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Interleukin (IL)-1β, originally described as an immune cell mediator in the periphery, 

has been involved in the modulation of several neurological functions and 

dysfunctions (Rothwell and Hopkins, 1995; Viviani et al., 2007). IL-1β can be 

expressed and produced by brain cells, albeit at low level in the healthy central 

nervous system (CNS). As well, IL-1β receptor (IL-1RI) and all components of IL-1 

signalling are expressed in both neurons and glia. 

IL-1β is involved in processes like regulation of sleep-wake cycle, control of synaptic 

activity, LTP maintenance/inhibition, and is implicated in several pathological 

conditions like ischemia, excitotoxic injury, Alzheimer’s disease, HIV-dementia 

complex, epilepsy, neuropathic pain. Recently IL-1β has been indicated as important 

mediator in neuroendocrine and neurobehavioral stress response (Goshen and 

Yirmya, 2009) and to play a role in psychiatric disorders like schizophrenia (Meyer, 

2011). While the initial trigger for acute injury or chronic disease may differ between 

neurological disorders, the resulting pathology may involve overlapping, if not 

identical, mechanisms. As such, a better understanding of the molecular mechanisms 

that underlie the action of this cytokine within the CNS might facilitate the 

development of promising therapeutics in the field of CNS disorders. 

The biochemical pathways by which this cytokine contribute to brain dysfunction and 

injury remains largely unidentified. Substantial evidence suggests the existence of a 

reciprocal functional interaction between IL-1β and NMDA receptors (NMDARs) 

(Fogal and Hewett, 2008; Hagan et al., 1996; Loddick and Rothwell; 1996 Vezzani et 

al., 1999). 

NMDARs are glutamate-gated ion channel widely expressed in CNS and play key 

roles in excitatory synaptic transmission. They are essential mediators of many forms 

of synaptic plasticity and molecular mechanisms of cognition (Aamodt and 

Costantine-Paton, 1999; Bliss and Collingridge, 1993). NMDARs are also key 

mediators of glutamate exicitotoxicity associated in acute neurological traumas as 

stroke, or in chronic neurodegeneration disease, including Huntington’s disease, 

Alzheimer’s diseases (Triller and Coquet, 2005). Based on these observations, in 

2003 we hypothesized the existence of a functional relationship between IL-1β and 

the NMDAR that could in a way provide a molecular mechanism to several features 

common to both neurodegenerative and psychiatric disorders. We actually 
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demonstrated, that recombinant IL-1β induces the activation of Src family kinases 

and the subsequent phosphorylation at Tyr-1472 of GluN2B subunit of NMDAR 

(Viviani et al., 2003) in primary hippocampal neurons. The activation of this pathway 

potentiates NMDA-induced intracellular Ca2+ increase and also exacerbates NMDA-

induced neuronal death in vitro (Viviani et al., 2003).  

Thus, these results confirmed our hypothesis suggesting that hippocampal neurons 

exposed to IL-1β are more susceptible to glutamatergic excitation through the NMDA 

receptor component. Furthermore, these findings suggest that the recruitment of IL-

1β/NMDAR cross talk could provide the missing link to understand the events 

implicated in the convergence of these to systems. 

Due to: (i) the relevance of these two systems in the regulation of neuronal functions 

and in inducing susceptibility of neuronal impairment and decline, and (ii) the 

potential therapeutic implications, we thought to better define the molecular 

mechanisms that regulate the IL-1β/NMDAR cross talk by using both in vitro and in 

vivo approaches.  
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1.1. INTERLEUKIN-1β (IL-1β) AND THE RELATED SIGNALLING 

COMPLEX: RELEVANCE IN THE MODULATION OF NEURONAL 

FUNCTIONS AND IN CENTRAL NERVOUS SYSTEM DISEASE 

 

 

1.1.1. The IL-1 family 

 

The canonical interleukin-1 family is composed of three closely related proteins that 

are products of different genes: two agonists with high sequence homology, 

interleukin-1α (IL-1α) and interleukin-1β (IL-1β), and a naturally occurring 

antagonist IL-1 receptor antagonist (IL-1ra) (Dinarello, 1994; 1996; 1998; 2002). IL-

1α and IL-1β are synthesized as large precursor proteins. Most of IL-1α (90%) 

remains in the cytosol of cells in its precursor form or is transported to the cell 

surface where it remains membrane associated (Endres et al., 1989; Lonnemann et 

al., 1989). This membrane bound form may become activated and released following 

cleavage by an extracellular protease, perhaps now acting as a paracrine messenger 

to adjacent cells (Endres et al., 1989; Lonnemann et al., 1989; Dinarello and Wolff, 

1993). However, considering the intra-nuclear localization of pro-IL-1α (Grenfell et 

al., 1989; Curtis et al., 1990), it has been suggested that intracellular pro-IL-1α may 

directly function as a gene regulator (Maier et al., 1990; Kawaguchi et al., 2006). In 

contrast to IL-1α, proteolytic cleavage performed by the IL-1β-converting enzyme 

(ICE) also known as caspasi-1 is required for the biological activity of IL-1β (Cerretti 

et al., 1992; Thornberry et al., 1992). IL-1β is then released by the cell into the 

extracellular space. Hence, it is unknown exactly how IL-1β is secreted, but it has 

been suggested that this can occur via exocytosis, active transport by a multi-drug 

resistance transporter, and/or following cell death (Hogquist et al., 1991; Griffiths et 

al., 1995; Singer et al., 1995; Ferrari et al., 1997; MacKenzie et al., 2001; Le Feuvre 

et al., 2002a; 2002b; Andrei et al., 2004; Bianco et al., 2005; Brough and Rothwell, 

2007).  

There are multiple levels of regulation of IL-1 production and activity, including 
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transcription, translation, cleavage and cellular release (Watkins et al., 1999). A 

diverse range of stimuli can affect these processes and lead to changes in IL-1 

expression at the mRNA and/or protein level (Allan et al., 2005). 

Both mature IL-1α and IL-1β can exhibit an essentially identical repertoire of 

functions by binding a specific 80 kDa plasma membrane receptor, IL-1 receptor type 

I (IL-1RI) which then associates with IL-1 accessory protein (IL-1RAcP) to form a 

complex that allows intracellular signalling (Sims et al., 1988; Korherr et al., 1997). 

There is also a type II IL-1 receptor (IL-1RII); however, it lacks the intracellular-

signalling domain, so no downstream signal is initiated when IL-1 binds. IL-1RII 

functions biologically as a sink for IL-1β, it has a 10-100 fold lower affinity for IL-1α, 

and has been termed a decoy receptor (Colotta et al., 1993). All three receptor 

molecules, IL-1RI, IL-1RII and IL-1RAcP, can be shed from the cell membrane and 

therefore exist in soluble forms, sIL-1RI, sIL-1RII and sIL-1RAcP, respectively. 

Although most studies indicates that sIL-1RI functions as a decoy receptor, it has 

been proposed that signal transduction could be initiated if membrane-bound IL-1 

were to bind sIL-1RI and subsequent association with IL-1RAcP occurred. sIL-1RII 

and sIL-1RAcP both functions as inhibitors of IL-1-mediated signal transduction, by 

sequestering pro-IL-1β and IL-1RI respectively. Furthermore, sIL-1RII can associate 

with IL-1AcP, thereby preventing the formation of an IL-1/IL-1RI/IL-1RAcP tri-

molecular signalling complex (Subramaniam et al., 2004). The existence of these 

complex regulatory mechanisms for IL-1 indicates the potential biological importance 

of this molecule (Allan et al., 2005).  

The third element of IL-1 family, IL-1ra, is produced by the same cells that express 

IL-1, and there are three intracellular isoform (icIL-1ra1, icIL-1ra2, icIL-1ra3) and 

one secreted isoform (sIL-1ra). The secreted isoform functions as a competitive 

antagonist that binds IL-1RI but does not trigger the signal transduction, whereas 

the intracellular isoforms have poorly defined roles at present (Malyak et al., 1998).  

All members of the IL-1 family (i.e., IL-1, IL-1ra, IL-1RI, IL-1RII, and IL-1RAcP) are 

expressed in the healthy central nervous system (CNS). Low levels of IL-1β 

immunoreactivity have been detected throughout the brain of rodents, with highest 

expression occurring in the hippocampus, hypothalamus, and basal forebrain (Breder 

et al. 1988; Lechan et al. 1990; Molenaar et al., 1993). IL-1RI has also been shown 
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to be expressed throughout the brain, with highest levels found in cerebral cortex 

and hippocampus (Farrar et al., 1987; Takao et al., 1990; French et al., 1999). The 

cell types capable of synthesizing IL-1 - microglia (Giulian et al., 1986; Hetier et al., 

1988; Yao et al., 1992), astrocytes (Lieberman et al., 1989; Knerlich et al., 1999; 

Zhang et al., 2000), oligodendrocytes (Blasi et al., 1999), and neurons (Lechan et al., 

1990; Takao et al., 1990; Watt and Hobbs, 2000) - also express the signalling 

receptor (Ban et al., 1993; Cunningham and De Souza, 1993; Wong and Licinio, 

1994; Tomozawa et al., 1995; Blasi et al., 1999; French et al., 1999; Hammond et 

al., 1999; Friedman, 2001; Pinteaux et al., 2002; Wang et al., 2006). Finally, IL-

1RAcP - the protein necessary for signal transduction via IL-1RI to occur - is also 

expressed in the rat brain under normal physiological conditions with particularly high 

levels in the hypothalamus, cortex, hippocampus, and cerebellum (Liu et al., 1996; 

Ilyin et al., 1998). 

Under normal conditions, the levels of IL-1 are low, both in the circulation and in the 

CNS, whereas upon infection, injury or other types of insults/stimuli, an abrupt but 

transient increase in the IL-1 levels occurs.  

 

 

1.1.2. IL-1 signalling 

 

IL-1 binds to its receptors with high affinity and hence only low concentrations are 

required for a biological response (Allan et al., 2005). Indeed, IL-1 can elicit 

responses on cells with a low receptor number (<100 per cell) because it activates a 

complex cascade resulting in signal amplification (O’Neill and Dinarello, 2000; O’Neill, 

1995). Activation of IL-1RI by IL-1 ligands results in association with IL-1RAcP and 

recruitment of the adaptor protein myeloid differentiation factor 88 (MyD88) by the 

intracellular domain of the IL-1RI. This, in turn, leads to recruitment of IL-1R-

associated kinase (IRAK I and II), which complexes with the IL-1RAcP (Huang et al., 

1997), and activation of other proteins, including tumour necrosis factor (TNF) 

receptor-associated factor 6 (TRAF6), and the nuclear factor kappa B (NF-κB) 

inducing kinase (O’Neill, 1995). Phosphorylation and degradation of the NF-κB 
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inhibitor, IKB, by IKB kinases (IKKα and IKKβ) results in release of NFκB and its 

subsequent translocation into the nucleus (Di Donato et al., 1997). Once within the 

nucleus, NFκB binds to its consensus sequence on a target gene promoting 

transcription and upregulation of expression (Figure 1). IL-1 also activates the 

protein kinase pathway. To date, three major protein kinases have been identified 

that are responsive to IL-1 (O’Neill and Greene, 1998). These include p42/p44 

mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal kinase 1 

(JNK1) (Figure 1). IL-1β seems to promote MAPK signalling pathway and CREB 

activation in hippocampal neurons. On contrary, IL-1β activates NFκB in hippocampal 

astrocytes (Srinivasan et al., 2004), indicating a distinct and specific effect on both 

these cell population. The majority of the work conducted on unravelling the 

signalling pathways activated by IL-1 has been carried out on peripheral cells. It is 

assumed that similar mechanisms are responsible for most IL-1 actions in the CNS. 

However, important exceptions are emerging, some of which involve the cells of the 

nervous system, this suggests the importance of defining the signalling of IL-1β in a 

cell-type specific manner. The current consensus is that IL-1β signalling has an 

absolute requirement for MyD88 as MyD88-deficient cells are apparently 

unresponsive to IL-1β (Adachi et al., 1998). However, it has been shown that the IL-

1R/IL-1RAcP complex is capable of signalling in the absence of MyD88 in anterior 

hypothalamic neurons (Kenny and O’Neill, 2008). It was revealed that p85 subunit of 

PI3-kinase binds directly to IL-1RI when the receptor is phosphorylated leading the 

activation of Akt in the absence of MyD88. The activation of this pathway seems to 

have a neuroprotective effect in response to IL-1β. 
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Adapted from: Rothwell, N.J. and Luheshi, G.N. 2000. Interleukin 1 in the brain: biology, 
pathology and therapeutic target. TINS 23: 618-625. 
 
 
Figure 1. Signalling of IL-1β  
The binding of IL-1β to IL-1RI in the immune system leads to its association with the IL-1R 
accessory protein (IL-1RAcP) and the myeloid differentiation primary response protein 88 
(MyD88) to form the core of the IL-1β/IL-1RI signalling complex. IL-1 activates the 
nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) 
pathways. 
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1.1.3. IL-1β as neuromodulator of the central nervous system disease 

 

IL-1β has been proposed as a novel neuromodulator involved in the communication 

between glia and neurons (Allan and Rothwell, 2001; Allan et al., 2000; Chatterton, 

2002; Coogan and O’Connor, 1997), opening up new perspective in the current view 

of brain behavior. This cytokine, locally produced by glial cells as a consequence of 

central nervous system (CNS) diseases and/or in response to neuronal activities 

(Coogan and O’Connor, 1997), exerts a profound impact on neuronal functionality.  

IL-1β has been implicated in the exacerbation of neuronal damage caused by 

excitotoxic, ischemic, traumatic brain injury (Allan and Rothwell, 2001; Yamasaki et 

al., 1995), and viral infection (AIDS dementia complex: HAD) (Bagetta et al., 1999; 

Gallo et al., 1999; Viviani et al., 2001), in seizures (Vezzani et al., 2000). These 

physiological and pathological conditions are associated with an increased expression 

of IL-1β in the brain (Taishi et al., 1997; Schneider et al., 1998; Vezzani et al., 1999, 

2000; Allan and Rothwell, 2001). Furthermore, administration of the naturally 

occurring antagonist of IL-1β, namely IL-1 receptor antagonist (IL-1ra), inhibits 

motor and electroencephalographic seizures (Vezzani et al., 2000), and reduces 

neuronal damage caused by ischemic, excitotoxic, and traumatic brain injury 

(Yamasaki et al., 1995; Loddick and Rothwell, 1996; Allan et al., 2000). In addition, 

there is experimental evidence demonstrating the action of IL-1β in 

neurodegenerative diseases. In patients with Alzheimer's, there is an increase in the 

levels of IL-1 in post-mortem brain tissue (Griffin et al., 1989) and in the CNS tissues 

of patients with this disease (Cacabelos et al., 1991). In amyotrophic lateral sclerosis 

has been observed an increased expression of IL-1β and related cell death, the latter 

inhibited by IL-1ra (Troy et al., 1996).  

High level of pro-inflammatory IL-1β has been also associated with cognitive decline, 

impairment of memory, and recently has been linked to the development of 

psychiatric disorders (McAfoose and Baun, 2009; Allan and Rothwell, 2001). For 

example, the increase of IL-1β in the CNS (via icv administration, or caused by 

pathogens) adversely affects the processes of memory consolidation in hippocampal 

and causes the onset of symptoms similar to depression (Thomas et al., 2005), 

attenuated by the antagonist of the event type I receptor of IL-1 (IL-1ra) (Pugh, 
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2000; Hayley et al., 2005) or by manipulating of genes family of IL-1 (Avital et al., 

2003). 

Increased CSF levels of pro-inflammatory cytokines such as IL-1β have also been 

noted in schizophrenic patients (Söderlund et al., 2009). Some reports further 

suggest that schizophrenia is associated with reduced potency to mount anti-

inflammatory responses in the CNS, as supported by findings of reduced gene and/or 

protein expression of sIL-1RA (Toyooka et al., 2003). Furthermore, schizophrenic 

patients have repeatedly been shown to display allelic variants in IL-1 and IL-1RA 

(Katila et al., 1999; Xu and He, 2010; Zanardini et. al, 2003). Since many of the 

cytokine gene/promoter polymorphisms are known to directly influence protein 

synthesis, it is likely that such genetic variants exert a functional impact on cytokine 

protein networks in affected subjects. 

 

 

1.1.4 Cytokine model of cognition: IL-1β influences cognitive function by 

affecting synaptic plasticity 

 

Molecular investigations in experimental rodent model have also confirmed that IL-1β 

can exert appreciable influence on various form of synaptic plasticity, which is 

recognized to provide an important neuronal substrate for multiple aspects of 

learning and memory (Bauer et al., 2007). It is therefore feasible that altered IL-1β 

activity may exert its cognitive effects by modulating synaptic architecture and 

functions. 

Previous research has suggested that IL-1β can modulate synaptic transmission in 

the hippocampus and appears to inhibit LTP induction (Bellinger et al., 1993; 

Cunningham et al., 1996; Katsuki et al., 1990; Murray and Lynch, 1998). Failing to 

confirm such findings, Schneider et al. (1998) demonstrated that increased local 

production of IL-1β in the hippocampus plays a role in LTP maintenance. As noted by 

Schneider et al. (1998), this alternative finding might have occurred because of the 

high concentration levels used in previous studies, which were more comparable to 

levels seen during pathological and inflammatory states then normal physiological 
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conditions. Subsequent work (Coogan et al., 1999; Ross et al., 2003) has confirmed 

that at least under physiological conditions IL-1β is required for LTP maintenance, 

whereas, higher concentration of IL-1β, under pathophysiological conditions, inhibits 

LTP. Together these findings suggest that IL-1 plays an intimate role in synaptic 

plasticity and that through these mechanisms possibly an important role in memory 

consolidation (Figure 2). 

Cognitive-behavioural studies in animals have repeatedly shown that IL-1β influences 

various types of hippocampal-dependent memory (Brennan et al., 2003; Yirmiya et 

al., 2002). Moreover, research by Depino et al. (2004), has recently demonstrated 

that endogenous IL-1a also participates in hippocampal memory processing. As 

reviewed by Pugh et al. (2001), there is considerable evidence to suggest that IL-1 

might under physiological conditions play a role in memory consolidation processes. 

However, during stress, aging and disease, IL-1 appears to elicit memory impairment 

(Pugh et al., 2001). In support of these findings, IL-1β has recently been 

demonstrated to play a dual role in hippocampal-dependent memory processes 

(Avital et al., 2003; Goshen et al., 2007b). More specifically, it was demonstrated by 

these authors that the involvement of IL-1β in hippocampal-dependent memory 

follows an inverted U-shape pattern, in that basal levels of IL-1β are required for 

normal memory function, and any deviation from this physiological range (either 

deletion or elevation) results in impaired memory (Avital et al., 2003; Goshen et al., 

2007b). Research by Avital et al. (2003), further demonstrated that impaired 

memory in IL-1 receptor type 1 knockout mice, coincided with deficits in synaptic 

plasticity. Moreover, as recently shown by Young et al. (2007), increased levels of IL-

1 disrupts an LTP-associated spinal learning paradigm (Grau et al., 2006), suggesting 

that IL-1 over-expression might impair LTP-associated learning processes possibly 

throughout the neuroaxis (Deak, 2007). Although not fully understood, these findings 

provide strong evidence to support a direct link between synaptic plasticity, IL-1 and 

cognitive functioning. 
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Adapted from: McAfoose, J. and Baune, B.T. 2008. Evidence for a cytokines model of 
cognitive function. Neurosci Behav Reviews 33: 355-366. 
 
 
Figure 2. Schematic illustration of the involvement of IL-1 in Hebbian synaptic 
plasticity, such as LTP and LTD  
Essentially this process can be divided into three stages. In stage 1, the simultaneous 
neuronal activity (firing) of both pre-synaptic and post-synaptic neurons results in the 
induction of LTP. This induction of LTP leads to the production of IL-1 (stage 2). Finally in 
stage 3, LTP maintenance is fine-tuned by the overall level of expression of IL-1 (facilitates) 
thus influencing the consolidation of learning and memory. 
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1.2 NMDA RECEPTOR (NMDAR) 

 

 

1.2.1 Structure, subunit composition and functional properties of NMDAR 

 

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely 

expressed in the central nervous system (CNS) that play key roles in excitatory 

synaptic transmission. NMDARs mediate aspects of CNS development and are 

essential mediator of many forms of synaptic plasticity and neurotoxicity (Paoletti 

and Neyton 2007). 

NMDARs are heteromeric complexes incorporating different subunits within a 

repertoire of three subtypes: GluN1, GluN2 and GluN3. There are eight different 

GluN1 subunits generated by alternative splicing from a single gene, four different 

GluN2 subunits (A, B, C and D) and two GluN3 subunits (A and B); the GluN2 and 

GluN3 subunits are encoded by six separate genes (Dingledine et al., 1995). 

Expression of functional recombinant NMDARs in mammalian cells requires the co-

expression of at least one GluN1 and one GluN2 subtype. The stoichiometry of 

NMDARs has not yet been established definitely, but the consensus is that NMDARs 

are tetramers that most often incorporate two GluN1 and two GluN2 subunits of the 

same or different subtypes (Dingledine et al., 1995). The GluN3 subunit assembles 

with GluN1 and GluN2, resulting in a receptor with diminished activity (Das et al., 

1998), and GluN3 subunit assembles with GluN1 alone to create a functional glycine 

receptor (Chatterton et al., 2002). 

The GluN2A and GluN2B subunits are the major and most widespread GluN2 

subunits. The GluN2B subunit predominates early in development and then gradually 

decreases, whereas expression of GluN2A is low shortly after birth but continues to 

increase. Therefore, GluN2B is the major subunit during the early period of a 

neuron’s life, whereas GluN2A is predominant in the later stages, suggesting that the 

GluN2B to GluN2A switch is responsible for the transition of a synapse from a more 

plastic to a less plastic state (Wenthold et al., 2003). GluN2C is restricted primarily to 

the cerebellum and is expressed later in development (Paoletti et al., 1997). In 
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contrast, GluN2D is predominantly expressed early in development and is localized 

mainly in the thalamic and hypothalamic nuclei and in the brainstem (Paoletti et al., 

1997).  

NMDAR subunits all share a common membrane topology characterized by a large 

extracellular N-terminus, a membrane region comprising three trans-membrane 

segments (TM1, 3 and 4) plus a re-entrant pore loop (M2), an extracellular loop 

between TM3 and TM4, and a cytoplasmic C-terminus, which varies in size 

depending upon the subunit and provides multiple sites of interaction with numerous 

intracellular proteins (Dingledine et al., 1995; Mayer, 2006) (Figure 3). 

The extracellular region of NMDAR subunits is organized as a tandem of two 

domains. The N-terminal domain (NTD; first 350 amino acids) plays an important 

role in subunit assembly (Meddows et al., 2001); in GluN2A and GluN2B, the NTD 

also contains binding sites for allosteric inhibitors such as Zn2+ and ifenprodil. The 

second domain comprises the pre-TM1 region and the TM3–TM4 loop (∼150 amino 

acids each) contains the agonist binding site (Figure 3). 

The activation of NMDARs requires the simultaneous binding of two co-agonists: 

glutamate and glycine (or D-serine). The agonist binding domain (ABD) binds glycine 

in GluN1 and GluN3, whereas GluN2 ABDs bind glutamate (Furukawa et al., 2005; 

Yao and Mayer, 2006) (Figure 3).  

The sequences of the regions lining the pore are highly conserved in GluN2 subunits 

and, accordingly, permeation properties (i.e. single-channel conductance, ionic 

selectivity), as well as affinity for the pore blocker Mg2+, vary little among the 

different GluN1/GluN2 receptor subtypes. By contrast, incorporating the GluN3 

subunit markedly decreases single-channel conductance, Ca2+ permeability and Mg2+ 

block (Sasaki et al., 2002). 

The opening of the ligand-gated cation channel exhibits a profound voltage 

dependence because the channel is blocked by physiological concentrations of Mg2+ 

at resting membrane potentials. A partial depolarization of the plasma membrane is 

required to relieve the Mg2+ block, which allows NMDARs to sense simultaneous 

inputs of several presynaptic cells and behave as coincidence detectors (Paoletti et 

al., 1997).  

A distinctive property of NMDAR is that the activated channel is highly permeable to 
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Ca2+ ions. This ability to flux Ca2+ couples the NMDAR to intracellular signal 

transduction pathways and is key to the expression of NMDAR functions.  

The functional properties of the receptor complex depend on the specific subunit 

composition and the stoichiometry in which subunits combine to form the channel 

(Cull-Candy et al., 2001).  

Incorporation of different GluN1 splice variants into NMDAR complexes influences 

such properties as modulation by Zn2+, polyamines and protein kinase C (PKC) (Groc 

et al., 2009). The GluN2A subunit confers a lower affinity for glutamate, distinctly 

faster kinetics, greater channel open probability and more prominent Ca2+-dependent 

desensitization than does the GluN2B subunit, which confers slower channel kinetics 

and reduced open probability. The GluN2C and GluN2D subunits are characterized by 

low conductance openings and reduced sensitivity to Mg2+ block (Cull-Candy et al., 

2004). The GluN3 subunit confers reduced Ca2+ permeability and reduced surface 

expression (Cull-Candy et al., 2004). 

NMDARs form an extended complex that connects with scaffolding proteins, adaptor 

proteins and signalling enzymes (Sheng et al., 2001; Husi et al., 2000), these 

molecules interact with the receptors and modulate their function, by providing a 

structural/organizational role, or by linking the receptors to downstream signalling 

events. 

Extensive evidence demonstrates that NMDA-receptor signalling depends on the 

receptor phosphorylation state regulated by Src family Kinase (Salter and Kalia, 

2004), alternative splicing and assembly into heteromeric channels (Swope et al., 

1999; Cull-Candy et al., 2001). Exciting new research provides evidence that synaptic 

NMDA-receptor function is additionally regulated by redistribution of receptors into, 

and away from the synapse. 
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Adapted from: Paoletti, P.  and Neyton, J. 2007. NMDA receptor subunits: function and 
pharmacology. Curr Opin Pharmacol 7: 39-47. 
 
 
Figure 3. Potential sites for ligand binding at NMDARs  
Most NMDAR are believed to assemble as tetramers, associating two GluN1 and two GluN2 
subunits in a ‘dimer of dimers’ quaternary architecture. For clarity, only one of the two 
GluN1/GluN2 heterodimers is shown. The extracellular region of each subunit is organized as 
a tandem of two domains, the NTD and the ABD. In the extracellular region, the subunits 
dimerize at the level of the ABDs and probably also at the level of the NTDs. The GluN2 ABD 
binds glutamate, whereas the GluN1 ABD binds the co-agonist glycine (or D-serine). White 
arrows indicate binding sites for competitive agonists and antagonists. Thick orange arrows 
indicate sites known to bind allosteric modulators such as endogenous zinc (GluN2A and 
GluN2B NTDs) or ifenprodil-like compounds (GluN2B NTDs), both acting as non-competitive 
antagonists. The ion-channel domain also forms binding sites for pore blockers such as 
endogenous Mg2+, MK-801, memantine or ketamine, acting as uncompetitive antagonists. 
Thin orange arrows indicate putative modulatory sites, which can bind either positive or 
negative allosteric modulators. The only known NMDAR antagonists that display strong 
subunit selectivity are the GluN2 NTD ligands Zn2+, which selectively inhibits GluN2A-
containing receptors at nanomolar concentrations, and ifenprodil-like compounds, which 
selectively inhibit GluN2B-containing receptors. 
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1.2.2 Tyrosine phosphorylation: the Src family kinases  

 

Members of the Src family kinases (SFKs) were originally believed to regulate cell 

proliferation and differentiation (Stehelin et al., 1976). In the central nervous system 

(CNS) these kinases are expressed in differentiated, post-mitotic neurons, and are 

involved in many cellular functions, such as neuronal differentiation, neuritis out- 

growth, ion channel activity and synaptic transmission (Wang and Salter, 1994; 

Wanget al., 2004). 

NMDA receptor functions are regulated by SFKs, in particular the two members Src 

and Fyn are important modulators of NMDAR. 

The involvement of Src in the potentiation of the NMDA receptor is demonstrated by 

these observations (Yu et al., 1997): 

• increasing the concentration of Src or favoring their activation through specific 

peptide, induce, at the cellular level, an increase in excitatory post-synaptic 

current evoked by the NMDAR; 

• the increased activity of the NMDAR can be prevented by specific inhibitors of 

Src; 

• the Src phosphorylates the receptor subunits GluN2A and GluN2B of NMDAR 

(Suzuki et al., 1999). 

The NMDAR subunits GluN2A and GluN2B are tyrosine phosphorylated, and GluN2B 

is the main tyrosine-phosphorylated protein in the postsynaptic density. The GluN1 

subunit seems not to be phosphorylated on tyrosine. The carboxy-(C)-terminal tails 

of GluN2A and GluN2B contain about 630 and 650 amino acids, respectively, with 

each C-terminal tail containing 25 tyrosine residues. SFK-mediated phosphorylation 

sites in the C-terminal tails that have been verified in biochemical studies are: Y1292, 

Y1325 and Y1387 in GluN2A, and Y1252, Y1336 and Y1472 in GluN2B. Y1472 has 

been shown by a phosphospecific antibody to be phosphorylated in the brain (Salter 

and Kalia, 2004). 

The increased phosphorylation of one or more tyrosine residues of NMDAR facilitates 

the opening of the channel by enhancing the probability of glutamate and glycine to 

bind the NMDA receptor and prolongs the opening times (Yu et al., 1997). 

Electrophysiological studies showed that NMDAR currents in neurons are potentiated 
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by increasing Src activity or inhibiting PKC activity, this confirms the role of Src on 

NMDA receptor functions (Salter and Kalia, 2004) (Figure 4). In fact, recent evidence 

indicates that PKC action may involve the activation of protein tyrosine kinase 2 

signalling cascade upstream of Src kinase (Lu et al., 1999; Grosshans and Browning, 

2001).  

Signalling pathways upstream of the regulation of NMDARs by Src are beginning to 

be identified and characterized in the CNS. It is becoming evident that Src act as a 

point of convergence for multiple, diverse signalling pathways that alter NMDAR 

function, such as Gq-coupled G-protein-coupled receptor (GPCR) cascades, or, how 

demonstrated in our laboratory, such as cytokine receptor pathway (Figure 5). In 

particular, recombinant IL-1β, by binding IL-1RI, potentiates the rise in intracellular 

Ca2+ ([Ca2]i) that is induced by NMDA stimulation in cultured hippocampal neurons 

(Viviani et al., 2003). Pre-treating the neurons with an IL-1 receptor antagonist 

prevents the IL-1β-induced potentiation of NMDAR responses, showing that the 

effect of IL-1β on NMDAR responses is mediated by IL-1RI. A role for SFKs in 

signalling downstream of IL-1RI was revealed by application of the SFK inhibitor, 

PP2, which prevents IL-1β-induced enhancement of the NMDA-mediated rise in 

[Ca2+]i (Viviani et al., 2003). In addition, treatment of the neurons with IL-1β 

increased the amount of active Src associated with the NMDAR complex and the 

tyrosine phosphorylation of Y1472 in the GluN2B C-terminal tail (Viviani et al., 2003). 

These effects were prevented by SFK inhibition, whereas inhibition of SFKs did not 

affect IL-1RI function per se (Viviani et al., 2003). These findings indicate that SFKs 

probably act downstream of IL-1RI activation to upregulate NMDAR function.  

Another potential function of SFK-mediated tyrosine phosphorylation of GluN2 

subunits is in the trafficking of NMDARs to and from the cell surface (Salter and 

Kalia, 2004). 
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Adapted from: Salter, M.K., Kalia, L. 2004. Src kinases: a hub for NMDA receptor regulation. 
Nat Rev Neurosci 5: 317-328.  
 
 
Figure 4. Regulation of NMDAR gating by the balance of tyrosine phosphorylation 
and dephosphorylation 
Illustration of the opposing actions of the tyrosine kinase Src and phosphotyrosine 
phosphatase STEP (striatal enriched tyrosine phosphatase) on the activity of NMDARs. Src 
enhances NMDAR single-channel gating, resulting in increased NMDAR-mediated synaptic 
currents in neurons. Src might phosphorylate NMDAR subunits and/or other proteins in the 
NMDAR complex. Whether endogenous Fyn, or other Src family kinases (SFKs), regulates 
NMDARs remains to be tested directly with kinase-specific reagents. STEP61 activity leads to 
dephosphorylation of Src substrates, thereby reversing Src-mediated upregulation of NMDAR 
channel gating and resulting in decreased NMDAR-mediated currents.  
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Adapted from: Salter, M.K., Kalia, L. 2004. Src kinases: a hub for NMDA receptor regulation. 
Nat Rev Neurosci 5: 317-328.  
 
 
Figure 5. Convergence of signalling pathways on Src family kinases (SFKs) 
SFKs act as a crucial intermediary in multiple signalling pathways that modulate NMDARs. 
These pathways include: Gq-coupled G-protein-coupled receptor (GPCR) cascades, which 
signal through protein kinase C (PKC) and cell adhesion kinase-β (CAKβ) to activate Src and 
upregulate NMDAR (N-methyl-D-aspartate receptor) function; a Gs-coupled cascade, which 
might signal through PKA to relieve the inhibition of Fyn by RACK1 (receptor for activated C 
kinase 1), resulting in upregulation of NMDARs; a receptor protein tyrosine kinase pathway 
involving the EphB receptor, which leads to activation of SFKs and upregulation of NMDARs; 
pathways mediated by H-Ras, which lead to inhibition of SFK activity and thereby to 
depression of NMDAR activity; a cytokine receptor pathway that increases NMDAR activity; 
and an integrin receptor pathway that leads to enhancement of NMDAR functions. 
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1.2.3 Trafficking of NMDAR  

 

Until recently, NMDA receptors were considered to be tightly associated with the 

synaptic cytostructure and locked tightly into the postsynaptic complex. This notion 

derived, in part, from the observation that NMDA receptors exhibit high resistance to 

detergent extraction from PSDs (Allison et al., 1998; Kennedy, 2000). Interest in the 

possibility that synaptic NMDA receptors are dynamically organized in the 

postsynaptic complex and move laterally into and out of synaptic sites emerged, in 

part, from knowledge that other ionotropic receptors diffuse rapidly within the 

membrane in response to activity-dependent changes. It was known for nearly two 

decades that block of neuromuscular junctions with α-bungarotoxin induces rapid 

diffusion of functional ACh receptors from extra-junctional sites to the blocked 

junction (Young and Poo 1983; Weiss et al., 1986). Moreover, inactivated receptors 

diffuse rapidly from junctions to peri-junctional sites, where they reside for hours 

before internalization (Akaaboune et al., 1999). 

A recent study indicates that NMDA receptors also undergo rapid lateral translocation 

between synaptic and extrasynaptic sites (Tovar and Westbrook, 2002). In this 

study, a physiological approach was taken: the quasi-irreversible, use-dependent 

channel blocker MK-801 was used to inactivate selectively synaptic NMDA receptors 

in response to release of glutamate at hippocampal synapses. Surprisingly, although 

initially completely blocked, NMDA-receptor-mediated synaptic responses recovered 

by 40% within 20 min of MK-801 washout. By contrast, when synaptic and extra-

synaptic receptors were blocked by co-application of NMDA and MK801, synaptically 

evoked NMDA-receptor responses did not recover. This finding suggests that 

recovery is not due to unbinding of blocker or insertion of new receptors but, rather, 

that functional NMDA receptors can diffuse laterally from extra-synaptic to synaptic 

sites. The result supports a model in which NMDA receptors are in rapid equilibrium 

between an immobilized, PSD-95-associated state and a mobile state.  

Furthermore, NMDAR do traffic from the endoplasmic reticulum (ER) to the synaptic 

compartment through dendritic vesicle transport (Newpher and Ehlers, 2008; 

Stephenson et al., 2008; Wenthold et al., 2003). GluN1 and GluN2 subunits of 

NMDAR assembled in the endoplasmic reticulum (ER) to form functional channels 
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(Moyer et al., 1994; McIlhinney et al., 1998; Ozawa et al., 1998). Assembled NMDA 

receptors are targeted selectively to the postsynaptic side of glutamatergic synapses  

and appear, together with AMPA receptors, at nascent synapses within one or two 

hours of initial axo-dendritic contact (Friedman et al., 2000). At mature synapses, 

NMDA receptors are delivered within hours of experience-dependent synaptic 

activation (Quinlan et al.,1999) and are reciprocally regulated by changes in synaptic 

activity (Rao and Craig, 1997; Liao et al., 1999; Watt et al., 2000).  

GluN1 receptor might play an active role in controlling the delivery of NMDA 

receptors to synapses. 

Finally, NMDARs may be also removed from the synaptic and extra-synaptic plasma 

membrane of neurons through endocytosis processes (Barria and Malinowa, 2002; 

Lan et al., 2001, Roche et al., 2001, Snyder et al., 2001, Li et al. , 2002; Nong et al., 

2003, Scott et al. 2004; Lavezzari et al., 2004; Washbourne et al., 2004). 

In brief, NMDAR surface content and distribution are regulated by (i) their 

insertion/internalization to/from the plasma membrane by exocytosis/endocytosis, 

respectively, and (ii) their lateral diffusion within the plasma membrane. 

Trafficking of NMDARs to and from the cell surface are mediated by SFKs. 

Tetanic stimulation activates Src kinase activity (Lu et al., 1998) and causes LONG-

TERM POTENTIATION of NMDAR currents in area CA1 of the hippocampus69. 

Tetanic stimulation also reduces the intracellular pool of NMDARs in neurons in 

hippocampal CA1 slices70, which is presumed to be accompanied by an increase in 

the number of NMDARs on the neuronal surface. Inhibition of endogenous SFKs in 

hippocampal slices prevents both the potentiation of NMDAR responses and the 

decrease in intracellular NMDARs after tetanus, indicating that both require SFK 

activity (Grosshans et al., 2002). So, SFK-mediated tyrosine phosphorylation of 

NMDAR subunits might stabilize NMDARs on the cell surface and thereby increase 

NMDAR responses.  

Studies on recombinant NMDARs have indicated that the association of NMDARs with 

the CLATHRIN-MEDIATED ENDOCYTOSIS machinery, a complex of proteins involved 

in the removal of receptors from the cell surface, is regulated by Src-mediated 

tyrosine phosphorylation of NMDAR subunits (Vissel et al., 2001). The C-tails of both 

GluN2A (Vissel et al., 2001) and GluN2B (Roche et al., 2001) contain a putative 
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tyrosine-based internalization signal motif - a consensus binding motif for the µ2 

subunit of the adaptor protein complex AP2, which associates with endocytic clathrin-

coated vesicles. According to the crystal structure of the µ2 subunit, phosphorylation 

of the tyrosine in the µ2 consensus binding motif might prevent binding of the motif 

to µ2 (Marsh and McMahon, 1999). So, phosphorylation of the tyrosine residue in the 

motif could prevent the assembly of the clathrin-mediated endocytosis machinery at 

the NMDAR and thereby prevent the internalization of NMDARs. 

 

 

 

  



Introduction 

	   30	  

 
Adapted from Carroll, R.C., Zukin, R.S. 2002. NMDA-receptor trafficking and targeting: 
implications for synaptic transmission and plasticity. Trends Neurosci 25: 571-577. 
 
 
Figure 6. Trafficking of NMDA receptors 
NMDA-receptor moves in the cell by diverse mechanisms: 1) exocytosis of assembled NMDA 
receptors from the endoplasmic reticulum, 2) exotcytosis of NMDA receptors, likely to be 
docked near the plasma membrane, to synaptic sites, and 3) dispersion of NMDA receptors 
from synaptic sites (lateral diffusion). PSD (postsynaptic density protein) 95 and other 
scaffolding proteins promote NMDA-receptor surface expression. Gray spheres represent 
glutamate. 
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Adapted from: Carroll, R.C., Zukin, R.S. 2002. NMDA-receptor trafficking and targeting: 
implications for synaptic transmission and plasticity. Trends Neurosci 25: 571-577. 
 
 
Figure 7. Mechanisms of NMDA-receptor internalization  
Whereas GluN1–GluN2B receptors predominate at immature synapses, GluN1–GluN2A 
receptors predominate at mature synapses. Both the GluNRA and GluN2B subunits contain 
motifs that bind the endocytic adaptor protein AP2 involved in the clathrin-dependent 
endocytosis machinery. Whereas the internalization of GluN2B is regulated by its association 
with PSD95, the ability of NR2A to associate with AP2 is modulated by dephosphorylation of 
tyrosine residues in its C-terminal tail. Activation of metabotropic glutamate receptors 
(mGluRs) also leads to the internalization of NMDA receptors; however, the mechanism of 
this is unknown. 
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1.2.4 NMDAR, synaptic plasticity and toxicity 

 

Synapses that use glutamate as their transmitter mediate most excitatory 

neurotransmission in the central nervous system (CNS). Both ligand-gated ion 

channels (ionotropic receptors) and G protein-coupled receptors (metabotropic 

receptors) sense the glutamate released from presynaptic terminals and transduce it 

into electrical or biochemical responses. A key property of the glutamatergic synapse 

is its plasticity, which enables the developing and mature brain to modify the 

properties of neural circuits in a long-term fashion and respond adequately to 

changing needs in the environment. This plasticity allows neuronal connectivity to be 

regulated at the level of individual synapses as well as in entire synaptic networks 

over time courses that range from seconds to months (Abbott et al., 2003; 

Turrigiano et al., 2000; Abraham et al., 1996; Zito et al., 2002; Bliss and 

Collingridge, 1993; Feldman et al., 1998). During neural development, glutamatergic 

synapses initially form, and then either stabilize and mature or are eliminated in 

order to shape neural networks. Once established, most glutamatergic synapses 

retain the potential for considerable plasticity during later stages of development and 

into adulthood (Feldman et al., 1998; Katz and Shatz, 1996; Cohen-Cory, 2002). In 

principle, the strength of a synapse can be modified pre-synaptically by altering 

transmitter release or post-synaptically by modifying the number, efficacy or stability 

of postsynaptic receptors. A number of recent developments have uncovered the 

importance of postsynaptic mechanisms for plasticity at many CNS synapses, and 

demonstrated that dynamic changes in the receptor complement at the postsynaptic 

membrane constitute a fundamental means to generate and remodel a plastic neural 

network, both by ‘making’ functional synapses and by strengthening or weakening 

those already formed (Barry and Ziff, 2002; Luscher et al., 2000; Malinow and 

Malenka, 2002). 

While glutamate receptors of the AMPA subtype (AMPARs) mediate most of the rapid 

excitatory transmission in the mature brain, NMDA-type glutamate receptors 

(NMDARs) initiate many forms of synaptic plasticity and participate in long-term 

homeostatic and adaptive brain processes. For instance, NMDAR activity is required 

for the establishment and refinement of neural circuits during development by 
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contributing to the formation and maturation of dendritic processes, dendritic spines 

and synaptic connections themselves (Nikonenko et al., 2002; Cline, 2001; 

Constantine-Paton et al., 1990). In mature networks, the activation of NMDARs 

mediates the forms of plasticity such as long-term potentiation (LTP) and long-term 

depression (LTD) that are considered the cellular basis for memory formation and 

storage, and are involved also in pathological processes (Hebb, 1949; Dudek and 

Bear; 1992; Martin et al., 2000). Activation of the highly calcium-permeable NMDAR 

causes the insertion or removal of AMPARs, resulting in changes in synaptic strength, 

most notably at CA1 hippocampal synapses (Malinow and Malenca, 2002). Therefore, 

additional mechanisms are needed to stabilize activity and keep it within an optimal 

working range (commonly referred to as synaptic homeostasis) and to modify the 

thresholds at which synaptic stimulation induces LTP and LTD (metaplasticity). 

Regulation of the synaptic abundance of NMDARs provides a cell biological 

mechanism that may account for these additional forms of synaptic plasticity (Abbott 

and Nelson, 2000, Abrahm and Bear; 1996). 

A common denominator of plasticity at glutamatergic synapses is the need for prior 

synaptic or cellular activity. Diverse forms of plasticity are generated by different 

patterns of synaptic activation, many of them involving NMDARs (Malenka and Nicoll; 

1993; Kirkwood et al., 1996; Craig, 1998; Shouval et al., 2002), which requires a 

tight control over the quality and magnitude of NMDAR-dependent signals – most 

notably Ca2+ influx. This task can be accomplished both by regulating the numbers 

and subtypes of NMDARs present at a synapse, and by modifying NMDAR 

composition – and thereby properties – over time periods ranging from minutes to 

months (Cull-Candy et al., 2001; Carroll and Zukin; 2002; Wenthol, 2003).  

Control over the magnitude of NMDAR Ca2+ influx is a key event in the control of 

neurotoxicity. An excessive Ca2+ entry is a crucial mediator of glutamate 

excitotoxicity. Excitotoxicity can be defined as cell death ensuing from the toxic 

actions of glutamate (Lucas and Newhouse, 1986; Rothman and Olney, 1957). The 

resulting calcium overload is particularly neurotoxic, leading to activation of enzymes 

that degrade proteins, membranes and nucleic acid (reviewed in Berliocchi et al., 

2005). Excitotoxicity that is mediated by NMDARs has been implicated in neuronal 

death in many pathological conditions, including CNS ischaemia, trauma and 
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neurodegeneration. 

 

  



Introduction 

	   35	  

1.3. CONVERGENCE OF IL-1β AND NMDA RECEPTOR  

 

 

Recent studies showed that IL-1β affects various classic neurotransmitter systems 

(Rothwell and Hopkins, 1995; Grazia de Simoni et al., 1995). In particular, 

substantial evidence suggests the existence functional interaction between IL-1β and 

NMDA receptors (NMDARs). IL-1β plays a key role in the effects mediated by NMDA. 

It is observed that the expression of this cytokine in astrocytes and microglia 

increased during NMDA-dependent stimulation (Pearson et al., 1999), while the use 

of NMDA receptor antagonists suppress the expression of the cytokine after ischemic 

injury (Jander et al., 2000). 

We and others have demonstrated that the production of IL-1β could regulate NMDA 

receptors function, whose activation results in an increase in intracellular Ca2+ 

(Viviani et al., 2003, Kawasaki et al., 2008). In particular, in primary culture of 

hippocampal neurons recombinant IL-1β, by binding IL-1 receptor type I (IL-1RI), 

increases NMDAR functions through the activation of tyrosine kinases and 

subsequent phosphorylation at Tyr-1472 of the GluN2B subunit of the NMDAR. These 

events induce a sustained elevation of intracellular Ca2+ in neurons and, in our in 

vitro experimental conditions: prolonged NMDAR stimulation and relatively high 

concentrations of IL-1β, neuronal death (Viviani et al., 2003). The sustained 

intracellular Ca2+ and the alteration of the levels of glutamate are key events in 

excitotoxicy. Nevertheless, the maintenance of the intracellular Ca2+ homeostasis 

together with the maintenance of extracellular glutamate concentrations, are 

fundamental for cellular functions and survival. It is thus conceivable that a different 

balance between IL-1β and glutamate may alter NMDAR functions (i.e. LTP, synaptic 

plasticity and then cognition) without necessarily inducing neuronal death. 
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1.3.1 Gp120 in neurons/glia co-cultures: a suitable in vitro model to 

study the convergence of il-1β and NMDAR 

 

Gp120 is one of the envelope glycoproteins of human immunodeficiency virus-1 

(HIV), which displays the interesting characteristic of activating glial cells to release 

IL-1β and triggering neuronal death through the overactivation of NMDAR. This 

protein is implicated in the neurodegenerative events associated with HIV infection; 

in fact transgenic mice that express the viral protein gp120 develop 

neuropathological features similar to those found in patients with HIV-associated 

dementia (HAD) (Toggas et al., 1994). HAD is a common neurological disorder 

observed after infection with HIV. Clinically, HAD is characterized by disabling 

cognitive impairment, including poor concentration and memory impairment; motor 

dysfunction, such as loss of fine motor control, poor balance, tremors, speech 

problems; and behavioral changes including apathy and lethargy (Rothenhausler 

2006; Ances and Ellis 2007). The histopathological alterations observed are: 

widespread reactive astrocytosis, myelin pallor, neuronal degeneration, structural 

discontinuity of blood-brain barrier (BBB), infiltration of blood-derived macrophages, 

resident activated microglia and multinucleated giant cells (Kaul et al., 2001). It is 

now believed that gp120 shed by the virus may activate microglia (and astrocytes) 

and stimulate the release of neurotoxins, the nature of which is still unknown. The 

mechanism by which gp120 acts through activated glia may include increased 

production of potentially detrimental factors such as cytokines, excitotoxic amino 

acids, free oxygen radicals and bioactive lipid mediators as well as inhibition of the 

production or action of neurotrophic/protective factors (Dreyer et al., 1990; Heyes et 

al., 1991; Genis et al., 1992; Toggas et al., 1994; Lipton and Rosenberg, 1994; 

Lannuzel et al., 1995; Lipton, 1998). Previous studies have shown that exposure to 

gp120 induces IL-1β production in microglia and/or astrocytes in vitro (Merril et al., 

1992), and administration of gp120 in the brain of adult rat increases the expression 

of IL-1β mRNA (Ilyin & Plata-Salaman, 1997) and gene product (Bagetta et al., 

1999). Importantly, IL-1β mRNA levels are also increased in postmortem brain tissue 

from HIV-infected patients diagnosed with HAD as compared to non-demented HIV-

infected patients (Zhao et al. 2001), substantiating a role for IL-1β in the 
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pathogenesis of HAD. 

Exposure of glia cells to gp120 induces both ROS and IL-1β formation (Viviani et al., 

2001; Corasantini et al., 2001). Furthermore, in primary hippocampal neurons in co-

culture with glia cells, gp120 increases intracellular calcium ([Ca2+]i) that precedes 

neuronal death (Viviani et al., 2001; Corasantini et al., 2001). While an anti-IL-1β 

neutralizing antibody protects from gp120-induced neuronal injury, the antioxidant 

trolox prevents both increased IL-1β release and neurodegeneration, suggesting ROS 

to be the initiator of this cascade (Viviani et al., 2001). The neurotoxicity of gp120, 

when injected intracerebroventricularly, is prevented by concomitant injection of IL-1 

receptor antagonist (IL-1ra) (Bagetta et al., 1999). IL-1ra prevents also the 

impairment of memory consolidation induced by gp120 (Pugh et al., 2000).  

This information suggests that the glia-derived IL-1β is a key substance in gp-120-

induced neuronal impairment and death.  

The mechanism(s) by which IL-1β signalling might contribute to the progression of 

gp120-induced neuronal injury are not completely understood.  

It is well established that over-stimulation of NMDAR represents a key event in HAD. 

The mechanism underlying cells death involves excessive Ca2+ entry in neurons via 

NMDAR associated cation channel since NMDA antagonist prevent both the rise of 

intracellular level of Ca2+ and the cytotoxicity (Dreyer et al., 1990; Lipton et al., 

1991) suggesting an excitotoxic, glutamate-mediated, type of death (Corasantini et 

al., 2001).  

Interestingly, gp120 neurotoxicity in vivo (Toggas et al. 1996) and in vitro (Lipton 

1992) is decreased by NMDAR antagonism, providing a potential link between IL-1β 

and excitotoxicity. 

Being IL-1β and the NMDAR, key points in gp120 mediated neurotoxicity, it is 

therefore possible that the relationship between IL-1β/NMDAR play an important role 

in the development and progression of HAD, and in the induction of 

neurodegenerative features like decreased synaptic density, spine loss, dendritic 

simplification, and neuronal loss. 

On the basis of these considerations, in this study we used gp120 to induce the 

endogenous production of IL-1β in response to a pathological trigger and to better 

define the molecular and functional interaction between this cytokine and the 
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NMDAR in an in vitro model of neurotoxicity. 
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Adapted from: Kaul, M., Lipton, S.A. 1999. Chemokines and activated macrophages in HIV-
gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 96: 8212-8216. 
 
 
Figure 8. Current model of HIV-related neuronal damage involving gp120 and 
cell–cell signalling 
gp120 stimulation of glia cells enhances their production cytokines, among which IL-1β. 
These cytokines stimulate gliosis. Reactive glia may then release of free-radical nitric oxide 
(NO•), which in turn may react with superoxide to form the neurotoxic molecule 
peroxynitrite. Arachidonate released from macrophages impairs astrocyte clearing of the 
neurotransmitter glutamate and thus contributes to excitotoxicity. Neuronal injury is 
mediated predominantly by overactivation of NMDAR-coupled ion channels that allow 
excessive influx of Ca2+. This in turn triggers a variety of potentially harmful enzymes, free-
radical formation and release of glutamate. Glutamate subsequently overstimulates NMDARs 
on neighbouring neurons, initiating further injury. This final common pathway to 
neurotoxicity can be blocked by NMDAR antagonists. For certain neurons, depending on their 
exact repertoire of ionic channels, this form of damage can also be ameliorated by voltage-
activated calcium channel antagonists or non-NMDA glutamate antagonists. In red is our 
working hypothesis: is IL-1β  involved in the exacerbation of neuronal damage 
due to the overactivation of NMDAR? 
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1.3.2. Early-life experiences shape immune response, synaptic plasticity 

and behaviour: a suitable in vivo model to study the convergence of IL-

1β and NMDAR 

 

A plethora of epidemiological studies in humans and experimental work in animals 

emphasizes the critical impact of the early-life environment in shaping postnatal 

physiological, emotional and behavioral functions (Meyer, 2011). 

The concept of “early life developmental programming of adult diseases” refers to 

the phenomenon whereby specific environmental factors acting during sensitive 

prenatal or early postnatal developmental periods can modulate or “program” the 

normal course of development, with the result that adult outcomes are significantly 

and often permanently altered (Bennet and Gunn, 2006). 

Accumulating evidence suggests that such early-life programming also exists for the 

development and functions of the immune system (Merlot et al., 2008; Bilbo and 

Schwarz, 2009). Perinatal exposure to infection and/or immune activation through 

other stimuli like stress, is one of the prominent environmental factors with known 

impact on postnatal immune functions (Bilbo and Schwarz, 2009). For example, 

prenatal maternal exposure to the bacterial endotoxin lipopolysaccharide (LPS) or the 

pro-inflammatory cytokine IL-6 in rats leads to enhanced microglial densities and 

elevation of peripheral and central pro-inflammatory cytokine levels in the offspring 

(Borrell et al., 2002; Samuelsson et al., 2006; Romero et al., 2010). Such 

inflammatory changes can persist even until adulthood (Borrell et al., 2002; 

Samuelsson et al., 2006; Romero et al., 2010), suggesting that immune challenge 

early in life can permanently alter postnatal immune functions. Further to the 

precipitation of overt immune dysfunctions, which may be evident even under basal 

conditions, early-life exposure to infection and/or immune activation may also induce 

sensitizing or preconditioning effects (Bilbo and Schwarz, 2009; Meyer, 2011). 

Notably, early-life infection and/or immune activation which could also induced by 

stress, not only shapes the function as of the immune system, but it also influences 

reactivity to stress, disease susceptibility, and, increased vulnerability to cognitive 

and/or neuropsychiatric disorders, including Alzheimer’s, Parkinson’s, schizophrenia, 
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and autism (Hornig et al., 1999; Nelson and Willoughby, 2000; Rantakallio et al., 

1997; Shi et al., 2003). In this scenario, an increased cytokine exposure during key 

periods of brain development may also act as a “vulnerability” factor for later-life 

pathology, by sensitizing the underlying neural substrates and altering the way that 

the brain responds to a subsequent immunological and stressful challenge in 

adulthood. In turn, this altered immune response has significant and enduring 

consequences for behavior, including social, cognitive, and affective abilities (Bilbo et 

al., 2009).  

Pro-inflammatory activity has been postulated also in early attachment-figure 

separation and has been suggested to contribute to the passive behavior of 

separated pups (Hennessy et al. 2010). Indeed, Coe at al. (1988) found that a 24 

hours separation procedure produced a dramatic and prolonged increase in natural 

immune response. Furthermore, it has been shown that, in rats, a single prolonged 

episode of maternal deprivation (MD) during the neonatal period [24 hours, postnatal 

day (PND) 9–10] induced diverse behavioural alterations later in life that resemble 

certain psychotic and depressive-like symptoms (Ellenbroek, 2003; Ellenbroek et al 

2004; Ellenbroek and Riva, 2003; Marco et al., 2009). 

In this same model, it have recently described sex-dependent alterations in 

developing hippocampal neurons and glial cells in MD neonatal rats, with males being 

more markedly affected (Llorente et al., 2009; Llorente et al., 2008). 

Finally, variations in maternal care not only influence the development of behavior in 

the offspring, but determine alterations in molecular players of cellular plasticity like 

NMDA and AMPA receptors (Pickering et al., 2006; Roceri et al., 2002). These effects 

are specific from the anatomical and temporal point of view and might represent one 

of the mechanisms through which early adverse life events determine long-term 

impairment in brain function and plasticity. For all these characteristics, to assess the 

possibility that the functional cross talk between IL-1b/NMDAR could be recruit in 

vivo we adopted a maternal deprivation paradigm of stress early in life (Collaborative 

work with Maria Paz Viveros). 
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Aim of this thesis has been to characterize, from a molecular and structural point of 

view, the bidirectional interplay between IL-1β and the NMDA receptor.  

In the first part of the study we used an in vitro model of neurotoxicity characterized 

by endogenous production of IL-1β and over-stimulation of NMDAR. We evaluated 

the role of IL-1β in several important events that are involved in the regulation of 

NMDAR functions: phosphorylation and trafficking. 

The IL-1β signalling has been well characterized in the peripheral cells of the immune 

system and this information has been hypothetically extended to the CNS, without 

considering the peculiarities of this system. Neurons are strategically complex cells. 

Their responsiveness lies in the information of highly specialized compartments 

composed of unique repertoires of selectively distributed protein complexes. Thus, 

we analysed the molecular composition and the subcellular distribution of the 

components of IL-1β signalling, the possibility that IL-1β/IL-1RI signalling could be 

regulated by re-distributing the IL-1RI complex between different neuronal 

compartments in dependence to IL-1β and NMDA simulation.  

In the last part of this study we have evaluated whether the crosstalk between IL-

1β/IL-1RI/NMDAR could has been recruited also in vivo. For this purpose we used an 

animal model of early life stress. Stressful challenge experienced in early-life could 

shape the development and functions of the immune system. These events could 

change the immunoreactivity in the brain for the remainder of the lifespan and play a 

fundamental role in promoting susceptibility to central nervous system dysfunctions 

from poor cognitive disabilities to neuropsychiatric disorders (Hornig et al., 1999; 

Nelson and Willoughby, 2000; Rantakallio et al., 1997; Shi et al., 2003). The 

alteration of cognitive and behavior functions are due to an alteration of 

glutamatergic system. 

This implicates that in this model the IL-β/NMDAR cross talk could be recruited. 
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3.1. CELLS CULTURES 

 

 

3.1.1. Primary cultures of glial cells 

 

Primary cultures of glial cells were prepared from 1- to 2-day-old newborn rats 

(Sprague-Dawley) (Charles River, Calco, Italy). All animal care procedures were in 

accordance with the local Animal Care Committee, and no weight loss or death was 

observed after receipt of rats in our animal facility. Pregnant rats were housed over 

wood chip bedding, acclimatized to a 12 hours light-dark cycle and allowed food and 

water ad libitum. All efforts were made to minimize the suffering of animals. Cerebral 

hemispheres were freed from the meninges and mechanically disrupted. Cells were 

dispersed in a solution of trypsin 2.5% and DNase 1%, filtered through a 100-µm 

nylon mesh and plated (140000 cells per 35-mm dish) in Eagle’s minimum essential 

medium (MEM) supplemented with 10% fetal calf serum, 0.6% glucose, 

streptomycin (0.1 mg/ml), and penicillin (100 international units/ml). Glial cultures 

were fed twice a week and grown at 37°C in a humidified incubator with 5% CO2. 

 

 

3.1.2. Primary cultures of hippocampal neurons 

 

Neuronal cultures were established from the hippocampus of 18-day rat fetuses. 

Briefly, brains were removed and freed from meninges, and the hippocampus was 

isolated. Cells were then dispersed by incubation for 5 min at 37°C in a 2.5% trypsin 

solution followed by trituration. The cell suspension was diluted in Neurobasal media 

supplemented with 1% B-27 (Invitrogen, Carlsbad, CA) and plated onto 

polyornithine-coated coverslips at a density of 80000 cells per coverslip. 
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3.1.3. Sandwich co-cultures of hippocampal neurons and glial cells 

 

Three days before treatment with gp120, coverslips were transferred to dishes 

containing a glial monolayer in neuron maintenance medium. Coverslips were 

inverted so that the hippocampal neurons faced the glia monolayer; both cell 

preparations were immersed in the same culture medium. Paraffin dots adhering to 

the coverslips supported them above the glia, creating a narrow gap that prevented 

the two cell types from contacting each other but allowed the diffusion of soluble 

substances (Figure 1). These culture conditions allowed us to grow differentiated 

neuronal cultures with !96% homogeneity, as assessed by immunocytochemistry of 

microtubule-associated protein 2 and glial fibrillary acidic protein (Molecular Probes, 

Eugene, OR). Hippocampal neurons were used after a culturing period of 14 days. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. Model of sandwich co-culture of primary hippocampal neurons and glia 
cells 
Primary hippocampal neurons were plated on glass coverlips and then turned over glia 
monolayer seeded in 24-well plate. The two different cell populations are separated by small 
paraffin dots at the edges of the coverslip, in this way the two cell populations face each 
other without touching. 
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3.2. TREATMENTS 

 

 

3.2.1. HIV-gp120 / IL-1ra / Ifenprodil / Ca-pYEEIE 

 

Recombinant HIV-gp120 protein type IIIB (Bartels, Carlsbad, CA) was used in all the 

experiments. Neurons were exposed to drugs in their culture medium (Neurobasal 

media supplemented with 1% B-27). Treatment with the glycoprotein was mainly 

performed in the presence of glia. To this purpose, primary hippocampal neurons 

were transferred on a glial monolayer for 3 days before exposure to gp120. Glass 

coverslips with primary hippocampal neurons were detached from the glial 

monolayer at the end of the exposure and assessed for NMDAR Tyr phosphorylation 

and trafficking, Ca2+ homeostasis, cell fractionation, confocal microscopy, and cell 

death. 

1 µg/ml human recombinant IL-1ra (R&D Systems, Minneapolis, MN), 10 µM 

ifenprodil hemitartrate (Tocris, Bristol, UK) were incubated with gp120 and kept in 

the incubation medium until the end of the treatment. In contrast, 10 µg/ml caffeic 

acid-pYEEIE (Ca-pYEEIE; Tocris) was delivered only in primary hippocampal neurons, 

prior to gp120 treatment, by means of the lipid base transfection reagent Chariot 

(Active Motif, Rixensart, Belgium) according to supplier instructions. Briefly, caffeic 

acid-pYEEIE was incubated with Chariot dilution at room temperature for 30 min to 

allow the formation of the Chariot-molecule complex. Neuronal cells without glia 

were then overlaid with the Chariot-macromolecule complex solution diluted in 

Neurobasal and incubated at 37°C for 1 hour. At the end, complete growth medium 

was added, and incubation continued for another hour. Ca-pYEEIE loaded neurons 

were then washed to remove extracellular Ca-pYEEIE and transferred to the glial 

monolayer for gp120 exposure. Control neuronal cultures were run in parallel under 

each experimental condition and incubated for the appropriate times in the presence 

or absence of glia. 
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3.2.2. IL-1β / NMDA 

 

Rat recombinant IL-1β and NMDA (Sigma Chemical Co. St. Louis, MO, USA) were 

used in all the experiments. For localization studies, neurons were exposed to drugs 

in ACSF buffer (137 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 4.2 mM NaHCO3, 5 mM 

glucose, 10 mM Hepes): NMDA was applied to neurons for 10 min, cells were then 

washed, and incubated for further 20 min in ACSF; IL-1β was applied for 30 min. 

Control neuronal cultures were run in parallel in each experimental condition and 

incubated for the appropriate times in ACSF and conditioned medium.  

 

 

 

3.3. METHODS 

 

 

3.3.1. Reverse transcriptase-polymerase chain reaction (RT-PCR) 

 

Total RNA was isolated from glial cells by guanidinium thio-cyanate-phenol-

chloroform extraction (Chomczynski and Sacchi, 1987). RT-PCR reactions were 

performed as previously described (Corsini et al., 1996). In preliminary experiments, 

RNA concentrations and PCR cycles were titrated to establish standard curves to 

document linearity and to permit semi-quantitative analysis of signal strength (40 ng 

and 200 ng for β-actin and all cytokines, respectively). The PCR products were made 

visible by UV illumination after electrophoresis through 1.5% agarose at 80 V and 

staining in Tris borate EDTA buffer 1X, containing 0.5 µg/ml ethidium bromide. Gels 

were photo- graphed with type 667 film (Polaroid, Cambridge, MA, USA). The image 

of the PCR products was acquired with a Nikon CCD video camera module (Nikon, 

Melville, NY, USA). The optical density of the bands was calculated, and the peak 

area of a given band was measured by means of the Image 1.61 program for digital 

image processing (Wayne Rasband, Research Service Branch, NIH, Bethesda, MD, 



Materials and Methods 
 

	   49	  

USA). 

3.3.2. IL-1β assay 

 

IL-1β release was measured by means of an interleukin-1L rat ELISA system 

(Quantikine, R&D Systems, Abingdon, UK). 

 

 

3.3.3. Western blotting 

 

Gel electrophoresis and transfer 

The separation of proteins by sodium dodecyl sulphate (SDS) ployacrylamide gel 

electrophoresis (PAGE) was performed as described by Laemmli (1970). Samples 

were prepared by adding SDS sample buffer and reducing agent, the sample mix was 

heated at 37°C for 10 min to gently denature the proteins. The samples were loaded 

onto a 6% SDS-PAGE gels and electrophoresed at 60V for approximately 2 hours. 

Following electrophoresis the gel was transfer into a cassette, on top of a sponge 

pad and two pieces of filter paper. The membrane was placed on the top of the gel 

and any air bubbles were removed to maximise protein transfer. Two pieces of filter 

paper were placed on the top of the membrane, and further sponge pad placed on 

the top of this. The membrane was pre-wet for 15 sec in 100% methanol, rinsed 

with distilled H2O and then soaked with transfer buffer (0.192 M glicine, 0.025 M 

Tris, MeOH 20%, pH 8.3) together with the sponge pads and the pieces of filter 

paper.  

Proteins were transferred from gel onto membrane at constant current (230 mA) for 

2 hours at 4°C. The successful transfer of proteins from the gel to the membrane 

was verified using Ponceau S staining. After this, the membrane was rinsed in TBS 

buffer, (10 mM Tris-HCl, 150 mM NaCl, pH 8) to removed transfer buffer and stain. 

Following this, protein-free sits on the blot were blocked for 2 hours at room 

temperature (RT) in a solution of i-Block (Invitrogen, Carlsbad, CA ) TBS-T (TBS 

buffer with 0.1% TWEEN-20). 
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Primary and secondary antibodies 

The blot was treated with a primary antibody overnight at 4°C. Antibodies were 

diluted in i-Block TBS-T, the optimal dilution was performed for each antibody. 

Following 8 washes with TBS-T, the blot was treated with the secondary antibody 

(HRP-conjugate) with constant rotation for 1 hour. The blot was then washed 8 

times with TBS-T.  

Signal detection  

The chemiluminescent western blotting system ECL (Enhanced-Chemiluminescence, 

Amersham-Pharmacia Biotech, UK) was used for specific detection of secondary 

antibody. 

 

 

3.3.4. Determination of the cytosolic-free Ca2+ concentration [Ca2+]i 

 

At the end of exposure to gp120, neurons on glass coverslips were detached from 

glial cells and loaded with 10 µM Fura 2-AM (Sigma) for 1 hour at 37°C in the 

treatment culture medium supplemented with 1% bovine serum albumin, 0.1% 

pluronic (Sigma). [Ca2+]i measurement was performed in neurons only in Hepes 

buffer, pH 7.4, as previously described (Vivaini et al., 2001). The Fura 2 fluorescence 

ratio signal was measured in a PerkinElmer Life Sciences 50 B double wavelength 

fluorometer and calibrated in terms of [Ca2+]i as described by Grynkiewicz et al., 

1995. 

 

 

3.3.5. Subcellular fractionation 

 

The subcellular compartments from rat hippocampus was purified as previously 

described (Gardoni et al., 1998). To isolate the different fractions from rat 

hippocampus, a modification of the method of Carlin et al. (1980) was used. Animals 

were killed, and brain areas were dissected within 2 min. Hippocampi were rapidly 
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dissected and pooled. Homogenization was carried out by 10 strokes in a Teflon-

glass homogenizer in 4 ml/g wet weight cold 0.32 M sucrose containing 1 mM HEPES 

pH 7.4, 1 mM MgCl2, 1 mM NaHCO3, and 0.1 mM phenylmethylsulfonyl fluoride 

(PMSF) in the presence of a complete set of protease inhibitors (CompleteTM, GE 

Healthcare, Mannheim, Germany). The homogenized tissue was centrifuged at 

1000xg for 10 min.  

The obtained supernatant corresponds to low speed supernatant fraction (S1) and 

the pellet corresponds to P1, nuclei-associated membrane (P1). The resulting 

supernatant was centrifuged at 3000xg for 15 min to obtain the supernatant 

(cytosol, S2) and the pellet (crude membrane fraction, P2). The pellet was solubilized 

in 2.4 ml/g of 0.32 M sucrose containing 1 mM HEPES pH 7.4, 1 mM NaHCO3, and 

0.1 mM PMSF, layered on a sucrose gradient (0.85-1.0-1.2 M), and centrifuged at 

82500xg for 2 hours. The fraction (synaptosomes, Syn) between 1.0 and 1.2 M 

sucrose was removed, diluted with an equal volume of 1% Triton X-100 in 0.32 M 

sucrose containing 1 mM HEPES, 1 mM NaHCO3, and 0.1 mM PMSF, and stirred at 

4°C for 15 min followed by centrifugation at 82500xg for 30 min. The pellet was 

solubilized, layered on a sucrose gradient (1.0-1.5-2.1 M), and centrifuged at 

100000xg at 4°C for 2 hours. The fraction between 1.5 and 2.1 M was removed and 

diluted with an equal volume of 1% Triton X-100 and 150 mM KCl. The pellet 

corresponds to TIF (Triton insoluble fraction) and the supernatant corresponds to 

PSD (post-synaptic density). PSDs were finally collected by centrifugation at 

100000xg at 4°C for 30 min. 

 

Triton insoluble postsynaptic fraction (TIF) was purified from primary hippocampal 

neurons and from hippocampi of control and maternal deprived rats as previously 

described with minor modifications (Gardoni et al., 2006). Briefly, primary 

hippocampal cultures and hippocampi were homogenized in ice-cold sucrose 0.32 M 

containing 1 mM Hepes, 1 mM MgCl2, 1 mM EDTA, 1 mM NaHCO3, 0.1 mM PMSF, at 

pH 7.4. The homogenized tissue was centrifuged at 13000xg for 15 min to obtain a 

crude membrane fraction. The pellet was resuspended in buffer containing 75 mM KCl 

and 1% Triton-X 100 and centrifuged at 100000xg for 1 hour. The pellet was 

homogenized in a glass-glass potter in 20 mM Hepes. Then, an equal volume of 
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glycerol was added and this fraction, referred as Triton insoluble fraction (TIF), was 

stored at -80°C until processing. TIF fraction was used instead of the classical 

postsynaptic density (PSD) because the amount of the starting material was very 

limited. All purifications were carried out in presence of a complete set of protease 

inhibitors (CompleteTM, GE Healthcare, Mannheim, Germany) and of both Ser/Thr- 

and Tyr-phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA). 

 

 

3.3.6. Immunofluorescence labelling and image acquisition 

 

Hippocampal neurons were fixed in 100% methanol at -20°C for 15 min. Primary 

(1:100) and secondary (1:200) antibodies were applied in GDB buffer (30 mM 

phosphate buffer (pH7.4) containing 0.2% gelatin, 0.5% Triton X-100, and 0.8 M 

NaCl). Fluorescence images were acquired using Zeiss LSM510 confocal microscope. 

Pharmacologically treated neurons were chosen randomly for quantification from 

three to five independent experiments by taking from each experiment from three to 

five coverslips.  

 

 

3.3.7. Immunoprecipitation  

 

Neuronal lysates (200 µg proteins) were incubated overnight at 4°C in a RIA buffer 

containing: 200 mM NaCl, 10 mM EDTA, 10 mM Na2HPO4, 0.5% NP-40, 0.1% SDS, 

NaF 10 mM, with antibody against GluN2B (antibody dilution 1:200), GluR1 (1:200) 

or IL-1RI (1:200). Samples were at first solubilized in RIA buffer in presence of 1% 

SDS, and only subsequently diluted ten times in RIA buffer to obtain a final 0.1% 

SDS concentration. Protein A-agarose beads (Sigma-Aldrich), washed in the same 

buffer, were added, and incubation continued for 2 hours. The beads were collected 

by centrifugation and washed five times, sample buffer for SDS-PAGE was added, 
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and the mixture was boiled for 5 min. Beads were pelleted by centrifugation, and 

supernatants were applied to 6% SDS-PAGE.  

 

3.3.8. Pull-down assay  

 

The IL-1RI and PSD-95 fragments were subcloned downstream of glutathione S-

transferase (GST) in the BamHI and Hindsites of the expression plasmid pGE-KG by 

PCR using Pfu polymerase (Stratagene) on a IL-1RI cDna template or on PSD-95 

cDNA template. The inserts were fully sequenced with ABI Prism 310 Genetic 

Analyser (ABI Prisma). IL-1R(CD) and PSD-95(PDZ1-2) GST-fusion proteins were 

expressed in BL21 Escherichia coli, purified on glutathione agarose beads (Sigma-

Aldrich) as described previously (Gardoni et al., 2001).  

Aliquots of neuronal homogenates (200 µg) were diluted with TBS (10 mM Tris and 

150 mM NaCl) and 0.1% SDS to a final volume of 1 ml and incubated (1 hour, 37°C) 

with glutathione agarose beads saturated with fusion proteins or GST alone. After 

the incubation period, the beads were extensively washed with TBS and 0.1% Triton 

X-100. Bound proteins were resolved by SDS-PAGE and subjected to immunoblot 

analysis with polyclonal anti-IL-1RI antibody. 

 

 

3.3.9. Surface expression assays 

 

As previously described, cross-linking experiments by means of bis (sulfosuccinimidyl) 

suberate (BS3) (Pierce, Rockford, IL) were performed (Mauceri et al., 2004). Briefly, 

following a wash incubation of 20 min at 37°C, cultures were incubated with 1 mg/mL 

BS3 in saline solution for 10 min with agitation at 37°C. Plates were then washed 

three times with harvest buffer before harvesting neurons. Ethanolamine is present in 

the harvest buffer to quench any unreacted BS3. 
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3.3.10. Viability assay 

 

Neuronal cell death was monitored over 6, 24, 48, and 72 hours. In a set of 

experiments neurons were loaded with IL-1ra, and exposed to 600 pM gp120 for 72 

hours. Cell viability was measured by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay (Denizot and Lang, 1986). MTT tetrazolium 

salt was dissolved in serum-free medium to a final concentration of 0.75 mg/ml and 

added to the cells before the end of the experiment for 3 hours at 37°C. The medium 

was then removed and the formazan was extracted with 1 N HCl:isopropanol (1:24). 

Absorbance at 560 nm was read on a Multiscan reader. 

 

 

 

3.4 MATERNAL DEPRIVATION PROTOCOL 

 

 

The maternal deprivation experiments were performed by the laboratory of Prof 

Maria Paz Viveros Departamento de Fisiologia, Facultad de Biologia, Universidad 

Complutense, Madrid, Spain). The maternal deprivation (MD) protocol took place on 

post natal day 9 (PND 9) as previously described (Llorente et al., 2008). In brief, on 

PND 9, half of the litters were submitted to 24 hours of MD (four litters), that is, 

dams removed from their home-cages at 09.00 h and pups left undisturbed in their 

corresponding home-cage (in the same room) for 24 hours, until PND 10, when 

dams returned to their corresponding home-cages. Control animals (six litters) were 

submitted to a similar manipulation: dams were briefly removed both on PND 9 and 

10, but dams were immediately returned to their home cages. Rat pups were 

henceforth left undisturbed for some days to allow the consolidation of the short-

term MD effects on our parameters of interest. 

Animals were sacrificed by rapid decapitation during the dark phase of the cycle 

(09.00–14.00 h) at PND 45. The brains were rapidly extracted, the hippocampi were 

isolated and stored at −80°C until their use. 
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Biochemical analysis: 

• phosphorylation at Tyr-1472 of GluN2B subunit in homogenate 
(western blotting) 

• expression of IL-1RI anf GluN2B in triton insoluble fraction (western 
blotting) 

• interaction between IL-1RI and GluN2B in triton insoluble fraction	  
(immunoprecipitation	  
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3.5. QUANTIFICATION AND STATISTICAL ANALYSIS 

 

 

Quantification of confocal experiments was performed using Laserpix software 

(Biorad, CA, USA). Image acquisition, quantification of the fluorescence signal and co-

localization analysis were performed by investigators who were 'blind' to the 

experimental conditions. Quantification of western blot analysis was performed by 

means of computer-assisted imaging (Quantity-OneR System; Biorad, CA, USA). 

Statistical significance of differences was determined by one-way or two-way analysis 

of variance (ANOVA) followed by a multiple comparison test (Tukey’s test). A 

significance level of 95% (p<0.05) was accepted. 

 

 

3.6. ANTIBODIES 

 

 

Polyclonal IL-1R antibody was purchased from Santa Cruz Biotechnology; α-CaMKII 

monoclonal antibody and polyclonal GluA1 antibody were purchased from Chemicon 

International, Inc., (Temecula, CA); monoclonal PSD-95 antibody was purchased 

from Affinity BioReagents Inc. (Golden, CO); polyclonal pTyr-1472-GluN2B antibody 

were purchased from Calbiochem (Nottingham, UK), polyclonal anti-β-tubulin was 

purchased from Covance (Berkeley, CA); monoclonal anti-GluN2A was purchased 

from Zymed Laboratories Inc.; monoclonal anti-synaptophysin was purchased from 

Sigma-Aldrich; polyclonal MyD88 was purchased from Imgenex (San Diego, CA, USA) 

and from ProScience, (Poway, CA, USA); polyclonal IL-1RAcP was purchased from 

Genetex (CA, USA); polyclonal anti-GluN2A, polyclonal anti-GluN2B, and AlexaFluor 

488, 555, and 568 secondary antibodies were purchased from Molecular Probes 

(Eugene, Oregon). 
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4.1. RELEVANCE OF GLIAL CELLS AND ROLE OF ENDOGENOUS 

IL-1β ON Tyr-1472 PHOSPHORYLATION OF GluN2B SUBUNITS 

OF NMDAR 

 

It has been previously reported the existence of an interaction between interlukin-1β 

(IL-1β) and NMDA receptor (NMDAR) (Viviani et al., 2003). In primary cultures of 

hippocampal neurons recombinant IL-1β, by binding IL-1 receptor type I (IL-1RI), 

increases NMDAR functions through the activation of Src family tyrosine kinases and 

subsequent phosphorylation at Tyr-1472 of GluN2B subunit of NMDAR. These events 

induce a sustained elevation of intracellular Ca2+ in neurons and neuronal death 

(Viviani et al., 2003). 

To better define the functional and molecular aspects of this crosstalk, we thus 

investigated the effect of native IL-1β, generated in an in vitro model of neurotoxicity 

on NMDAR and the impact on neuronal organization and survival. For this purpose, 

we used a sandwich co-culture of primary hippocampal neurons and glia treated with 

gp120, one of the envelope glycoproteins of HIV virus.  

First of all, IL-1β mRNA expression was measured 2, 4 and 24 hours after treatment 

with gp120 600 pM in primary glial cells. As shown in Figure 1A, gp120 increased IL-

1β mRNA expression after 2 and 4 hours of treatment. IL-1β mRNA returned to 

control levels within 24 hours from the treatment (Figure 1A). As consequence, an 

increase of the release of IL-1β was also evident, and still detectable after 48 hours 

of glia cells to gp120 600 pM (Figure 1B, IL-1β pg/ml, control 62.4±3.19, gp120 

139±18 n=6, *p<0.05 gp120 versus control). 

Hippocampal neurons co-cultured with glia were then treated with 600 pM gp120 for 

6 and 24 hours, and GluN2B subunit Tyr phosphorylation was evaluated. At the end 

of the treatment, neurons were separated by glia and lysed; phosphorylation at 

GluN2B Tyr-1472 was assessed with a specific antibody. A significant increase of 

GluN2B Tyr-1472 phosphorylation was evident 24 hours after gp120 treatment 

(Figure 2A, **p<0.01 gp120 versus control), whereas 6 hours of treatment was 

ineffective (Figure 2A). This effect was specifically limited to phosphorylation 

processes because GluN2B protein level was not affected at the above time points 
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(Figure 2A).  

The effect of gp120 on GluN2B Tyr-1472 phosphorylation in neurons required the 

presence of glia, because it was undetectable when primary hippocampal neurons 

were exposed alone to 600 pM gp120 for 24 hours (p1472 immunostaining % of 

control: controls 100±31.6, gp120: 88±33.0 n=3). The need of glia for gp120 to 

trigger Tyr-1472 phosphorylation of the GluN2B subunit together with the promotion 

of IL-1β release suggest the possible involvement of this cytokine in the observed 

effect. Hippocampal neurons co-cultured with glia were then incubated with 600 pM 

gp120 in the presence or absence of 1 µg/ml IL-1 receptor antagonist (IL-1ra) and 

Tyr-1472 phosphorylation in neurons was assessed. IL-1ra per se did not affect basal 

p1472 immunostaining but prevented gp120-induced increase of Tyr-1472 

phosphorylation (Figure 2B; **p<0.01 versus control, §p<0.05 versus gp120), 

supporting our hypothesis. 
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FIGURE 1. Gp120 effect on IL-1β  expression and production in glia cells 
A. IL-1β mRNA expression in glial cells exposed or not to gp120 600 pM for 2, 4 and 24 
hours. 
B. IL-1β protein level in cultured medium of glia cells in the presence or absence of gp120 
600 pM, measured 48 hours after the treatment. Values are mean ± S.E. of 6 independent 
experiments (IL-1β pg/ml, control 62.4±3.19, gp120 139±18, *p<0.05 gp120 versus 
control; ANOVA followed by Tukey’s test). 
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FIGURE 2. Gp120 effect on Tyr-1472 phosphorylation of GluN2B subunits 
A. Representative western blotting and quantification of GluN2B-Tyr-1472 phosphorylation 
after exposure for 6 and 24 hours of hippocampal neurons to gp120 in the presence of glia. 
At the end of treatment, neurons were detached from glia and lysed for western blotting. 
Values are mean ± S.E. of 3 independent experiments (**p<0.01 gp120 versus control; 
ANOVA followed by Tukey’s test).  
B. Quantification of GluN2B-Tyr-1472 phosphorylation after exposure of hippocampal 
neurons in the presence of glia ± IL-1ra to gp120 for 24 hours. Values are mean ± S.E. of 
3 independent experiments (**p<0.01 gp120 versus control, §p<0.05 gp120 + IL-1ra versus 
gp120; ANOVA followed by Tukey’s test).  
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4.2. RELEVANCE OF GLIA CELLS AND ROLE OF ENDOGENOUS IL-

1β ON INTRACELLULAR Ca2+ ([Ca2+]i) HOMEOSTASIS INDUCED 

BY Tyr-1472 PHOSPHORYLATION OF GluN2B SUBUNITS OF 

NMDAR  

 

Tyr phosphorylation is a well recognized pathway adopted from neurons to up-

regulate NMDA receptor function (Salter and Kalia, 2004) and has been involved in 

pathological conditions such as ischemic neuronal death (Takagi et al., 1997; Cheung 

et al., 2000). Neuronal injury consequent to gp120 is also predominantly mediated 

by over-activation of NMDAR-coupled ion channels that allows excessive Ca2+ influx 

and a general imbalance of its homeostasis (Kaul et al., 2001, Haughey et al., 2002). 

We thus evaluated whether gp120-induced GluN2B Tyr phosphorylation, through the 

release of IL-1β, could be implicated in the altered [Ca2+]i homeostasis in neurons. 

Primary hippocampal neurons were treated with 600 pM gp120 in the presence or 

absence of glia, separated at the end of treatment and monitored for [Ca2+]i. The 

exposure to 600 pM gp120 in the presence of glia significantly increased neuronal 

[Ca2+]i (Figure 3A) after 24 hours. This effect was caused predominantly by Ca2+ 

influx through the GluN2B-NMDA receptor channels because the addition of 10 µM 

ifenprodil, a channel blocker that binds only to the GluN2B subunit of NMDA 

receptors, inhibited the rise of gp120-induced neuronal [Ca2+]i (Figure 3A). 

To investigate whether GluN2B Tyr phosphorylation was implicated in gp120 

modulation of the NMDAR-dependent Ca2+ response, we examined the rise of gp120-

induced neuronal [Ca2+]i in the presence of Ca-pYEEIE, a peptide inhibitor for Src 

family SH2 domain (Park et al., 2002). Thus, primary hippocampal neurons were 

loaded in the absence of glia with 10 µg/ml Ca-pYEEIE, washed to remove 

extracellular Ca-pYEEIE, and then exposed for 24 hours in the presence of glia to 

600 pM gp120. This experimental approach allowed us to act on neurons without 

interfering with the Src family signal transduction in glia. The classical tyrosine 

kinases inhibitors PP1 and PP2 could not be used for this purpose because of the 

reversibility of their action upon removal (Wang et al., 2004; Osterhout et al., 1999). 

As shown in Figure 3B, in Ca-pYEEIE pretreated neurons, [Ca2+]i levels were not 
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altered by gp120 treatment. As expected, treatment with Ca-pYEEIE also prevented 

Tyr-1472 phosphorylation (data not shown). 

As previously observed for GluN2B-induced phosphorylation, gp120 ability to increase 

[Ca2+]i requires the presence of glia because 24 hours of treatment with 600 pM 

gp120 did not affect basal [Ca2+]i in neurons exposed alone (Figure 3C). Again, 

gp120-induced [Ca2+]i increase in neurons was prevented by 1 µg/ml IL-1ra (Figure 

3C), confirming the role of IL-1β and IL-1RI as possible mediators of gp120 action on 

the NMDA receptor. 
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FIGURE 3.Involvement of glia, IL-1β  and GluN2B subunit Tyr phosphorylation, 
and IL-1β  in gp120-induced [Ca2+]i increase in primary cultures of hippocampal 
neurons  
A. Hippocampal neurons were exposed to gp120 for 24 hours in the presence of glia with or 
without 10 mM ifenprodil. At the end of treatment, hippocampal neurons were detached 
from the glial monolayer and assayed for [Ca2+]i . Values are means ± S.E. of 9 independent 
samples and represent the [Ca2+]i levels in neurons at the end of treatment (*p<0.05 gp120 
versus control, §p<0.05 gp120 + ifenprodil versus gp120; ANOVA followed by Tukey’s test).  
B. Hippocampal neurons were loaded with Ca-pYEEIE, washed to remove extracellular Ca-
pYEEIE and then exposed to gp120 for 24 hours in the presence of glia. Values are means ± 
S.E. of 15 independent samples and represent the [Ca2+]i levels in neurons at the end of 
treatment (*p<0.05 gp120 versus control; ANOVA followed by Tukey’s test). 
C. Hippocampal neurons were exposed to gp120 for 24 hours in the presence (right) or 
absence (left) of glia. IL-1ra was added in part of the co-cultures (striped column). At the 
end of treatment, co-cultured neurons were detached from glia and assessed for [Ca2+]i. IL-
1ra did not affect [Ca2+]i levels per se ([Ca2+]i % of control: 112±9.64). Values are means 
± S.E. of 9 independent samples and represent the [[Ca2+]i levels in neurons at the end of 
treatment (*p<0.05 gp120 versus control, §p<0.05 gp120 + IL-1ra versus gp120; ANOVA 
followed by Tukey’s test).  
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4.3. DISTRIBUTION OF GluN2B SUBUNITS OF NMDAR, IL-1RI 

AND IL-1RI CORE SIGNALLING PROTEINS IN HIPPOCAMPAL 

NEURONS 

 

The ability of IL-1ra to prevent Tyr-1472 phosphorylation and NMDA receptor over-

activation induced by both recombinant and endogenous IL-1β, suggests the 

recruitment of IL-1 receptor type I (IL-1RI). 

In the immune system the binding of IL-1β to IL-1RI leads to its association with IL-

1R accessory protein (IL-1RAcP) (Korherr et al., 1997) and the myeloid 

differentiation primary response protein 88 (MyD88) (Burns et al., 1988) to form the 

core of IL-1β/IL-1RI signalling complex. However, little information is currently 

available concerning the molecular composition of the members of the IL-1RI 

complex, or the subcellular distribution and functional crosstalk with NMDARs in 

neuronal cells. 

The distribution of IL-1RI, IL-1RAcP, MyD88 and GluN2B subunit together with the 

pre- and post-synaptic markers synaptophysin and PSD-95, was thus investigated in 

different subcellular compartments purified from adult rat hippocampi by means of 

western blotting (Gardoni et al., 1998). 

Subcellular fractionation showed that IL-1RI, MyD88 and IL-1RAcP were present in 

all the tested fractions but, although IL-1RI and MyD88 were particularly enriched in 

the post-synaptic density (PSD) fraction (Figure 4), together with PSD-95 (Figure 4), 

only traces of IL-1RAcP were present in the post-synaptic Triton-insoluble fraction 

(TIF) and PSD (Figure 4). As expected, the pre-synaptic protein synaptophysin was 

present in all subcellular compartments analyzed, but not in the PSD or in the TIF-

purified fractions, whereas PSD-95 was enriched in the post-synaptic fractions (PSD 

and TIF) (Figure 4). In these same samples the partition pattern of GluN2B closely 

resembled IL-1RI being similarly distributed in the different subcellular fractions and 

enriched at the post-synapse (Figure 4). The enrichment of both GluN2B subunits of 

NMDAR and IL-1RI at TIF fraction has been confirmed in primary hippocampal 

neurons as well (data not shown). 

The distribution patterns of IL-1R complex members were also examined by confocal 
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microscopy in cultured hippocampal neurons (Figure 5); PSD-95 was used as a 

marker of post-synaptic structures. Confocal imaging showed that IL-1RI is 

distributed along dendrites and enriched in the post-synaptic compartment, as shown 

by the high degree of co-localization with PSD-95 (Figure 5, left panels, 34.3±3.7%). 

MyD88 was uniformly distributed along the neurons and moderately co-localized with 

PSD-95 (Figure 5, right panels, 15.6±2.8%). IL-1RAcP labeling was intense and 

diffuse in the somatic cytoplasm of cultured neurons, low and diffuse along the 

dendrites, and hardly co-localized with PSD-95 (Figure 5, central panels, 

4.1%±1.9%;). Overall, these data suggest that there is a different subcellular 

distribution of the members of the IL-1R complex protein in neurons, with IL-1RI 

(and, to a lesser extent, MyD88) being enriched at the post-synaptic sites together 

with the GluN2B subunit of NMDA receptor. 

  



Results 
 

	   67	  

 

 

 
FIGURE 4. Characterization of IL-1RI, IL-1RAcP, MyD88 and GluN2B subcellular 
distributions in rat hippocampi 
IL-1RI, IL-1RAcP and MyD88, and GluN2B together with markers of the pre-synaptic 
compartment (synaptophysin) and post-synaptic side (PSD-95) were analyzed in various rat 
hippocampus subcellular compartments by means of western blotting. H = homogenate; S1 
= low-speed supernatant; P1 = nuclei-associated membranes; S2 = high-speed supernatant; 
P2 = crude membrane fraction; Syn = synaptosomes; TIF = Triton- insoluble postsynaptic 
fraction; PSD = post-synaptic density. 
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FIGURE 5. Distribution of IL-1RI, IL-1RAcP and MyD88 in primary cultures of 
hippocampal neurons  
Hippocampal neurons at days in vitro 14 (DIV14) were immunolabelled for IL-1RI, IL-1RAcP 
and MyD88 (upper panels), and PSD-95 as a post-synaptic marker (middle panels). The 
bottom panels show the merged images. Scale bar: 10 µM. High-magnification images are 
shown at the top of each panel. 
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4.4. MOBILIZATION OF GluN2B SUBUNITS OF NMDAR AND IL-

1RI IN PRIMARY HIPPOCAMPAL NEURONS 

 

It is well known that the distribution and trafficking of receptors and ion channels 

along different neuronal subcellular compartments are involved in modulation of 

neuronal activity; in particular synaptic activity is strictly related to the ability of 

neuronal cells to dynamically adjust the content of receptors at the synaptic sites in 

response to various stimuli (Newpher et al., 2008; Groc et al., 2009). 

We have examined whether the recruitment of IL-1 signalling and the activation of 

NMDA system following a toxic stimulus promote the synaptic localization of GluN2B 

subunit of NMDAR and IL-1RI. 

TIF was obtained from the control and 24 hours gp120-treated neurons and protein 

levels of GluN2B and IL-1RI were measured in the homogenate and TIF. The same 

amount of proteins from homogenate and TIF was loaded on SDS-PAGE gels for 

western blotting analysis. As shown in Figure 6A, gp120 treatment significantly 

increased GluN2B immunostaining in TIF without affecting the total GluN2B protein 

level in the homogenate (**p<0.01; +47.2±8.1%, gp120 versus control expressed 

as GluN2B ratio TIF/homogenate). No alteration of both PSD-95 and αCaMKII 

immunostaining in both homogenate and TIF was observed following gp120 

treatment. 

To further confirm these data by confocal labeling, primary hippocampal neurons 

were treated for 24 hours with gp120, fixed and double-labeled for GluN2B and PSD-

95 (Figure 6B). In control neurons (Figure 6B, upper panels), GluN2B signal was of a 

greater intensity in the soma, but signals were clearly seen also in PSD-95 positive 

“spine-like” puncta as well as, in the dendritic shaft. In addition, GluN2B 

immunofluorescence in “spine-like” structures overlapped NR1 immunosignal, further 

confirming he presence of the NMDA receptor complex in the post-synaptic site (data 

not shown). 24 hours gp120 treatment produced a more pronounced GluN2B 

punctuated pattern associated with a higher co-localization degree with PSD-95 

(Figure 6B). Quantification of GluN2B relative fluorescence intensity in spine versus 

dendritic shaft (Figure 6C) revealed that gp120-treated neurons exhibited an 

increased fluorescent signal in these spine-like structures (Figure 6C, **p<0.01, 
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gp120 versus control). In addition, quantification of GluN2B punctuated staining 

revealed a significant increase of GluN2B immunoreactivity in PSD-95-positive 

dendritic spines compared with control values (Figure 6C; **p<0.01, gp120 versus 

control). Both sets of data suggest a promotion of NMDA GluN2B subunit 

redistribution to synaptic sites by gp120. 

To assess whether the effects on GluN2B localization were mediated by IL-1β, gp120 

treatments were performed in the presence of IL-1ra. Figure 6C shows that IL-1ra 

prevented gp120-induced trafficking of the NMDA receptor GluN2B subunit 

(§§p<0.01 and §p<0.05, gp120 + IL-1ra versus gp120); both GluN2B relative 

fluorescence in spines versus dendrites and GluN2B immunoreactivity in PSD-95 

positive dendritic spines were significantly reduced by IL-1ra. IL-1ra per se did not 

affect GluN2B subcellular distribution (Figure 6C) or cell survival (% of cell survival, 

control: 100±7.2; 24 hours IL-1ra: 97.4±4.45).  

We also analyzed whether the GluN2A subunit of NMDA receptor, lacking the Tyr-

1472 phosphosite was mobilized in a model of toxicity characterized by over-

production of IL-1β like that of gp120 (Figure 7A). No alteration of GluN2A 

immunostaining in TIF was observed following gp120 treatment (Figure 7A) 

suggesting a specific effect on GluN2B subunit. 

We also evaluated the IL-1RI mobilization to the synapse. The protein levels were 

measured in the homogenate and TIF by western blotting analysis (Figure 7B). The 

treatment with gp120 of hippocampal neurons in presence of glia, enriched the post-

synaptic site with IL-1RI, without affecting the total amount of IL-1RI in 

homogenate. No alteration of PSD-95 levels in both homogenate and TIF was 

observed following gp120 treatment (Figure 7B). 
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FIGURE 6. Effect of gp120 on GluN2B and IL-1RI subcellular localization 
A. Western blotting analysis performed in the homogenate (Homo) and in the TIF fraction 
obtained from control and gp120-treated hippocampal cultures. The same amount of protein 
was loaded in each lane. gp120 treatment leads to a higher GluN2B localization in the TIF 
fraction (*p<0.01; versus control; ANOVA followed by Tukey’s test) leaving unaffected 
αCaMKII and PSD-95 immunostaining in the TIF fraction. Values are means ± S.E. of 8 
independent samples and represent the GluN2B TIF/Homo ratio staining expressed as 
percentage of control neurons. 
B. Hippocampal neurons were either left untreated (control) or treated for 24 hours with 
gp120 in the presence of glia + IL-1ra, fixed, and immunolabeled for GluN2B (left panels) or 
PSD-95 (middle panels). Scale bar, 10 µm. Merge data are shown on the right. Areas of 
overlap in merge panels appear yellow. 12 neurons for each experimental condition were 
analyzed.  
C. Quantification of the confocal experiments. gp120 administration results in a redistribution 
of GluN2B into spine-like clusters; IL-1ra treatment interferes with gp120-mediated GluN2B 
trafficking toward spines. The ratio of spines to dendrites fluorescence was computed and 
averaged (**p<0.01, gp120 versus control; §§p <0.01, gp120 + IL-1ra versus gp120). 
Gp120 treatment also causes a significant increase in the percentage of GluN2B clusters of 
the total number of PSD-95-positive spines compared with control values (**p<0.01, gp120 
versus control; §p<0.01, gp120 + IL1ra versus gp120) (ANOVA followed by Tukey’s test).  
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FIGURE 7. Effect of gp120 on IL-1RI and GluN2A subcellular localization 
A. Western blot analysis performed in the Homo and in the TIF fraction obtained from 
control and gp120-treated hippocampal cultures. The same amount of protein was loaded in 
each lane. gp120 treatment leads to a higher IL-1RI localization in the TIF fraction leaving 
unaffected PSD-95 immunostaining in the TIF fraction.  
B. Western blotting analysis performed in the TIF fraction obtained from control and gp120-
treated hippocampal cultures. The same amount of protein was loaded in each lane. gp120 
treatment does not affect GluN2A, PSD-95, and αCaMKII localization in the TIF fraction. 
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4.5. TREATMENTS WITH IL-1β AND NMDA INDUCE IL-1RI, BUT 

NOT IL-1RACP AND MYD88, SYNAPTIC LOCALIZATION 

 

The model adopted using gp120 to study the relationship existing between IL-1RI 

and NMDAR underlies a central role of both IL-1β and NMDA signalling in the 

observed effects. We thus investigated whether IL-1β and NMDA stimulation 

contribute to the re-distribution of IL-1RI complex members in different neuronal 

compartments. 

Primary hippocampal neurons were treated with IL-1β 0.05 ng/ml for 30 min, a 

concentration also known to enhance NMDAR activity (Viviani et al, 2003). A 

modified fractionation method was performed to obtain a TIF postsynaptic 

compartment from hippocampal primary neurons instead of tissues and the presence 

of IL-1RI was evaluated together with IL-1RAcP and MyD88 in this subcellular 

fraction by western blotting analysis. As shown in Figure 8A, treatment of primary 

hippocampal neurons with IL-1β significantly increased the amount of IL-1RI in the 

TIF fraction (Figure 8A, *p<0.05, IL-1β versus control) without affecting the synaptic 

distribution of both IL-1RAcP and MyD88 (Figure 8A). IL-1RI enrichment at synapses 

following IL-1β treatment was also confirmed by confocal microscopy (Figure 8B), 

which shows an increased co-localization of IL-1RI with PSD-95 (**p<0.01, IL-1β 

versus control). 

Subcellular localization experiments have been performed also in primary 

hippocampal neurons triggered with NMDA 50 µM for 10 min in ACSF buffer after 

which the cells were washed and incubated for further 20 min in ACSF buffer. NMDA 

significantly enriched hippocampal TIF with IL-1RI (Figure 9A, *p<0.05, NMDA 

versus control), without changing the synaptic abundance of both IL-1RAcP and 

MyD88 (Figure 11A). Again confocal microscopy (Figure 9B) shows an increased co-

localization of IL-1RI with PSD-95 following NMDA treatment (*p<0.05, NMDA versus 

control), thus confirming IL1RI enrichment at the post-synapses. 

The increase in IL-1RI receptors at the post-synaptic site may be due to new 

synthesis and delivery and insertion of receptors from the endoplasmic reticulum to 

post-synaptic membrane, or to lateral diffusion from adjacent compartments 
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(Newpher et al., 2008; Groc et al., 2009), and this was addressed by carrying out 

surface expression assays using the non-cleavable, membrane-impermeable cross-

linking agent BS3 (Mauceri et al., 2004). 

Primary hippocampal neurons were treated with IL-1β 0.05 ng/ml or NMDA 50 µM 

and then exposed to BS3, to link all the proteins of plasma membrane; then they are 

lysed and blotted to check only the intracellular amount of IL-1RI. 

The intracellular amount of IL-1RI was reduced by NMDA but not by IL-1β (Figure 

10, *p<0.05, NMDA versus control).  
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FIGURE 8. Effect of IL-1β  on IL-1RI subcellular localization 
A. Western blotting analysis of the TIF fraction obtained from control, IL-1β-treated (0.05 
ng/ml). The same amount of proteins was loaded in each lane. IL-1β increases IL-1RI 
localization in the Triton-insoluble fraction (TIF) (*p<0.05, IL-1β versus control; ANOVA 
followed by Tukey’s test) leaving unaffected IL-1RAcP and MyD88 levels. Values are means 
± S.E of 4 independent experiments.  
B. Hippocampal neurons were either left untreated (control) or treated with IL-1β (0.05 
ng/ml, 30 minutes) fixed, and immunolabeled for IL-1RI (green) and PSD-95 (red) as a 
postsynaptic marker. Data are expressed as percentage of IL-1RI co-localization with PSD-95 
(AIM4.2 software, Zeiss) (**p<0.01, IL-1β versus control; ANOVA followed by Tukey’s test). 
White arrows indicate PSD-95 positive clusters in the merge panel. Scale bar: 5 µM. 
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FIGURE 9. Effect of NMDA on IL-1RI subcellular localization 
A. Western blotting analysis of the TIF fraction obtained from control, NMDA-treated (50 
µM). The same amount of proteins was loaded in each lane. NMDA increases IL-1RI 
localization in the Triton-insoluble fraction (TIF) (*p<0.05, NMDA versus control; ANOVA 
followed by Tukey’s test) leaving unaffected IL-1RAcP and MyD88 levels. Values are means 
± S.E of 4 independent experiments.  
B. Hippocampal neurons were either left untreated (control) or treated with NMDA (50 mM) 
fixed, and immunolabeled for IL-1RI (green) and PSD-95 (red) as a postsynaptic marker. 
Data are expressed as percentage of IL-1RI co-localization with PSD-95 (AIM4.2 software, 
Zeiss). (**p<0.01, NMDA versus control; ANOVA followed by Tukey’s test). White arrows 
indicate PSD-95 positive clusters in the merge panel. Scale bar: 5 µM. 
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FIGURE 10. Effect of IL-1β  and NMDA on IL-1RI subcellular localization 
Western blotting of IL-1RI from control, IL-1β-treated (0.05 ng/ml) and NMDA-treated (50 
µM) hippocampal cultures exposed (+BS3 lanes) or not (-BS3 lanes) to the cross-linking 
agent BS3 (*p<0.05, NMDA versus control; ANOVA followed by Tukey’s test). IL-1RI high-
molecular-weight complexes that didn’t enter the gel are not shown. 
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4.6. INTERACTION BETWEEN IL-1RI AND GluN2B SUBUNIT OF 

NMDA RECEPTOR  

 

The enrichment of both IL-1RI and GluN2B at the post-synaptic sites induce us to 

verify if these two proteins could directly interact. To prove this hypothesis, we 

performed co-immunoprecipitation experiments between components of the IL-1RI 

complex and NMDA receptor, as well as AMPA receptor to assess the specificity of 

interaction. 

Protein homogenates (200 µg) from rat hippocampi were immunoprecipitated 

(Gardoni et al., 2001) with antibodies specific for IL-1RI, for the GluA1 subunit of 

AMPA receptors, or for the GluN2B subunit of the NMDA receptor. Each sample was 

then evaluated for the presence of: i) IL-1RI, IL-1RAcP and MyD88; ii) the GluN2B 

subunit and iii) PSD-95. Figure 11A shows that, in hippocampal lysates, IL-1RI not 

only co-precipitated with IL-1RAcP and MyD88, but also with GluNRB. In line with 

this, GluN2B co-precipitated with IL-1RI, thus confirming the association between 

these components (Figure 11A, right lane). Finally, none of the members of the IL-

1R complex was detectable in the immunocomplex of the GluA1 subunit of AMPA 

receptors (Figure 11A). 

The association between IL-1RI and GluN2B was confirmed by a pull-down assay 

based on a fusion protein of the cytoplasmic domain of IL-1RI with GST (GST-IL-

1Rcd) (Figure 11B), which contained the C-terminal 369-569 aa domain of IL-1RI. As 

a positive control, we used a GST-PSD-95 (PDZ1-2) fusion protein that has been 

previously shown to bind the GluN2B subunit of NMDA receptors (Gardoni et al., 

2001). Lysates from rat hippocampal neurons were applied to affinity beads and 

extensively washed, after which the bound material was resolved by SDS-PAGE and 

underwent immunoblotting analysis using an antibody raised against GluN2B. Figure 

11B shows that both IL-1Rcd and PSD-95 (PDZ1-2) associated with the GluN2B 

subunit, thus confirming a specific association between IL-1RI and GluN2B. 

We also tested whether IL-1β and/or NMDA modulated the interaction between IL-

1RI and the GluN2B subunit of the NMDA receptor (Figure 12). IL-1RI was 

immunoprecipitated from total lysates of primary hippocampal neurons treated or not 

with NMDA, 50 µM, or IL-1β, 0.05 ng/ml, and assayed for GluN2B by means of 
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western blotting (Figure 12). The results show that only NMDA significantly increased 

the interaction between IL-1RI and GluN2B (Figure 12, *p< 0.05, NMDA versus 

control). 
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FIGURE 11. Interaction between IL-1RI and the GluN2B subunit of NMDA 
receptors 
A. Total homogenate was immunoprecipitated (i.p.) with antibodies against IL-1RI, GluA1 or 
GluN2B, and the presence of GluN2B, IL-1RI, PSD-95, IL-1RAcP and MyD88 in the 
immunocomplex was evaluated by means of western blotting. IL-1RI, IL-1RAcP and MyD88 
co-precipitated with GluN2B but not with GluA1. (*) Nonspecific bands were detected in the 
No IgG lane.  
B. GST-IL-1R(CD) and GST-PSD-95(PDZ1-2) fusion proteins, and GST alone were incubated 
in a pull-down assay with total homogenate from rat hippocampus. The western blotting 
analysis was performed using the GluN2B antibody.  
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FIGURE 12. Effect of NMDA on interaction between IL-1RI and the GluN2B 
Hippocampal cultures were exposed in the absence or the presence of IL-1β  (30 minutes, 
0.05 ng/ml) or NMDA (10 minutes, 50 µM). Neuronal lysates were immunoprecipitated with 
anti-IL-1RI, and the presence of GluN2B and IL-1RI in the immunocomplex was evaluated by 
means of western blotting. Treatment with NMDA but not with IL-1β  led to a significant 
increase in the IL-1β/GluN2B complex (*p<0.05, NMDA versus control; ANOVA followed by 
Tukey’s test). 
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4.7. EFFECT THE IL-1β/IL-1RI/NMDAR CROSS TALK ON PSD-95 

POSITIVE CLUSTERS AND NEURONAL DEATH 

 

This set of results shows that the recruitment of the cross talk between IL-1β/IL-

1RI/NMDAR contributes to alter the post-synaptic organization We then evaluated 

the biological role of this event monitoring the spine density and finally neuronal 

death. 

Under our experimental conditions, no effect on PSD-95 positive clusters was 

observed after 24 hours of gp120 treatment (PSD-95 clusters/50 µm, controls: 

27±3.2; gp120 600 pM: 25±5,n=12). On the other hand, 48 hours of gp120 

treatment produced a significant reduction of total PSD-95 clusters (Figure 13, A and 

B; from 24.9±4.56 to 16.5±3.28 protrusions per 50 <µm dendrite length; *p<0.05 

versus control) suggesting the occurrence of spine loss at this time point. Differently, 

dendrites appear generally undamaged, as evidenced by co-staining with α-tubulin 

used in all experiments to check for normal dendritic branching following gp120 

treatment (Figure 13A). Loss of PSD-95 clusters was counteracted in neurons loaded 

with IL-1ra (Figure 13, A/B, §<p 0.05 versus gp120). To further strengthen this data 

and quantify the effective neuronal damage, we monitored gp120-induced cell death 

in hippocampal neurons. No significant neuronal death was found after 6 and 24 

hours of gp120 treatment (respectively, 99.6±2.49 and 91.6±5.12% of cell survival). 

On the other hand, 48 and 72 hours gp120 treatment resulted, respectively, in about 

20% (p<0.01 versus control) and 30% (**p<0.01 versus control) of neuronal death 

(Figure 13C). IL-1ra 1 µg/ml prevented gp120-induced neuronal death (72 hours, 

Figure 13C; §§, p<0.01 versus gp120). 
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FGURE 13. Loss of PSD-95 positive clusters and neuronal death after gp120 
treatment: modulation by Ca-pYEEIE and IL-1ra 
A. Hippocampal neurons were either left untreated (control) or treated for 48 hours with 
gp120 in the presence of glia, fixed, and immunolabeled for β-tubulin (left panels) or PSD-95 
(middle panels). Merge data are shown on the right. Areas of overlap in merge panels 
appear yellow.  
B. Number of PSD-95-positive clusters per 50 mm of dendrite length in neurons, loaded or 
not with IL-1ra, after 48 hours of treatment with gp120 in the presence of glia (*p<0.05 
versus control; §p<0.05 versus gp120). 
C. Hippocampal neurons were loaded with IL-1ra and then exposed to gp120 in the presence 
of glia for 72 hours. MTT test was performed to assay cell viability. gp120-induced cell death 
was prevented by and IL-1ra. Values are means ± S.E. of 2 independent experiments in 
triplicate, **p<0.01 versus control; §§p <0.01 versus gp120). 
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4.8. IS IL-1β AND NMDAR FUNCTIONAL INTERACTION 

RELEVANT IN VIVO? THE MODEL OF EARLY LIFE STRESS  

	  

Recently it has been demonstrated that neuroinflammation experienced during early 

life can change immunoreactivity in the brain for the remainder of the lifespan and 

seems to play a fundamental role in promoting susceptibility to central nervous 

system dysfunctions from poor cognition to frank disabilities like depression and 

schizophrenia (Bilbo et al., 2009; Meyer et al., 2011). These observations give rise to 

the so called “immune origins of neurodevelopmental disorders hypothesis” (Meyer 

et al., 2011), whose molecular mechanisms remain almost as much a mystery. 

Fundamental in this process is the production of cytokines and among these IL-1β 

(Bilbo et al., 2009). Due to the relevance of both IL-1β and NMDA pathway in the 

cognition (Bilbo et al., 2009; McAfoose and Baune, 2008) we evaluated the 

relationship between IL-1RI and NMDAR in a model of maternal deprivation, thanks 

to our collaboration with Prof Maria Paz Viveros (Departamento de Fisiologia, 

Facultad de Biologia, Universidad Complutense, Madrid, Spain). The laboratory of 

Prof Maria Paz Viveros performed a single prolonged episode (24 hours) of maternal 

deprivation (MD) during the neonatal period at post-natal day 9 (PND9) of rats and 

then we evaluated the long-lasting modifications induced by maternal deprivation at 

PND45 examining the key events of IL-1β/NMDAR crosstalk, as studied in our in vitro 

models. In view of the abundant sex differences that have been found in this MD 

model (Viveros et al., 2009) the possible existence of sexual dimorphisms was also 

investigated throughout the study, the analyses have been performed both in male 

and in female rats. 

The phosphorylation at Tyr-1472 of GluN2B subunit of NMDAR was assessed with a 

specific antibody in homogenate of hippocampus of control and MD rats; 24 hours of 

maternal deprivation at PND9 significantly increases the phosphorylation at Tyr-1472 

of GluN2B evaluated at PND45 in male rats (Figure 15A, control: 100±12; MD: 

137±16; *p<0.05, MD versus control). No changes in Tyr-1472 of GluN2B subunits 

has been found in homogenate of hippocampus of female rats following MD (control: 

100±11.1; MD: 98±13.2). 
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To examine the role of MD in promoting the synaptic localization of IL-1RI, TIFs were 

obtained from hippocampi of control and MD rats, the protein levels were measured 

by western blotting analysis. 24 hours of MD significantly increased IL-1RI 

immunostaining in TIF without affecting the total IL-1R protein level in the 

homogenate of male rats (Figure 15B, control: 100±3.87; MD: 124±6.2; **p<0.01; 

MD versus control). There are no differences in the amount of IL-1RI at post-

synaptic sites in control and MD female rats. (control: 100±4.39; 90.54±3.67).  

We have previously demonstrated that IL-1RI enriched at the synapse of primary 

hippocampal neurons, can bind to the GluN2B subunit of the NMDAR. To assess a 

possible modulation of the interaction between IL-1RI and NMDAR at the synapse by 

MD, proteins of TIFs fraction from control and MD hippocampi were 

immunoprecipitated with an antibody against GluN2B and the presence of IL-1RI in 

the immunocomplex was evaluated by western blotting. As shown in Figure 15C, IL-

1RI co-precipitates with GluN2B in all TIFs but maternal deprivation significantly 

increases the amount of IL-1RI associated to GluN2B in male rats (Figure 15C, 

control: 100±14; MD: 249±41, **p<0.01; MD versus control). The interaction didn’t 

change in female rats after MD (control: 100±19.8; MD: 121±10.37). 

These results provide a preliminary indication that early stress life modulates (i) 

GluN2B subunit phosphorylation, at a site relevant for NMDAR over activation 

induced by IL-1β, (ii) the trafficking of IL-1RI and (iii) its interaction with GluN2B 

subunits. 

 

 

  



Results 
 

	   87	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Effect of MD on Tyr-1472 phosphorylation of GluN2B, IL-1RI 
localization and its interaction with GluN2B. 
A. Representative western blotting and quantification of GluN2B-Tyr-1472 phosphorylation 
performed in the hippocampus homogenate of control and MD male rats. Values are mean ± 
S.E. of 6 independent sample for each experimental group (*p<0.05 MD versus control; 
ANOVA followed by Tukey’s test).  
B. IL-1RI western blotting analysis of the TIF fraction obtained from control and MD male 
rats hippocampi. Values are mean ± S.E. of 6 independent sample for each experimental 
group (**p<0.01 MD versus control; ANOVA followed by Tukey’s test).  
C. TIFs obtained from control and MD male rats hippocampi were immunoprecipitated with 
anti-GluN2B, and the presence of GluN2B and IL-1RI in the immunocomplex was evaluated 
by means of western blotting. Values are mean ± S.E. of 6 independent sample for each 
experimental grou (**p<0.01 MD versus control; ANOVA followed by Tukey’s te 
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The main outcome of this work is the characterization, from a molecular and 

structural point of view, of the bidirectional interplay between IL-1β/IL-1RI signalling 

and the NMDA receptor. We demonstrated that, in primary hippocampal neurons 

endogenous IL-1β released by activated glia potentiates the functions of NMDAR, 

and increases the synaptic localization of both NMDAR and IL-1RI; NMDA activation 

increases the amount of IL-1RI into the membrane where it specifically interacts 

with GluN2B subunits of NMDAR. Thus, the recruitment of this cross talk results in 

an altered organization of the synapse. This event occurs both in vitro and in vivo, in 

a model of maternal deprivation. 

We have previously reported the existence of a functional interaction between IL-1β 

and NMDAR. In primary hippocampal neurons recombinant IL-1β induces the 

activation of Src family kinases and subsequent the phosphorylation at Tyr-1472 of 

GluN2B subunit of NMDAR (Viviani et al., 2003). The activation of this pathway 

potentiates NMDA-induced intracellular Ca2+ increase and also exacerbates NMDA-

induced neuronal death (Viviani et al., 2003). These results suggest that 

hippocampal neurons exposed to IL-1β are more susceptible to glutamatergic 

excitation through the NMDA receptor component. The data also support previous in 

vivo evidences suggesting that this cytokine is a pathological mediator of 

pathological condition that depend primarily on NMDAR function (Yamasaki et al., 

1995; Loddick and Rothwell, 1996, Meyer, 2011; Bilbo et al., 2009). As such, a 

better understanding of the molecular mechanisms that underlie the action of this 

cytokine within the CNS might facilitate the development of promising therapeutics 

in the field of CNS disorders. 

We therefore continued our studies to evaluate whether IL-1β/NMDAR cross talk 

could have also been recruited by an endogenous modulation. To this purpose we 

used in an in vitro model of neurotoxicity characterized by endogenous production of 

IL-1β and over-activation of glutamatergic system and deregulation of intraneural 

calcium level,. A sandwich co-culture of primary hippocampal neurons and glia cells 

were exposed to gp120, an envelope glycoprotein of HIV virus. Gp120 stimulation 

induces glia activation, release of pro-inflammatory cytokines (among these IL-1β), 

and alteration of glutamate homeostasis (Kaul et al., 2001); all these events have a 

relevant impact on functions and survival of neuronal cells. The first set of 
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experiments shows that IL-1β, released by activated glia after gp120 exposure, 

increases tyrosine phosphorylation of NMDA receptor GluN2B subunit in rat 

hippocampal neurons. Previous results obtained in our laboratory have shown that 

recombinant IL-1β induced Tyr-1472 phosphorylation of the GluN2B subunit of the 

NMDAR occurs through the activation of Src kinases (Viviani et al., 2003). In 

accordance, we observed that Ca-pYEEIE, an inhibitor for Src family SH2 domains 

(Takasu et al., 2002), prevents the effects induced by endogenous IL-1β. In 

particular, Ca-pYEEIE was loaded only in neurons, prior to the exposure to gp120 in 

the presence of glia. This experimental approach allows us to act on neurons 

without interfering with Src family signalling transduction in glia, strengthening our 

results.  

The activation of this pathway leads to a sustained elevation of intracellular calcium 

[Ca2+]i in neurons and the stabilization of the NMDAR GluN2B subunit at the synaptic 

sites. The elevation of [Ca2+]i in neurons occurs through the GluN2B subunit, in fact 

ifenprodil, a blocker that selectively binds to this subunit, inhibited this effect. 

Both tyr-phosphorylation of NMDA receptor and neuronal [Ca2+]i increase are 

prevented by the IL-1 receptor antagonist (IL-1ra) and requires the presence of glia, 

since the effects are not evident when neurons are exposed to gp120 alone. These 

results underline the relevance of endogenously produced IL-1β and the recruitment 

of IL-1RI. 

Electrophysiological recordings from neurons show that NMDA currents are governed 

by a balance between tyrosine phosphorylation and dephosphorylation (Kalia et al., 

2004). Whether phosphorylation causes the increase in NMDA receptor gating still 

remains unclear (Salter and Kalia, 2004). On the other hand, tyrosine 

phosphorylation of GluN2 subunits might also prevent the removal of signalling 

molecules from the NMDAR complex by protecting the subunits against degradation 

from the calcium-activated protease, calpain (Rong et al., 2001). Furthermore, 

studies on recombinant NMDA receptors indicate that their association with the 

clathrin-mediated endocytosis machinery, a complex of proteins involved in the 

removal of receptors from the cell surface, is regulated by Src-mediated tyrosine 

phosphorylation of NMDAR subunits (Vissel et al., 2001; Roche et al., 2001). The 

GluN2B Tyr-1472 consensus domain is part of the internalization signal motif, a 
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binding domain for the adaptor protein complex AP2, which associates with 

endocytic clathrin-coated vesicles. In addition, Src family tyrosine kinases have been 

shown to interact with NMDA receptors by binding to the scaffolding protein PSD-95 

(Kalia and Salter, 2003). This interaction is strictly correlated to tyrosine 

phosphorylation of the NMDA receptors subunits (Rong et al., 2001; Collingridge et 

al., 2003). Finally, recent results show that stabilization of GluN2B-containing 

receptors at the synapse is dynamically regulated by binding to a PDZ protein such 

as PSD-95 and internalization through an interaction with AP-2 (Prybylowski, et al., 

2005). With this view, GluN2B-PDZ protein interaction may keep Tyr-1472 

phosphorylated, and consequently unable to interact with AP-2 (Prybylowski, et al., 

2005). The final result of this event is an increased localization of GluN2B within the 

postsynaptic compartment, probably through prevention of degradation of GluN2B-

containing synaptic receptors (Collingridge et al., 2004). Alternatively, tyrosine 

phosphorylation of GluN2 subunits could be involved in the trafficking of NMDA 

receptors to the cell surface (Dunah et al., 2004). Our results suggest that all these 

mechanisms may be recruited by endogenous IL-1β, since IL-1β increases the 

enrichment of GluN2B subunit in spine.  

IL-1β, released by glia, enhances the presence of GluN2B subunit at the post-

synaptic membrane but not of the GluN2A, this result indicates that the effect of this 

cytokine on NMDAR is subunit specific. 

The ability of IL-1ra to prevent Tyr-1472 phosphorylation and NMDAR over-

activation induced by both recombinant (Viviani et al., 2003) and endogenous IL-1β, 

as observed in this thesis, suggests the recruitment of IL-1 receptor type I (IL-1RI). 

IL-1RI, together with its accessory protein IL-1RAcP and MyD88, is well 

characterized in peripheral cells of natural immunity (Xiaoxia and Jinzhong, 2005). 

However, little information is currently available concerning the molecular 

composition of the members of the IL-1R complex, or their subcellular distribution 

and functional cross talk with NMDARs in neuronal cells (Viviani et al., 2007; Brikos 

et al., 2007; Tsakiri et al., 2008). This is a major gap in our knowledge of the 

pathological mechanisms involving IL-1β/IL-1RI in neurons that may be relevant to 

therapeutic interventions in the central nervous system (CNS). We studied the 

molecular composition and the distribution among different subcellular 
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compartments of the members of IL-1 signalling in the central nervous system. We 

observed that IL-1RI and its core signalling complex are differently localized in 

hippocampal neurons. The receptor is particularly enriched in the post-synapses 

sites, MyD88 shows a more spread distribution in different neuronal compartments, 

even if nicely expressed at synaptic sites, while IL-1RAcP results to be only barely 

detectable at synapses compared to cell soma and dendrites.  

Most important, the distributions pattern of GluN2B subunit and IL-1RI are closely 

similar, also GluN2B subunit is enriched at the post-synaptic sites.  

This observation leads us to hypothesize that IL-1RI could directly interact with the 

GluN2B subunit of NMDAR. To prove this hypothesis, we performed co-

immunoprecipitation experiments between components of the IL-1RI complex and 

NMDA receptor, as well as AMPA receptor to assess the specificity of interaction. IL-

1RI, and its accessory proteins, interacts with GluN2B subunits of NMDAR but not 

with GluA1 subunits of AMPAR, indicating that there is a direct and specific 

interaction between the GluN2B subunit of the NMDA receptor and IL-1RI. 

It is well known that the localization of synaptic NMDA receptor and its interaction 

with scaffolding and signalling proteins are not static, but change dynamically in 

response to different type of stimuli (Collin and Zukin, 2007). Starting from the 

observation that IL-1RI specifically interact with GluN2B subunit at the synapse and 

that IL-1β enriches GluN2B at this site, we hypothesize that also IL-1RI could be 

mobilized between different subcellular compartments. Thus, we focus our attention 

on the modulation of IL-1RI complex trafficking and its interaction with GluN2B 

subunit in response to different stimuli. Given the relationship between IL-1RI and 

NMDAR, we investigated whether IL-1β and NMDA stimulations contribute to the re-

distribution of IL-1RI complex members in different neuronal compartments and 

modulate their interaction. 

Both the treatments with IL-1β and NMDA induce an enrichment of IL-1RI at the 

post-synaptic sites, but none of above considered stimuli, alters the synaptic 

distribution of IL-1RAcP and MYD88. Although this effect, only NMDA significantly 

increased the interaction between IL-1RI and GluN2B. 

The increase of IL-1RI receptors at the postsynaptic site, driven by IL-1β and NMDA, 

can be due to new synthesis and delivery of receptors from the endoplasmic 
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reticulum or to lateral diffusion from adjacent compartments (Perez-Otano and 

Ehlers, 2004; Newpher and Ehlers, 2008). We used the crosslinker BS3 allows to 

discriminate which mechanism is involved. The reduction in intracellular IL-1RI after 

NMDA exposure, together with its increase in the synaptic fraction, suggests that 

NMDAR activation favours the membrane insertion of new IL-1RI. Alternatively, the 

increase in IL-1RI in the synaptic membrane may be attributable to stabilization of 

the complex with NMDAR (within the core of the PSD), which could prevent lateral 

movement and/or endocytosis. In either case, a new pool of receptors would be 

made available. On the contrary, IL-1β possibly enriches IL-1RI at post-synaptic 

sites, promoting its lateral translocation (i.e. membrane diffusion) from extra-

synaptic sites; however, this probably does not occur within the core microdomain of 

the PSD, as suggested by the unchanged levels of IL-1RI associated with the 

NMDAR complex. 

IL-1β modulates NMDAR functions and receptors trafficking, inducing an enrichment 

of the post-synaptic membrane with both NMDAR and IL-1RI. NMDA as well 

contributes to these events, furthermore NMDA enhances the interaction between 

IL-1RI and GluN2B subunit of NMDAR. This suggests a new molecular mechanism by 

means of which IL-1β system and NMDA system may contribute to an alteration of 

the synaptic organization. 

The stimulation of NMDA and IL-1 receptors might thus concur to create a post-

synaptic microdomain where the interaction between these two receptors are 

facilitated. The biological consequences of these events could be the loss of spine 

density and the exacerbation of neuronal death. In fact, endogenous IL-1β released 

by activated glia, in concomitance with a glutamatergic stimulation, reduces 

neuronal survival, the effect is prevented by IL-1ra. In particular, in our model of 

gp120 we observed a very slow progression towards degeneration. This allowed us 

to monitor its development. We observed that neuronal death was preceded by a 

reduction of the number of the spine without affecting dendrites morphology. This 

event seems to be the first signal of neuronal demise, since no signal of concomitant 

dendritic damage was evident. Again all these events are prevented by IL-1ra 

suggesting the pivotal role of IL-1β and the activation of IL-1RI. All these results 

open us the possibility that the alteration of the synaptic setting driven by IL-1β 
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system and NMDA system could represent the first event to induce reduction of the 

number of spines or alternatively could also explain the alteration of synaptic activity 

and plasticity, and neuronal decline. This hypothesis has to be furtherly evaluated in 

the future. 

In the second part of this study we have evaluate whether the crosstalk between IL-

1RI/NMDAR could has been recruited also in vivo. To this purpose we use an animal 

model of early life stress. It has been performed a long-time (24 hours) event of 

maternal deprivation (MD) during at post-natal day 9 (PND9) of rats and then the 

long-lasting modifications induced by maternal deprivation were evaluated at PND45 

considering significant parameters involved in IL-1β/IL-1RI/NMDAR cross talk. In this 

model the alterations of cognitive and behavioural functions observed in adulthood is 

due to a stress-induced modification of immune response and alteration of 

glutamatergic system. This implicates that in this model the relation between IL-β 

signalling and NMDAR system could be involved in the alteration of behavioural and 

cognitive functions. 

MD at PND9 significantly modulates three key events of IL-1β/IL-1RI/NMDAR 

connection; MD increases the phosphorylation at Tyr-1472 of the GluN2B, increase 

the levels of IL-1RI at the synapse and the amount of IL-1RI associated to GluN2B. 

This modulation still evident at PND45, specifically in the hippocampus, while no 

variation occurs at the prefrontal cortex. Thus, an early life stress induces a long-

lasting modifications in synaptic setting by altering IL-1RI/NMDAR interaction. These 

final results reveal that the dynamic and functional interaction between IL-1RI and 

NMDAR is enduringly modulated early in life. 

In this model, Viveros et al. (Llorente et al 2009; 2008) evidenced sex-dependent 

alterations in developing hippocampal neurons and glial cells in MD neonatal rats, 

with males being more markedly affected. Accordingly, IL-1RI/NMDAR functional 

and dynamical interactions occur only in males.  

The enrichment of IL-1RI at the synapse of hippocampal neurons may contribute to 

prime the neuronal synapse to the action of IL-1β and could provide a molecular 

basis on the critical role for the immune system in early life programming of later in 

life brain functions and behaviour 
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