliability in the phenotyping on Italian Brown Swiss bull 

population. 

 

 

 EBV reliability > 90%  EBV reliability > 95% 

  GWBLUP BAYESB  GWBLUP BAYESB 

Trait ntr r
2
(EBV,DGV) ρ(EBV,DGV) r

2
(EBV,DGV) ρ(EBV,DGV) ntr r

2
(EBV,DGV) ρ(EBV,DGV) r

2
(EBV,DGV) ρ(EBV,DGV) 

FAT 728 0.70 0.63 0.72 ± 0.003 0.65 ± 0.006 313 0.68 0.74 0.69 ± 0.001 0.75 ± 0.001 

MILK 752 0.67 0.56 0.65 ± 0.003 0.55 ± 0.005 344 0.64 0.71 0.63 ± 0.004 0.71 ± 0.002 

PROT 742 0.71 0.61 0.69 ± 0.003 0.59 ± 0.004 327 0.67 0.74 0.66 ± 0.002 0.74 ± 0.002 

SCS 277 0.42 0.63 0.40 ± 0.004 0.61 ± 0.002 146 0.40 0.61 0.38 ± 0.005 0.59 ± 0.006 

ntr: number of sires in the training population; *Coefficients did not squared 
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Chapter 7 

Discussion and Conclusions 
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The aim of this dissertation was the increase of the knowledge concerning mastitis 

resistance in genetic selection. Several aspects concerning mastitis resistance in genetic 

selection in dairy cattle were considered in order to improve the general knowledge on 

the topic. 

In the chapter 3, binary traits reporting the presence of each specific pathogen in milk 

were analyzed with a threshold model to estimate genetic parameters under the classical 

approach of quantitative genetics. Heritabilities estimated were moderate (0.02 – 0.09) 

for all the specific pathogens in milk. Based on the value estimated, the author 

suggestion to select for mastitis resistance was the aggregation of SCS with information 

on the major pathogens causing mastitis, such as Staphylococcus aureus, Streptococcus 

agalactie and Escherichia coli in a multitrait selection. 

The chapter 4 consists on a sensitivity analysis to identify the most adequate prior 

probability value for the number of markers with large effect to be assumed in the 

predictions of genomic breeding values. Despite the results suggest that the number of 

SNP with a large effect did not influence the estimated marker effects, the accuracies of 

genomic predictions were similar among all the values here studied. The 

recommendation in spite of the results is still to use the most appropriate number of 

markers with large effect resulting from previous association studies. 

In the chapter 5, it was estimated the proportion of additive genetic variance addressed 

by dense markers in complex traits. The results when the EBVs of the genotyped bulls 

are highly accurate suggest that the fraction of the genetic variance explained by genetic 

markers is not significantly different from zero for all the traits here considered. With 

all the genomic relationships matrices here considered no differences resulted in the 

proportion of additive genetic variances explained by markers.  

Finally in the chapter 6, a significant increment in the accuracy of the genomic 

predictions was found when the most accurate breeding values were used to estimate the 

SNP effects in the training population. 

All the studies here presented considered genetic and genomic aspects of mastitis 

resistance in dairy cattle. Suggestions and experiences from the researches may 

contribute to the knowledge on mastitis resistance genetic selection and on genomic 

breeding value prediction of several traits.  
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The application of genomic selection in dairy cattle can enhance significantly the 

genetic improvement of mastitis resistance. Trait as SCC can still be used in predicting 

genomic resistance to mastitis, but additional genetic information may be obtained by 

accurate phenotyping of mastitis and pathogens causing the infection.  

The genomic approach may allow an easy integration of this information into selection 

schemes and economic indexes thus improving efficiency of selection for mastitis 

resistance. In particular the possibility of addressing a specific selection for innate 

resistance of a specific pathogen looks a promising future possibility in livestock 

genetic improvement. 
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