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Abstract

Photonic entanglement sources are nowadays of central interest in the scien-
tific landscape for their demonstrated applications in quantum information,
computation and communication. Required features for a real implementa-
tion are obviously high brigthness and purity, but also a precise control of
decoherence processes during propagation and the use of many degrees of
freedom to enhance the amount of information carried.

We developed a new photonic entangled source based on parametric
down-conversion within two type-I crystals in a non collinear configuration.
A first peculiarity of such source is the very broad angular and spectral
distribution exploited. In this way we obtained high brightness even using
low pump power. A second peculiarity is the coupling of the source with a
Spatial Light Modulator (SLM) allowing the compensation of intrinsic phase
term which naturally reduces the state purity till about 0.5. Coupling 10
mrad on both channel, we obtained a purity of about 0.97 with a spectrum
of 10 nm, and a purity around 0.90 with more than 60 nm.

Starting from such purified source we also realized multi-qubit cluster
states exploiting the angular degree of freedom (d.o.f.) of the photons.
Here the SLM acts as a C-phase gate entangling polarization and momen-
tum qubits. Furthermore we exploited signal-idler angular correlation to
demonstrate the ghost imaging of a pure phase object and we realized a
new cryptographic protocol based on non-local phase objects superposition.

Our source has also paved the way in simulating system-environment
interaction since the SLM allows precise decoherence control. We observed
different dynamics of the system entanglement (polarization d.o.f.) modu-
lating the environment spectrum (angular distribution). Then studying the
trace distance evolution we demonstrated initial system-environment corre-
lation.
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Introduction

The behavior of nature is amazing and often the deep understanding of a
phenomenon is a real challenge for human brain. That’s the case of two
particles or photons, correlated by an interaction happened somewhere in
space and time and then spatially separated; they surprisingly remain linked
each other, in a way that operating on one of them one instantly influences
the twin. In other words we are dealing with particles or photons that the
physicist call entangled.

In the last century quantum entanglement has been one of the leading ac-
tor on the stage of worldwide scientific research. It was initially introduced
in 1935 by Einstein, Podolsky and Rosen (EPR) [1] to show the paradox
that a theory as quantum mechanics would allow and then named “entan-
glement”by E. Schrödinger [2]. About thirty years later J. S. Bell found
a way to test the EPR paradox [3], but only in 1972 S. J. Freedman et
al. gave the first experimental measure of Bell’s inequality [4]. A. Aspect’s
experiments confirmed the result in favor of quantum mechanics [5].

Besides these fundamental studies it has been found that entanglement
is a key resource for quantum information and communication processes
[6]. From here the interest in developing efficient sources. Freedman and
Aspect’s works used two-photon cascades in atoms as entanglement source.
Starting from the last decades more efficient photonic sources based on spon-
taneous parametric down conversion (SPDC) in non-linear crystals started
to be intensively used [7, 8], and, after the original experimental realization
of energy-time entanglement [9], polarization entanglement in a single type-
II crystal [10] and in two type-I crystals [11] has been realized. Nowadays
many sources of multiqubit entanglement have been developed too, both us-
ing multiphoton [12] or exploiting many degrees of freedom of the two pho-
tons, such as spatial momentum [13] and orbital angular momentum [14].
For these reasons SPDC recently became the objective of many studies, e.g.
about spectral and angular properties [15], spatiotemporal structure [16] or
polarization [17]. Also some quantum information applications have been
realized such as cluster states for quantum computation [18], dense coding
[19], entanglement swapping, quantum teleportation [20] and the possibility
of information transferring from one degree to an other has been demon-
strated [21]. On the other hand the research about entanglement dynamics
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in open system is the object of intense studies in the scientific community.
Many theoretical models are actually present in the literature but very few
experimental verification has been realized [22]. Recently the exploration of
different degrees of freedom of the photons opens the possibility of simulat-
ing system-environment interactions [23, 24].

During my PhD I have realized a photonic entanglement source based on
Spontaneous Parametric Down Conversion (SPDC) within two thin crystals.
The novelty of my source is twofold. On the one hand the use of large
angular and spectral distribution of the SPDC cone. This allows to obtain
high brightness using low pump power and introduces intrinsic decoherence
effects [25] one must compensate. On the other hand the coupling of the
photon source with a Spatial Light Modulator allows to modulate at will
the phase profile of the entangled beams. The use and the control of the
angular phase distributions allow new studies about the SPDC process and
pave the way for several application in quantum information.

In this manuscript I will describe our entanglement source theoretically
and experimentally and finally I will describe some quantum information
applications we have realized by using the SLM. In the first part we will
study theoretically and experimentally the features of our source; the SLM
is used both to compensate the intrinsic phase terms which reduce the purity
of the state [26], both to enlight some properties of the source. In the second
part we will present some quantum information applications we have real-
ized. First of all I will describe the realizations of multiqubit entanglement
exploiting the polarization and the linear momentum degrees of freedom
of the photons and the SLM which acts as a phase gate [27]. Then I will
describe the realization of ghost imaging and the superposition of different
phase objects acting non-locally on the two channels. Phase objects are in-
troduced arbitrarily by using the SLM. We demonstrate a proof of principle
of a new cryptographic protocol based on the switch from entanglement to
mixture by using proper pairs of phase objects [28]. Then we exploit the
linear momentum degrees of freedom such as an environment bath in which
the system (polarization degree of freedom) live, I will present the realization
of the dynamics of an open-system in the presence of different environment
[29]. With a similar setup we study initial system-environment correlation
by means of the trace distance following the proposal of A. Smirne [30]. In
these two works the SLM is used to impose linear phase shift in order to
simulate different type of dynamics.
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Part I

Entanglement source
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Chapter 1

Quantum Information
elements

In this first chapter we will give some few elements of quantum information
useful in the reading of the manuscript. In the first section we will describe
briefly what is a qubit and we introduce the concept of entanglement. Then
in sec. 1.2 we will explain how to do quantum information using quantum
optics. Subsequently in sec. 1.3 we will see how to measure the amount
of polarization entanglement in our experimental situation and in sec. 1.4
we will treat the quantum tomographic reconstruction of the density matrix
of two-qubit state in polarization in a general case. Finally in sec. 1.5 we
will explain the CHSH form for the Bell’s parameter measurement. This
parameter has historically played a crucial role, in favor of the quantum
mechanics, in the choise of the correct theoretical description of reality.

1.1 Qubit and Entanglement

The Bit (a contraction of Binary Digit) is the basic unit of information
in classical telecommunication and computing. The logical bit values are
0 and 1 and could be encoded in a physical quantity such as two distinct
voltage or current levels, two distinct levels of light intensity or directions of
magnetization or polarization, etc. A string of n bits represents, in binary,
a single number between 0 and 2n−1.

In quantum information the basic element is the Qubit (quantum bit)
which is the quantum superposition of the two bit |0〉 and |1〉 [6]; i.e.

a |0〉+ b |1〉,

where a and b are probability amplitudes and can in general be complex
numbers. Measuring this qubit in the standard basis {|0〉, |1〉}, the proba-
bility of outcome |0〉 is |a|2 and the probability of outcome |1〉 is |b|2. For

8



the normalization it holds |a|2 + |b|2 = 1. If we write a string of two equal
qubits with a = b = 1√

2
, as follow:

1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) = 1

2(|00〉+ |01〉+ |10〉+ |11〉), (1.1)

we notice that it represents a linear superposition in binary units of all the
numbers between 0 and 3 (in decimal notation). Furthermore we observe
that in such string the two qubit are independent (or separable), i.e. a
measure performed on the first qubit does not influence the second one. For
example, if we obtain |0〉 from the measure of the first qubit, then the second
remain in the superposition 1√

2
(|0〉+ |1〉) and a measure performed on it in

the standard basis gives half probability for the two outcomes |0〉 or |1〉.
Nevertheless the most important feature of quantum information is the

existence of a particular superposition of two (or more) qubit which are not
separable. It is the case of entangled states, e.g.

|ϕ〉 = 1√
2
(|00〉+ |11〉). (1.2)

Such a state could not be written like in eq. (1.1) as the tensor product
of two one-qubit states in any basis. This means that the two qubits are
correlated since a measure performed on one of them (giving for example
the outcome |0〉 with half probability) instantly influence the second qubit
which collapse in the state |0〉. Quantum entanglement occurs when particles
such as photons, electrons or molecules interact physically and then become
separated; the type of interaction is such that each resulting member of a pair
is properly described only by the same quantum mechanical description of
the total system. If entangled, one object cannot be fully described without
considering the other(s). They remain in a quantum superposition and
share a single quantum state until a measurement is made. Entanglement
is the special resource of quantum information; it allows the realization of
many quantum protocols such as teleportation, dense coding and quantum
cryptography [6]. The powerful of such protocols has been demonstrated
and in the last decades a great effort has been done toward many physical
implementations [18, 19, 20].

A tool for the representation of a quantum state is the density matrix. It
is an Hermitian, positive-semidefinite matrix of trace one useful for describ-
ing and performing calculations with a mixed state, which is a statistical
ensemble of several quantum states. If we consider a statistical ensamble
with 50% the two-qubit state |00〉 and 50% the state |11〉, we cannot use the
superposition representation but a density matrix of the form

ρmix = 1
2 |00〉〈00|+ 1

2 |11〉〈11| =
1

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , (1.3)
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in the base {|00〉, |01〉, |10〉, |11〉}. This is in contrast to a pure state, which
is a quantum system that could be completely described by a single state
vector like the two-qubit maximally entangled state |ϕ〉 in eq. (1.2). The
density matrix representation of the pure state |ϕ〉 is

ρent = |ϕ〉〈ϕ| = 1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 . (1.4)

1.2 How to do quantum information with quan-
tum optics

In classical communication with optical fibers light is the physical system
used to transport an information, and a proper amplitude modulation is
used to encode the bit 0 or 1.

In quantum optics a photon is a quantum system on which one can
encode an information exploiting many different degrees of freedom. First
of all, the polarization, i.e. the direction of oscillation of the electric field,
is a two level system often used to encode the logical qubits |0〉 and |1〉 with
the following correspondence:

|0〉 → |H〉, and

|1〉 → |V 〉;
where |H〉 and |V 〉 represent horizontal and vertical polarization. In this
notation we can define the superposition states | ± 45◦〉 = 1√

2
(|H〉 ± |V 〉)

and |R/L〉 = 1√
2
(|H〉 ± ı|V 〉).

Nonetheless the photons has many other degrees of freedom such as,
for example, the linear momentum and the orbital angular momentum. In
both these cases one can define an higher dimension alphabet (not binary)
exploiting different propagation directions or different helical shapes of the
wavefront [13, 14].

In the following we deal with polarization and linear momentum. The
latter is often indicated with the propagation direction of the photon in the
horizontal plane at a certain angle θ, (θ′) from a reference direction. We will
deal with entangled states of the following type:

|ψ〉 =
∫

dθdθ′k(θ, θ′)
[|H, θ〉|H, θ′〉+ eıΦ|V, θ〉|V, θ′〉] , (1.5)

where |P, θ〉|P ′, θ′〉 indicates a photon pair of polarization P and P ′ propa-
gating at angles θ and θ′, k(θ, θ′) indicates the amplitude probability for the
photon pairs. The integrals indicate the superposition of photonic states
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with different linear momentum θ and θ′ while the sum indicates the su-
perposition of two polarization states of the pair. The relative phase Φ is
usually a function of the interested parameters (here the angles). Often we
will integrate also over the frequencies of the photons with a similar notation.

1.3 Quantification of polarization entanglement

We consider the density matrix of a state ρ = |ψ〉〈ψ| (with |ψ〉 defined in
eq. (1.5). We obtain

ρ =
1

2




1 0 0 ε
0 0 0 0
0 0 0 0
ε∗ 0 0 1


 , (1.6)

with

ε =

∫
dθdθ′|k(θ, θ′)|2eıΦ(θ,θ′), (1.7)

and ∫
dθdθ′|k(θ, θ′)|2 = 1. (1.8)

The maximally entangled state 1√
2
(|HH〉 + |V V 〉) and the corresponding

mixture have density matrices expressed in equations (1.4) and (1.3) in the
polarization base {|HH〉, |HV 〉, |V H〉, |V V 〉}. For a general state ρ (ob-
tained for example from the state in eq. (1.5)) we have

ρ = p · ρent + (1− p) · ρmix, (1.9)

and we define p as the state purity. It is a real number and 0 ≤ p ≤ 1. This
purity is thus the amount of entanglement actually hold in the total state ρ.

A quantity universally recognized as a good entanglement measure is the
concurrence [31]. It is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (1.10)

where λi are the eigenvalues, in decreasing order, of the Hermitian matrix

R =
√√

ρρ̃
√
ρ, with ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy), σy =

(
0− ı
ı 0

)
and ρ∗ is

the complex conjugate of ρ. For the state defined in eq. (1.6) one can show
that C(ρ) = |ε|.

Consider 〈α, β|ρ|α, β〉 the projection of the total state on the polariza-
tion at angle α for the signal and β for the idler; then we can define the
quantities Max = 〈45◦, 45◦|ρ|45◦, 45◦〉 and min = 〈45◦, 135◦|ρ|45◦, 135◦〉. It
is possible to show that the relation between interferometric visibility and
the coherences ε reads

V is =
Max−min

Max+min
= R[ε]. (1.11)
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When ε is real the visibility is a good measure of entanglement since V is = C
and furthermore it equals the purity p.

1.4 Two-qubit tomography

In order to obtain full information on a quantum system we need to estimate
its density matrix. The tool we used for complete state characterization is
the quantum state tomography [32, 33].

A density matrix must has the properties of normalization, Hermiticity,
and positivity to represent a real physical state. Calling ρ a density matrix
of a physical state the three properties reads respectively:

Tr[ρ] = 1; ρ = ρ†; 〈ψ|ρ|ψ〉 ≥ 0, ∀|ψ〉; (1.12)

A density matrix for a two-qubit state is a 4×4 matrix. The first two proper-
ties limits to 15 the number of independent parameters. The normalization
of the state requires an other parameter. Totally we need to estimate 16
parameters in order to reconstruct the density matrix of a two-qubit state.
The quantum tomography of the state consists in brief in the measure of

Figure 1.1: (a) Experimental setup for the tomographic reconstruction of the
total polarization density matrix of a two-qubit state. A pair of photon are
generated by a source in an unknown polarization. A generic polarization
projector is realized using a quarter-wave plate (Q), an half-wave plate (H)
and a polarizer (P) on both channels. (b) Wave plate axes orientation, H
and V are the horitzontal and vertical in the laboratory reference frame; o
and e are the ordinary and extraordinary axes of the wave plates.

sixteen two-qubit projectors from which we obtain the sixteen elements of
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ν mode 1 mode 2 h1 q1 h2 q2

1 |H〉 |H〉 45◦ 0 45◦ 0
2 |H〉 |V 〉 45◦ 0 0 0
3 |V 〉 |V 〉 0 0 0 0
4 |V 〉 |H〉 0 0 45◦ 0
5 |R〉 |H〉 22.5◦ 0 45◦ 0
6 |R〉 |V 〉 22.5◦ 0 0 0
7 |D〉 |V 〉 −22.5◦ 45◦ 0 0
8 |D〉 |H〉 −22.5◦ 45◦ 45◦ 0
9 |D〉 |R〉 −22.5◦ 45◦ 22.5◦ 0
10 |D〉 |D〉 −22.5◦ 45◦ −22.5◦ 45◦

11 |R〉 |D〉 22.5◦ 0 −22.5◦ 45◦

12 |H〉 |D〉 45◦ 0 −22.5◦ 45◦

13 |V 〉 |D〉 0 0 −22.5◦ 45◦

14 |V 〉 |L〉 0 0 22.5◦ 90◦

15 |H〉 |L〉 45◦ 0 22.5◦ 90◦

16 |R〉 |L〉 22.5◦ 0 22.5◦ 90◦

Table 1.1: The sixteen two qutbit-projectors for the Tomographic reconstruc-
tion of the density matrix. The columns mode 1, 2 report the projectors in
the polarization basis, while the columns h1,2 and q1,2 report the angles of
the wave plates required to obtain such projectors.

the density matrix from the inversion. This is followed by a maximum like-
lihood reconstruction to obtain a density matrix ρ which is physical (i.e.,
which fulfill also the positivity properties expressed in eq. (1.12)). For a
complete treatment see [33].

1.4.1 Two-qubit projectors

We consider two-qubit in polarization and we want to estimate the density
matrix in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉}. Defining |D〉 = 1√

2
(|H〉+

|V 〉), |R〉 = 1√
2
(|H〉− ı|V 〉) and |L〉 = 1√

2
(|H〉+ ı|V 〉), the sixteen projectors

are expressed in table (1.1). In the laboratory we implement these projectors
by means of half-wave plates (H), quarter-wave plates (Q) and polarizers
(P) (see fig. (1.1(a))). Considering h(q) the angle between the fast axis
of the plates and the vertical of the laboratory (see figure (1.1(b))) and

calling |H〉 =
(

1
0

)
and |V 〉 =

(
0
1

)
, the plates introduces the following

trasformations on the polarizations:

UHWP (h) =

(
cos(2h) sin(2h)
sin(2h) −cos(2h)

)
, and (1.13)
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UQWP (q) =
1√
2

(
ı+ cos(2q) sin(2q)
sin(2q) ı− cos(2q)

)
. (1.14)

Thus the projection state for the measurement in one of the beams is given
by

|ψ(1)(h, q)〉 = UQWP (q) · UHWP (h) ·
(

0
1

)
=

= a(h, q)|H〉+ b(h, q)|V 〉, (1.15)

with

a(h, q) =
ı√
2
{sin(2h)− ı sin[2(h− q)]} (1.16)

b(h, q) = − ı√
2
{cos(2h) + ı cos[2(h− q)]}. (1.17)

The projection state for the two beams is given by

|ψ(2)(h1, q1, h2, q2)〉 = |ψ(1)(h1, q1)〉 ⊗ |ψ(1)(h2, q2)〉 =
= a(h1, q1) a(h2, q2) |HH〉+
+ a(h1, q1) b(h2, q2) |HV 〉+
+ b(h1, q1) a(h2, q2) |V H〉+
+ b(h1, q1) b(h2, q2) |V V 〉. (1.18)

Changing the angles ν = {h1ν , q1ν , h2ν , q2ν} one can project the two qubit
state ρ on a generic polarization state |ψν〉 = |ψ(2)(h1ν , q1ν , h2ν , q2ν)〉. Such
projector is |ψν〉〈ψν | and the expected number of photons detected is

nν = N〈ψν |ρ|ψν〉, (1.19)

with N a parameter depending on photon flux and detection efficiency. As
explained above we choose a set of 16 projectors (see table (1.1)) and we ob-
tain the set {nν}, with ν = 1, 2, ..., 16 which uniquely determine the density
matrix of the state from the inversion

ρ =
1

N
16∑

ν=1

Mνnν , (1.20)

where Mν are 16 matrices 4×4 allowing a compact form for the tomographic
reconstruction. The complete list can be found in the appendix B of ref.
[33]. Furthermore

N = N [ 〈HH|ρ|HH〉+ 〈HV |ρ|HV 〉+
+ 〈V H|ρ|V H〉+ 〈V V |ρ|V V 〉 ] =

=

4∑

ν=1

nν , (1.21)
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thus

ρ =

∑16
ν=1Mνnν∑4
ν=1 nν

. (1.22)

1.4.2 Maximum likelihood estimation

As mentioned above the reconstruction of density matrices by inversion can
produce results that violate important basic properties such as positivity. To
avoid this problem, the maximum likelihood estimation of density matrices
may be employed. The procedure goes as follow:

• Define a general formula for a physical density matrix with 16 param-
eters ρp({tν}), with ν = 1, 2, ..., 16;

• Introduce a ”likelihood function” which quantifies how good the den-
sity matrix ρp({tν}) is in relation to the experimental data {nν}. We
will denote this function as L({tν}; {nν}), with ν = 1, 2, ..., 16;

• Using standard numerical optimization techniques, find the optimum
set of variables {tν,opt} for which the function L({tν}; {nν}) has its
maximum value. The best estimate for the density matrix is then
ρp({tν,opt}).

Physical density matrices

Any matrix in the form T †T must be positive and Hermitian. In fact posi-
tivity reads

〈ψ|T †T |ψ〉 = 〈ψ′||ψ′〉 ≥ 0; ∀|ψ〉, (1.23)

with |ψ′〉 = T |ψ〉; while hermiticity come from definition

(T †T )† = T †(T †)† = T †T. (1.24)

To ensure normalization we divide by the trace and we obtain

T †T
Tr[T †T ]

. (1.25)

It is convenient to choose a tridiagonal form for T :

T ({tν}) =




t1 0 0 0
t5 + ıt6 t2 0 0
t11 + ıt12 t7 + ıt8 t3 0
t15 + ıt16 t13 + ıt14 t9 + ıt10 t4


 . (1.26)

Thus the general physical density matrix is given by the formula

ρp({tν}) = T †({tν})T ({tν})
Tr[T †({tν})T ({tν})] . (1.27)
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Likelihood function

The measurement data consist of a set of 16 coincidence counts {nν} whose
expected values are nν = N〈ψν |ρ|ψν〉. Let us assume that the noise on these
coincidence measurements has a Gaussian probability distribution. Thus the
probability of obtaining a set of 16 counts {n1, n2, ..., n16} is

P (n1, n1, ..., n16) =
1

Nnorm

16∏

ν=1

exp

{
−(nν − nν)

2

2σ2
ν

}
(1.28)

where σν is the standard deviation for the νth coincidence measurement
(given approximately by

√
nν for Poissonian statistics) and Nnorm is the

normalization constant. For our physical density matrix ρp the number of
counts expected for the νth measurement is

nν(t1, t2, ..., t16) = N〈ψν |ρp(t1, t2, ..., t16)|ψν〉. (1.29)

Thus the likelihood that the matrix ρp(t1, t2, ..., t16 could produce the mea-
sured data n1, n2, ..., n16 is

P (n1, n1, ..., n16) =
1

Nnorm

16∏

ν=1

exp

{
−(nν −N〈ψν |ρp(t1, t2, ..., t16)|ψν〉)2

2N〈ψν |ρp(t1, t2, ..., t16)|ψν〉
}
.

(1.30)
The likelihood function L is defined as the natural logaritm of the previous
formula with inverted sign. Thus finding the maximum for P correspond to
finding the minimum for L. The formula for the likelihood function is

L({tν}; {nν}) =
16∑

ν=1

(nν −N〈ψν |ρp(t1, t2, ..., t16)|ψν〉)2
2N〈ψν |ρp(t1, t2, ..., t16)|ψν〉 (1.31)

Numerical optimization

We used the MATHEMATICA 7.0 routine ”NMinimize” which minimizes
of the function L({tν}; {nν}) respect to the 16 parameters {t1, t2, ..., t16}
given the 16 measured value {n1, n2, ..., n16}. We used the sixteen projector
defined in table (1.1), the definition of ρp from eq. (1.27) and N =

∑4
ν=1 nν .

From the output of this routine (the parameters {t1,opt, t2,opt, ..., t16,opt}) we
reconstruct the physical density matrix using eq. (1.27).

1.5 The Bell’s parameter

The purpose is to compare quantum mechanics with a general local and real
hidden variable theory. We follow the lines suggested by Clauser, Horne,
Shimony and Holt (CHSH) paper [34].
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First of all we want to define the probability of coincidence counting
P (θs, θi), with θs,i the signal and idler polarization angles, using a real and
local hidden variable theory. Consider photon pairs as characterized by
an hidden variable λ unknown to the observer. This variable completely
determines the results of the measurements and has a distribution function
ρ(λ) (

∫
dλ ρ(λ) = 1). In such a case λ is an hidden polarization of the

photons. Calling α the signal polarizer angle we define the function A(λ, α)
which is equal to 1 when we see the photon throught signal polarizer at
angle α, and to −1 when the photon is detected with the polarizer at angle
α⊥ = α + π/2. We do the same for the idler with angle β and function
B(λ, β). The probabilities of coincidence counting with signal and idler
polarizer at angle α (α⊥) and β (β⊥) are thus

P (α, β) =

∫
dλ ρ(λ)

(
1 +A(λ, α)

2

)(
1 +B(λ, β)

2

)

P (α, β⊥) =
∫

dλ ρ(λ)

(
1 +A(λ, α)

2

)(
1−B(λ, β)

2

)

P (α⊥, β) =
∫

dλ ρ(λ)

(
1−A(λ, α)

2

)(
1 +B(λ, β)

2

)

P (α⊥, β⊥) =
∫

dλ ρ(λ)

(
1−A(λ, α)

2

)(
1−B(λ, β)

2

)
(1.32)

It is important to notice that the result is completely predetermined by the
value (unknown) of the parameter λ (reality condition) and that the value
of A(λ, α) is not correlated to the value of B(λ, β) (locality condition). We
introduce the function

E(α, β) = P (α, β) + P (α⊥, β⊥)− P (α⊥, β)− P (α, β⊥) (1.33)

From the definitions in eq. (1.32) we obtain for a real and local theory

E(α, β) =

∫
dλ ρ(λ)A(λ, α)B(λ, β) (1.34)

Then, choosing the angles a, b, a′, b′ we define the parameter S as

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′). (1.35)

From eq. (1.34) we obtain the Bell’s parameter for a real and local hidden
variable theory

S =

∫
dλ ρ(λ) s(λ, a, b, a′, b′), (1.36)

with

s(λ, a, b, a′, b′) = A(λ, a)[B(λ, b)−B(λ, b′)] +A(λ, a′)[B(λ, b) +B(λ, b′)].
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Figure 1.2: The function S(θ) calculated using quantum mechanic laws. The
limits |S| ≤ 2 are exceeded only for certain value of θ. On the left we
report the case of a maximally entangled state (purity p = 1), The maximum
occurs for θ = 22.5◦ and S(22.5◦ = 2

√
2). On the right we report the same

function for different state purity. Notice that both the maximum value and
its position depend on the purity p.

Since A and B assume only values ±1, then s(λ, a, b, a′, b′) = ±2 thus S,
which is the average of s, for any local and real theory is

|S| ≤ 2. (1.37)

This result is general and is valid for any real and local theory and does not
depend on the assumption done on the observed system.

On the other hand we want to obtain the same parameter using quantum
mechanical laws. We write the generic density matrix of a measured state
as ρexp = p ρent + (1 − p)ρmix, where p is the state purity and ρent, ρmix

are respectively the maximally entangled state and the statistical mixture
defined in sec. 1.3. Using quantum mechanics the coincidence probability
with polarizers at angles α and β is

P (α, β) =〈α|〈β|ρexp|α〉|β〉 =
= cos2α cos2β + sin2α sin2β + 2 p cosα cosβ sinα sinβ. (1.38)

Using the same definition given above in eq. (1.33) and eq. (1.35) and
choosing the angles a = 0, b = θ, a′ = 2θ, b′ = 3θ, we obtain the quantum
mechanical S(θ) parameter. The result is depicted in figure. (1.2). We can
see that the maximum value of S(θ) depends on the state purity. For a
maximally entangled state (p = 1) we have S(22.5◦) = 2

√
2 ' 2.828 which

is larger than 2. The Bell parameter S thus allows to discriminate between
a real local theory and quantum mechanics. Notice that also the value of θ
for which the maximum occur depend on the state purity p.
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Chapter 2

Generation of entangled
states

In this chapter we will explain the theory behind our experimental gen-
eration of entangled state. As we have seen above entanglement occurs
when two particle interact somewhere and then become separated. In our
source the interaction occurs within nonlinear crystals, thus, in order to
give a complete mathematical description of the generated state, we need to
better understand the propagation of light in a birefringent media (section
2.1). In fact a non-linear material is always birefringent, i.e. the media owns
more than one indexes of refraction. Then, in section 2.2 we will explain the
Spontaneous Parametric Down Conversion (SPDC): the basic physical phe-
nomena we exploit in the laboratory for photon pairs generation. We will
derive the functions which model photon distribution and correlation. Then
using a couple of such crystals we generate entangled state in polarization.
In section 2.3 we will see how to write the total entangled state and finally,
in sec. 2.3.1, we will derive the relative phase term between horizontally and
vertically polarized pairs and we calculate an expansion of such phase.

2.1 Wave propagation in a birefringent media

In this first section we will derive from Maxwell’s equations the general laws
to calculate the eigen-idexes of refraction and the eigen-polarizations of a
certain crystal. In sec. 2.1.2 we will describe the ellipsoid method to find
the solutions of the above-mentioned problem. In sec. 2.1.3 we will give
the results for the uniaxial crystal case and we solve the problem in a more
general situation useful for our purposes. Subsequently, in sec. 2.1.4, we
will describe the double refraction at an uniaxial crystal surfaces. Finally,
in sec. 2.1.5, we will give the formulas for the ordinary and extraordinary
optical paths. These will be used to calculate the phase accumulated by the
photons travelling within the crystals.
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2.1.1 Eigen-indexes of refraction and eigen-polarizations

Maxwell’s equations (in MKS units) in a material reads [35]

∇ ·D = ρ; (2.1)

∇ ·B = 0; (2.2)

∇×E = −∂B
∂t ; (2.3)

∇×H = J+ ∂D
∂t ; (2.4)

where ρ and J are the charge and the current densities inside the medium;
D = εE and B = µH are, respectively, the electric displacement and the
magnetic induction. For an isotropic medium ε and µ are real number, while
in an anisotropic material (such as a birefringent crystal) they are tensors
and, in general, D (B) is not parallel to E (H).

Conservation of energy for electromagnetic fields requires that the time
rate of change of electromagnetic energy contained within a certain volume,
plus the time rate of energy flowing out through the boundary surfaces of
the volume, be equal to the negative of the total work done by the fields on
the sources within the volume. This is expressed by the Poynting theorem:

∂U
∂t +∇ · S = −J ·E, (2.5)

where the electromagnetic energy density U and the Poynting vector S are
defined as

U = 1
2(E ·D+B ·H); (2.6)

S = E×H. (2.7)

Poynting vector S represent the power per unit area carried by the field in
the direction of S.

We now address the problem of wave propagation within a birefringent
crystal. In an anisotropic material the phase velocities of light depend on
its state of polarization as well as its direction of propagation [35]. Be-
cause of the anisotropy, the polarization state of a plane wave may vary
during the propagation through the crystal. However, given a direction of
propagation in the medium, there exist, in general, two eigenwaves with
well defined eigen-phase-velocities and polarization directions. A light wave
with polarization parallel to one of these directions will remain in the same
polarization state as it propagates through the anisotropic medium. These
eigen-polarization, as well as the corresponding eigen-phase-velocities (or
equivalently eigen-indexes of refraction), can be determined from eqs. (2.3)
and (2.4) and the dielectric tensor.

We consider a monocromatic plane wave of angular frequency ω propa-
gating in an anisotropic medium with an electric and magnetic field

E eı(ωt−k·r), (2.8)

H eı(ωt−k·r), (2.9)
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where the wave vector is k = ω
c nκ̂, with n the refractive index to be de-

termined and κ̂ the unit vector in k direction. Substitution for electric
and magnetic field from eqs. (2.8) and (2.9), respectively, into Maxwell’s
equation (2.3) and (2.4) gives

k×E = ωµH, (2.10)

k×H = −ωεE. (2.11)

From these two equation one simply obtains

k× (k×E) + ω2µεE = 0. (2.12)

In the principal coordinate system, i.e x, y and z axes are chosen in the
directions of the eigenvectors of ε, the dielectric tensor ε is given by

ε =




εx 0 0
0 εy 0
0 0 εz


 . (2.13)

Equation (2.12) can be written as

M ·E = 0, (2.14)

with

M =




ω2µεx − k2y − k2z kxky kxkz
kykx ω2µεy − k2x − k2z kykz
kzkx kzky ω2µεz − k2x − k2y


 (2.15)

For nontrivial solution to exist, the determinant of M must be

det(M) = 0. (2.16)

The general solution of eq. (2.16) is

|k|2
n2
x

[
k2x n

2
x

n2
yn

2
z

+
k2y
n2
z

+
k2z
n2
y

− ω2

c2

]
−ω2

c2

[
k2x

(
1

n2
z

+
1

n2
y

− 1

n2
x

)
+

k2y
n2
z

+
k2z
n2
y

− ω2

c2

]
= 0,

(2.17)
where we have used the relations c2 = 1

ε0µ
and n2

i = εi
ε0

for i=x, y, z. Note
that this is a dispersion relation ω(k). It could be represented by a three
dimensional surface in k space (momentum space). This is known as the
normal surface and consists of two shells, which, in general have four points
in common. The two lines that go through the origin and these points are
known as the optic axes. Given the direction of propagation (kx, ky, kz),
there are in general two k values which intercept with the normal surface.
These two k values correspond to two different phase velocities ω

k of the wave
propagating along the chosen direction. If we replace k = ω

c n κ̂ inside eq.
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(2.17) we obtain an equation for the refraction index n (two solution). In
order to obtain the direction of the electric field vector E we substitute n
found above in the following equation (derived from eq. (2.14))

E =




kx
n2−n2

x
ky

n2−n2
y

kz
n2−n2

z


 . (2.18)

Using Maxwell’s equations and k = ω
c nκ̂ we derive that in a crystal (ρ =

Figure 2.1: Fields direction in an anisotropic material for extraordinary
(left) and ordinary (right) wave propagation.

0, J = 0)

κ̂ ·D = 0; (2.19)

κ̂ ·B = 0; (2.20)

H = n
µc κ̂×E; (2.21)

D = −n
c κ̂×H. (2.22)

The first two relations means that D and B are always orthogonal to the
wave vector direction κ̂. From the third we know that H is normal to
the plane that contain E and κ̂, while the fourth add the orthogonality
information also betweenD andH. In general within an anisotropic material
E and D are not parallel. The main consequence is that the Poynting vector
S = E×H is not collinear with the wave vector direction κ̂. This happens
for the extraordinary wave. In other words for a certain polarization a light
beam (called extraordinary) in an anisotropic material experiments a spatial
walk off. However it exists an other polarization (orthogonal to the previous
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one) for which ordinary propagation occur (the Poynting vector So is parallel
to the wave vector direction κ̂). These consideration are shown in Fig. (2.1).

2.1.2 Ellipsoid method

A simple method to find the index of refractions and the corresponding
polarization directions D associated with the two independent plane waves
propagating along an arbitrary direction k in a crystal, is exploiting the
so called index ellipsoid. The surfaces of constant energy density for the
electric field Ue =

1
2(E ·D) are:

D2
x

εx
+

D2
y

εy
+

D2
z

εz
= 2Ue. (2.23)

By replacing D√
2ε0Ue

with r and defining the principal indexes of refraction

nx, ny, nz by n2
i = εi/ε0 (i=x,y,z), the equation above can be written as

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1. (2.24)

This is the equation of an ellipsoid with mayor axis parallel to x, y, z, whose
respective lengths are 2nx, 2ny, 2nz (see Fig. (2.2)).

Figure 2.2: Index ellipsoid method to find the eigen-modes. (x,y,z) are the
principal coordinate system.

The method consists in the following prescription:
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• find the intersection ellipse between the index ellipsoid and a plane
through the origin that is normal to the propagation direction k;

• the two axes of the intersection ellipse are equal in length to 2n1 and
2n2 where n1, n2 are the two solution of eq. (2.17);

• these axes are parallel to the directions of the vectors D1,2 of the
allowed solution.

2.1.3 Special case of uniaxial crystal

In general the dielectric tensor components in the principal coordinate sys-
tem εi (i = x, y, z) are different. This is the case of biaxial crystal, since
there are two optical axes. There are many crystals in which two compo-
nents of the dielectric tensor equals (e.g εx = εy = ε0n

2
o), and so there is only

one optical axis. In this section we analyze in details the case of uniaxial
crystals. First of all the equation (2.17) can be factored and become

[
k2x + k2y

n2
e

+
k2z
n2
o

− ω2

c2

][ |k|2
n2
o

− ω2

c2

]
= 0. (2.25)

The normal surface in this case consists of a sphere and an ellipsoid of
revolution. Notice that for every direction of propagation one of the two
eigen-index of refraction is ordinary.

Consider the wave vector k = ω
c n κ̂ lying in the (x,z) plane and forming

an angle φ with the z-axis (optical axis), as depicted in Fig. (2.2). We
substitute the wave vector k with direction κ̂ = (sin(φ), 0, cos(φ)) inside
eq. (2.25), and we obtain two solution for n:

n1 = no, and (2.26)

1

n2
2(φ)

=
cos2(φ)

n2
o

+
sin2(φ)

n2
e

. (2.27)

The second expresses the refraction index for the extraordinary wave de-
pending on the angle between the optical axes and the propagation direc-
tion. The extraordinary electric field Ee can be calculated from eq. (2.18)
and results

Ee = Ee0 ·




− 1
n2
osin(φ)

0
1

n2
ecos(φ)


 , (2.28)

while the ordinary electric field is

Eo = Eo0 ·



0
1
0


 . (2.29)
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Please note that Ee · k 6= 0, while for the electric displacement

De = εEe = ε0Ee0




− 1
sin(φ)

0
1

cos(φ)


 , (2.30)

the orthogonality relation De · k = 0 holds. We calculate the magnetic field
He from equation (2.21). It reads

He = − n

µc
Ee0




0
cotan(φ)

n2
o

+ tan(φ)
n2
e

0


 , (2.31)

hence the Poynting vector Se = Ee ×He is

Se = Ee0|Hy| ·




1
n2
ecos(φ)

0
1

n2
osin(φ)


 . (2.32)

Defining ρ the angle between the wave vector k and the Poynting vector
Se (positive in the anti-clockwise direction); from the above equation we

calculate the fraction Sx
Sz

= n2
o

n2
e
tan(φ) = tan(φ− ρ) and we derive the walk-

off angle

ρ = φ− atan

(
n2
o

n2
e

tan(φ)

)
. (2.33)

In the case of positive crystals (ne > no) the walk-off angle ρ is positive
(close to the optical axes). In the opposite case (ne < no) the Poynting
vector go further from the optical axes (ρ < 0).

General situation

We now consider the more generic situation of a wave propagating in an
other plane. We now consider (x, y, z) as the principal coordinate system
of the crystal (z is the optical axis direction) and (x’, y’ , z’) the laboratory
coordinate system. In the system of the laboratory the optical axes lies in the
(y’, z’) plane, while the propagation direction κ̂ lies in the (x’, z’) plane (see
Fig. (2.3). The following rotation allows coordinate system transformation:




x′

y′

z′


 =




0 1 0
−cos(φ) 0 sin(φ)
sin(φ) 0 cos(φ)


 ·




x
y
z


 . (2.34)

In the principal coordinate system the wave vector k has direction κ̂ =
(sinφ cosθ, sinθ, cosφ cosθ) and if we substitute it inside eq. (2.25) we ob-
tain the two solution for the refractive indexes:

n1 = no, and (2.35)
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Figure 2.3: (x,y,z) are the principal coordinates, while (x’, y’, z’) are the
laboratory coordinates.

1

n2
2(φ, θ)

=
cos2φ cos2θ

n2
o

+
sin2φ cos2θ + sin2θ

n2
e

. (2.36)

The extraordinary electric field direction, calculated from eq. (2.18) is

Ee = Ee0 ·




− sinφ cosθ
n2
o(sin

2θ+cos2θ sin2φ)

− sinθ
n2
o(sin

2θ+cos2θ sin2φ)
1

n2
ecosθ cosφ


 , (2.37)

while the extraordinary electric displacement De = εEe is

De = ε0Ee0 ·




− sinφ cosθ
(sin2θ+cos2θ sin2φ)

− sinθ
(sin2θ+cos2θ sin2φ)

1
cosθ cosφ


 . (2.38)

In order to derive the electric displacement direction for the ordinary field
we apply the ortogonality relation

Do =
De × k

|De × k| =



−sinθ
cosθ sinφ

0


 . (2.39)

Notice that for θ = 0 all these relation reduces to the ones derived in section
2.1.3. If we write these vector in the laboratory reference frame (x’, y’, z’)
we obtain

D′
e ∝




−sinθ
tanφ
cosθ

tanθ sinθ


 ; D′

o ∝



cosθ sinφ
sinθ cosφ
−sinθ sinφ


 . (2.40)

26



The magnetic field vector He calculated using eq.(2.21) and the Poynting
vector Se = Ee ×He in the principal coordinate system are

He ∝



sinθ
−cosθ sinφ

0


 and Se ∝




tanφ
tanθ
cosφ
n2
e

n2
o


 . (2.41)

In the laboratory reference frame the Poynting vector become

S′
e ∝




tanθ
cosφ

sinφ(n
2
e

n2
o
− 1)

1
cosφ(sin

2φ+ n2
e

n2
o
cos2φ)


 = |S′

e|



cosθy sinθxz
sinθy

cosθy cosθxz


 ; (2.42)

where θy is the angle between the Poynting vector and its projection on the
(x’,y’) plane, while θxz is the angle between this projection and the z’ axes.
The following result will be useful in optical path calculation

θxz = atan

(
S′
ex

S′
ez

)
= atan


 tanθ

sin2φ+ n2
e

n2
o
cos2φ


 . (2.43)

This angle will be important in the following chapter, when we will calculate
the phase accumulated by photon pairs during their propagation.

2.1.4 Double refraction at a boundary

Consider a plane wave incident on the surface of an anisotropic crystal.
The refracted wave, in general, is a mixture of the two eigen-modes. In
uniaxial crystal it is a mixture of the ordinary and extraordinary wave. The
boundary condition implies that the wave vectors lie in the incident plane
(x,z) and their tangential component along the boundary be the same. We
call k0 the wave vector of the incident wave, and k1, k2 the wave vectors of
the refracted waves. The boundary condition for the tangential component
implies

k0 sin(θ0) = k1 sin(θ1) = k2 sin(θ2). (2.44)

It looks like the Snell law but it is important to note that k1, k2, in general,
are not constant; rather, they vary with the directions of the vectors k1, k2.

We now consider the case of uniaxial crystal. One refracted wave is or-
dinary, say k1; its displacement vector is orthogonal to the plane containing
the optical axis and the propagation direction and k1 does not depend on the
angle θ1. The ordinary wave thus obeys Snell law ni sin(θ0) = no sin(θ1),
where ni is the refraction index of the incident medium. The extraordinary
wave refraction is more complex since k2 depends on the angle θ2 and also
on the optical axes direction. The simplest case is the optical axis lying in

27



Figure 2.4: Double refraction at a boundary. Optical Axes in the incident
plane.

the same plane of incidence (x,z). In such a case, calling φ the angle between
the optical axis of the crystal and the z-axes, the extraordinary wave vector
modulus is k2 = ω

c n2(φ − θ2) with n2 from eq. (2.27) and the refraction
condition (2.44) becomes

ni sin(θi) = n2(φ− θ2) sin(θ2). (2.45)

In the case of optical axes in the orthogonal plane (y,z) tilted by φ respect
to the z-axes, the situation is a bit more complicated. First of all for uniaxial
crystal one of the two refracted wave is always ordinary. The extraordinary
refracted index for this situation is the one expressed in eq. (2.36). The
main difficulty is to solve the following mathematical problem for θ2

ni sin(θi) = n2(φ, θ2) sin(θ2). (2.46)

In both situation the ordinary wave is orthogonal polarized respect to the
plane formed by the optical axis and the propagation direction, while the
extraordinary field lies in that plane and the corresponding displacement
is normal to the propagation direction. For the second situation analyzed
above these polarization are expressed in eq. (2.40) with the correspondence
θ2 = θ.

These results about the refraction will be important in the analysis of
our source because, as we will see, photons which are generated ordinary in
the first crystal, then travel extraordinary in the second one.
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2.1.5 Optical paths calculation

Inside a birefringent crystal the wave front is orthogonal to the wave vector
k but the energy flow and the group velocity follow the direction of the
Poynting vector S. Consider the two situation depicted in Fig. (2.5). On

Figure 2.5: Ordinary and extraordinary optical paths. On the left we report
the case in which the optical axis lies in the plane of propagation; here the
extraordinary optical path is calculated from eq. (2.49). On the right we
report the case in which the optical axis lies in a plane ortogonal to the
propagation plane and the extraordinary optical path is calculated from eq.
(2.50). In both cases the ordinary optical path is reported in eq. (2.47).

the left we show the situation with optical axis (O.A.) lies in the plane
of propagation (x′, z′) while on the right the optical axis lies in a plane
orthogonal to the propagation plane. We indicate with α (α′) the angle
formed by the extraordinary (ordinary) wave vector with the z′ axis; ρ is
the angle between ke and Se (the walk off angle) and β is the angle between
Se and the z′ axis. Call L the crystal length. In the case of ordinary
propagation the optical path in both situation is

φo = ko(ω)
L

cosα′ =
ω

c
no(ω)

L

cosα′ , (2.47)

while the general formula for the extraordinary optical path is [36]

φe =
ω

c
ne(φ, ω)

L

cosβ

ke · Se

|ke · Se| = ke(φ, ω)
L

cosβ
cosρ. (2.48)

Here L
cosβ takes into account the path in the S direction, while the dot

product ke · Se accounts for the fact that, although the light travels along
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Se, its wavefronts are perpendicular to ke, creating a smaller effective optical
path length by a factor of the cosine of the angle ρ between these vectors.
The last equation is different in the two situation since if the optical axis is
in the propagation plane (Fig. (2.5 (left))) then β = α−ρ while in the other
case (Fig. (2.5 (right)) cosβ = cosρ cosα. Then the optical paths become
respectively

φe
‖ =

ω

c
ne(φ, ω)

L

cos(α− ρ)
cosρ, and (2.49)

φe
⊥ =

ω

c
ne(φ, ω)

L

cosα
. (2.50)

These formulas will be very important in the calculation of the phase accu-
mulated by the photons during the propagation within the crystals.

2.2 The Spontaneous Parametric Down Conver-
sion

In this section we will explain how to treat mathematically the physical
phenomena of Spontaneous Parametric Down Conversion (SPDC) within
nonlinear crystals.

Figure 2.6: Type-I Spontaneous Parametric Down Conversion.

An electric field E in a material induces a polarization P of the molecules
and the total field is defined as displacement vector

D = ε0E+P.

In isotropic media P = ε0χE with χ a scalar, so P and E are always parallel.
In the case of anisotropic media (like crystals) the polarization component
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are defined as

Pi = ε0[χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + · · · ];

χ(1), χ(2), χ(3) are a tensors, and we consider the sum over repeated index.
The polarization component Pi depends by the electric field vector in such a
way because of the anisotropies in the molecular structure. The linear term
ε(1) = ε0(1+χ(1)) basically influences the wave propagation, and from it we
derive the indexes of refraction and the group velocities of the waves inside
the crystal as we have seen above (chapter 2.1). In the following we fix our
attention on the second order non-linear term χ(2).

Consider a second order nonlinear crystal of volume V pumped by a
laser beam. Since the electric field energy density is

ρ = 1
2EiDi = ρ0 + ρNL = 1

2ε0Ei · [Ei + χ
(1)
ij Ej ] +

1
2ε0χ

(2)
ijkEiEjEk + ... ,

the total Hamiltonian is H =
∫
V dr3ρ = H0 +Hint where H0 is the energy

of the field inside the medium and the interesting part is the interaction
Hamiltonian defined as

Hint =

∫

V
dr3ρNL = 1

2ε0

∫
dr3χ

(2)
ijkEiEjEk. (2.51)

Since the pump power on the crystal is low we can solve the Schrödinger
equation ı~ ∂

∂t |ϕ〉 = Hint|ϕ〉 in the perturbative regime, thus, starting from
the vacuum |0〉 = |0〉s|0〉i, we obtain

|ϕ(t)〉 ' |0〉 − ı
~

∫ T

0
dtHint|0〉, (2.52)

where T is the interaction time. Note that it is an interaction between
three electric field; the first is the pump and the other two are usually called
signal and idler and are generated in the non linear process inside the crystal.
For a pulsed laser the interaction time T is the pulse duration, while for a
continuous wave laser (as in our case) the interaction time is infinite.

We write the pump electric field as a classical radiation

Ep = epAp e
−ı(ωp t−kp·r) + c.c.;

while for signal and idler we use the quantization form of the electromagnetic
field:

Ês,i = ı es,i

√
~ωs,i

2 ε0V
âs,i e

−ı(ωs,i t−ks,i·r) + c.c.,

where âs,i is the annihilation operator for the electric field in the modes
s, i = (ωs,i,ks,i) and where ep, es, ei are unitary vectors indicating field
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polarizations. Considering a single spatial and temporal mode for the pump,
the Eq. (2.52) reads

|ϕ(t)〉 ∝
∫ ∞

−∞
dt

∫

V
dr3deffAp e

−ı(ωp−ωs−ωi)t eı(kp−ks−ki)·r â†s â
†
i |0〉. (2.53)

The coefficient deff = χ
(2)
ijk e

i
pe

j
seki gives the amplitude probability of the

process depending on the susceptibility tensor components and fields polar-
izations. As a first result, for an infinite interaction time and volume, one
obtain a pair of single photons |1〉s|1〉i in the modes s and i of signal and
idler which satisfy the conditions:

♦ energy conservation ∆ω = ωp − ωs − ωi = 0; (2.54)

♦ momentum conservation ∆k = kp − ks − ki = 0. (2.55)

We split the momentum conservation in two parties: the transverse compo-
nent ∆k⊥ and the longitudinal one ∆k‖, which read

∆k‖ = kp − ks‖ − ki‖; (2.56)

∆k⊥ = ks⊥ + ki⊥. (2.57)

In the real case, for a monochromatic and continuous wave (CW) pump beam
the interaction time is infinite, and thus the energy is conserved, but the
integration volume V is limited by the crystal sizes: lenght L and transverse
dimension D. We consider a gaussian transverse profile for the pump field

B(ρ) = e−
(ρ−ρ0(z))2

w2 with waist w and centre ρ0(z) = (x0 + z tan(ϕx
wo), y0 +

z tan(ϕy
wo)), ϕwo is the walk off angle which usually is non-zero only in one

direction; the integral in equation (2.53) becomes the product of:

h(∆ω) =

∫ ∞

−∞
dt eı∆ω t = δ

(
∆ω

2π

)
, (2.58)

f(∆ktot) =

∫ L

0
dz eı∆ktotz = Leı

∆ktotL
2 sinc

(
L
2∆ktot

)
(2.59)

and

g(∆k⊥) =
∫ D/2

−D/2
dρB(ρ)e−ı∆k⊥ρ = e−

w2

4 ∆k2⊥e−ıρ0(0)∆k⊥ , if D À 2w,

(2.60)
with ∆ktot = ∆k‖−∆k⊥tan(ϕwo), The function h(∆ω) in eq. (2.58) is thus
the Dirac function δ(∆ω/2π) while the functions (2.59) and (2.60) gives re-
spectively the angular and spectral dispersion of the photons pairs and their
spatial correlation. Furthermore the pump beam in the general case is not
monochromatic thus we may consider its spectrum Ap = Ap(ωp). Summing
over all the possible frequencies and angles allowed we write the total state
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Figure 2.7: Type-I Spontaneous Parametric Down Conversion inside a non-
linear crystal. A photon from a pump laser polarized in the optical axis plane
(|V 〉 in figure) generates a couple of dougther horizontally polarized photons
which conserve energy and momentum. Depending on crystal lenght L, the
angular and spectral distribution could be rather large. The distribution is
given by the function f in eq. (2.59). For large pump beam radius and narrow
spectrum the photons are angularly correlated. In general the amount of
angular correlation is contained in the g function (eq. (2.60)). In fact if g
is a δ−like function, the transverse momentum is perfectly conserved, and
from the knowledge of signal frequency and emission angle we know exactly
the emission angle of the idler photon.

resulting from Spontaneous Parametric Down Conversion (SPDC) as the
superposition state:

|ϕ〉 ∝
∫

dωpdωsdθdθ
′A(ωp)g(ωs, θ, θ

′)f(ωp, ωs, θ, θ
′)|θ, ωs〉|θ′, ωp − ωs〉.

(2.61)
Here |θ, ωs〉 (|θ′, ωp−ωs〉) is a single photon in the Fock state |1〉 with θ (θ′)
and ωs (ωp−ωs) the signal (idler) angular and spectral variables (ωi = ωp−ωs

for energy conservation).
The rate Rs of signal photon integrated over all solid angles, and in the

spectral window δλ is proportional to the crystal length L and to the pump
power Pp and reads [38, 39]

Rs = N (2π)3
2λp d

2
eff

ε0 n2
p λ

4
s λ

2
i (λp, λs)

Pp · L · δλs, (2.62)

where deff = 2 pm/V for type-I SPDC in a BBO crystal, np is the pump
refractive index. The term N = α ·QE · Tpol · TF · C accounts for coupling

33



and detection efficiency; in particular α ' 0.02 is the portion of the SPDC
cone that we select with the slit and the iris (the experimental setup will
be explained in detail in the following, see Fig. (3.1)); QE ' 0.13% is the
mean detector quantum efficiency, while Tpol ' 0.8 and TF are respectively
the transmittivity of the polarizer and the maximum value of the spectral
filter (for the interference filter it is 0.5, for the longpass filter it is 0.85).
Finally C is the coupling efficiency. For a spectral window δλ = 10nm and
pump power Pp = 1mW and considering the coupling efficiency C = 1 (over-
estimated), we calculate a rate Rs ' 1300 counts/s/mW , while using a large
spectrum (δλ ' 150nm) we calculate a rate Rs ' 33500 counts/s/mW .

The polarization of these photon pairs results from phase matching con-
dition. Writing the momentum as k = ω

c n(ω), with c the speed of light in the
vacuum, and considering the degenerate case ωs = ωi =

ωp

2 in the collinear
case the condition (2.55) becomes n(ωp) = n(ωs). Since in normally disper-
sive materials both ordinary and extraordinary refractive indexes increase
with frequency, the previous condition could not be satisfied if pump and
down-converted beams are of the same type (ordinary or extraordinary).
Such condition could be satisfied considering pump and photons with differ-
ent polarization. There exists different type of phase matching depending
on which beams are ordinary or extraordinary. In the type-I the pump is
extraordinary and signal and idler are both ordinary. This means that pump
polarization is parallel to the plane containing the optical axes (O.A.) and
the direction of propagation kp, while signal (idler) polarization are orthog-
onal to the plane formed by the O.A. and ks (ki) (see Sec. (2.1.3)). As
we have seen previously in Sec. (2.1.3) the extraordinary refractive index is
direction dependent and is calculated from

1

n2
e(φ, ω)

=
cos2(φ)

no(ω)2
+

sin2(φ)

ne(ω)2
;

with φ the angle formed by the O.A. and the direction of propagation kp,
no (ne) the ordinary (extraordinary) refractive index of the crystal. It exists
a certain angle φPM for which the indexes of refraction match and Eq. (2.55)
reads

ne(φPM , ωp) = no(ωs) (degenerate and collinear case). (2.63)

When we pump a non-linear crystal with a laser beam polarized in the plane
containing the O.A. and the propagation vector kp (say vertical direction
of the laboratory reference frame), upon setting φ = φPM the generation of
photon pairs occurs. In the collinear case (kp ‖ ks ‖ ki) the polarization of
signal and idler are parallel and perfectly orthogonal to pump polarization
(say horizontal in the laboratory coordinates).
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2.2.1 Non collinear configuration and spatial correlation

In our apparatus the crystals are β-Barium Borate (BBO) of length L setted
for non collinear pairs generation (θ0 = 3◦). We obtain this configuration
tilting a bit the phase matching angle found for the collinear case, from a
simulation we found φPM = 29.24◦. The equations (2.56) and (2.57) become
respectively

∆k‖ = kep(φ,Ω
0
p + ωp)− kos(

Ω0
p

2 + ωs) cos(
θ0+θ
no

)− koi (
Ω0

p

2 + ωp − ωs) cos(
θ′0+θ′
no

)

∆k⊥ = kos(
Ω0

p

2 + ωs) sin(
θ0+θ
no

) + koi (
Ω0

p

2 + ωp − ωs) sin(
θ′0+θ′
no

), (2.64)

where ko, ke stay for ordinary and extraordinary wave vectors and we have
called Ω0

p = 2π c/λ0
p the central pump frequency (λ0

p = 405nm); conse-
quently Ω0

p/2 is the central frequency for signal and idler. We call ωp and
ωs the pump and signal frequency shift from the central frequencies, while θ
and θ′ are signal and idler angular shift from the central external angles θ0
and θ′0 = −θ0. We have used the Snell relation θ1 = asin( sin(θ0+θ)

no
) ≈ θ0+θ

no

and θ′1 = asin(
sin(θ′0+θ′)

no
) ≈ θ′0+θ′

no
; θ1, θ

′
1 are the internal generation angles,

while θ0 + θ and θ′0 + θ′ are the external angles. Here the phase matching
condition reads:

ne(φPM ,Ω0
p) = no(Ω

0
p/2) cos

(
θ0

no(Ω0
p/2)

)
. (2.65)

Spatial correlation

The photons of a couple created by Spontaneous Parametric Down Conver-
sion are intrinsically entangled in frequencies and angles since they must
conserve energy and momentum of the pump. Consider for instance a situa-
tion in which the pump beam radius on the pump is large enough to consider
the function g(∆k⊥) defined in eq. (2.60) like a delta function δ(∆k⊥). In
such a case the transverse momentum expressed in eq. (2.64) is conserved
(i.e ∆k⊥ = 0). If we expand this condition to the first order in θ, θ′ and ωs

we obtain the relation:
θ′ = −θ + γωs. (2.66)

Note that the variables θ, θ′ and ωs are shift from the central angles and
frequency. This relation means that if we fix the frequency ωs, the angles are
anticorrelated: the two photons angles increase in the opposite directions;
while if we fix the angle θ, the correlated photon angle θ′ changes follow-
ing the frequency variation. Such relation implies that considering a narrow
SPDC spectrum we can observe spatial correlation, while using a large spec-
trum the spatial correlations are washed out. On the other hand when the
transverse momentum is not conserved (i.e. smaller pump beam radius on
the crystals) the relation in eq. (2.66) does not hold. As a consequence the
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Figure 2.8: Spatial correlation simulation: the color map represents the coin-
cidence probability for different signal and idler angles (θ and θ′ are the shift
from central angles θ0 = 3◦ and θ′0 = −3◦). The upper panel are for large
pump beam waist (transverse momentum conserved). Strong spatial correla-
tion is visible only for narrow spectral filtering (upper left panel). The large
spectrum washed out all spatial correlations (upper right panel). The lower
panels represent a situation for smaller beam waist. It is evident that spatial
correlation are lost in both cases.

spatial correlation is gradually lost. Fig. (2.8) reports the simulation result
in these conditions. The axes represent the signal and idler angular shift
from the central angles θ0, θ

′
0. The color map represent the probability of

coincidence counts between the two detectors as a function of the emission
angles, evaluated as

Pc(θ, θ
′) =

∫
dωs dωp|A(ωp)f(ωp, ωs, θ, θ

′)g(ωs, θ, θ
′)|2 F (ωs)F

′(ωp − ωs)

(2.67)
where F and F ′ are spectral filters respectively on signal and idler. In
the simulation we used an interference filter with 10nm bandpass centered
around 810nm and a long pass filter transmitting photons above 715nm.
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The effect of detectors quantum efficiency is included in the filters as a slow
cut off above 800nm. The upper panels show the situation in which the
pump beam waist is large enougth to consider the transverse momentum
conserved: the spatial correlation appears only for a narrow spectrum (left
panel). In the lower panel the transverse momentum conservation does not
hold and in both situation the spatial correlations disappear.

2.3 Entangled state in polarization: the two crys-
tal geometry

Our aim is to generate entangled state in polarization. First of all we use
two identical non linear crystals, set with optical axes aligned in perpendic-
ular planes, parallel to horizontal (H) and vertical (V) coordinates of the
laboratory. The pump power is low enough to consider SPDC in the per-
turbative regime (as described in the previous section). We thus neglect
the probabilty of generating photon pairs contemporary in the first and in
the second crystals. What we have, using a pump polarized at 45◦, is half
probability of generating in the first crystal and half in the second one. In
quantum mechanics terms we write the total state summing the amplitude
probability of all possible paths. Finally we obtain a quantum superposition
of |HH〉 and |VV〉 pairs, thus entangled states of the form 1√

2
(|HH〉+ |VV〉).

Using the previous notation with eqs. (2.59), (2.60), calculated respec-
tively with ∆k‖ and ∆k⊥ from eq. (2.64), and by using eq. (2.61) we obtain
at the output of the two crystals the overall entangled state

|ψ〉 = 1√
2

∫
dωp dωsdθ dθ

′A(ωp)g(ωs, θ, θ
′)f(ωp, ωs, θ, θ

′)×
[
|H, θ, ωs〉|H, θ′, ωp − ωs〉+ eıΦ(ωp,ωs,θ,θ′)|V, θ, ωs〉|V, θ′, ωp − ωs〉

]
.

(2.68)

The relative phase term Φ(ωp, ωs, θ, θ
′) arises taking into account both the

pump and the photon pairs optical paths both other effects such as the pump
walk off. In the following section we will describe in details how to derive
these terms.

2.3.1 The relative phase term (VV generated in the first
crystal)

There are many contribution to the phase Φ in eq. (2.68). We consider for
instance the case in which the first crystal generates |V V 〉 photon pairs and
the second |HH〉 pairs as depicted in Fig. (2.9). Consider the generation
at the middle of the crystals. Both polarization pairs have three common
phase terms due to the optical paths of the extraordinary pump inside the
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Figure 2.9: Generating crystal. (top) |V V 〉 photons are generated in the first
crystal and travel extraordinary in the second one which have the optical axes
in a plane normal to the propagation. Blue, red and green lines represent
the optical paths which are important for phase calculation. (bottom) The
crystals front view with depicted the walk off induced on the pump beam.

generating crystals and of the ordinary photons propagation. Respectively
we have ke(φPM ,Ω0

p+ωp)
L
2 for the pump, ko(Ω0

p/2+ωs)
L

2cosθ1
for the signal

and ko(Ω0
p/2 + ωp − ωs)

L
2cosθ′1

for the idler. These phase terms are not

interesting since are common phase terms (θ1 = θ3 and θ′1 = θ′3) and are not
written in the state in eq. (2.68). Photon pairs |HH〉 have an additional
phase term ko(Ω0

p + ωp)L due to ordinary propagation of the pump inside
the first crystal before it generates pairs in the second one (blue path in
fig. (2.9)). On the contrary |V V 〉 pairs must traverse the second crystal
accumulating a phase equal to ke(φPM , θ2,Ω

0
p/2 + ωs)

L
cosθ2

for the signal

and ke(φPM , θ′2,Ω
0
p/2 + ωp − ωs)

L
cosθ′2

for the idler (red paths in fig. (2.9)).
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Here we have considered negligible the ordinary component (it is the 0.3%
of the total photons: see eq. (2.40) and [37]).

Two additional phase components derive from external path difference
between vertical and horizontal pairs (green paths in figure (2.9)). These
terms can be simply calculated from geometrical consideration once one
knows the exact output position. Black dotted lines in the second crys-
tals represent the projection of the paths followed by the Poynting vec-
tors of SPDC photons over the (x, z) plane. The angles θ∗2 and θ

′∗
2 have

been calculated in eq. (2.43) of section 2.1.3. Thus the additional exter-
nal phases are kair(Ω

0
p/2 + ωs)L tan(θ∗2(θ)) sin(θ0 + θ) for the signal, and

kair(Ω
0
p/2+ωp −ωs)L tan(|θ′∗

2 (θ
′)|) sin(|θ′0 + θ′|) for the idler. In our quasi-

collinear situation (θ0 = 3◦) we do the approximation θ∗2 ' θ2 and θ
′∗
2 ' θ′2.

As we have seen above the extraordinary pump propagates in the direc-
tion of the Poynting vector and so it suffers of a spatial walk off in the plane
containing the O.A. and the the wave vector kp (see eq. (2.33)). A spatial
walk off δx (δy) inside the first (second) crystal contributes to the phase Φ
with a term δx∆k⊥ for the |V V 〉 pair, and δy∆k⊥y for the |HH〉 pair, as
expressed in eq. (2.60). The relative phase is thus

Φ(ωp, ωs, θ, θ
′) =ke(φPM , θ2, ωs)

L

cos(θ2(θ))
+

+ke(φPM , θ′2, ωp − ωs)
L

cos(θ′2(θ′))
+

−ko(ωp)L+

−kair(ωs)L tan(θ2(θ)) sin(θ0 + θ)+

−kair(ωp − ωs)L tan(|θ′
2(θ

′)|) sin(|θ′0 + θ′|)+
+δx∆k⊥ − δy∆k⊥y; (2.69)

where ke(φPM , θ2, ωs) =
Ω0

p/2+ωs

c ne
s, k

e(φPM , θ′2, ωp − ωs) =
Ω0

p/2+ωp−ωs

c ne
i

and ko(ωp) =
Ω0

p+ωp

c no
p; while kair(ω) =

Ω0
p/2+ω

c . The index of refrac-
tion ne

s = ne
s(φPM , θ2(θ)) and ne

i = ne
i (φPM , θ′2(θ

′)) are calculated from
eq. (2.36). The subscripts s, i and p indicate that the refractive indexes
are calculated respectively at frequencies Ω0

p/2 + ωs, Ω
0
p/2 + ωp − ωs, and

Ω0
p + ωp. Furthermore we use as ∆k⊥ the one expressed in eq. (2.64) while

∆k⊥y could be taken from the same expression with θ0 = 0 and with θ = θy
the angular shift in y-direction. The internal angles are:

θ2(θ) =asin( sin(θ0+θ)
ne
s

) ≈ θ0+θ
ne
s

and

θ′2(θ
′) =asin(

sin(θ′0+θ′)
ne
i

) ≈ θ′0+θ′
ne
i

.

Notice that their calculation involves a recursive problem since the refractive
indexes depends respectively on the angles θ2 and θ′2 one want evaluate.
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Expansion of the phase term

We expand the expression of Φ using

k(Ω0 + ω) =k(Ω0) +
1

vg
ω +

1

2
βω2 + ... (2.70)

1

cos(ϕ)
=1 + 1

2ϕ
2 + ... (2.71)

where 1
vg

= ∂k
∂ω |ω=Ω0 and β = ∂2k

∂ω2 |ω=Ω0 . We obtain after some math

Φ(ωp, ωs, θ, θ
′) ' Φ0 +∆τωp + αθ− αθ′ + δx[ζ(θ+ θ′) + ηωs] + γ ω2

s (2.72)

where

Φ0 =2 kes(Ω
0
p/2)L

(
1 + 1

2

(
θ0

ns(φPM )

)2
)

·
(
1− 1

2cos
2(φPM ) θ20

(no
s)

2−(ne
s)

2

(no
s)

2 (ne
s)

2

)
+

−kop(Ωp)L− L

c

Ω0
p θ

2
0

ns(φPM )
; (2.73)

∆τ =
L

vegPDC

(
1 + 1

2

(
θ0

ns(φPM )

)2
)

− L

vogp
− L

c

θ20
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;
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α =− Ω0
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θ0

(ns(φPM ))2
+ cos2(φPM ) θ0
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2 − (ne
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2

(no
s)

2 (ne
s)

2

]
;
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ζ =kos(Ω
0
p/2)

1

no
s

; (2.76)

η =
2θ0

vogPDC no
s

; (2.77)

γ =βe
PDC L

(
1 + 1

2

(
θ0

ns(φPM )

)2
)
. (2.78)

We have used the contracted notation vo,egPDC = vo,eg (Ω0
p/2), v

o
gp = vog(Ω

0
p),

βe
PDC = βe(Ω0

p/2), n
e,o
s = ne,o(Ω0

p/2) and ns(φPM ) the extraordinary index
of refraction calculated from eq. (2.27) at signal and idler central frequency
Ω0
p/2. In writing eq. (2.72) we neglect the second order in θ2 and θ

′2 due to
the cosine expansion and the terms in ω2

s andωsωp.
In our experimental condition, considering a null walk off, this model

provides: ∆τ = −453 fs, the minus sign means that the HH pairs exit
before than the V V ; the linear angular term is α = −0.297 rad/mrad: this
means that the relative phase profile decrease of 0.297 rad increasing the
emission angle of 1mrad respect to the pump propagation direction. This
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is symmetrical on both arms. The walk off effect becomes important when
the transverse momentum is not conserved (small pump beam radius) and
results in an asimmetric angular slope values between signal and idler and
in a linear spectral dependence.

2.3.2 The relative phase term (HH generated in the first
crystal)

Consider the opposite situation with |HH〉 pairs are generated in the first
crystal. They travel in the second crystal having the optical axes in the
propagation plane as depicted in figure (2.5 (left)). Thus the optical path
is calculated in a different way (i.e. using eq. (2.49)). In such a case the
phase Φ reads

Φ(ωp, ωs, θ, θ
′) =− ke(φPM , θ2, ωs)

L

cos(ρ− θ2(θ))
cos(ρ)+

−ke(φPM , θ′2, ωp − ωs)
L

cos(ρ′ + θ′2(θ′))
cos(ρ′)+

+ko(ωp)L+

−kair(ωs)L tan(ρ− θ2(θ)) sin(θ0 + θ)+

+kair(ωp − ωs)L tan(|ρ′ + θ
′
2(θ

′)|) sin(|θ′0 + θ′|)+
−δx∆k⊥ + δy∆k⊥y; (2.79)

with ρ and ρ′ the angles between the wave vectors and the Poynting vec-
tors of the two horizontal photons which travels in the second crystal as
extraordinary wave. These angles are calculated with eq. (2.33).

41



Chapter 3

The experimental setup

In this chapter we will describe the experimental setup we used in our labo-
ratory to generate and manipulate entangled state in polarization and mo-
mentum. In the first section (sec. 3.1) we will describe the optical system
used in our laboratory. The peculiarity of our source is the large angle and
spectrum coupled; in section 3.2 we will describe the coupling system and
the methods used to optimize its efficiency. We also describe in sec. 3.3
the alignement procedure for descendants. Then we will explain the work-
ing principle of the Spatial Light Modulator in sec. 3.4. In the section
3.5 we will describe the spectrometer we build to analise the SPDC output
spectrum since cheap commercial spectrometers does not have intensity res-
olution. The section 3.6 closes the chapter with a brief description of our
home made single photon detectors.

3.1 The optical system

The experimental setup is depicted in fig. (3.1). The pump is a linearly po-
larized continuous wave, 405nm, 40mW laser diode (Newport LQC405 −
40P ). The output of such a laser suffers of astigmatism (i.e. a different
divergence over the two axis) and the spatial profile is not gaussian. We
thus compensate for beam astigmatism using a couple of cilindrical lenses
and then, with a spatial filter, we ”clean” the transverse profile of the beam.
Hence the laser passes through a telescopic system which prepares the de-
sired beam radius. An half wave plate (HWP) rotates the polarization at
45◦ in order to pump equally both crystals. A birefringent crystal (or a
system of crystals), denoted as ∆τ in figure, precompensate for the delay
time as we will see in the following chapter. The polarization entanglement
source is based on two 1.07 ± 0.003mm length, β−Barium borate (BBO)
crystals cut for type-I SPDC stacked back to back with the optical axis
aligned in perpendicular planes (horizontal and vertical in the laboratory
reference frame), the method proposed in [8] and realized for the first time
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by Kwiat et al. in [11]. We can use two different configuration of the crys-
tals depending on which is the plane (H or V) that contain the first crystal
optical axes, i.e. the first crystal generates |V V 〉 or |HH〉 photons. The
crystals generates photon pairs in a non collinear configuration (θ0 = 3◦).
The pump beam is stopped and the SPDC photon pairs passes through a
spatial light modulator (SLM) which introduces a polarization and position
dependent phase shift. Then two slit select the angular aperture ∆θ in the
horizontal plane, while two larger irises select the vertical coupling. P and
P ′ in the figure denote the polarization projectors: during alignement and
visibility measure they are two polarizers, while for the quantum tomogra-
phy they are both replaced by a quarter wave plate, an half wave plate and
a polarizer. Then two spectral filters (F and F ′) select the spectral width
or simply reduce the background. Then a large coupling system send pho-
tons into two multimode fibers (MMF) and then to single photon counting
modules. A computer controls the SLM and receives direct and coincidence
counts from detectors.

Figure 3.1: Sketch of the experimental setup.

3.2 The large coupling system

Our goal was to couple efficiently in an optical fiber photons over a large an-
gular and spectral distribution. In order to maximize the angular collection
efficiency we use as fiber couplers two Air-Spaced Doublet Collimators from
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Figure 3.2: Photo of the experimental setup. The laser source is not shown;
it is out of the photo on the left-top side.

thorlabs (F810-FC-780) having a theoretical 1/e2 collimated beam diameter
of 7.5mm. In order to maximixe photon coupling into a multimode fiber
(core diameter of 62.5µm) we use an imaging technique [40, 41, 42]. The
coupler lens is at a fixed distance respect to the generating crystals but the
fiber is mounted on a linear translation stage, thus we can finely adjust the
fiber edge distance from the lens. The purpose is to image on the fiber edge
a spot on the crystals which has the same width of the pump beam radius.
Experimentally one optimize the coupling looking for the maximum of the
detector’s counts as a function of the fiber edge position.

The choice of the coupler has been tested with the following measure-
ment. Once we have optimized the coupling with the fiber position, we
measure the direct counts as a function of the iris aperture (diameter d).
We use a large pump beam waist thus the transverse momentum is con-
served and the relation in eq. 2.66 holds, thus we can use ωs = ωs(θ, θ

′).
The measure is reported in fig. (3.3) together with the following fit function

F (d, σ,M) =

∫ d/2

−d/2
dθ I(θ)T (θ, σ,M); (3.1)

where I(θ) =
∫
dθ′|f(Ω0

p, ωs(θ, θ
′), θ, θ′)|2, and T (θ, σ,M) = e

−2
(
θ
σ

)2M

is the
lens transmittivity function. As it is evident from the plots the Air-Spaced
Doublet Collimator couples efficiently also photons at large angles.
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Figure 3.3: Coupling versus iris diameter. Red circle correspond to the air-
spaced doublet collimators (F810-FC-780), blue squares correspond to an
acromatic lens. Solid lines are fits with the function in equation (3.1). Or-
ange fit correspond to σFWHM = 20mrad, M = 1 while green fit correspond
to σ = 5.1mrad, M = 5.

3.2.1 Coupling efficiency versus pump beam radius

We report here the measure of the detected number of photons (per second
and per mW of pump power) as a function of the pump beam radius r. We

consider the beam transverse profile as gaussian ∼ e−2
x2+y2

r2 . Changing the
telescopic system we set several quasi collimated pump beam with different
radius. The spatial filtering is done with the slits setted at ∆θ = 10mrad.
On the left part figure (3.4) shows the result for direct counts; red circles
are with a longpass filter (cut-on wavelength of 715nm) while blue squares
are with the 10nm bandpass filter around 810nm. On the right are plotted
the coincidences (within 10nm) per second and mW of pump power.

3.3 Alignement procedure

The procedure for the alignement of the apparatus goes as follow:

• Align the pump laser beam;

• Align the optical axes of the crystals in the horizontal and vertical of
the laboratory;

• Using a probe laser (at 780nm) align the couplers (F810-FC-780) at
the noncollinear angle (3◦) following the line on the optical table. We
couple the probe laser into a fiber and then into the coupler. In such a
way the laser travels in the opposite direction respect to SPDC signal
(idler) photons.
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Figure 3.4: On the left we show the direct counts per second and mW of
pump power versus the radius of a quasi-collimated pump beam; red circles
are with a longpass filter (cut-on wavelength of 715nm) while blue squares
are with the 10nm bandpass filter around 810nm. On the right we plot the
coincidences between signal and idler (within 10nm) per second every mW
of pump power.

• Mount the spectral filter and the iris on the coupler and align the
polarizer.

• Align the slit taking care that it cuts the beam simmetrically. We
image the slit on a camera using the same probe laser to enhance the
precision.

• Search for the central pixel, i.e. the SLM pixel which is at the centrum
of the beam, that is along the path at θ0 = 3◦. By inserting a polarizer
before the SLM set at 45◦ and one after set at 45◦, and by using a lens
we image the SLM surface on a camera. We set the SLM phase at π
on the candidate pixel and at 0 elsewhere. On the camera we see a
black line in correspondence of the phase π (see fig. (3.5)).

• Switch off the probe laser and switch on single photon detectors; set
the pump laser beam at vertical polarization using the half-wave plate,
then set the polarizers transmitting horizontal polarization. Find the
optimal phase matching angle tilting the vertical screw on crystals
mounting and looking for the maximum counts on both channels.

• Optimize the coupling efficiency with coupler’s screw and with the
fiber edge position behind the coupler’s lens.
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• Rotate the pump polarization till horizontal and set the polarizer at
verical position. Tilting the horizontal screw of the crystal mounting
find the optimal phase matching optical axis angle.

• Set pump polarization and polarizers at 45◦. Using the SLM send a
constant phase which maximize the coincidences. With the couplers
screw optimize direct counts and coincidences.

• Adjust the pump polarization for perfect balancing of HH and VV

pairs.

• Set with the SLM the desired compensation function. Set the polar-
izers at 45◦ and −45◦. Scan a constant phase to find the minimum
number of coincidences.

• Set the optimal parameters and measure Visibility. For the optimiza-
tion procedure repeat this procedure for different compensation func-
tions in order to obtain the highest visibility as possible.

Figure 3.5: Method for the search of the central pixel. On the left the image
of SLM plane; the fiber input is the light diffracted by a polished surface.
On the right the same image but using as fiber input the light diffracted by
a rotating polished disc. The black line is the SLM pixel.

3.4 The spatial light modulator

The Spatial Light Modulator (SLM) has a basic role in this work. In this
section we will explain its operating principle and the calibration procedure.

Our SLM is a one-dimensional SLM −S640 from Jenoptik Optical Sys-
tems. Confined by two glasses there is a nematic liquid crystals with the
axes in the horizontal plane. The orientation α of this axes respect to the
propagation direction, depends on the electric field applied by transparent
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electrodes. Vertically polarized light feel an ordinary refractive index while
the horizontal polarization see an extraordinary index of refraction depen-
dent on the liquid crystal orientation α. The relative phase between the two
polarization introduced by the SLM is thus

ψSLM (∆V ) =
ω

c
[nH(α(∆V ))− nV ] d; (3.2)

where d = 10µm is the liquid crystal depth, nV = no is the ordinary refrac-
tive index of the liquid crystal and

1

nH(α(∆V ))2
=

sin2(α(∆V ))

n2
e

+
cos2(α(∆V ))

n2
o

As depicted in Fig. (3.6) our SLM is one dimensional and is composed by
640 pixels. Each pixel is driven independently, thus we can introduce a
position and polarization dependent phase shift. Each pixel is 97µm width
and the distance between two adiacent electrodes is 3µm. The liquid crystal

Figure 3.6: The Spatial Light Modulator. On the left a sketch of the device
with the important sizes. On the right the zoom of a single pixel with the
representation of an oriented liquid crystal; the orientation α depends on
the voltage difference applied by the electrodes, thus the extraordinary index
of refraction, seen by horizontal polarization, is voltage dependent too.

refractive indexes, like other materials, depend on the frequency of light ω.
Furthermore non-normal incidence on the SLM surface induce an angular
phase dependence since the liquid crystal orientation α(∆V ) is considered
respect to the propagation direction. From this consideration we can rewrite
the relative phase as ψSLM (∆V ) = ψSLM (∆V, ω,Θin). From a PC we send
to the SLM an array of 640 integer number in the range 0 ≤ n ≤ 4000; each
number n correspond to a different ∆V .

3.4.1 Calibration procedure

The calibration of the SLM is done using SPDC light from the same gen-
erating crystals and selecting 10nm using a band pass filter in front of the
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couplers and 10mrad using the slit (see Fig. (3.1)). Since signal and idler
incident angles are different we need two distinct calibrations, one for each
branch.

Considering a single channel we insert a polarizer set at 135◦ in front
of the SLM and one behind set at 45◦. The Spatial Ligth Modulator insert
a phase ψSLM (n), where n is the number sent by PC, remember that each
number n correspond to a different voltage ∆V . We generate horizontal
polarized photons |H〉 with one of the two crystals; then the first polarizer
transmits the polarization 1√

2
(|H〉− |V 〉), hence the photons passes through

the SLM and the polarization becomes 1√
2
(eıψSLM (n)|H〉 − |V 〉). Then the

second polarizer projects over |45◦〉〈45◦|, obtaining at the output the follow-
ing intensity

T (n) = T0 sin
2(ψSLM (n)

2 + kπ) with k ∈ Z. (3.3)

In Figure (3.7) we report a typical calibration measurement; we report the
direct counts as a function of the numbers n sent to the SLM. We measure

Figure 3.7: A typical calibration measurement. The counts are proportional
to the function (3.3).

the number of photons for a proper interval of numbers n giving at least a
range of 2π; for example for a plot like the one depicted in fig. (3.7) we can
select the region between 200 ≤ n ≤ 900. Then we invert the relation in eq.
(3.3) in the different region, obtaining the calibration function ψSLM (n) in
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the following way

φSLM (n) =





2 arcsin
√

T (n)
T (n1)

n1 ≤ n

2π − 2 arcsin
√

T (n)−T (n2)
T (n1)−T (n2)

n2 ≤ n ≤ n1

2π + 2 arcsin
√

T (n)−T (n2)
T (n3)−T (n2)

n3 ≤ n ≤ n2

...

2 kπ + 2 arcsin
√

T (n)−T (n2k)
T (n2k+1)−T (n2k)

n2k+1 ≤ n ≤ n2k

. (3.4)

Using KALEIDAGRAPH Smooth we fit the data φSLM (n) in order to solve
ordering problems. Then we plot the inverse function n(φSLM ) and we fit
another time with 10000 points. In this way we have a file equispaced in
the phase φi. We call i the index of the calibration file ni(φi). We take as
calibration array just the column which contains the numbers ni. Labview
programs driving the SLM uses the array ni and the searching function
i = a·φ+b, with φ the phase one want to impose and a, b constants depending
on the calibration array and calculated solving the following system:

{
0 = a · φ0 + b;

9999 = a · φ9999 + b,
(3.5)

where φ0 and φ9999 are the phase in the calibration file corresponding to
the positions i = 0, 9999. These two constants a and b could be added
at the end of the calibration array ni respectively in positions i = 10001
and i = 10002. We repeat the procedure on the other channel obtaining a
different calibration.

3.4.2 Angular and spectral dependence

We want to estimate the effect of different incidence angles and frequencies.
Considering a linear angular and spectral dependence we can write the SLM
phase shift as

ψSLM (n, δθ, δω) = ψ0 + βδθ + γδω. (3.6)

We can estimate the angular dependence exploiting the two different cal-

ibration. Calling ψ
(1)
SLM (n) the calibration at θ0 = 3◦ and ψ

(2)
SLM (n) the

calibration on the other branch (at angle θ′0 = −θ0) we have

ψ
(1)
SLM (n) = ψ0 + βθ0

and
ψ
(2)
SLM (n) = ψ0 − βθ0

since the spectrum is narrow. Thus we obtain

β =
ψ
(1)
SLM (n)− ψ

(2)
SLM (n)

2θ0
' 7.92. (3.7)
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Considering h = 100µm the total pixel width and D = 310mm the distance
between the SLM and the crystals along θ0, and calling np the pixel number,
we have δθ ' h

Dδnp. We thus have β′ = β h
D ' 2.4 · 10−3 rad/pixel.

On the other hand, considering the SPDC output central frequency Ω0
p/2,

the signal and idler frequency shift ωs and ωi = ωp−ωs (ωp being the pump
frequency shift), the SLM phase shift is frequency-dependent and reads

ψ
(1)
SLM (n) = ψ0 + γωs

and
ψ
(2)
SLM (n) = ψ0 + γωi = ψ0 + γ(ωp − ωs).

The consequence is that if one considers the photons on a single arm, he
cannot neglect the SLM spectral effect. While measuring the coincidences
between the two channels the phase is a total phase between |HH〉 and |V V 〉
pairs and one must sum the contribution:

ψ
(1)
SLM (n) + ψ

(2)
SLM (n) = 2ψ0 + γωp. (3.8)

The net effect is the removal spectral dependence on the broad SPDC spec-
trum; what remains is only a contribution in the pump frequency shift (i.e.
γ is an effective delay time). In order to estimate this contribution we take
the expression given by the SLM manual

ψman
SLM (n, λ) = ψSLM (n) · C(λ) (3.9)

where ψSLM (n) is the calibration curve with λ = λ0 = 810nm. The correc-

tion function is C(λ) = λ0
λ

∆n(λ)
∆n(λ0)

with ∆n(λ) = ne(λ, n)− no(λ) the optical

anisotropy which could be fitted by the function ∆n(λ) = ∆n∞ λ√
λ2−λ2

r

(with

∆n∞ = 0.2002 and λr = 327.44nm). Expanding this expression to the first
order in λ and considering ∂ω

∂λ = −2π c
λ2 we obtain

γ(n) = ψSLM (n)

(
− λ2

0

2π c

)
∂C(λ)

∂λ

∣∣∣
λ0

. (3.10)

We observe that γ depend by the count n because for different count the
liquid crystal have a different orientation. In our calibration we consider the
range 2π ≤ ψSLM (n) ≤ 4π, thus 3.2 fs ≤ γ ≤ 6.5 fs is a small correction
to the delay time.

3.5 The spectrometer

In order to measure the large SPDC spectrum we build a spectrometer in
the following way. We exploit two gratings (1200 lines/mm) set in a 4− f
configuration, two lenses (f = 35mm) and a knife which cut the spectral
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Figure 3.8: The Spectrometer. (left) Sketch. (right) Photo.

distribution in the focal plane (see fig. (3.8)). The first grating separates
the wavelengths following the law:

θd(δλ) = asin

(
λ0 + δλ

d
− sin(θi)

)
, (3.11)

where θi and θd are respectively the incident and diffracted angles measured
from the grating normal, d = 1/1200mm is the line separation, λ0 = 810nm
and δλ is the shift from the central wavelength. At a distance f from the
grating we set the first lens, thus the spectral components are then focalized
and travels parallel one to each other. The spectral range of this device
is limited by the angular acceptance of the lens. In the focal plane of the
first lens we have the spectral components well separated. The resolution
of the spectrometer is limited by the focalized spot size; in our case the
resolution is few nanometers. A second lens set at a distance 2 f from the
first collimates the spectral component which then converge on the second
grating. The latter gathers the components on the same output beam.
Photons are then collected into a multimode fiber by a coupler and sent to
a single photon detector. Using a knife in the focal plane with horizontal
position x we cut the spectral distribution for an integral measure. Using
a lamp and a commercial spectrometer (Thorlabs SPLICCO) we calibrate
the knife position obtaining

λ(x) = 985.69− 18.11 · x+ 0.436 · x2 − 0.018 · x3.
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Then we measure the transmittivity of the spectrometer, useful for re-
normalization obtaining after a fit

T (λ) = 0.111 · exp
[
−2

(
λ− 773.79

134.85/1.177

)2
]
.

Figure 3.9: SPDC spectrum. (top) Raw measure of the counts versus the
knife position: (left) Coincidences, (right) Direct counts. (bottom) Recon-
structed spectral distribution of coincidences (left) and directs (right). The
coincidences spectrum have a Full Width at Half Maximum of 72nm (from a
Gaussian fit), while directs is large about 160nm. Experimental conditions:
slit apertures ∆θ = 10mrad, pump beam radius of 550µm and longpass
filters on both channels with cut on wavelength of 715nm.

We call S(λ) the spectral distribution one want measure; in the focal
plane of the spectrometer it become S(λ(x)). We measure the integral pho-
ton counts

N(λ(x)) =

∫ λ(x)

−∞
dλs S(λs) · T (λs) ·QE(λs). (3.12)

QE(λ) for direct counts is the quantum efficiency of a single detector,
while for coincidences it includes the effect of the two detectors and reads
QE(λs) = QE1(λs)QE2(λi(λs)), where idler wavelength λi is linked to the
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signal one λs by energy conservation see eq. (2.54). A typical measure is
reported in figure (3.9) togheter with the fit. Coincidences are well fitted by
a Fermi-Dirac function:

C(x) = a+
b

e
x−c
d + 1

,

while the direct counts are fitted with the KaleidaGraph’s Smooth func-
tion. From the numerical derivative of the fit we obtain the raw spectral
distribution. After renormalization with the Spectrometer’s transmittivity
T (λ) and the detector’s quantum efficiency QE(λ) we obtain the SPDC
spectral distribution. The spectral measurements, reported in figure (3.9),
are taken with slit apertures ∆θ = 10mrad, pump beam radius of 550µm
and longpass filters on both channels with cut on wavelength of 715nm. The
coincidences spectrum have a Full Width at Half Maximum of 72nm (from a
Gaussian fit), while directs is large about 160nm. Basically the coincidence
spectrum is reduced by the quantum efficiencies of the detectors.

3.6 The detectors

Our home-made detectors are based on silicon avalanche photodiodes oper-
ating in Geiger configuration with passive quenching. Light is driven to the
photodiodes by the multimode fibers. According to the semi-classical the-
ory of photoemission, when a photon is absorbed, an electron is excited to
the conduction band. The p-n junction is polarized inversion with a tension
V, and thus a flow of electrons occurs only above the breakdown tension
V > VBD ' 200V . The emission probability depends on the difference
∆V = V − VBD. Such an avalanche, caused by the initial acceleration of a
single electron, is detected as a macroscopic current. This current is then
quenched by resistors R1 and R2 in series with the photodiode. The pulse
lenght is τ = (R1+R2)C ' 1µs, where C is the photodiode capacitance. It
is a death time for the detectors and thus limits the maximum counting rate
to be much smaller than 1/τ ' 106 counts/s. Then the photodiode signal
passes through an electronic circuit for pulse shaping exploiting a compara-
tor and a monostable. The former gives a square pulse with a variable
length, depending on time windows in which the photodiode pulse remains
above a certain voltage threshold. Then a monostable gives equals square
pulses of 50ns.

Of course electrons can reach the conduction band also by thermal ex-
citation: such effect is reduced by cooling the detectors up to −20◦C with
a Peltier cooler. In such a way the so called dark counts are limited to
100 − 200 counts/s using ∆V = 4V . The Quantum Efficiency of the de-
tectors thus depends both on the tension above breakdown ∆V , both on
the incident wavelength. Our silicon photodiodes have an absorption peak
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Figure 3.10: Sketch of the pulse shaping circuit.

of about 80% around λ = 800nm. For ∆V = 4V the probability of pho-
toemission is ∼ 17.5% (from photodiode’s datasheet). The total Quantum
Efficiency is about 13.5% on the peak (λ ' 800nm), with a slow decline for
shorter wavelength and a sharp drop increasing the wavelength.

Coincidences are measured electronically sending the count pulses to
a TAC/SCA: when the first pulse arrives, a linear voltage ramp start
to increase (START), while the second pulse passes throught a delay line
τD. When the delayed count reach the TAC/SCA the ramp is interrupted
(STOP); the two counts are said to be contemporary if the STOP is detected
at time τTAC within a temporal window ∆τTAC . The last two parameters
are adjustable, in particular ∆τTAC could be reduced till 1ns, thus drasti-
cally reducing the accidental coincidence counts CAcc = N1N2∆τTAC , with
N1, N2 the direct counts on the two detectors. The other parameter τTAC is
set equal to τD maximizing the coincidences rate within the window ∆τTAC .
Actually, even if the electronics of the detectors is the same, the shape of the
photodiode pulse changes at every count. This results in different delays be-
tween the photodiode and the monostable signal, since the photodiode rises
exceed the comparator threshold at different instants. Hence ”true” coin-
cidence counts are also reduced by a narrow contemporary window, due to
the detectors’ jitter. The jitter has been measured to be 5ns on the signal
detector and 9.5ns on the idler one. About half of coincidences are lost set-
ting ∆τTAC of the same order of the jitter. As a trade-off between limiting
accidental counts and detecting efficiently ”true” coincidences we therefore
set a contemporary windows ∆τTAC = 50ns.
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Chapter 4

Entanglement measures

In this chapter we will explain the measures we usually made on the en-
tangled state. In order to quantify the state purity and the concurrence we
measure the state visibility as explained in section 4.1. Then, in sec. 4.2, we
report an example of quantum tomographic measurement with the recon-
struction of the density matrix and in sec. 4.3 I suggest a way to measure
the concurrence in our particular case. In sec. 4.4, we report the measure of
Bell parameter S which demonstrates the presence of nonlocality when it is
larger than 2. Finally in sec. 4.5 we report the experimental measure of the
angular correlation between signal and idler for different spectrum coupled.

4.1 Visibility

We want to quantify the amount of polarization entanglement. We consider
a generic state

|ψ〉 = 1√
2

∫
dξF (ξ)

(
|HH〉+ eıΦ(ξ)|V V 〉

)
(4.1)

with ξ a certain variable with amplitude probability distribution F (ξ) (even
and normalized function

∫
dξ|F (ξ)|2 = 1). The phase Φ(ξ) = Φ0 + αξ +

1
2βξ

2 + . . . is a generic phase function expanded in a Taylor series with
constant term Φ0 set to 0. Using the two polarizers (see Fig. (3.1)) we
project signal photons over |45◦〉 = 1√

2
(|H〉+ |V 〉) and idler photons over a

generic polarization at angle |ϕ〉 = cos(ϕ)|H〉+ sin(ϕ)|V 〉. The probability
of coincidence counting reads

P (ϕ) =|〈45◦, ϕ|ψ〉|2 =
=
1

4

∫
dξ|F (ξ)|2(1 + sin(2ϕ) cos(Φ(ξ)))

=
1

4

(
1 + sin(2ϕ) ·

∫
dξ|F (ξ)|2cos(Φ(ξ))

)
. (4.2)
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Such a function has a maximum for ϕM = 45◦ and a minimum for ϕm =
−45◦ (see fig. (4.1)). The cos(Φ(ξ)) term reduces the maximum value and
lifts the minimum, furthermore the effect of different Φ(ξ) is averaged by the
integral, giving a global reduction of the relative amplitude. The Visibility

Figure 4.1: Coincidence counts with signal polarizer set at 45◦ and scanning
idler polarizer. We can see that maximum and minimum occurs respectively
at 45◦ and 135◦ = −45◦. The red line is the fit with the function in eq.
(4.2). The Visibility of the entangled state is always calculated using the
maximum and the minimum of this plot.

reads

V is =
P (45◦)− P (−45◦)
P (45◦) + P (−45◦)

=

∫
dξ|F (ξ)|2 cos(Φ(ξ)) = Re[ε], (4.3)

where ε =
∫
dξ|F (ξ)|2 eıΦ(ξ). We put in evidence that only in the case with

Φ0 = 0 and odd phase function Φ(ξ), the visibility is a good measure of
the amount of polarization entanglement, since

∫
dξ|F (ξ)|2 sin(Φ(ξ)) = 0

and thus the visibility equals the concurrence C = | ∫ dξ|F (ξ)|2 eıΦ(ξ)| (see
section 1.3). Nevertheless this situation often occur and we refer to visibility
as the state purity and as good polarization entanglement measure.

To report our state into the situation of null constant term Φ0 we use
the Spatial light Modulator. The total phase is thus Φ(ξ) − φSLM with
φSLM = b1 + b2 where b1 and b2 are constant phases introduced by the
SLM respectively on signal and idler channel. We act as follow: setting
the polarizers in the configuration for a minimum (45◦,−45◦) and keeping
fixed the constant phase term on one channel (say b2 = 0), we measure the
coincidences for different constant phase term b1 on the other arm. As one
can see from fig. (4.2) we obtain a sinusoidal function. Notice that the
procedure gives the same result scanning b2 instead of b1 (setting b1 = 0).
The minimum occurs for φSLM = b1 + b2 = Φ0.
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Figure 4.2: Coincidence counts with polarizers set at 45◦, −45◦ for different
value of the constant phase b1 (with b2 = 0 (blue circles)) or b2 (with b1 = 0
(red squares)).

4.2 Tomography of the state

The most complete analysis of the state is the two-qubit tomography. It
consists in the reconstruction of the global density matrix and requires 16
different projectors as explained in sec. 1.4. We insert on both channel
a quarter-wave plate, an half-wave plate and a polarizer which transmit
vertical polarized photons. Setting wave plate angles in the configurations
expressed in table 1.1 we measure the coincidences between signal and idler.

We report an example of the set of 16 measurements (coincidences over
60 s): {n1 = 2020; n2 = 71; n3 = 2050; n4 = 68; n5 = 1000; n6 = 1030; n7 =
970; n8 = 1000; n9 = 1120; n10 = 1730; n11 = 1100; n12 = 1030; n13 =
1000; n14 = 975; n15 = 1025; n16 = 1705}. Then following the procedure
explained in sec. 1.4.2 a Maximum likelihood reconstruction with a numeric
optimization procedure is carried out. The result is the physical density ma-
trix ρ = |ψ〉〈ψ| of the generated state. In figure (4.3) we report the result for
the previous set of measurements. It is a typical representation of a density
matrix; on the right we report the Real part while on the left the Imaginary
part. From the knowledge of the density matrix one can calculate some
important quantity. For example the Concurrence defined in sec. 1.3 for the
previous example is C = 0.70 while the visibility, measured as explained in
sec. (4.1) reads V is = 0.696± 0.013.

4.3 Concurrence measurement

We consider a situation in which the relative phase Φ(ξ) is an even function.
As we have seen in sec. 4.1, in such a situation one cannot give the visibility
as a good estimation of the entanglement. A possible correct estimator is the
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Figure 4.3: Example of a Tomographic reconstruction of a polarization two-
qubit density matrix. On the right the Real part and on the left the Imaginary
part.

Concurrence [31]. Definition has been given in eq. (1.10), here we address
the problem of its measure.

In the general case concurrence estimation requires the knowledge of the
whole density matrix. In some cases its calculation is simplified. Here we
consider states like the Bell ones

|Φ〉 = 1√
2

∫
dξF (ξ)

(
|HH〉+ eıΦ(ξ)|V V 〉

)
;

|Ψ〉 = 1√
2

∫
dξF (ξ)

(
|HV 〉+ eıΦ(ξ)|V H〉

)
. (4.4)

Considering ε =
∫
dξ|F (ξ)|2 eıΦ(ξ), in both these cases the concurrence is

C = |ε|. The method to measure the real part Re[ε] has been reported in
the section 4.1 and it is valid for all the state which can be written as in eqs.
(4.4). I suggest the following procedure to measure the Imaginary part:

• Insert on signal path a quarter-wave plate QWP set with the fast axis
at angle q = 90◦ respect to the vertical of the laboratory (see the inset
in fig. (1.1) and equation (1.14));

• Then we measure coincidences with polarizers at 45◦, 45◦ and 45◦,−45◦

and we measure the Visibility as defined in sec. 4.1.

• In such a case the visibility equals the imaginary part of the out of
diagonal element:

V isQ =

∫
dξ|F (ξ)|2 sin(Φ(ξ)) = Im[ε]. (4.5)
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Then Concurrence is thus

C =
√
Re2[ε] + Im2[ε] =

√
V is2 + V is2Q,

where V is is the visibility measured without the insertion of the QWP.

4.4 Measurement of the Bell’s parameter in the
CHSH form

In sec. 1.5 we have explained the theory behind the measurement of the
Bell’s parameter and its role in the discrimination between a local and real
theory and quantum mechanics. We have seen that quantum mechanics
predicts a value larger than 2 for certain choice of the polarizer’s angle θ,
while a real and local theory based on hidden variable limits its value to
|S| ≤ 2. We have seen (see Fig. (1.2)) that the maximum expected by
quantum mechanics in the function S(θ) depends on the state purity. Thus,
in order to measure the highest violation as possible of the limit 2, we have to
measure first of all the state purity, and then to choose the angle θ for which
the function S(θ), evaluated from a numerical prediction, has a maximum.
Then we measure the functions P and E in order to have an experimental
value of the Bell parameter S using the definitions in eq. (1.33) and eq.
(1.35), which we report here for convenience:

E(α, β) = P (α, β) + P (α⊥, β⊥)− P (α⊥, β)− P (α, β⊥), ∀α, β; (4.6)

S = E(a, b)−E(a, b′)+E(a′, b)+E(a′, b′), with a = 0, b = θ, a′ = 2θ, b′ = 3θ.
(4.7)

From the experimental point of view, we obtain P (α, β) from 4 coincidence
measurements; in effect it reads

P (α, β) =
Nc(α, β)

Nc(α, β) +Nc(α⊥, β) +Nc(α, β⊥) +Nc(α⊥, β⊥)
, (4.8)

where Nc(α, β) is the coincidences with signal and idler polarizers set re-
spectively at angles α and β. These are the same 4 measurements re-
quired to calculate E(α, β). Since S is composed by 4 different E values
we need 16 coincidence measurements. In the table (4.1) we report the
sixteen experimental measurement required. For example, we have an en-
tangled state with visibility (purity) equal to 88.5 ± 1.2. The function S(θ)
has a maximum for θ = 23◦ and the theoretical value is S(23◦) ' 2.668.
We measure coincidences over 90 s for the sixteen projectors given in ta-
ble 4.1 and we obtain the following set of measurement {N1 = 7195; N2 =
1294; N3 = 1141; N4 = 7200; N5 = 1333; N6 = 7078; N7 = 7135; N8 =
1089; N9 = 6765; N10 = 1733; N11 = 1817; N12 = 6787; N13 = 7026; N14 =
1478; N15 = 1459; N16 = 6986}. The error for the count Ni is the square
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coinc signal polarizer idler polarizer P

N1 a b P (a, b)
N2 a b⊥ P (a, b⊥)
N3 a⊥ b P (a⊥, b)
N4 a⊥ b⊥ P (a⊥, b⊥)
N5 a b′ P (a, b′)
N6 a b′⊥ P (a, b′⊥)
N7 a⊥ b′ P (a⊥, b′)
N8 a⊥ b′⊥ P (a⊥, b′⊥)
N9 a′ b P (a′, b)
N10 a′ b⊥ P (a′, b⊥)
N11 a′⊥ b P (a′⊥, b)
N12 a′⊥ b⊥ P (a′⊥, b⊥)
N13 a′ b′ P (a′, b′)
N14 a′ b′⊥ P (a′, b′⊥)
N15 a′⊥ b′ P (a′⊥, b

′)
N16 a′⊥ b′⊥ P (a′⊥, b

′
⊥)

Table 4.1: Summary of the sixteen projective measurements for the mea-
surement of the Bell parameter S. Signal and idler polarizers angles are
a = 0, b = θ, a′ = 2θ, b′ = 3θ. The angle θ is the one which max-
imize the function S(θ) given the state purity p. Using N1, N2, N3, N4

we evaluate E(a, b); with N5, N6, N7, N8 we evaluate E(a, b′); while us-
ing N9, N10, N11, N12 we evaluate E(a′, b) and with N13, N14, N15, N16 we
evaluate E(a′, b′).

root of the number
√
Ni. With these coincidence counts and from error

propagation we obtain Sexp = 2.658 ± 0.011. The value violate the limit
of 2 for 57σ. This prove that a local and real theory cannot explain the
phenomena of entanglement.

4.5 Angular correlation

The entanglement in the momentum could be visualized by the angular
correlation between signal and idler. The theory and the simulation are
reported in sec. 2.2.1. As sketched in fig. (4.4) we measure coincidences
for different slits positions both on signal and idler. We place two slits of
aperture ∆, along the downconversion arms and we measure

C(θs, θi) =

∫ θi+
∆
2

θi−∆
2

dθ′
∫ θs+

∆
2

θs−∆
2

dθ

∫
dωp dωs

∣∣f(ωp, ωs, θ, θ
′)g(ωs, θ, θ

′)
∣∣2 F (ωp, ωs) ,

(4.9)
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Figure 4.4: Sketch of the apparatus for angular correlation measurement. We
measure coincidences for different slits positions both on signal and idler. In
front of the couplers there are spectral filters: on channel 1 it is a long pass
filter (cut-on wavelength 715nm), while on channel 2 we insert at will a
bandpass filter centered around 810nm with a band 10nm or a similar long
pass filter as channel 1.

with F (ωp, ωs) = Fs(ωs)Fi(ωp − ωs). The phase matching (central) angles
correspond to θs, θi = 0. Coincidences are taken over an acquisition time of
6s within a coincidence time window of 50ns. Fig. (4.5) reports the results
for the coincidence C obtained by coupling a narrow (10nm) or rather large
(60nm) spectrum and using large pump beam radius (550µm), thus with
transverse momentum conserved.
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Figure 4.5: Coincidences as a function of signal and idler angular displace-
ment θs and θi from the central angles. (Left panel) Completely uncorrelated
regime in the case of very large spectral distribution (∼ 60 nm, the angular
resolution is 2 mrad); (right panel) Angular correlation regime, we select 10
nm of the overall SPDC spectral distribution (angular resolution 1 mrad).

Let us devote some attention to the angular function f(θ, θ′) in the un-
correlated case (large spectrum coupled), which will be important for the
following discussion. We assume that it has the factorized form G(θ)G′(θ′).
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The corresponding coincidence counts distribution C = |fexp(θ, θ′)|2, re-
ported in the left panel of fig. (4.5), has been compared with the one com-
puted as

| fexp(θ, 0)fexp(0, θ′) |2
| fexp(0, 0) |2 ,

and an excellent agreement was found, also corroborated by a significant
χ2 test (Pχ2>χ2

0
' 0.9). Upon inspecting the distribution one sees that

the angular distributions G(θ), G′(θ′) are peaked around the central values
θ = θ′ = 0 value with a width of 8.6mrad.
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Chapter 5

Purification of entanglement

In this chapter we will describe in details the different effects which causes
a loss of purity of the polarization entangled state [25], and some technique
we used to compensate them. In sec. 5.1 we will explain the decoherence
due to the delay time in the relative phase term and its link with the power
spectrum of the pump beam. Then in section 5.2 we will explain the com-
pensation of the angular phase term, linear both in signal and idler angles,
using the SLM in a programmable way. Such procedure has been published
on Applied Physics Letters [26]. In sec. 5.3 we will describe the decoherence
due to the large spectrum coupled. In type-I SPDC this contribution is just
at second order since signal and idler have the same group velocities. We
will discuss the possibility of partial compensation using angular degrees
of freedom. In section 5.4 we will describe a method allowing the study
of the fourier transform of the pump spatial profile (g function) using the
entanglement purity and the SLM.

5.1 Power spectrum and Delay time

The total polarization entangled state we generate by type-I SPDC in the
two crystal geometry was written in eq. (2.68). In this section we will anal-
yse just the effect of pump frequency Ω0

p + ωp. The important contribution
in ωp comes from the pump spectrum; we have tested that the contribution
of the function f is negligible. We consider the situation in which the first
crystal have the optical axis in the horizontal plane, thus it generates VV

photon pairs. Considering just this variable the state become:

|ψ〉 = 1√
2

∫
dωpA(ωp)

[|H〉|H〉+ eı∆τ ωp |V 〉|V 〉] , (5.1)

where A(ωp) is the pump field amplitude and the phase term in ωp comes
from the expansion (see eq. (2.72)). ∆τ = 453 fs is the delay time between
|HH〉 and |V V 〉 pairs at the crystal output. Its calculation is written in eq.
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(2.74) and it has been calculated numerically. The visibility reads

V is(∆τ) = Re

[∫
dωp|A(ωp)|2 eı∆τ ωp

]
; (5.2)

as one can see it is the real part of the Fourier transform of the pump power
spectrum.

We have thus measured the power spectrum of the laser. The result,
together with its numerical fourier transform (visibility) is reported in fig.
(5.1). From the Fourier transform of the pump power spectrum we obtain

Figure 5.1: On the right the power spectrum of the pump laser. On the left
its Fourier transform, which correspond to the Visibility of the entangled
state written in eq. (5.2). The inset is a zoom of the Visibility for short
delay time; we can see that about 50 fs gives a visibility reduction of 0.005
which could be considered negligible.

also an information about the temporal coherence of our laser source. If we
take the 1/e2 temporal value of such curve we obtain that the coherence
time is τc ' 790 fs. Thus the delay time ∆τ of the entangled source is
comparable to the coherence time of the pump. The consequence is that the
entangled state visibility is partially reduced.

5.1.1 Delay time compensation

We now address the problem of entanglement purification. Since visibility
is the Fourier transform of the pump power spectrum, we could use a laser
beam with larger coherence time (for example a laser with a single tempo-
ral mode) to remove this contribution to decoherence. A simpler idea is to
precompensate the delay time on the pump path inserting a proper birefrin-
gent crystal which introduces the opposite delay [43, 44, 45, 46, 47, 48], as
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calculated in the following formula

∆t = L ·
(

1

veg(Ω
0
p, φOA)

− 1

vog(Ω
0
p)

)
, (5.3)

where L is the crystal length while veg and vog are respectively the extraordi-
nary and ordinary group velocities within the birefringent crystal; φOA is the
angle between the optical axis of the crystal and the propagation direction.
Fig. (5.2) report the visibility measure for different delay time obtained
using different crystal length and optical axis orientation (φOA). The red
curve is the theoretical prediction evaluated from eq. (5.2) substituting ∆τ
with ∆τ − ∆t. These measurement has been taken with the following pa-

Figure 5.2: Visibility for different delay time compensation ∆t obtained with
birefringent crystals set on the pump path (see Fig. (3.1)). The red curve
is the theoretical prediction evaluated from eq. (5.2) substituting ∆τ with
∆τ −∆t.

rameter of the experimental setup (see fig. 3.1): the pump beam waist is
set at 550µm, the slits width are ∆θ = ∆θ′ = 8mrad; the iris aperture
which limits the vertical coupling are set at 12mrad; the spectral filters F
and F ′ are longpass filters with cut on wavelength 780nm. Furthermore the
angular phase is compensated to the first order by the SLM as explained in
the following section.
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The optimal compensation for the delay time has been found using a
3mm type-I BBO crystal with optical axis in the vertical plane. It intro-
duces a delay of 397 fs. In the following the delay time is considered always
compensated. This crystal introduces a walk off in the vertical direction of
203µm.

5.2 Programmable purification of angular phase
term

In this section we will describe the purification procedure using the Spa-
tial Light Modulator. The advantages of this operation is twofold; on the
one hand this allows us to dramatically decrease the spectral and angular
filtering of downconverted photons, which is the method generally used to
prevent the degradation of the purity. Moreover the SLM may be externally
controlled, via software, and this makes our method more easily adjustable
for the different implementations, compared to purification schemes that
involve the use of suitably prepared crystals along the path of the downcon-
verted photons [25].

We take the expansion of the phase term in eq. (2.72), with the de-
lay time ∆τ removed as explained above (sec. 5.1.1) and we neglect for
instance the walk off contribution using a configuration with large pump
beam waist (550µm). This configuration simplify the treatment since the
function g(ωs, θ, θ

′) ≈ δ(ωs, θ, θ
′) and the three parameters are no more in-

dependent but linked by the relation θ′ = −θ + γωs. The consequence is
that we remove one of them from the analysis. For the sake of simplicity
we remove ωs. Furthermore we don’t consider the second order spectral
effect because it will be analysed in a following section. The phase term we
consider is thus

Φ(θ, θ′) = Φ0 + αθ − αθ′. (5.4)

Using the one dimensional Spatial Light Modulator (SLM) we insert the
linear phase ΦSLM (θ, θ′) = α1θ−α2θ

′+β acting on the horizontals photons,
β is a constant phase. The state after the SLM is thus

|ψ〉 = 1√
2

∫
dθ

∫
dθ′f(θ, θ′)

[
|H〉|H〉+ eı[Φ0+αθ−αθ′−ΦSLM (θ,θ′)]|V 〉|V 〉

]
,

(5.5)
and the Visibility reads

V is(α1, α2) = Re

[∫

∆θ
dθ

∫

∆θ′
dθ′|f(θ, θ′)|2 eı[(α−α1)θ+(α2−α)θ′+Φ0−β]

]
,

(5.6)
where ∆θ and ∆θ′ are the slit apertures. We rewrite the ΦSLM as a function
of the SLM pixel number n; it reads

ΦSLM (n) = a1 · (n− n1) + b1 + a2 · (n− n2) + b2, (5.7)
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where n1 and n2 are respectively the pixels on corresponding the center of
signal and idler angular distributions and b1, b2 are constant phases on the
two channels. The constant phase could be introduced only on one of the
two channels at will. The SLM slope parameters are ai =

h
Dαi (i = 1, 2),

with h = 0.1mm the pixel total width and D = 310mm the SLM distance
from the crystals. The optimal slope is predicted from eq. (2.75) and is
a2 = −a1 = a = 0.096 rad/pixel.

We measure the state visibility for different slopes a2 = −a1 = a. The
sum b1 + b2 = b is set equal to Φ0. It is found by measuring coincidence
with polarizers set at 45◦ and −45◦ and searching the minimum counts by
scanning different bi values (i = 1 or 2) with the other set at a fixed value.
In the fig. 5.3 we report the result together with a theoretical prediction Vth

Figure 5.3: Visibility as a function of the angular compensation paramenter
a. We introduce with the SLM the functions ΦSLM (n) = −a · (n − n1) +
a · (n− n2) + b. Red points are the experimental data while the red curve is
the theoretical prediction calculated from eq. (5.6) and corrected including
the residual delay time and the effect of the pixel gaps. The pump beam
waist is 870µm, the angular and spectral selection are ∆θ = 10mrad and
∆λ = 10nm.

calculated from eq. (5.6) and corrected as follow. The maximum value of
the theoretical prediction is lowered by the residual delay time (about 1%)
and by the effect of the pixel gaps. As described above the SLM pixels are
large 97µm and are separated by a small gap (3µm); thus we compensate
the angular phase just to the 97% of the photons, while the residual 3%
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are not compensated. The theoretical prediction Vth is then modified in the
following way

V SLM
th (a) = 0.97 · Vth(a) + 0.03 · Vth(a = 0);

where Vth(a = 0) is the uncompensated value.

5.3 Second order spectral effect

As calculated in sec. 2.3.1 the spectral contribution to the total relative
phase (in absence of walkoff) is just at the second order. Since signal and
idler have the same group velocities, the first order term in ωs is the same,
but opposite in sign, and thus naturally compensated. In general the pres-
ence of a large spectrum results in a global reduction of the state purity.
In the case of transverse momentum conserved it holds the first order rela-
tion ωs ∝ θ + θ′ and thus the term ω2

s ∝ θ2 + θ
′2 + 2θθ′ could be partially

compensated by quadratic angular phase term. The compensation is only
partial since the cross term θθ′ could not be introduced by the SLM.

Figure 5.4: Residual quadratic phase due to the large spectrum coupled. We
close the slits at ∆θ = 2mrad and keeping fixed one of them at the central
angle θ0 we translate the other slit in the transverse direction. With the
polarizers at 45◦, −45◦ we measure the coincidences scanning the constant
phase parameter b1. For each position of the slit we register the b1 value
corresponding to the minimum value of the coincidences. The slit position
is reported in pixel number at the SLM position. The solid lines are the
quadratic fits.

To show the presence of such second order phase we measure the residual
phase profile along SPDC angular distribution once the linear term has
been compensated. The pump beam radius on the crystal is 565µm, the
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spectral filtering on both channel is done by long pass filters with cut-on
wavelength at 715nm. We close the slits at ∆θ = 2mrad and keeping fixed
one of them (say 2) at the central angle θ0 we translate the other slit (1) in
the transverse direction. With the polarizers at 45◦, −45◦ we measure the
coincidences scanning the constant phase parameter b1. For each position of
the slit we register the b1 value corresponding to the minimum value of the
coincidences. We do the same with the other arm. The results are plotted
in fig. (5.4) together with a quadratic fit; slit position is reported in pixel
number at the SLM position. We can see that, with large spectrum coupled,
in both arms there is a residual quadratic angular phase. Then opening the
slits at ∆θ = 10mrad we measure the state purity. Linear compensation
gives a purity of 0.855 ± 0.005, while introducing the quadratic angular
compensations with the parameters found by the fits we obtain a purity of
0.885± 0.003.

5.4 Symmetric and Asymmetric linear phase

In this section we will show how the spatial profile of the pump affects the
purity of the entangled state. Using the SLM we have the possibility of
study separately the effects of the functions f and g described in sec. 2.2.

Consider the equations (2.64) and the convention of positive angles in
the anti-clockwise direction so that θ′0 = −θ0. A first order expansion in the
angles gives:

∆k‖ 'C +D (θ − θ′) = C +Dθ−; (5.8)

∆k⊥ 'A+ B (θ + θ′) = A+ B θ+, (5.9)

where the terms A and C hide the spectral dependence, while B and D are
constants, and we have called θ± = θ ± θ′.

With these notation one can show that the visibility factorizes in the
form

V is =Re

∫
dθ−|f(θ−)|2 eı[αθ−+φ−

SLM (θ−)] ·
∫

dθ+|g(θ+)|2 eı[δx (A+B θ+)+φ+
SLM (θ+)] =

(5.10)

=P · Re

∫
dθ+|g(θ+)|2 eı[δx (A+B θ+)+β+ θ+], (5.11)

where f(θ−) = sinc(∆k‖) and g(θ+) = g(∆k⊥) are explicited in eqs. (2.59)
and (2.60). The integral in θ− has been threated previously in section 5.2;
α is the natural linear slope to be compensated by the SLM. Here we con-
sider it as a number P giving the maximal purity after SLM compensation.
We remember that the function g is the fourier transform of the transverse
profile of the pump electric field. In the case of null walk off (δx = 0) the
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visibility as a function of β+ is the fourier transform of the square modu-
lus of g. We remark that with the SLM we can study separately the two
integrals in θ− and θ+ by measuring the visibility as a function of a linear
slope β introduced simmetrically (φ+

SLM (θ+) = β+θ+) or anti-symmetrically
(φ−

SLM (θ−) = β−θ−). The anti-symmetric case is already threated above
and the visibility is plotted as a function of the slope in figure (5.3) and its
behaviour depend only on the sinc function.

Figure 5.5: Visibility as a function of the symmetric slope b+. After linear
compensation we add on both channels the value b+. The red line is the
theoretical prediction calculated with the |g(∆k⊥)|2 measured with the method
of the lens explained in the text.

Here we consider more in details the function g(∆k⊥) defined in eq. 2.60.
Till now we have neglected the phase profile of the gaussian pump field due
to the radius of curvature. Considering for instance only the variable x, we
write the pump field profile as

B(x) = e−
x2

w2 e−ı
k
2Rx2

,

with w the beam radius on the crystals and R the radius of curvature of the
phase profile in the same position. The function g become

g(∆k⊥) =
∫

dxB(x)eı∆k⊥x = e−
w2
eff
4

∆k2⊥ e
ı k
2Reff

∆k2⊥ , (5.12)

where weff = w/
√
1 + k2 w2

4R2 and Reff = R ·
(

4
w4 + k2

R2

)
. The phase term is

less important since for the visibility calculation we need only |g(∆k⊥)|2. In
order to avoid approximations we experimentally measure the effective waist
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weff . We set a cilindrical lens with focal length f = 1000mm at crystals
output and we acquire with a camera the intensity profile in the focal plane
|g(xf )|2 and, by the measure of its width, we calculate the effective waist

weff using the relation
k xf

f = ∆k⊥. Considering the effective and the real
waist on the crystals (weff and w) one can calculate the radius of curvature
of the incident pump beam.

We now consider the case without a walk off. To obtain this configu-
ration we insert on the pump path two 0.5mm crystals with optical axes
in perpendicular planes and opposite orientation respect to the generating
crystals. The pump beam radius is set at w = 215µm using a telescopic
system. We filter 10nm of the spectral distribution and 10mrad of the
angular one. Using the SLM we insert on signal and idler beams the phase
functions

φSLM (θ, θ′) = (−αopt + β+)θ + (αopt + β+)θ
′

and we measure the visibility as a function of b+ = β+
h
D , with h = 0.1mm

the pixel width and D = 310mm the SLM distance from the crystals. Here
αopt is the optimal value of the slope for angular compensation. Notice
that it is introduced with opposite signs on the two channels. The result is
plotted in figure (5.5). The red line is the theoretical prediction calculated
with the |g(∆k⊥)|2 measured with the method of the lens explained above.

In future our purpose is to use this method to analyse other configuration
of the pump transverse profiles and also to study the effect of the walk off
between |HH〉 and |V V 〉 pairs which is related with the same integral.
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Part II

Quantum Information
applications
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Chapter 6

Demonstration of a
programmable source of
two-photon multiqubit
entangled states

We suggest and demonstrate a novel source of two-photon multipartite en-
tangled states which exploits the transverse spatial structure of spontaneous
parametric down-conversion together with a programmable spatial light mod-
ulator (SLM). The one-dimensional SLM is used to perform polarization
entanglement purification and to realize arbitrary phase gates between polar-
ization and momentum degrees of freedom of photons. We experimentally
demonstrate our scheme by generating two-photon three-qubit linear cluster
states with high fidelity using a diode laser pump with a limited coherence
time and power on the crystal as low as ∼ 2.5mW . Such a work has been
published on Physical Review A [27].

6.1 Introduction

Multiqubit entangled states, e.g. cluster states, are key resources to real-
ize several protocols of quantum information processing, including measure-
ment based quantum computation [49, 50, 51], quantum communication [52]
and quantum error correction [53]. Besides, they found applications in ad-
vanced fundamental tests of quantum nonlocality [54, 55, 56, 57]. Basically,
there are two ways to generate multiqubit entangled states, e.g. cluster
states. On one hand, one may increase the number of entangled photons
[58, 59, 60, 61]. On the other hand one may use different degrees of freedom
of the same pair of photons [62, 63, 51, 64] achieving so-called hyperentan-
glement. The second method offers a larger robustness against decoherence

74



and nonunit detector efficiency. Four and six multiphoton cluster states
have been experimentally created [58, 59, 60] as well as two-photon four-
[63, 62, 51, 65, 66, 67, 68, 69, 70, 71, 72, 73] and six-qubit cluster states [74].

In this chapter we suggest and demonstrate a novel scheme to gener-
ate two-photon multipartite entangled states which exploits the transverse
spatial structure of spontaneous parametric downconversion and the pro-
grammable spatial light modulator (SLM) described in sec. 3.4. This kind
of devices have been already used as pulse shaper for Bell state generation
[75], as amplitude modulators for momentum imaging and qudit generation
[76] as well as diffractive elements to operate on orbital angular momentum
[77]. Here we employ SLM in an innovative way to realize two-photon mul-
tiqubit/qudit entangled states and demonstrate its use in the generation of
two-photon three-qubit linear cluster states with high fidelity.

The novelty of our setup is twofold. On the one hand, we use the SLM for
purification as explained in sec. 5.2. On the other hand, we fully exploit the
properties of the SLM to realize arbitrary phase-gates between polarization
and momentum degrees of freedom. In this way, we obtain an effective, low
cost, source of two-photon multipartite entanglement using a pump with low
power and a limited coherence time.

In the next Section 6.2 we address the generation of two-photon multi-
qubit/qudit entangled states and describe our experimental setup, used to
demonstrate the generation of two-photon three-qubit linear cluster states
with high fidelity. Section 6.3 closes the paper with some concluding re-
marks.

6.2 Our source of two-photon multiqubit entan-
glement

For this application we use the following experimental condition: multimode
pump beam (without spatial filtering), the SLM is set at a distance D =
500mm from the crystals while the couplers at a distance of 700mm. Our
experimental setup allows us to collect the downconverted photons within a
wide spectrum and angular distribution. In order to underline this fact the
pump power on the crystals has been intentionally left very low (2.5mW )
by using an amplitude modulator. To collect as many photons as possible
we make the imaging of the pump spot on the crystals (' 1.5mm) into
the optical fibers core (diameter of 62.5µm) using the coupler lenses. the
spectral filters are longpass with a cut on wavelength of 715nm. Setting the
slits at ∆θ ' 6.5mrad and the iris with a diameter of 13mrad we collect up
to 100 coincidence counts per second. In turn, the purification of the state
works as follows: starting from a visibility equal to 0.423± 0.016 we achieve
0.616±0.012 after the delay compensation with the crystals and 0.886±0.012
after the spatial compensation with the SLM. Finally, by closing the iris at
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the same width of the slits we obtain 0.899 ± 0.008. Actually, we verified
experimentally that variations of the phase in the azimuthal direction have
only a minor effect. The residual lack of visibility is in turn due to the
low spatial coherence of the pump, which is spatially multimode. After
purification we obtain a polarization entangled state (here called |Φ〉) over
a large angle (6.5mrad) and spectral distribution (∼ 70nm).

In order to generate multipartite entangled states, and in particular clus-
ter states, purification is just the first step. Here we suggest a new technique
based on the use of the SLM. We consider the signal and the idler beams di-
vided in N and M subdivisions (see Fig. 6.1(d)), which individuate different
momentum qudits, and write the signal and idler momentum state as

|s〉 =
N∑
n

an|n〉s , |i〉 =
M∑
m

am|m〉i

with n = 0, 1, ..., N − 1 and m = 0, 1, ...,M − 1. The total momentum state
is |Ψ〉 = |s〉⊗|i〉. This is not an entangled state in the momentum since for a
certain signal angle θ, the idler sweeps a wide interval of θ′, actually covering
all the angular acceptance ∆θ due to the broad down conversion spectrum.
This situation corresponds to the one depicted in the left panel of fig. (4.5).
The global state is thus given by |Φ〉⊗ |Ψ〉, where polarization provides two
qubits, and the rest of information is encoded onto the momentum degrees
of freedom [78, 79, 80].

The action of the SLM corresponds to impose a phase shift only on the
horizontal component of polarization, leaving the vertical part undisturbed.
We exploit this property to add a different constant phase, besides the purifi-
cation ones, for each portion of signal and idler. This corresponds to the ac-
tion of a set of controlled phase-gates Cφ, φ = {φ0i, ..., φM−1i, φ0s, ..., φN−1s}
to the state |Φ〉⊗|Ψ〉. Using a suitable number of sectors (power of two) one
may generate multiqubit entangled states of the form |Ξ〉 = Cφ|Φ〉 ⊗ |Ψ〉.

The simplest example, which we implemented experimentally, is obtained
using M = 1 and N = 2, i.e. by dividing the signal beams in two parts ex-
ploiting the SLM to apply a phase φ to only one of them (see Fig. 6.1(a)
and (b)). This leads to the generation of a two-photons three-qubit entan-
gled state of the form 1

2 [|000〉+ |110〉+ eıφ|001〉+ |111〉] where, for the first
two qubits, |0〉 ≡ |H〉 and |1〉 ≡ |V 〉 whereas the third qubit is the signal
momentum. For φ = π one obtains a two-photons three-qubit linear cluster
state

|C3〉 = 1√
2
[|Φ+〉|0〉 − |Φ−〉|1〉] ,

where |Φ±〉 are standard Bell states. In order to highlight the power of our
method let us consider another example, with four qubits: for M = N = 2
(see Fig. 6.1(c)) and applying φ0s = −φ0i, φ1i = π − φ1s we achieve the
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Figure 6.1: Generation of multipartite entangled/cluster states by the use
of SLM. The overall output from SPDC is divided in spatial sections, and
a different phase may be imposed to each portion in a programmable way,
corresponding to the application of controlled phase-gates. Each spatial sec-
tion includes several pixels. In (b) we report the momentum state in our
experimental implementation |Ψ〉 = 1√

2
|0〉i(|0〉s + |1〉s); in (c) the state

configuration to achieve |Ψ〉 = 1
2(|0〉i + |1〉i)(|0〉s + |1〉s) (which may be-

come |Ψ〉 = 1√
2
(|0〉|1〉 + |1〉|0〉) upon the use of a spectral filter, bandpass

of 10nm). In (d) the generic configuration leading to the momentum state
|Ψ〉 = |s〉 ⊗ |i〉.

four-qubit entangled state

|Ξ4〉 =1

2

[|Φ+〉|00〉 − |Φ−〉|11〉
+ |∆+(φt)〉|01〉 − |∆−(φt)〉|10〉

]
,

where φt = φ0i + φ1s and |∆±(φt)〉 = 1√
2
[|00〉 ± e∓ıφt |11〉]. We foresee that

using a narrower spectral filter for the downconverted photons it is possible
to select different regions of the angular distribution in a way that allow us
to engineer entanglement also for the momentum degrees of freedom. Using
a 10nm bandpass filter and coupling ∆θ ' 1.6mrad on the momentum
channels |n〉s, |m〉i, for N,M = 2, we would have |Ψ〉 = 1√

2
(|0〉|1〉+ |1〉|0〉).

In such a way the total state would be the two-photon four-qubit cluster
state reported in [62, 63].
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6.2.1 State reconstruction

Upon properly programming the SLM, i.e. by setting M = 1, N = 2,
and φ = π as in Fig. 6.1(b), our scheme may be set to generate, in ideal
conditions, the cluster state |C3〉. In order to characterize the output state,
denoted by R3, and to check the effects of the decoherence processes, we
have performed state reconstruction by (polarization) quantum tomography
[32, 33] as largely explained in sections 1.4 and 4.2.

At first we reconstruct the purified state prior the action of the SLM
phase-gate, i.e. without addressing the momentum qubit. Then, we recon-
struct the two reduced states %j =

1
pj
Tr3[|j〉ss〈j|R3] obtained by measuring

the momentum qubit after the phase-gate. This is obtained by moving the
slit on the signal to select the corresponding portion of the beam. Results
are summarized in Fig. 6.2.

As it is apparent from the plots our scheme provide a reliable generation
of the target states. Fidelity of the purified polarization state is about
F ' 0.90±0.01, whereas fidelities of the conditional states F0 = 〈Φ+|%0|Φ+〉
and F1 = 〈Φ−|%1|Φ−〉 are given by F0 = 0.92 ± 0.01 and F1 = 0.90 ± 0.01
respectively. In order to achieve this precision we have employed a long
acquisition time (∼ 60s) thus also demonstrating the overall stability of our
scheme. We also report the visibility of the state prior the action of the
SLM phase-gate, which confirms the entanglement purification process [81].

6.3 Conclusions

We have suggested and implemented a novel scheme for the generation of
two-photon multipartite entangled states. In our device a programmable
spatial light modulator acts on different spatial sections of the overall down-
conversion output and provides polarization entanglement purification as
well as arbitrary phase-gates between polarization and momentum qubits.
It should be mentioned that also measurements on the momentum qubits
benefits from our configuration. In fact, addressing momentum is equivalent
to select portions of the signal (idler) beam and then make them interacting,
say by a beam splitter and other linear optical elements, to perform arbi-
trary momentum measurements. In our scheme this may be implemented
in a compact form since the portions of the beam are quite close each other,
and we may work with beam splitter at non normal incidence. Overall,
our scheme represents an effective, low cost, source of two-photon multi-
qubit/qudit entanglement. We foresee applications in one-way quantum
computation and quantum error correction.
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Figure 6.2: Characterization of the output state. In (a) we report the tomo-
graphic reconstruction (real part) of the global purified polarization entangled
state prior the action of the phase-gate, whereas in (b) we show the corre-
sponding visibility curve and the fit with the curve cos2(α2−45◦) (solid line).
In (c) and (d) we report the tomographic reconstructions (real part) of the
reduced states %0 and %1.
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Chapter 7

Nonlocal compensation of
pure phase objects with
entangled photons

We suggest and demonstrate a scheme for coherent nonlocal compensation
of pure phase objects based on two-photon polarization and momentum en-
tangled states. The insertion of a single phase object on one of the beams
reduces the purity of the overall detected state and the amount of shared
entanglement, whereas the original entanglement can be retrieved by adding
a suitable phase object on the other beam. In our setup polarization and
momentum entangled states are generated by spontaneous parametric down-
conversion and then purified using a programmable spatial light modulator,
which may be also used to impose arbitrary space dependent phase functions
to the beams. As a possible application, we suggest and demonstrate a quan-
tum key distribution protocol based on nonlocal phase compensation. Such a
work has been published on Physical Review A [28].

7.1 Introduction

In what is usually referred to as ghost imaging the coherent imaging of an
object is achieved with incoherent light upon exploiting the spatial corre-
lations between two light beams [82]. The object interacts with one of the
beams and an image of the object is built up by scanning the other beam
(see Fig. (7.1)). Ghost imaging may be obtained either with classically
correlated beams [83, 84, 85], as those obtained by splitting the light from
a (pseudo) thermal source, or with entangled beams [86, 87, 88], as those
obtained by parametric downconversion. In the latter case one may achieve
in principle higher visibility.

For objects which modify only the amplitude of light an image may
be obtained with a single spatially incoherent beam upon measuring the
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Figure 7.1: Ghost Imaging idea. An object is shined by a light beam, the test
beam; its image is reconstructed observing the reference beam. The detector
set on the test arm is a bucket detector, i.e. it reveals only the presence or
not of a photon. The detector on the reference beam is an high resolution
one (a CCD camera) and it is configured for conditioned detection with the
test. The heart of the technique is the use of spatially correlated light source
such as entangled beam or classical correlated beams like (pseudo) thermal
light at the output ports of a beam splitter.

autocorrelation function in the far field, without the need of ghost imaging.
This is no longer possible when the object is also modifying the phase of
the beam. In particular, it is of interest to investigate ghost imaging in
the extreme case of pure phase objects, i.e. objects altering only the phase
information carried by the beam. Phase objects are also of intrinsic interest
in quantum information processing, since they introduce reversible unitary
operations.

Ghost imaging of pure phase objects has been extensively analyzed the-
oretically and experimentally using both classically or quantum correlated
beams [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. Related effects connected
with (nonlocal) dispersion cancellation have been investigated as well, both
in the temporal and the spatial domains [94, 95, 96, 97, 98, 99]. In this pa-
per we suggest and demonstrate experimentally a scheme to achieve coherent
nonlocal compensation/superposition of pure phase objects, also paving the
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way for the reconstruction of the overall phase function imposed to the two
beams. Our scheme is based on two-photon polarization and momentum
entangled states, which are generated by spontaneous parametric downcon-
version and purified using a spatial light modulator. The same device is also
used to introduce arbitrary phase functions on the two beams, which rep-
resent arbitrary phase objects. In our setup the insertion of a single phase
object on one of the beams reduces the purity of the overall detected state
and the amount of shared entanglement, since the detector traces out the
angular degree of freedom. The original entanglement can be retrieved by
adding a suitable phase object on the other beam, also proving the unitariety
of the operation. The image of both single or double phase objects can be
thus obtained by scanning the coincidence counts on one of the two beams.
As a possible application, we also suggest and demonstrate a protocol for
quantum key distribution based on nonlocal phase compensation.

The paper is structured as follows. In the next Section 7.2 we analyze
in some details phase imaging and nonlocal phase compensation of phase
objects. Finally, in Section 7.3, we suggest a quantum key distribution
protocol based on phase compensation and report about its experimental
implementation. Section 7.4 closes the paper with some concluding remarks.

7.2 Phase imaging and nonlocal phase compensa-
tion

For this application we use a multimode pump beam (without spatial filter-
ing); after generation the photons travels for a distance D = 310mm before
traversing the SLM while the couplers are set at a distance of 570mm.
Beam radius on the generating crystals is about 500µm. Upon expanding
the transverse momentum conservation condition to the first order, it can be
shown that the angular and the spectral degrees of freedom are connected
by the relation

θ′ = −θ + γω , (7.1)

where θ, θ′ are the signal and idler shifts from the central emission angles
(Θ0 ' Θ′

0 ' 3◦ in our case), ω is the signal shift from the central frequency
of the downconverted beams, and γ is a constant depending only on the
signal central frequency and angle (see sec. 2.2.1). The state at the output
of the crystals may be written as

|ψ〉∝
∫∫

dθdθ′F (θ, θ′)
[
|Hθ〉|Hθ′〉+ eıΦ(θ,θ′)|V θ〉|V θ′〉

]
(7.2)

where the overall angular distribution

F (θ, θ′) = f(θ, θ′)T [ω(θ, θ′)] ,
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contains the angular distribution f(θ, θ′) due to the phase-matching condi-
tions and the transmissivity T [ω] ≡ T [ω(θ, θ′)] of an interference filter set
on the signal arm.

In our setup, the purification provided by the SLM allows us to generate
good polarization-entangled states with visibility up to V = 0.912 ± 0.007,
which may be further increase by spatially filtering the pump to achieve a
Gaussian profile. However, ghost imaging also require spatial entanglement
and this can be obtained upon exploiting Eq. (7.1), i.e. by narrowing the
output spectral range. We use an interference filter, whose action is denoted
by T [ω] in Eq. (7.2), which selects a range of about 10 nm around the central
wavelenght 810 nm within the overall downconversion spectrum (∼ 100 nm).
In such a regime a strong angular correlation (momentum entanglement) is
predicted as reported in Fig. (2.8(upper left panel)) and the experimentally
measured as reported in fig. (4.5 (right)).

The relative phase in Eq. (7.2) can be written after purification as

Φ(θ, θ′) = φ(s)(θ) + φ(i)(θ′) ,

where φ(s) and φ(i) are phase objects inserted respectively on signal and
idler beams by the SLM. Single phase-object imaging consists in setting
φ(i) = 0 and reconstruct the phase function φ(s)(θ) inserted along the signal
arm by scanning the coincidences for different emission angles θ′ on the idler
arm [93]. Experimentally, we insert the phase function

φ(s)(θ) = a sin(kθ)

using the SLM, with a = 1.35 rad and k ' 0.57mrad−1. In Fig. 7.2 we
present the results for the ghost imaging: polarizers are set to α = π/4 on
the signal and β = 3π/4 on the idler, the slits aperture are ∆ = 10mrad for
the signal and δ = 1mrad for the idler. The signal slit is centered on θ0 = 0,
while the idler slit varies over different values of θ′0. The experimental data,
already subtracted of the accidental coincidences (coincidence window equal
to 50ns, acquisition time 120s ) are the red circles, whereas the red solid line
is the theoretical prediction as obtained from the following equation

C∆δ
αβ (0, θ

′
0) =

∫ θ′0+
δ
2

θ′0− δ
2

dθ′
∫ +∆

2

−∆
2

dθ |F (θ, θ′)|2 sin2
[
1

2
φ(s)(θ)

]
.

For comparison we also report the measured value of the direct counts (blue
squares, acquisition time 10s) with the corresponding theoretical prediction
(solid blue line), i.e.

C∆δ
αβ (0, θ

′
0) =

∫ θ′0+
δ
2

θ′0− δ
2

dθ′
∫ +∆

2

−∆
2

dθ |F (θ, θ′)|2 .
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Figure 7.2: Phase imaging after inserting the phase function φ(s)(θ) =
a sin(kθ) on the signal beam, with a = 1.35 rad and k ' 0.57mrad−1. Blue
squares are the direct counts whereas red circles are the coincidences (red
circles). Solid lines are the corresponding theoretical predictions (blue and
red lines respectively) as a function of the idler slit position. From the coin-
cidence counts observed by scanning the idler beam, one can reconstruct the
phase function along the signal beam.

As a matter of fact, the insertion of a single phase-object leads to the
generation of a set of maximally entangled states at different angles, each
one with a different phase term φ(s)(θ). The entanglement of the state over
a broad angular region is thus reduced to V = 0.531 ± 0.008 due to the
integration over many θ and θ′.

Once we have reconstructed the signal phase φ(s)(θ) we may further
tune entanglement by imposing the phase functions φ(i) = ±φ(s) on the
idler beam. In this way we nonlocally superimpose two phase object. We
remark that, given the correlation condition θ′ ' −θ (see Fig. (4.5 (right)),
the overall phase function inserted by the SLM is given by

φ(s)(θ) + φ(i)(θ′) ' 2a sin(kθ) if φ(i) = −φ(s) ,

φ(s)(θ) + φ(i)(θ′) ' 0 if φ(i) = φ(s) .

The corresponding visibility values are V = 0.057± 0.014 and V = 0.888±
0.003, respectively. The visibility of the entangled state is sligthly lower than
the original value V = 0.912 ± 0.007 since the two beams, though showing
high angular correlations, are not delta-correlated.

In order to fully characterize the output state, and confirm that visibility
is a good figure of merit to discriminate phase functions, we have also per-
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formed state reconstruction by polarization qubit tomography for the two
different output states. In Fig. 7.3 we present the tomographic reconstruc-
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Figure 7.3: Tomographic reconstruction (the real part of the density matrix
on the left and the imaginary one on the right) of the state in which we
insert φ(i) = φ(s) = a sin(kθ), with a = 1.35 rad and k ' 0.57mrad−1 (upper
panels) and of the state obtained with φ(i) = −φ(s) (lower panels). The
corresponding visibilities are given by 0.888± 0.003 and 0.057± 0.014, while
the measured CHSH-Bell parameters are B = 2.658±0.011 and B = 1.854±
0.012 respectively.

tions of the density matrix of the two output states: the reconstruction of
the state resulting from the overall phase function φ(i) = φ(s) is reported
in the upper panel (real part on the left, and imaginary part on the right).
In the lower panel we show the tomographic reconstruction of the density
matrix for the state obtained with φ(i) = −φ(s) (real part on the left, and
imaginary part on the right). In order to detect the presence of nonlocal
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correlations we also measured the Bell-CHSH parameter S. We found

S = 1.854± 0.012 if φ(i) = −φ(s) ,

S = 2.658± 0.011 if φ(i) = φ(s) ,

i.e. we have violation of CHSH-Bell inequality [34] by more than 57 standard
deviations for φ(i) = φ(s), whereas no violation of the CHSH-Bell inequality
is found for φ(i) = −φ(s), for which the measures S is less than the threshold
S = 2 by 12 standard deviations.

7.3 A QKD protocol based on nonlocal phase com-
pensation

As a possible application of nonlocal phase compensation, we suggest to
exploit the switch between entangled and mixed states for quantum key
distribution. Our proposal is based on the fact that Alice and Bob control
the signal and the idler arm respectively of the downconversion output. They
are thus able to insert independently, and in a random sequence, the phase
functions φ(A) and φ(B), where φ(A,B) = ±a sin(kθ). In turn, this may be
used to establish a QKD protocol as the analogue of the random choice of
the signal basis or of the measurement basis. Alice then encodes the key
(0, 1) by adding a constant phase (ϕA = 0, π) to φ(A). Upon setting the
detection polarizers to α = π/4 and β = 3π/4 we have that for φ(B) = φ(A)

a highly entangled state is shared, and thus we have a maximum in the
coincidence counting rate when ϕA = π and a minimum when ϕA = 0.
On the other hand, if φ(B) = −φ(A) (or if an eavesdropper tries to acquire
knowledge about the key), then Alice and Bob share a mixed (or partially
mixed) state, and an intermediate counting rate is detected.

In Fig. 7.4 we present the experimental results for the coincidence count-
ing rate in the four possible configurations, which are summarized in Table
7.1, and labelled as follows: [++/1] denotes the case φ(A) = φ(B) = a sin(kθ)
and ϕA = π, corresponding to the faithful transmission of the symbol ”1”;
analogously [+ + /0] denotes the case φ(A) = φ(B) = a sin(kθ) and ϕA = 0,
leading to the faithful transmission of the symbol ”0”. The events that
Alice and Bob are rejecting in the sifting stage are [+ − /0] and [+ − /1]
corresponding to φ(A) = −φ(B) = a sin(kθ) and ϕA = 0, π respectively.

Notice that the purification procedure allows us to generate high-quality
entanglement states even when broad angular regions are coupled. Indeed,
the measurements used for quantum key distribution has been performed
with a larger aperture, in order to compensate the low quantum efficiency
of photodetectors and to increase the measurement rate.
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Figure 7.4: Quantum key distribution by nonlocal phase compensation. The
four blocks of data in the plot are the coincidence counting rates in the four
different configurations [++/1], [++/0], [+−/1], and [+−/0] respectively
The first two configurations correspond to the faithful transmission of the
key, whereas the two others cases are the events that Alice and Bob are
going to reject in the sifting stage of the protocol.

Table 7.1: A QKD protocol based on nonlocal phase compensation: the phase
functions φ(A) and φ(B) play the role of the random choice of the signal basis,
whereas the key (0, 1) is encoded by adding a constant phase ϕA = 0, π to
φ(A). When the phase functions are matched, φ(A) = φ(B), we have the
transmission of the key symbols.

configuration φ(A) φ(B) ϕA transmitted key

[+ + /1] a sin(kθ) a sin(kθ) π ”1”
[+ + /0] a sin(kθ) a sin(kθ) 0 ”0”
[+− /1] a sin(kθ) −a sin(kθ) π none
[+− /0] a sin(kθ) −a sin(kθ) 0 none

7.4 Conclusions

In conclusion, we have suggested and demonstrated experimentally an en-
tanglement based scheme to achieve coherent nonlocal compensation of pure
phase objects. Our scheme is based on creating two-photon polarization and
momentum entangled states where the insertion of a single phase object on
one of the beams reduces both the purity of the state and the amount of
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shared entanglement, and where the original entanglement can be retrieved
by adding a suitable phase object on the other beam. In our setup po-
larization and momentum entangled states are generated by spontaneous
parametric downconversion and then purified using a programmable spatial
light modulator. The same device is also used to impose arbitrary space de-
pendent phase functions to the beams, which play the role of arbitrary pure
phase objects. Finally, we have suggested a novel quantum key distribution
protocol exploiting the effect of nonlocal phase compensation and we have
provided its experimental verification. Our results prove experimentally the
feasiblity of coherent nonlocal compensation/superposition of pure phase
objects and pave the way for further developments, as the reconstruction of
the overall phase function imposed to the two beams.
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Chapter 8

Programmable entanglement
oscillations in a
non-Markovian channel

We suggest and demonstrate an all-optical experimental setup to observe
and engineer entanglement oscillations of a pair of polarization qubits in
an effective non-Markovian channel. We generate entangled photon pairs
by spontaneous parametric downconversion (SPDC), and then insert a pro-
grammable spatial light modulator in order to impose a polarization depen-
dent phase-shift on the spatial domain of the SPDC output. This creates
an effective programmable non-Markovian environment where modulation of
the enviroment spectrum is obtained by inserting a spatial grating on the sig-
nal arm. In our experiment, programmable oscillations of entanglement are
achieved, where the entangled state obtained at the maximum of the revival
after sudden death violates Bell’s inequality by 17 standard deviations. The
results has been published on Physical Review A [29]

8.1 Introduction

Entanglement of a bipartite system is usually degraded by the interaction
of each subsystem with the environment, which induces decoherence, i.e. an
irreversibile loss of information from the system to the rest of the universe
[105, 106]. If the interaction is Markovian, i.e. the loss of information
is unidirectional, from the system to the environment, then entanglement
monotonically decreases and may be also destroyed in a finite time [107,
108, 109, 110, 111]. On the other hand, when some memory effect is present
in the interaction between the system and the environment, i.e. when the
noisy channel is non-Markovian [112, 113], then a non monotone behaviour of
entanglement and, more generally, of quantum correlations may be observed
[114, 115, 116, 117, 118, 119, 120, 121]. In fact, entanglement oscillations are
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expected in continuous variable systems [122, 123, 124], whereas collapses
and revivals of entanglement have been observed with polarization qubits
[125].

In this paper we suggest and demonstrate an experimental setup to ob-
serve and engineer entanglement oscillations in a programmable way. We
address the spatial domain of spontaneous parametric downconversion, and
exploit a programmable spatial light modulator to impose a polarization-
and position-dependent phase-shift. Since the polarization qubits are ob-
tained by tracing out the spatial degrees of freedom, our apparatus allow
us to analize the entanglement dynamics within the ”coherence time” of
the effective non-Markovian channel. In this framework an effective envi-
ronment spectrum may be obtained by acting on the spatial profile of the
SPDC and, in particular, by a suitable modulation of the angular distribu-
tion. In turn, in order to investigate entanglement oscillations we insert a
spatial grating on the signal arm to achieve a modulation of the environment
spectrum. Besides fundamental interest, our scheme may found applications
in engineering decoherence for polarization qubit, e.g. in quantum process
tomography.

The paper is structured as follows. In the next Section we describe our
scheme for entanglement generation and purification with a detailed analysis
of the structure of the angular function. In Section 8.2 we describe how a
periodic structure of the angular distribution may be used to induce entan-
glement oscillations in a programmable way, whereas entanglement decrease
and then death may be expected for a non periodical angular distribution.
Experimental results are described in details in Section 8.3, with the full
characterization of the involved states by quantum tomography reported in
Section 8.4. Section 8.5 closes the paper with some concluding remarks.

8.2 Entanglement oscillations in a non-Markovian
enviroment

The experimental conditions used for this application of our source are de-
picted in figure (8.1). The gaussian pump beam on the crystals is quite
large (radius of ∼ 500µm) and the SPDC spectral filtering is null (a long
pass filter with cut on wavelength at 715nm on both channels). In this
situation the angular correlation are washed out and we can consider in a
good approximation the function f(θ, θ′) in the factorable form G(θ)G′(θ′)
as demonstrated in sec. 4.5. Angular selection is done by the slits and is
fixed to 10mrad on both channels. A hand-made grating can be inserted
on the signal arm.

Once the state has been purified we impose an the additional phase
φs(θ) = αθ to the signal photon; the dependence on θ′ is traced out, and
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Figure 8.1: Schematic diagram of experimental setup. Signal and idler cones
travel through the SLM and are spatially selected by two irises and two slits
set at D = 500mm with ∆x = 5mm (∆ = 10mrad). Two long-pass filters
cut-on wavelength 715nm are used to reduce the background. Thus there is
not angular correlation between signal and idler (situation depicted in the
left panel of figure (4.5)). Pump beam radius on the crystal is large. A hand-
made grating can be inserted on the signal arm. Photons are focused in two
multi-mode fibers (MMF) and sent to single-photon counting modules.

thus no terms containing G′(θ′) appear in the polarization density matrix

% = Trθ,θ′ [|ψ〉〈ψ|] =1

2

(
|HH〉〈HH|+ ε|VV〉〈HH| (8.1)

+ ε∗|HH〉〈VV|+ |VV〉〈VV|
)

where

ε(α) =

∫
dθ |G(θ)|2 eıαθ

is the decoherence factor.
In general, the angular distribution may be assumed to be peaked at

some central value with a finite width. In this case, the photons coming
from different directions (i.e. angles) will experience different relative phase
between the horizontal and vertical polarization components. As a conse-
quence, in absence of any purification mechanism, the off-diagonal elements
of the polarization density matrix decrease exponentially and the state is
driven towards the unentangled mixture.

The situation changes dramatically if the angular distribution is ampli-
tude modulated. In this case the decoherence factor ε may oscillate, i.e. the
overall relative phase may refocus and the off-diagonal elements reappear, as
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well as entanglement. Since we address the spatial domain, it is straightfor-
ward to insert an amplitude modulation on G(θ), e.g. by inserting a physical
obstacle along the signal optical path. As noted above, from the expression
of the visibility V is(α) = Re[ε], we see that a periodic structure of the an-
gular distribution would induce oscillations, whereas entanglement decrease
and then death may be expected for a non periodical angular distribution.
In this framework α may be considered as the evolution parameter of the
dynamics of the (noisy) channel, and the periodic structure of the angular
distribution as the (spatial) enviroment spectrum. Moreover, the periodic
structure implies that in tracing out the spatial degrees of freedom any two-
point correlation function of the environment is not single peaked and this
is a sign of the non-Markovian character of the channel.

In our apparatus, the amplitude modulation is implemented by means
of a hand-made grating with a period δx and a transparent region width δw
centered along the signal arm (see Fig. 8.1). As we will see, the narrower are
the transparent regions the higher entanglement oscillations are expected.
Formally, the insertion of the grating is equivalent to the substitution

G(θ) → G(θ) ·m(θ)

in the visibility, up to the normalization
∫
dθ |G(θ)m(θ)|2 = 1, where m(θ)

is the periodical unitary step function imposed by the grating. By simply
inserting or removing the grating it is possible to compare the different
dynamics imposed by a periodical or non-periodical angular distribution.

8.3 Experimental results

After purification we study the behaviour of the visibility as a function of
the dimensionless evolution parameter α, governing the linear phase func-
tion φs(θ) = αθ imposed to the signal by the SLM. As previously discussed,
oscillations of entanglement are expected when the grating is inserted. Be-
cause of the pixel discretization a step-function with an angular resolution
ζ = 0.3mrad is physically inserted by the SLM in order to approximate
the linear functions φSLM (θ), φ′

SLM (θ′). Experimentally, using the SLM, we
impose the phase functions

φe
SLM (n) = −aoptn+ b on idler

φe
SLM (n) = aoptn+ φe

s(n) on signal ,

where n is the distance in pixels from the center of the signal beam (n = 0 for
θ = 0), aopt = 0.12 rad/pixel is the optimal slope which allows us to achieve
a complete purification, and b = −Φ0. The linear function φe

s(n) = an
is also inserted to study the dynamics, where the experimental evolution
parameter is given by a = αh/L rad/pixel, h = 100µm being the pixel
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width and L ' 330mm the distance between the SLM and the generating
crystals. Since the pixel discretization of the SLM imposes the condition
a ¿ 2π/pixel, high values of a must be neglected in our analysis. We
experimentally verified that the curve V (a) saturates to the uncompensated
value when (a+ aopt) → 2π. The revival is expected at

arev =
2πD

δx

h

L

or, in terms of the angular grating period δθ, αrev = 2π
δθ . We choose δx =

2mm, which leads at arev = 0.476 rad/pixel, in order to avoid high values of
the evolution parameter, and we set δw = 0.4δx.

In Fig. (8.2) we present the experimental results, together with the the-
oretical prediction calculated from the expression of the visibility, as a func-
tion of the experimental evolution parameter a. Notice that the area under
the increasing part of the visibility curve provides an experimental lower
bound to the amount of non-Markoviamity of the channels [112].

Figure 8.2: Visibility as a function of the evolution parameter a. Blue circles
and red square are the experimental data obtained with and without grating
(errors within the symbols). Blue solid line and red dashed line denote the
corresponding theoretical predictions.

Comparing the curve with the one obtained without the grating we see
that in the latter case no revival occurs after the degradation of entan-
glement. We also notice that the minimum occurs for lower values of a
compared to the case with the grating.
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Figure 8.3: Tomographic reconstruction of a state evolving in the effective
non-Markovian channel. In the upper left plot the two-qubit density matrix
just after the purification, with visibility V = 0.881±0.004. Upon increasing
the evolution parameter to a = 0.23 we achieve the minimum of entan-
glement oscillations: the density matrix is shown in the upper right plot,
the corresponding visibility is V = 0.120 ± 0.016. In the lower panels, we
show the real and the imaginary part of the reconstructed density matrix
at the maximum of entanglement oscillations, which occurs for a = 0.48.
The corresponding visibility is V = 0.696 ± 0.013, and the Bell parameter
B = 2.341± 0.019.

8.4 State characterization

In order to fully characterize the output state we have also performed state
reconstruction by polarization qubit tomography for different values of the
evolution parameter a. The purification procedure with the grating inserted
leads to a visibility V = 0.881 ± 0.004, the density matrix is graphically
represented in the upper left panel of Fig. 8.3. Increasing the evolution pa-
rameter to a = 0.23, the visibility decreases to V = 0.120± 0.016. The cor-
responding tomographic reconstruction, depicted in the upper right panel of
Fig. 8.3, well illustrate the degradation of entanglement. However, we found
a consistent revival after a further increasing of the evolution parameter to
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a = 0.48, where we have V = 0.696±0.013. The corresponding tomographic
reconstruction (real and imaginary parts) are reported in the lower panels
of Fig. 8.3.

In order to show the revival of the nonlocal correlations we have also
measured the Bell parameter S. We found S = 2.341±0.019, which violates
CHSH-Bell inequality [34] by more than 17 standard deviations.

8.5 Conclusions

In conclusion, we have suggested and demonstrated an experimental setup
to observe oscillations of polarization entanglement in a programmable way.
Our scheme is based on a spatial light modulator, which is inserted on the
spatial domain of the downconversion output in order to impose a polar-
ization dependent phase-shift on the spatial domain of the SPDC output.
An effective programmable non-Markovian environment is then obtained by
inserting a spatial grating on the signal arm. This results in a periodic
structure of the angular distribution, which corresponds to modulation of
the enviroment spectrum, and induces oscillations of entanglement, whereas
entanglement decrease and then death is observed for a non periodical an-
gular distribution.

In our experiment, programmable oscillations of entanglement are achieved
by varying the linear phase function imposed to the signal by the SLM and
verified both by visibility measurements and full polarization state tomog-
raphy. The entangled state obtained at the maximum of the revival after
sudden death violates Bell’s inequality by 17 standard deviations.

Our scheme is all-optical and allows us to generate and detect revivals
of entanglement and nonlocality, thus paving the way for engineering of
decoherence for polarization qubits.
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Chapter 9

Experimental investigation of
initial system-environment
correlations via
trace-distance evolution

The trace distance between two states of an open quantum system quanti-
fies their distinguishability, and for a fixed environmental state can increase
above its initial value only in the presence of initial system-environment
correlations. We provide experimental evidence of such a behavior. In our
all-optical apparatus we exploit spontaneous parametric down conversion as
a source of polarization entangled states, and a spatial light modulator to
introduce in a general fashion correlations between the polarization and the
momentum degrees of freedom, which act as environment. Such work, pro-
posed by A. Smirne, has been realized with our source. The results has been
published on Physical Review A [30].

9.1 Introduction

The dynamics of an open quantum system S interacting with an environment
E is usually described by means of a completely positive trace preserving
(CPT) map on the state space of the open system [127]. The very existence
of such a map generally requires that the initial correlations between the
open system and the environment can be neglected, i.e. ρSE(0) = ρS(0) ⊗
ρE(0) where ρS(0) = TrE {ρSE(0)} and ρE(0) = TrS {ρSE(0)}. However, this
assumption is not always physically justified, especially outside the weak
coupling regime [128]. Therefore, different approaches to the description
of the reduced system dynamics in the presence of initial correlations have
been developed in recent years [129, 131, 130, 132, 133, 134].
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An approach for the study of initial correlations which is based on the
use of the trace distance and which does not rely on the determination of
any reduced dynamical map has been introduced in [135]. In particular,
one can find a clear signature of initial system-environment correlations as
follows: if the environmental state is fixed, the trace distance between any
two reduced states can increase over its initial value only in the presence of
initial correlations.

Recently the open system dynamics of two qubits has been experimen-
tally investigated in all-optical settings, where the system is represented
by the polarization degrees of freedom, and the environment by the spec-
tral [126] or by the momentum [29] degrees of freedom. Here we report
an experimental proof of the feasibility and effectiveness of the abovemen-
tioned theoretical scheme [135] for the detection of correlations, observing
the effect of initial system-environment correlations in the subsequent open
system dynamics by means of the trace distance. In particular, we show an
increase of the trace distance between two reduced states, sharing the same
initial environmental state, over its initial value on both short and long time
scales. Despite the fact that a full tomographic analysis can be performed,
thus showing that the experimental setup can cope with the most general
situation, the growth of the trace distance can here be detected simply by ex-
ploiting visibility data, thus showing that the theoretical analysis can really
lead to efficient detection schemes.

The paper is structured as follows: In Section 9.2 we briefly present the
general theoretical scheme. In Section 9.3 we describe the important features
of the experimental apparatus, whereas in Section 9.4 we describe the use
of the spatial light modulator to introduce system-environment correlations,
and analyze the evolution of the trace distance. In Section 9.5 we provide
the full tomographic reconstruction of the state under investigation. Section
9.6 closes the paper with some concluding remarks.

9.2 Upper bound on trace distance evolution

The trace distance between two quantum states ρ1 and ρ2 is defined as

D(ρ1, ρ2) =
1

2
Tr

∣∣ρ1 − ρ2
∣∣ = 1

2

∑

k

|xk|, (9.1)

with xk eigenvalues of the traceless operator ρ
1−ρ2, and its physical meaning

lies in the fact that it provides a measure for the distinguishability between
two quantum states [136]. It is a metric on the space of physical states, so
that for any pair of states ρ1 and ρ2 it holds 0 ≤ D(ρ1, ρ2) ≤ 1. Every CPT
map Λ is a contraction for this metric: D(Λρ1,Λρ2) ≤ D(ρ1, ρ2), a property
which will be crucial in the following analysis.
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The dynamics of an open quantum system can be characterized by inves-
tigating the dynamics of the trace distance between a pair of reduced states
ρ1S(t) and ρ2S(t), which evolve from two different initial total states ρ1SE(0)
and ρ2SE(0). The change in the distinguishability between two reduced states
can be interpreted as an information flow between the open system and the
environment [112, 137]. Indeed, since the reduced states ρkS(t) are obtained
from the corresponding initial total states ρkSE(0) k = 1, 2 through the com-
position of a unitary operation and the partial trace, the contractivity under
CPT maps implies that

D(ρ1S(t), ρ
2
S(t))−D(ρ1S(0), ρ

2
S(0)) ≤ I12(0) , (9.2)

where

I12(0) ≡ D(ρ1SE(0), ρ
2
SE(0))−D(ρ1S(0), ρ

2
S(0)) . (9.3)

That is, the increase of the trace distance during the time evolution is

Figure 9.1: Conceptual diagram of the measure. Two initial states are pre-
pared with the same environment. Without losing generality we prepare sys-
tem 1 without initial correlation with its environment. During the evolution
we measure the trace distance between the reduced states. A growth of the
trace distance above its initial value is the signature that the system 2 has
initial correlation with its environment.

bounded from above by the quantity I12(0), which represents the information
initially residing outside the open system [135]. It is important to notice that
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the bound I12(0) can also qualitatively reproduce non-trivial features of the
trace distance dynamics even if it is far from being reached [138]. If the
initial total states are uncorrelated and with the same environmental state,
i.e. ρ1SE(0) = ρ1S(0) ⊗ ρE(0) and ρ2SE(0) = ρ2S(0) ⊗ ρE(0), then I12(0) = 0.
Thus, for identical environmental states, one can find an increase of the
trace distance

D(ρ1S(t), ρ
2
S(t)) > D(ρ1S(0), ρ

2
S(0))

at a time t only if some correlations are present in at least one of the two
initial total states.

9.3 Experimental setup

In our all-optical experimental setup the total system under investigation
consists in a two-photon state produced by spontaneous parametric down-
conversion. We look at the evolution of the two-qubit polarization entangled
state, which represents the reduced system, and trace out the momentum
degrees of freedom, which are not observed and represent the environment.
We exploit a programmable spatial light modulator (SLM) to impose an ar-
bitrary polarization- and position-dependent phase-shift to the total state.
A linear phase is set both on signal and idler beams in order to purify the
state, whereas an additional, generic, phase function may be imposed to
introduce initial correlations between the polarization and the momentum
degrees of freedom in a very general way. A further linear phase is then used
as a time evolution parameter for the two-qubit state (see ch. 8).

Figure 9.2: Diagram of the experimental setup.

The experimental setup is shown in Fig. 9.2. A linearly polarized CW,
405 nm, diode laser (Newport LQC405-40P) passes through two cylindrical
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lenses which compensate beam astigmatism, then a spatial filter (SF) selects
a Gaussian spatial profile and a telescopic system prepares a collimated
beam with beam radius of 550µm. A couple of 1mm Beta Barium Borate
(S) crystals, cut for type-I down conversion, with optical axis aligned in
perpendicular planes, are used as a source of couples of polarization and
momentum entangled photons [8, 11]. The process preserves the total energy
and the transverse momentum. The couples are generated around a central
angle of±3◦ and we select ∆ = 10mrad with the two slits set at 500mm from
the generating crystals. Two long-pass filter (F) with cut-on wavelength of
780 nm set behind the couplers are used to reduce the background and to
select about 60 nm around the central wavelength 810 nm.

9.4 System-environment correlations and trace dis-
tance evolution

9.4.1 Theoretical description of the experiment

In our scheme the SLM performs two basic tasks. First, it allows us to engi-
neer the initial state by the introduction of an arbitrary phase ϕ(θ). Besides,
it provides the effective system-environment interaction term sensitive to
both the polarization and the momentum degrees of freedom, through the
introduction of a linear phase αθ, where α is the time evolution parameter.
The total system-environment state is thus given by:

|ψSE(α)〉 = 1√
2

∫
dθdθ′G(θ)G′(θ′)

×
(
|Hθ〉|Hθ′〉+ ei(αθ+ϕ(θ))|V θ〉|V θ′〉

)
. (9.4)

The factorized form G(θ)G′(θ′) is justified by the large spectral distribution
(see sec. 4.5). Moreover, G(θ) is a Gaussian-like shape function with FWHM
of 6 mrad. Because of the phase ϕ(θ), the state in Eq. (9.4) is correlated,
i.e.

ρSE(α) = |ψSE(α)〉〈ψSE(α)| 6= ρS(α)⊗ ρE(α) ,

and this is true also for the initial total state, i.e. for α = 0. Upon tracing
out the momentum degrees of freedom (environment), the polarization state
(open system) is given by

ρS(α) =
1

2
(|HH〉〈HH|+ ε(α)|V V 〉〈HH|
+ ε∗(α)|HH〉〈V V |+ |V V 〉〈V V |) , (9.5)

where

ε(α) =

∫
dθ|G(θ)|2ei(αθ+ϕ(θ)) .
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Since the angular distribution G(θ) is symmetric and we use odd functions
ϕ(θ), the quantity ε(α) is real and it equals the interferometric visibility
V (α) = Re[ε(α)].

In order to characterize the effect of the initial system-environment cor-
relations via the trace distance, we have to monitor the evolution of two
different polarization states obtained from two different initial total states
having the same environmental state. Please note that with respect to the
evolutions reported in ch. 8, where we intentionally modify the environ-
mental state, here it is crucial that the environment remains the same. We
compare an initially uncorrelated state ρ1SE(α), corresponding to Eq. (9.4)
for ϕ(θ) = 0, with an initially correlated state ρ2SE(α) for a non-trivial func-
tion ϕ(θ). In this way, the reduced system states ρkS(α) k = 1, 2 are both
of the form given by Eq. (9.5), with different εk(α). Note that the product
state ρ1SE(0) differs from ρ2S(0)⊗ ρ2E(0) only for an overall phase term in the
integration over θ, which has no observable consequences on the dynamics
of the polarization degrees of freedom. The trace distance between the two
reduced states under investigation is then given by

D
(
ρ1S(α), ρ

2
S(α)

)
=

1

2
|ε1(α)− ε2(α)| (9.6)

=
1

2

∣∣∣∣
∫

dθ|G(θ)|2eiαθ
(
1− eiϕ(θ)

)∣∣∣∣ .

Different choices for the initial phase ϕ(θ) result in different dynamical be-
havior of the trace distance. We have exploited this fact to analyze in detail
the effect of initial system-environment correlations on the subsequent evo-
lution of the open system.

9.4.2 Experimental results

Experimentally, we have measured the quantity ε(α) for ϕ(θ) = 0 and
ϕ(θ) = sin(λθ), exploiting its equality with the visibility, obtained in the
standard way by counting the coincidences with polarizers set at 45◦, 45◦

and at 45◦,−45◦ (see sec. 4.1 for further details). The functions of the
variable θ are discretized by the SLM, and thus become functions of the
pixel number n. The resolution is given by h/D, where h = 100µm is the
pixel width and D = 330mm is the SLM distance from the source. In our
experiment the SLM introduces the functions

φ1(n) = −aopt(n− n1) + b (9.7)

φ2(n, a) = aopt(n− n2) + a(n− n2) + ϕ(n− n2) ,

on the two beams respectively, where aopt = 0.1 rad/pixel is an optimal
slope used to achieve the maximal purification of the polarization entangled
state, and the constant b is used to offset the residual constant term. The
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integers n1 and n2 are the central pixel numbers on the idler and on the
signal beams. The experimental evolution parameter is then a = αh/D and
is expressed in rad/pixel.

Figure 9.3: Trace distance and visibility as a function of the experimental
evolution parameter a, the two quantities are related through Eq. (9.6). Full
circles describe the trace distance between ρ1S(a), i.e. ϕ(n − n2) = 0, and
ρ2S(a) with ϕ(n − n2) = sin(λ(n − n2)), λ = −0.6 rad/pixel. Full squares
describe the trace distance between ρ1S(a) and ρ2S(a) with ϕ(n− n2) = τ(n−
n2), τ = 0.1 rad/pixel. Lines are a guide for the eye. Empty circles refer to
visibility with the choice ϕ(n− n2) = 0, whereas empty squares refer to the
case in which initial correlations are introduced through the phase function
ϕ(n − n2) = sin[λ(n − n2)]. For the visibility the uncertainties are within
the symbols.

The trace distance is the quantity which reveals the presence and the
effects of initial correlations, and its behavior is reported in Fig. 9.3, together
with the visibility which provides the raw data from which the trace distance
can be extracted in the present case. In the figure full circles describe the
trace distance, as a function of the evolution parameter a, between the
reduced state ρ1S(a) evolved from the initial total product state, i.e. ϕ(n −
n2) = 0, and the reduced state ρ2S(a) related to the initial correlated state
with ϕ(n−n2) = sin(λ(n−n2)). The trace distance, after an initial decrease
and a first small oscillation, presents a revival up to a value which is more
than three times the initial one. As expected, the reduced system can access
information which is initially outside it, related to its initial correlations with
the environment. The trace distance reaches its maximum around a = 0.6
rad/pixel, towards the end of the monitored time interval. The maximum
of the trace distance quantifies the total amount of information which can
be accessed by means of measurements performed on the reduced system
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only [138]. Note that it can be shifted to smaller values of the evolution
parameter a by decreasing the absolute value of λ. Thus, by introducing a
sinusoidal phase modulation via the SLM, we have obtained a behavior of
the trace distance which highlights the presence of initial correlations and
their effects in the subsequent evolution, also for long times [139].

The simplest choice for the phase ϕ(n − n2) in the initially correlated
state ρ2SE(α) is a second linear phase besides that containing the evolution
parameter a, i.e. ϕ(n − n2) = τ(n − n2). Indeed, this corresponds to shift
the initially uncorrelated state ρ1SE(α) forward in time by τ . Then, from
the visibility measurement, we can directly obtain the evolution of the trace
distance between ρ1S(a) and ρ2S(a) with ϕ(n − n2) = τ(n − n2). This is
represented by full squares in Fig. 9.3, for τ = 0.1 rad/pixel. In this case
the growth of the distinguishability between the two reduced states starts
from the very beginning of the dynamics. As expected, the trace distance
increases over its initial value, reaching its maximum value at a = 0.1
rad/pixel and decreasing afterwards. The subsequent oscillations can be
traced back to the finite pixel size. Notice also that using a linear term we
cannot obtain a revival of the trace distance (as in the previous case) over
its initial value for high values of a. Since in this case ρ2S(a) = ρ1S(a + τ),
the full squares in Fig. 9.3 also describe the evolution of the trace dis-
tance between a pair of reduced states occurring at two different points,
separated by τ , of the same dynamics starting from the initial total prod-
uct state given by ρ1SE(0). From this point of view, the increase over the
initial value of the trace distance indicates that the single evolution un-
der investigation is not compatible with a description through a dynamical
semigroup Λt, which could be introduced, e.g., on the basis of some phe-
nomenological ansatz. Indeed, the semigroup property Λt+τ = ΛtΛτ , to-
gether with the trace distance contractivity under CPT maps, would imply
D(ρ1S(t), ρ

2
S(t)) = D(Λtρ

1
S(0),Λtρ

1
S(τ)) ≤ D(ρ1S(0), ρ

1
S(τ)) = D(ρ1S(0), ρ

2
S(0)).

However, in general one cannot discriminate in this way whether the devi-
ations from the semigroup dynamics are due to correlations in the initial
total state or to other sources of non-Markovianity [140].

9.5 State reconstruction

In order to reconstruct the trace distance evolution, we only had to perform
visibility measurements to access the off-diagonal values εi(α). However, in
more general situations one could need a full tomographic reconstruction
of the reduced states. This would be the case in the presence of non-real
coefficients εk(α) or when dealing with partially or fully unknown states.
For this reason, we have also performed state reconstruction by polarization
qubit tomography. In Fig. 9.4 (left) we show the tomographic reconstruction
of the polarization state just after the purification and without any initial
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correlation, i.e. for ϕ(n− n2) = 0 and a = 0. The visibility is 0.914± 0.006
(not exactly one mostly because of the large spectrum detected). In Fig. 9.4
(right) we report the two-qubit tomography for the state characterizing the
maximum revival of the visibility in the presence of initial correlations given
by ϕ(n− n2) = sin[λ(n− n2)], i.e. at a = 0.6 rad/pixel. The corresponding
visibility is 0.605± 0.007.
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Figure 9.4: Tomographic reconstruction of the two-qubit density matrix just
after the purification (left), without any initial phase, i.e. for ϕ(n−n2) = 0
and a = 0. The visibility is 0.914 ± 0.006. Tomographic reconstruction for
ϕ(n − n2) = sin(λ(n − n2)) at a = 0.6 (right), i.e. at the maximum of
the visibility revival [compare with Fig. 9.3]. The corresponding visibility is
0.605± 0.007

9.6 Conclusions

We have reported an experimental observation of the effect of initial correla-
tions between an open quantum system and its environment by means of the
trace distance. In particular, we have shown the increase of the distinguisha-
bility between two reduced states, sharing the same reduced environmental
state, over its initial value on both short and long time scales. Our all-
optical scheme is based on the use of a spatial light modulator, which allows
us to introduce initial correlations in a very general way. In particular, this
setup allows to engineer different kinds of dynamical behavior of the trace
distance, so that one can, e.g., tune the position and the amplitude of the
revival points of the distinguishability.

After the completion of this work, we became aware of [141], where initial
correlations between the polarization and the spectral degrees of freedom of
single photon states are experimentally witnessed by means of the trace
distance.
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Conclusion and Perspectives

During my PhD I have addressed the problem of purification of the intrinsic
phase term in a photonic entanglement source based on Spontaneous Para-
metric Down Conversion within a pair of type-I crystals. I have studied the
different contribution to decoherence such as the delay time, the spectral and
the angular phase difference between horizontal and vertical photon pairs.
Then I have realized an optical system allowing the optimization of entan-
glement purity and brightness. The essential advantage of our source is the
use of a very large angular and spectral distribution of the photons, allowing
to obtain a bright source even with a very low laser pump power. A crucial
role in this work has been played by a programmable Spatial Light Modula-
tor. This device introduces position and polarization dependent phase shift
allowing the addition of a relative angular phase function at will on the po-
larization entangled state. Besides the purification work we fully exploit the
SLM properties studying how the polarization entanglement purity depends
on the transverse profile of the pump beam. Our source can work in dif-
ferent regimes depending on the amount of spectrum selected; indeed when
the pump beam waist is large enough, a narrow spectral selection causes
a strong angular correlation between the photon in a pair. In other words
signal and idler photons are entangled also in the momentum. Otherwise
a very large spectral selection washed out this spatial correlation and the
momentum entanglement disappear.

Once the purification has been obtained we exploit the properties of
our source coupled with the SLM to realize multiqubit entanglement, ghost
imaging and non-local superposition of pure phase objects also demonstrat-
ing the proof-of-principle of a new cryptographic scheme. Besides these, we
study the open system dynamics of the polarization within the environment
of the linear momentum degrees of freedom of the same two photons. In
this framework we demonstrate two kind of dynamics for different environ-
ment spectrum, and we analyse the effect of initial correlation studying the
evolution of the trace distance between two states.

In future this source could be used for the analysis of the walk off ef-
fect on the entangled states studying in deep the spatial properties of the
pump. Another proposal is the realization of entanglement dynamics with
correlated baths. In this framework we intend realize a study of the entan-
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glement dynamics exploiting the spatial correlation between the two envi-
ronments (angular distributions) in different regimes. I have also proposed
the realization of the teleportation of a momentum state into a polarization
one exploiting the large angular distribution and birefringent crystals. Al-
ice generates a momentum qubit subdividing the spatial distribution in two
different sections; then using a long birefringent crystal she mixes different
polarization states that belong to different spatial sections. It is an opera-
tion on two qubit of the same photon. After a proper correction of the phase
and the delay time, the initial momentum quantum state owned by Alice is
teleported on Bob side but as a polarization qubit.

In conclusion our work contributed in the understanding of the physics
behind entangled photons generation in type-I down conversion. Some ap-
plication has already been realized but the power of our source is not yet
exausted.
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5.5 Visibility as a function of the symmetric slope b+. After linear
compensation we add on both channels the value b+. The red
line is the theoretical prediction calculated with the |g(∆k⊥)|2
measured with the method of the lens explained in the text. . 71
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